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Abstradd Extracting discriminative and robust features from
video sequences isthe first and most critical step in human
action recognition. In this paper, instead of using handcrafted
features, we automatically learn spatio-temporal motion fea
turesfor action recognition. Thisis achieved via an evolutionary
method, i.e., geneticprogramming (GP), which evolvesthe motion
feature descriptor on a population of primitive 3D operators
(eg., 3D-Gabor and wavelet). In this way, the scale and shift
invariant features can be effectively extracted from both color
and optical flow sequencesWe intend to learn data adaptive
descriptors for different datasets with multiple layers, which
makesfully useof the knowledge tomimic the physical structure
of the human visual cortex for action recognition and simulta-
neously reducethe GP seaching spaceto effectively accelerate
the convergence ofoptimal solutions. In our evolutionary archi-
tecture, the average crossvalidation classificationerror, which is
calculatedby an support-vectar-machine classifieron the training
set,is adoptedas the evaluation criterion for the GP fitnessfunc-
tion. After the entire evolution procedu e finishes,the bestso-far
solution selectedby GP is regardedas the (near-)optimal action
descriptor obtained. The GP-evolving feature extraction method
is evaluated on four popular action datasets, namely KTH,
HMDB51, UCF YouTube, and Hollywood?2. Experimental results
show that our method significantly outperforms other types of
features, either hand-designedor machine-learned.

Index Termg Action recognition, feature extraction,
feature learning, genetic programming (GP), spatio-temporal
descriptors.

|. INTRODUCTION

UMAN action recognition [1]i [3], as a hot research
areain computer visionhasmany potentialapplications
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suchasvideo searchandretrieval, intelligentsuwveillancesys
tems,and humancomputer interactionDespiteits popularity,
how to precisely distinguishdifferent actions still remains
challenging,since variationsin lighting conditions,intraclass
differencesand compkx backgroundsll poseasobstacles for
robust featureextractionand action classification.

Generaly, the basicapproacho actionrecognitioncontains
the following two stages:1) featureextraction and represen
tation and 2) action classification.For the first stage,there
aremainly two groupsof methods:1) local featurebasedand
2) holistic featurebased.

Within local featurebased methodsunsupervised teeh
niques(e.g., cuboid detector[4] and 3D Harris cornerdetee
tor [5]) arefirst appliedto detectinterestpointsaroundwhich
the most salient features,such as: histogram of3D oriented
gradients (3DHOG) [6], 3D scale invariant feature trans
forms [7], and histogramof fi o p t flom@ | ( H&),Fare
extracted.Then the bagof-features(BOF) schemeis utilized
to form a codebook andnap obtainedfeaturesin histogram
representationshich are finally fed to a classifierfor action
classification. The local featurebased methodsend to be
morerobustto compkx backgrounds andcclusionin real istic
actions [9], however, this kind of sparserepresentation is
often not precise andinformaive because ofthe quan
tization error during codebookconstruction andhe loss of
structuralconfiguration amondocal features.Another weak
nessof local approaches ishat the detectedspatictemporal
features are usually not distincive and invariant enough,
becausé¢he 3D local featuredetectorsaareextendedfrom their
2-D counterparts withoutully exploiting the intrinsic differ-
encesbetween statidmagesand dynamic videosequences.
Becauseof thesereasonsholistic featurebased methodisave
recently attracted significant attentionin action recognition
research.

On the otherhand,the holistic approaches represemttions
usingvisualinformation fromthewholesequencandhave also
beenutilized in a variety of applications.Commony, shape,
intensity, and color features are used for the holis- tic
representatiorof an action. The structure andorienta tion
information of texture and shape can be successfully
extracted by mimicking the biological mechanism ofvisual
cortex for humanperception.Color featureshave the advan
tage of being invariant with respectto scaling, rotation,
perspedve, and partial occlusion. The classicalapproaches
to computethe holistic featuresfor action recognitionwere
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developedby [10]i[12], etc., which are able to encodemore

visual information by preservingspatial and temporalstruc

tures of the human action occurring in a video sequence.
However, holistic representationgire sensiive to geometric
and photometric distortionsand shifting. Moreover, prepro

cessingsteps, such as backgroundsubtraction, spatiabnd

temporal alignments, segmentation andtracking, are often

required.

The methodsintroduced abve are all basedon handcrafted
techniques 13, [14] designedand tuned by humanexperts,
which, however, may achieve i g o geérformance ina pa-
ticular given domainand often resultin poor performance on
otherapplications. ldw to designan adapive methodologyto
extract spatiotemporal featuresvith discriminatve recognit
tion capabilitiesfor any use-definedapplicationstill remains
an openresearctguestion.

As an alternaive to handcrafted solutionbasedon deep
domain knowledge, genetic programming (GP),a power-
ful evolutionary method inspiredby natural evolution, can
be empbyed to automatically sole problemswithout prior
knowledge of the solutions.In the presentsetting, we wish
to identify the featuredescriptor (i.e.the sequencef prim-
itive operations, thecomposition andorder of which are
unknown) to maximize recognitionperformance ora human
action recognition task.This is an NP-hard search prob
lem [15] that evolutionary methodsnay solve in a tractable
amountof computertime comparedto the exhausive enu
meratve searchGP has beenusedto addressa wide range
of practicalproblems producing humarompetitve resultsand
even patentableinventions.As a searchHrame work, GPcan

This paperis organized as follows. In Sectionll, some
relatedwork is summarized. Thaetailedarchitectureof our
methodis presented iBectionlll, andrelevantexperiments and
resultsaredescribed irSectionlV. In SectionV, we conclude
this paperand outline possiblefuture work.

Il. RELATED WORK

As this paperfalls in the cakgory of holistic representa
tions, we mainly review methods ofholistic spatietemporal
representationfor actionrecognition.

