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Abstract 

 

As global population expands, so does its demand for food. This will require vast 

amounts of plant-derived calories. This increased pressure means it is vital that we 

do more with less; less land, less water, less chemical input and less labour. One 

major threat to crop production is posed by plant pests and pathogens. In particular, 

filamentous plant pathogens – oomycetes and fungi – are among the most 

devastating organisms known to agriculture. With their rapidly evolving genomes 

which specialise in breaking plant immune systems and chemical control methods, 

control of these pathogens is becoming extremely problematic. Especially as they 

often encounter crops in monoculture. An often overlooked potential strategy for 

developing pathogen resistance is manipulation of the host targets of plant pathogen 

effector proteins. In order to manipulate such targets to condition enhanced 

resistance, one must first develop a sound understanding of the interaction between 

effector and target, the target’s function in planta and which processes are being 

perturbed by the interaction.  

A previously discovered interaction between a P. infestans RXLR effector and a 

host MAPK known to be a positive regulator of immunity, where the effector acts to 

perturb positive regulation of immunity, is used here to investigate the possibility of 

manipulating a host target for enhanced immunity. Effector-insensitive variants were 

produced and characterised, prior to expression in CRISPR-edited tomato plants. We 

tentatively suggest that at least one variant may condition enhanced resistance. 

Another interactor of the same effector protein was investigated for its role in 

immunity and evidence suggesting it may function as a helper of the effector is 

presented.  

Additionally, the expression, purification and crystallisation of native and heavy 

atom derivatives of a candidate effector protein from B. graminis f.sp. hordeii is 

demonstrated.  
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List of abbreviations 

 

The present thesis uses one letter code for nucleic acids (ATCGU) and one and 

three letter codes for amino acids (e.g. R or Arg). Standard SI units are used, unless 

explicitly stated.  

 

Abbreviation Meaning 

3-AT 3-amino-1, 2, 4-triazole 

A280 Absorbance at 280nm 

AP Alkaline phosphatase 

ASR Asian Soybean Rust 

ATG8 Autophagy-related protein 8 

ATP Adenosine Triphosphate 

AVR Avirulence protein 

BAK1 BRI1-associated kinase 1 

BCIP 5-bromo-4-chloro-3-indolyl phosphate 

BEC Blumeria effector candidate 

BiFC Bimolecular fluorescence complementation 

Bis-Tris 2-[Bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1, 3-diol 

BLAST Basic local alignment search tool 

Cas9 CRISPR-associated protein 9 

CD Circular Dichroism 

CDS Coding Sequence 

CERK1 Chitin elicitor receptor kinase 1 

CID Collision induced dissociation 

CRISPR Clustered regularly interperspaced short palindromic repeats 

CRN Crinkler effector 

CSEP Candidate secreted effector protein 

CTAB Cetyl trimethylammonium bromide 

DAMP Damage Associated Molecular Pattern 
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DCL Dicer-Like 

DLS Diamond light source 

DMF Dimethyl formamide 

DMSO Dimethyl sulfphoxide 

dNTP Deoxyribose nucleotide triphosphate 

DSB Double stranded break 

DTT Dithiothreitol 

ECL Enhanced chemiluminesence  

EDTA Ethylenediaminetetraacetic acid 

EFR Ef-Tu receptor 

Ef-Tu Bacterial elongation factor ‘Tu’ 

EHM Extrahaustorial membrane 

EST Expressed Sequence Tag 

ETI Effector Triggered Immunity 

ETS Effector Triggered Susceptibility 

flg22 Flagellin 22  

FLS2 Flagellin Sensitive 2 

HA Human influenza hemagglutinin tag 

HCD Higher-energy collision dissociation  

HDR Homology-directed repair 

HEPES 2-[4-(2-hydroxyethyl)piperazin-1-y]ethanesulfonic acid 

HMA Heavy metal-associated 

HR Hypersensitive Response 

HRP Horseradish peroxidase 

HRV Human rhinovirus 

Hsp Heat shock protein 

IMAC Immobilised metal ion affinity chromatography 

IP Invasion Pattern 

IPR Invasion Pattern Receptor 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

IPTR Invasion Pattern Triggered Immunity 

JCSG Joint Centre for Structural Genomics screen 
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KISS Keep it simple screen 

LB Luria-bertani broth 

LC-MS/MS Tandem liquid chromatography mass spectrometry 

LysM Lysine-rich motif 

MAD Multi-wavelength anomalous dispersion 

MAMP Microbe Associated Molecular Pattern 

MAPK Mitogen-activated Protein Kinase 

MEKK MAPK/ERK kinase 

MES 2-(N-morpholino)ethanesulfonic acid 

MQ Milli-Q 

MR Molecular replacement 

MS Mass Spectrometry 

MW Molecular Weight 

NBT Nitro blue terazolium chloride 

NHEJ Non-homologous end joining 

Ni
2+

-NTA Nickel- nitrilotriacetic acid column 

NLP Nep1-like protein 

NLR Nucleotide-binding Leucine-rich repeat protein 

OD600 Optical density at 600nm 

OG Oligogalacturonic acid 

ORF Open Reading Frame 

PAGE Polyacrylamide gel electrophoresis 

PAMP Pathogen Associated Molecular Pattern 

PCD Programmed Cell Death 

PCR Polymerase chain reaction 

PCR-RE PCR-Restriction enzyme assay 

PEG Polyethylene glycol 

PexRD Predicted Extracellular with RXLR dEER motif protein 

PI3P Phosphatidylinositol 3-phosphate 

PP1c Protein phosphatase 1c 

PRR Pattern Recognition Receptor 

PTI PAMP Triggered Immunity 
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PVDF Polyvinylidene fluoride 

R protein Resistance protein 

RIN4 RPM1-interacting protein 4 

ROS Reactive oxygen species 

RPM1 Resistance to Pseudomonas synringae pv. maculicola 1 

RPS2 Resistance to P. syringae 2 

RSA Rye sucrose agar 

RT-PCR Reverse transcriptase-PCR 

SA Salicylic acid 

SAD Single-wavelength anomalous dispersion 

SAR Systemic Acquired Resistance 

SC -LW Synthetic complete medium lacking Leucine and Tryptophan 

SC –LWH Synthetic complete medium lacking Leucine, Tryptophan and 

Histidine 

SC -LWU Synthetic complete medium lacking Leucine, Tryptophan and 

Uracil 

SDS Sodium dodecyl sulphate 

SEC Size exclusion chromatography 

SeMet L-selenomethionine 

SERK3 Somatic embryogenesis receptor kinase 3 

SFI Suppressor of early Flg22-induced Immune response protein 

sgRNA Small guide RNA 

SUMO Small Ubiquitin-like modifier 

T3SS Type 3 secretion system 

TALEN Transcriptional activator-like endonuclease 

TBS-T Tris-buffered saline (with Tween20) 

TE Transposable Element 

TFB1/2 Transformation buffer 1/2 

TMBSV Tomato bushy stunt virus 

Tris 2-amino-2-hyrdoxymethyl-propane-1, 3-diol 

USD United States Dollars 

X-GAL 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 
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Y2H Yeast 2-hybrid 

YPAD Yeast-extract, peptone, adenine hemisulphate, dextrose medium.  

ZFN Zinc Finger Nuclease 
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Chapter 1 General Introduction 

 

1.1.  The plant immune system 

 

As humans, we often use our own immune system to conceptualise host 

response to pathogens. The fine detail of the vertebrate immune system lies 

beyond the scope of the present thesis but one key difference between it and 

the plant immune system is the existence of specialised, mobile immune cells. 

Phagocytes patrol the circulatory system and ingest foreign agents like toxins 

and bacteria (Dale et al., 2008) whilst cytotoxic t-lymphocytes detect and 

destroy infected cells (Iannacone et al., 2006). Plants do not have the luxury of 

mobile immune cells capable of responding to invasion anywhere in the plant 

and, in general, must respond to invading pathogens on a cell by cell basis 

(with the exception of pre-formed defences and systemic signals which arise 

from pathogen perception, which will be discussed later). That is not to say 

that the plant immune system is not fit-for-purpose. Indeed, plants are 

constantly exposed to a variety of microbes and viruses yet the vast majority of 

plant-microbe interactions do not result in the death of the plant, or long term 

colonisation in the case of a biotrophic pathogen. Only certain combinations of 

plant and pathogen genotypes result in successful infection and propagation of 

the pathogen, whereas some plant-microbe interactions may have beneficial 

results for both parties.  

 

The most obvious layer of defence, which repels the majority of would-be 

invaders, is contributed by pre-formed defences. Most plant organs have a 

waxy cuticle covering their epidermis. The plant cuticle first evolved some 450 

million years ago during the colonisation of land by plants as a means of 

conserving water and its specific properties have led to it becoming an 

effective barrier to most pathogenic microbes. Plant cell walls provide both 

static and dynamic defences. The cell wall acts as a simple, structural barrier to 
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invasion but, upon attempted penetration by a pathogen, the cell wall can be 

locally strengthened by the development of localised appositions known as 

papillae (Underwood, 2012). In addition to these physical barriers, there are 

pre-formed chemical defences which includes the inhospitable, low pH of the 

apoplast, a class of pre-formed plant antimicrobials termed phytoanticipins 

(VanEtten et al., 1994) and a class of peptides known as plant defensins which 

are highly conserved across animals and plants and appear to function as broad 

spectrum anti-fungal agents (Thomma et al., 2002).  

 

Whilst these pre-formed barriers are generally extremely successful at 

warding off would-be attackers, specialised pathogens are capable of breaching 

them. This is often through the production of cell-wall degrading 

glycohydrolases or through the development of specialised infection structures 

such as appressoria or haustoria. In the event of successful penetration the 

plant must mount a response. Until recently, this has been conceptualised as a 

sequential response whereby the host recognises a Microbe/Pathogen 

Associated Molecular Pattern (M/PAMPs
1
), or signals produced by pathogen 

attack known as Damage Associated Molecular Patterns (DAMPs), and 

mounts a response to this known as PAMP Triggered Immunity (PTI). 

Perception of M/PAMPs is mediated by a class of receptors termed Pattern 

Recognition Receptors (PRR). Successful pathogens can overcome this 

through secretion of cytoplasmic effector proteins to suppress PTI, resulting in 

Effector Triggered Susceptibility (ETS) whilst hosts possess intracellular 

Nucleotide-binding Leucine-rich Repeat receptors (NLRs, encoded by 

resistance - or R -  genes) capable of recognising effector proteins, or their 

activities, and eliciting an accelerated defence response, often resulting in a 

variety of programmed cell death (PCD) known as the Hypersensitive 

Response (HR). This zig-zag model of plant defence responses was formalised 

in (Jones and Dangl, 2006).  

 

                                                 
1
 M/PAMPs shall henceforth be referred to as ‘Microbe Associated Molecular Patterns’ in order to 

reflect their conservation across pathogenic and non-pathogenic microbes.  
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Intracellular NLR immune receptors may either bind directly to a secreted 

effector protein in an allele specific manner, as with the interaction between Pi-

ta and AVR-Pita in the rice blast-rice pathosystems (Jia et al., 2000). Direct 

interactions may also involve NLR integrated domains as in the AVRPik-Pikp 

interaction from the same pathosystem (Maqbool et al., 2015). Further to this, 

NLRs may recognise ‘modified-self’ where the activity of the pathogen leads 

to an effect on some host molecule which is guarded by the receptors. A good 

example supporting this ‘guard hypothesis’ is the NLR RPM1 guarding the 

host protein RIN4, which will be discussed in greater detail in section 1.3.2. 

Another emerging theme in the study of effector-NLR interactions is that of 

the integrated decoy model (Cesari et al., 2014) mentioned above which 

proposes that many NLR proteins have evolved a domain which mimics host-

targets of effector proteins and serves as a recognition domain, often in the 

context of paired NLR proteins. It is anticipated that direct interaction of the 

effector with such domains will initiate conformational change in the receptor 

or receptor pair and activate defence signalling (Cesari et al., 2013, Williams et 

al., 2014, Maqbool et al., 2015). A model summarising our current 

understanding of the plant immune system is presented in Figure 1.  
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Over the last ten years, our understanding of the roles of, and interplay 

between, molecular players in the battlefield of plant-microbe interactions have 

demonstrated that the zig-zag model (Jones and Dangl, 2006) may too rigidly 

define the various molecules perceived by the plant as either MAMPS or 

effectors.  A compelling argument is made in (Cook et al., 2015) where an 

‘invasion model’ is proposed. This model defines invasion patterns (IPs) 

forming a continuum from lineage specific effectors to highly conserved 

MAMPs. This rethink of how molecular plant-microbe interactions are defined 

is predicated on the discovery of highly conserved regions in ‘effector 

proteins’ which elicit immune response and blur the lines between MAMPs 

Figure 1| General model for the secretion of effector proteins into the host cell and 

the outcomes for resistance/colonisation. 

Filamentous pathogens and bacteria secrete effectors via their haustoria or T3SS. These act to 

condition effector triggered susceptibility (ETS) through repressing PTI signalling from PRRs or by 

targeting host factors to modulate host cell biology to the benefit of the pathogen, or are recognised 

by NLR proteins, leading to an immune response. Adapted from  (Dodds and Rathjen, 2010). 
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and effectors. For example, the NLP
2
 family of effectors have been 

demonstrated, through complementation assays, to be critical virulence factors 

in plant pathogenic bacteria (Ottmann et al., 2009) and may be legitimately 

called effectors – a term which was adopted to reflect their inherent virulence 

function from the point of view of the pathogen, as opposed to avirulence 

proteins, which reflects recognition from the plant’s point of view. However, a 

20-24 amino acid region (nlp20 or nlp24), conserved across NLPs has now 

been identified which elicits immune responses (Böhm et al., 2014, Oome et 

al., 2014). Additionally, a Botrytis cinerea effector known as BcSp11 contains 

two conserved regions in the space of 40 amino acids which trigger host 

immunity. BcSp11 is a cerato-platanin effector which forms a family only 

recently identified and whose functions are still largely unknown (Chen et al., 

2013). Members of this effector family are expressed by many taxonomically 

diverse fungi and all of them possess these two, conserved immune response-

inducing regions. With this in mind, it may be prudent to define pathogen 

derived ligands as ‘invasion patterns’ when describing an overarching general 

model of immunity.  

 

Another often misunderstood dichotomy set up by the ‘zig-zag’ model is 

that which exists between the receptors of invasion patterns. Because MAMPs 

are typically defined as rigidly invariant, slowly evolving molecules conserved 

across all species which possess them whilst effectors are encoded by rapidly 

evolving genes which can be lost or gained over one generation, it is often 

assumed that their cognate ligands must be slowly evolving (MAMP 

perceiving PRRs) or rapidly evolving (NLR proteins). Indeed, the data 

available quite clearly show a great deal of diversity in both the sequence of 

MAMPs and the strength of recognition by their cognate PRRs. This implies 

that, like effector genes, genes encoding MAMPs are under strong diversifying 

selection to evade host perception. This has been observed in Xanthamonas 

campestri pv. campestris where a correlation was found between natural 

variation in the flg22 (a 22 amino acid peptide derived from bacterial flagellin) 

encoding region of flagellin genes and seedling growth inhibition in A. 

                                                 
2
 NLP – Nep1-like protein (Nep1 – necrosis and ethelyne-inducing peptide 1).  
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thaliana (Sun et al., 2006), which was taken to be a phenotype associated with 

defence response (Greenberg and Ausubel, 1993). Similar observations have 

been made in other bacterial species (Pfund et al., 2004, Clarke et al., 2013) 

and in other PRR-MAMP interactions, such as the EF-Tu
3
-EFR

4
 interaction 

(Furukawa et al., 2014).  

 

In essence, a compelling argument is made that the current paradigm of 

plant immune response should be simplified to consider immunogenic ligands 

like MAMPs, DAMPs, modified ‘self’ molecules and effector proteins as IPs 

and the plant derived molecules which perceive these IPs as Invasion Pattern 

Receptors (IPRs) capable of signalling an Invasion Pattern Triggered Response 

(IPTR). Invading organisms may have strategies to suppress this response 

which involve effectors as IPs. The outcome of these interactions determines 

the success or failure of the invading organism.  

 

Additionally, perception of many of these IPs induces Systemic Acquired 

Resistance (SAR) which is defined as a systemic response to local pathogen 

perception. SAR can be induced by activation of both PRR and NLR mediated 

immune signalling pathways and the systemic resistance produced is often 

effective against multiple pathogens, not just the one which has elicited the 

response (Shah, 2009).  

  

                                                 
3
 EF-Tu – Bacterial elongation factor Tu. 

4
 EFR – EF-Tu receptor. 
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1.2. Filamentous plant pathogens 

 

Many of the most devastating pathogens of our staple and high value food crops 

are filamentous in nature. ‘Filamentous’ here refers to a common lifestyle shared 

between two evolutionarily divergent lineages of pathogens: the oomycetes and the 

fungi. Both are classes of microbes which form filamentous feeding and sexual 

structures during different phases of their life cycles. Despite their largely shared 

infection strategies, key biological differences exist between them and these are 

summarised in Table 1.   

Characteristic Feature  Fungi Oomycetes 

Cell Wall Chitin, proline. Cellulose and glycans, hydroxyproline. 

Zoospore Flagella Single, posterior 

‘whiplash’ flagella when 

present.  

Biflagellated: ‘whiplash’ and ‘tinsel’ 

flagella which beat in opposite directions. 

Vegetative Tissue Genome Haploid. Diploid. 

Hyphal Architecture Septated. Rarely septated.  

Mitochondrial Ultrastructure Flattened christae. Tubular christae. 

Lysine Metabolism α-aminoadipic pathway. α-Ɛ-diaminopimelic acid pathway. 

Table 1| A description of key physiological differences between Fungi and Oomycetes. 

1.2.1. Oomycetes 

 

The Oomycota are a class of filamentous, eukaryotic micro-organisms. Similar to 

- and often mistaken for - fungi, the oomycetes share a closer evolutionary history 

with diatoms, brown algae and the apicomplexa than they do with fungi (Baldauf et 

al., 2000). Nevertheless, oomycetes and fungi are extremely similar in terms of 

morphology and lifestyle. The lineage belongs to the stramenophiles, a group 

believed to have arisen from an ancient symbiosis event, where a common ancestor 
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of all extant stramenophiles presumably appropriated an organism not dissimilar to 

the red algae we know today (Cavalier-Smith and Chao, 2006, Harper et al., 2005, 

Patron et al., 2004). The genomes of extant oomycetes still bear the vestiges of this 

event as photosynthesis related genes can be identified, although no known 

oomycetes possess plastid like organelles. Within the oomycetes, two major clades 

exist; the saproglenia, which are predominantly saprotrophic, freshwater organisms, 

and the peronosporales, which includes several of the most devastating plant 

pathogens, including the Phytophthora genus (Beakes et al., 2012).  

The genus Phytophthora contains many of the most devastating pathogens 

known to agriculture and are typically characterised by a large, repeat region-rich 

genome. One member is especially notable for its cultural and economic 

significance: the causative agent of late blight in potato and tomato, Phytophthora 

infestans. At least partly responsible for a series of famines across Europe in the 

middle of the 19
th

 century, it’s emergence in Ireland at a politically turbulent time 

during which the populace were reliant on potatoes for sustenance led to the death of 

~1 million people and the emigration of ~1 million more. It remains a significant 

challenge to global agriculture today, with estimated costs associated with yield loss 

and control measures totalling some $6.7 billion (USD) per annum (Haverkort et al., 

2008).  

An obligate hemibiotroph
5
, P. infestans can complete its life cycle both sexually 

and asexually. Its similarity to fungi is most apparent in its lifestyle. The most 

immediately obvious shared strategy is the formation of specialised infection 

structures at the tips of penetrative hyphae known as ‘haustoria’. The haustoria 

invaginate the host cell membrane (presumably through turgor pressure) and form a 

close association with the membrane which is known as the ‘extrahaustorial 

membrane’ (EHM). It is evident that the composition of the EHM differs from the 

rest of the host cell membrane although the relative contributions of de novo EHM 

membrane protein production and selective exclusion of host membrane proteins like 

transporters, aquaporins and PRRs remain unclear (Lu et al., 2012). The extent to 

which invading pathogens can control the composition of the extrahaustorial 

                                                 
5
 Hemibiotroph – An organism which requires living tissue for initial colonisation and parasitism but 

either requires, or can tolerate, dead tissue for the completion of its infection cycle.  
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membrane remains an open and thoroughly interesting question. Upon infection, the 

first macroscopic symptoms appear after as little as 2 days post infection. Infected 

plants present with patches of spreading tissue necrosis, the modus operandi for 

hemibiotrophic pathogens. Given favourable temperatures (15-24˚C) and sufficient 

humidity, sporangia can be produced asexually in as little as 4 days. 300,000 

sporangia per sporulating lesion may be produced which detach readily and disperse 

aerially (Aylor et al., 2001). These sporangia germinate on host tissue at 

temperatures of 20-25˚C or release motile, flagellated zoospores at lower 

temperatures which will encyst in host tissue. Asexual reproduction is the primary 

means by which P. infestans proliferates but it can also undergo sexual reproduction 

where mating types A1 and A2 co-exist. The development of sexual structures is 

reliant on the presence of a bipartite system of sex hormones and serves as a source 

of genetic variation in the field (Qi et al., 2005). The oospores produced in sexual 

reproduction have been observed to survive for years in the field under a range of 

different conditions (Mayton et al., 2000) although upon infection of a susceptible 

host they appear to be less virulent than sporangia.  

As mentioned previously, the Phytophthora are characterised by their extremely 

large genomes rich in repetitive elements. Members of the 1C clade of Phytophthora 

(which includes P. infestans) have genomes ranging from 220-280Mb (Tyler et al., 

2006, Haas et al., 2009), this is extremely large compared to the smut fungi with 

~20Mb genomes (Schirawski et al., 2010, Kamper et al., 2006) and the nearest, non-

disease causing relatives of Phytophthora, the diatoms, whose genomes never exceed 

56Mb (Gobler et al., 2011). One lifestyle trait which has been linked to these 

expanded genomes is biotrophy. Species of Phytophthora and Hyaloperonospora 

arabidopsidis both require living tissue for part, or all, of their association with the 

host plant. Additionally, their host range tends to be limited. A potential explanation 

for the increase in genome size is the emergence of asexuality as a consequence of 

host domestication, leading to polyploidy. However, this does not account for the 

expanded genomes of Phytophthora spp. with natural hosts and their inherent 

variation, suggesting that genome size may not be influenced by host domestication.  

As previously stated, the genome of P. infestans contains an extremely large 

amount of repetitive DNA. Indeed, three quarters of its DNA is made up of repeated 
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regions and a large amount of this is accounted for by transposable elements (TEs) 

(Haas et al., 2009). Furthermore, this tendency toward repetition in the genome 

appears to be associated with biotrophy (Raffaele et al., 2010). The architecture of 

the P. infestans genome reinforces the contribution made by TEs. Some 2000 gene 

sparse regions, containing fewer than 10 genes per region, have been identified and 

are characterised by their richness in repetitive DNA elements. The similarity in the 

GC content in these regions with the overall P. infestans genome, added to the 

similarity in GC content and codon usage between P. infestans genes and TEs, also 

lends support to this hypothesis. Indeed, many other members of the Phytophthora 

genus share this genetic architecture, suggesting that the prevalence of TE derived 

DNA in their genomes may have been the result of entry into the genome of a last 

common ancestor by a TE before the divergence of extant Phytophthora spp. Indeed, 

these TE rich, repetitive regions may have driven divergence and diversity among 

Phytophthora spp. as the ratio of dN/dS mutations in genes residing in these regions 

are far higher than their counterparts located in gene rich regions, suggesting a ‘two-

speed genome’. The evolution of the genomes of Phytophthora spp. will be 

discussed further in section 1.3.2.  

1.2.2. Fungi 

 

The fungi are a kingdom of heterotrophic eukaryotes which range from single 

celled microbes - like yeasts - through to multicellular organisms which produce 

fruiting bodies known as mushrooms or toadstools. It is difficult to overstate the 

importance of fungi in almost every terrestrial ecosystem on the planet given their 

role as prime decomposers of organic matter. Further to this, the positive impact of 

fungi on human culture has been enormous, being of critical importance in bread, 

beer and wine making.  

Despite the benefits provided by some fungal species, others are capable of 

causing mass devastation to crops. The rice blast fungus, Magnoportha oryzae, is an 

Ascomycete fungus which is endemic in every rice growing region of the world and 

the lost yield attributed to it is estimated to be enough to feed 60 million people 

annually (Fisher et al., 2012). Symptoms present as white-grey elliptical lesions 
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which can spread and destroy whole leaves, as well as neck blast which prevents 

grain maturation in panicles. One sporulating lesion can produce up to 1,000 spores 

per night and can continue doing this for up to 20 days, rapidly infecting and 

destroying whole fields of rice. A Basidiomycete, Phakopsora pachyrhizi, is 

responsible for Asian Soybean Rust (ASR). P. pachyrhizi causes yellowing of 

leaves, severe lesions on the abaxial face of leaves and necrotic lesions with pustules 

and visible ASR spores. The ultimate result is defoliation, abrogation of pod 

production and poor pod fill. Yield losses can run to 80%. ASR spores are 

windborne and are thought to travel vast distances in storm systems and upon 

infection they can complete their life cycles within 9-10 days. Another 

Basidiomycete of economic importance is the Corn Smut Fungus Ustiligo maydis. 

Yield losses associated with smut are relatively minor, particularly in the USA where 

resistant cultivars are grown. Yield loss, however, sometimes comes as a double 

edged sword for farmers as the dramatic looking fruiting body from which U. maydis 

takes its common name ‘smut’ has been eaten since before European colonisation of 

the Americas in the 16
th

 century. Indeed, market value of smut sometimes exceeds 

that of the maize on which it grows.  

One member of the Ascomycetes - Blumeria graminis – is the causative agent of 

powdery mildew on cereals and will form part of the focus of the present work. An 

obligate biotroph, symptoms are invariably small, powdery white spots on both faces 

of the leaf in addition to chlorotic lesions around the site of infection. Despite not 

being visibly destructive through symptoms like defoliation and neck blasts, as with 

previously discussed diseases, yield losses of up to 45% have been observed in 

favourable conditions for the pathogen through reduction of viable photosynthetic 

area. Furthermore, liberal application of nitrogenous fertiliser favours fungal growth 

and can act to reduce yield.  

The infection cycle of B. graminis is described in (Both et al., 2005). Briefly, 

conidia land on a susceptible surface and, given favourable conditions germinate. 15 

hpi a fully functional appressorium and penetration peg form which invade the host’s 

intracellular space and permit the formation of specialised infection structures called 

haustoria. Following penetration, epiphytic mycelia which produce further infectious 
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condidia and the typical white, powdery spots visible on the leaf surface appear 3-4 

days post infection.  

Consistent with observations made in oomycetes, biotrophy seems to be 

associated with expanded genomes. Blumeria graminis f.sp. hordei has a genome of 

around 120M, more than four times the median size of other Ascomycete genomes 

(Spanu et al., 2010). Despite this large genome size, the number of predicted genes is 

actually toward the lower end of the range for fungi whose genomes have been 

annotated. Predictably, the genes missing in comparison to other fungi are those not 

required for an obligately biotrophic lifestyle, like genes involved in inorganic 

nitrogen fixation, secondary metabolite synthetic enzymes, toxin transporters and 

genes which may be involved in the degradation of plant cell walls. Further to this, it 

was found that 64% of the B. graminis f.sp. hordei genome was made up of TEs, 

compared to ~75% in P. infestans (See section 1.2.1). It has been hypothesised that 

frequent transposition events may account for the high rates of gene loss evident in 

the B. graminis f.sp. hordei genome.  

1.3. Phytophthora effectors and their targets 

 

Many Pyhtophthora effector proteins are secreted into the apoplastic space where 

their primary function seems to be inhibition of host hydrolytic enzymes and 

proteases. However, their direct relevance to the work presented in this thesis is 

limited, so they are not discussed in detail here. The effector proteins which are 

secreted by the pathogen and taken up by the host by poorly understood mechanisms 

– known as cytoplasmic effectors – are the focus of the present thesis and discussed 

here.  

1.3.1. Cytoplasmic effectors 

 

To date, two major classes of Oomycete effector proteins have been described; 

the RXLR effectors – which form much of the basis of the work presented in this 

thesis - will be discussed in depth in section 1.3.1.1, and the Crinkler (CRN) 

effectors. Unlike RXLR effectors, CRN effectors are ubiquitous in known plant 
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pathogenic oomycete genomes. The P. infestans genome encodes a significantly 

expanded complement of CRN proteins relative to other Phytophthora spp. with 196, 

compared to 100 in P. sojae and only 19 in P. ramorum. CRN effectors are typically 

large proteins with a highly conserved domain architecture comprising an N terminal 

signal peptide, followed by the ‘LFLAK’ motif (Win et al., 2006) which is thought 

to be involved in translocation of the effector domain into the host cell (Schornack et 

al., 2010) and a C terminal effector domain which accounts for the diversity of 

functions in CRN effectors. Overexpression of some CRN effectors in S. 

lycopersicum and N. benthamiana results in ‘crinkling’ of leaf tissue and severe 

necrosis (Torto et al., 2003). This induction of necrosis has led to the hypothesis that 

some CRNs may function as regulators of colonisation later in the pathogen 

lifecycle, during or following the switch to necrotrophy (Qutob et al., 2002). 

Knowledge of the exact in planta function of CRN effectors is still in its infancy, but 

one well studied example – the nuclear-localised CRN8 – functions as an RD kinase 

in the model host N. benthamiana where it has been shown to autophosphorylate 

(Van Damme et al., 2012) and its kinase activity appears to be important for P. 

infestans virulence. However, CRN8’s position in any endogenous MAPK signalling 

pathway in the nucleus remains unknown.  

Localisation studies of CRN effectors have revealed a diversity of sub-nuclear 

localisations and patterns, in addition to a diversity of associated responses when 

transiently expressed in N. benthamiana. (Stam et al., 2013) observed that three 

separate CRN effectors (CRN79_188, CRN83_152 and CRN20_624) induced 

delayed, rapid and intermediate cell death symptoms, respectively. Distinct 

localisation within the nucleus and differential co-localisation with chromatin and 

Histone complex sub-units was also observed, indicating that cell death phenotypes 

may correlate with the nature of effector association with DNA.  

 

1.3.1.1 RXLR effectors 

 

As alluded to in section 1.3.1, one of the two known classes of oomycete effector 

proteins is the RXLR effectors. ‘RXLR’ refers to a conserved amino acid motif 
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toward the N terminus of the protein comprising arginine, any amino acid, leucine 

and arginine and is often followed by a dEER motif which comprises a poorly 

conserved aspartate residue, two glutamates and an arginine (Dou et al., 2008). The 

RXLR family in Phytophthora spp. is comprised of >300 proteins in P. sojae and P. 

ramorum, respectively and >500 in P. infestans (Jiang et al., 2006, Haas et al., 

2009). The RXLR effectors share a conserved domain architecture with an N 

terminal signal peptide followed by the canonical RXLR-dEER motif and a C 

terminal ‘effector domain’ which encodes the effector’s biochemical function and its 

NLR recognition specificity. Significant sequence diversity is observed in the C 

terminal regions of RXLR effectors, consistent with their identification as a rapidly 

evolving gene family as well as with their role in virulence. In addition to this, new 

members of the RXLR family are rapidly evolving, through processes such as 

pseudogenisation, and members deleterious to fitness are deleted or pseudogenised 

when exposed to specific cultivars (Haas et al., 2009) 

It has been hypothesised that the RXLR motif is required for translocation of 

effector proteins into the host cell (Whisson et al., 2007, Dou et al., 2008) and it is 

known that it is not required for virulence activity (Bos et al., 2006). This 

translocation mechanism may share similarities with the translocation of effector 

proteins from the apicomplexan malaria parasite Plasmodium falciparum into host 

cells (Bhattacharjee et al., 2006). P. falciparum effectors are translocated across a 

tight association between host and pathogen membranes but pathogen independent 

entry into the host cell has not yet been observed (Marti et al., 2004). Whilst the 

oomycete RXLR motif is demonstrably required for translocation, it remains unclear 

whether or not it is sufficient for pathogen independent entry into the host cell. The 

evidence for pathogen independent entry was based on recombinant, fluorescently 

tagged effectors being applied to plant roots in the absence of a pathogen, and their 

uptake observed (Dou et al., 2008). However, the strength of this type of assay has 

been called into question by the observation that non-specific uptake of fluorescent 

proteins by plant roots occurs at a similar rate to fluorescently labelled effector 

proteins (Wawra et al., 2013).  

The mechanism by which RXLR proteins enter the host cell independently of the 

pathogen remains a topic of considerable debate among the oomycete community. In 



32 

 

2010 it was found that RXLR motifs bind to phosphatidylinositol-3-phosphate 

(PI3P) outside of the host cell before being endocytosed (Kale et al., 2010). 

