
 
 

 
 
 
 
 

 
Bulletin of the American Meteorological Society 

 

EARLY ONLINE RELEASE 
 

This is a preliminary PDF of the author-produced 
manuscript that has been peer-reviewed and 
accepted for publication. Since it is being posted 
so soon after acceptance, it has not yet been 
copyedited, formatted, or processed by AMS 
Publications. This preliminary version of the 
manuscript may be downloaded, distributed, and 
cited, but please be aware that there will be visual 
differences and possibly some content differences 
between this version and the final published version. 

 
The DOI for this manuscript is doi: 10.1175/BAMS-D-15-00251.1 
 
The final published version of this manuscript will replace the 
preliminary version at the above DOI once it is available. 
 
If you would like to cite this EOR in a separate work, please use the following full 
citation: 
 
Kent, E., J. Kennedy, T. Smith, S. Hirahara, B. Huang, A. Kaplan, D. Parker, C. 
Atkinson, D. Berry, G. Carella, Y. Fukuda, M. Ishii, P. Jones, F. Lindgren, C. 
Merchant, S. Morak-Bozzo, N. Rayner, V. Venema, S. Yasui, and H. Zhang, 
2017: A call for new approaches to quantifying biases in observations of sea-

 
AMERICAN  
METEOROLOGICAL  

SOCIETY 

surface temperature. Bull. Amer. Meteor. Soc. doi:10.1175/BAMS-D-15-00251.1, 
in press. 
 
© 2017 American Meteorological Society 



1 

A call for new approaches to quantifying biases in observations of sea-surface 1 

temperature 2 

Elizabeth C. Kent, John J. Kennedy, Thomas M. Smith, Shoji Hirahara, Boyin Huang, 3 

Alexey Kaplan, David E. Parker, Christopher P. Atkinson, David I. Berry, Giulia Carella, 4 

Yoshikazu Fukuda, Masayoshi Ishii, Philip D. Jones, Finn Lindgren, Christopher J. 5 

Merchant, Simone Morak-Bozzo, Nick A. Rayner, Victor Venema, Souichiro Yasui and 6 

Huai-Min Zhang 7 

Elizabeth C. Kent, David I. Berry and Giulia Carella: National Oceanography Centre, UK 8 

John J. Kennedy, David E. Parker, Christopher P. Atkinson and Nick A. Rayner: Met Office 9 

Hadley Centre, Exeter, UK 10 

Thomas M. Smith: NOAA/NESDIS/STAR, USA 11 

Shoji Hirahara: Global Environment and Marine Department, Japan Meteorological Agency, 12 

Tokyo, Japan and ECMWF 13 

Boyin Huang and Huai-Min Zhang: NOAA’s National Centers for Environmental 14 

Information, Asheville, NC, USA 15 

Alexey Kaplan: LDEO of Columbia University, USA 16 

Yoshikazu Fukuda: Japan Meteorological Agency, Japan 17 

Masayoshi Ishii, Climate Research Division, Meteorological Research Institute, Tsukuba, 18 

Ibaraki, Japan 19 

Philip D. Jones: University of East Anglia, Climatic Research Unit, School of Environmental 20 

Sciences, UK and Center of Excellence for Climate Change Research, Department of 21 

Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia 22 

Finn Lindgren: University of Edinburgh, UK 23 

Christopher J. Merchant and Simone Morak-Bozzo: University of Reading, UK 24 

Victor Venema: University of Bonn, Germany 25 



2 

Souichiro Yasui: Global Environment and Marine Department, Japan Meteorological 26 

Agency, Tokyo, Japan 27 

Corresponding author: Elizabeth C. Kent, National Oceanography Centre, Southampton, 28 

SO14 3ZH, UK. eck@noc.ac.uk 29 

 30 



3 

Capsule Summary 31 

Global surface-temperature is a fundamental measure of climate change. We discuss bias 32 

estimation for sea-surface temperature and recommend the improvements to data, 33 

observational metadata, and uncertainty modeling needed to make progress. 34 

Abstract 35 

Global surface-temperature changes are a fundamental expression of climate change. Recent, 36 

much-debated, variations in the observed rate of surface-temperature change have highlighted 37 

the importance of uncertainty in adjustments applied to sea-surface temperature (SST) 38 

measurements. These adjustments are applied to compensate for systematic biases and 39 

changes in observing protocol. Better quantification of the adjustments and their uncertainties 40 

would increase confidence in estimated surface-temperature change and provide higher-41 

quality gridded SST fields for use in many applications. 42 

Bias adjustments have been based either on physical models of the observing processes or on 43 

the assumption of an unchanging relationship between SST and a reference data set such as 44 

night marine air temperature. These approaches produce similar estimates of SST bias on the 45 

largest space and timescales, but regional differences can exceed the estimated uncertainty. 46 

We describe challenges to improving our understanding of SST biases. Overcoming these 47 

will require clarification of past observational methods, improved modeling of biases 48 

associated with each observing method, and the development of statistical bias estimates that 49 

are less sensitive to the absence of metadata regarding the observing method.  50 

New approaches are required that embed bias models, specific to each type of observation, 51 

within a robust statistical framework. Mobile platforms and rapid changes in observation type 52 

require biases to be assessed for individual historic and present-day platforms (i.e., ships or 53 

buoys) or groups of platforms. Lack of observational metadata and of high-quality 54 
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observations for validation and bias model development are likely to remain major 55 

challenges. 56 

1. Background 57 

The global surface temperature record is constructed by blending sea-surface temperature 58 

(SST) with air temperature over land and ice (see also section S1 of the supplemental 59 

material). Both SST and land-air temperature require adjustments to account for changes such 60 

as in depth or height of measurement, instrumentation, and siting. Improvement of estimated 61 

biases in historical measurements of SST will have a major effect on estimates of global 62 

surface temperature change and their uncertainty (Jones 2016).  63 

The historical record of observations of the temperature of water at the “sea surface” is a 64 

disparate collection of measurements made using different methods from different 65 

measurement platforms. Most measurements come from platforms that move (mostly ships 66 

and drifting buoys) with relatively few providing time series at fixed locations (e.g., ocean 67 

weather ships, fixed platforms, coastal installations or moored buoys). Adjustment of near-68 

surface air temperatures over land, often called homogenization, relies on comparisons of a 69 

candidate station with nearby stations to identify and correct unphysical changes (Trewin 70 

2010). The continually evolving, and largely mobile, marine observing system means that 71 

such approaches cannot be easily applied to marine observations. 72 

Folland et al. (1984) applied first-order SST bias adjustments, adding a constant value of 73 

0.3°C to observations made before 1942, based on the difference between global night marine 74 

air temperature (NMAT) and SST. By the time of the Intergovernmental Panel on Climate 75 

Change (IPCC) First Assessment Report (Houghton et al. 1990), more complex models of 76 