Bobick and Davis [10] presented motiotemplates through
projecting frames onto a single image, namely motion his-
tory images (MHI)and motion enegy images. Thiskind of
motion templatescan capturethe motion patternsoccurring
in a video sequenceHowever, this simplerepresentation only
gives satigactory performance wherte backgroundis rel-
atively static. Efros et al. [16] proposed amotion descriptor
basedon smoothedandaggegatedoptical flows over a spatic
temporalvolume, which is centeredon a moving figure. This
descriptorhas beenproven to be suitablefor distantobjects,
but the moving figure needgo be localized quite accuratey.
Schindler and/an Gool [17] foundthatvery shortsnippets (1
7 frames) are suficient for basic action recognition. They
applied log-Gaborfilters to raw framesto extract form fea
tures and optical flow filters to extract motion features.In
addition, Gorelick et al. [18] extracted spatictemporal fea
tures, such as local spacetime saliewy, action dynamics,
shapestructure,and orientation, basean the propertiesof
Poissonequationsolutions. Moreover, somerecentdiscrimi-

typically escapehelocal minimain the optimization landscapenant analysis methodsaie also shown superior performance

which maytrap deterministic search methods.

In this pape, we adopt GPfor designingholistic descriptors
that are adapive to action domainsand robust to shift, scat
ing and background clutterindor actionrecognition. Gven a
groupof primitive 3D processingperatorsanda setof labeled
training examples,GP evolves bette-performing individuals
in the next generation.Eventuall, a bestso-far individual
can be selectedas the final solution (i.e., the nea-optimal
descriptor). The GP-evolved spatictemporal descriptorgan
extract and fuse the meaningful information fronihe original
sequenceandthe correspondingptical flow motion dataWe
systematicallyevaluate the method on the KTH, HMDB51,
YouTube,and Hollywood2 datasetdo demonstrate itperfar-
manceandgeneralizabiliy. For comparisonywe alsoshow that
the proposed methois superiorto somepreviously-published
handcraftedsolutions.

The main contributions ofthis papercanbe summarizedas
follows.

1) GPis usedto automaticallyfevolve Gspatictemporal

featuredescriptors thatare adapive and discriminatve
for action recognitionwithout profound knowledge of
the actiondatasets.
The GP-learned descriptorsprovide an effective way
to simultaneously extract and fuse thecolor and
motion (i.e., optical flow) informationinto one feature
representation.

2)

for actionrecognition,suchasslow featureanalysis(SFA) [19]
which extracts the slowly varying and relevant stablefea
turesfrom the quickly changed actiowvideos.SFA hasbeen
proved to be effectively usedin constructing thevisual recep
tive fields of the cortical neurons Generaltensordiscriminant
analysisand Gaborfeaturesoriginally proposedor gait recog
nition [20] can be also appliedto action recognition. These
handcrafted featuresisually involve a lot of engineering
work to designand tune and are not adapive to different
datasets.

Besideshandcrafted featureshere have also beena few
works on learning feature representations foaction recog
nition. Le et al. [21] have proposed usingunsupervised
feature learning as a direct way to learn invariant spatie
temporal features fromunlabeled videodata. Furthermore,
Taylor et al. [12] have introduced amodel that learnslatent
representations oifmage sequence$rom pairs of succesise
images.Similarly, Ji et al. [11] developeda 3D convolutional
neural netvork (CNN), which is directly extendedfrom its
2-D counterpart, forfeatureextraction.In a 3D CNN, motion
information in multiple adjacentframesis capturedthrough
performingconvolutionsover spatialandtemporaldimensions.
The caowolutionalarchitectureof their modelallows it to scale
to realisticvideosizeswhilst usingacompaciparametrization.
Recenty, deep belief netvork (DBN) [22] also shows its
capacityto automaticallylearn multiple layersof nonlin- ear
featuresfrom imagesandvideos.However, the numberof



parametergo be learnedin thosedeeplearning models[23]
is very large, sometimes todarge relaive to the available
numberof training sampleswhich unfortunatelyrestrictstheir
applicability.

Within the area of evolutionary computationgvolution
basedmethodssimulatebiological evolution to automatically
generatesolutionsfor use-definedtasks,suchas:geneticalgo-
rithms (GA), memeticalgorithms (MA), particle swarm opti-
mization(PSO),antcolony systemgACS),andGP. Generaly,
theseare heuristic and populationbased searchingiethods.
They all attemptto move from one populationto another
populationin a single iteration with probabilistic rules. In
particula, GA seeksthe solution of a problemin the form
of a string of numbers(traditionally binay, althoughthe best
representationare usually thosethat reflect somethingabout
the problem being solved), by applying operators suchs
recombinatiorand mutation(sometime®ne,sometimesoth).
Bhanuet al. [24] have proposed aradapive image segmen
tation systembasedon a GA. In their method, the GA is
an effective way of searchinghe hyperspace osegmentation
parametecombinationgo determinethe setwhich maximizes
a segmentationquality criterion. BesidesGA, PSO, which
is inspired by the social betavior of migrating birds trying
to reachan unkmown destination, hadveenusedfor feature
selectionand classification incomputervision tasks.In [25],
PSOQis incorporated withinan AdaBoostframework for face
detectionDynamicclustering usindg®SOhasbeenproposed for
unsupervisedimage classification in [26]. Additionally, a
multiobjecive PSOfor discriminatve featureselectionwas
proposedin [27] for robust classificationproblems.Beyond
the above methodsMA [28] andACS[29] have beenadopted
in vision applicationgtoo.

However, since GA and MA are basedon a fixed form
of geneexpressionduring the whole optimization procedure,
the representationsf the solutionare relatvely fixed and
limited, which heavily influence the effectiveness incom
plex optimization problemsWhile, different from GA/MA,
PSOconsidergheb i r d s dehswiar andacdordinglytheir
movements dward an optimal destination rathethan cre-
ating new solutionswithin each generation. Compareudith
other evolution-basedmethods,PSOacheves a final solution
in a linear searchspaceand tendsto be relaively éficient.
However, this kind of simple linear search cannot tackle
complex optimizationproblems.

To enablemore flexible representationgnotherevolution-
ary approach, i.e.GP, has been proposed 15], [30]. GP
has beenwidely utilized in the computer visiondomainand
proved to be more powerful than GA. It is more intuitive
for implementation andcan effectively sole highly non
linear optimization problemsThus, in terms of obtaining
betterresults,this kind of flexible, nonlinearsearchingnech
anismcan help GP achieve bettersolutions. Poli31] applied
GP to automatically select optimal filters for segmentation
of the brain in medical images. Following the same line,
Torreset al. [32] usedGP for finding a combinationof sim-
ilarity functions for image retrieval. Davis et al. [33] have
also empbyed GP for feature selectionin multivariate data
analysis,where GP can automaticallyselecta subsetof the

mostdiscriminatve featuresvithout any prior information.In
addition, other researchers3d]i [36] have also successfully
appliedGP to recognitiontaskswith improvements compared
with previous methods.