However, since then evidence from the P. falciparum pathosystem has suggested 

effector proteins may bind PI3Ps inside of the host cell, rather than outside, calling 

into question its functional relevance for effector translocation (Bhattacharjee et al., 

2012). Additionally, the sufficiency of the RXLR motif in isolation for PI3P 

interaction has been questioned, with reports suggesting that the C terminal domain 

of RXLR effectors may have a greater affinity for PI3P than the putative 

translocation motif (Sun et al., 2012). Further to this, it was shown that denatured 

Avr3a could still interact with PI3Ps, raising doubts over any proposed relevance of 

an RXLR-PI3P interaction in effector translocation (Wawra et al., 2013). 

1.3.2. Host Targets 

 

As previously mentioned, the primary role of cytoplasmic effector proteins is to 

enter the host cell and modulate host biology in some way which is beneficial to the 

invading organism; this normally manifests itself as suppression of immune 

responses. However it may also take the form of redirection of nutrients to the 

pathogen (Yang et al., 2006, Antony et al., 2010). 

The first host-targets of plant-pathogen effector proteins to be identified were of 

bacterial effectors delivered via the type-three secretion system (T3SS). One 

particularly notable example of a host target is the A. thaliana RPM1-interacting 

protein RIN4. The activity of at least seven P. syringae T3E proteins converge on 

RIN4. Examples of these include; AvrPt2 (Axtell and Staskawicz, 2003), AvrB 

(Mackey et al., 2002), AvrPm1 (Mackey et al., 2003) and AvrPto (Luo et al., 2009). 

Reduction in RIN4 levels leads to enhanced resistance of A. thaliana to several 

pathogens and AvrB and AvrPm1 phosphorylate RIN4 in order to stabilise it and 

promote its negative regulation of basal defence. However, this is only the case if the 

plant under attack does not express functional RPM1 as the RIN4-RPM1 association 

is one of the classical examples of ‘the guard hypothesis’, whereby an effector does 

not interact directly with an NLR protein to trigger ETI. Instead, the NLR protein 

‘guards’ targets of effectors, surveying the cell for ‘modified self’. Phosphorylation 
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of RIN4 by one of these T3Es then triggers RPM1 mediated immunity. Likewise, 

RIN4 also physically associates with the NLR Resistance to Pseudomonas syringae 

2 (RPS2). AvrPt2 directly interacts with RIN4 and reduces its levels through its 

activity as a cysteine protease, resulting in RPS2 activation and ETI (Axtell and 

Staskawicz, 2003). AvrPto also reduces RIN4 levels in a Pto/Prf dependent manner 

(Luo et al., 2009). Degradation of a negative regulator of immunity is a difficult 

observation to explain but it has been suggested that this may have evolved as a 

means to limit recognition of AvrB and AvRpm1 mediated RIN4 modification.  

Oomycetes do not possess a T3SS, or other bacterial style secretion system with 

which to deliver effector proteins to the host cytoplasm. As outlined in section 1.2.1, 

oomycetes form specialised infection structures known as haustoria, across which 

they appropriate nutrients from the host and, it is thought, secrete effectors via a 

mechanism likely to involve the RXLR motif and other, as yet uncharacterised, 

translocation motifs.  

With the availability of high quality genome sequences for numerous plant 

pathogens, effector discovery and characterisation has increased in recent years. This 

has been made possible through the advancement of next generation sequencing 

technologies (NGS) and improved bioinformatics pipelines for the large amounts of 

data generated by the short reads inherent to NGS methods.  The identification of 

putative effector complements in plant pathogens has allowed the screening of 

effector proteins for host interactors and subsequent validation of the interaction. 

Once this is complete, experiments can be designed to ascertain a biologically 

relevant outcome of a given effector-target interaction. A non-exhaustive list of 

Phytophthora spp. effector proteins and their identified host targets, with a brief note 

on the consequences of each interaction in the context of infection, is presented in 

Table 2 so as to give an overview of the diversity of processes oomycete effectors as 

capable of manipulating. 
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Target Effector Organism Biological Function Reference 

Sec5 Avr1 P. infestans Avr1 binds an exocyst 

complex protein perturbing 

callose deposition and PR1 

secretion. May also disturb 

vesicle trafficking. 

(Du et al., 2015) 

BSL1  Avr2 P. infestans BLS2 is closely related to 

the Brassinosteroid 

response regulator BSU1, 

linking it to hormone 

signalling. The exact 

consequences of this 

interaction remain 

unknown.  

(Saunders et al., 

2012) 

CMPG1 Avr3a P. infestans Avr3a stabilises CMPG1, a 

host E3 Ligase. CMPG1 is 

degraded during INF1-

induced cell death and 

Avr3a mediated 

stabilisation suppresses this 

response. 

(Bos et al., 2010) 

C14 Avrblb2 P. infestans Avrblb2 prevents C14 

accumulation in the 

apoplast. 

(Bozkurt et al., 

2011) 

C14 EPIC1/EPIC2B P. infestans Apoplastic effectors EPIC1 

and EPIC2B physically 

associate with C14 and 

inhibit its protease activity.  

(Kaschani et al., 

2010) 

LecRK-I.9 IPI-O P. infestans LecRKI.9 maintains CW-

PM integrity. IPI-O directly 

binds it and disrupts the 

CW-PM continuum.  

(Bouwmeester et al., 

2011) 

MAPKKKƐ PexRD2 P. infestans PexRD2 suppresses 

MAPKKKƐ mediated cell 

death response to promote 

virulence. 

(King et al., 2014) 

ATG8 PexRD54 P. infestans PexRD54 associates with 

host autophagy related 

protein 8 (ATG8) in order 

(Dagdas et al., 2016) 
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to perturb host selective 

autophagy.  

KRBP1 Pi04089 P. infestans KRBP1 accumulation is 

promoted by Pi04089 to 

promote infection. 

(Wang et al., 2015) 

PP1c Pi04314 P. infestans Pi04314 mimics a PIP 

through its KVTF motif 

and directly interacts with 

PP1c to promote infection 

through formation of a 

holoenzyme. 

(Boevink et al., 

2016) 

Table 2| A none-exhaustive list of Phytopthora infestans effector-target interactions. 

 

The effector-target interaction that will form the focus of one chapter in the present 

thesis is shown in Table 2. (King et al., 2014) showed that a P. infestans RXLR 

effector – PexRD2 – directly interacted with a solanaceous MAPKKKƐ in order to 

suppress its function as a positive regulator of immunity to biotrophic and 

hemibiotrophic pathogens. The interaction between PexRD2 and MAPKKKKƐ is 

discussed in greater detail in Chapter 3.  

 

1.4. Mitogen activated protein kinase signalling in plant 

immunity 

 

As key regulators of a wide variety of processes, including immune signalling, 

MAP Kinases represent a class of molecules that one may predict to be targeted by 

plant pathogen effectors. Examples of host kinases targeted by microbial effector 

proteins are abundant in the literature. The Oryza sativa Receptor-like cytoplasmic 

kinase OsRLCK185 is a protein kinase which directly interacts with – and is 

phosphorylated by – the chitin and peptidoglycan receptor OsCERK1 in order to 

upregulate the expression of defence response genes. The Xanthomonas oryzae 

effector protein Xoo1488 physically associates with OsRLCK185 and suppresses its 
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phosphorylation by OsCERK1, preventing any downstream defence signalling 

(Yamaguchi et al., 2013). A further example links back to the guard hypothesis, in 

which NLR proteins monitor the cell for effector activity – the P. synringae T3SS 

effector HopAI1 physically associates with, and inhibits, the A. thaliana kinase 

MPK4 with the in order to suppress expression of defence related genes. However, 

the NLR protein SUMM2 detects suppression of the MEKK1-MKK1/MKK2-MPK4 

signalling cascade and mounts an effector-triggered immune response, highlighting 

the sophistication of the plant intracellular immune system (Zhang et al., 2012b). 

Further to this, 33 RXLR effectors from P. infestans were screened in transient, 

protoplast based assays for their ability to suppress Flg22 mediated defence 

signalling. In tomato protoplasts, 8 out of 33 of the screened effectors were capable 

of suppressing Flg22 signalling at the MAP Kinase level whilst in protoplasts from 

the non-host A. thaliana, 3 of the effectors had the same effect and were termed 

Suppressor of early Flg22-induced Immune response (SFI) proteins (Zheng et al., 

2014). The ability of P. infestans effectors to suppress MAP Kinase mediated 

immune signalling in a non-host organisms suggests that targeting of MAP Kinase 

mediated signalling may be an evolutionarily conserved virulence strategy, common 

to many plant-associated microbes.  

Upon perception of modified self, direct detection of an effector protein or 

MAMP perception, the resulting signal must be amplified and translated into some 

tangible response. Clearly there is a spatial disconnect between, for example, the 

highly-conserved, plasma membrane-bound flagellin receptor FLS2 and the 

transcriptional changes and ROS burst associated with flagellin perception which 

presumably require a signal to be carried from the plasma membrane, through the 

cytoplasm (where stimuli perception may also occur through intracellular NLRs) to 

the nucleus. This disconnect is, at least in part, bridged by a class of signalling 

proteins conserved across eukaryotes: the mitogen activated protein kinases 

(MAPKs) (sometimes known as MAPK/ERK kinases (MEKKs)). In general, MAPK 

signalling cascades incorporate three functionally similar proteins in which 

downstream kinases are sequentially phosphorylated by their upstream kinase, before 

the terminal MAPK phosphorylates further signal transduction components – 

including ribosomal sub-units and transcription factors - which induce the responses 

outlined in Figure 2. MAPK activation is typically a rapid response and can be 
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detected as little as five minutes after perception of an avirulence effector. The best 

understood of these three tiered signalling cascades is the one already alluded to in 

the present section in which flg22 is detected by FLS2. This recognition event leads 

to the rapid formation of a complex between flg22 bound FLS2 and the receptor-like 

kinase SERK3/BAK1 and subsequent activation of two MAPK signalling cascades, 

which were introduced briefly earlier in this section. The first of these – which 

promotes defence response - involves MEKK1, MKK4/5 and MPK6/3. The second 

also includes MEKK1 which in turn activates MKK1/2 and MPK4. The latter 

pathway had been thought to antagonise the immune response but recent evidence 

suggests that this may not be the case. Plants deficient in the MPK4 signalling 

cascade exhibit constitutive resistance phenotypes (Petersen et al., 2000). However, 

it turns out that MPK4 is a guardee of SUMM2, an intracellular NLR (Zhang et al., 

2012b). Summ2 mutants no longer exhibit the constitutive immune response 

associated with mpk4 mutants and SUMM2 is required for defence response 

triggered by HopAI1. It was proposed that MPK4 negatively regulates MEKK2 by 

phosphorylation and that activation of MEKK2 in the absence of MPK4 leads to 

constitutive SUMM2 activation.  

Adding further weight to the Invasion Model proposed in (Cook et al., 2015), 

multiple invasion patterns may converge upon the same MAPK cascade suggesting 

that these are not separate responses but immune signalling hubs. DAMPs, such as 

oligogalacturonic
6
 acids (OGs), for example, are perceived by wall-associated 

kinases (WAKs) WAK1 and WAK2 which activate the same downstream effectors 

as flg22.  

Several of the outcomes of MAPK signalling cascades as plant immune 

responses are outlined in Figure 2. Of those, cell death is of particular importance to 

the present thesis. The hypersensitive response is a form of programmed cell death 

which is the result of SA and ROS accumulation and numerous metabolic changes 

which essentially act to prevent the spread of biotrophic or hemibiotrophic pathogens 

by killing the cells in which the pathogen has a foothold. Also, a more robust form of 

cell death can be elicited by MAP Kinases involved in plant immune signalling, such 

                                                 
6
 Oligogalacturonic acid – Breakdown product of plant cell walls denatured by fungal galacturonases.  
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as by MAPKKKƐ in response to Cf-4 or AvrPto (Melech-Bonfil and Sessa, 2010b, 

King, 2013). A combination of silencing and overexpression studies have 

demonstrated that solanaceous MAPKKKα and MAPKKKƐ act upstream of these 

signalling modules and transduce perception of effector proteins by intracellular 

NLRs (Pozo et al., 2004, Melech-Bonfil and Sessa, 2010b). Our understanding of the 

roles of these two MAPKKKs will be discussed in greater depth in Chapter 3.  

It is clear that MAP Kinases represent a generally conserved class of virulence 

targets for plant-associated pathogens from all kingdoms of life. This is supported by 

our emerging understanding of NLR-integrated domains, which are hypothesised to 

be derived from effector-target proteins. In a number of bioinformatic searches of 

crop plant reference genomes, MAP Kinase domains have been the best represented 

class of putative integrated domain (Sarris et al., 2016, Kroj et al., 2016) suggesting 

selection pressure favouring the accumulation of NLRs containing domains 

homologous to common targets of plant pathogen effectors – presumably to serve as 

‘decoy domains’.  
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Figure 2| Generalised representation of the core MAPK signalling module and 

the responses they may elicit upon pathogen perception. 

At the base of a given cascade, a MAPK is activated by phosphorylation of a Thr-x-Tyr 

motif in its activation loop by the activity of a MAPKK, which is in turn phosphorylated by a 

MAPKKK. MAPKKK’s may also be phosphorylated by further module known as a 

MAPKKKK. Diversity in known MAP Kinases reduces down the cascade, with at least 80 

putative MAPKKKs, 20 MAPKKs and 10 MAPKs annotated in the A. thaliana genome 

(Ichimura et al., 2002, Colcombet and Hirt, 2008). Four responses are generally associated 

with MAPK cascade activation. Accumulation of defence hormones like Salicylic acid and 

Methyl jasmonate may be promoted. Accumulation of ROS such as superoxide and hydrogen 

peroxide may occur in order to strengthen cell walls and limit pathogen spread. Additionally, 

gene expression is altered so as to upregulate defence related genes and downregulate 

susceptibility genes. Lastly, a localised HR or cell death response may be induced in order to 

limit the spread of biotrophic pathogens.  
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1.5. CSEPs from Blumeria graminis f.sp. hordei  

1.5.1.  Identification 

 

The Candidate Secreted Effector Proteins (CSEPs) of Blumeria graminis f. sp. 

Hordei (Bgh) were initially identified when the Bgh genome was published (Spanu et 

al., 2010). In this paper, 248 proteins with an N-terminal signal peptide, no predicted 

transmembrane domains and no homology to proteins outside of the mildews were 

identified bioinformatically and predicted to be effector proteins. Consistent with 

this, expression analysis found that 79% of these genes were preferentially expressed 

in haustoria. A more comprehensive analysis, incorporating genomic, transcriptomic 

and proteomic techniques also identified the aforementioned 248 proteins. A further 

243 candidate secreted effector proteins were added through iterative rounds of 

BLAST searches using previously identified CSEPs as queries and signal peptide 

analysis. The approach also employed BLAST searches against an EST database 

using putative CSEPs as queries, RNA expression analysis as well as proteomic 

analysis of extracts from sporulating Bgh hyphae and barley epidermal tissue 

containing Bgh haustoria (Pedersen et al., 2012). In all, ~500 proteins have been 

identified as CSEPs. Interestingly, a Y/F/WxC motif has been identified in a sub-set 

of CSEPs, where the first residue in the triplet motif is always aromatic, the second 

is any amino acid and the last is invariably a cysteine (Godfrey et al., 2010). 

However, the functional significance of this motif is not yet clear.  

1.5.2. Functional knowledge 

 

Despite such a large number of predicted CSEPs, confirmation of effector 

function and more detailed characterisation has proved challenging. One major 

hurdle has been an inability to transform Bgh, which is largely a product of its 

obligately biotrophic lifestyle (making it difficult to culture in the laboratory) and 

hydrophobic cell surface. Therefore, all functional characterisation of Bgh CSEPs to 

date has been done through Host Induced Gene Silencing (HIGS). Effector function 

can be assigned to CSEPs in this way by knocking them down and assaying for 
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compromised virulence. Around half of the ~500 described CSEPs resulted in 

compromised virulence when silenced (Nowara et al., 2010).   

At least two CSEPs - CSEP0105 and CSEP0162 - resulted in a 40% lower 

haustorial formation rate when silenced and were characterised further. Almost 

exclusive haustorial expression of both during the process of infection was 

reconfirmed through qPCR (Ahmed et al., 2015) and interaction partners were 

identified through a yeast 2-hybrid screen against a prey library constructed from 

infected Barley derived cDNA (Zhang et al., 2012a).  It was found that both CSEPs 

under investigation interacted with a pair of small heat shock proteins; Hsp16.9 and 

Hsp 17.5. Furthermore, co-expression of fluorescently tagged CSEPs were found to 

localise exclusively to the cytoplasm when co-expressed with the Hsps, the known 

cellular location of these Hsps. Despite strong evidence for a physical interaction 

between these effectors and Hsps, as well as for a virulence function of both 

CSEP0105 and CSEP0162, whether these CSEPs are actually targeting Hsps in order 

to promote virulence remains unclear. CSEP0105 was shown to disrupt the 

chaperone activity of Hsp16.9 whilst the same result could not be obtained for 

CSEP0162 (Ahmed et al., 2015). A direct role for the perturbation of function in Bgh 

virulence has not been established although it is known that Hsps can play an 

important role in defence response. It remains a possibility that the observed 

interaction with Hsp16.9 and Hsp 17.5 is an artefact. Indeed, Hsps are known ‘sticky 

hubs’ which are prone to generating false positive results in protein-protein 

interaction studies.  

Another CSEP, CSEP0055, was found to be important for virulence, again 

through HIGS (Zhang et al., 2012a) and was subsequently found to interact with 

several proteins known to accumulate in the apoplast in response to Bgh invasion. 

The in planta roles of these putative CSEP0055 targets remain unclear so the 

relevance of the interaction for disease outcome is unknown, although it has been 

suggested that CSEP0055 interacting proteins may function as proteases in the 

apoplast, based on sequence similarity to known proteases. This would suggest that 

CSEP0055 may function as an inhibitor of protease activity in the apoplast.  

It is clear that our understanding of effector proteins from this economically 

important pathogen of cereal crops is in its infancy and that work directed at 
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understanding the diversity of roles these effectors fulfil in host-colonisation will be 

crucial to developing crop protection strategies.  

 

1.6. The potential of genome editing technologies for 

delivering enhanced resistance 

 

In the coming years we may expect crop manipulation for a range of traits – 

including resistance to pathogens – to increase in pace. The development of three 

technologies in particular, each based around endonuclease proteins, will permit this.  

Zinc Finger Nucleases (ZFNs) are an artificial class of two-component 

endonucleases, in which a zinc-finger DNA binding domain is fused to the non-

specific cleavage domain of a Type II restriction enzyme, typically FokI (Kim et al., 

1996). Target specificity is encoded by the DNA binding domain which often 

contains an array of zinc-finger repeats, and efforts to engineer greater target 

specificity have focused on building arrays of individual zinc-fingers – recognising 

3bp each – which will recognise sequences ranging from 9-18bp (Ramirez et al., 

2008). ZFNs have been successfully employed in economically important crop 

plants, such as Soybean, where they were deployed to disrupt Dicer-like proteins 

(DCLs) and other components of the endogenous RNA silencing pathway via hairy 

roots transformation (Curtin et al., 2011).  

Transcriptional activator-like effectors (TALs) are a class of effector proteins 

discovered in members of the Xanthomonas genus of plant pathogenic bacteria, and 

are now known to be expressed in Ralstonia spp. and Burkholderia spp.. Their 

function, in the context of natural plant microbe interactions, appears to be to enter 

the host nucleus and bind to specific promoter sequences, inducing transcription of 

the gene under that promoter’s control in order to benefit the pathogen. Examples of 

this include susceptibility genes Os8N3, which is upregulated by pthXo1  (Yang et 

al., 2006), and Os-11n3, which is upregulated by AvrXa7 (Antony et al., 2010).  

Sequence specificity is encoded by variable, paired amino acids in a 34 amino acid 

region of the TAL effector. The paired amino acids bind individual nucleotides in a 
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2:1 ratio and binding specificity is predictable, enabling researchers to design 

TALENs to target specific DNA sequences (Moscou and Bogdanove, 2009, Boch et 

al., 2009). Like ZFNs, TAL effectors require fusion of the cleavage domain of 

restriction enzyme (often FokI) in order to become functional genome editing tools 

known as Transcriptional activator-like effector nucleases (TALENs). These 

artificial TALENs have been successfully deployed in rice in order to edit a 

susceptibility gene appropriated by Xanthomonas oryzae in order to divert sugars to 

the pathogen (Li et al., 2012) resulting in almost fully resistant rice plants.  

CRISPR/Cas9 is now the most widely adopted strategy for genome editing in 

plants and animals due to its efficiency and ease of programmability, relying on 

specific nucleic acid guide sequences to guide the Cas9 nuclease to the intended 

target. The discovery of CRISPR/Cas9, its appropriation for genome editing in all 

kingdoms of life and the underlying biology behind the system are discussed in 

greater detail in section 3.2.6. Briefly, CRISPR/Cas9 was derived from a type of 

bacterial immune system which has evolved to defend bacterial cells from viral 

invasion. It relies on the expression of artificial nucleic acids which specify DNA 

binding, Cas9 association as well as the expression of a Cas9 nuclease to induce 

DSBs at target sites. Its ease of programmability and use has seen it become widely 

adopted by researchers across almost all experimental systems.  

1.7. The role of structural biology in understanding 

molecular plant-microbe interactions 

 

In recent decades the number of deposited structures in the Protein Data Bank 

(PDB) has increased dramatically in general, but so to have the number of 3D 

structures of molecules relevant to plant-microbe interactions. This is the result of a 

number of key technical advances. One historical limitation had been the production 

of large quantities of pure protein for crystallisation. Protein had to be obtained 

through expression in their native organism, often at quite low yields. Today, 

advances in cloning methods have allowed the rapid development of suites of vectors 

for expression in a number of heterologous hosts, notably Escherichia coli, yeast, 

insect cells, mammalian cells and plants (Berrow et al., 2007). In some of these 
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heterologous expression systems, notably E. coli, there is a great diversity in 

available strains dependent on the properties of the protein of interest. Bioinformatic 

progress has enabled accurate prediction of disordered amino acid sequences, 

enabling rapid design of constructs for expression and crystallisation, where protein 

order is a major concern. Purification methods have also seen improvements with 

multi-step, automated systems enabling the rapid purification of single proteins from 

complex cell lysates through methods such as Immobilised Metal Affinity 

Chromatography (IMAC) and Size Exclusion Chromatography (SEC). The process 

of crystallisation is now automated and carried out on a nano-litre scale, enabling the 

screening of 1000s of conditions in commercially available, sparse matrix screens 

with small volumes of protein prior to optimisation around successful screening 

conditions. Access to high powered, multi-user X-ray diffraction facilities with 

tuneable beamlines has improved for many researchers enabling the collection of 

high quality data. This often results in higher resolution 3D structures, whilst 

improved software pipelines now mean that automated structure solution without 

additional user input is becoming increasingly commonplace. Additionally, the 

deposition of numerous 3D structures has allowed modern researchers to utilise a 

priori knowledge in order to solve some 3D structures through molecular 

replacement methods, rather than through isomorphous replacement or anomalous 

dispersion experiments (see Chapter 5 for further discussion). 

Structural information can provide many key insights which further the 

development of hypotheses on protein function and inform experiments with which 

to test these ideas. Often, function is not clear from an amino acid sequence or 

conserved structural features cannot be determined, obtaining a high quality 3D 

structure can allow functional predictions to be made rationally and reveal conserved 

secondary structural elements between related but sequence divergent proteins, 

allowing unique evolutionary insights.  

Co-crystallisation of effector proteins and their host targets or cognate NLR 

proteins has resulted in great excitement in recent years, with the molecular basis of 

Harold Flor’s gene-for-gene hypothesis being elucidated. Specific insights into plant-

microbe interactions derived from structural studies are beyond the scope of the 
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present chapter but an excellent review on the structural biology of plant-microbe 

interactions is provided by (Wirthmueller et al., 2013).  

Perhaps the most exciting conclusion to emerge from studying the structural 

biology of plant-microbe pathosystems to date has been an elucidation of the 

structural basis of the ‘gene-for-gene’ model of plant immunity/susceptibility 

proposed by Howard Flor (Flor, 1942, Flor, 1947, Flor, 1955). The recognition of the 

Rice Blast fungus (Magnaporthae oryzae) translocated effector protein AVR-Pik by 

the Rice intracellular NLR immune receptor Pikp had previously been described. As 

had natural polymorphisms in both effector and receptor contributing to different 

disease outcomes. Pikp functions as a heterodimer in planta with one interacting 

partner (Pikp-1) possessing a HMA domain between its CC and NB-ARC domains 

as a putative integrated decoy domain (Cesari et al., 2014). Previous studies had 

demonstrated a physical interaction between the Pikp-1 HMA domain and AVR-

PikD (Kanzaki et al., 2012). This interaction was further confirmed through surface 

plasmon resonance (SPR) studies which found that AVR-PikD binds the Pikp-1 

HMA domain with nanomolar affinity (Maqbool et al., 2015). Further to this, they 

were able to co-express the Pikp-1 HMA and AVR-PikD in E. coli, co-crystallise the 

interaction partners and solve the crystal structure providing unprecedented insights 

into the interface between a plant pathogen effector protein and its cognate NLR. 

Through structurally informed mutation studies, an ancestral Histidine residue at 

position 46 in AVR-PikD, which is shown to be buried in the Pikp-1 HMA domain 

in complex, was shown to be crucial for interaction with Pikp-1. AVR-PikD is the 

only natural variant of AVR-Pik to have a Histidine at position 46 and, tellingly, is 

the only AVR-Pik variant to be recognised by paired Pikp receptors, supporting the 

idea that His
46 

is ancestral and the Asparagine polymorphism has evolved to help 

AVR-Pik evade recognition and limit immune response to M. oryzae.  

Another utility of structural biology is assignment of function to proteins whose 

function would not otherwise be predicted based on their amino acid sequence. The 

P. syringae effector AvrPtoB is a multi-domain protein with two domains 

functioning as kinase inhibitors of Pto and BAK1 (Cheng et al., 2011, Mathieu et al., 

2014) whilst a third, C-terminal domain from amino acid 436-553 was found, 

through determining its 3D structure, to share homology with the eukaryotic U-box 
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E3 RING-finger ubiquitin ligase (Abramovitch et al., 2006). This was not apparent 

from its amino acid sequence and it was found that AvrPtoB does indeed tag 

components of A. thaliana immune complexes for proteasomal degradation, thus 

promoting P. syringae virulence.  

In a similar vein, insights into effector evolution can be gained through structural 

knowledge where sequence homology lets us down. A highly conserved, alpha-

helical fold was identified in effectors from the peronosporales order of oomycetes. 

Initially, the fold was discovered in PexRD2, Avr3a4, Avr3a11 from Phytophthora 

spp. and ATR1 (Boutemy et al., 2011, Win et al., 2012) from Hyaloperonospora 

arabidopsidis. The only signature of this secondary structure feature in the amino 

acid sequence is a pair of conserved Tryptophan and Tyrosine residues (these are 

repeated in ATR1 which contains an additional helix). Structural analysis revealed 

that these conserved residues interact to form a stable hydrophobic core around 

which the 3-helical fold can form. Around 44% of known Phytophthora spp. RXLR 

effectors (some 500 proteins, in total) are predicted to contain this fold based on the 

presence of one or more WY repeats. Given that RXLR effectors typically share 

<20% sequence homology it has been proposed that the WY motif provides an 

evolutionarily conserved stable core around which functional diversification can 

evolve, permitting new functionality, novel target specificity and evasion of NLR 

recognition (Boutemy et al., 2011, Win et al., 2012). It would be interesting to obtain 

a crystal structure for an RXLR protein which does not contain a WY domain in 

order to see if there is a second conserved fold present in RXLR effectors or if the 

remaining effectors exhibit a great degree of structural diversity as well as sequence 

diversity.  

1.8. Aims & objectives  

 

Effector proteins and their host targets represent a potentially untapped resource 

for developing novel resistance strategies to pests and pathogens in crop plants and 

with the proliferation of multiple, tractable genome editing technologies, 

manipulating crops for enhanced resistance has never been more achievable. Here, 

we aim to add to our knowledge of the structure and function of effector proteins and 
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their targets from two economically significant, filamentous pathogens of important 

crop species, namely P. infestans and B. graminis f. sp. hordei. In addition to this, 

we aim to exploit existing knowledge of a host target by engineering a variant of it 

which is insensitive to its cognate effector protein, thus generating resistance in the 

host plant. 

In order to do this, we address three main topics: 

 Exploring the possibility of generating an effector-insensitive variant of a 

well characterised solanaceous host target of the P. infestans effector protein 

PexRD2 and assessing the utility of any effector-insensitive variants in 

conditioning disease resistance. 

 Exploring the role of a PexRD2 interacting kinase – StMAPKKKK – in P. 

infestans-plant interactions and attempting to determine whether it functions 

as a target or helper of PexRD2.  

 The expression, purification, crystallisation and preliminary X-ray analysis of 

a barley powdery milder effector protein – CSEP0162 – the first steps toward 

elucidating its crystal structure.  
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Materials & Methods 
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Chapter 2 Materials & Methods 

2.1. Bacterial strains and plasmids 

 

Table 3 describes the Escherichia coli strains used in the present work. DH5α 

and Stellar
™ 

cells were used for routine DNA work and general cloning, ccdB 

Survival
™

 2 cells were used for propagation of plasmids containing the ccdB lethal 

gene and SHuffle
®

 T7 Express cells were used for heterologous production of 

disulphide bond-containing proteins.  

Strain Genotype Reference/Source 

DH5α F– Φ80lacZΔM15 Δ(lacZYA-argF) 

U169 recA1 endA1 hsdR17 (rK–, 

mK+) phoA supE44 λ– thi-1gyrA96 relA1 

(Hanahan, 

1983) 

Stellar
™ 

F–, endA1, supE44, thi-1, recA1, relA1, 

gyrA96, phoA, Φ80d lacZΔ M15, Δ (lacZYA - 

argF) U169, Δ (mrr - hsdRMS - mcrBC), ΔmcrA, 

λ– 

Clontech 

SHuffle
® 

T7 

Express 

fhuA2 lacZ::T7 gene1 [lon] ompT ahpC gal 

λatt::pNEB3-r1-cDsbC (SpecR, lacIq) ΔtrxB 

sulA11 R(mcr-73::miniTn10--TetS)2 [dcm] 

R(zgb-210::Tn10 --TetS) endA1 Δgor ∆(mcrC-

mrr)114::IS10 

New England 

Biolabs 

ccdB Survival™ 2 F- mcrA Δ(mrr-hsdRMS-mcrBC) 

Φ80lacZΔM15 ΔlacX74 recA1 araΔ139 Δ(ara-

leu)7697 galU galKrpsL 

(StrR) endA1 nupG fhuA::IS2 

Invitrogen 

Table 3| E. coli strains used in the present study. 

Table 4 describes the Agrobacterium tumefaciens strains used in the present 

work. GV3101::pMP90 (Larebeke et al., 1974, Koncz and Schell) was used for 

routine transient infiltration of N. benthamiana leaves and AGL1 (Jin et al., 1987) 

was used for transient expression of sgRNA-Cas9 constructs in S. lycopersicum as 

well as stable transformation of S. lycopersicum.  

Plasmid vectors and constructs associated with the present work, whether 

constructed during the course of the present work or obtained from elsewhere, are 

listed in Appendix Tables A-D.  
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Strain Backgroun

d 

Mark

er 

Ti Mar

ker 

Opine 

GV310

1::pMP90 

C58 Rif pMP90 

(pTiC58DT-DNA) 

Gent Nopaline 

AGL1 C58, recA Rif, 

Carb 

pTiBo542DT-

DNA 

- Succinoma

pine 

Table 4| A. tumefaciens strains used in the present study. 

2.2. General chemicals 

 

Chemical reagents were purchased from Sigma-Aldrich Company Ltd (Poole, 

UK) unless otherwise stated.  

2.3. Growth media 

 

All media was prepared with deionised water and autoclave sterilisation (30 min, 

15psi, 121˚C). Liquid media was cooled to room temperature, and media containing 

agar cooled to ~50˚C, before addition of temperature sensitive supplements. All 

supplements added following autoclave sterilisation were filter sterilised using 

Minisart
® 

(Sartorius)
 
single use filter units with 0.2µm pores.  

E. coli was grown in Lysogenic Broth Medium (LB) [1.0% (w/v) tryptone, 0.5% 

(w/v) yeast extract, 1.0% (w/v) sodium chloride, pH 7.0] (Bertani, 1951). Where 

salt-sensitive antibiotics like Spectinomycin were required for selection, L Medium 

was used instead [1.0% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) sodium 

chloride, 1.0% (w/v) glucose, pH 7.0]. Solid LB and L were prepared as described 

above with addition of 1.0% (w/v) microbiology grade agar. 