SST bias had been developed (Jones et al. 1986, Bottomley et al. 1990) and presently several 77 

different estimates of SST bias exist. Figure 1 shows global mean SST anomalies for the 78 
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current, commonly-used, long-term gridded SST analyses: HadSST3 (Kennedy et al. 2011a, 79 

b); ERSSTv4 (Huang et al. 2015); and COBE-SST2 (Hirahara et al. 2014), along with their 80 

bias estimates and uncertainties.  81 

SST observations and gridded datasets underpin many thousands of published research 82 

papers every year, including their use as boundary conditions for atmospheric reanalysis, so 83 

the benefits of improved SST bias estimation are wide-reaching. However, severe challenges 84 

arise because the observations we have are not from a dedicated climate observing system. 85 

Early observers were largely concerned with navigation and safety. Observations were 86 

collated to document climatology rather than climate change. Detailed information on the 87 

ships and the different methods of measurement, now known to be of immense value to 88 

assess changes, has been lost. Different measurement methods have different characteristic 89 

biases, and there are variations peculiar to individual platforms and installations. The 90 

characteristic biases also depend on environmental conditions such as wind speed, solar 91 

radiation and air-sea temperature contrasts, as does the real variability of ocean temperature, 92 

with further real variations due to the depth of measurement. Reconciling all of this to make 93 

consistent estimates of SST changes would be a challenge with good documentation. The 94 

patchy availability of observational and platform metadata, and sparse sampling in some 95 

regions and periods, makes it even harder.  96 

The first-order bias adjustments required to account for changes in methods of SST 97 

observation over the past more than 150 years are known. We know that adjustments are 98 

required and the direction and approximate size of the change at very large scales. However, 99 

comparison of the different approaches used to estimate SST bias adjustments shows that 100 

differences remain that are hard to fully explain. Unexplained differences occur at smaller 101 

scales and in periods where measurement methods change quickly. This shows the need to 102 
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better understand the biases, improve adjustment methods and refine the uncertainty 103 

estimates. 104 

Our recommendations to improve the situation are in four areas. Firstly enhancement of the 105 

source archive to provide more observations, more complete metadata and improve quality. 106 

Second is a need to develop better models of SST bias, and to maintain a range of SST 107 

products using different approaches to bias adjustment. Thirdly there is a need for accessible, 108 

high-quality, consistent validation data sets to be assembled from existing archives and for 109 

the availability of such data to be established as metrics for assessing the observing system. 110 

Finally we would like to see more people working in this area and suggest how barriers to 111 

getting started might be reduced. 112 

2. What is SST and how is it measured? 113 

2.1 What is SST? 114 

The temperature of the water near the sea surface varies on all space and time scales. The 115 

term SST has typically been used to describe the mean temperature of the upper few meters 116 

of the ocean. Historically measurements taken at depths from the surface and down to about 117 

20 m have all been assumed representative of the SST. Under well-mixed conditions this is a 118 

good assumption. However, there are well-known variations of ocean temperature with 119 

depth, especially at low wind speeds and sunny conditions (Kawai and Wada, 2007). 120 

Developers of long-term datasets have taken a pragmatic approach, assuming either that 121 

measurements represent well-mixed conditions, or that conditions were well-sampled and 122 

therefore representative of the surface layer even if it was not well-mixed. When considering 123 

biases, it is necessary to consider spatial differences in the depth dependence of temperature. 124 

Further discussion on the definition of SST and its uncertainty can be found in Section S2 of 125 

the supplemental material. 126 
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2.2 How is SST measured? 127 

SST has been measured in different ways over the past 200 years. The observations record 128 

real variations in temperature but also contain an imprint of how they were measured. Both 129 

the real variations and the biases are affected by the ambient environmental conditions, 130 

making them hard to disentangle. 131 

The earliest observations were probably made by sampling seawater in a bucket. Maury 132 

(1858) recommended wooden buckets which were likely used around this time. The type of 133 

bucket used evolved over time, with canvas buckets becoming predominant, later replaced by 134 

better-insulated rubber and plastic buckets. Figure 2a summarizes the different factors that 135 

can cause bias in observations of SST made using buckets.  136 

For measurement, the bucket is thrown into the water to collect a sample. The exact depth of 137 

sampling is unknown, but is close to the surface, especially if the ship is moving fast. If the 138 

bucket is at a very different temperature from the water, or contained water from a past 139 

sample, then the time the bucket spends in the water to equilibrate is important. We do not 140 

know how much care the observers took in following instructions on sampling protocol in 141 

this regard, nor in others. Once a bucket leaves the sea, both the bucket and water sample 142 

exchange heat with the atmosphere in a way that is dependent on their volume, thermal 143 

properties and the environmental conditions. The temperature continues to change while the 144 

thermometer is read; the change is related to the length of time taken to get a stable reading, 145 

and whether the bucket is taken out of the wind and/or into the shade. The initial temperature 146 

and response time of the thermometer can also influence the reported temperature.  147 

For ships with engines, the temperature of water pumped onboard to cool the engines can be 148 

used as an estimate of SST (Figure 2b). Sampling is usually deep as the inlet has to be below 149 

the surface whatever the loading of the ship. The ship may also mix the water, so the 150 



8 

effective depth of sampling is ambiguous even if the inlet depth is known. Typically, most 151 

details of the installation are unknown, so it is hard to determine how an observation might be 152 

affected by heat exchange between the inlet and the point of measurement. Historically, there 153 

is evidence for inaccurate thermometers and poor installation (Kent and Taylor 2006). An 154 

extensive analysis of engine-room intake (ERI) observations by James and Fox (1972) 155 

showed ERI SSTs, at that time, were particularly warm for large ships with thermometers 156 

more than 3 meters inboard from the inlet. Technological developments have likely resulted 157 

in thermometers placed nearer to the hull (possible with remote-reading automatic sensors) 158 

and further from the engine-room. The type of ERI thermometer was also important with 159 

precision thermometers and thermistors showing smaller offsets relative to bucket 160 

measurements than mercury or other types of thermometer. There is some evidence that ERI 161 

biases have reduced over time (Kent and Kaplan 2006), which could be explained by better 162 

thermometers or improved siting. Determining a ship-by-ship estimate of mean ERI bias 163 

would represent a significant advance, perhaps permitting more subtle variations due to 164 

greater measurement depths or ship speed to be explored.  165 

Hull-mounted sensors (also shown in Figure 2b) are dedicated SST sensors. Kent et al. 166 

(1993) showed, for a small subset of ships, that hull sensors were more accurate (smaller bias 167 

and noise) than ERI, but good insulation is required (Beggs et al. 2012). A wider analysis of 168 

hull sensor accuracy in the field is long overdue. 169 

Surface drifting buoys (Figure 2c) measure at shallow depths, nominally 10-20cm. Biases in 170 

drifter measurements might arise due to error in sensor calibration, temperature calibration 171 