Recenty, GP hasbeenexploited to assembledw-level fea
turedetectordor high-level analysissuchas: objectietection,
3D reconstruction, imagéracking, and matching. The first
work in this area empled GP to evolve an operatorfor
detecting interegioints[37]. Trujillo andOlague[38] have also
used GP to generatefeature extractorsfor computervision
applications.In addition, a GP-baseddetectorwas proposed
by Howard et al. [39] for detecting shipwakes in synthetic
apertureradarimages.

One most related work using GP to automatically gen
erate low-level featuresfor action recognitionis introduced
in [40]. In this pape, some basic filters are successfully
evolvedto constructspatictemporaldescriptordor represent
ing actionsequencesAlthough this framework is regardedas
the first attemptin using GP to learn holistic representations
for action recognition, some aspectsin this framework can
still be improved. Specifically, the evolved structureis totally
random rather thanmimicking the structure of the human
brain cortex with multiple tiersd this kind of randomevolu-
tion may fail to find the bestsolutionsin a limited numberof
generationsFurthermore, th@revious work attemptsto learn
generalpurposerepresentationsyhich tendto be lessspecific
anddiscriminatve for differentactiondatadomains.Lastly, is
the method was only evaluated onfi s t a gcgod datasets
rather than realistic action datasetsWe expect to solve all
theseissuesin this pape.

Inspired by the effectivenessof GP on flexible optimiza
tion tasks and successfulapplicationsmentionedabove, in
this pape, we use GP to automaticallyevolve more task
specific spatiotemporaldescriptorsfrom a set of 3D filters
and operatordor realistichumanactionrecognition.

[11. EVOLUTIONARY MOTION FEATURE EXTRACTION

Much of whatis donein actionrecognition aimso achieve
what the humanvision systemis capable of.This hascaused
many researchers tmodel systemsand algorithms aftewari-
ousaspects othe humanvision system. Irthis pape, we also
attemptto simulate thehumanvisual cortex systemwhich is
made up of hierarchicallayers of neuronswith feedfomward
and feedbackconnections thagrow and evolve from birth as
the vision systemdevelops.The prior stagesof processing in
thevisualcortex aresensiive to visual stimuli suchasintensity
and orientations,spatial motion, and even colors. In a simi-
lar way that feedfoward neuralconnectionsbetweenthese
visual cortex layers are createdand evolved in humans, we
proposea domainindependeninachine learning methodology
to automaticallygeneratéow-level spatioctemporaldescriptors
for high-level actionrecognitionusingGP. In our architecture,
the original color and opticallow sequencesre regardedas
the inputsanda group of 3D operatorsare assembled t@on
structan effective problemspecificdescriptomwhichis capable
of selecively extracting featuresfrom input data. The final
evolved descripte, combining the nice propertiesof those
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Fig. 1. Outline of our featurelearningbasedapproach.

primitive 3D operatorscan both extract meaningfulfeatures
andform a compactactionrepresentationWe learnour pro-
posedsystemover a training set, in which descriptorsare
evolved by maximizing the recognitionaccuray through a
fitnessfunction,andfurther evaluatethe GP-selectecbneover
a testingsetto demonstratehe performanceof our method.
Thearchitectureof our proposedmodelis illustratedin Fig. 1.
Generaly, GP programscan be representedas a tree
structure, evolved (by selection, cros®ver, and mutation)
throughsexual reproductiorwith pairsof parentdeingchosen
stochasticallybut biasedin their fithesson the task at hand,
andfinally selectthe bestperformingindividualastheterminal

andfitnessfunction shouldbe first defined.
A. FunctionSetand Terminal Set

A key component ofGP is the function set which consti
tutesthe internal nodesof the tree and s typically driven by
the natureof the problem.To make the GP evolution process
fast,moreefficient operatorghat canextract meaningfulinfor-
mation from action sequences arpreferred. Ouifunction set
consistsof 19 unary operators and} binary ones,including
processindilters andbasicarithmeticfunctions,asillustrated
in Tablel.

In our GP structure,we divide our function set into two
tiers: 1) filtering tier (bottom tier) and 2) maxpooling tier
(top tier). The order of thesetiers in our structure isaways
fixed. Specifically, we do not allow the filter operatorsn the
function set to be above the maxpooling functions.In our
implementation, whem descriptoris evolved, we will check
whetherit is a wrongly ordereddescriptor omot. A wrongly
ordereddescriptorwill be automaticallydiscardedoy our pro-
gramand anew correctlyordereddescriptomwould be evolved
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Fig. 2. lllustration of the mechanisnof maxpoolingfilter.

to replacethe discarded oneln this way, in any GP-evolved
program, the operatorsin the filtering tier must be located
below the operatorsin the maxpooling tier. In addition, not
all the operators listedn the function sethave to be usedin a
giventreeandthe sameoperator carbe usedmorethanonce.
Therefore, theopology of the tree in eachtier is essentially
unrestricted. Thikind of tree structuremakesfully useof the
knowledgeto mimic the physicalstructureof the humanvisual
cortex [41], [42] by encodingorientation, intensjt and color
information ofthe targetsand can effectively tolerateshifting,
translation, andscalingfor action recognition andsimultane
ously reducethe GP searchingspaceto effectively accelerate
the convergenceof optimal solutions.

1) Filtering Tier: In the filtering tier, aiming to extract
meaningful features from dynamic actions, we adopt
3D Gaussiarfilters, 3D Laplacianfilers, 3D Wavelet filters,
3*D Gaborfilters, andsomeother sequencerocessingpea-
atorsand basicarithmeticfunctions.

3D Gaussian filtersare adopteddue to their ability for
denoising an@D Laplacian filtersare usedfor separating sig
nals into different spectralsubbands. Laplaciamf Gaussian
operatorshave beensuccessfully appliedo captureintensity
featuresfor actionrecognition in[2] and[43]. Wavelettrans
forms can perform multiresolutionanalysis andobtain the
contourinformation of humanactionsby usingthe 3D CDF
i 9 /[#4owavelet filters.