Antibiotics were added to media where necessary at the following 

concentrations; carbenicillin (100 μg.mL
-1

), kanamycin (50 μg.mL
-1

), gentamicin (25 

– 30 μg.mL
-1

), rifampicin (50 μg.mL
-1

), spectinomycin (100 μg.mL
-1

), streptomycin 

(100 μg.mL
-1

), and chloramphenicol (34 μg.mL
-1

). Refer to Appendix B for details 

of resistance for individual constructs.   
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2.4. Preparation of glycerol stocks 

 

Aliquots of cultures grown overnight at 28˚C (S. cerevisae and A. tumefaciens) or 

37˚C (E. coli) from single, well-isolated colonies were diluted to a final 

concentration of 30% (v/v) glycerol in sterile, 1.5mL Eppendorf tubes and flash 

frozen in liquid N2 before storage at -80˚C.  

2.5. General DNA procedures 

2.5.1. Isolation of plasmid DNA from bacteria 

 

Following transformation or streaking from glycerol stocks, single, well-isolated 

colonies were used to inoculate small (5-10mL) aliquots of LB or L medium which 

were grown overnight (~16 h) at a temperature appropriate for the bacteria being 

used (see section 2.4). Cells were harvested by centrifugation at 4,000 x g for 7 min 

at 4˚C in 15mL polypropylene centrifuge tubes (Corning). Cell pellets were washed 

by resuspension in 1x volume of ddH2O and centrifuged as before. Washed cell 

pellets were dried and stored at -20˚C or immediately re-suspended using re-

suspension buffer supplied with the QIAprep Spin Mini-prep Kit (Qiagen) or the 

Isolate Plasmid Mini Kit (Bioline) and DNA was isolated in accordance with the 

manufacturer’s guidelines. Broadly speaking, both kits use an alkali lysis method 

(Birnboim and Doly, 1979), neutralisation of cell lysate, clarification of cell lysate 

and adsorption to a silica membrane in the presence of chaotropic salts at high 

concentration. Plasmid DNA was washed with ethanol to remove contaminants and 

eluted in dH2O. Plasmid DNA was stored at 4˚C in the short term to avoid multiple 

freeze-thaw cycles and at -20˚C for longer term storage.  

For isolation of DNA from A. tumefaciens, the above procedure was followed 

but re-suspension buffer was supplemented with 100 μL of a freshly prepared stock 

of 10 mg.mL
-1

 lysozyme to make cell lysis more efficient.  
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2.5.2. Transformation of chemically competent E. coli.  

 

Chemically competent E. coli cells were prepared by inoculation of 5mL of LB 

medium with a freshly streaked, single, well isolated colony grown on LB agar. 

Cells were incubated ~16 h at 37˚C with shaking at 220 rpm. This overnight culture 

was used to inoculate 200mL LB medium which was grown until cells reached an 

OD600 reading of 0.3. Cells were then chilled at 4˚C for 10 min before being 

harvested by centrifugation at 1,600 x g for 10 min at 4˚C. Supernatant was 

discarded and cells resuspended in 80 mL of filter sterilised TFB1 [30 mM 

potassium acetate, 10 mM calcium chloride, 100 mM rubidium chloride, 50 mM 

manganese chloride, 15% (v/v) glycerol,  pH 5.8]. Cells were once more harvested 

as described above and resuspended in 8 mL of filter sterilised TFB2 [10 mM 

MOPS, 75 mM calcium chloride, 10 mM rubidium chloride, 15% (v/v) glycerol, pH 

6.5]. Resuspended cells were then aliquoted out at volumes of 50-100µl into pre-

chilled 1.5mL microcentrifuge tubes on ice and flash frozen in liquid N2 before 

storage at -80˚C.  

Frozen cells were thawed on ice. Immediately upon thawing, plasmid DNA was 

added to cell pellets which were incubated on ice for a further 20-30 min. Cells were 

heats-shocked in a water bath set to 42˚C for 30s before cooling on ice for 1 minute. 

250-500µl SOC broth [2.0% (w/v) tryptone, 0.5% (w/v) yeast extract, 10 mM 

sodium chloride, 2.5 mM potassium chloride, 21.3 mM magnesium chloride, 10 mM 

magnesium sulphate, 20 mM glucose] was added before cells were allowed to 

recover at 37˚C for 1 hour with shaking at 220 rpm. 70-100µl of this transformation 

mixture was then spread on pre-warmed LB agar plates supplemented with 

appropriate antibiotic and incubated at 37˚C in a static incubator for ~16 h.  

This above method is based on that described in (Hanahan, 1983).  

2.5.3. Transformation of electrocompetent A. tumefaciens.  

 

All strains of electrocompetent A. tumefaciens used in the present study were 

prepared as follows: a 50mL aliquot of LB medium were inoculated with a freshly 
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streaked, single, well isolated colony from an LB agar plate grown at 28˚C until 

colonies appeared (usually 24-48hrs) and grown for ~24 h at 28˚C with shaking at 

220rpm. This starter culture was then diluted 1:200 in a 1 litre culture of L medium 

for a further 16 h at 28˚C or until an OD600 reading of 1.5 was achieved. This culture 

was split 4 ways between 4 x 1,000mL Nalgene
® 

centrifuge bottles pre-chilled at 

4˚C. These bottles were placed in a pre-chilled (4˚C) Fibrelite
® 

F9S-4x1000y rotor 

and centrifuged at 5,500 x g for 15 min at 4˚C in an RC 6+ free-standing centrifuge 

(Thermo Scientific
®
/Sorvall

®
). Pelleted cells were resuspended and washed in a total 

volume of 1L pre-chilled (4˚C), sterile water before centrifugation as described 

previously. Cells were then resuspended in a total volume of 1L  pre-chilled (4˚C), 

sterile water before centrifugation as before. Cell pellets were now resuspended in 

40mL sterile, pre-chilled (4˚C) 10% (v/v) glycerol before being pelleted in pre-

chilled (4˚C) 40mL Oakridge centrifuge tubes in a pre-chilled (4˚C) SS34 rotor 

(Sorvall) with the force and duration described previously in an RC 6+ free-standing 

centrifuge (Thermo Scientific
®
/Sorvall

®
). Pellets were resuspended in 10mL sterile, 

pre-chilled (4˚C) 10% (v/v) glycerol. 50µl aliquots were pipetted into pre-chilled 

1.5mL microcentrifuge tubes and flash frozen in liquid N2 before storage at -80˚C.  

Frozen cells were thawed on ice and plasmid DNA was added immediately upon 

thawing. Cells and DNA were transferred to pre-chilled (on ice) electroporation 

cuvettes (Cell Projects). These were dried and placed in a MicroPulser 

Electroporator (Bio-Rad Laboratories Ltd) where they were subjected to an electrical 

pulse at 2.20 kV. Electroporated transformation mix was resuspended in 250-500µl 

of SOC broth (see section 2.5.2) and allowed to recover for 1 hour at 28˚C with 

shaking at 220 rpm. 70-100µl of recovered cells were then plated on pre-warmed L 

agar plates supplemented with appropriate antibiotic and incubated in a static 

incubator at 28˚C until single colonies appeared (usually 36-48 h).    

2.5.4. Polymerase Chain Reaction  

 

Standard PCR was performed using PfuTurbo
® 

DNA polymerase (Stratagene), 

VELOCITY
®
 DNA polymerase (Bioline) or Phusion

®
 DNA polymerase (New 

England Biolabs) using reagents and buffers provided by the manufacturers. Typical 
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reaction mixtures contained 1x reaction buffer, 0.2mM of each dNTP, 0.1-0.5µM of 

each oligonucleotide primer and 1U of DNA polymerase. Template DNA was added 

at an appropriate amount dependent on its source and made up to 20µl, 25µl or 50µl 

dependent on application. Additives were used to enhance the efficiency of difficult 

to optimise PCRs such as 1M betaine or 5% (v/v) sterile DMSO. Components were 

assembled in an n+1x master mix on ice before being placed in a pre-heated 

Biometra T3000 Thermocycler (Biometra, Göttingen, Germany). Typical 

amplification proceeded according to the conditions shown in Table 6. For random 

mutagenesis PCR, manganese sulphate concentration was altered in the reaction mix 

as per the guidelines in the Diversify® (Clontech) user manual.  

2.5.4.1 Oligonucleotide synthesis 

Oligonucleotide primers were synthesised by Integrated DNA Technologies, Inc. 

(Belgium). Primers were supplied lyophilised and were resuspended in sterile water 

upon delivery to a final concentration of 100 μM, prior to dilution to a working 

concentration 3 – 20 μM, and stored at -20 ºC. All oligonucleotide primers used in 

the present work are listed in Appendix A alongside their Banfield lab ID number 

with a brief description of their use. 
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2.5.4.2 Colony PCR 

In order to confirm the presence of a construct of interest in transformed bacterial 

colonies, small amounts of single, well isolated colonies were picked with pipette 

tips and transferred to PCR reaction tubes with reagents already added. Cells were 

resuspended by gentle pipetting and lysed with an initial lysis step of 95˚C for 10 

min. Colony PCR proceeded according to the thermocycler shown in Table 5. 

 

Activation/ 

Cell lysis 
95 ºC 10 min 1 x 

Denaturation 95 ºC 30 s 

35 x 

Primer 

annealing* 

45 - 

55 ºC 
60 s 

Primer 

extension 
60 ºC 2 min 

Final extension 68 ºC 5 min 1 x 

Holding step 8 ºC ∞ 1 x 

Table 5| General colony PCR cycle. 
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PfuTurbo® DNA 

polymerase 

VELOCITY DNA 

polymerase 

Phusion
® 

DNA 

polymerase 

Amount of template DNA per 50 μL reaction 

genomic DNA 

/ cDNA 

50 – 100 ng 

5 - 200 ng 50 - 250 ng 

plasmid DNA 50 pg- 50 ng 1 pg- 10 ng 

PCR reaction conditions 

Activation 95 ºC 2 min 1 x 98 ºC 4 min 1 x 98 ºC 30 s 1 x 

Denaturation 95 ºC 60 s 

30 x 

98 ºC 30 s 

40 x 

98 ºC 5 s 

35 x 

Primer 

annealing* 
45 - 69 ºC 60 s 50 - 68 ºC 30 s 45-72˚C 5 s 

Primer 

extension 
72 ºC 

60 s 

per kb 
72 º 

15 – 
30 s 

per 

kb 

72 ºC 

15-
30 s 

per 

kb 

Final 

extension 
72 ºC 

10 

min 
1 x 72 ºC 4 min 1 x 72 ºC 

5-10 

min 
1 x 

Holding step 4 ºC ∞ 1 x 10 ºC ∞ 1 x 4 ºC ∞ 1 x 

Table 6| General PCR conditions. 

* Primer annealing temperature was 2 – 5 ºC below the predicted melting temperature 

(Tm) for the primer with the lowest value in a given reaction. Tm values were calculated 

using the OligoAnalyzer 3.1 tool on the IDT) website 

(http://eu.idtdna.com/analyzer/applications/oligoanalyzer/). 

http://eu.idtdna.com/analyzer/applications/oligoanalyzer/
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2.5.5. cDNA synthesis 

 

Total RNA was extracted from tomato leaves using the Qiagen RNeasy Plant 

Mini Kit as per the manufacturer’s guidance and an on-column DNaseI digest was 

carried out using RNase-free DNaseI (Qiagen) to remove contaminating gDNA. All 

gloves, pipettes, tip boxes, reagent bottles and surfaces were wiped down with 

RNaseZap (Ambion) prior to starting the procedure and regularly throughout.  

Total RNA (1µg), gene specific RT primer (3µM), 0.2mM each dNTP and dH2O 

to a final volume of 12µL were incubated at 65˚C for 5 min and chilled on ice. 4µL 

of Superscript II first strand buffer and 2µL DTT were added to each reaction before 

incubation at 42˚C for 2 min. 1µL Superscript II reverse-transcriptase was added to 

each reaction in addition to dH2O before incubation at 42˚C for 15 min and at 75˚C 

for 10 min. cDNA was used in standard PCR using gene specific primers.  

2.5.6. Agarose gel electrophoresis 

 

Typically, gels of 1% (w/v) molecular biology grade agarose (Melford 

Biolaboratories Ltd.) in TAE buffer [40 mM Tris-acetate, 1.0 mM EDTA, pH 8.0] 

supplemented with 0.5µg.mL
-1 

ethidium bromide
 
were cast and allowed to set before 

submersion in TAE buffer. DNA samples were premixed 3:1 (v:v) with 4x ‘FOG’ 

DNA loading buffer [12% (w/v) Ficoll 400 and 0.25% (w/v) Orange G]. Samples 

were loaded alongside a molecular weight marker appropriate for the predicted 

product size [1 kb Plus DNA ladder (Invitrogen), or Low Molecular Weight DNA 

Ladder (New England Biolabs)]. Gels were run at a constant voltage of 90-100V 

until tracker dye had run almost to the edge of the gel. DNA was visualised using a 

transilluminator emitting UV light at λ = 365nm.  

For detection of CRISPR/Cas9 mediated deletions in tomato gDNA by the PCR-

RE assay described in section 2.5.10, 4% (w/v) Agarose gels were used.  
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2.5.6.1 PCR cleanup 

 

PCR cleanup was performed using the QIAquick PCR Purification Kit (Qiagen) 

or NucleoSpin® Extract II Kit (MACHEREY-NAGEL) as per the manufacturer’s 

protocol. The protocols rely on similar principles to extraction of DNA from 

bacterial cell lysate: adsorbtion to a silica membrane in the presence of chaotropic 

salts followed by elution in sterile water following multiple washes with ethanol to 

remove contaminants.  

2.5.6.2 Gel extraction 

 

Purification was carried out using the Zymoclean
™ 

Gel DNA Recovery kit 

(Zymo Research) as per the manufacturer’s protocol following agarose gel 

electrophoresis as described in section 2.5.6 and excision of a well separated band 

with a sterile razor blade. The protocol relies on similar principles to those outlined 

for isolation of plasmid DNA and PCR clean up.  

2.5.7. Site-directed mutagenesis 

 

All mutant constructs used in the present study were either obtained from 

previous publications and are listed in Appendix B or made to order by Genscript 

(USA) or Genewiz (USA) by mutagenesis of a user supplied DNA template or 

synthesis of a codon optimised sequence flanked by attB recombination sites. 

Mutants were supplied in pUC57 vector backbones except for mutant MAPKKKƐ 

sequences which were sent to Genscript (USA) in the bespoke pERCH vector 

featuring a β-estradiol inducible promoter.  

2.5.8. DNA sequencing 

 

From commencement of the present work until January 2013, DNA sequencing 

was submitted to Genome Enterprise Ltd (Norwich Research Park). ~100ng of DNA 

was mixed with 2 μL of 5 x sequencing buffer [350 mM Tris-HCl pH 8.8, 2.5 mM 
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magnesium chloride], 1 μL ABI Big Dye Terminator Ready Reaction Mix Ver 3.1 

(Invitrogen), 1 μL of 30% (v/v) DMSO, and 1 μL of sequencing primer (5 – 10 μM) 

in a total volume of 10 μL. Reactions were mixed and incubated in a Thermocycler 

using the conditions described in Table 6 for Velocity polymerase. Reactions were 

analysed on an ABI 3730xl sequencer. Upon cessation of the above locally provided 

service in January 2013, DNA sequencing work was submitted to GATC Biotech. 

Ltd. (The London BioScience Innovation Centre, London, UK). 400-500ng of 

plasmid DNA was sent with custom sequencing primer at a final concentration of 

10pmol.µL
-1 

in 10µL total final volume.  

2.5.9. Cloning procedures 

2.5.9.1 TOPO
® 

cloning 

 

Purified PCR products encoding CACC at their 5’ terminus derived from PCR 

primers were cloned into the pENTR
™

/D-TOPO
® 

vector as per the manufacturer’s 

protocol.  

2.5.9.2 Gateway cloning 

 

Gateway cloning was performed using Gateway
®

 BP Clonase™ II Enzyme mix 

(Invitrogen) to generate Entry (ENTR) constructs or Gateway
®

 LR Clonase™ II 

Enzyme mix (Invitrogen) to generate Destination/Expression (DEST/EXP) 

constructs. All reactions were performed as per the manufacturer’s protocol.  

2.5.9.3 Golden Gateway assembly 

 

Preparation of S. lycopersicum editing and complementation constructs was 

performed by Mr Mark Youles (The Sainsbury Laboratory, Norwich, UK) with 

guidance from Dr Nicola Patron (The Sainsbury Laboratory, Norwich, UK) as part 

of The Sainsbury Laboratory’s Synthetic Biology pipeline. Complementation 

cassettes were synthesised by Genewiz (USA) with sgRNA recognition sites re-

coded – where appropriate - with synonymous mutations to abolish recognition and 



60 

 

were supplied in pUC57 with flanking BsaI sites for direct use in Golden Gateway 

assembly reactions.  

Components were assembled in a one pot reaction containing 100ng of the 

acceptor plasmid and each individual module in a 1:2 ratio. In addition, 1.5µL of T4 

ligase buffer (New England Biolabs), 1.5µL of Bovine Serum Albumin (New 

England Biolabs) (at 10x concentration), 200U
7
 of T4 DNA Ligase (New England 

Biolabs) and 5U
8
 of BsaI (Eco31) (ThermoFisher Scientific). Assembled 

components were incubated in a pre-heated Biometra T3000 Thermocycler 

(Biometra, Göttingen, Germany) and subjected to the protocol outlined in Table 7.  

2.5.9.4 In-Fusion
® 

PCR cloning 

 

pOPINF:CSEP0162 was constructed by Miss Agnieszka Siwoszek (Univ. 

Copenhagen) using In-Fusion
® 

PCR cloning (Clontech) following PCR with forward 

and reverse primers designed to generate 5’ and 3’ flanking regions homologous to 

the KpnI/HindIII linearised pOPINF vector. 3’-5’ proof reading exonuclease activity 

of the proprietary In-Fusion
® 

enzyme creates single stranded overhangs in the 

linearised vector with homology to the newly generated flanking sequences of the 

coding sequence allowing joining of the linearised vector and PCR product.  

  

                                                 
7
 1 T4 Ligase U defined as “the amount of enzyme required to give 50% ligation of HindIII fragments 

of λ DNA (5´ DNA termini concentration of 0.12 µM, 300- µg/ml) in a total reaction volume of 20 μl 

in 30 min at 16°C in 1X T4 DNA Ligase Reaction Buffer.” (Direct quote from NEB website). 

8
 1 BsaI U defined as “the amount of Eco31I required to digest 1 μg of lambda DNA dcm–-HindIII 

fragments in 1 hour at 37°C in 50 μL of recommended reaction buffer.” (Direct quote from Thermo 

Fisher Scientific website). 
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30 ºC 20s 1 x 

37 ºC 3 min  

 

26 x 
16 ºC 4 min 

50 ºC 5 min 1 x 

80 ºC 5 min 1 x 

16 ºC ∞ 1 x 

Table 7| Thermocycle for one-pot Golden Gate assembly. 

2.5.10. PCR-Restriction Enzyme Assay 

 

To enrich for edited DNA when transiently testing sgRNAs and screening 

putative edited tomato plants described in Chapter 3, a PCR-RE enzyme assay 

approach was used. Tomato gDNA extracted as described in section 2.10.5 was used. 

gDNA concentration was normalised to 100ng/µL. 5µL of normalised gDNA was 

mixed with SuRE Cut Buffer B (Roche) at 1x concentration, 5 units of EcoRV 

(Roche) and dH2O to a total reaction volume of 25µL. Reactions were incubated at 

37˚C for 1 hour and taken straight to PCR.  

1µL of each reaction was used for PCR. To this, 0.2mM of each dNTP, 0.5µM 

forward and reverse primer (see Appendix A), 5% DMSO, 1U
9
 of Q5-HF DNA 

polymerase (New England Biolabs) and 1x Q5 reaction buffer were added. 

Components were assembled on ice before transfer to a Biometra T3000 

Thermocycler (Biometra, Göttingen, Germany) where the cycle shown in Table 6 

was used.
10

 

                                                 
9
 1 Q5-HF polymerase U defined as “the amount of enzyme that will incorporate 10 nmol of dNTP 

into acid insoluble material in 30 min at 74°C.” (Direct quote from NEB website).  

10
 Whilst Q5-HF polymerase was used for this reaction, the same thermocycler used for Phusion 

polymerase was used.  
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PCR products were run on a 4% (w/v) agarose gel as described in section 2.5.6 

for 1 hour.  

 

2.6. Protein procedures 

 

2.6.1. Discontinuous sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) for the separation of proteins 

 

Separation of proteins by discontinuous SDS-PAGE has previously been 

described in  (Laemmli, 1970). Home-made gels used in the present study contained 

17% (w/v) acrylamide solution unless explicitly stated. Gels were prepared by 

dilution of the appropriate volume of a 30% (w/v) stock solution of acylamide/bis-

acrylamide (37.5:1) in 375 mM Tris-HCl pH 8.8 and 0.1% (w/v) SDS, supplemented 

with 0.1% (w/v) ammonium persulphate, and 0.04% (v/v) N,N,N’,N’-

tetramethylethylenediamine and mixing thoroughly in a conical flask (which was not 

added until immediately before pouring). The resulting resolving gel solution was 

poured between Bio-Rad Mini-PROTEAN
®

 system glass plates until they were filled 

to ~2cm below the top line of the short plate. A small amount of water-saturated 

butanol was pipetted over the surface of the unset gel in order to create a smooth 

boundary between the resolving gel and stacking gel. Once set, a 5% (w/v) stacking 

gel was prepared by diluting the appropriate volume of a 30% (w/v) stock solution of 

acylamide/bis-acrylamide in 63 mM Tris-HCl pH 6.8 and 0.1% (w/v) SDS, 

supplemented with 0.1% (w/v) ammonium persulphate, and 0.1% (v/v) N,N,N’,N’-

tetramethylethylenediamine and mixing thoroughly in a conical flask (once again, 

added only immediately prior to pouring). This stacking gel solution was poured 

over the set resolving gel (having removed the water-saturated butanol). Plastic 

combs were inserted into the unset stacking gel solution in order to create wells for 

sample loading. Gels were used immediately or stored at 4˚C individually wrapped 

in cling film, inside a Tupperware box sandwiched between two sheets of damp 
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paper towels. In addition, pre-cast Mini-PROTEAN
® 

TGX
™ 

gels (Bio-Rad) were 

also used.  

Cast gels were run in a Mini-PROTEAN
®
 Tetra Cell system (Bio-Rad) within 

Mini-PROTEAN
®

 Tetra electrode assembly units or Tetra companion running 

modules (Bio-Rad) and plastic combs were removed. A Mini Cell buffer dam (Bio-

Rad) was used if necessary. The Tetra Cell tank was filled up to the recommended 

line for the number of gels being run and gel chambers were filled in order to totally 

cover the gels with with SDS-running buffer [25 mM Tris-HCl, 250 mM glycine, 

and 0.1% (w/v) SDS]. Protein samples were prepared by incubation at 95˚C for 5-10 

min in 4x SDS gel-loading buffer [0.2 M Tris-HCl pH 6.8, 0.4 M DDT, 8 % (w/v) 

SDS, 0.4% bromophenol blue, 40% glycerol] before being loaded on stacking gels 

alongside an appropriate molecular weight marker [SeeBlue
®
 Plus2 Pre-Stained 

Standard (Novex), PageRuler™ Prestained Protein Ladder (Fermentas) or RunBlue
™ 

(Expedeon) Prestained Protein Ladder]. Gels were run at a constant voltage of 100-

150V for 45-120 min.  

Protein was visualised using InstantBlue
™ 

(Expedeon) in accordance with the 

manufacturer’s guidelines.  

2.6.2. Expression of native recombinant proteins in E. coli and 

harvesting of cells. 

 

Overnight starter cultures were set up using a single, freshly-transformed or 

streaked, well-isolated colony of E. coli (SHuffle
® 

T7 Express) harbouring 

pOPINF:CSEP0162 from an LB agar plate supplemented with carbenicillin and 

incubated overnight at 37˚C in a static incubator to inoculate 10mL of LB medium 

supplemented with carbenicillin. Starter cultures were grown for ~16 h at 30˚C with 

shaking at 220rpm and used to inoculate 1L cultures of LB supplemented with 

carbenicillin in 2L flasks. 1L cultures were grown at 30˚C with shaking at 220rpm 

until an OD600 reading of 0.6 was reached. At this point, cultures were induced with 

1mM IPTG and incubated at 18˚C for 18 h to allow protein to accumulate.  
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Cells were harvested in pre-chilled (4˚C) 1000mL Nalgene
®
 centrifuge bottles 

which were spun in a pre-chilled (4˚C) Fibrelite
®

 F9S-4x1000y (Thermo Scientific) 

rotor at 5,500 x g for 7 min at 4˚C in an RC6+ Centrifuge (Thermo 

Scientific/Sorvall). Harvested cell pellets were stored at -80˚C or immediately 

moved forward to the protein purification procedure described in section 2.6.4.  

2.6.3. Expression of Selenomethionine-derivative protein in E. coli 

using metabolic inhibition of methionine biosynthesis 

 

Starter cultures were initiated as described in section 2.5.2. 500mL aliquots of 

metabolic inhibition media [1x M9 minimal salts, 0.2% (w/v) glucose, 2mM MgSO4, 

0.1mM CaCl2, 0.0001% (w/v) Thiamine, 1x Carbenicillin, 20mg of the following 

amino acids; valine, phenylalanine, isoleucine, leucine, aspartic acid, glutamic acid, 

lysine, arginine, serine, threonine, tyrosine, histidine, glutamine and tryptophan 

made up to 500mL with Milli-Q (MQ) water] were prepared. Starter cultures were 

centrifuged at 4000 x g for 7 min and washed in one volume of the previously 

described metabolic inhibition media. This was repeated a further two times. 

Washed, resuspended cells were then used to inoculate 500mL of media and grown 

at 30˚C until an OD600 reading of 0.4-0.6 was reached. A 3mL sample of un-induced 

culture was taken, centrifuged at 16,000 x g for 10 min, re-suspended in SDS buffer 

and prepared for SDS-PAGE analysis as described in section 2.6.1. 50mg each of 

Threonine, Lysine and Phenylalanine, 25mg each of Leucine, Isoleucine and Valine 

in addition to 30mg of L-selenomethionine were added per 500mL of culture. 

Cultures were incubated at 30˚C with shaking at 220rpm for a further 45 min before 

induction with 1mM IPTG. Cultures were then incubated at 18˚C for 18 h to allow 

accumulation of Selenomethionine-derivative CSEP0162.   

Cells were harvested as described in section 2.6.2.  
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2.6.4. Purification of recombinant proteins from E. coli 

2.6.4.1 Extraction of protein from cells and purification of soluble fraction 

 

Cells were thawed (if required) and re-suspended in 25mL ice cold buffer A1 [50 

mM Tris-HCl pH 8.0, 50 mM glycine, 5% (v/v) glycerol, 500 mM sodium chloride, 

20 mM imidazole] per 1L of original culture, supplemented with one EDTA free 

protease inhibitor tablet per 50mL buffer on ice. Cells were lysed by sonication with 

a Vibra-Cell™ 750 Watt ultrasonic processor, VC 750, (Sonics & Materials, Inc., 

Newtown, CT , USA) at a maximum 40% amplitude with sonication on for 2s 

followed by 3s of no sonication to avoid overheating of cell lysate. Total time spent 

with sonication ‘on’ was 5 min and cells were kept on ice to reduce overheating. A 

3µL sample of unclarified lysate was retained and prepared for SDS-PAGE analysis 

as described in section 2.6.1. Cell debris was pelleted by centrifugation in a 50mL 

Oak Ridge centrifuge tube (Nalgene) at 18,000 x g for 15 min, at 4˚C in a pre-chilled 

SS34 rotor (Sorvall) in an RC6+ free-standing centrifuge (Thermo 

Scientific/Sorvall). Semi-clarified lysate was carefully poured off into another 

Oakridge centrifuge tube and subjected to the same centrifugation step to further 

clarify cell lysate. A 3µL sample of this clarified lysate was retained and prepared 

for SDS-PAGE analysis as described in section 2.6.1.  

2.6.4.2 Purification of hexa-histidine tagged protein from soluble fraction and 

size exclusion chromatography  

 

Clarified lysate was loaded onto a 5mL Nickel (II) (Ni
2+

) charged HisTrap FF 

column (GE Healthcare) which had been pre-equilibrated with buffer A1 using an 

automated ÄKTAxpress (GE Healthcare) purification system. Columns were washed 

with 10 column volumes of buffer A1 prior to step elution with buffer B1 [50 mM 

Tris-HCl pH 8.0, 50 mM glycine, 5% (v/v) glycerol, 500 mM sodium chloride, 500 

mM imidazole]. Eluate was immediately loaded onto a Hi-Load 26/60 Superdex 75 

prep grade gel filtration column (GE Healthcare) pre-equlibrated and run in A4 

buffer [50 mM HEPES, 150 mM sodium chloride, pH 7.5] on the ÄKTAxpress (GE 

Healthcare) system for purification by size exclusion chromatography (SEC). 
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Columns were run at a flow rate of ~3mL.min
-1 

with total flow through the column 

of ~2 column volumes. Absorbance at 280nm was continuously monitored and 

fractions spanning peak absorbance were prepared for analysis by SDS-PAGE as 

described in section 2.6.1 alongside pre-induction, whole cell lysate and cleared 

lysate samples taken earlier.  

2.6.5. Cleavage of hexa-histidine affinity tag with 3C protease  

 

Fractions containing soluble protein were pooled and concentrated using an 

ultrafiltration centrifuge cell (Sartorius) of the appropriate molecular weight cut off 

and spun according to the manufacturer’s recommendation to a concentration of 1-

2mg/mL. A 3µL sample was retained and prepared for SDS-PAGE analysis. 12µg of 

recombinant human rhinovirus (HRV) 3C protease per mg of tagged protein was 

added to protein in A4 buffer (see section 2.6.4.2) and incubated at 4˚C for ~16 h. 

HRV 3C protease cleaves at the following site: LEVLFQ
▼

GP leaving the short 

glycine-proline dipeptide attached to the protein of interest. The protease is also 

hexa-histidine tagged so as to allow separation from the solution containing protein 

of interest post-cleavage.  

Following incubation, a 3µL sample was retained and prepared for SDS-PAGE 

analysis, before the solution was manually applied to a 5mL Nickel (II) (Ni2+) 

charged HisTrap FF column (GE Healthcare) pre-equilibrated with buffer A1, 

followed by washing with 5 column volumes of buffer A1. Flow through, containing 

cleaved protein, was collected. Cleaved hexa-histidine tag and 3C protease were 

eluted by washing with 5 column volumes of buffer B1. Solution containing protein 

of interest was applied manually using a 10mL syringe (Terumo) and all washes 

were applied using a peristaltic pump (GE Healthcare).  

Flow through containing cleaved protein of interest was concentrated as 

described previously to a total volume of <10mL and injected manually onto a Hi 

Load 26/60 Superdex 75 gel filtration column (GE Healthcare) as described in 

section 2.6.4.2.  
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In the case of SeMet-derivative CSEP0162, cleaved protein was not subjected to 

this final, preparative gel filtration step and was instead concentrated and buffer 

exchanged (A1 to A4) by concentrating and replacing with 1 original volume of 

buffer A4. This was repeated 5 times in order to fully exchange buffers.  

2.6.6. LC-MS/MS analysis of FLAG-Tagged effector proteins 

extracted from N. benthamiana for post-translational 

modification. 

2.6.6.1 Preparation of gel slices for trypsin digest. 

 

Gels were stained as described in section 2.6.1 for ~20 min or until the band of 

interest became clearly visible. Bands were excised from gels using a sterile scalpel 

blade. Gel slices were de-stained in 30% (v/v) ethanol for 30 min at 65˚C with 

shaking. Ethanol was removed and gel slices were de-stained further in 30% (v/v) 

ethanol until staining was totally removed. Ethanol was removed and gel slices were 

washed in 50% (v/v) acetonitrile in 50mM TEAB [Triethylammonium bicarbonate 

pH 8.5] for 15 min at room temperature. Previous buffer was removed and gel slices 

were washed in 10mM DTT in 50mM TEAB for 30 min at 55˚C. Previous buffer 

was removed and gel slices were incubated with 30mM Iodacetamide in 50mM 

TEAB at room temperature for 30 min, covered with aluminium foil. Gel slices were 

vortexed in IAA/TEAB buffer and buffer was removed. Gel slices were washed with 

50% (v/v) acetonitrile in 50mM TEAB for 15 min at room temperature. Buffer was 

removed and gel slices were washed in 50mM TEAB for 15 min at room 

temperature. Buffer was removed and gel slices were cut into ~1mm
3 

pieces in sterile 

petri dishes before transfer to 1.5mL, low bind eppendorf style tubes. Gel slice 

pieces were washed in 50% (v/v) acetonitrile in 50mM TEAB for 15 min at room 

temperature. Buffer was removed and gel slice pieces were washed in 100% (v/v) 

acetonitrile for 15 min at room temperature. Buffer was removed and gel slice pieces 

were dried in a speed vac (manufacturer) for 30 min prior to submission to the JIC 

proteomics platform for trypsin digest.  
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2.6.6.2 Orbitrap mass spectrometry of in-gel digested peptides 

 

Protein extracts were prepared as described in 2.10.3 and epitope tagged proteins 

were enriched using the immunoprecipitation procedure described in 2.10.5.  