“drift” while deployed, or bio-fouling on the sensor. Drifting buoys presently provide 172 

measurements of SST that are near-globally distributed and have better accuracy than from 173 

ships (Kennedy et al., 2011c), since problems with early drifters were resolved (Bitterman 174 

and Hansen, 1993). Careful quality control is still required to identify spurious spikes in 175 
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reported position or SST measurements from when the buoy is out of the water (due to pre-176 

deployment data transmission, beaching or human interference) and instrument failure or 177 

other causes of erroneous data (Lumpkin et al. 2012, Atkinson et al. 2013). Observations 178 

made available in delayed mode (e.g. by Integrated Science Data Management (ISDM) or the 179 

Atlantic Oceanographic and Meteorological Laboratory) typically have quality control flags 180 

appended, but checks of ICOADS have revealed additional problematic reports in both 181 

delayed mode (from ISDM) and real time data (Atkinson et al. 2013). 182 

Moored buoys produce continuous measurements at fixed locations at a depth of about 1m or 183 

at several predetermined depths (Kennedy 2014), typically only near coasts or in tropical 184 

regions. The mechanisms causing their biases are similar to those for surface drifters but it is 185 

often possible to recover instrumentation from moored buoys for recalibration, improving 186 

their overall accuracy.  187 

2.3 Availability of observations and ancillary information  188 

SST observations were first made available in the 19th Century as charts to aid navigation 189 

(Rennell 1832; Maury 1858). Much later, national compilations of marine observations were 190 

used to generate gridded analyses of SST for scientific applications (e.g., Bunker 1976; 191 

Bottomley et al. 1990). The US national collection developed into a publicly available 192 

databank (Woodruff et al. 1987) which became the International Comprehensive Ocean-193 

Atmosphere Data Set (ICOADS), currently on Release 3.0 (Freeman et al. 2016). ICOADS is 194 

the preferred source for constructing historical SST analyses, providing traceability of the 195 

data, simpler comparison among derived data products and access to newly digitized 196 

observations (e.g., Allan et al. 2011) and to observational metadata (Kent et al. 2007). 197 

Moreover, it enables a dialogue that can lead to improvements in ICOADS and in the many 198 

ICOADS-derived datasets (JCOMM 2015).  199 
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Quantifying SST bias ideally requires accurate location and time information, platform 200 

information, complete information of methods, instruments and protocols used, and of the 201 

ambient conditions (Figure 2). ICOADS contains some of the information required 202 

(described in Section S3 of the supplemental material), but its availability is patchy. We 203 

make recommendations that will enhance the amount of SST data and metadata available by 204 

digitization of data and metadata from ships logbooks (Recommendation 1), by reprocessing 205 

of the existing ICOADS archive (Recommendation 2) and by improved use of external 206 

sources of observational metadata (Recommendation 3). 207 

3. Current approaches to SST Bias Estimation 208 

3.1 Physics-based bias models 209 

The factors affecting bucket SST measurements are well-known (Figure 2a) and have been 210 

discussed since the time of Maury (1858). The heat exchange experienced by a water sample 211 

in a bucket can be estimated with a physical model (Folland and Parker (1995), hereafter 212 

FP95). The bucket is represented by a partly-closed cylinder with appropriate thermal 213 

properties: uninsulated for canvas buckets, partly insulated for wooden buckets. More 214 

difficult is applying these models to historical measurements made using buckets of unknown 215 

dimensions and thermal properties in environmental conditions that are also not well-known. 216 

The approach of FP95 to this problem, as used in HadSST3 and COBE-SST2, is summarized 217 

in Section S4 of the supplemental material. Recommendation 4 addresses the need for 218 

simplified physical models of SST biases from buckets and better estimates of the 219 

thermodynamic forcing required. 220 

Physical models for biases in ERI SSTs have not been developed as the detailed information 221 

required on individual installations (Matthews and Matthews 2013) is almost always 222 
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unavailable (Figure 2b). Similarly the estimation of bias in hull sensors has not yet been 223 

tackled with physically-based models. 224 

Although drifter and moored-buoy SSTs are usually considered to be bias free, adjustments 225 

for their differences relative to ship-derived SSTs are typically made (Kennedy et al. 2011b, 226 

Hirahara et al. 2014, Huang et al. 2015). This choice has been shown to have little effect on 227 

long term trends (Kennedy et al. 2011b). 228 

Physical models for the ocean cool-skin effect and for thermal stratification within the upper 229 

few meters of ocean (which can be significant during day-time if mixing is small) are used to 230 

relate satellite SSTs to SST at the depths representative of buoys (Merchant et al. 2012). The 231 

models are driven by weather-analysis fields, and have skill in reconciling satellite and sub-232 

surface measurements (Embury et al. 2012). Such models could be used to inform 233 

comparisons of in situ measurements made at different depths. 234 

3.2 Application of physics-based models 235 

The two main barriers to the application of physical-correction models are uncertainty in the 236 

measurement method used and in the environmental conditions pertaining to individual 237 

observations. Section S3 of the supplemental material describes the information available in 238 

ICOADS to determine the type of platform and measurement method. 239 

Kennedy et al. (2011b) brought together evidence from ICOADS, external sources of 240 

measurement metadata (such as that published by the WMO in “Publication No. 47”, 241 

hereafter “Pub. 47”, Kent et al. 2007), and other documentary information, to estimate 242 

measurement methods and their uncertainties (Figure 3). They weighted bias estimates for 243 

each method to produce estimated fields of the unbiased SST. Method weightings, and bias 244 

estimates, were varied within plausible ranges to produce an ensemble of SST fields spanning 245 

the likely uncertainty. In contrast, Hirahara et al. (2014) approached the problem by 246 
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estimating the proportions of different methods from differences in the data. They assumed a 247 

bias model for each type (insulated bucket, uninsulated bucket or engine intake) to adjust 248 

observations where the method was known. Proportions of observations with unknown 249 

method were then assigned to the different methods such that global SST averages from 250 

observations with unknown methods agreed with SST averages from known methods when 251 

combined with the method-dependent bias models. These approaches show broad agreement 252 

in inferred measurement methods (Figure 3b). Notable discrepancies include estimates of the 253 

rate of transition from uninsulated to insulated buckets (Kennedy, 2014). 254 

Once the measurement method has been assigned, the bias adjustment can be calculated 255 

using the appropriate bias model. This is presently done simply: bucket bias adjustments are 256 

applied using the fields calculated by FP95 weighted by the proportions of observations 257 

thought to be made using wooden, canvas or rubber buckets (Kennedy et al. 2011b, Hirahara 258 

et al. 2014). The relative biases between ships and drifting buoys are fixed. Biases for ERI or 259 

hull sensors are fixed in the COBE-SST2 analysis, and vary within an estimated range in the 260 

HadSST3 analysis. 261 

3.3 Large-scale statistical adjustments using air temperature 262 

A statistical approach to bias adjustment of ship observations was developed by Smith and 263 