In this pape, these3D filters areusedfor constructingthe
sequenceyramid(i.e.,GauB, LapPy, Wavelet), whichis a data
structure designedto support efficient scaled convolution
throughreducingthe resolution. Itconsistsof a sequenceof
copiesof an original sequencen which both samplingden
sity and resolutionare decreasedn regular steps.A pyramid
is a multiscalerepresentatiomwith a recursve method.Beyond
those, 3D Gabor filtersare regarded as the most dfective
methodto obtain the orientationinformation ina sequence.
Following Riesenhuber anBoggio[41], we simulatethe bio-
logical mechanismof the visual cortex to define our Gabor
filter-basedoperators.Firstly, we convolve an input action
sequencavith Gaborfilters at six differentscales(7 < 7 %< 7,
9%x9x9,11x11x11,13%x13x13,15x 15x 15, and
17 x 17 % 17) under a certain orientation(i.e., 0Y 45 90Y)
or 135Y; we further apply the max operationto pick the
maximum value acrossall six convolved sequences fdahat
particular orientation.Fig. 3 illustratesthe procedureof our

D Input sequence

45 degree Gabor filters
with 6 different scales

11x11x11 13x13x13 15x15%15
Outputs of 6 scales Gabor filter

v
P

Output of 3D multi-scale-max
Gabor filter

TxTx7 9x9x9 17x17x17

Max operation

Fig. 3.  Outline of multiscalemax Gabor filter. This figure illustratesan
exampleof the multiscalemax Gaborfilter with a fixed orientationof 45

multiscalemaxGaborfilters for a certainorientation.The max
operationamongdifferentscalesis definedasfoll ows:

Imax — (T)fv\;()[|7x7x7(X,y,Z,ds), lgxox9(X,Y,Z,ds),
cooy 115x15x15(X, Y, Z,05), l17x17x17(X,Y,Z,05)] (1)

where Iyax is the output of the multiscalemax Gabor fil -
ter. lixixi(X,Y,z,ds) denoteghe convolved sequences witie
scalei x i x i andthe orientationds.

Moreover, several other 3D operators thaare common for
featureextraction areaddedto the function setto increasethe
variety of the selectionfor composing indsiduals duringthe
GP evolution. Basic arithmetic functions are chosento reat
ize operationssuchas additionand subtraction ofthe internal
nodesof the treeto make the whole evolution procedure more
natural.

To ensurethe closureproperty[15], we have only usedfunc-
tions which map one or two 3D sequences t@ single 3D
sequenceavith identical size(i.e., the input and the output of
eachfunction nodehave the samesize).In this way, a GP tree
canbe an unrestricted composition dfinction nodesbut still
alwaysproducea semanticallylegal structure.

2) Max-Pooling Tier: In the maxpooling tier, we include
four functions listed in Table I, which are performedover
local neighborhoodswith windows varying from 5 < 5 x 5
to 20 < 20 x 20 with a shifting step of 5 pixels. This max
pooling operation(seeFig. 2) is a key mechanisnfor object



recognitionin the cortex andprovides amorerobustresponse,
successfullytoleratingshift and scaling,in the caseof recog
nition in clutter or with multiple stimuli in the recepive
field [41]. Givena sequencemax-poolingfunctionswill pick
out the local max valuesfrom the input and shrink it along
spatialand temporaldimensionso composea more compact
representationf the input sequenceWe further resizeoutputs
calculatedfrom maxpooling functionsto an identicalsize as
inputsusinglinearinterpolation[45]. In this way, the sizesof
inputsandoutputsof our maxpooling functionsarethe same.

Eachfunctionin the function setis regardedasa treenode
in evolved programswhich connectghe outputsof lower level
functions orinputs. Note that, in our proposed GPRarchitee
ture, not all the functions listedin the function sethave to be
usedin a given structure andhe samefunction canbe used
more than once. The topology of our GP structure isessen
tially unrestricted. Besidefynctionsin thefunctionsetare also
highly relatedto our problem domainFor this pape, we aimto
constructnovel discriminatve featuredescriptorsfor action
recognition. So, what we choosein the function set are
effective filters for featureextraction,i.e., 3D Gaussian filters,
3D Gaborfilters, 3D Laplacianfilters, etc.We expect thewhole
learnedarchitecture isonsistentvith the physical structureof
the humanvisual cortex.

3) Terminal Set:In addition, theterminalsetis alsoa sig-
nificantcomponent ofGP. For actionrecognition,we consider
the following aspectsf our task: 1) the terminal set must
capturethe holistic information of eachaction sequenceand
2) during the evolution processthe evaluation ofthe fitness
function mustbe efficient. In our implementationto simulate
the human visual cognition system, whichmakes decisions
relyingon bothcolorandmotioninformation ofmoving objects
from a viewpoint, we expect to obtain informatve spatie
temporal featuresby fusing original color and motion
information.Particularly, the motioninformation isextracted by
computingthe optical flow [46] alonghorizontaland ver- tical
directions. Gven an original actionsequencethe optical flow
maps:Fx andF, arecomputedoetweeradjacentth frame and
(t + Dth frame. The final optical flow data are further
obtainedby piling the Fx andFy into sequence¥r, andVe,.
We further normalizeall datain the terminalsetinto the same
sizeby applyingbicubicinterpolation[47]. In addition,the ter-
minal of the GP structure isdatadependentwhich meanghat
eachvideo sequenc®/; from thetrainingsethas acorrespone
ing T definedby: Ti ={Vcoior, VF,, and Vg,} (SeeFig. 4).

Note that, in our implementationa color sequencés merely
a grayscalentensity sequenceas we believe that the use of
threecolors (red, green,and blue) will not bring much extra
informationfor actionrecognitionFor eachireebasedenetic

structure,an action sequencas locatedat the bottom leaf of
the entire tree and connects withthe higher function nodes
directly. The datatypesusedfor the terminalof programnodes
arelistedin Tablell.

B. FitnessFunction

The objecive of evolutionary methodsis to maximize
the performanceof individual solutionsas gaugedby some

Optical flow (horizontal)

.F’

Optical flow (vertical)

Original color sequence

t+1 frame

|y
Optical flow (vertical)
sequenceVry

198 [RUILID |,

Optical flow (vertical)

Original color sequence
sequence VFy

Optical flow (horizontal)
sequence Viy

Fig. 4. Exampleof input datatypesin the terminalset.