Samples were analysed by nanoLC-MS-MS on an Orbitrap Fusion™ Tribrid™ 

Mass Spectrometer with an UltiMate® 3000 RSLCnano LC system (Thermo 

Scientific). Sample was separated on a PepMap™ 100 C18 LC Column (Thermo 

Scientific) and infused directly into the mass spectrometer which was set to positive 

ion mode with quadrupole isolation. Quadrupole isolation was set to 120K resolution 

with a mass-to-charge ratio of 350-1550 (m/z) for scanning of precursor ions. 

Precursors were fragmented by collision-induced dissociation (CID) and higher-

energy collision dissociation (HCD) with an isolation window of 1.6Da. Spectra 

were analysed with MaxQuant 1.5.1.2 and database search – using merged CID and 

HCD peaklists – performed with Mascot 2.4. Database search was performed on a P. 

infestans protein database (Uniprot) with a tolerance of 6ppm for precursors and for 

peptides of 0.6Da. Identification probabilities of 99% and 95% for proteins and 

peptides were used when search results were imported into Scaffold 4.4.1.1.  

  



69 

 

2.6.7. Western blotting 

 

All western blotting in the present work was carried out using a wet blotting 

protocol in a Mini Trans-Blot® Electrophoretic Transfer Cell (Bio-Rad). Two 

pieces, per gel, of 3mm filter paper (Whatman) were cut to the size of SDS-PAGE 

gels and pre-soaked in Bjerrum transfer buffer [48 mM Tris, 39 mM glycine, pH 9.3, 

20% methanol] with the addition of 0.0125% (w/v) SDS (Bjerrum et al., 1987) 

alongside two foam pads. One piece, per gel, of Immobilon-P PVDF membrane 

(Merck Millipore) was cut to the size of SDS-PAGE gels and incubated with pure 

methanol for 10-15 min prior to blotting in order to activate the hydrophobic PVDF 

membrane and allow aqueous transfer buffer to fully saturate it, facilitating efficient 

protein transfer. At this point, the transfer module was assembled between a gel 

holder in the following order: one foam pad, one piece of blotting paper, gel 

containing proteins of interest, PVDF membrane, second piece of blotting paper, 

second foam pad. A blot roller was used to remove air bubbles between gel and 

membrane. The assembled blotting module was placed in a Mini Trans-Blot® cell, 

placed inside a Mini PROTEAN® Tetra Cell system tank along with an ice pack and 

magnetic stirring bar. The tank was filled with ice cold Bjerrum buffer until buffer 

was level with the top of PVDF membranes. Transfer was conducted on a magnetic 

stirring platform over the course of one hour with a current of 250mA.  

Transfer and loading was assessed by staining with Ponceau S. Immediately 

following transfer, membranes were incubated with pure methanol for ~30s. 

Membranes were then incubated with Ponceau S stain [0.1% (w/v) Ponceau S in 5% 

(v/v) acetic acid] for ~5 min and repeatedly rinsed with MQ H2O until clear bands 

were observable with little to no background staining. Staining was reversed by 

washing with 0.1M NaOH and MQ H2O.  

2.6.7.1 Immuno-detection of proteins immobilised on nitrocellulose membranes 

following western blotting 

 

Subsequent to transfer and Ponceau S staining, membranes were incubated ~16 h 

at 4˚C with shaking at ~100rpm in blocking solution [5% (w/v) dried skimmed milk 
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powder in 0.1% TBS-T buffer (50 mM Tris-HCl, 200 mM sodium chloride, pH 7.4, 

supplemented with 0.1% (v/v) Tween
®
-20)]. Blocking solution was rinsed away with 

three short washes in ~10mL 0.1% TBS-T prior to 3 more rigorous wash steps of 5 

min each, in TBS-T. Membranes were then probed with a primary antibody for the 

protein to be detected with incubation at 4˚C for 1-2 h in 0.1% TBS-T. For one-step 

detection, membranes were washed as previously described and appropriate 

detection agents applied. For two-step detections, membranes were washed and 

probed with the secondary antibody in 0.1% TBS-T at 4˚C for 1-2 h. See Table 8 for 

details of antibodies used in the present study.  

Horseradish peroxidase conjugated antibodies were detected by application of 

SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) to 

membranes, supplemented with 10% (v/v) SuperSignal West Femto 

Chemiluminescent Substrate (Thermo Scientific) to increase sensitivity according to 

manufacturer’s instructions. Typically this involved 1 min incubation at room 

temperature followed by removal of excess substrate and detection with an Image 

Quant LAS500 (GE Healthcare) set to automatically detect chemiluminescent signal 

at an appropriate exposure time. Occasionally, detection was carried out by exposing 

Fuji Medical X-Ray Film (Fuji) to membranes and incubating for an appropriate 

length of time inside a light blocking film cassette, in a dark room before 

development.  

Alkaline phosphatase (AP) conjugated anti-FLAG antibodies were detected by 

treatment with BCIP/NBT colour development substrate (Promega) diluted in 

Alkaline Phosphatase Buffer [100mM Tris-HCl pH 9.0, 150mM NaCl, 1mM MgCl2] 

in accordance with the manufacturer’s guidelines. In this assay, colour develops on 

the membrane so no detection step is necessary but the reaction is irreversible so this 

procedure was invariably carried out after the detection of any other antibodies.  

  



71 

 

 

Antibody Supplier Origin 
Working 

dilution 
Buffer 

Incubation 

conditions 

Detection 

reagents 

Primary antibodies 

α-HA 
(3F10) 

Roche 

rat 

monoclonal 
1:6,000 

0.1% 

TBS-T 
RT for 1 h n/a 

α-FLAG-

AP* 

(A9469) 

Sigma 

mouse 

monoclonal 
1:1,000 

0.05% 

TBS-T 
RT for 1 h AP 

α-

GAL4DBD-

HRP* 

(RK5C1) 

Santa Cruz 

Biotechnology 

mouse 

monoclonal 
1:1,000 

0.1% 

TBS-T 
RT for 2 h Pico 

α-GAL4AD-

HRP* 

 

Santa Cruz 

Biotechnolog

y 

mouse 

monoclonal 
1:1,000 

0.1% 

TBS-T 
RT for 2 h Femto 

Secondary antibodies 

α-mouse-

HRP 

(A4416) 

Sigma 
goat 1:20,000 

0.1% 

TBS-T 
RT for 1 h Pico 

α-rat-HRP 
(A9037) 

Sigma 
goat 1:20,000 

0.1% 

TBS-T 
RT for 1 h 

Pico or 

Pico/Femto 

Table 8| Antibodies used in the present study. 

(Note – ‘*’ indicates antibodies suitable for one-step detection. All other 

antibodies were used in two-step detections).  

2.6.8. Circular Dichroism Spectroscopy 

 

Circular Dichroism (CD) spectroscopy was carried out as described (Walden et 

al., 2014) in a Chirascan-plus CD spectrophotometer (Applied Photophysics). 

Protein of interest was diluted to ~0.4-0.8mg/mL in 20mM K2HPO4. Sample was 

pipetted into a 0.5mm quartz glass CD cell (Hellma) and data was collected at a 

constant temperature of 20˚C. Instrumentation was blanked with a buffer only 

control in triplicate, at wavelengths from 180nm to 260nm at intervals of 1nm. The 

mean absorbance of this blank was subtracted from averaged CD spectra collected 

from protein of interest. CD spectra of protein of interest were measured by the same 

strategy, with measurements taken in triplicate and averaged. As described, raw data 

was corrected by subtracting the baseline derived from a buffer only sample and 
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converted to Mean Residue Ellipticity (MRE) using the equation described in section 

5.2.2.  

In order to assign secondary structure elements, the averaged CD spectrum was 

submitted to the DichroWeb server 
11

where the Cdsstr method – using reference set 

7 – was applied to the data (Whitmore and Wallace, 2008, Sreerama et al., 1999, 

Sreerama and Woody, 2000). 

2.7. Crystallographic methods. 

2.7.1. Crystallisation trials 

 

Initial screening was conducted with protein in buffer A4 - purified and concentrated 

as described in section 2.6.4. Prior to use in crystallographic trials, protein solution 

was centrifuged at 17,000 x g for 20 min in order to sediment any insoluble material 

which may interfere with crystallisation. Protein concentration was determined by 

measuring A280nm using a NanoDrop 1000 spectrophotometer (Thermo Scientific) 

and predicting the protein’s percent solution extinction coefficient using ProtParam 

on the ExPASy proteomics server (Gasteiger et al., 2005) which were used in 

equation 2.1.  

 

 

 

Trials were performed in a 96 well format with two protein drops per condition 

allowing two protein concentrations per condition to be screened simultaneously. 

MRC 2-well crystallization plates (Molecular Dimensions) were used. Precipitant 

wells were filled with 40µL of precipitant solution from the screens described in 

                                                 
11

 http://dichroweb.cryst.bbk.ac.uk/html/home.shtml 
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Table 9Error! Reference source not found. which was dispensed using a 

Liquidator™ 96 (RainIn). 0.3µL aliquots of concentrated protein were mixed with 

equal volumes of each precipitant and dispensed into protein wells by an Oryx Nano 

robot (Douglas Instruments) under a rolling evaporation shield. Plates were sealed 

with adhesive film and stored in a Minstrel Plate Hotel (Rigaku), at 18˚C, which 

records visible and UV light images of  

protein wells immediately upon loading and at user-defined intervals indefinitely.  

 

 

2.7.2. Optimisation 

 

Initial hits from trials were invariably harvested for data collection but in order to 

grow more, or even better, crystals, conditions yielding crystals were optimised. 

Optimisation screens were carried out in a 48 well format using MRC Maxi plates 

(SwissSci) with a typical strategy of varying two conditions from the initial hit along 

the x and and y axes of the plate. For example, if crystallisation was achieved in 1M 

ammonium sulphate, 5% (w/v) PEG 3350 and 0.1M Bis-Tris (pH 5.5) then 

Ammonium Sulphate concentration may be varied from 0.8M to 1.2M along one 

row of wells with PEG3350 concentration being varied from 0% to 10% (w/v) along 

the other, in equal increments. Buffer and overall pH were kept constant. Each 

precipitant well contained 200µL precipitant and each protein drop well contained 

0.3µL protein solution mixed with an equal volume of precipitant solution. 

Precipitant wells were prepared using an Oryx Nano robot (Douglas Instruments) as 

Screen Supplier 

JCSG-plus™ 
Molecular Dimensions 

(MD1-37) 

Keep It Simple Screen (KISS) 

Designed by Dr Clare Stevenson (JIC) and 

supplied by Molecular Dimensions 

(Custom Screen Service) 

Table 9| Crystallographic screens used in the present study. 
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were protein drop wells under a rolling evaporation shield. Plates were sealed and 

monitored in a plate hotel as described in section 2.7.1.  

 

2.7.3. Harvesting, heavy atom soaking and cryoprotection 

 

Crystals were physically harvested and mounted on loops by Dr. Miriam Walden 

and Prof. Mark Banfield.  

Crystals must be cryoprotected in order to protect against the formation of 

crystalline ice. Ice affects crystallographic experiments in two ways; firstly, it 

disrupts the internal order of protein crystals through expansion into solvent channels 

and, secondly, it produces confounding ice rings in diffraction patterns, obfuscating 

any potential solution. In the present study, 25% (w/v) ethylene glycol was added to 

the mother liquor and heavy atom solution. Ethylene glycol acts as a cryprotectant by 

occupying the solvent channels of the protein crystal, preventing crystalline ice from 

disrupting the crystal’s order. Crystals were soaked in the solution containing mother 

liquor, cryoprotectant (and heavy atom if soaking) for ~30s before being frozen by 

immersion in liquid N2.  

2.7.4. Data collection 

 

All datasets were collected at the Diamond Light Source (DLS) synchrotron facility 

in Oxfordshire. Native and iodine derivative datasets were collected on the i02 

beamline whilst SeMet derivative datasets were collected on the i04-1 beamline. 

Crystals were cryo-cooled during data collection.   

Native data was collected at λ=0.9795Å, iodine derivative data was collected at 

λ=1.8Å and SeMet data was collected at λ=0.9282Å. 5 test images per crystal were 

collected at a maximum resolution of 2.2Å, 2.6Å and 3.2Å for native, iodine and 

SeMet datsets, respectively, with Ω=0.15˚ rotation angle separated by 45˚ rotation. 

These test images were used to allow the EDNA auto-processing software in the 
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DLS pipeline to determine likely diffraction resolutions and strategies for data 

collection. 

2.7.5. Data processing 

 

Datasets were processed through the XIA2 pipeline, using XDS, POINTLESS 

and XSCALE to index, reduce and scale data, in addition to assigning a likely space 

group.  

XDS indexes data by identifying diffraction spots in diffraction images through 

identification of pixel intensities and labelling them with miller indices (h k l).   XDS 

also makes inferences about crystal geometry (i.e. dimensions of unit cell, 

orientation and point group) by predicting where Bragg’s law is satisfied in 

reciprocal space and where one may predict a reflection to appear. These are used by 

POINTLESS to set up constraints for assignment of Laue groups, which is done 

through assessment of symmetry-related reflections and systemic absences (where 

diffraction spots do not appear where predicted by XDS) in the unmerged data 

produced by XDS. XSCALE scales data from multiple images over multiple sweeps 

from one – or more – crystals into one set of structure factors normalised according 

to their symmetry.  

2.7.6. Attempts to obtain phase information 

 

Solving a crystal structure is essentially synonymous with solving ‘the phase 

problem’ which refers to lost information when diffraction spots are recorded. The 

intensities of diffraction spots can be measured providing information on the 

amplitude of diffracted x-rays but the phases are lost. In order to produce an electron 

density map through an inverse Fourier transform, phase information is required. 

Without it, a vector map of the atoms in a crystal would be produced but the 3D 

structure would not be solved.  

Two methods are generally employed to solve crystal structures. Molecular 

Replacement (MR) may be used where a priori knowledge of a structure sharing 



76 

 

significant homology with the protein of unknown structure is available. The known 

structure can be positioned in the unit cell of the crystal of unknown structure so as 

to match the experimentally determined diffraction pattern. Following this, phases 

can be determined by bootstrapping phase information from the known structure. A 

severe limitation of this technique is that it can severely bias the structure of the 

unknown protein toward similarity to the search model.  

Where a suitable search model is unavailable, several experimental methods can 

be used to obtain phase information de novo. In general, this is done by producing 

derivatives of native crystals through the incorporation of heavy atoms by soaking or 

by incorporation into the nascent protein during expression. The incorporation of 

these heavy atoms creates differences in the measured intensities of diffracted x-ray 

radiation which can be used to produce a smaller sub-structure. Structure factors for 

this sub-structure can be calculated based on the differences in measured intensities 

between native and derivative crystals, which in turn allow phase information for the 

sub-structure to be calculated which can be bootstrapped onto the whole structure 

allowing calculation of an initial electron density map.  

Specific phasing methods attempted in the present thesis are discussed in greater 

detail in Chapter 5.  

 

2.8. Yeast 2-hybrid procedures 

 

2.8.1. Strains and media 

 

All yeast work in the present study was carried out with Saccharomyces 

cerevisiae strain Mav203. Mav203 contains deletions in its endogenous GAL4 and 

GAL80 transcription factors, rendering it suitable for use in yeast 2-hybrid systems 

which utilise GAL-4 based reporter assays. In addition to this, Mav203 contains 

three Gal-4 inducible reporter genes expressing HIS3, LacZ and URA3. LacZ ecodes 

the enzyme β-galactosidase, which cleaves lactose. HIS3 and URA3 encode enzymes 
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involved in the biosynthesis of the amino acids histidine and uracil. Further to this, 

Mav203 is auxotrophic for leucine and tryptophan enabling selection of cells 

successfully transformed with two plasmids.  

YPAD agar [YPAD broth = 1% (w/v) yeast extract, 2% (w/v) bactopeptone, 2% 

(w/v) glucose, 0.003% (w/v) adenine hemisulphate, pH 6.0; supplemented with 2% 

(w/v) microbiology grade agar] was used to culture untransformed Mav203. Mav203 

was maintained by streaking <1 month old colonies onto fresh YPAD plates, 

incubation at 28˚C for ~4 days before storage at 4˚C. If colonies were left for longer 

than 1 month at 4˚C, a fresh culture was prepared from glycerol stocks stored at -

80˚C.  

The GAL-4 based assay employed in the present study was based on the 

ProQuest system (Invitrogen) which makes use of the pDEST32 bait vector and 

pDEST22 prey vector. These vectors carry LEU2 and TRP1 selectable markers, 

respectively, enabling selection of yeast co-transformed with both bait and prey 

constructs on plates deficient in leucine and tryptophan.  

Three control strains were used and these were obtained from Dr Miles 

Armstrong (James Hutton Institute). These all expressed Krev1 fused to the GAL4-

DNA binding domain and either wild type RalGDS (which strongly interacts with 

Krev1), RalGDS
I77T

 (which weakly interacts with Krev1) or RalGDS
L65P

 (which 

does not interact with Krev1) fused to the GAL4-Actication domain (Herrmann et 

al., 1996, Serebriiskii and Kotova, 2004).  

For positive selection of Mav203 co-transformed with bait and prey plasmids, 

synthetic complement, double-dropout (SC-LW) medium [0.67% (w/v) Yeast 

Nitrogen Base without Amino Acids (Y0626), 0.16% (w/v) Yeast Synthetic Drop-

out Medium Supplements (Y2001), 0.0075% histidine, 0.0075% uracil, 2% (w/v) 

glucose, pH 5.6; supplemented with 2% (w/v) microbiology grade agar] was used. 

As described previously, Mav203 is auxotrophic for leucine and tryptophan so both 

bait and prey plasmids are required to complement auxotrophy when yeast is grown 

on media lacking these amino acids. Similar to this, for reporter assays (section 

2.9.2), triple drop out media, lacking either histidine or uracil in addition to leucine 

and tryptophan, was used. In order to suppress ‘leaky’ auto-activation of HIS3 
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expression and possible detection of false positives, 10 – 30 mM 3-amino-1,2,4-

triazole (3AT) was added to molten agar immediately before plates were poured.  

2.8.2. Yeast transformation by the lithium acetate/single-stranded 

carrier DNA/polyethylene glycol method 

 

The following procedure is based on the ProQuest
™ 

Two-Hybrid system 

(Invitrogen) manual with slight modifications. Competent cells were prepared by 

inoculating 10mL of YPAD medium with a single, well-isolated Mav203 colony no 

more than 7 days old using a sterile, plastic inoculating loop (VWR). A separate, un-

inoculated, 40mL aliquot of YPAD was set up. Both were sealed with parafilm and 

incubated ~16 h at 28˚C for shaking at 220rpm. After 16 h, the un-inoculated aliquot 

of YPAD was checked for infection and the inoculated aliquot was diluted in fresh 

YPAD media 1:10 before an OD600 reading was taken. This was used to set up two, 

20mL cultures of this starter culture with an OD600 of 0.4. These two cultures were 

then grown for 3-5 h at 28˚C with shaking at 220rpm. Yeast was centrifuged at 1,000 

x g for 5 min at room temperature in a Legend RT (Sorvall) benchtop centrifuge. 

Supernatant was carefully removed and cell pellets were washed in one original 

volume of MQ H2O by re-suspending with gentle agitation. Washed cells were 

pelleted once more by centrifugation as described previously.  

Whilst yeast cultures were growing, 200ng relevant bait and prey constructs were 

dispensed into sterile, polypropylene, 0.2mL 8-Tube PCR strips (Thermo Scientific). 

In addition, an aliquot of Salmon Sperm DNA, previously sheared, to act as a carrier 

for plasmid DNA, was boiled at 95˚C for 10 min and rapidly cooled on ice. 10µg per 

reaction was dispensed into tubes containing bait and prey plasmid DNA.  

Washed cell pellets were re-suspended in 250µL Yeast Resuspension Buffer [100 

mM lithium acetate and 5 mM Tris-HCl, 0.5 mM EDTA, pH 7.5] by gentle agitation. 

Re-suspended yeast was then left to incubate at RT for 5-10 min. 10µL of yeast 

suspension per reaction was added to bait/prey plasmids and carrier DNA using a 

multi-channel pipette and mixed by stirring with tips. 70µL of Yeast Transformation 

Buffer [40% PEG 3350, 100 mM lithium acetate and 10 mM Tris-HCl, 1 mM 
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EDTA, pH 7.5] was dispensed into each tube with a multi-channel pipette and gently 

mixed with tips. Reaction mixtures were incubated at 28˚C for 30 min. Following 

this, 8.8µL sterile DMSO was added to each reaction and mixed by stirring with tips. 

Reactions were heat shocked at 42˚C for 7 min in a thermocycler. Cells were 

pelleted by centrifugation for 1 minute at 1,000 x g in a Legend RT (Sorvall) 

benchtop centrifuge. Supernatant was removed and each pellet was re-suspended in 

100µL MQ H2O and spread on dry, sterile, double-dropout synthetic medium (SC-

LW) agar and incubated for 3-4 days at 28˚C. All transformation procedures were 

carried out in a laminar flow hood sterilised by an internal UV light for ~20 min and 

washing with 70% Ethanol.  

2.8.3. Yeast 2-hybrid reporter assays 

 

Following the development of multiple, well separated colonies indicating 

successful co-transformation of Mav203 yeast, individual colonies were selected and 

replica plated, in triplicate, on reporter assay plates. Pipette tips were used to pick 

equal amounts of yeast from three individual colonies per transformation reaction 

and cells were re-suspended in 100µL MQ H2O. 2µL per transformation was spotted 

onto 14cm diameter reporter assay plates (YPAD with a nylon membrane overlaid, 

SC-LWH + 10-30mM 3 AT or SC-LTU) using a multichannel repeater pipette. In 

addition, cells were spotted onto 14cm diameter SC-LT agar for maintenance and 

subsequent expression testing. Reporter assay plates were incubated for 24-48 h at 

28˚C in a static incubator and growth of yeast colonies was scored.  

Colonies grown on nylon membranes overlaid on YPAD agar were used to 

assess activation of the LacZ reporter gene. Membranes were removed using sterile 

forceps and immersed in liquid N2 for 30 seconds in order to lyse cells. Two pieces 

of filter paper slightly larger than the area of the nylon membrane were cut and pre-

soaked in an X-Gal solution prepared by dissolving 20 mg of X-gal in 100 μL of 

N,N-dimethyl formamide (DMF), adding 60 μL of β-mercaptoethanol and 10 mL of 

Z-buffer [60 mM disodium hydrogen phosphate (Na2HPO4), 40 mM sodium 

dihydrogen phosphate (NaH2PO4), 10 mM potassium chloride, 1 mM magnesium 

sulphate, pH 7.0]. The nylon membrane was sandwiched between pre-equilibrated 
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blotting paper and incubated for 24 h at 37˚C on a slant to avoid accumulation of 

excess X-Gal solution, resulting in smearing of blue colouration. Following 

incubation, membranes were assessed for development of blue colouration indicating 

a positive interaction.  

2.8.4. Yeast protein extraction for western blotting and expression 

testing  

 

Strains of transformed yeast to be assayed for protein expression were used to 

inoculate 5mL aliquots of SC-LW medium (section 2.9.1, without agar) whilst an 

untransformed colony of MaV203 was used to inoculate a 10mL aliquot of YPAD 

medium. Media was vortexed briefly to ensure dispersal of yeast cells and then 

incubated for ~16 h at 28˚C with shaking at 220rpm. Cultures were vortexed again to 

disperse yeast cells and subsequently used to inoculate 50mL aliquots of YPAD 

medium, which were incubated at 28˚C with shaking at 220rpm until OD600 reached 

0.4-0.6. OD600 values were recorded and multiplied by overall culture volume to 

determine OD600 units per culture. Cultures were poured into pre-chilled 250mL 

centrifuge bottles (Nalgene) and centrifuged at 1,000 x g for 5 min in a prechilled 

Fibrelite
®

 F14S-6x250y rotor (Thermo Scientific) and an RC6+ free-standing 

centrifuge (Thermo Scientific/Sorvall). Supernatant was discarded and pellets were 

washed in 50mL ice cold MQ H2O before being centrifuged as before. Supernatant 

was discarded and pellets were flash frozen in liquid N2 prior to storage at -80˚C.  

Cell pellets were thawed and re-suspended in Cracking Buffer [8 M urea, 5% 

(w/v) SDS, 40 mM Tris-HCl pH 6.8, 0.1 mM EDTA, 0.4 mg.mL
-1

 bromophenol 

blue] prewarmed to 60 ºC and supplemented with Yeast and Fungus Protease 

Inhibitor Cocktail (50µL/g of yeast cells), 125.7mM β-mercaptoethanol and 4.4 mM 

phenylmethanesulfonyl fluoride (PMSF). 100µL supplemented cracking buffer per 

7.5 OD600 units of culture was added to pellets along with 80 uL of glass beads (425 

– 600 μm; Sigma Cat No. G-8772) per 7.5 OD600 units of cells in 2mL screw cap 

centrifuge tubes. Cells were incubated for 10 min at 70˚C with shaking at 800rpm 

before being vortex mixed for 1 minute. Samples were spun down at 14,000 x g for 5 

min at 4˚C and supernatants transferred to fresh, 1.5mL Eppendorf tubes. Pellets 
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containing cellular debris and glass beads were incubated for a further 5 min at 99˚C 

before vortexing and centrifugation as before. The supernatant from this stage was 

added to the supernatant from the previous stage and stored at -80˚C prior to SDS-

PAGE analysis as described in section 2.6.1.  

2.8.5. Probing western blots with α-GAL4DBD and α-GAL4AD 

antibodies to detect protein expression 

 

Yeast protein extracts prepared as described in section 2.9.4 were loaded onto 

17% SDS-PAGE gels and separated as described in section 2.6.1. Proteins were 

transferred to nitrocellulose membranes as described in section 2.6.7. Ponceau S 

staining was used as a loading and transfer control prior to detection using the α-

GAL4DBD and α-GAL4AD HRP-conjugated antibodies and ECL reagents as described 

in section 2.6.7.1.  

 

 

 

2.9. In planta procedures 

 

2.9.1. Growth conditions  

 

N. benthamiana and S. lycopersicum cv. Moneymaker plants were grown and 

maintained by the John Innes Centre horticultural services staff in controlled 

environment rooms or glasshouses at 22 ºC with 55% humidity and a 16h/8h 

light/dark photoperiod.  

2.9.2. Stable transformation of S. lycopersicum cv. Moneymaker 
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(Note – Tomato plants were transformed by Mr. Matthew Smoker and Ms. Jodie 

Pike (TSL Tissue Culture & Transformation team)).  

Tomato seeds were sterilised with ethanol and H2O2, plated on germination media 

and vernalised at 4˚C for 2 weeks in a cold room with all light blocked out. Seeds 

were removed from the cold room and allowed to germinate with a 16h photoperiod 

and selected for transformation 7-10 days post germination.  

2mL of a fine tobacco cell suspension was spread on MS medium plates [1x MS 

salts, 1% glucose and 0.6% agar]. These plates were stored overnight under low 

light. On the same day, A. tumefaciens strain AGL1 cultures containing binary 

plasmids were set up in L medium with appropriate antibiotic supplementation and 

incubated at 28˚C for ~16hrs.  

A Whatman No. 1 filter paper was placed on top of the MS medium plates 

described previously. Explants were prepared from seedlings by removing 

cotyledons and making transverse cuts across them to generate two explants of 

~0.5cm long each (the tip was discarded). Explants were stored in sterile H2O whilst 

preparation of further explants proceeded. A. tumefaciens cultures were centrifuged 

at 4,000 x g, washed in 1x volume of sterile H2O, spun down as before and 

resuspended in MS medium + 3% sucrose to an OD600 reading of 0.4-0.5. Cut 

explants were immersed in the A. tumefaciens suspension, dried on sterile filter paper 

and placed abaxial face up on the plates described in the previous paragraph. Plates 

were incubated under low light for 48hrs.  

Explants co-incubated with A. tumefaciens were transferred to regeneration 

plates [1x MS salts, 0.01% myo-inositol, 1x Nitsch’s vitamins, 2% sucrose, 0.4% 

AgarGel, 0.002% zeatin riboside, 0.032% timentin and 0.01% kanamycin, pH 6.0] 

abaxial face down. Plates were incubated under low light and transferred to fresh 

regeneration medium every 2-3 weeks. Regenerating becoming too large for petri 

dishes were transferred to large glass jars containing regeneration medium. 

Following 6 weeks in glass jars, regenerating material was transferred to glass jars 

containing rooting medium [0.5x MS salts, 0.5% sucrose, 0.225% Gelright, 0.032% 

timentin and 0.005% kanamycin].  
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Plants producing roots in rooting medium were transferred to autoclaved, water 

saturated jiffy plugs (plugs of compost contained within a permeable membrane) and 

grown in plastic cases to ensure high humidity. Once roots were visibly protruding 

from jiffy plugs, they were transferred to the glasshouse and potted out. Potted out 

plants were kept under plastic incubator covers for 4-5 days so as to reduce humidity 

gradually to normal glasshouse levels.  

2.9.3. In planta gene expression using transient infiltration of N. 

benthamiana and S. lycopersicum with A. tumefaciens. 

 

Transformation was carried out as described in (Kapila et al., 1997, Van der 

Hoorn et al., 2000). Strains of A. tumefaciens harbouring binary plasmids were 

grown in LB or L media supplemented with antibiotics appropriate for the strain and 

plasmid being used (see Table 4 for bacterial strains and Appendix Table C for 

plasmids). Cultures were typically grown for 16-36 h with shaking at 200rpm at a 

temperature of 28˚C. Cultures were centrifuged at 1,500 x g for 10 min at room 

temperature, supernatant was discarded and pellets were washed by resuspension in 

MQ H2O before being centrifuged as described once more. Washed pellets were 

resuspended in 4-5mL of MMA buffer [10 mM magnesium chloride, 10 mM MES 

pH 5.6, 150 – 200 μM acetosyringone] in the case of GV3101 destined for N. 

benthamiana or, for AGL1 destined for S. lycopersicum, the same buffer lacking 

MES. OD600 values of the cultures were recorded and cultures were diluted to an 

appropriate OD600 value for a given infiltration experiment (typically 0.1-0.8). 

Suspensions were incubated for 1-2h at room temperature prior to infiltration into 

plant leaves. For N. benthamiana this involved using a blunt syringe to force cell 

suspensions into the intracellular spaces of the leaves via the abaxial face of the leaf. 

For S. lycopersicum, mechanical wounding of the abaxial face of the leaf with a 

hypodermic needle was required to aid infiltration as tomato leaves are particularly 

recalcitrant to this procedure.  

Most binary vectors used in the present study featured a constitutive CaMV 35S 

promoter. However, where β-estradiol inducible promoters were used, gene 

expression was induced by 10 μM β-estradiol sprayed onto both the axial and abaxial 
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sides of the leaf from a plastic, atomiser spray bottle. First application was 

performed 48 h post infiltration to allow recovery. Subsequent inductions were 

administered following this as required, typically every 48 h.  

2.9.4. Extraction of protein from N. benthamiana leaf tissue 

 

N. benthamiana leaves were harvested at an appropriate time-point post 

infiltration/induction and were wrapped in aluminium foil before being frozen in 

liquid N2 for transport or prior to storage at -80˚C. Leaves had their mid-veins 

removed prior to freezing. Leaves were then ground to a homogenous powder using 

a pestle and mortar pre-chilled in liquid N2 or with plastic micropestles in Eppendorf 

tubes also pre-chilled with liquid N2. Tubes were secured in a rack pre-chilled with 

liquid N2. Each sample had a volume of GTEN buffer [10% (v/v) glycerol, 150 mM 

Tris-HCl pH 7.5, 1 mM EDTA, 150 mM sodium chloride] supplemented with 10 

mM DTT, 2% (w/v) polyvinyl polypyrrolidone (PVPP), 1% (v/v) Protease Inhibitor 

Cocktail (P 9599, Sigma), 0.1% (v/v) Tween
®

-20 equal to 2 times the sample weight 

in grams (2mL:1g) added to it prior to 30 seconds of vortex mixing, incubation of ice 

for 10 min, a further 30 seconds of vortex mixing and centrifugation at 11,500 x g 

for 10 min at 4 ºC. The resulting supernatant was transferred to a pre-chilled 15mL 

centrifuge tube and spun as described previously. The resultant supernatant was 

dispensed into pre-chilled 1.5mL Eppendorf tubes and used in co-

immunoprecipitation experiments, prepared for SDS-PAGE analysis as described in 

section 2.6.1 or flash frozen in liquid N2 prior to storage at -80˚C.  