Reynolds (2002, hereafter SR02) based on large-scale differences between SST and NMAT 264 

measured from ships. The rationale is that biases in NMAT are more straightforward to adjust 265 

(Kent et al. 2013, supplemental material Section S1) and that the large-scale differences 266 

between SST and NMAT will not vary markedly over time (Huang et al. 2015). NMAT, 267 

rather than all-hours MAT, is used to avoid uncertainty due to daytime heating on ships. 268 

Details of the SR02 statistical bias model and its implementation by Huang et al. (2015) are 269 

described in the supplemental material Section S6.  270 
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This method does not need the detailed information required by physical models, but there 271 

are still uncertainties. Any residual biases in adjusted NMAT will influence the SST bias 272 

estimates (Rayner et al. 2003, Kent et al. 2013) and uncertainty in NMAT will propagate 273 

through to the SST estimates. Although NMAT variations are representative of SST 274 

variations on the largest scales (Huang et al. 2015), the relationship is likely to be locally 275 

weaker. The computed spatial patterns of SST-NMAT are critical for the estimate, and 276 

assuming that the patterns are well-known and invariant over time also introduces 277 

uncertainty. SR02 originally used the bias model only in the pre-World War 2 (WW2) period 278 

dominated by bucket measurements (Figure 3). Huang et al. (2015) extended the method 279 

throughout the record and generated an ensemble to explore uncertainty (described in 280 

supplemental material Section S6). 281 

Recommendation 5 calls for the extension of statistical-based modeling of SST biases beyond 282 

large-scale adjustments based on NMAT. 283 

4. Comparison and evaluation of estimates of SST bias 284 

4.1 Comparison of bias estimates 285 

The first test of the different bias adjustments is whether the estimates agree within their 286 

uncertainty ranges. Figure 4 compares the bias adjustments from HadSST3 and ERSSTv4. In 287 

these datasets the sensitivity of the bias estimates to assumptions and values chosen for 288 

internal parameters (parametric uncertainty, Kennedy 2014) has been quantified through 289 

making plausible perturbations to each of these choices to create an ensemble of bias 290 

estimates spanning the known uncertainty in the method (the supplemental material describes 291 

the calculation of the ensembles in Sections S4 and S6). Figure 4 illustrates the differences 292 

between the bias adjustment in the context of the range of the uncertainty ensembles and 293 

shows that, by this measure, we don't yet fully understand the biases and their uncertainties at 294 
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all times throughout the record. Maps showing average spatial variation of the biases 295 

averaged over 1890 to 1919 (Figures 4a, c) show differences that exceed the range of their 296 

combined uncertainty ensembles over large regions (Figure 4e). Even in the more recent 297 

period 1995 to 2004 (Figures 4b, d) there are regions where the difference exceeds the 298 

ensemble range (Figure 4f). Zonal mean (Figure 4g) and global average differences (Figure 299 

4h) show that during these periods the large-scale biases are relatively well-understood, albeit 300 

with compensating bias differences with latitude giving global average agreement within 301 

uncertainty in the earlier period. Differences in the bias adjustments fall outside the ensemble 302 

range in two periods: at the start of the record (before about 1880), and around the 1980s. In 303 

the early period both SST and NMAT data are sparse so it is not surprising that our 304 

understanding is limited. The later period, from the late 1970s to the early 1990s is where the 305 

proportion of SST observations made by ERI is increasing (Figure 3), and the buoy observing 306 

system for SST is not yet well-established. Figure 4h suggests that the discrepancy is likely to 307 

arise from an underestimate in uncertainty during this period.  However, improving our 308 

understanding of in situ SST bias during this period is necessary if the data are to be used 309 

with confidence to produce adjustments or validation for satellite-derived estimates of SST. 310 

The period around WW2 is known to be problematic (e.g., Thompson et al. 2008) as making 311 

observations became dangerous, especially at night when the use of lights could attract an 312 

attack. During WW2 a greater proportion of observations are made during daylight hours, 313 

engine intake measurements were preferred to buckets, and buckets may have been carried 314 

inside: all tending to give a warm bias. The WW2 period shows rapid variations in the 315 

difference between the bias estimates (Figures 4g and 4h), but also a large ensemble range, so 316 

by this metric these differences are understood, albeit very uncertain. Such comparisons can 317 

help to focus attention on periods and regions where differences are large (e.g., prior to about 318 

1880 or in Tropical and high latitude regions prior to the mid-1990s), when uncertainties are 319 
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large (e.g., during WW2) or where the uncertainty may be underestimated (e.g., during the 320 

1980s). 321 

The comparison shows we are yet to fully reconcile the biases in all types of SST 322 

observations throughout the historical record. It also shows that improvements in uncertainty 323 

estimation must go hand-in-hand with improvements in bias estimates. Nevertheless, 324 

uncertainties in the bias adjustments are not thought to be large enough to alter the conclusion 325 

that global SSTs have increased over the historical record (Hartmann et al. 2013). However, 326 

confidence in regional adjustments is lower than for the global mean as the spatial patterns 327 

predicted by the different methods do not agree well (Figure 4 e-g, also Huang et al. 2015 328 

and supplemental material Section S7). Uncertainty due to under-sampling can be large in 329 

some regions and periods (Kennedy 2014), particularly early in the record (Hirahara et al. 330 

2014) and outside major shipping lanes prior to the extension of coverage provided by 331 

drifting buoys (Zhang et al. 2009). 332 

Such comparisons of different estimates of the bias, or (less directly) data sets adjusted in 333 

different ways are a good first step toward understanding uncertainty in bias adjustments. A 334 

range of different approaches to bias estimation should be maintained and compared 335 

(Recommendation 6). However, more is learned by disagreement than by agreement, and in 336 

order to evaluate the estimated biases an independent reference is needed. 337 

4.2 Evaluation by comparison with independent data 338 

Comparisons with validation data should cover a range of diagnostics including mean bias 339 

and variance relative to validation data evaluated across a range of locations and throughout 340 

the annual and diurnal cycles. Attention should be paid to differences arising from the depths 341 

of the measurements. 342 
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In the modern period – from the mid-1990s – there are multiple sources of validation data for 343 

estimation of biases in SST observations from ships. Drifting and moored buoys take 344 

measurements of better accuracy and stability than is routinely obtained by shipboard 345 

measurements. Argo floats provide accurate data, but low sampling rates, and can be used for 346 

validation after about 2005. Some satellite data sets covering the 1990s to present are of the 347 

desired accuracy, and largely independent of the in situ record (Merchant et al. 2012, 2014) 348 

and therefore suited to validation or independent assessment of SST bias adjustments applied 349 

to ship observations. Validating over longer time scales is more difficult. Drifting buoys can 350 

be used back to the early 1990s before which there was no standardized design. 351 