TABLE I
STATEMENT OF TERMINAL NODES

Terminal| Type | Description
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Ve 1S4 o i Idi d

appropriate fitness functions. To evaluate the candidate
GP-evolvedfeaturedescriptordiere,we estimatetheir recogni
tion accuraciesisinga linear supportvecta-maching(SVM),!
which isa popularclassifierfor computervision taskshecause
of its high accuray and efficiency. To awid the redundany
and make a more compactfeaturerepresentationye take the
m = n % t outputof the GP treeanddivide it into 10 10 < 5
subblocks? The meanvaluesof eachsubblock areconcate
natedinto a 500D vectorwhich compriseghe inputof a SVM,
asshown in Fig. 6. To obtaina morereliablefitnessevaluation,
for eachnew GP tree we estimatethe recognitionaccuray
with the SVM using tenfold crossvalidation. We divide the
GP training setrandomly intoten equalpartsand performten
repetitions oftraining the SVM on nine-tenths ofthe setand
testingon the remainingenth.The overall fitnessof the candi
date GP treeis taken asthe average ofthe ten SVM testfold
accuraciesThe correspondindfitnessfunction is defined as
follows:

E, 17 (SVM[acy])/n

i=1

x100%  (2)

where SVM[acy] denotesthe recognitionaccuray of fold i
by the SVMandn indicateghe total numberof folds executed
with crossvalidation.Heren is equalto 10.

1The classifier used during descriptorlearning and at the testing stage
shouldbe consistent.

2In our experimentsyve selectecthe optimalsizeof the subblocksfrom the
setof {5 x5x5,10x5x5,10x 10x 5,10% 10x 10,and15x 15x 10}
by 5-fold crossvalidation. The relevant resultsshow 10 < 5 < 5 and 10 x
10 x 5 both achieve better performancefor final classification.Due to the
consideratiorof compkxity, we chosel0> 10> 5 in our experiments.
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In our method,eachtraining sampleis a video sequence

containinga large numberof pixels and the fithessfunction
hasto be evaluatedover the training setmany timesfor whole
populationin eachGP generationMeanwhile for gettinggood

results,a large numberof generationsare usually required.

All thesewill leadto heavy computationTo speedup the GP
learning algorithm, we used multiple processors whicltan
evaluate many fitness measureat the sametime, giving a
tremendouseductionin the training time.

C. GeneticProgrammingFramework

GP[15] is oneof a numberof populationbasedevolutionary
algorithms inspiredy naturalevolution andis widely usedin
machinelearning.It allows a computerto automatically sole
predefinedaskswithout requiringusersto know or specifythe
form or structure ofthe solutionin advance. InGP, we ran

Algorithm 1 GeneticProgramming

Start

Initialization

for size of populationdo

Randomlycreatean initial populationof operationsequencefrom the

awailable primitives (terminalset& function set)

end for

for numberof generationglo

for eachindividual do

(1) Processactionsequencewiith ewlved individual featuredescriptor
(2) Evaluatethe fitnessof the individual via recognitionerror rate
(3) Chooseindividualsfrom thepopulationwith a particularprobabilitybiased

in their fitness
(4) Createa new generatiorof individuals applying geneticoperations
(cros®ver & mutation)
If  An acceptablesolutionis found or the maximumnumberof generations
(definedby user)exceeded
end for
end for
Return
end for

The bestfeaturedescriptoris selected

evolutionarymethodsdo not guaranteedo find any mathemat
ical optimum, but, in practice,usually find a good solution
to an NP-hard problemin an acceptableamountof computer
time. The relevant GP algorithmis shown in Algorithm 1.

The action sequences formthe terminal setand each
sequencewith the size of m > n x t is taken, in turn, asthe
input to a GP individual. Each GP candidatefeaturedescrip
tor is formulatedas a tree structure,the output of which is
still am>nxt block. A representate GP treeis illustrated
in Fig. 5.

IV. EXPERIMENTS AND RESULTS

In this section, wedescribe thedetails of our GP imple-
mentationand the relevant experimental resultsve obtain by
our approach.

A. GP Implementation

We implementour proposednethodusing MATLAB 2011a
(with the GP toolbox GPLAB3) on a sewver with a 12-core
processor anb4GB of RAM running the Linux operating
system. Theotal runtime was aroundthree weeks.The usa-
definedGP parametersre asfoll ows.

1) Population Size: According to some previous relevant
experiments,the larger populationwe definein GP running,
the bettersolution we can potentiallyobtain. In this case,
consideringthe high computational costwe seta population
size of 200 individuals with the initial population generated
with the rampedhalf-andhalf method[15]. The number of
generationss definedas 70.

2) Genetic Opeators: We use both tree cros®ver and
mutation [15] as our genetic operators.Following the stan
dard settingin [15], we fix their probabilitiesduring the GP
evolution at 90% and 10%, respedtvely.

3) Selectionfor Repoduction: The selectionmethodwe

domly generatean initial population ofoperationsequences applyis lexicographic parsimiay pressurg48] which is simi-
which are regardedas candidatesolutions.This population is |5y to tournamenselectionin choosingparents froma random
thenallowedto evolve (by selectioncros®ver, andmutation) ¢,psetof individuals inthe population. Hwever, the unique
through sexual reproduction withpairs of parentsbeing cho-  featureof lexicographic parsimay pressurds that the smalk

sen stochasticallybut biasedin their fitnesson the task at ggtindividual (i.e., fewesttree nodeswill be selectedf more
hand.In this way, the generalfitnessof the populationtends

to improve over time. Finally, the bestperformingindividual
obtainedis taken asthe final solution.It shouldbe notedthat

Shttp://gplabsourceforgamet/cownloadhtml, a GP Toolbox for MATLAB.
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Fig. 7. Someexampleframesof four datasetsimagesin the top row are from the KTH datasetjmagesin the secondrow are from the HMDB51 dataset,
imagesin the third row are from the YouTube datasetandimagesin the bottomrow are from the Hollywood2 dataset.

than one individual hasthe samebestfitness inthe selection
competition.

size of 100> 100 = 60. We follow the original experimen
tal settingof the authors,i.e., divide the datainto a test set

4) Survival Method: We adoptthe fi t o€t lail t schemeo (9 sujects2,3,5,6,7,8,9,10,22for final testing)anda train-

for GP running.In this schemeall the individuals fromboth

parentsand children populationsare orderedby fithess alone,

regardlessof beingparentsor children.Consequernyi the best
individuals canbe kept and inherited generation bygenera
tion. This scheme habeendemonstrateteading topromising
resultsin many applications.