2.9.5. Extraction of gDNA from S. lycopersicum leaf tissue 

 

Tomato gDNA was extracted from leaf tissue using the method described in 

(Murray and Thompson, 1980). The method uses Cetyltrimethyleneammonium 

bromide (CTAB), a positively charged surfactant which improves purity of isolated 

DNA through more efficiently denaturing glycoproteins and polysaccharides often 

co-precipitated with DNA in other extraction methods. Tomato leaf tissue was 

harvested at an appropriate time point post infiltration and flash frozen in liquid N2. 

Leaf tissue was stored at -80˚C. Approximately ¼ of a 6 week old S. lycopersicum 
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leaf was used for DNA extraction. Leaf tissue was ground in an Eppendorf tube with 

a plastic micropestle in 200µL of CTAB buffer [100mM Tris-HCl pH 7.5, 20mM 

EDTA, 1.4M NaCl, 2% (w/v) CTAB, 1% (w/v) polyvinylpolypyrrolidone 40,000] 

on ice until leaf tissue was well homogenised. Leaf tissue was incubated in CTAB 

buffer at 65˚C for 10 min. 200µL of chloroform and isoamyl alcohol (in a 24:1 ratio) 

were added to each tube and vortex mixed for 15 seconds. Tubes were spun at 4˚C 

for 3 min at 13,000rpm. The upper phase of the resultant supernatant was carefully 

collected and transferred to a fresh 1.5mL Eppendorf tube. 200µL of isopropanol 

was added to each sample and incubated at room temperature for 5 min. Samples 

were centrifuged at 4˚C for 15 min at 13,000 rpm and supernatant was discarded. 

DNA pellet was washed in ice cold 70% ethanol and centrifuged at 4˚C for 3 min at 

13,000 rpm, supernatant was discarded. DNA pellets were re-suspended in 20µL TE 

[10mM Tris-HCl pH 7.5, 1mM EDTA, pH 8.0]. Extracted gDNA was run on 

agarose gels as described in section 2.5.6 to confirm extraction and integrity before 

storage at -20˚C.  

 

 

 

2.9.6. Immunoprecipitation from plant extracts 

 

Total soluble extract from plant leaf tissue prepared as described in section 

2.10.4 was used in immuno-precipitation experiments to enrich for a protein of 

interest in mass spectrometry experiments or in expression testing. 

Immunoprecipitations using the HA epitope tag were performed using magnetic 

anti-HA affinity matrix (Roche). 75µL of well homogenised matrix was washed 

three times in 5x volume of ice cold IP buffer [GTEN buffer + 0.1% (v/v) Tween®-

20]. Affinity matrix was then re-suspended to its original volume in IP buffer and 

mixed with 250µL total extract from leaf tissue in a 1.5mL Eppendorf tube and 

mixed on a rotary mixer for 30 min at 4˚C. Affinity matrix bound to HA-tagged 
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protein was separated on a magnetic Eppendorf tube rack (Roche) and supernatant 

was discarded. Matrix was washed in 1mL IP buffer and re-suspended by inversion. 

This was repeated a further 4 times as described. After the final wash step and 

removal of supernatant, affinity matrix was resuspended in 30µL IP buffer and 10µL 

of SDS-PAGE loading buffer (stock concentration 4x working concentration) and 

boiled at 95˚C for 10-15 min to elute bound protein from affinity matrix. Affinity 

matrix was separated from protein in a magnetic rack as described and supernatant 

containing protein of interest was collected and loaded onto SDS-PAGE gels as 

described in section 2.6.1.  

2.9.7. Infection of leaves with P. infestans 

 

Whole leaves were harvested from plants and laid in plastic trays on top of damp 

paper towelling abaxial face up. P. infestans strain 88069 was grown as described in 

(Kamoun et al., 1998) on Rye Sucrose Agar (RSA) plates and incubation at 18˚C for 

11-14 days. 5mL of sterile, pre-chilled (4˚C) dH2O was dispensed onto these plates 

which were incubated at 4˚C for 3 h. Water containing motile zoospores was then 

collected and analysed under a light microscope to assess number of zoospores/mL. 

Suspensions were diluted to 100 zoospores/mL and 10µL droplets of zoospore 

suspensions were spotted onto abaxial faces of leaves. Lids were placed on top of 

trays containing leaves creating an environment of 100% relative humidity and 

infections on N. benthamiana leaves were incubated at room temperature on the 

bench with daily monitoring of pathogen growth. S. lycopersicum infection assays 

were conducted as above except for incubation, which was at 18˚C in a constant 

temperature cabinet with controlled light/dark cycles.  

White light images were recorded with Nikon COOLPIX L24 digital camera. 

Lesion area was determined using GIMP (v2.8) software using the free select tool in 

pixels, which were converted to mm
2
.  

 

2.9.8. Cell death suppression assays 
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A. tumefaciens strains harbouring relevant constructs were grown and prepared 

as described in section 2.9.3. For initial mutant screening described in Chapter 3, 

MAPKKKƐ mutant candidates were grown in sealed 96 deep well blocks under the 

same conditions as larger cultures. Infiltration proceeded as described in section 

2.9.3 although rather than whole leaves, ~25mm diameter spots were infiltrated with 

six spots per leaf comprising a positive control, a negative control and 4 candidates. 

Effectors were diluted to a final OD600 of 0.6 and kinases were diluted to a final 

OD600 of 0.4, the Tomato Bushy Stunt Virus RNA silencing suppressor protein p19 

(Voinnet et al., 2003)
12

 was included at an OD600 of 0.1.  

Expression of kinases under the control of β-estradiol inducible promoters was 

induced as described in section 2.9.3. Cell death was monitored daily up to 8 days 

post induction and images were recorded with a Nikon COOLPIX L24 digital 

camera or by Mr. Andrew Davies (JIC Photography).  

 

2.9.9. Ion leakage assays 

 

Ion leakage assays were, broadly speaking, carried out as described in (Melech-

Bonfil and Sessa, 2010a). For each combination of constructs, three leaf discs of 

8mm diameter were harvested and floated in 15mL of MQ water in a 50mL 

centrifuge tube (Corning). In addition to this, samples were also taken from 

untransformed tissue to control for ion leakage due to mechanical wounding 

associated with harvest. Leaf disks were incubated at room temperature for >2h with 

gentle shaking. A B-173 Compact Twin Conductivity Meter (HORIBA) was used to 

record conductivity in micro-Siemens per cm (μS.cm
-1

) which was taken to be a 

proxy for ion leakage from leaf tissue into the medium and, so, a proxy for cell 

death.  

                                                 
12

 Whilst the paper cited here has been retracted following allegations of misconduct in its production, 

the efficacy of the p19 RNA silencing suppressor protein in suppressing endogenous RNA silencing 

pathways to boost expression in transient infiltration assays has been observed repeatedly since its 

publication and is in no doubt.  
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Chapter 3 Engineering a Solanaceous 

MAPKKK for insensitivity to PexRD2. 

 

3.1. Introduction. 

 

3.1.1. Crop pathogen management strategies 

 

Manipulation of crop plants in order to avoid pre-harvest yield loss to pests and 

pathogens has been a long standing concern in crop breeding. Whilst the allele 

specific, gene for gene basis for immunity was not understood until Howard Flor’s 

series of studies through the 1940s and 50s on the Flax rust pathogen (Melamspora 

lini) and Flax (Linum usitatissimum) (Flor, 1942, Flor, 1947, Flor, 1955), with the 

first NLR-encoding Resistance genes not being cloned and characterised until many 

years later (Staskawicz et al., 1995), humans have probably been selecting crops for 

disease resistance since the dawn of agriculture. More recent efforts made to enhance 

resistance of crops to their pathogens utilising fine knowledge of effector-NLR 

interactions have been effective, as exemplified by the introgression of Solanum 

venturii Rpi-Vnt1.1 into potato and tomato crops, resulting in complete, broad 

spectrum resistance to P. infestans  (Foster et al., 2009). This approach shows great 

promise, as NLR based resistance is often highly effective. However, oomycetes – in 

particular the Phytophthora genus - are well poised to adapt to changes in the NLR 

complement of their hosts. Their large, effector rich genomes (Haas et al., 2009), 

render them well adapted to evade host recognition with redundant effectors being 

lost and gained at high frequencies. Exposure to newly deployed NLRs over a 

limited number of growing seasons has frequently led to the emergence of strains 

which are virulent on these cultivars (Malcolmson, 1969).  

One strategy which has, thus far, been somewhat ignored, is the manipulation of 

endogenous host targets, susceptibility factors or NLR proteins and their recognition 
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mechanisms. Most efforts on this have been focused on expanding the recognition 

specificity of NLRs and their guardees. One elegant study employed the Arabidopsis 

thaliana NLR RPS5 to expand recognition to other Pseudomonas syringae effectors 

(Kim et al., 2016). Normally, RPS5 is activated upon AvrPhB mediated cleavage of 

PBS1 as opposed to direct recognition (Ade et al., 2007). AvrPhB functions as a 

protease in planta and its cleavage site is well defined (DeYoung et al., 2012). In a 

similar mechanism from the same pathosystem, the effector protein AvrPt2 functions 

as a protease which cleaves RIN4, activating the NLR, RPS2 (Axtell and 

Staskawicz, 2003, Mackey et al., 2003). Again, the AvrPt2 cleavage site of RIN4 is 

well defined and was swapped with the AvrPhB cleavage site in PBS1, resulting in 

A. thaliana lines capable of recognising AvrPt2 and eliciting an immune response in 

the absence of both RIN4 and RPS2. The authors also found that replacement with 

protease sites cleaved by viral proteases could condition immune response to viral 

proteases and significantly limit the virulence ‘live’ virus in planta.   

Another approach has been direct manipulation of NLRs. The potato NLR R3a 

recognises the P. infestans RXLR effector Avr3a. Two alleles of Avr3a are prevalent 

in P. infestans populations; Avr3a
EM 

and Avr3a
KI

. The KI allele is recognised by 

R3a, leading to activation, whilst the EM allele is only recognised weakly, resulting 

in a weak cell death response only observable as autofluoresence and successful host 

colonisation (Armstrong et al., 2005, Bos et al., 2009, Bos et al., 2010). (Segretin et 

al., 2014) used a random mutagenesis approach to expand the recognition specificity 

of R3a to elicit a strong immune response to Avr3a
EM

. Further, the same mutations 

were transferred to the tomato NLR I2 which mediates resistance to Fusarium 

oxysporum f. sp. Lycopersici (I2 is a homologue of R3a which responds weakly to 

Avr3a in transient assays in N. benthamiana leaves). One of the mutations in I2 

enhanced response to Avr3a and also expanded the response of I2 to multiple F. 

oxysporum f. sp. Lycopersici strains (Giannakopoulou et al., 2015).  

To date, no examples of the manipulation of bona fide virulence targets of plant 

pathogen effector proteins exist in the literature. With high quality reference 

genomes available for many economically important crop pathogens and pests, 

identification and characterisation of putative effector targets has increased. 

Furthermore, with clues from recently gained understanding that many plant NLRs 
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contain ‘integrated’ domains which likely derive from virulence targets of effector 

proteins (Sarris et al., 2016, Kroj et al., 2016) this trend of increasingly rapid effector 

identification is likely to continue through deployment of integrated domains as 

‘baits’ with which to identify putative effectors. A sound, basic understanding of an 

effector-target interaction, its outcome for virulence and which processes are being 

perturbed should enable the design of assays and mutagenesis strategies – either 

targeted or random – with which to capture variants of the target which are refractory 

or insensitive to the effector’s virulence function. As the pathogen will no longer be 

able to perturb the function of these effector-insensitive targets, this presents an 

alternative strategy to engineer disease resistance. When combined – or ‘stacked’ – 

with NLR-mediated resistance strategies this may provide more robust, durable 

resistance.    

 

3.1.2. The P. infestans RXLR effector PexRD2 interacts with a host 

MAPKKK to suppress cell death signalling 

 

As discussed in section 1.3, P. infestans secretes effector proteins into the 

cytoplasm of its host to perturb normal cellular function, and facilitate colonisation. 

One such effector is PexRD2. PexRD2 has a typical, RXLR protein domain 

organisation with an N terminal signal peptide, central RXLR-dEER motif and C 

terminal effector domain. The effector domain confers the effector’s virulence 

function in planta. Structural studies of PexRD2, revealed the effector domain forms 

a homo-dimer (and oligomerisation is also observed in planta) with each monomer 

adopting a highly conserved α-helical fold, termed the ‘WY fold’. This fold is found 

in many sequence-divergent RXLR effectors and may underpin the rapid 

diversification of these proteins by providing a stable ‘scaffold’ around which new 

functions and/or mutations conditioning evasion of recognition can evolve (Boutemy 

et al., 2011).  

The PexRD2 effector domain was shown to be necessary and sufficient for 

interaction with a Solanum tuberosum Mitogen Activated Protein Kinase: 

MAPKKKƐ (King et al., 2014). The S. lycopersicum homologue of MAPKKKƐ 



92 

 

confers enhanced immunity to two bacterial pathogens (P. syringae and 

Xanthomonas campestri) by positively regulating immunity-related cell death 

signalling (Melech-Bonfil and Sessa, 2010b). Heterologous expression of 

MAPKKKƐ in the model solanaceous crop N. benthamiana leads to macroscopic cell 

death, which is hypothesised to be a defence strategy against biotrophic or 

hemibiotrophic pathogens such as P. infestans. Indeed, virus induced gene silencing 

(VIGS) of NbMAPKKKƐ and subsequent challenge with P. infestans results in 

enhanced pathogen growth (King et al., 2014).  

When MAPKKKƐ and PexRD2 are co-expressed in N. benthamiana leaves, the 

cell death initiated by MAPKKKƐ is suppressed. This suggests a function for 

PexRD2, that it is secreted into the host cell to suppress MAPKKKƐ-mediated cell 

death signalling, maintaining living tissue and promoting pathogen colonisation. A 

mutation in the hydrophobic interface of the PexRD2 homodimer, Leucine 109 to 

Aspartate (L109D), prevents effector-homodimerisation and abolishes suppression of 

MAPKKKƐ mediated cell death (Boutemy et al., 2011, King et al., 2014). This 

mutant provides a useful tool for assaying PexRD2 activity. 

Here, MAPKKKƐ was subjected to random mutagenesis PCR and screened in N. 

benthamiana for insensitivity to PexRD2’s cell death suppression activity. The 

generation of such a variant would be attractive to (a) enable further study of how 

PexRD2 suppresses MAPKKKƐ-mediated cell death (and its contribution to 

resistance to P. infestans) and (b) an effector insensitive kinase may have utility in 

generating resistance to P. infestans in crops. Effector insensitive variants were 

identified and re-tested. Their ability to interact with PexRD2 was investigated. 

Additionally, CRISPR/Cas9 constructs designed to knock out endogenous 

MAPKKKƐ were generated and used to transform tomato plants alongside a re-coded 

complementation cassette comprised of one of the MAPKKKƐ mutants developed 

here simultaneously. Plants expressing this construct were assayed for resistance to 

P. infestans.  
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3.1.3. Introduction to CRISPR/Cas9 genome editing. 

 

Recent advances in the field of targeted genome editing have revolutionised the 

fields of molecular biology and biotechnology. Researchers now have unprecedented 

ability to introduce deletions, insertions and point mutations at user-specified regions 

of the genome thanks to three technologies; Zinc Finger Nucleases (ZFNs) (Bibikova 

et al., 2002, Urnov et al., 2005), Transcription Activator-Like Effector Nucleases 

(TALENS) (Zhang et al., 2011, Miller et al., 2011) and Clustered Regularly 

Interspaced Short Palindromic Repeat/CRISPR associated (CRISPR/Cas) mediated 

genome editing (Cong et al., 2013, Mali et al., 2013). ZFNs and TALENs were not 

used in the present study so will not be described here. A brief discussion on these 

can be found in section 1.5.   

The first genetic element to be termed a ‘CRISPR’ locus was characterised in the 

archaeobacterium Haloferax mediterrani (Mojica et al., 1993). Subsequent research 

continued to reveal stretches of these ‘Clustered Regularly Interspaced Short 

Palindromic Repeat’ loci, interspersed with unique, 33-39bp sequences in other 

bacterial species (Mojica et al., 1995). Indeed, today it is known that CRISPR loci 

are widely distributed among bacteria and near-ubiquitous among archaeobacteria 

whose genomes have been sequenced (Grissa et al., 2007, Chylinski et al., 2014). 

Understanding of these loci continued to grow leading to the discovery that the 

unique, interspacing sequences were derived from bacteriophages and the hypothesis 

that these unique genetic elements may provide the prokaryotes whose genomes they 

reside in some form of adaptive immunity against bacteria (Mojica et al., 2005, 

Pourcel et al., 2005). This hypothesis proved to be correct when it was demonstrated 

that Streptococcus thermophillus integrated phage-derived spacers following phage 

challenge and that manipulation of these phage-derived spacer loci led to abrogation, 

or acquisition, of immunity to bacteriophage in a spacer sequence dependent manner 

(Barrangou et al., 2007).  

The two other components required for CRISPR/Cas mediated genome editing 

were discovered through analysis of the S. thermophillus genome (Bolotin et al., 

2004). A number of so-called ‘CRISPR associated’ (Cas) genes had previously been 

identified  but a 2005 study revealed a family of Cas genes (then designated Cas5, 
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now known as Cas9) containing a HNH motif known to be present in several site-

specific endonucleases (Bolotin et al., 2005). The aforementioned study also became 

the first to note the existence of the proto-spacer adjacent motif (PAM) which was 

found to be critical for target recognition. 

It had been predicted that RNA would be the target of crRNAs. However, an 

elegant experiment in which a self-splicing intron was inserted into a Staphylococcus 

epidermidis nickase gene critical for conjugation and plasmid transformation showed 

that DNA was the target. Under normal circumstances, a CRISPR spacer with 

complementarity to the nickase gene interferes with these processes. However, 

insertion of the self-splicing intron abolished this interference by rendering crRNAs 

incapable of target sequence recognition indicating that CRISPR acts on DNA as 

opposed to mRNA (Marraffini and Sontheimer, 2008).  

The precision with which the Cas9 endonuclease cleaves its target DNA was 

confirmed when it was found that double stranded breaks occurred 3bp upstream of 

the PAM identified in (Bolotin et al., 2005), demonstrating that the endonuclease 

cuts within the region complementary to the spacer (Garneau et al., 2010). It was 

also shown that a characteristic of Cas9 – as well as other type II CRISPR/Cas 

systems – was the lack of requirement for other cleavage complex components. Cas9 

plus guide RNA is sufficient for targeted DNA cleavage. 

The final piece of basic mechanistic understanding of type II CRISPR/Cas 

systems to be found was trans-activating CRISPR RNA (tracrRNA). tracrRNAs are 

RNA molecules complementary to CRISPR repeat sequences which, upon 

transcription, base pair with their complementary sequence forming a dsRNA which 

is cleaved by RNAse III in order to form a mature crRNA molecule (Deltcheva et al., 

2011).  

In order to demonstrate CRISPR/Cas9’s potential utility as a general tool for 

genome editing across a range of organisms, it was necessary to demonstrate its 

efficacy in organisms other than the organism in which a given Cas9 protein 

originates. This was achieved when a CRISPR/Cas locus from S. thermophillus was 

expressed in E. coli and conditioned resistance to plasmid transformation and 

bacteriophage infection, again in a sequence specific manner (Sapranauskas et al., 
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2011). Mutagenesis experiments in the same study also demonstrated the importance 

of the aforementioned HNH endonuclease motif, as well as a RuvC motif, in Cas9 

for cleavage of target DNA loci. The bipartite specificity of these two motifs in the 

mode of action of CRISPR/Cas9 complexes was also demonstrated when 

characterising how CRISPR works at the target sequence level. HNH is responsible 

for cleavage of the DNA strand complementary to the CRISPR loci whilst the RuvC 

motif cleaves the non-complementary strand (Gasiunas et al., 2012). Further to this, 

it was demonstrated that the minimal number of nucleotides required for efficient 

target recognition is 20nt. Additionally, it was shown that crRNA and tracrRNA 

could be combined on a single transcript and still perform CRISPR/Cas mediated 

target cleavage (Jinek et al., 2012). 

Evidence of efficacy in eukaryotes was demonstrated when CRISPR/Cas9 

constructs were used to cleave targets in Homo sapiens and Mus musculus. It was 

also shown that multiple loci can be targeted at once and that Cas9 can drive 

homology directed repair of double stranded DNA breaks, allowing DNA with 

flanking regions homologous to the regions either side of the cleavage site to be 

substituted for native DNA (Cong et al., 2013, Mali et al., 2013).   

DNA repair damage mechanisms are constantly at work in cells where UV and 

radiation damage are ever present threats causing DNA lesions. It is the repair 

mechanisms which are engaged by damage to dsDNA where both strands of the 

dsDNA molecule are cut which permits CRISPSR/Cas9 mediated genome editing. 

Non-homologous end-joining (NHEJ) (Moore and Haber, 1996)  relies on 

microhomology, or no homology at the ends of the strands to be ligated, and allows 

the introduction of deletions where paired sgRNAs have been used to excise a 

portion of a target gene or smaller INDELs. Alternatively, homologous 

recombination (HR) involves the exchange of nucleotides between two identical 

DNA sequences, allowing whole sections of genes to be replaced with sequences 

harbouring one, or more, mutations (Sung and Klein, 2006).  
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3.2. Results. 

 

3.2.1. Generating a library of MAPKKKƐ mutants. 

In the absence of structural data for MAPKKKƐ to guide rational design of 

mutations that may confer insensitivity to PexRD2, a random mutagenesis approach 

was taken. Using this approach, potentially thousands of putative variants could be 

screened in a medium-throughput manner using N. benthamiana as a model system.   

 

Mutagenesis was achieved using the Diversify® Random Mutagenesis PCR kit 

supplied by Clontech. Error prone PCR relies on the fidelity of the DNA polymerase 

being lowered by the buffer conditions. In this case, raising the concentration of 

Manganese is sufficient to lower the polymerase’s fidelity in order to achieve a 

desirable rate of mutations/base. A 996bp construct spanning MAPKKKƐ’s N-

terminus to its 332
nd

 residue (Figure 3), which is necessary and sufficient for both its 

Figure 3| Schematic representation of MAPKKKƐ construct used for random 

mutagenesis. 

Shown above is full length MAPKKKƐ with C-terminal ARM repeats. Kinase domain is 

shown as a blue box between residues 18 and 272. Below is the construct used for random 

mutagenesis spanning residues 1-332.    
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function in planta and its interaction with PexRDX2 (King et al., 2014) was 

subjected to error prone PCR in conditions predicted to yield ~3 mutations per 

kilobase. This level of fidelity should lead to 2-3 mutations – on average - in the 

truncated MAPKKKƐ construct. A subset of putative mutants were sequenced in 

order to confirm the desired rate of mutagenesis. Putative variants were then placed 

under the control of a β-estradiol inducible promoter and fused to 2 copies of the HA 

epitope in a bespoke vector derived from pER8 (Zuo et al., 2000).   

3.2.2. Screening putative MAPKKKƐ variants in planta. 

 

A. tumefaciens inoculation concentration and β-estradiol concentration were 

optimised for screening. Final OD600 values of A. tumefaciens harbouring 

pERCH:MAPKKKƐ
Wt 

ranging from 0.1-0.6 were tested with inducer concentrations 

of 5µM, 7.5µM and 10µM. Cell death was scored as >50% of the infiltrated area 

exhibiting fully confluent cell death. From this analysis it was clear that OD600 

values of 0.4-0.6 all produced a clear cell death phenotype and that there was little 

difference between the three inducer concentrations tested (Figure 4). Therefore, a 

final OD600 of 0.4 and a β-estradiol concentration of 10µM were chosen for 

screening.  

The ability of MAPKKKƐ variants to evade cell death suppression by PexRD2 

was then assayed by transient infiltration of N. benthamiana leaves with A. 

tumefaciens GV3101 harbouring plant expression vectors carrying MAPKKKƐ and 

PexRD2 at an OD600 of 0.4 and 0.6 respectively. All infiltration mixtures included A. 

tumefaciens GV3101 harbouring the tomato bushy stunt virus (TBSV) p19 

suppressor of RNA silencing (Voinnet et al., 2003) in order to enhance expression. 

Cultures harbouring p19 were delivered at an OD600 of 0.1. A generic layout for 

infiltrations in each leaf is depicted in Figure 5a. Initially 288 kinase variants were 

screened in total. Kinase expression was induced by spraying the abaxial and adaxial 

faces of leaves with β-estradiol - 24-48 h post infiltration - at a concentration of 

10µm. 6-8 days post induction images were taken and cell death symptoms scored. 

Initial symptom scoring was done coarsely with throughput of greater importance 

than fine detail. Leaf images were analysed in GIMP 2.0. Area of tissue exhibiting 
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Figure 4| The effect of A. tumefaciens cell density and β-estradiol concentration on 

pERCH:MAPKKKƐWt mediated cell death in N. benthamiana.  

9 replicates per cell density and inducer concentration value were tested. Plants were infiltrated 

as described in section 2.9.3, allowed to recover for 24-48 h before β-estradiol was applied. Β-

estradiol was applied every 48 h until cell death was recorded at 6 days post induction. ‘Cell death’ 

was scored as >50% of infiltrated area exhibiting fully confluent cell death and bars represent % of 

the 9 replicates for each combination exhibiting >50% fully confluent cell death. 

 

severe cell death symptoms (in pixels) was divided by total infiltrated area (in pixels) 

in order to give a percentage of infiltrated area exhibiting severe cell death 

symptoms. Infiltration sites exhibiting >50% of total infiltrated area exhibiting cell 

death symptoms were treated as putative positive candidates whilst infiltration sites 

exhibiting ≤50% of total infiltrated area exhibiting cell death symptoms were 

discarded. The initial screen of 288 kinase variants yielded 8 positive candidates that 

evaded cell death suppression according to the previously described criteria (Figure 

5b). Positive candidates were sequenced and sequence alignments are shown in 

Figure 6.  
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Figure 5| Images of positive candidates from effector-insensitive MAPKKKƐ 

screen 

Positive and negative controls are shown boxed, with non-interacting PexRD2
L109D 

failing to suppress MAPKKKƐ mediated cell death representing positive control and 

PexRD2
Wt 

almost completely suppressing MAPKKKƐ mediated cell death. Positive 

candidates are shown sequentially below. Numbers correspond to the order in which single 

A. tumefaciens colonies were selected from selective plates. 

 

a) 

 

 

 

 

b) 
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MAPKKKƐ     MSRQMANAAFHKSKTLDNKYMLGDEIGKGAYGRVYKGLDLENGDFVAIKQVSLENIAQED 

21          MSRQMANAAFHKSKTLDNKYMLGDEIGKGAYGRVYKGLDLENGDFVAIKQVSLENIAQEE 

96          MSRQMANAAFHKSKTLDNKYMLGDEIGKGAYGRVYKGLDLENGDFVAIKQVSLENIAQED 

133         MSRQMANAALHKSKTLDNKYMLGDEIGKGAYGRVYKGLDLENGDFVAIKRVSLENIAQED 

149         MSRQMANAAFHKSKTLDNKYMLGDEIGKGAYGRVYKGLDLENGDFVAIKQVSLENIAQED 

179         MSRQMANAAFHRSKTLDNEYMLGDEIGKGAYGRVYKGLDLENGGFVAIKQVSLENIAQED 

194         MSRQMANAAFHKSKTLDNKYMLGDEIGKGAYGRVYKGLDLENGDFVAIKQVSLENIAQED 

234         MSRQMANAAFHKSKTLDNKYMLGDEIGKGAYGRVYKGLDLENGDFVAIKQVSLENIAQED 

249         MSRQMANAAPHKSKTLDNKYMLGDEIGKGAYGRVYKGLDLENGDFVAIKQVSLENIAQED 

 

             

 

MAPKKKƐ     LNVIMQEIDLLKNLNHKNIVKYLGSLKTKSHLFIILEYVENGSLANIVKPNKFGPFPESL 

21          LNVIMQEIDLLKNLNHKNIVKYLGSLKAKSHLFIILEYVENGSLANIVKPNKFGPFPESL 

96          LNVIMQEIDLHKNLNHNNIVKYLGSLKTESHLFIILEYVENGSLANIVKPNKFGPFPESL 

133         LNVIMQEIDLLKNLNHKNIVKYLGSLKTKSHLFIILEYVENGSLANIVKPNKFGPFPESL 

149         LNVIMQEIDLLKNLNHKNIVKYLGSLKTKSHLFIILEYVENGSLANIVKPNKFGPFPESL 

179         LNVIMQEIDLLKNLNHKNIVKYLGSLKTKSHLFIVLEYVENGSLANIAKPSKFGPFPESL 

194         LNVIRQEIDLLKNLNHKNIVKYLGSLKTKSHLFIILEYVENGSLANIVKPNKFGPFPESL 

234         LNVIMQEIDLLKNLNHKNIVKYLGSLKTKSHLFIILEYVENGSLANIVKPNKFGPFPESL 

249         LNVNMREIDLLKNLNHKNIVKYLGSLKTKSHLFIILEYVENGSLANIVKPNKFGPFPESL 

             

 

MAPKKKƐ     VAVYISQVLEGLVYLHEQGVIHRDIKGANILTTKEGLVKLADFGVATKLTEADVNTHSVV 

21          VAVYISQVLEGLVYLHEQGVIHRDIKGANILTTKEGLVKLADFGVATKLTEADVNTHSVV 

96          VAVYISQVLEGLVYLHEQGVIHRDIKGANILTTKEGLVKLADFGVATKLTEADVNTHSVV 

133         VAVYISQVLEGLVYLHEQGVIHRDIKGANILTTKEGLVKLADFGVATKLTEADVNTHSVV 

149         VAVYISQVLEGLVYLHEQGVIHRDIKGANILTTKEGLVKLADFGVATKLTEADVNTHSVV 

179         VAVYISQVLEGLVYLHEQGVIHRDIKGANILTTKEGLVKLADFGVATKLTEADVNTHSVV 

194         VAVYISQVLEGLVYLHEQGVIHRDIKGANILTTKEGLVKLADFGVATKLTEADVNTHSVV 

234         VAVYISQVLEGLVYLHEQGVIHRDIKGANILTTKEGLVKLADLGVATKLTEADVNTHSVV 

249         VAAYISQVLEGLVYLHEQGVIHRDIKGANILTTKEGMVKLADFGVATKLTEADVNTHPVV 

 

             

 

MAPKKKƐ     GTPYWMAPEVIEMSGVCAASDIWSVGCTVIELLTCLPPYYDLQPMPALFRIVQDDHPPIP 

21          GTPYWMAPEVIEMSGVCAASDIWSVGCTVIELLTCLPPYYDLQPMPALFRIVQDDHPPIP 

96          GTPYWMAPEVIEMSGVCAASDIWSVGCTVIELLTCLPPYYDLQPMPALFRIVQDDHPPIP 

133         GTPYWMAPEVIEMSGVCAASDIWSVGCTVIELLTCLPPYYDLQPMPALFRIVQDDHPPIP 

149         GTPYWMAPEVIEMSGVCAATDIWSVGCTVIELLTCLPPYYDLQPMPALFRIVQDDHPPIP 

179         GTPYWMAPEVIEMSGVCAASDIWSVGCTVIELLTCSPPYYDLQPMPALFRIVQDDHPPIP 

194         GTPYWMAPEVIEMSGVCAASDIWSVGCTVIELLTCLPPYYDLQPMPALFRIVQDDHPPIP 

234         GTPYWMAPEVIEMSGVCAASDIWSVGCTVIELLTCLPPYYDLQPMPALFRIVQDDHPPIP 

249         GTPYWMAPEAIEMSGVCAASDTWSVGCTDIELLTSLPPYYELQPMPALFRIAQDDHPPIP 

             

 

MAPKKKƐ     DSLSPAITDFLRQCFKKDARQRPDAKTLLSHPWIQNSRRALQSSLRHSGTIRNIEEDGSA 

21          DSLSPAITDFLRQCFKKDARQRPDAKTLLSHPWIQNSRRALQSSLRHSGTIRNIEEDGSA 

96          DSLSPAITDFLRQCFKKDARQRPDAKTLLSHPWIQNSRRALQSSLRHSGTIRNIEEDGSA 

133         DSLSPAITDFLRQCFKKDARQRPDAKTLLSHPWIQNSRRALQSSLRHSGTIRNIEEDGSA 

149         NSLSPAITDFLRQCFKKDARQRPDAKTLLSHPWIQNSRRALQSSLRHSGTIRNIEEDGSA 

179         DSLSPAITDFLRQCFKKDARQRPDAKTLLSHPWIQNSRRALQSSLRHSGTIRNIEEDGSA 

194         DSLSPAITDFLRQCFKKDARRRPDAKTLLSHPWIQNSRRALQSSLRHSGTIRNIEEDGSA 

234         DSLSPAITDFLRQCFKKDARQRPDAKTLLSHPWIQNSRRALQSSLRHSGTIRNIEEDGSA 

249         DSLSPAITDFLRQCFKKDARQRPDAKTLLSHPWIQNSRRALQSSLRHSGTIRNIEEDGSA 

            

 

MAPKKKƐ      VREASNEDDKGAAGSSSSDKAKESSTTLAPPE 

21           VREASNEDDKGAAGSSSSDKAKESSTTLAPPE 

96           VREASNEDDKGAAGSSSSDKAKESSTTLAPPE 

133          VREASNEDDKGAAGSSSSDKAKESSTTLAPPE 

149          VREASNEDDKGAAGSSSSDKAKESSTTLAPPE 

179          VREASNEDDKGAAGSSSSDKAKESSTTLAPPE 

194          VREASNEDDKGAAGSSSSDKAKESSTTLAPPE 

234          VREASNEDDKGAAGSSSSDKAKESSTTLAPPE 

249          VREASNEDDKGAAGSSSSDKAKESSTTLAPPE 

 

 

Figure 6| Amino acid sequences of putative effector insensitive MAPKKKƐ mutants 

identified in primary screening. 