Oceanographic measurements are available (Gouretski et al., 2012), but are also affected by 352 

biases (Cheng et al. 2016) and seldom numerous. Ocean weather ships and underway 353 

observations from research vessels are potential sources of validation data. Although they 354 

may be affected by biases, there is a greater chance of obtaining a full set of high-quality 355 

marine meteorological variables and metadata. Work is ongoing to extend independent 356 

satellite SST records back to the early 1980s, but the achievable stability of observation is as 357 

yet unknown. Careful consideration must be given to the uncertainty inherent in all these data 358 

sources. 359 

Extending validation to a wider range of comparison data sets would be valuable. Careful 360 

analysis is required if comparisons are made with different parameters (such as air 361 

temperature), with coastal observations (that might not be fully representative of open-ocean 362 

conditions) or with observations that may have their own biases. Records with consistent 363 

instrumentation over the several decades when the observing system was in flux could be 364 

valuable – perhaps records from harbor logs, lighthouses or atolls should be considered. 365 

Land-station air temperature data from other regions could also be used indirectly via 366 

experiments with climate models run with prescribed SSTs bias adjusted in different ways 367 
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(e.g., Folland 2005). An overview of potential validation data is given in Section S8 of the 368 

supplemental material. Recommendation 7 outlines the need for improved accessibility and 369 

management of existing potential sources of validation data. Recommendation 8 considers 370 

how the need for consistent and high quality observations can be built into observing-system 371 

adequacy requirements. 372 

4.3 Evaluation using measures of internal consistency 373 

The different types of bias can leave their own characteristic fingerprint on the SST record. 374 

For example, FP95 showed that there were signals in the data, related to the seasonal cycle, 375 

which could be explained by the characteristic biases in bucket measurements. In this case a 376 

measure of the effectiveness of the bucket bias adjustment would be the removal of spurious 377 

signals in the seasonal cycle of SST. In another example Kennedy et al. (2011b) showed that 378 

adjustments applied to ERI and bucket measurements improved agreement between these two 379 

subsets of data from the 1950s on.  380 

Separating data into two datasets, one used for estimation and training and the other for 381 

validation, is a good general approach. This is widely used in assessing statistical techniques 382 

and might be applied to existing statistical methods of bias estimation (e.g., SR02). The 383 

method can also be applied more generally by setting aside a subset of data for validation, 384 

preferably a subset of known high quality that is not used in the estimation or correction of 385 

biases. Unfortunately, the data most suitable for validation also have great value for 386 

estimating biases. The price paid for having a data set with credible, validated, uncertainty 387 

estimates might be a slightly-higher overall uncertainty; the alternative is a lower overall 388 

uncertainty that was impossible to assess fairly. Research vessel data and Argo data, that are 389 

not yet widely used in historical SST data sets might be used to validate modern periods. 390 

Newly digitised data could be used for historical assessments. A degree of independence 391 

should also be maintained between the institutions producing bias adjustments and those 392 
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performing validation. This could be achieved if validation were carried out by an 393 

organization independent of the dataset developers, or by using a standard set of widely 394 

agreed criteria and comparisons. 395 

To date, the evaluation of bias adjustments using measures of internal consistency has been 396 

limited. The development of bias-adjustment methods to be applied to individual 397 

observations or to data from individual ships would enable the extension of this type of 398 

evaluation to other metrics including perhaps a consistent representation of diurnal variations 399 

or a minimization of ship-to-ship differences. 400 

5. Priorities for the future 401 

5.1 Improvements to data and metadata 402 

Fundamentally, there is scope for improvements to ICOADS. Although ICOADS is often 403 

thought of as “raw” data, it is derived from a larger, more heterogeneous, underlying 404 

databank from diverse sources. Further reprocessing of the databank could help to better 405 

resolve duplicate observations, incomplete ship identifiers, scale conversions, missing 406 

metadata, and positional errors amongst other basic problems (Recommendation 2). The 407 

recent addition (Release 2.5.1 and later) of unique IDs (UID) to each report in ICOADS is 408 

tremendously helpful. Tying quality control information and metadata studies back to the 409 

ICOADS via the UID and sharing code and methods will improve traceability, promote 410 

collaboration and help new researchers enter the field (Recommendation 9). 411 

Much is to be gained from improvements to metadata (Recommendations 1-3). Ship tracking 412 

– the association of individual reports into coherent voyages (Carella et al. 2015) – will 413 

enable the better characterization of ship-by-ship biases and other errors. Bringing together 414 

known sources of metadata into a single repository would be a step towards a more holistic 415 

synthesis. A start has been made on inferring absent metadata (Kent et al. 2007, Kent et al. 416 
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2010, Kennedy et al. 2011b, Hirahara et al. 2014, Carella et al. 2015) and resolving conflicts 417 

that arise when different sources present inconsistent information, but more needs to be done.  418 

A barrier to the use of recent marine data from ships is the decision by some countries to 419 

anonymize ship reports. The reasons often given are that the information has commercial 420 

value, or that there are concerns about security. Whatever the reason, it prevents the matching 421 

of ships to the relevant metadata in Pub. 47. We hope that a solution can be found to provide 422 

this information in a way consistent with the safety of the vessels, if not in real time, then 423 

after an appropriate delay. 424 

There is also a need for existing sources of high-quality independent validation data to be 425 

collated. While such compilations exist for e.g., Argo and drifting buoy observations, 426 

complete authoritative archives of data and metadata do not exist for moored buoys, Ocean 427 

Weather Ships or Research Vessels. Land-based coastal observations are difficult to identify 428 

in global and regional archives and multi-variate records are often fragmented (Thorne et al. 429 

2016). A consistent approach to the management of such high-quality observations, quality 430 

assured by experts in each data type, would be valuable for the validation of SST biases 431 

(Recommendation 7). The need for such consistent observations, and their appropriate 432 

management should be recognized in climate observing-system requirements 433 

(Recommendation 8) 434 

5.2 Improvements to physically-based models of SST bias 435 

Development of the physical models used to estimate bucket biases should continue. Models 436 

will be most valuable if independently tested in well-designed experiments under controlled 437 

laboratory conditions and at sea. Well-validated physical models will give improved 438 

estimates of the expected mean biases, their uncertainties, and allow the possibility of 439 

estimating biases for each observation individually. Careful experimental design is needed 440 
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before undertaking expensive and time-consuming measurements at sea. Simplified 441 

parameterizations of the bucket models are needed for application to a wider range of bucket 442 

designs including modern insulated buckets (Recommendation 4).  443 

To drive physical models, we need to understand the inputs to those models and their 444 

uncertainties. Estimates of air temperature, humidity, cloud, and wind speed and direction are 445 

all needed and all are affected by biases comparable in magnitude to those affecting SST 446 