5) StoppingConditions: We set the GP termination cri-
terion as the error rate falling to O 2% or the number of
generationgxceeding70.

As GP is a stochastic approach, wein our methodthree
times on eachdatasetand selectthe bestperforming descrip
tor. Oncea descriptor islearnedand selectedjts structureis
fixedand canbe usedon new datathe sameasa handcrafted
descripta.

B. Datasets

We systematically tesbur proposedmethodon four pop
ular action datasetsKTH [49], HMDB51 [50] YouTube B],
and Hollywood?2 B1]. Someexampleframesfrom thesefour
datasetsre visualizedin Fig. 7.

ing set(theremainingl6 subjectdor GPtraining).As in [49],
we train and evaluate a multiclassclassifierand report the
averageaccuray over all classessthe performancaneasure.

The HMDB51 datasetollects6849 actionsequencefrom
various movies and online videos. In our case,we adopt
2241 sequences from9 generalbody action categories (i.e.,
cartwheel, clahandsgclimb, climb stairs,dive, fall onthe floor,
backhandlip, handstandump, pull up, pushup, run, sit down,
sit up, somersaultstand up, turn, walk, and wave) as our
researcldata. Inour experimentscoarseboundingboxeshave
beenextractedfrom all the sequences throughasksreleased
with the datasetndinitialized into the sizeof 100x 120> 50.
We further randomly dvide these2241 sequences intthree
subsetsand adoptthe first two subsetsas the training setand
the restasthe testingset.

The YouTube datasetcontains 1168video sequences
collected from 11 action cakgories: baketball shooting,
biking/cycling, dving, golf swinging, horsebackriding, soc
cer juggling, swinging, tennis swinging, trampoline jumping,
volleyball spiking, and walking with a dog. This datasetis

The KTH datasetis a commonly usedbenchmark action very challenging dueto large variations in cameramotion,

datasetith 599video clips. Sixhumanactionclassesinclud-

ing walking, jogging, running, boxing, handwaving, and
handclapping, ar@erformedby 25 subjectsin four different
scenarios: outdoorésl), outdoorswith scale variation (s2),
outdoorswith different clothes(s3), and indoors with light-

ing variation(s4). Following the preprocessingtepmentioned
in [52], thecoarse3D bounding baesareextracted fromall the
raw actionsequenceandfurthernormalized intcanequal

objectappearance anpose,objectscale,viewpoint, cluttered
backgroundand illumination conditions.For this datasetwe

deliberatelyusethe full-sizedsequencewithout any bounding
boxesasthe input to evaluateour methods rdbustness gainst
compkx and noisybackgroundsEachsequencés furthernor-

malizedinto the size of 100> 100 60. We take the first 2/3

sequencefom eachcaiegory to composeur training set,and
the restof the datais definedasthe testingset.



Fig. 8. Nea-optimal featuredescriptorgeneratedhrough GP on the KTH
dataset.

The Hollywood2 datasehhascollected1707 actionsamples
from 69 different Hollywood rnovies with 12 action classes:
answeringthe phone,driving car, eating,fighting, gettingout
of car, handshaking, hugging, kissingunning, sittingdown,
sitting up, and standingup. To meetthe closurerequirement
of GP, we further resizeall sequences irthis datasetto the
identical size 100 < 100> 80. In our experimentswe utilize
our GP methodon a training set with 823 sequencesnd a
testsetwith 884 sequencefollowing the original pape.

C. Results

For the KTH dataset,our approachautomaticallyselects
and fuses color-motion information and generatesmachine
learneddescriptorsfor action recognition.We selectthe best
GP-evolved feature descriptor to representall the action
sequencesnd train a linea-SVM classifier on the training

set and test on the remaining folbwing the experimental

setting in [49]. We finally achieve the recognition accu
racy of 95% on the testingset. Compared withother results
listed in Table lll, we can easily conclude thabur resultis
comparableo [53] and significantly outperformsother meth
ods. Note that usingthe fi lave-oneo u experimentalsetting

TABLE Il
CoMPA RISON OF ACTION RECOGNITION ACCURACIES

IN PERCENTAGE (%) OoN THE KTH DATASET
WiTH DIFFERENT METHODS

Accur cy
Methods

Experiment | |Recognition

setting rte
ur method Split 950
Dense HOG3D [ | Split 927
Dense HOG/HOF [8] Split 923
HOF [4 ] Split 920
HMHI [55] Split 90
Dense SURF3D [5 ] Split 893
Motion nd Structure Fe tures [43] Split 927
3D G bor b nk Split 917
CNN [57] Split 93
DBN [22] Split 942
Liu et al [40] Split 935
Schindler nd v n Gool [58] Split 927
W ng et al [59] Split 921
L ptev et al [8] Split 918
Jhu ng et al [ 0] Split 917
Kl seretal [ 1] Split 91 4
F thi nd Mori [ 2] Split 905
Nowozin et al [ 3] Split 37 04
Schuldt er al [53] Split 7171
Ke eral [ 4] Split 279

Chen et al [54]

Liu nd Sh h [ 5]
Niebles er al |
Doll ret al 4]

[.2 ve one out
Le ve one out
] Le ve one out

Le ve one out

TABLE IV
CLASSIFICATION PERFORMANCE OF OUR GP-BASED TECHNIQU E USING
DIFFERENT CLASSIFIERS IN THE FITNESS FUNCTION ON THE KTH DATA
SET (WITH THE SPLITTING SETTING)