Amino acid sequences are displayed aligned with the wild type sequence of MAPKKKƐ from aa 1 

to 332. Amino acid substitutions relative to wild type sequence are highlighted in black. Catalytically 

active HRD and DFG motifs of the kinase domain are highlighted in light blue.  
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The distribution of mutations in the sequence was analysed for any potential 

clustering that could suggest whether any particular region of MAPKKKƐ 

conditioned insensitivity to PexRD2 (Figure 7). From this analysis, some clustering 

at the N terminus – residues 1 – 60 - was evident. Only two mutations were evident 

near the HRD-DFG motif. It is to be expected that in a screen which is intended to 

explore variants which retain activity, that little to no mutations in or around the 

active site would be obtained. However, it is known that certain mutations at these 

residues can be tolerated with minimal alteration to activity (Strong et al., 2011). The 

Phenylalanine to Leucine mutation evident in candidate 234 in the DFG motif itself 

has been identified in a kinase variant involved in cancer development in humans – 

BRAF
F595L 

– and is known not to abolish kinase activity (Kordes et al., 2015). This is 

presumably due to the role of the F in the DFG motif normally being the occupation 

of the ATP binding pocket, preventing aberrant kinase activity (Jauch et al., 2005).  

C terminal to this region, further mutations were evident but were not as highly 

concentrated as those at the extreme N terminus of the protein.  

  

Figure 7| Amino acid substitutions plotted against amino acid position. 

Black data points at 0 on the y axis indicative of no amino acid substitution at a given 

residue. Blue data points at position 1 on the y axis indicative of an amino acid 

substitution at a given residue. Pink bar represents location of HRD-DFG motif.  

Amino Acid 
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In order to be certain of the robustness of positive candidates identified through 

primary screening, we thoroughly re-tested all positive candidates in a secondary 

screen (Figure 8). 

 

The 8 positive candidates from the initial screen were subjected to more intense 

scrutiny and repeated on 3 leaves per plant x 3 plants, giving a total of 9 replicates 

per variant. Infiltration procedure, experimental layout and timescales remained as 

described previously. From this analysis, candidates 133 and 149 robustly and 

reproducibly evaded suppression of cell death (Figure 8) to the same level as the 

positive control of MAPKKKƐ
Wt 

and PexRD2
L109D

. Candidates 21, 96, 179, and 234 

also showed a clear difference in their ability to evade PexRD2 mediated cell death 

Figure 8| Initial re-testing of positive candidates from screen reveals that candidates 

MAPKKKƐ
*133

 and MAPKKKƐ
*149

 reproducibly evade PexRD2 mediated 

suppression of cell death. 

Bars represent percentage of infiltrated sites exhibiting >50% fully confluent cell death 

relative to total infiltrated area. Data representative of 9 repeats per variant.  
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relative to MAPKKKƐ
Wt

. Sequencing of candidates 133 and 149 (Figure 6) revealed 

2 amino acid substitutions per variant; Phe10Leu and Gln50Arg in 133 and 

Ser200Thr and Asp241Asn in 149.  

 

3.2.3. De-convoluting the relative contributions of amino acid 

substitutions to insensitivity to PexRD2 in two positive 

candidates.  

 

In order to deconvolute the contribution of individual mutations to the evasion of 

cell death activity, DNA encoding each mutation was synthesised (Genscript USA) 

and prepared in the pERCH vector described in section 3.2.1.  

Infiltrations were performed as described previously. Analysis of images was 

initially carried out as outlined in 3.2.2 with the 4 candidates; Phe10Leu, Glu50Arg, 

Ser200Thr, Asp241Asn. Each of the candidates consistently evaded PexRD2 

mediated suppression of cell death induction (Figure 9d). The data generated here 

was re-analysed using a scoring system based on an arbitrary scale of cell death 

shown in Figure 9c. Symptoms were scored and subjected to one-way ANOVA with 

Tukey’s post hoc t-test in order to determine significant differences between means. 

This analysis revealed a similar picture to the more coarse analysis, with the 4 

MAPKKKƐ variants robustly and reproducibly evading PexRD2 mediated 

suppression of cell death induction, and differing from the negative control Figure 

9e. The 4 MAPKKKƐ mutants were tested in two different environments; a 

controlled environment room (CER) and a temperature controlled glasshouse in 

order to account for any variation between the two environments even though each 

environment was, in theory, set to the same day/night cycle, temperature and 

humidity. Cell death was slightly enhanced in CER assays relative to glasshouse 

assays in both controls and mutants but the overall trend remained consistent 

between the two environments. Data presented here is representative of Glasshouse 

assays.  
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Figure 9| Analysis of single amino acid polymorphisms for effector insensitivity 

reveals all four contribute to effector insensitivity. 

a) Representative leaf image showing each amino acid polymorphism tested against 

PexRD2
Wt 

for effector-insensitivity. b) Western blot from crude N. benthamiana extract probed 

with anti-HA antibodies demonstrating expression of HA-tagged kinase and effector in effector-

insensitivity assays. c) Reference for arbitrary scale of cell death severity ranging from scores of 

1 (no response other than mild yellow of leaf from A. tumefaciens infiltration and mechanical 

wounding) to 9 (fully confluent cell death in 100% of infiltrated area). d) Bar chart showing 

overall results of single polymorphism effector-insensitivity assay. Bars represent % of 

infiltration sites exhibiting greater than 50% fully confluent cell death. Bars are split between; 

black (representing the percentage showing >50% cell death) and white (representing the 

percentage showing <50% cell death). Results representative of 9 repeats per combination of 

effector and kinase variant. d) Bar chart showing mean cell death index rating. Based on 9 

repeats per construct. Significance was determined by one-way ANOVA and Tukey’s HSD test.       

a)                                b) 

 

 

 

 

    c) 

 

    d)                                  e) 
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3.2.4. Attempt to quantify evasion of cell death suppression 

through ion leakage assays. 

 

As plant tissue senesces, or begins to die, the integrity of the membranes in 

affected cells is compromised. Therefore, the magnitude of cell death response can 

be quantified by measuring electrolyte leakage into a conductive medium.  The 

infiltration procedure described in section 3.2.3 was repeated and MAPKKKƐ 

expression induced at 24-48 h post infiltration. 8mm leaf disks were harvested ~36 h 

post induction and floated in de-ionised water. Following 1-2 h of incubation at 

room temperature conductivity readings were taken.  

Conductivity readings were taken for 10 replicates per combination and are 

presented in Figure 10. A mean conductivity reading of 52.6µs/cm ± 2.697 was 

observed for MAPKKKƐ
Wt 

& PexRD2
L109D

. This differed from the negative control, 

MAPKKKƐ
Wt 

& PexRD2
Wt

, at the P < 0.01 level, with a conductivity reading of 

40.3µs/cm ± 1.707. Indicating that, in principle, the assay is sensitive enough to 

detect differences between plant tissue where PexRD2 is suppressing cell death and 

tissue where PexRD2 mediated cell death suppression is being evaded. However, 

conductivity readings in the lower to mid-40µs/cm range for all four effector-

insensitive variants of MAPKKKƐ (Phe10Leu = 43.4µs/cm ± 1.845, Glu50Arg = 

44.4µs/cm ± 2.5, Ser200Thr = 44.2µs/cm ± 2.337 and Asp241Asn = 41.3µs/cm ± 

1.828) suggested that PexRD2 was still capable of suppressing their cell death 

induction activity, under the present conditions.  
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*

* * 

*

* 

Figure 10| Electrolyte leakage assays are unsuitable for quantifying insensitivity to 

PexRD2. 

Bar chart showing conductivity of medium in microsiemens/cm. Individual bars representative 

of data from 10 replicates per combination of effector and kinase. Significance determined by one-

way ANOVA and Tukey’s HSD test. * = significant difference at the P < 0.05 level. ** = 

significant difference at the P < 0.01 level. 
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However, previous observations indicate that PexRD2
L109D 

accelerates 

MAPKKKƐ mediated cell death response when co-expressed with MAPKKKƐ 

relative to MAPKKKƐ overexpressed alone (King, 2013). This results in a dominant 

negative phenotype where even the cell death suppressing effects of PexRD2
Wt 

are 

masked by the accelerated cell death associated with PexRD2
L109D

. The consequence 

of this dominant negative phenotype in the present assay is that the positive control 

(MAPKKKƐ
Wt 

co-expressed with PexRD2
L109D

) undergoes a very rapid cell death 

response, meaning that electrolyte leakage readings must be taken before visible cell 

death symptoms become too severe, as the assay measures dying cells, rather than 

dead cells. At this time point (24-48 h post induction) it has been observed that % of 

infiltrated area exhibiting cell death can be >20% greater than in tissue 

overexpressing MAPKKKƐ alone. At this point, cell death associated with mutant 

variants of MAPKKKƐ co-expressed with PexRD2
Wt 

has not significantly exceeded 

the baseline electrolyte leakage levels attributable to agroinfiltration and mechanical 

tissue damage from excision of leaf disks.  
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3.2.5. Probing the mechanisms behind effector insensitivity 

 

3.2.5.1 Homology modelling of MAPKKKƐ allows mapping of effector-

insensitive mutations 

 

Efforts to purify MAPKKKƐ by Dr Abbas Maqbool (JIC) repeatedly failed to 

yield sufficiently high yields of soluble, correctly folded protein for 

biochemical/structural studies. Therefore, to gain insight into the positions of the 

MAPKKKƐ mutations that allow the kinase to evade suppression of cell death 

signalling, we performed homology modelling using the Phyre2 server (Kelley et al., 

2015). Submission of the wild type MAPKKKƐ1-332 sequence returned the Bovine 

G protein-coupled receptor kinase 5 (Homan et al., 2015) as the top scoring template, 

with a confidence value of 100%. The final model generated is shown in Figure 11. 

The position of amino acids conditioning insensitivity to PexRD2 are highlighted as 

well as key residues in the active site.  

Mutations did not cluster to a particular spatial location on the homology model 

making predictions on how each mutation may perturb PexRD2 mediated 

suppression of cell death difficult. Indeed, F10L and D241 appear to be particularly 

distant from the active site. However, it is possible that mutations distal to an 

enzyme’s active/binding site can still alter its conformation enough to perturb 

activity/binding. It is interesting to note that Q50R and S200T map closer to the 

active site, and that these two mutations conditioned enhanced insensitivity relative 

to F10L and D241N in transient cell death suppression assays. 
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Figure 11| Homology model of MAPKKKƐWt (1-332). 

Phyre2 3D structure prediction for MAPKKKƐ, rendered in ccp4mg. Location of mutations 

conditioning insensitivity to PexRD2 are indicated, as well as the location of the catalytically active 

HRD-DFG motif. Surface map of MAPKKKƐ homology model is superposed on top of cartoon 

structure in order to indicate whether or not key residues are solvent exposed or buried. Ser 200 is 

the only residue not solvent exposed.  

 Rendering of the homology model to show surface exposed residues revealed 

that three of the mutated residues; 10, 50 and 241, are surface exposed, whilst 

residue 200 is buried (Figure 11).  The phenylalanine to leucine mutation at position 

10 consists of the replacement of an aromatic, hydrophobic side chain with an 

aliphatic, non-polar one. Replacement of Phe with another aromatic amino acid – 

such as tyrosine – and with another simple, aliphatic non-polar amino acid like 

valine may shed light on whether or not there is a requirement for an aromatic side-

chain at position 10 for interaction with PexRD2.   

Glutamine to arginine at position 50 consists of the replacement of an uncharged, 

carboxamide group presented at the end of two methylenes as a side chain with a 

positively charged guanidinium group presented at the end of a long side chain. This 

could indeed perturb any interaction with PexRD2. Much of the solvent exposed 
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surface of the PexRD2 dimer is positively charged, with a large number of lysine 

residues being evident. Conversion of an uncharged residue (such as glutamine) to a 

positively charged residue could potentially repel interactions with the positively 

charged residues exposed on the surface of PexRD2. Mutagenesis studies involving 

substituting glutamine50 for another uncharged residue, such as asparagine, and for 

another positively charged residue, such as lysine, may reveal whether or not the 

presence of a positively charged residue at this position generally interferes with 

effector-kinase binding.   

Aspartate presents a hydrophilic, negatively charged (at physiological pH) 

carboxylate group as its side chain. Mutation of this residue to the similar, but 

uncharged (the only difference is that aspartate’s carboxylate group is replaced with 

a carboxamide group in asparagine) asparagine may perturb interaction by replacing 

a negatively charged residue which may be important for mediating interactions with 

the positively charged surface of PexRD2. Experiments substituting glutamate (also 

negatively charged) for Aspartate should reveal whether or not a negatively charged 

residue at position 241 is required for interaction with PexRD2.  

The relevance of a serine to threonine mutation at position 200 is more 

challenging to explain in terms of its direct relevance for interaction with PexRD2 as 

(a) it is not surface exposed and (b) Ser and Thr are extremely similar amino acids, 

with Thr possessing just one extra methyl group relative to Ser. However, it has 

previously been observed that mutations to buried residues can alter protein-protein 

interaction (McLaughlin et al., 2007). Replacement of Ser with amino acids 

containing far bulkier side chains may provide insights into whether or not mutations 

at this residue are somehow altering overall protein conformation and interfering 

with MAPKKKƐ’s interaction with PexRD2. 

3.2.5.2 Yeast two-hybrid assays reveal weakened interactions between PexRD2 

and effector-insensitive kinase variants  

 

Whilst the ultimate goal in generating effector-insensitive MAPKKKƐ variants is 

to explore their utility in generating disease resistance in crops, the nature of 

insensitivity is an interesting and relevant biological question. The simplest 
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hypothesis is that MAPKKKƐ variants are able to evade cell death suppression 

activity of PexRD2 by preventing the effector from binding directly to the kinase.  

As Y2H is an established assay for monitoring the interaction between PexRD2 

and MAPKKKƐ, we employed this technique to investigate the interactions between 

the effector and PexRD2-insensitive MAPKKKƐ variants. To confirm previous 

results, PexRD2
Wt 

and PexRD2
L109D 

were fused to the GAL4-DBD in pEXP32™ and 

used to co-transform MaV203 S. cerevisae alongside either StMAPKKKƐ
Wt 1-300

, 

StMAPKKKƐ
(M) 1-332

, StMAPKKKα fused to the GAL4-AD in pEXP22™. Co-

transformants were selected on SC-LW plates and three individual co-transformants 

were selected and plated onto SC-LWH + 3-AT plates for –histidine auxotrophy 

assays, onto SC-LWU plates for –uracil auxotrophy assays or onto nylon membranes 

overlaying YPAD plates for X-Gal assays. The results of yeast 2-hybrid reporter 

assays are shown in Figure 12a, confirmation of expression of GAL4-DBD fused 

constructs by western blot is shown in Figure 12b and confirmation of expression of 

GAL4-AD fused constructs is shown in figure Figure 12c. In –histidine (+10mM 3-

AT) auxotrophy assays, no clear differential between MAPKKKƐ
Wt

 and the four 

MAPKKKƐ variants was observable, confirming that they are capable of interaction 

in yeast. The –histidine assay was also performed with concentrations of 20mM and 

30mM 3-AT with similar results (data not shown). However, in the most stringent 

auxotrophy assay - -uracil – a clear differential can be observed after 5 days growth. 

MAPKKKƐ
Wt

 shows clear growth on –LWU plates relative to PexRD2 insensitive 

mutants when co-expressed with PexRD2
Wt

. This observation was also recapitulated 

in colonies grown on nylon/YPAD plates and subjected to the X-GAL assay. These 

results clearly indicate a weakened, but not fully abolished interaction between 

PexRD2 and insensitive MAPKKKƐ variants. However, a weakened interaction in a 

heterologous host such as S. cerevisiae may be sufficient to account for insensitivity 

to PexRD2 in planta and establishment of an in planta assay with which to test 

MAPKKKƐ mutants may reveal a totally abolished interaction. A probable false 

positive interaction was observed in the –uracil auxotrophy assay where 

PexRD2
L109D 

and MAPKKKƐ
F10L 

were co-expressed. This was not observed in the 

other two reporter assays (including the less stringent –histidine assay). Furthermore, 

it was not observed in any previous repeat of the assay so is unlikely to represent a 
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bona fide interaction. Confirmation of expression of all constructs was vital to 

confirm that negative results from reporter assays were the result of non-interaction, 

as opposed to lack of protein expression.  

We attempted to establish in planta Co-IP assays with which to test the 

interaction of the PexRD2 insensitive mutants with PexRD2. However, even the 

interaction between wild type effector and kinase has proved difficult to establish 

despite extensive attempts at optimisation.  
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Figure 12| PexRD2-insensitive kinase variants exhibit weakened interaction 

with PexRD2 in yeast 2-hybrid Uracil auxotrophy assay but not Histidine 

auxotrophy assay. 

a) –LWU and –LWH (+ 10mM 3-AT) reporter assays. All interactions were tested in 

triplicate with replicates derived from independent MaV203 co-transformant colonies 

selected on –LW plates. –LWU plates were incubated for 5 days at 28˚C and –LWH plates 

incubated for 24hrs at 28˚C followed by 16hrs at room temperature. –LWH assays were 

conducted with a range of 3-AT concentrations from 10-30mM with the same results. b) 

Western blot confirming expression of GAL4-DNA Binding Domain tagged proteins. 

Membrane probed with α-GAL4-DBD antibodies conjugated to HRP for 2hrs at room 

temperature with shaking.  c) Western blot confirming expression of GAL4-Activation 

Domain tagged proteins. Membrane probed with α-GAL4-AD antibodies conjugated to 

HRP for 2hrs at room temperature with shaking.      

a) 

 

 

 

 

 

 

 

b)                                                          c) 



114 

 

   

3.2.6. CRISPR/Cas9 mediated editing of Solanum lycopersicum 

MAPKKKƐ 

 

3.2.6.1 Design of sgRNAs and complementation constructs 

 

(Note – sgRNAs were designed with Dr Nicola Patron and constructs were prepared by Mr Mark 

Youles) 

The importance, and regulation, of eukaryotic protein kinases has been discussed 

at length in section 1.4. The amino acid residues required for kinase activity are well 

defined and highly conserved. Two motifs known to be crucial for activity are the 

HXD motif and the DFG motif. The DFG motif is known to be important for the 

docking of ATP whilst the HXD motif is involved in establishing and maintaining 

the correct orientation of substrates at the P-site, correct orientation of the activation 

segment (in RD kinases where X = R in the HXD motif) and as a structural co-

ordinator of several other key regulatory elements (Zhang et al., 2015, Kannan and 

Neuwald, 2005). Mutations in many of these residues can abrogate or abolish kinase 

activity. Therefore, knockout of the entire region will clearly abolish kinase activity, 

whilst INDELS which induce frameshift mutations at individual sgRNA sites should 

also abolish kinase activity. We, therefore, attempted to knock out endogenous 

MAPKKKƐ and complement knockout tomato plants with PexRD2-insensitive 

MAPKKKƐ variants in one stable transformation experiment incorporating sgRNAs 

against MAPKKKƐ, Cas9 and a complementation cassette.  

Pairs of sgRNAs were designed to guide Cas9 to sequences flanking either the 

HRD motif alone (sgRNA1 and sgRNA3) or the HRD and DFG motif together 

(sgRNA2 and sgRNA4) in order to target MAPKKKƐ. Sequences for each sgRNA 

are shown in Figure 13 as well as a schematic representation of the loci targeted by 

each sgRNA. Each sgRNA targets a sequence with a 3’ protospacer adjacent motif 

(PAM), required for Cas9 mediated cleavage of the target sequence.  
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Figure 13| sgRNAs targeting a genomic region containing MAPKKKƐ 

catalytically active residues. 

Guide RNAs were paired so as to induce large deletions through error prone non-

homologous end joining (NHEJ) or to induce smaller indels upstream of PAM sites by the 

same DSB repair mechanism. Sequences are shown above in the 5’ to  3’ orientation. 

sgRNA1 and sgRNA3 target sites are shown by green arrows upstream of an NGG PAM 

whilst sgRNA2 and sgRNA4 target sites are shown by orange arrows. The catalytically 

active motifs – HRD and DFG – targeted by these guide RNAs are shown as purple arrows. 

CDS are represented by purple boxes. The targeted region is shown magnified from its 

overall genomic context on chromosome 11 in the S. lycopersicum  genome. 
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An inherent problem in using stably expressed sgRNAs to guide targeted double 

stranded breaks or indels in a gene of interest, where the goal is to then express a 

variant of the gene of interest which differs by only a single amino acid residue is 

that the sgRNAs will also target the complementation sequence. To avoid this, the 

redundancy of the genetic code was exploited to re-code the MAPKKKƐ sequence 

targeted by sgRNA4. sgRNAs 1,2 & 3 had recognition sequences which partly, or 

completely, lay in introns. As the complementation cassette was comprised of only 

the CDS of MAPKKKƐ no further re-coding was required other than to remove any 

BpiI or BsaI sites which may interfere with Golden Gate assembly, a process known 

as domestication. This re-coding of DNA within complementation cassettes also 

facilitated the design of oligonucleotides able to differentiate between mRNA 

derived from transgenic complementation cassettes and mRNA derived from 

endogenous MAPKKKƐ. This was critical in order to confirm expression of the 

transgene complementation cassettes and correlate any enhanced resistance with 

expression of MAPKKKƐ mutants.  

 

3.2.6.2 Transient screening of paired sgRNAs 

 

In order to ensure the efficacy of sgRNA pairs prior to stable transformation, 

each sgRNA pair was tested in transient assays having been delivered into leaf tissue 

via A. tumefaciens infiltration. Each sgRNA pair was expressed from the same 

binary vector also encoding the Cas9 nuclease under the control of a double CaMV 

35S promoter. Plasmids carrying sgRNAs, under the control of a synthetic U6 RNA 

polymerase III promoter, were transformed into A. tumefaciens strain AGL1. 

Positive transformants were grown overnight in liquid media, incubated with MgCl2 

and acetosyringone before delivery into the leaves of 3-4 week old tomato plants 

through a blunt syringe at the site of small wounds generated by hypodermic needles 

on the abaxial face of the leaf. A. tumefaciens cells carrying sgRNAs were co-

delivered with bacteria harbouring the TBSV p19 RNA silencing suppressor. Leaf 
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tissue was harvested 48-72 h post infiltration and flash frozen in liquid N2. Genomic 

DNA was extracted as described in section 2.10.5.  

In order to enrich for successfully edited DNA, total gDNA was digested with 

EcoRV (Roche). EcoRV’s cut site occurs just 3’ of the HRD motif of MAPKKKƐ, 

between each pair of sgRNAs. Successfully edited DNA should be resistant to 

EcoRV mediated cleavage and be amplified by primers flanking sgRNA target 

sequences whereas unedited DNA should be cleaved by the restriction enzyme. 

EcoRV treated gDNA was then amplified by PCR with primers flanking the target 

sequences of sgRNA 1 and sgRNA 4, before being run on a 3% agarose gel (Figure 

14). Band shifts of ~390bp and ~540 bp if sgRNA 1 & 3 and sgRNA 2 & 4 were 

active were predicted, respectively. Wild type, unedited leaf material shows two 

clear bands at ~850bp corresponding to the expected amplified region in the 

previously described PCR. sgRNA 1-3 showed no observable editing activity whilst 

sgRNA 2 & 4 yielded a band of 250-300bp, corresponding to the expected product 

size if sgRNA 2-4 were both active. A wild type band of ~790bp is visible in the 

sgRNA 2-4 edited, EcoRV treated lane, probably due to incomplete digestion by 

EcoRV. In addition, an unexpected high molecular weight band is visible above the 

790bp band. Anecdotally, this is frequently observed where CRISPR/Cas9 mediated 

editing activity is high. The causes behind this are currently unclear although it has 

been proposed that it could be the result of various genetic elements from binary 

plasmids inserting between the double stranded breaks (Nicola Patron & Oleg 

Raitskin, personal communication). Sequencing of the band at around 250bp 

confirmed it was MAPKKKƐ although the read stopped short of the first predicted 

DSB site, meaning determination of the exact nature of the knockout was not 

possible. However, we were confident from this that sgRNA2-4 were active and 

induced a large deletion in the MAPKKKƐ gene. 
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Figure 14| Gel electrophoresis analysis of undigested and digested gDNA 

from S. lycopersicum leaf tissue transiently infiltrated with A. tumefaciens 

harbouring Cas9 nuclease and sgRNAs against tomato DNA. 

Untransformed, Wt tomato tissue is used as a negative control and shows expected 

790bp band in both digested and undigested samples. Tissue infiltrated with sgRNA1-3 

does not exhibit any editing activity whilst EcoRV treated gDNA from tissue infiltrated 

with sgRNA2-4 shows expected 250bp band corresponding to a large deletion between the 

two sgRNA target sites (indicated by black arrowhead) as well as a larger band indicative 

of a large insertion between the sgRNA target sites. Samples were analysed on a 3% (w/v) 

Agarose TAE gel. 
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3.2.6.3 Screening of stable transgenic tomato plants for CRISPR/Cas9 activity 

in S. lycopersicum 

 

Transgenic plants were prepared by Matthew Smoker and Jodie Pike (TSL 

Tissue Culture & Transformation team) as described in section 2.10.2.  

Primary transformants (T0) were screened for the large deletion as described in 

section 3.5.2.3. Leaves were harvested and flash frozen in liquid N2 before being 

finely ground with a pre-chilled micro-pestle. gDNA was extracted using the CTAB 

method described in section 2.10.5. Untreated gDNA was taken to PCR using the 

primer pairs described in section 3.5.2.3 and PCR products were run on a 2% 

agarose gel (Figure 15).  

 

Figure 15| EcoRV treatment of gDNA from plants stably transformed with 

CRISPR/Cas9 machinery directed against MAPKKKƐ reveals presence of desired 

large deletions at low frequency. 

Left hand panel shows PCR products from untreated gDNA, right hand panel shows PCR 

products from gDNA pre-digested with EcoRV for 1hr at 37˚C. White arrowheads indicate expected 

size (~250bp) of large deletion between sgRNA sites. Presence of strong ‘wild type’ band in both 

treated and untreated samples indicates that large deletions are relatively rare events in the tissue 

sampled. 
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Additionally, gDNA was subjected to EcoRV treatment for 1hr at 37˚C as 

described previously before being used as a template in the PCR, using the same 

primer pair. PCR products were run on a 2% agarose gel (Figure 15). Large deletions 

between sgRNA 2 and sgRNA4 are detected where gDNA is pre-treated with 

EcoRV. However, the fact that this large deletion is not detected where gDNA is 

untreated prior to PCR suggests that the transgenic plants are chimeric in terms of 

CRISPR/Cas9 expression and activity. If this deletion was prevalent in most cells in 

the plant, we would expect to amplify the characteristic 250bp band even where 

gDNA was not pre-digested with EcoRV. Indeed, amplification of the large, 790bp 

band where gDNA is pre-digested is indicative that the large deletion is not 

especially prevalent. This is not surprising as larger deletions between two, 

individual guide RNAs are much rarer events than smaller indel mutations at 

individual guide RNA sites. Nevertheless, the small band corresponding to a large 

deletion between the paired guide RNAs was cloned into pENTR for sequencing and 

revealed a 516bp deletion, which was the product of DNA cleavage exactly 3/4bp 

upstream of PAM for each sgRNA site. The sequence of this large deletion, aligned 

to the wild type sequence, is shown in Figure 16.  

Editing activity of individual guide RNAs was assessed by direct sequencing of 

the cleaned-up, 790bp PCR product amplified from digested, and undigested, gDNA. 

This revealed a number of indel mutations close to the PAM from deletions to 

insertions (Figure 17). In order to determine the zygosity of these indels, sequencing 

chromatograms were assessed (Figure 17). Where a mutation is detected, clean 

chromatogram peaks indicate the mutation is homozygous in the cells analysed, a 

peak with another peak under it indicates the mutation is heterozygous whilst a clean 

series of peaks which degenerates into essentially unreadable sequence immediately 

before the PAM is indicative that the tissue sampled was highly chimeric and 

contains a wide range of mutations in addition to unedited cells. DNA yields from 

gel extractions were typically poor, therefore only a small sample of indels could be 

detected as sequencing quality DNA was difficult to obtain and time was limited at 

this stage of the project. DNA obtained through cloning of bands into plasmids could 

have revealed more about the range of indels obtained but would not have yielded 

any information on their zygosity in the tissue sampled.   
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Further to this, the spatial and temporal control of sgRNA expression during 

regeneration of whole plants is unlikely to be uniform. It is more likely that a range 

of indels at individual target sequences and larger deletions between sgRNA target 

sequences exist in each individual plant. Thus, any effort to screen CRISPR/Cas9 

activity in the T0 generation was always likely to simply sample the potential activity 

of sgRNA2 and sgRNA4 guided Cas9 nucleases in stably transformed plants. The 

stable inheritance of CRISPR/Cas9 mediated deletions or indels will depend on the 

presence of edited DNA in the germLine of primary transformants. Therefore, all 

progeny of self-fertilised T0 plants will need to be collected, germinated and screened 

for CRISPR/Cas9 mediated editing. 

Figure 16| Sequencing of CRISPR/Cas9 – sgRNA2-4 mediated large deletion. 

Upper sequence in alignment corresponds to deletion band, lower sequence corresponds to 

wild type, unedited band. Sequence complementary to sgRNAs is underlined and PAM sites are 

highlighted in red. Large black triangle in chromatogram image indicates border between gDNA 

joined by NHEJ following Cas9 induced DSB and chromatogram indicates clean border 

between re-joined DNA strands. 
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Figure 17| Sequencing reveals indels at individual sgRNA target sequences. 

Representative sample of indels detected at sgRNA4 target sequence. Wt-1 and V1-7 both 

showed a T insertion 1bp upstream of the PAM. This results in a frameshift causing a premature 

stop codon. Sequencing chromatogram reveals that Wt-1 is homozygous for this mutation and 

V1-7 is heterozygous. V1-4 had a 3bp deletion 2bp upstream of the PAM. This results in the 

deletion of one residue and does not cause any frameshift in the rest of the protein. Sequence 

chromatogram reveals that V1-4 is homozygous for this mutation. sgRNA4 target sequence is 

underlined in the ‘Wt’ refererence sequence and ‘CGG’ PAM is highlighted in red. PAM 

location is underlined in chromatogram images and locations of insertions or deletions are 

indicated by black arrowheads.  
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3.2.6.4 Screening of transgenic tomato plants for transgene expression 

RNA extraction from leaves of T0 plants was performed using RNeasy Plant 

Mini columns (Qiagen) as per the manufacturer’s protocol, outlined in section 2.5.5 

using pre-ground tissue. One modification was made in that an on-column DNase 

digest, using the RNase-free DNaseI kit (Qiagen) was performed to remove residual 

gDNA. Purity of RNA extracts was determined on a NanoVue (GE Healthcare) and 

all samples returned A260/A280 ratios of 2.0 ± 0.1, indicating good RNA purity.  