(Berry et al. 2004, Willett et al. 2008, Berry and Kent 2011, Eastman et al. 2011, Thomas et 447 

al. 2008).  Reanalyses may prove a valuable tool for understanding the expected spatio-448 

temporal variability of bucket-related SST biases and could reveal components of bias 449 

variability related to weather and longer-term effects (Recommendation 4). It might be 450 

expected that as understanding of these dependencies increases, the estimated random error 451 

of the measurements, which is partly an aggregation of many unresolved systematic 452 

processes, will decrease. Improved bias estimates will consequently need to go hand-in-hand 453 

with revisions to estimates of other components of the uncertainty. 454 

Some other biases are not easily modeled. It may be impossible to derive meaningful 455 

physically-based estimates of bias for an individual ERI installation (Figure 2b) so these ship-456 

specific biases may need to be characterized statistically.  457 

5.3 Improved statistical approaches 458 

SST biases are statistically and computationally challenging. There are several hundred 459 

million in situ observations in ICOADS. This data volume is modest by modern standards, 460 

but complexity arises because the data are from diverse sources representing reports from 461 

perhaps hundreds of thousands of individual ships and buoys, some uniquely identified, some 462 

not. The data are of varied quality. Metadata are sometimes incomplete or conflicting. 463 

Reference observations are few and not always of unimpeachable quality. Improved 464 
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statistical methods are required to advance and capitalize fully on the improvements in the 465 

basic data and modeling described above. Progress is likely to come from working more 466 

closely with statisticians, data scientists and computational experts to develop state-of-the-art 467 

analysis systems. It may also be possible to adapt methods developed for the homogenization 468 

of land station data (Venema et al. 2012).  469 

It is possible to write a system of equations encapsulating a full statistical description of the 470 

problem of estimating spatially-complete unbiased fields, and their uncertainty, from sparse, 471 

noisy and biased measurements of SST. In practice, however, the terms in these equations are 472 

subject to the same effects causing uncertainty in the current approaches. For example, the 473 

form of the method-dependent bias model must still be specified. Solving even a simplified 474 

version at coarse resolution is presently computationally challenging. The goal is to include 475 

all we know about SST biases into a holistic, statistically rigorous, Bayesian analysis 476 

framework. The framework should embed method-dependent physically-based bias models 477 

within a full description of the correlation structure of the variability of SSTs and their biases 478 

(Recommendation 5).  479 

Elements of such a holistic statistical approach are now being developed. The UK Met Office 480 

is developing methods to generate SST fields using estimates of the correlation structures of 481 

variability associated with both real changes in SST and biases. In this approach, individual 482 

ship biases and their uncertainties can be identified (Figure 5). This relatively simple 483 

implementation, described in more detail in Section S9 of the Supplemental Material, is able 484 

to identify biased measurements made by individual ships, and could reduce the obvious SST 485 

artifacts related to "ship tracks" often present in SST analyses. 486 

Everything we have learnt from the existing approaches can feed into new statistical models. 487 

Every scrap of information about the structure of expected biases can be used to constrain 488 

and inform statistical analyses. Further constraints could also be applied, such as a large-scale 489 
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consistency with NMAT. The development of improved statistical models should proceed in 490 

tandem with efforts to better characterize the observations and their biases. 491 

5.4 Maintaining research effort and extending the community 492 

Huge progress has been made since the first estimates of SST bias were published in 1984. 493 

There are currently three families of SST datasets available that take different approaches to 494 

bias adjustment (HadSST/HadISST, ERSST and COBE). However all still use approaches 495 

that are essentially adaptations of methods originally developed decades ago. We now need 496 

to develop new approaches to bias adjustment that take advantage of recent advances in 497 

statistical methods and computing power (Recommendation 5) while maintaining a diversity 498 

of different methods (Recommendation 6). Diversity of methods helps quantify structural 499 

uncertainty: the spread between datasets arising from fundamental choices in analysis method 500 

and assumptions underlying them that are difficult and, in many cases, impossible, to capture 501 

by varying the parameters or modules within a single analysis system (Thorne et al. 2005).  502 

Progress has been slower than we would like as the number of researchers active in the area 503 

is small and fresh perspectives would be welcome. There are many barriers to new 504 

researchers entering this area; presenting the data and metadata in accessible ways and 505 

providing a range of different types of documentation is essential to engage a wider 506 

community in assessment and validation (Recommendation 9).  507 

Recommendations 508 

Recommendation 1. Add more data and metadata to ICOADS 509 

Additional observations of SST and associated variables such as air temperature, humidity, 510 

wind, cloud, pressure and weather information recovered from logbook digitization will help 511 

improve estimates of SST and SST bias. Every effort should be made to retain observational 512 

metadata and to keep multi-variate observations together. 513 
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Recommendation 2. Reprocess existing ICOADS records 514 

Older ICOADS acquisitions are often lacking metadata and compromised by legacy 515 

deficiencies in data management and storage formats. A full reprocessing of ICOADS legacy 516 

data, alongside improvements to data formats, would improve SST bias adjustment through 517 

improved ship tracking, recovery of information on platform identity, better identification of 518 

mispositioned and duplicate reports, better quality control, and recovery of additional data 519 

and metadata from the existing reports. A critical review of all input ICOADS data sources 520 

should be carried out to ensure that ICOADS contains the best available data, metadata and 521 

quality information. 522 

Recommendation 3. Improve information on observational methods 523 

A comprehensive review of documentary sources will better constrain the uncertainty in 524 

methods and protocols for historical observations. ICOADS callsign recovery and 525 

reprocessing of WMO Pub. 47 metadata will help link observations to metadata for 526 

individual ships. 527 

Recommendation 4. Improve physical models of SST bias 528 

Simplified and validated physically-based models of SST bias are required along with better 529 

estimates of ambient conditions and understanding of how to use those estimates to drive the 530 

models.  531 

Recommendation 5. Improve statistical models of SST bias 532 

More holistic and powerful statistical approaches to the problem of estimating SST biases 533 

and their uncertainties are needed, especially to study presently unknown causes for 534 

inhomogeneities.  535 
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Recommendation 6. Maintain and extend the range of different estimates of SST bias 536 

SST datasets and gridded analyses will continue to improve, but will never become identical. 537 

A wider range of bias estimates taking different approaches to adjustment will enable 538 

improved understanding of structural uncertainty. Carefully designed comparisons including 539 

all the developers of bias-adjusted SST analyses will improve understanding of biases and 540 

their uncertainties. 541 

Recommendation 7. Expand data sources for validation and extend use of measures of 542 

internal consistency in validation 543 

Resources for validating SST bias adjustments include SST from satellites and ocean 544 

reanalyses, as well as observed air temperatures, albeit with their own uncertainties. 545 

Collating, assembling and extending consistent datasets providing validation sources will 546 

enable more thorough validation of SST bias adjustments. Such sources include ocean 547 

weather ships, research vessels, moored buoys, land-based coastal stations and independent 548 

satellite SST records. A more imaginative approach is required to make best use of available 549 

validation data and to widen the use of measures of internal consistency in SST bias 550 

validation. 551 

Recommendation 8. Ensure adequacy and continuity of the observing system 552 

It is important that the challenges we have encountered in understanding the historical SST 553 

record do not persist into the future. Requirements for consistency, metadata, subsets of high-554 

quality validation data, and appropriate curation for climate applications should be integrated 555 

into the metrics for assessing observing system adequacy and performance (e.g., GCOS 556 

2010). 557 
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Recommendation 9. Improve openness and access to information 558 

Despite the complexity of the problem, SST bias adjustment has only been tackled by a small 559 

number of small groups producing SST products. Many aspects of the problem are 560 

potentially of much wider interest to: physicists, metrologists, historians, computer scientists 561 

and statisticians amongst others. Providing modular software tools, improved access to data, 562 

metadata and historical documentation will help to widen the range of approaches to the 563 

important, complex and interesting problem of SST bias adjustment.  564 
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 758 

Lost datasets – can you help? 