——

M - Accur cy Cl ssifier Recoaniti
ethods — ecognition r te
G b sed SVM 95 0%

G b sed Ne Test Neighbor 87 2%
Nvie B yes
G Psed (G ussi n distibution)| S0 %
Dense HOG3D SVM 92T%
Dense HOG31D Ne rest Neighhor 62 9%
N vie B yes 0 %
Dense HOG3D (G ussi n distribution)

shouldyield higher accuracieshan using the fi s p bettibgo jndependentlyof the selected classifiecompared withthe

as mentioned in[49]. Fig. 8 shows the tree structure of
the bestperformedGP program(featurelescriptor),in which
3D Gaussian,3D Laplacian, and3D Gabor operatorswere
automaticallyselectedby GP evolving at the filtering layer
to extract the orientation andintensity features,and several
scalesof pooling operators carget the most robust and dis-
tinctive responseto differentdataresolutionson thetop laye:.
The whole learnedarchitecture isndeed consistentwith the
physical structure ofthe humanvisual cortex. In addition, the
detailed information of error rate during the genetic evolu-
tion can be seenin Fig. 12. Beyond those, as illustrated in
Table IV and Fig. 11, we have further evaluated ourmethod
with different classifiersin the fitnessfunction to prove that
our evolved system,which comprises thesvolved descriptor
andthe usedclassifie, givesbetterclassificatiornperformance

handcrafted featuredescriptors. Inaddition, Table IV shows
that amorepowerful classifiersuch asSVM will lead to better
performancef the systentonsistingof the evolved descriptor
andthe adoptedclassifie.

The HMDB51 datasets one of the mostcompkx datasets
for actionrecognitionIn our experiments, th@roposed method
still works well to assemblea (nea-)optimized fea ture
descriptor byusing GP. The LISP format of the evolved
descriptoris shown in Fig. 9. Combiningwith the linear-SVM
classifig, the GP-evolved descriptorachieves excellent per-
formance ontheseaction sequences witimoisy and complex
backgroundsAs a result, the obtainedbest feature descrip
tor achieves the final recognitionaccuray rate of 48.4% on
the testing set. Due to different experimental settingand a
differentfocusof attentionwe only comparewith stateof-arts



Max-pooling5 (absSUB (SUB (SUB (GauPy?2
(Vcolor) ,GauPy2 (Vcolor) ) ,MED (Wavelet?2
(GauPy2 (Vcolor)))) ,Add (GBO-90 (LapPyl (Mean
(VFx))),GB0-135 (LapPy2 (Dof (VFy))))))

Fig.9. LISPformatof the(nea-)optimalfeaturedescriptoigeneratethrough
GP on the HMDB51 dataset.

Max-pooling1o(SUB (absSUB (GBO-45
(Dof (LapPyl (Vcolor))) ,GauPy2
(VFx)),GBO-90 (LapPy2
(Vcolor))))

Fig. 10. LISP format of the (nea-)optimal featuredescriptorgenerated
throughGP on the YouTubedataset.

MaxpoolinglO (MED (ADD (LapPy2 (Wave
let2 (absDof (LapPy2 (VFx))) ), SUB (M
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Fig. 11.  LISP format of the (nea-)optimal featuredescriptorsgene-
atedthrough GP with nearestneighborclassifier andnaive Bayesclassifig,
respedtely in fitnessfunction on the KTH dataset.
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Fig. 12. Evolved bestsofar valuesof fitnesson four datasets.

handcrafted featurdescriptorgatherthanotheractionrecog
nition systems.The relevant results are shown in Table V,
from which, our methodshows higher performancehan other
handcraftand machinelearnedfeatures.

The resultson the YouTube dataseare shown in Table VI.
As expectedthe best GPevolvedfeaturedescriptorachievesa
recognitionaccuray rateof 82.3%on the testingsetusingthe
SVM classifie, sincethis collectionrepresents naturalpool

TABLE V
CoMPA RISON OF ACTION RECOGNITION ACCURACIES
IN PERCENTAGE (%) ON THE HMDB51 DATA SET
WiTH DIFFERENT METHODS

w}/ Experiment 1|Recognition
Methods - setting re
ur method Split 484
Dense HOG3D [ | Split 427
Dense HOG/HOF [8] Split 435
HOF [4 ] Split 422
HMHI [55] Split 415
Dense SURF3D [5 ] Split 398
Motion nd Structure Fe tures [43] Split 452
3D G bor b nk Split 440
CNN [57] Split 458
DBN [22] Split 49

TABLE VI
COMPA RISON OF ACTION RECOGNITION ACCURACIES
IN PERCENTAGE (%) ON THE YOUTUBE DATASET
WITH DIFFERENT METHODS

T Accur cy Experiment 1|Recognition
Methods setting rte
ur method Split 823
Dense HOG3D [ | Split 74
Dense HOG/HOF [¥] Split 70
HOF [4 ] Split 747
HMHI [55] Split 72
Dense SURF3D [5 ] Split 723
Motion nd Structure Fe tures [43] Split 777
3D G bor b nk Split 758
3DCNN [57] Split 798
DBN [22] Split 821

TABLE VII
COMPA RISON OF ACTION RECOGNITION ACCURACIES
IN PERCENTAGE (%) ON THE HoLLy woop 2
DATASET WITH DIFFERENT METHODS

W Experiment 1|Recognition
Methods setting rte
ur method Split 46 8
Dense HOG3D [ ] Split 437
Dense HOG/HOF [8] Split 448
HOF [4 ] Split 425
HMHI [55] Split 408
Dense SURF3D [5 | Split 420
Motion nd Structure Fe tures [43] Split 4313
3D G bor b nk Split 422
CNN [57] Split 453
DBN [22] Split 468

of actionsfeatured ina wide rangeof scenesand viewpoints
with large intraclassvariability. Fig. 10 shows the LISP format
of the corresponding GProgram.Note here,dueto the com
putationalcostof GP, we cannotdo crossvalidationfoll owing
the original experimentalsetting. All the comparableresults
are calculated undeour datadivision. From Table VI, it is
obvious that our GP-evolved motion feature is competitve
with the DBN-learnedone but significantly outperformsother
features.

To demonstrat¢he generalizabilityof the proposednethod,
we evaluateit on the Hollywood?2 dataseas well. Sincethe
actionsof the Hollywood?2 datasetare collectedfrom films
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Fig. 13.  Nea-optimal feature descriptor generatedthrough GP on the
Hollywood2dataset.

presentingrealistic scenariosthe resultsshown in Table VII

on this datasetare not as promising aghoseon otherdatasets.