Gene specific (GS) primers capable of distinguishing between transgenic mRNA 

and endogenous mRNA (based on 3bp mismatches at their 3’ ends, two of which are 

A:G mismatches known to have a severe impact on primer efficiency even when 

present singly (Stadhouders et al., 2010) were used to generate 1
st
 strand cDNA 

using the SuperScript-RT enzyme with the procedure outlined in section 2.5.5. 

cDNA was then amplified using the GS primers from cDNA synthesis as reverse 

primers and a GS forward primer to detect expression of transgenic mRNA. Efficacy 

of GS primers in distinguishing between transgene and endogenous mRNA was 

confirmed by the mutant specific primer’s inability to amplify MAPKKKƐ from 

gDNA extracted from untransformed S. lycopersicum cv. Moneymaker (see 

Supplementary figure 1).  Expression of transgene in the primary transformants 

tested is shown in Figure 18.  
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Figure 18| Reverse-transcription PCR shows expression of complementation 

transgene mRNA. 

Gel shows bands of 523bp corresponding to the predicted amplified product from 

PCR with mutant specific primers described in section 2.3.6.5. ‘Round 1’ and ‘Round 2’ 

refer to plants made in successive rounds of transformation. Wt plants expressing a wild 

type complementation cassette. V1, V2, V3 and V4 refer to plants expressing F10L, Q50R, 

S200T and D241N complementation cassettes, respectively.  
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3.2.7. Infection of detached leaves with P. infestans 

 

Leaves of S. lycopersicum primary transformants 5 weeks post transplanting 

were detached and placed in trays at 100% relative humidity as described in section 

2.10.7. Infection was allowed to proceed at 18˚C with images taken of detached 

leaves at approximately 24 hour intervals up to 6dpi. Individual lesion areas were 

measured in pixels and converted into mm
2
. Representative images are shown in 

Figure 19a and Figure 20a and mean lesion sizes from 1dpi to 6dpi are shown in 

Figure 19b and Figure 20b.  

As early as 3dpi, a greater than twofold reduction in mean lesion size is observed 

in plants expressing MAPKKKƐ
Q50R 

relative to wild type and MAPKKKƐ
F10L 

(which 

do not differ significantly from each other in terms of mean lesion size). Pathogen 

growth remains markedly restricted in Q50R plants throughout the time course, with 

mean lesion size always being significantly lower than that observed in the wild 

type. This indicates that MAPKKKƐ
Q50R 

may confer enhanced resistance to P. 

infestans 88069 in the tested line. 

In separate assays including MAPKKKƐ
S200T 

and MAPKKKƐ
D241N 

(V3 and V4, 

respectively) compared to wild type, the effector-insensitive variants appeared to 

condition enhanced susceptibility to P. infestans over a 6 day time course. 

Representative leaf images are shown in Figure 20 and mean lesion size from 1dpi to 

6dpi is shown in Figure 20b. 

 

 

 

 

 

 

  

*** 
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Figure 19| Growth of P. infestans 88069 is visibly restricted on tomato plants 

expressing MAPKKKƐ
Q50R.

 

(a) Representative images following infection sites from 2-6dpi are shown. (b) Each data 

point represents mean (n =20) lesion area (mm
2
) at a given time point in 24hr intervals post 

inoculation. Error bars = ± standard error. Significant differences determined by one-way 

ANOVA and Tukey’s HSD test. ** = significantly different from the wild type mean at the 

p<0.05 level, *** = different from the wild type mean at the p<0.01 level.  
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Wt S200T D241N

6dpi

5dpi

4dpi

3dpi

2dpi

Figure 20| Growth of  P. infestans 88069 is visibly enhanced on tomato plants 

expressing MAPKKKƐ
S200T

 and 
D241N

. 

(a) Representative images following infection sites from 2-6dpi are shown. (b) Each data 

point represents mean (n =20) lesion area (mm
2
) at a given time point in 24hr intervals post 

inoculation. Error bars = ± standard error. Significant differences determined by one-way 

ANOVA and Tukey’s HSD test. ** = significantly different from the wild type mean at the 

p<0.05 level, *** = different from the wild type mean at the p<0.01 level. ***a/b = means that 

differ significantly at the p<0.01 level. 
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3.2.8. Discussion 

 

In an increasingly globalised world, with crops and produce moving freely 

between borders and an ever increasing population to feed, strategies to ensure our 

continued food security will become increasingly vital over the coming years. Since 

humans first began cultivating crops, resistance has been informally selected for and 

since the identification of gene-for-gene resistance it has been formally selected for 

by breeders. However, in the face of intensifying agriculture and a preponderance for 

growing most staple crops in monoculture, populations of adaptable plant pathogens 

have been quick to evolve resistance to NLRs when exposed to them for only a few 

growing seasons (Rouxel et al., 2003). The manipulation of host-targets and 

susceptibility factors in order to generate resistance to pests and pathogens has been 

an overlooked strategy until recently. A reluctance to investigate this strategy may 

stem from concerns that manipulation of targets of effector proteins may interfere 

with their normal cellular function, given that a unifying feature of these targets is 

their importance in host cell biology.  

MAP Kinases and PRRs possessing a kinase domain have emerged as a common 

target for many plant pathogen effectors given their critical role in signal 

transduction of invasion pattern perception and, so, their role in positively regulating 

resistance to pests and pathogen (Zhang et al., 2007, Cui et al., 2010, Wang et al., 

2010). The solanaceous MAPKKKƐ has previously been characterised as a positive 

regulator of immunity to bacterial, fungal and oomycete pathogens (Melech-Bonfil 

and Sessa, 2010b, King, 2013, King et al., 2014) and is a target of the P. infestans 

RXLR effector PexRD2 (King et al., 2014). It is thought that PexRD2 does so in 

order to suppress MAPKKKƐ mediated cell death, a potent defence response to a 

hemibiotrophic pathogen like P. infestans.  

The previous characterisation of the interaction between PexRD2 and 

MAPKKKƐ and its outcomes provided the resources with which to generate a variant 

of this virulence target which is refractory to the effector and continues to perform its 
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normal cellular function despite the effector’s presence.  Ideally, a structurally 

informed, rational approach to design such a variant would be employed but 

MAPKKKƐ’s recalcitrance to soluble expression in E. coli necessitated the 

generation of a mutant library and subsequent screening in the model solanaceous 

crop N. benthamiana, in order to evaluate the ability of variants to evade PexRD2 

mediated cell death suppression.  

The initial screen yielded a positive hit rate of 4%, which fell to <1% of 

candidates exhibiting a highly reproducible cell death evasion phenotype upon re-

testing of all positive candidates in lower throughput assays with less potential for 

error. It remains a possibility that PexRD2-insensitive MAPKKKƐ variants are not 

actually PexRD2-insensitive but, rather, simply have enhanced activity relative to 

MAPKKKƐ
Wt

. This could be tested through expression of MAPKKKƐ 
Wt 

alongside 

MAPKKKƐ variants without the presence of PexRD2 in order to assess their relative 

cell death eliciting activities. Subsequent Y2H experiments, however, lend weight to 

the idea that variants genuinely are PexRD2-insensitive.   

Sequencing of the two most reproducible candidates revealed 2 polymorphisms 

at the amino acid level per variant. These were; Phe10Leu & Gln50Arg in one, and 

Ser200Thr & Asp241Asn in the other. Upon testing these polymorphisms 

individually, it was found that all four contributed to some extent to insensitivity to 

PexRD2, although Q50R and S200T seemed to produce the most robust, 

reproducible phenotype. This is a surprising observation. The probability of all four 

variants producing such a phenotype when they resulted from a population with no 

selective pressure for generation of effector-insensitive variants is extremely remote. 

Given that the positive and negative controls behaved exactly as predicted in these 

assays, it is likely that any potential issue does not lie in the experimental procedure 

itself. Furthermore, the PexRD2
Wt 

construct which completely suppresses cell death 

associated with MAPKKK
Wt 

came from the same bacterial culture as the PexRD2
Wt 

which fails to suppress cell death associated with the four PexRD2-insensitive 

variants removing, making it unlikely that the cell-death suppressor failed during 

these assays. The idea that putative PexRD2-insensitive kinase variants possess 

enhanced activity relative to the wild type discussed in the previous chapter is a 

possibility but encounters the same problems as the observation that all four SNPs 
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appear to contribute to insensitivity: improbability. The most likely alternative lies in 

the vectors in which the PexRD2-insensitive MAPKKKƐ variants were delivered. 

MAPKKKƐ
Wt 

was submitted to Genscript in the bespoke pERCH vector and returned 

following mutagenesis. Upon return, the vector backbone itself was not checked by 

sequencing. Therefore, there is a possibility that some mutation has occurred within 

the vector’s promoter region enhancing expression and, so, observable cell death 

symptoms. This seems the most likely explanation if all four variants are not 

genuinely PexRD2-insensitive.  

  

Figure 21| Explanation for the basis of hypothetical PexRD2-insensitive 

MAPKKKƐ variant dominant-resistant phenotype. 

MAPKKKƐ
Wt 

mediated cell death response is triggered in response to perception of 

Avr4 by Cf4, AvrPto by Pto or Prf and – probably – by other host factors including an as 

yet unidentified invasion pattern from oomycetes. This is achieved by sequential 

phosphorylation of downstream kinases leading to transcriptional changes. The RXLR 

effector PexRD2 is secreted into the host cytoplasm, directly interacts with MAPKKKƐ
Wt  

(purple) and suppresses this cell death response. MAPKKKƐ variants which are refractory 

to PexRD2 (yellow) respond to the same signals in response to invasion and elicit a cell 

death response. PexRD2 is unable to interact with these variants or otherwise unable to 

interfere with their activation of downstream signalling components. Cell death, 

therefore, is initiated despite the presence of endogenous MAPKKKƐ
Wt

. Adapted from 

(King et al., 2014). 
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Investigation of the nature of insensitivity of the variants of MAPKKKƐ through 

qualitative protein-protein interaction studies indicated that insensitivity may arise 

from a weakened interaction with PexRD2, which we hypothesised would lead to a 

subsequent perturbation of its virulence function. In the less stringent, -LWH + 3-AT 

assays, we observed no differential between wild type and variants, however it is 

possible that investigating increased 3-AT concentrations would make a differential 

observable. However, in the more stringent –LWU assay a clear differential was 

observed indicating that the interaction between the wild type kinase and the wild 

type effector is stronger. This result was re-capitulated in X-GAL assays. Yeast 2-

hybrid is, of course, a qualitative assay and not best-suited to measuring strength of 

interaction. In order to investigate this further, it may be necessary to purify both 

proteins and measure their binding affinities in vitro using a technique such as 

Isothermal Titration Calorimetry (ITC) or Surface Plasmon Resonance (SPR). 

However, the existence of a differential in activation of reporter genes in yeast does 

strongly suggest that PexRD2 has a reduced affinity for the PexRD2-insensitive 

MAPKKKƐ variants developed in the present study. This reduced affinity is likely to 

be the basis for their insensitivity to PexRD2. Reduced affinity, as opposed to total 

loss of interaction, may prove useful in the long term. Total loss of interaction with 

PexRD2 may create selective pressure favouring promiscuity of the effector and the 

acquisition of new virulence targets through evolution. An insensitive kinase which 

retains a weakened interaction may sequester the effector and alleviate any potential 

selection pressure.   

Efforts to generate CRISPR/Cas9 mediated knockouts of the endogenous 

MAPKKKƐ in the T0 generation were not successful, as screening revealed that 

primary transformants did contain large deletions but that these were not especially 

prevalent and that plants were likely to be chimeric. Screening of individual sgRNA 

sites for smaller indel mutations did reveal mutations which were present either 

homozygously, or heterozygously, in the tissue sampled. However, given the 

chimeric nature of the plants, based on PCR-RE analysis of gDNA, we decided it 

would be impossible to draw firm conclusions based on limited tissue sampling and 

that analysis of genome editing would be better assessed in the T1 generation where 

CRISPR/Cas9 mediated editing and transgene expression would be easy to identify 

in lines where they are present in the germline. An alternative possibility, not 
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investigated, is that the aliquot of restriction enzyme used for digests had lost some 

activity and digests were incomplete. However, even with incomplete digestion, 

efficience CRISPR-mediated KO should still be detected at a higher level than 

observed in figure 16 if the modification was particularly prevalent. Furthermore, it 

remains a possibility that high levels of wild type band detection could be the result 

of contamination with wild type DNA, potentially of primer stocks. Primers used for 

the assay in Figure 14 should be tested for amplification where no tomato gDNA is 

present in order to rule out the presence of contaminating MAPKKKƐ DNA. The lack 

of complete knockout of endogenous MAPKKKƐ in whole transformants presents 

something of a limitation to the present work. However, we hypothesised that 

expression of an effector-insensitive kinase variant in the same cell as the 

endogenous protein may produce a dominant-resistant phenotype. This is based on 

the idea that effector-insensitivity has been characterised through cell death assays 

and that PexRD2 is thought to target MAPKKKƐ in order to suppress its cell death 

induction activity in order to maintain living tissue for P. infestans to colonise. In a 

scenario where effector-sensitive kinase and effector-insensitive kinase are expressed 

in the same cell, cell death will be the dominant phenotype. This is outlined in Figure 

21. This, of course, is predicated on the assumptions that endogenous MAPKKKƐ is 

not expressed preferentially to effector-insensitive variants and that insensitive 

variants are stable in plant cells under native expression conditions and not rapidly 

degraded, leaving only a pool of effector-sensitive, endogenous MAPKKKƐ. If these 

assumptions proved to be correct then failure to test effector-insensitive kinases in 

plants where endogenous kinase expression had not been totally knocked out would 

be a severe limitation to the present work. The progeny of all primary transformants 

will be collected and germinated for analysis of stable inheritance of both the 

effector-insensitive kinases and CRISPR/Cas9 mediated editing events.  

With this assumption in mind, we proceeded to test primary transformants 

expressing V1 and V2 (F10L and Q50R) effector insensitive kinase variants for 

resistance to P. infestans. In infection time courses over 6 days post infection, one 

variant conditioned enhanced resistance relative to the wild type control line when 

challenged with P. infestans strain 88069 (the strain in which PexRD2 was first 

identified). An almost twofold reduction in mean lesion size was observed 4dpi, 

relative to wild type. Further to this, infection lesions looked visibly different with 
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lesions on resistant leaves exhibiting a darker colouration, reminiscent of cell death 

as opposed to the spreading, grey lesions associated with successful P. infestans 

colonisation. This fits with our hypothesis that effector-insensitive kinases will 

deliver a dominant-resistant phenotype in spite of the presence of endogenous, 

effector-sensitive kinase. This is an encouraging result. A second round of pathogen 

assays with V3 and V4 (S200T and D241N) lines, however, showed enhanced 

susceptibility of tissue expressing both putative effector-insensitive variants relative 

to wild type. This is a confounding result which is somewhat difficult to explain. We 

cannot form a rational hypothesis as to why these variants would condition enhanced 

susceptibility and we suggest that there is likely to be an inherent level of variability 

in our assays related to expression levels of the transgene and the success of 

CRISPR/Cas9 mediated editing in primary transformants. There may be a 

MAPKKKƐ dosage effect, where endogenous MAPKKKƐ is expressed at native 

levels (having not been efficiently knocked out by CRISPR/Cas9 editing) and 

complemented with effector-insensitive variants. It is conceivable that enhanced 

levels of expression of a known positive regulator of immunity could produce the 

enhanced resistance phenotype observed in V1 plants, and also make V3 and V4 

plants appear more susceptible. Another possible explanation could be that T-DNA 

has inserted into some key susceptibility gene in some lines, knocking it out and 

rendering certain lines more resistant. This is an obvious limitation on the present 

work and clearly collection of progeny from self-fertilised T0 plants and subsequent 

screening for knockout and transgene expression (in particular, expression relative to 

endogenous MAPKKKƐ levels) is required before firm conclusions can be made 

about the efficacy of any of these effector-insensitive variants in conditioning 

enhanced resistance – or susceptibility – to P. infestans.  

88069 is a well-studied laboratory strain of P. infestans but not especially 

prevalent in the field. In recent years, a member of the A2 mating type of P. 

infestans (which became prevalent in the UK in 2006 at the expense of the A1 type), 

known as 13_A2 (blue-13) has become especially prevalent in the UK, Europe and 

as far afield as India (Cooke et al., 2012, Chowdappa et al., 2013). Blue-13 is a 

notoriously aggressive genotype of P. infestans and is known to be resistant to 

frontline fungicides such as metalaxyl-M and other phenylamide fungicides. Blue-13 
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is known to express PexRD2 (Cooke et al., 2012) so future efforts should include 

testing transgenic lines against blue-13.  

Whilst we tested effector-insensitive variants against P. infestans strains known 

to express PexRD2 (Oh et al., 2009, Cooke et al., 2012), it would be important to 

identify a strain of P. infestans which does not express PexRD2 and challenge our 

transgenic plants with it in order to conclusively determine whether or not enhanced 

resistance is based on the presence/absence of PexRD2 in the invading pathogen. 

Enhanced resistance to strains not expressing PexRD2 may indicate an interaction 

between MAPKKKƐ and a further effector protein.  

It is known that MAPKKKƐ is a positive regulator of immunity in at least two 

other pathosystems (Melech-Bonfil and Sessa, 2010b). It would, therefore, be 

intriguing to test a range of other pathogens for which tomato is a natural host for 

reduced virulence on plants expressing PexRD2-insensitive kinases in order to assess 

the ability of these variants to confer broad-spectrum resistance. As a positive 

regulator of immunity in numerous pathosystems, one may envisage that effector 

proteins from multiple pathogens converge on MAPKKKƐ as a common virulence 

target in order to suppress its function. However, this would require both the 

secretion of an effector protein which directly targets MAPKKKƐ and that this 

effector protein interacts with MAPKKKƐ in a manner similar to that of PexRD2. 

Another consideration for the present work is the propensity of Phytophthora 

spp. to overcome resistance rapidly. In theory, it may only take one mutation in the 

sequence of PexRD2 to re-establish suppression of MAPKKKƐ mediated immunity. 

The likelihood of this could be investigated by establishing a similar random 

mutagenesis screen of PexRD2, and testing variants of the effector against effector-

insensitive kinase variants in the cell death assays deployed in this chapter. Related 

to this idea, stacking of one or more effector-insensitive kinases – similar to stacking 

of NLRs - may provide some insurance against this possibility. Stacking multiple 

mutations on one sequence may result in interference with normal protein function. 

Multiple effector-insensitive targets should be far more durable in the field than one. 

We aim to investigate both of these ideas in the future.  

  



135 

 

 

4 

A solanaceous MAPKKKK may 

function as a ‘helper’ of the P. 

infestans virulence effector 

PexRD2 

 

 

 

 

 



136 

 

Chapter 4 A solanaceous MAPKKKK 

may function as a helper of the P. 

infestans virulence effector PexRD2.  

4.1. Introduction 

 

Signal transduction from perception of an extracellular or intracellular stimulus is 

critical to elicit a cellular response. This role is generally carried out by a set of 

proteins termed Mitogen Activated Protein Kinases (MAPKs). These kinases are 

activated by an immune receptor, which often contains a kinase domain of its own or 

associates with a co-factor possessing a kinase domain upon invasion pattern 

perception, through phosphorylation. From there, further kinases are sequentially 

activated until a response is elicited, often in the form of transcriptional re-

programming. Following signal perception by a cell surface or intracellular immune 

receptor, the first module in a given MAPK signalling cascade is a MAPKKKK, or 

MAP4K. MAPKKKKs act to phosphorylate MAPKKKs (MAP3Ks).  

PM4K1 (henceforth referred to as MAPKKKK) is a MAP4K from Solanum 

lycopersicum. It was identified as an interactor of the P. infestans RXLR effector 

PexRD2 in a yeast 2-hybrid screen using PexRD2 as the bait in a prey library 

derived from cDNA generated from potato tissue infected with P. infestans (King, 

2013). MAPKKKK shares significant levels of homology with the kinase domain of 

Sterile 20 protein-related protein kinases (Ste20p-related protein kinases). Ste20p is, 

itself, a protein kinase from yeast known to activate a signalling cascade by direct 

phosphorylation of Ste11p, a MAP3K. Currently there is no evidence to suggest that 

MAPKKKK phosphorylates the MAPKKKƐ discussed in Chapter 3, despite evidence 

for a direct interaction (King, 2013). MAPKKKK may activate some other signalling 

cascade. The Ste20p-related protein kinases themselves can be further subdivided 

into two families termed the p21-activated kinase (PAK) and Germinal Centred 

Kinase (GCK) families which encode a catalytically active domain at their C- or N- 

terminus, respectively (Dan et al., 2001). It is clear from the literature that the 
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Ste20p-related kinases, PAKs and GCKs are involved in many different, critical 

cellular processes including cytoskeletal organisation and stress response (Brown et 

al., 1996, Chen et al., 2004), sterol homeostasis (Lin et al., 2009) as well as 

pheromone response in yeast and – potentially - other organisms (Leeuw et al., 1998, 

Leberer et al., 2000).  

A homology search – using the amino acid sequence of MAPKKKK – showed 

that MAPKKKK contains a putative Serine/Threonine catalytic domain with 

homology to two members of the GCK sub-family VI; Oxidative Stress Response 1 

(OSR1) and Ste20-related proline/alanine-rich kinase (SPAK) (King, 2013). OSR1 

and SPAK share a number of conserved features in their regulatory regions including 

a putative Nuclear Localisation Signal (NLS), a Caspase cleavage site and putative, 

C-terminal protein-protein interaction domains (Piechotta et al., 2003, Delpire and 

Gagnon, 2008). By comparison, MAPKKKK shares no real conservation with the 

regulatory regions of OSR1 or SPAK, suggesting that the mechanisms of regulation 

and downstream targets of MAPKKKK are likely to be divergent from those of 

OSR1 and SPAK. In addition, MAPKKKK is predicted to encode a coiled-coil 

domain at its C-terminus which is, once more, in contrast with OSR1 and SPAK but 

similar to other Ste20-like kinases, such as SLK, a regulator of renal development in 

mammals (Delarosa et al., 2011). These coiled-coil domains have been hypothesised 

to mediate homodimerisation, enhancing their signalling activity. It has been 

demonstrated, through yeast 2-hybrid assays, that MAPKKKK can self-associate 

(King, 2013) although the implications of this are unclear as its in planta function is 

not currently known.  

As discussed in section 1.4, MAP Kinases are of critical importance as regulators 

of a range of processes in plants and, as such, are a general target of effector proteins 

secreted by plant pathogens. Of particular importance here, the solanaceous 

MAPKKKƐ was identified as a virulence target of the P. infestans effector protein 

PexRD2 (King et al., 2014). The importance of this interaction is discussed in greater 

detail in Chapter 3.  

The S. tuberosum MAPKKKK identified in the initial Y2H screen has 

homologous proteins in S. lycopersicum and in the model host, N. benthamiana with 

sequence homology at the amino acid level of 99% and 92%, respectively. This 
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indicates that any findings based on the potato protein will likely be broadly 

applicable to other solanaceous crops and that N. benthamiana will serve as a 

suitable model system to study the interaction between MAPKKKK and PexRD2. 

We hypothesised that MAPKKKK may, like MAPKKKƐ, be a bona fide virulence 

target of the P. infestans RXLR effector PexRD2 and set out to explore this 

hypothesis through pathogenicity assays in the model, solanaceous host Nicotiana 

benthamiana. During the course of the research presented in the present chapter, it 

became apparent that MAPKKKK may not be a virulence target of PexRD2 in the 

traditional sense of the term but may serve to modify PexRD2 in planta and enhance 

its virulence function. The helper concept is discussed more thoroughly in section 

4.2.3. This idea was explored using co-expression of the kinase and the effector, 

once more in N. benthamiana as well as using mass spectrometry on proteins 

expressed in planta to test for post-translational modifications, including 

phosphorylation.  
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4.2. Results 

 

4.2.1. The kinase domain of MAPKKKK and the effector domain 

of PexRD2 are necessary and sufficient for interaction 

  

The C-terminal effector domain of PexRD2 is necessary and sufficient for its 

biochemical function in planta, which is to suppress cell death signalling associated 

with MAPKKKƐ (King, 2013, King et al., 2014). Further, the N-terminal kinase 

domain of MAPKKKƐ was shown to be necessary and sufficient for interaction with 

PexRD2 and the two ARMADILLO repeat domains spanning residues in the C-

terminal portion of the protein were not required, despite their previously reported 

role in mediating protein-protein interactions (Huber et al., 1997).  

Based on this it was hypothesised that the PexRD2/MAPKKKK interaction 

would follow a similar pattern with the N-terminal kinase domain - spanning 

residues 16 to 277 – being necessary and sufficient for interaction with PexRD2. To 

test this, a yeast 2-hybrid approach was used testing three truncations of MAPKKKK 

for interaction with PexRD2 lacking the N-terminal signal peptide. Also tested for 

MAPKKKK interaction were two additional PexRD2 truncations, one lacking the 

residues to the N-terminus of the RXLR motif and one lacking the residues to the 

start of WY-domain. These constructs had previously been prepared by Stuart King 

(JIC). Constructs were transferred into yeast 2-hybrid expression vectors pDEST22
™ 

and pDEST32
™ 

by Gateway Cloning. These truncated constructs are outlined in 

Figure 22 and yeast 2-hybrid reporter assays are shown in Figure 23. Two 

orthologues of PexRD2 – PITG_14787 and PITG_14984 – known not to interact 

with full length MAPKKKK in yeast 2-hybrid assays were also transferred into 

pDEST32
™

 to act as negative controls.  
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Figure 22| Truncated constructs used in section 4.2.1. 

a) Schematic representation of PexRD2 starting from residue 21. Residues 21-121 

correspond to ‘full length’ construct lacking its signal peptide, PexRD2
42-121

 lacks the signal 

peptide and the RXLR motif whilst PexRD2
57-121

 lacks the RXLR-dEER motif and is 

comprised of the WY-domain only. Constructs hereafter referred to as PexRD2
∆20

, 

PexRD2
∆41 

and PexRD2
∆56

, respectively. b) Shows a schematic representation of the ‘full 

length’ MAPKKKK construct in addition to the two truncated constructs used. The first 

comprises MAPKKKK
1-389 

containing the kinase domain but excluding most of the C-

terminus. The second comprises MAPKKKK
287-674

 excluding the kinase domain but 

including most of the C-terminal region of MAPKKKK. 

a) 

 

b) 
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Figure 23 shows results of yeast 2-hybrid reporter assays. Full length PexRD2, as 

well as PexRD2
∆41

 and PexRD2
∆56

 interacted with full length MAPKKKK in all 

three reporter assays. PexRD2
∆20 

and PexRD2
∆56 

also interacted with MAPKKKK
1-

389
 in -HISTIDINE assays and, weakly, in X-Gal assays. No interaction was observed 

in –URACIL assays.  This may indicate that, whilst not critical for a physical 

interaction, MAPKKKK’s C-terminal residues may interact with PexRD2 or 

otherwise exert some effect on the conformation of the rest of MAPKKKK which 

stabilises the interaction and that removing these residues destabilises its complex 

with PexRD2. Interestingly, PexRD2
∆41 

did not interact with MAPKKKK
1-389 

in the 

three reporter assays. This construct is only 21 amino acids shorter than the 

PexRD2
∆20 

construct which still interacted and does not lack any known domain 

Figure 23| Yeast 2-hybrid reporter assays for MAPKKKK truncations and PexRD2 

truncations. 

Rows of 3 spots of yeast growth within individual panels derive from 3 independent colonies 

per bait and prey combination selected following co-transformation of bait and prey constructs. 

Images were recorded 48 h after transformants were spotted onto reporter assay plates. Panels, 

therefore, all contain the same bait construct and each row represents that bait construct tested 

against a different prey construct.  
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thought to be critical for interaction. Given that both the ‘full length’ and ‘effector 

domain only’ constructs still interacted with MAPKKKK’s kinase domain it seems 

likely that this observation is a false negative or an artefact of an expressed protein 

construct which is not predicted to exist in the natural potato/tomato-P. infestans 

pathosystem. The C-terminal region of MAPKKKK did not interact with any 

PexRD2 construct in any reporter assay and neither of the PexRD2 orthologues 

interacted with any MAPKKKK construct in any reporter assay indicating that the 

kinase domain of MAPKKKK can interact with PexRD2’s effector domain – 

although the interaction between PexRD2 and full length MAPKKKK is stronger - 

and that this interaction does not extend to close relatives of PexRD2.  

This confirmed interaction between PexRD2 and MAPKKKK suggests that 

MAPKKKK may represent a genuine virulence target of PexRD2, alongside 

MAPKKKƐ. In addition, previous work suggested the PexRD2/MAPKKKK 

interaction could be observed by in planta co-IP and preliminary evidence suggested 

an interaction may be observed when the proteins are purified after co-expression in 

E. coli (work by Dr Abbas Maqbool, JIC). This was determined by co-expression of 

hexa-histidine tagged PexRD2 and MAPKKKK in E. coli and comparison of size 

exclusion chromatography (SEC) peaks to both MAPKKKK and PexRD2 expressed 

alone. A clear peak shift was observed when MAPKKKK and PexRD2 were co-

expressed with no peak observed for either of the two proteins on their own (Figure 

24). Analysis of fractions collected under this shifted peak by SDS-PAGE indicated 

the presence of both proteins and provided clear evidence of an interaction in vitro.   
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Figure 24| PexRD2 co-elutes with MAPKKKK following SEC. 

a) SEC peak for MAPKKKK and PexRD2 co-expressed alongside SDS-PAGE gel of 

fractions under the peak. Gel indicates co-elution of kinase and effector. Upper bands represent 

MAPKKKK whilst lower bands represent PexRD2 Peak indicates earlier elution volume 

relative to b) and c) (PexRD2 and MAPKKKK expressed alone, respectively) indicating the 

formation of a complex between the two proteins. SDS-PAGE gels of fractions under these 

peaks indicate the presence of PexRD2 or MAPKKKK alone. Dashed lines indicate the elution 

volumes of each peak.  

 

a) 

 

 

 

b) 

 

 

 

c) 
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4.2.2. Transient overexpression of MAPKKKK in planta does not 

affect virulence of P. infestans on N. benthamiana leaves 

 

In order to test the hypothesis that MAPKKKK is a virulence target of PexRD2, 

MAPKKKK was overexpressed transiently from the pB7WGF(3xHA)2 vector in 

one half of a ~4 week old N. benthamiana leaf, alongside an empty vector control in 

the other half of the same leaf as a direct comparison. Leaves were allowed to 

recover from agroinfiltation for around 48 h before harvesting. Leaves were detached 

and placed in trays on top of paper towel saturated with water to create an 

environment of 100% relative humidity. Leaves were then challenged with the P. 

infestans 88069 prepared and applied to leaves as described in section 2.9.7.  

Infection was allowed to proceed for 7 days and images of leaves and developing 

lesions were recorded daily from appearance of visible lesions (4 days). 

Over the time course from day 5 to day 8 post infection, mean lesion size on 

tissue overexpressing MAPKKKK did not differ significantly (student’s t-test (n = 

20)) from mean lesion size on tissue not overexpressing MAPKKKK at any given 

time point, suggesting that MAPKKKK is not deleterious to P. infestans 88069 

virulence on this variety of N. benthamiana (Figure 25).  
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Although the interaction between MAPKKKK
N-319 

and PexRD2 was weaker in 

yeast, we investigated the possibility that the kinase domain of MAPKKKK, lacking 

its predicted, disordered regulatory C-terminal region may enhance virulence of P. 

infestans 88069 on N. benthamiana leaves. N. benthamiana leaves were infiltrated 

with the constitutively expressed pB7WGF(3xHA)2.MAPKKKK
N-319 

construct. 

Leaves were detached ~48 h post infiltration and placed in trays on top of paper 

towels saturated with water, at 100% humidity. Leaves were infected with P. 

Figure 25| Overexpression of MAPKKKK
FL

 does not affect P. infestans virulence. 

a) Detached N. benthamiana leaf infected with P. infestans. Left hand side transiently 

infiltrated with pB7WGF(3xHA)2.MAPKKKK
FL

 and right hand side transiently infiltrated with 

empty pB7WGF(3xHA)2. Characteristic spreading, grey P. infestans lesions visible on lower 

portion of leaf. b) Bar chart showing mean lesion area in mm
2
 over a time course of 5-8 days post 

zoospore inoculation. Error bars represent standard error (n = 20). White bars represent tissue 

expressing MAPKKKK
FL

.  

a)                                                   b)                         MAPKKKKFL 

EV 
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Figure 26| Overexpression of MAPKKKK
N-319 

does not affect P. infestans virulence.   

a) Detached N. benthamiana leaf infected with P. infestans. Right hand side transiently 

infiltrated with pB7WGF(3xHA)2.MAPKKKK
N-319

 and  left hand side transiently infiltrated with 

empty pB7WGF(3xHA)2. Characteristic spreading, grey P. infestans lesions visible on lower portion 

of leaf. b) Bar chart showing mean lesion area in mm
2
 over a time course of 4-7 days post zoospore 

inoculation. Error bars represent standard error (n = 20). White bars represent tissue expressing 

MAPKKKK
1-319

.  

a)                                                b) MAPKKKK1-319

EV

infestans 88069 as described previously and infection was allowed to proceed for 7 

days, with images recorded daily.  