Over the years there have been several studies either comparing SST measurements made by 

different methods or detailed wind-tunnel and ship-based assessments of temperature change 

from buckets. We have learnt a lot from the papers and reports describing these experiments, 

but much more could be done if we were able to track down the original measurements. 

We’ve tried, and failed, but still hope they are out there and someone knows where they are. 

And of course if you know the whereabouts of any similar measurements we’d be delighted 

to hear from you. 

James and Fox – 1972: 16k log entries each containing at least 2 measurements of SST and 

ancillary data and metadata collected under the auspices of the WMO and analyzed at the 

U.S. Naval Oceanographic Office, Washington D.C.  

Roll – 1951a,b: Wind tunnel measurements of the temperature change of a German SST 

bucket made at the Meteorological Office for NW Germany, Central Office, Hamburg. Also 

pairs of SST measurements made on the fisheries patrol vessel “Meerkatze” during 1950. 

Ashford -1948: Wind tunnel measurements of temperature change of a range of SST buckets 

carried out in the Instruments Branch of the Meteorological Office, Air Ministry.  

Brooks – 1926/1928: Paired measurements of SST made on the “Empress of Britain” and 

other ships in the 1920s. Analysis was at Clark University, Worcester, MA, and at least a 

subset of the data was filed with the Library, U. S. Weather Bureau, Washington, D. C. 

We are also on the lookout for instructions given to observers, descriptions of how 

measurements were made, photographs, diagrams and other metadata, so again if you have 

anything that might be useful, please get in touch. 
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Figure Captions 759 

Figure 1: Global average SST anomaly from HadSST3, ERSSTv4 and COBE-SST2. In each 760 

panel the shaded region is the approximate 95% uncertainty range and the grey areas are the 761 

other two data sets and their uncertainty ranges for comparison. Biases and anomalies have 762 

been set to average zero over the period 1961-1990. 763 

1a Timeseries of global average SST anomalies from HadSST3 (yellow) 764 

1b As 1a but from ERSST v4 (green) 765 

1c As 1a but for COBE-SST2 (blue) 766 

1d Estimated bias adjustments and their uncertainties from each dataset using the same 767 

colour scheme. 768 

 769 

Figure 2: Illustrations of factors affecting SST measurements made using different methods.  770 

a) Bucket measurements of SST are affected by ambient conditions (solar radiation, wind 771 

speed, temperature, humidity and air-sea temperature difference) that control the 772 

thermodynamic forcing. The construction of the bucket is important: different materials 773 

will insulate the water sample from the external thermal forcing to varying extents; the 774 

volume and water level affect the heat capacity; a lid may reduce heat exchange from 775 

the top.  Observing protocol may prescribe how long the bucket should remain in the 776 

sea, whether the sample is to be stirred, whether the bucket should be shaded from the 777 

sun or sheltered from the wind, how it should be stored and how long an exposure time 778 

should be allowed for the thermometer to reach equilibrium. And of course important 779 

aspects of observing protocol may be either undefined or not followed by an observer;  780 

b) Both engine intake and hull contact sensor measurements of SST are made at depths that 781 

may vary with ship loading. The ship may mix the water or draw down surface water 782 

and this may vary with ship speed. The temperature of the pumped water at the 783 
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measurement site will depend on the flow rate and the properties of any sea chest, the 784 

distance inboard, the amount of insulation of the pipe and the temperature difference 785 

between the water and the ship interior. The type of thermometer and its mounting 786 

affects the measurement and bio-fouling may build up with certain types of installation. 787 

How the thermometer is read is important. Remote reading permits thermometer 788 

installation near the inlet which may not be easily accessible. The thermometers used 789 

may have coarse gradations (particularly dial thermometers) and are subject to parallax 790 

errors if inconveniently sited. Observations may have been relayed from the engine 791 

room to the bridge, possibly incurring delay and communication errors. Hull sensor-792 

derived SST observations may be affected by the thickness and construction of the hull, 793 

by the amount of insulation and the temperature contrast between the water temperature 794 

and the internal temperature of the ship.;  795 

c) Drifting buoys are expected to give the best quality SST observations overall, but there are 796 

still several problems that may be encountered, including drift of the calibration over 797 

time. Solar radiation on the drifter body may cause errors, either through direct heating 798 

or through temperature effects on the electronics: the size of any effect will vary with 799 

buoy design. The depth of measurement may vary: the drogue is designed to keep the 800 

drifter sphere largely submerged, if lost the measurement will be closer to the surface 801 

(Reverdin et al. 2013) and the buoy might not remain correctly oriented. Water may be 802 

disturbed by motion of the buoy. Bio-fouling can be significant in some regions and has 803 

the potential to affect the temperature measurement. Detailed quality control is required 804 

to identify pre-deployment activation, beaching and degradation over time, especially at 805 

the end of the drifter life. 806 

 807 
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Figure 3: a) Estimates of measurement method composition for ship data only from 808 

ICOADS Release 2.5 for the period January 1930 to January 2007 after Kennedy et al. 809 

(2011b). Darker shading represents measurement method obtained by the SST 810 

measurement method indicator in ICOADS (SI) or from a match to an entry via callsign 811 

to Pub. 47. Lighter shading represents measurement method obtained indirectly, either 812 

through country preference or inferred bucket for the earliest observations. 813 

b) As 3a but also splitting the bucket observations indicating whether the observation was 814 

likely to be taken with an uninsulated (canvas) or insulated (rubber or plastic) bucket. 815 

The hatched area indicates the estimated uncertainty in that assignment. The white area 816 

represents ERI and measurements of unknown source. The dashed lines show the 817 

measurement method assignments following (Hirahara et al. 2014) partitioning 818 

between uninsulated buckets (lower portion), insulated buckets (center portion) and 819 

ERI (top portion). 820 

 821 

Figure 4: Comparison of SST bias adjustments used in HadSST3 and ERSSTv4 (°C). Grey 822 

shaded areas in panels a-g are unsampled. 823 

a) averaged bias adjustment from HadSST3, 1890- 1919; 824 

b) averaged bias adjustment from HadSST3, 1995-2004; 825 

c) as a) but for ERSSTv4;    d) as b) but for ERSSTv4; 826 

e) bias adjustment difference (HadSST3 - ERSSTv4), 1890- 1919, hatching indicates 5˚ areas 827 

where the difference exceeds half the sum of the full range of the ensemble estimates of 828 

bias uncertainty. 829 

f) as e) but for 1995-2004 830 

g) as e) but zonal mean smoothed with a 12-month running mean filter. 831 
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h) global mean bias adjustment difference (black) and full range of ensemble differences 832 