Apparenty, our GP-evolved methodhasconsistently acleved
significantlybetterresults(46.8%)thanotherhandcraftedand
is competitve with CNN and DBN. The evolved treebased
structurecanbe foundin Fig. 13.

For comparisonyve alsolist the recognitionratescalculated
on all datasetshy some prevalent handcrafted 3D descrip
tors including: hierarchical MHI (HMHI), denseHOG/HOF,
dense3DHOG, 3D-SURF, HOF, motionandstructurefeatures
(MSF) [43], and 3D-Gaba-bank. Underthe sameexperimen
tal setting, we use the HMHI as a holistic 3D descriptor
to extract the motion information for later recognition. 3D
Gaba-bank, whichis consideredas an effective and efficient
way to obtain the orientationinformation, simulateshe bio-
logical mechanisnof the humanvisual cortex by applying 3D
Gaborfiltering with 4 orientationsat 6 different scales.The
outputof eachfilter is thenaveragedon a 10> 10> 10 grid to
form avecta. Additionally, MSFencode®nemotionplane and
five image planesto capturethe structureinformation. The
Gaussianpyramid and cente-surround operationsare per-

TABLE VIl
Time CosTs OF FEATURE LEARNING ON THE FOUR DATASETS WE UseD
BY THE PrRorPosm GP MeTHoD (MATLAB 2011a1s
UsED FOR CODING)

Time cost . " o
‘Datase[ Training Phase (hours) Testing Phase (seconds)

KTH 87 8h 0 325 per sequence
HMDBSI 152 |h 0 51s per sequence
YouTube 124 6h 0 37s per scquence

Hollywood2 139 6h 0 45s per sequence
‘ A erage ‘ 126 Oh ‘ 0 418 per sequence |

hiddenlayers: 50017 5001 2000 with backpropgation fine
tuning and then utilize the learned architecture (with
associatedparameters)to extract features on the testsets
combinedwith the linear SVM classifier for recognt tion.
Similarly, a5-layerfeatureextraction structuréasbeen trained
using the CNN and further adoptthe same recognition
mechanisnto computethe final accuray. In our experiments,
we use Deeplearfioolbo¥* with default parametersettings
accordingto previous publications byHinton et al. [22], to
implementrelevant tasks. To make the comparisonfair, all
the sequencesisedas the inputs of the architectures ar¢he
combinationsof the color and optical flow component®f the
original sequence.

Additionally, to illustrate time compkxity of the feature
learning process, waow theevolving timecostsof the method
on four datasetsn TableVIll . For videodatasetsgach training
samplewould be very large size.However, thefitness function
must be evaluatedover all the trainingset may times for all
populations withinone GP generationMeanwhile, to getting
goodresults, dargenumber ofgenerationareusually required,
which leadsto heavy computation. Inour experi ments,we
actually implement parallel processing tospeedup the GP
learningalgorithm.In our implementation, théarge numbef
fithessevaluationcan be performedby multiple processorat
the sametime, giving a tremendous reductiom the training
time.

As many other learning algorithms, thetraining of the
descriptorgs time-consuminghut it canbe performedoffline.
Once the optimal descriptoris obtainedfrom the GP train
ing phase,the classificationphasewill be very efficient, as

formedon eactof the six obtainedeaturemaps,decomposing the optimized descriptor cabe just used as a handcrafted

eachfeaturemapinto a setof subband mapspn which bio-
logically inspiredfeaturesare thenextracted. Asthe other 3D
descriptors araisually usedas local descriptors, denssam
pling is first applied oneachsequencén a densegrid with the
block sizeof 10x 10 10 pixelsandan overlapof 5 pixelsin
eachdimensionandthe final representatiorectoris the con
catenation ofthe descriptor calculated oall blocks. For fair
comparison, althe above featuresare respedtvely extracted
from the originalsequencend the opticall ow sequencesand
thenconcatenatethto a long representation whicls fed to a
linear SVM.

In addition,we have alsoutilized wo popular deepearning
methods, i.e.DBN [22] and CNN [56], to learn hierarchical
architecturesfor feature extraction on the combinedearn
ing and ewaluation sets. For DBN, we train a hierarchical
architectureon the training setswith neuronnumbersin the

descripte. Of course,with the rapid development ofsilicon
technologies, futureomputersill be muchfasterandeven the
training will becomelessa problem.

In this pape, we aim to introducea novel adapive method
to learn discriminatve descriptorsOur GP-learnedsolutions
are just descriptorslike SIFT. So, we mainly compareour
GP-evolved descriptorswith other stateof-the-art descriptors
ratherthan a whole actionrecognition systencomposedwith
differentfeaturedescriptorsandclassifiers As our contribution
is the learningof features,comparing withother handcrafted
and learnedfeaturesusingthe sameclassifierwith exactly the
samesettingis the fairestway. If combining ourGP-learned
motionfeatureswith moreadvancedclassificatiormodels,it is
possibleto reachhigherrecognitionresultson thesedatasets,

“https://githubcom/rasmusbergpalm/DeepLearnToolbox



but it is not the core of this pape. So, for the HMDB51,
YouTube,and Hollywood?2 datasetst is meaningless tecom
pare with other entire recognition systemsunder different
experimentalsettings.

V. CONCLUSION

In this pape, we have developed anadapive learning
methodologyusing GP to evolve discriminaive spatiotempo
ral representations, whickimultaneously fuse¢he color and
motion information, for high-level action recognition tasks.
Our method addresses featurkearning as an optimization

problem, and allows a computerto automatically assemble

holistic featureextraction by using a pool of primitive opea-
ators, which are devised accordingto the generalknowledge
of feature extraction. We have systematicallyevaluated our
method on four public datasetsKTH, HMDB51, YouTube,
and Hollywood2with accuracie®f 95%, 48.4%,82.3%,and
46.8%usingthe learneddescriptorsin all four datasetsexper-

imentalresultsmanifest thabur GP featurelearning approach

achieves significantly higher recognition performancecom

paredwith stateof-the-art handcrafted and machinelearned
techniques. Irfuture work, we will mainly focuson the paral

lel and GPU computation tospeedup our methods.Besides,
other more recentevolutionary methodge.g., PSO) will be
takeninto consideratiorfor leaningdiscriminatve features.
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