(grey) 833 

 834 

Figure 5:  835 

a) SST anomalies (˚C) relative to 1961-1990 for August 2014 based on ICOADS real time 836 

extension based on data for ships, drifting and moored buoys, quality controlled and 837 

gridded according to Rayner et al. (2006). Grey areas indicate regions with no 838 

observations. 839 

b) SST anomalies for August 2014 after interpolation using a local optimal interpolation with 840 

varying length scales and successively assimilating buoy and ship measurements. 841 

c) Estimated average biases in gridded engine room measurements assessed using the 842 

residual of the interpolation scheme from the previous panel. Details on the method 843 

used can be found in the Supplemental Material. 844 

 845 
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 846 

Figure 1: Global average SST anomaly from HadSST3, ERSSTv4 and COBE-SST2. In each 847 

panel the shaded region is the approximate 95% uncertainty range and the grey areas are the 848 

other two data sets and their uncertainty ranges for comparison. Biases and anomalies have 849 

been set to average zero over the period 1961-1990. 850 

1a Timeseries of global average SST anomalies from HadSST3 (yellow) 851 

1b As 1a but from ERSST v4 (green) 852 

1c As 1a but for COBE-SST2 (blue) 853 

1d Estimated bias adjustments and their uncertainties from each dataset using the same 854 

colour scheme. 855 
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 a) 856 

 857 

Figure 2: Illustrations of factors affecting SST measurements made using different methods.  858 

a) Bucket measurements of SST are affected by ambient conditions (solar radiation, wind 859 

speed, temperature, humidity and air-sea temperature difference) that control the 860 

thermodynamic forcing. The construction of the bucket is important: different materials 861 

will insulate the water sample from the external thermal forcing to varying extents; the 862 

volume and water level affect the heat capacity; a lid may reduce heat exchange from 863 

the top.  Observing protocol may prescribe how long the bucket should remain in the 864 

sea, whether the sample is to be stirred, whether the bucket should be shaded from the 865 

sun or sheltered from the wind, how it should be stored and how long an exposure time 866 

should be allowed for the thermometer to reach equilibrium. And of course important 867 

aspects of observing protocol may be either undefined or not followed by an observer;  868 
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 869 

b) Both engine intake and hull contact sensor measurements of SST are made at depths that 870 

may vary with ship loading. The ship may mix the water or draw down surface water 871 

and this may vary with ship speed. The temperature of the pumped water at the 872 

measurement site will depend on the flow rate and the properties of any sea chest, the 873 

distance inboard, the amount of insulation of the pipe and the temperature difference 874 

between the water and the ship interior. The type of thermometer and its mounting 875 

affects the measurement and bio-fouling may build up with certain types of installation. 876 

How the thermometer is read is important. Remote reading permits thermometer 877 

installation near the inlet which may not be easily accessible. The thermometers used 878 

may have coarse gradations (particularly dial thermometers) and are subject to parallax 879 

errors if inconveniently sited. Observations may have been relayed from the engine 880 

room to the bridge, possibly incurring delay and communication errors. Hull sensor-881 

derived SST observations may be affected by the thickness and construction of the hull, 882 

by the amount of insulation and the temperature contrast between the water temperature 883 

and the internal temperature of the ship.;  884 
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 885 

c) Drifting buoys are expected to give the best quality SST observations overall, but there are 886 

still several problems that may be encountered, including drift of the calibration over 887 

time. Solar radiation on the drifter body may cause errors, either through direct heating 888 

or through temperature effects on the electronics: the size of any effect will vary with 889 

buoy design. The depth of measurement may vary: the drogue is designed to keep the 890 

drifter sphere largely submerged, if lost the measurement will be closer to the surface 891 

(Reverdin et al. 2013) and the buoy might not remain correctly oriented. Water may be 892 

disturbed by motion of the buoy. Bio-fouling can be significant in some regions and has 893 

the potential to affect the temperature measurement. Detailed quality control is required 894 

to identify pre-deployment activation, beaching and degradation over time, especially at 895 

the end of the drifter life. 896 
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 897 

 898 

Figure 3: a) Estimates of measurement method composition for ship data only from 899 

ICOADS Release 2.5 for the period January 1930 to January 2007 after Kennedy et al. 900 

(2011b). Darker shading represents measurement method obtained by the SST 901 

measurement method indicator in ICOADS (SI) or from a match to an entry via callsign 902 

to Pub. 47. Lighter shading represents measurement method obtained indirectly, either 903 

through country preference or inferred bucket for the earliest observations. 904 

b) As 3a but also splitting the bucket observations indicating whether the observation was 905 

likely to be taken with an uninsulated (canvas) or insulated (rubber or plastic) bucket. 906 

The hatched area indicates the estimated uncertainty in that assignment. The white area 907 

represents ERI and measurements of unknown source. The dashed lines show the 908 

measurement method assignments following (Hirahara et al. 2014) partitioning 909 

between uninsulated buckets (lower portion), insulated buckets (center portion) and 910 

ERI (top portion).  911 
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 912 

Figure 4 913 
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Figure 4: Comparison of SST bias adjustments used in HadSST3 and ERSSTv4 (°C). Grey 914 

shaded areas in panels a-g are unsampled. 915 

a) averaged bias adjustment from HadSST3, 1890- 1919; 916 

b) averaged bias adjustment from HadSST3, 1995-2004; 917 

c) as a) but for ERSSTv4;    d) as b) but for ERSSTv4; 918 

e) bias adjustment difference (HadSST3 - ERSSTv4), 1890- 1919, hatching indicates 5˚ areas 919 

where the difference exceeds half the sum of the full range of the ensemble estimates of 920 

bias uncertainty. 921 

f) as e) but for 1995-2004 922 

g) as e) but zonal mean smoothed with a 12-month running mean filter. 923 

h) global mean bias adjustment difference (black) and full range of ensemble differences 924 

(grey) 925 
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 926 

Figure 5:  927 

a) SST anomalies (˚C) relative to 1961-1990 for August 2014 based on ICOADS real time 928 

extension based on data for ships, drifting and moored buoys, quality controlled and 929 

gridded according to Rayner et al. (2006). Grey areas indicate regions with no 930 

observations. 931 

b) SST anomalies for August 2014 after interpolation using a local optimal interpolation with 932 

varying length scales and successively assimilating buoy and ship measurements. 933 

c) Estimated average biases in gridded engine room measurements assessed using the 934 

residual of the interpolation scheme from the previous panel. Details on the method 935 

used can be found in the Supplemental Material. 936 