Over days 5-8 post zoospore inoculation, no significant difference (student’s t-

test (n = 20)) was observed between lesions on leaf tissue expressing MAPKKKK
N-

319 
and lesions on leaf tissue infiltrated with empty vector control on any given day. 

This suggests that the kinase domain of MAPKKKK is not sufficient to impede the 

pathogenicity of P. infestans 88069 on this variety of N. benthamiana and questions 

the hypothesis that MAPKKKK is a bona fide virulence target of PexRD2. These 

results are shown in Figure 26.  
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4.2.3. Transient overexpression of MAPKKKK enhances P. 

infestans virulence on N. benthamiana leaves when co-

expressed with PexRD2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27| Co-expression of MAPKKKK
FL

 with PexRD2 appears to enhance its 

virulence function in planta. 

a) Detached N. benthamiana leaf  infected with P. infestans 88069. Left hand side co-expressing 

MAPKKKK
FL 

and PexRD2, right hand side expressing PexRD2 alone. White bars represent kinase & 

effector. Black bars represent effector only b)   Bar chart showing mean lesion area in mm
2
 over a 

time course of 2-4 days post zoospore inoculation. Error bars represent standard error. Significant 

differences at the p = <0.05 were determined by student’s t-test. n = 40. c) Immunoblot 

demonstrating protein expression. Membranes were incubated with primary anti-HA antibody and a 

secondary antibody conjugated to HRP. Left hand lane shows HA-PexRD2 expressed alone. Right 

hand lane shows HA-MAPKKKK
FL 

and HA-PexRD2 co-expressed. Arrowheads show expected size 

of each protein. Upper band is MAPKKKK
FL 

and lower band is PexRD2. Ponceau S stain of the large 

RuBisCo sub-unit to demonstrate protein loading.    

PexRD2 

MAPKKKKFL & PexRD2
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Although MAPKKKK expression alone in N. benthamiana did not affect growth 

of P. infestans 88069, it remains possible that the interaction between MAPKKKK 

and PexRD2 is relevant during infection. In order to investigate the hypothesis that 

MAPKKKK somehow activates PexRD2 and enhances its ability to promote P. 

infestans virulence in planta, PexRD2
Δ21

 was expressed transiently in N. 

benthamiana leaves under the control of a constitutively active promoter in the 

pB7WGF(3xHA)2 vector. In one half of a given leaf, PexRD2 was co-expressed 

with full length MAPKKKK in the pB7WGF(3xHA)2 vector and in the other half of 

the same leaf, PexRD2 was expressed alone. Leaves were detached 48 h post 

infiltration and placed in trays on top of water saturated paper towel in 100% 

humidity. Leaves were then challenged with P. infestans 88069 prepared and applied 

as described in section 2.10.7 and infection was monitored, recorded and analysed as 

described previously with the exception that disease lesions appeared earlier 

(presumably due to overexpression of the virulence effector PexRD2) so lesions 

were monitored from 2-4 days post zoospore incoculation. The results of this assay 

are shown in Figure 27.  

We also tested the kinase domain of MAPKKKK in order to see if it was 

sufficient to provide the same enhancement of PexRD2 virulence function observed 

when full length MAPKKKK was co-expressed with PexRD2. MAPKKKK
N-319

 was 

co-expressed alongside PexRD2 in one half of a N. benthamiana leaf, whilst 

PexRD2 was expressed on its own in the other half. Leaves were infiltrated, 

detached and inoculated with P. infestans 88069 as described previously, and 

symptoms were monitored from 3-5 days post zoospore inoculation. The results of 

this assay are presented in Figure 28.  
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MAPKKKK1-319 & PexRD2

Figure 28| Co-expression of MAPKKKK
N-319 

with PexRD2 may enhance PexRD2’s 

virulence function. 

a) Detached N. benthamiana leaf  infected with P. infestans 88069. Left hand side co-

expressing MAPKKKK
N-319

 and PexRD2, right hand side expressing PexRD2 alone. b)   Bar 

chart showing mean lesion area in mm
2
 over a time course of 3-5 days post zoospore inoculation. 

White bars represent tissue expressing effector and kinase, black bars represent effector only. 

Error bars represent standard error. Significant difference at p = <0.05 differences determined by 

student’s t-test. n = 24 inoculation sites.  

a)                                               b) 

* 

PexRD2  

 

 

It was observed that the kinase domain of MAPKKKK does enhance virulence 

function, as measured by mean lesion size, significantly 3 days post zoospore 

inoculation (student’s t-test) although this enhancement of virulence function does 

not continue 4 and 5 days post inoculation. However, whilst not statistically 

significant, it should still be noted that mean lesion size for these two days is still 

measurably higher in tissue where the kinase domain of MAPKKKK and PexRD2 

are co-expressed compared to where PexRD2 is overexpressed alone.  
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4.2.4. MAPKKKK mediated phosphorylation of PexRD2 cannot be 

detected in planta 

 

We hypothesised that the enhanced virulence activity associated with co-

expression of MAPKKKK and PexRD2 may be due to MAPKKKK mediated 

phosphorylation of PexRD2 due to the clear evidence for a direct interaction between 

kinase and effector.  

The amino acid sequence of PexRD2
Δ21

 was submitted to the NetPhosk 2.0 

server which predicts probability of phosphorylation of serine, threonine and 

tyrosine residues based on amino acid sequence (Blom et al., 2004). The output 

predicted the potential phosphorylation of 6 residues at a probability of >0.5. This 

included serine residues at positions 22, 53 and 92, Threonine residues at positions 

60 and 72 and a tyrosine residue at position 76 (Figure 29). As MAPKKKK is a 

predicted serine/threonine protein kinase, it is unlikely to act on Tyr76. 

To investigate whether any of these sites were phosphorylated by MAPKKKK, 

pTRBO.PexRD2
21-121 

was overexpressed transiently in N. benthamiana in the 

presence of pB7WGF(3xHA)2.MAPKKKK
1-319

, and in the absence of MAPKKKK 

as a direct comparison. The CaMV 35S driven pTRBO vector, in addition to 

expressing the TBSV p19 silencing suppressor, encodes an N-terminal FLAG tag 

based on the expression vector constructed in (Lindbo, 2007). Following extraction 

of crude cell lysate from N. benthamiana leaves, lysate was incubated with anti-

FLAG resin conjugated to magnetic beads in order to enrich for PexRD2 by 

immune-precipitation. Samples were analysed by SDS-PAGE, western blotting and 

immuno-detection of HA-tagged kinase and FLAG-tagged effector (Figure 30). 

PexRD2 appears to be moderately enriched following pulldown compared with 

crude lysate whilst MAPKKKK
1-319 

appears to be significantly enriched compared 

with crude lysate. Some MAPKKKK
1-319

 was detected following pulldown with anti-

FLAG resin from lysate containing no FLAG-tagged PexRD2 indicating that there 

may be some cross-reactivity or that washing was insufficient during pulldown. As 

this was not a test for protein-protein interactions, this was not considered a major 

cause for concern. 
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Following confirmation of expression by immuno-detection shown in Figure 30, 

protein bands in SDS-PAGE gels corresponding to FLAG-tagged PexRD2 stained 

with InstantBlue™ were excised from the gel with a sterile scalpel and submitted for 

mass spectrometry analysis. Notably, when stained with instant blue, enrichment of 

FLAG-tagged PexRD2 became more apparent.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Note – mass spectrometry was performed by Dr Gerhard Saalbach of the JIC 

proteomics platform). 

Excised gel slices containing FLAG-tagged PexRD2 were washed and digested in 

gel with trypsin prior to extraction according to procedures adapted from 

(Shevchenko et al., 2007). Detected peptides for both samples containing either 

PexRD2 alone (sample 1) of PexRD2 co-expressed with the MAPKKKK (sample 2) 

Figure 30| PexRD2 co-expressed with MAPKKKK
N-319 

and enriched by 

immunoprecipitation. 

(Left) Western blot showing; horseradish peroxidase assay for detection of HA 

tagged protein in pulldowns (IP Flag) or in crude lysate (Input), alkaline phosphatase 

assay for detection of FLAG tagged protein in pulldowns or crude lysate and Ponceau 

red staining of the large RuBisCo subunit to confirm protein loading (Note – total 

protein loading expected to be lower in pulldown relative to input). (Right) InstantBlue 

stained 17% SDS-PAGE gel ran simultaneously with western blot to the left with 

aliquots of the same samples loaded, demonstrating enrichment of FLAG-tagged 

PexRD2 in pulldown lanes relative to crude extract. Bands for PexRD2 indicated by 

black arrow. These bands were excised and submitted for LC-MS/MS analysis. The 

bands of similar size to PexRD2 in input lanes do not correspond to PexRD2. 
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kinase domain are presented in Table 10 alongside their observed masses, their 

unmodified predicted masses and their predicted masses based on the 

phosphorylation prediction presented in Figure 29.  

 

In both samples, coverage was not perfect. In sample 1, 68/101 amino acids were 

detected (67%). Included in the missing amino acids was T60, which was predicted 

to be phosphorylated. However, given that this sample was serving as a negative 

comparison for MAPKKKK’s activity, this is not necessarily an issue as we 

predicted that no residues here should be phosphorylated. Furthermore, given that 

this residue is covered in sample 2, where we would predict it may be 

phosphorylated yet no phosphorylation can be detected, it is a reasonable assumption 

that this residue is also not phosphorylated in sample 1. In sample 2, 70/101 amino 

acids were detected (69%) which was roughly equivalent to sample 1. Again, only 

one of the residues predicted to be phosphorylated based on Figure 29 was not 

detected: S22.  

 
Table 10| Predicted and observed masses of PexRD2 derived peptides expressed alone 

in N. benthamiana tissue or co-expressed with MAPKKKK. 

First column shows peptide amino acid sequence, second column shows 

predicted molecular mass of peptide as determined by the ProtParam server, third 

column shows observed peptide mass and fourth column shows mass shift between 

predicted and observed peptide masses. Residues bioinformatically predicted to be 

phosphorylated in Figure 29 are highlighted red.   
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The observed masses of peptides detected in Table 10 correlate well with the 

masses predicted for each peptide by the ProtParam server indicating that PexRD2, 

overexpressed alone in N. benthamiana leaves, undergoes no post-translational 

modifications. In sample 2, mass changes in two of the peptides are observed. 

ALNTEKMK has a Δ of +15.39Da and AGMTVDDYAAKLK has a Δ of +15.19Da. 

These mass shifts likely correspond to oxidation of the sulphur moieties on 

methionine residues forming methionine sulphoxide. This modification is a frequent 

artefact observed in mass spectrometry experiments and not the result of any 

MAPKKKK activity on PexRD2. What is clear from the data is that MAPKKKKN-

319 expression does not phosphorylate any peptide detected in the present assay. 

Phosphorylation would correspond to a Δ in the range of +80 Da, which was not 

detected for any peptide. However, it is impossible to formally rule out the 

possibility that PexRD2 is phosphorylated by MAPKKKK
N-319 

as incomplete 

coverage has resulted in the peptide containing Ser22, which is predicted to be 

phosphorylated with a probability of ~0.9 (Figure 29), not being detected. 

4.3. Discussion 

 

MAP Kinases are firmly established as common virulence targets of virulence 

effectors secreted by a variety of plant-associated microbes (Zhang et al., 2007, Cui 

et al., 2010, Wang et al., 2010, King et al., 2014). This is unsurprising given their 

integral role in the transduction and amplification of signals triggered by a wide 

range of invasion patterns, including classically defined MAMPs perceived by PRRs 

and avirulence effectors perceived by NLRs.  

We investigated the possibility that MAPKKKK is a virulence target of PexRD2 

through a series of in planta pathogen growth assays, using Agrobacterium mediated 

overexpression of MAPKKKK in N. benthamiana (a model host of P. infestans) to 

test this hypothesis. If MAPKKKK is a bona fide virulence target of PexRD2, we 

would hypothesise that its overexpression would be detrimental to pathogen fitness, 

presenting as smaller disease lesions on leaf tissue overexpressing MAPKKKK 

relative to those infiltrated with a vector control. This assay was performed using a 

full length MAPKKKK construct as well as a construct expressing only the minimal 
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interacting domain of MAPKKKK - residues 1-319 – which encode its catalytically 

active kinase domain (Figure 25 and Figure 26, respectively). In both assays, mean 

lesion size was roughly the same on leaf tissue expressing a kinase construct as it 

was on leaf tissue transformed with an empty vector control. This strongly suggests 

that MAPKKKK may not be a virulence target of PexRD2. We cannot formally 

exclude the possibility that MAPKKKK is a susceptibility factor, however. 

Overexpression does not promote enhanced virulence but native expression may be 

sufficient to observe enhanced susceptibility. VIGS constructs targeted against 

endogenous MAPKKKK mRNA could reveal whether or not MAPKKKK is a 

susceptibility factor.  

One hypothesis may be that the interaction is vestigial, and at one time 

MAPKKKK mediated signalling in a pathway which promoted defence against P. 

infestans and – whilst the pathway no longer functions – the interaction remains. 

Given the continuous arms race between host and pathogen, it is easy to envisage a 

scenario in which a particular signalling pathway was lost as it no longer conferred 

any benefit due to pathogen targeting and maintaining it was too costly. Another 

hypothesis is the idea that MAPKKKK may function as a ‘helper’ of PexRD2. The 

process of effector entry into a host cell and subsequent modification by a host  

derived factor is a well-understood idea in plant pathology known as the ‘helper 

concept’ (Win J, 2012). A helper protein can be defined as a host protein which; 

post-translationally modifies an effector protein, is required for maturation of an 

effector protein, acts as a co-factor for effector function or is required for trafficking 

of an effector protein within the host cell. A basic model of the helper concept, using 

MAPKKKK and PexRD2 as examples, is presented in Figure 31. Classical examples 

of helper proteins include myristoyl transferases which myristoylate the TIIISS 

secreted effector AvrPto from Pseudomonas syringae. AvrPto is recognised by the 

intracellular immune receptor Pto and this is dependent on myristoylation mediated 

localisation to the host plasma membrane (Shan et al., 2000). Another well studied 

example of a helper protein is the Glycine max (Soybean) cyclophilin GmCYP1. 

GmCYP1 possesses proly-pedtidyl isomerase (PPIase) activity which is required for 

the proper formation of intra-molecular prolyl bonds. GmCYP1 physically interacts 

with a GP peptide of the Avr3b effector from P. sojae and this PPIase activity is 

required for proper maturation of Avr3b. In the absence of GmCYP1 – or 
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homologous cyclophilins from N. benthamiana extract, Avr3b loses its virulence 

function (as a nudix hydrolase) and also can no longer be recognised by the NLR 

Rps3b (Kong et al., 2015). 

We set out to test the hypothesis that MAPKKKK could post-translationally 

modify PexRD2 in planta through transient co-expression in N. benthamiana tissue 

and subsequent infection with live P. infestans. Once more, this was carried out with 

the two constructs discussed previously, one comprising full length MAPKKKK and 

the other comprising just its N-terminal kinase domain. These were co-expressed 

with PexRD2 and pathogen growth was compared to growth on leaf tissue 

expressing PexRD2 alone. In both cases, a statistically significant enhancement of P. 

infestans mean lesion size was observed where one of the MAPKKKK constructs 

was co-expressed with PexRD2 relative to tissue where PexRD2 was expressed 

alone. This strongly suggests that MAPKKKK acts as a ‘helper’ to PexRD2, 

enhancing its virulence function and, so, facilitating the growth of P. infestans on 

plant tissue. Given that there is robust evidence for a direct interaction between 

MAPKKKK and PexRD2, the simplest explanation for this observation is that 

Figure 31| Hypothetical model of MAPKKKK acting as a 'helper' for PexRD2. 

a) PexRD2 is translocated into a host cell and, in the absence of its helper protein, exerts 

a weak virulence function. b) PexRD2 is translocated into a host cell and interacts with – and 

is directly phosphorylated by – its helper protein MAPKKKK leading to enhanced virulence 

function. 
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MAPKKKK directly phosphorylates PexRD2 and that this post-translational 

modification enhances its virulence function.  

It remains a possibility that MAPKKKK is a bona fide virulence target of 

PexRD2 and does indeed enhance resistance to P. infestans when overexpressed. It is 

feasible that expression of MAPKKKK in one half of a leaf could elicit a systemic 

immune response which spreads to areas of the leaf infiltrated with an empty vector 

control only. In such a scenario, any positive regulation of immunity by MAPKKKK 

would not be detected as pathogen growth would be limited in all parts of the leaf to 

which such a signal had spread. It may be possible to test this by performing whole 

leaf pathogen assays where one whole leaf is infiltrated with MAPKKKK, another is 

infiltrated with a negative control, the two are inoculated with P. infestans and 

disease symptoms are compared. In order to test whether a systemic response is 

responsible for not being able to detect positive regulation of immunity mediated by 

MAPKKKK, one half of a leaf could be infiltrated with MAPKKKK whilst the other 

half could be assayed for classical defence responses such as ROS burst or 

upregulation of defence-related genes.  

This hypothesis was tested using a mass spectrometry approach to identify post-

translational modifications of PexRD2. No MAPKKKK-mediated phosphorylation 

of PexRD2 could be detected. However, it should be noted that coverage of the 

sample where kinase and effector had been co-expressed was not perfect and that 

one residue which we predicted may be phosphorylated with a high degree of 

probability was not detected (Ser22). This residue was predicted to be 

phosphorylated with a ~0.9 probability score. Therefore, the present analysis cannot 

formally exclude the possibility that MAPKKKK
N-319

 is able to phosphorylate 

PexRD2 and we can only conclude that we cannot detect it with the methods 

available to us. Examples of other Phytophthora effector proteins from the literature 

suggest serine residues may typically be phosphorylated in planta (Van Damme et 

al., 2012). Three serine residues in PexRD2 are predicted to be phosphorylated with 

a high degree of confidence. These should serve as starting points for mutational 

analyses to see whether or not the observed MAPKKKK-mediated enhancement of 

virulence can be abolished. One cautionary point should be noted, however: the 

NetPhosK server makes predictions based on a machine learning algorithm which 
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incorporates data on residues known to be phosphorylated by human kinases. Any 

predictions made in this way should be treated purely as predictions. 

If MAPKKKK does indeed phosphorylate PexRD2 and it simply has not been 

detected with the methods previously described, one option may be to try enriching 

for phosphopeptides using Titanium Dioxide coupled to replacing trypsin with a low 

specificity protease to enhance sequence coverage (Schlosser et al., 2005). Further to 

this, a phosphor-staining gel or an antibody against specific phosphorylated residues 

could be deployed before further attempts are made to optimise MS approaches to 

detect the exact nature of any MAPKKKK-mediated phosphorylation of PexRD2. In 

addition to this – only co-expression of the kinase domain with PexRD2 was 

analysed. Given that the kinase domain was sufficient for the interaction with 

PexRD2 we felt it may be sufficient for any potential enzymatic activity. However, it 

is also possible that MAPKKKKs C-terminal domain performs an important 

regulatory function related to MAPKKKK’s biochemical activity. Indeed, the 

literature lends support to the idea that the C-terminal domain of MAPKKKK may 

be critical (Delarosa et al., 2011). This correlates with the observations made in yeast 

2-hyrbid assays that whilst MAPKKKK’s kinase domain can mediate an interaction 

with PexRD2, only the full length kinase interacts with PexRD2 in –Uracil 

auxotrophy assays, suggesting a role for MAPKKKK’s C-terminal region in 

regulation/stability of the protein. Whilst the regulatory domains of PAK kinases 

appear to be negative regulators, recruited to prevent autoactivity (House and Kemp, 

1987, Zhao et al., 1998), the GCK kinases (of which MAPKKKK is a member) tend 

to have C-terminal domains observed to be important for activation of downstream 

signalling modules (Su et al., 1997, Kyriakis, 1999). Further work should focus on 

assessing the potential of MAPKKKK’s C-terminal domain for mediating 

phosphorylation of PexRD2.  

Clarification on any biological relevance for the MAPKKKK-PexRD2 

interaction could be provided by improved knowledge of the pathways in which it 

operates. Currently, its role in immune signalling is not understood. Identification of 

the invasion pattern which MAPKKKK is involved in signalling the perception of, as 

well as identification of MAPKKKK’s substrate, or other downstream signalling 

modules, would provide the toolkit necessary to fully interrogate the relevance of the 
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interaction in P. infestans-host interactions. One clue could be provided by the 

substrate of MAPKKKK’s homologue in yeast; Ste20p. As discussed earlier, Ste20p 

interacts with, and phosphorylates Ste11p, whose C-terminus shares significant 

homology with a predicted NPK-1-related protein kinase in S. lycopersicum (Banno 

et al., 1993, Jin et al., 2002). N. tabacum NPK1 is able to complement 

Saccharomyces cerevisiae strains deficient in related kinases PKC1 and BCK1 but 

interestingly not Ste11p. The function of NPK1 and related kinases in planta is well 

understood to be the control of cytokinesis and the formation of cell plates, and 

overexpression of an inactive mutant form of NPK1 in N. tabacum cell suspensions 

leads to the formation of multi-nucleated cells (Nishihama et al., 2001). However, it 

is also generally accepted that NPK1 probably functions in many, diverse, unrelated 

pathways in the plant cell, including immune signalling (Hirt, 2000, Jin et al., 2002). 

If these pathways are conserved between plants and yeast, then plant NPK1 

homologues should be interrogated as a potential substrate of MAPKKKK and as a 

regulator of immunity. This could provide insights into whether or not MAPKKKK 

is a potential target of PexRD2 or whether it may function as a helper of PexRD2. 

Figure 32 shows the S. cerevisiae Ste11p sequence (residues 301-727) aligned with a 

subset of plant NPK1-like proteins which share 44-45% sequence identity with this 

region of Ste11p. These proteins should be investigated through protein-protein 

interaction studies and through assaying MAPKKKK’s ability to phosphorylate them 

in planta.  

Presently, the evidence points toward MAPKKKK not being a direct virulence 

target of PexRD2, in the sense that there is no evidence to support the hypothesis 

that PexRD2 interacts with MAPKKKK in order to perturb some function which 

either positively regulates immunity to P. infestans or negatively regulates P. 

infestans’ ability to derive nutrients from the host cell. In planta assays with live P. 

infestans suggest a role for MAPKKKK in enhancing PexRD2’s virulence function 

and we hypothesised that this is through PexRD2 hi-jacking MAPKKKK’s role as a 

component of a MAPK signalling pathway, although conclusive evidence for or 

against this has not been forthcoming and the mechanism by which MAPKKKK 

enhances PexRD2’s virulence function remains unclear.  
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Figure 32| Clustal Omega multiple sequence alignment of plant NPK1-like proteins 

against S. cerevisiae Ste11p. 

N. tabacum (44% ID), S. tuberosum (45% ID) and S. penelli (44% ID) aligned to the C-

terminal region of Ste11p. Residues highlighted in black indicate identical residues whilst 

residues highlighted in grey highlight similar residues (e.g. hydrophobic side chains). 
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Chapter 5  Towards the crystal 

structure of CSEP0162 from the barley 

powdery mildew pathogen 

 

5.1. Introduction 

 

Candidate Secreted Effector Protein_0162 (CSEP_0162) is one of the 248 

CSEPs identified through analysis of the Blumeria graminis f. sp. hordei haploid 

genome (Spanu et al., 2010) which were predicted on the basis of the presence of a 

signal peptide (SP), lack of predicted transmembrane domain (TM Domain) and a 

lack of homology to known proteins outside the Erisyphales (Powdery Mildews). 

CSEP0162 is a family 4 CSEP comprising 155 amino acids, a characteristic, N-

terminal W/F/YxC motif (FHC) and two predicted disulphide bonds. The N-terminal 

YxC motif appears to be an ancient, and highly conserved, feature of effector 

proteins from both powdery mildews and rust pathogens. However, any potential 

significance in pathogenesis, effector function and effector transport for this three 

amino acid motif has yet to be established (Godfrey et al., 2010).  

The insights into biological function that a deep structural understanding of a 

protein involved in pathogenicity or resistance can offer, and the consequences of 

this for engineering disease resistance, were discussed in section 1.7. In the field of 

fungal effectors, structural biology has provided a number of key insights into the 

mechanisms of effector translocation and recognition. To date, the crystal structures 

of a number of fungal effector proteins have been described.  

Melampsora limi infects flax and secretes a number of effector proteins, one of 

which is AvrM, which directly associates with – and is recognised by – the NLR 

protein ‘M’ (Catanzariti et al., 2010). A number of allelic variants of AvrM exist in 

nature and the crystal structures of two have been solved; AvrM-A (which is 
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recognised by M, eliciting HR) and AvrM (which is not recognised) (Catanzariti et 

al., 2006, Ve et al., 2013). It was observed that both variants adopted a similar, 

dimeric conformation as well as a structural motif reminiscent of the WY-fold from 

oomycete effectors. Further to this, a hydrophobic surface patch of both variants was 

demonstrated to mediate pathogen independent internalisation of AvrM. M-mediated 

recognition and ETI induction was also shown to be dependent on the C-terminal CC 

domain of AvrM-A – a domain previously identified as necessary for interaction in 

yeast and by far the most polymorphic region of the protein.   

The Leptosphaeria maculans (Oilseed rape stem canker) AvrLm4-7 effector is 

recognised by two NLR proteins; Rlm4 and Rlm7, and its silencing dramatically 

affects the virulence of L. maculans. The analysis revealed a protein with no close 

structural similarity to any known protein and which contained 4 disulphide bridges 

(Blondeau et al., 2015). A conserved C-terminal domain, together with a RAWG 

motif located nearby combine to form a positively charged region which may be 

involved in pathogen independent translocation of AvrLm4-7 into plant cells. 

Further to this, the basis of recognition of AvrLm4-7 by Rlm4 and Rlm7 was 

deconvoluted thanks to structurally informed mutagenesis experiments.  

Structure-based insights into effector function have also come from extracellular 

effectors. C. fulvum secretes a LysM effector named Ecp6 which interferes with 

either the perception of chitin, or the transduction of its perception into a cellular 

response (Bolton et al., 2008, de Jonge et al., 2010). The crystal structure of Ecp6 

revealed the presence of three LysM domains, of which LysM1 and LysM3 closely 

associate and form a chitin-binding groove and that this conformation is induced by 

chitin binding. The chitin-binding groove displayed picomolar binding affinity for 

chitin, suggesting that Ecp6 outcompetes host chitin receptors for elicitor binding 

(Sanchez-Vallet et al., 2013). 

Despite the availability of structures for several different fungal effectors, there is 

an overall paucity of structural information available relative to the numbers of 

fungal candidate effectors identified and the likely diversity of structures and 

functions they adopt. Homology-based secondary structure prediction based on 

CSEP0162’s amino acid sequence using the Phyre2 server yielded a model based on 

an Acyl-CoA N-Acyltransferase with a low confidence value of 27.3, as well on 
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several other protein structures with similar, low confidence ratings. Homology 

modelling, therefore, is unsuitable for making predictions on CSEP0162’s function 

and experimentally derived structural data is required for reliable inferences to be 

made. Here, we aimed to solve the tertiary structure of CSEP0162 by X-ray 

crystallography, to take the first steps toward understanding the function of this 

effector protein.  

5.1.1. Principles of crystallisation. 

 

Single molecules are inherently unsuitable for structure solution from x-ray 

diffraction data as the signal would be essentially unmeasurable. The arrangement of 

protein molecules in an ordered, three dimensional lattice produces a diffraction 

signal sufficient for solution of their macromolecular structure. For crystallisation to 

occur, the concentration of a molecule in solution needs to gradually increase until a 

state of super-saturation is reached, in which crystal nuclei form allowing crystals to 

grow. Development of protein crystals in a solution in which concentration had been 

increasing halts the increase in concentration and subsequent precipitation out of 

solution as the sequestration of protein molecules in the crystal lowers their 

concentration in solution. This state is referred to as the ‘metastable zone’. In this 

state, no further nucleation points should form and crystals may continue to grow. In 

the present study, this was achieved by vapour diffusion from sitting drops. A 

protein drop mixed with a precipitant and a well containing only a precipitant are set 

up together in a closed system. The precipitant well contains a higher concentration 

of precipitant than the protein drop. Therefore, water diffuses from the protein drop 

as vapour allowing the concentration of protein in the drop to increase in a linear 

fashion. A representation of this is shown in Figure 33.  
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Figure 33| Diagram demonstrating crystal nucleation and sitting drop 

vapour diffusion. 

(A) Diagram demonstrating crystallisation by vapour diffusion. Protein and 

precipitant concentration increases as vapour diffuses into precipitant well 

until concentration is sufficient for nucleation to occur. Sequestration of 

protein in crystals reduces concentration and creating the ‘meta-stable zone’. 

(B) Diagram showing the architecture of crystallisation champers in the sitting 

drop vapour diffusion method. 
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5.2. Results 

 

5.2.1. Expression and purification of native CSEP0162 

 

Note: prior to starting the work described in the present chapter, Agniezska 

Siwoszek (University of Copenhagen) had constructed the recombinant plasmid 

pOPINF:CSEP0162 for heterologous expression in E. coli.  

 

Figure 34| Amino acid sequence of CSEP0162. 

Signal peptide is highlighted in yellow. Effector domain highlighted in grey. W/F/YxC 

(FHC) motif highlighted in blue. 
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Native BghCSEP0162 (amino acids 21-155) codon optimised for E. coli 

expression and synthesised by Genscript USA was ligated into the E. coli expression 

vector pOPINF (Berrow et al., 2007) using IN-FUSION
® 

HD ligation independent 

cloning to produce the expression construct pOPINF:CSEP0162. CSEP0162 is 

predicted to contain an N-terminal signal peptide which ends at residue 21. This was 

omitted from the final expression construct on the basis that signal peptides are not 

thought to be part of mature, secreted effector proteins (Nielsen et al., 1997). The 

amino acid sequence of the final construct is shown in Figure 34. Disorder 

predictions indicated that residues 21-155 were well ordered (Figure 35) so were 

included in the final expression construct. The final construct was expressed with a 

3C cleavable hex-histidine tag. This is shown, along with other features of the 

pOPINF cloning site, in Figure 36.  

Figure 35| Disorder prediction for full length CSEP0162 and truncated, effector 

domain only construct of CSEP0162 used for expression and crystallisation. 

Disorder predictions were made using the RONN protein disorder prediction server 

(http://www.strubi.ox.ac.uk/RONN). Disorder prediction traces are shown aligned with a 

schematic representation of CSEP0162 with signal peptide and effector domain highlighted as 

in figure 38. Black line at ‘Probability of disorder’ value of 0.5 represents a cut-off point. A 

trace above this line indicates regions of protein likely to be disordered.  

http://www.strubi.ox.ac.uk/RONN
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a) 

b) 

Figure 36| pOPINF:CSEP0162.  

a) DNA sequence of CSEP0162 (shaded grey) cloned into pOPINF. Important vector features have 

been indicated by labelling. Hexa-histidine tag and 3C protease site are indicated in light blue, and 

orange type, respectively. b) Amino acid sequence of CSEP0162 cloned into pOPINF, with effector 

domain highlighted in grey, FHC motif highlighted in blue and hexa-histidine tag and 3C protease 

cleavage sites shown in light blue and orange type, respectively. 
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Like other YxC motif containing powdery mildew CSEPs, CSEP0162 is 

predicted to form at least one internal disulphide bond. Therefore, to aid soluble 

expression, SHuffle
®
 Express T7 Competent E. coli cells (New England Biolabs) 

were transformed with pOPINF:CSEP0162 and selected on LB agar supplemented 

with Carbenicillin. SHuffle
® 

cells promote the soluble expression of disulphide bond 

containing proteins through the cytoplasmic expression of the disulphide bond 

isomerase DsbC. Single, well separated colonies were selected and used to inoculate 

10mL aliquots of LB supplemented with Carbenicillin to be used as starter cultures 

for scaled-up expression as described in section 2.6.2. 

Cell pellets were harvested from liquid cultures and protein was purified as 

described in section 2.6.4. Native CSEP0162 eluted as a single, broad peak with an 

elution volume consistent with that previously observed by Agnieszka Siwoszek 

(Univ. Copenhagen). A reasonably pure protein, migrating between molecular 

weight markers of 12kDa and 22kDa (consistent with pOPINF:CSEP0162’s 

predicted molecular mass of ~16kDa) was visualised through SDS-PAGE analysis of 

the fractions collected under the peak alongside the insoluble and soluble fractions 

collected earlier in the purification procedure (Figure 37).  

These fractions were pooled and concentrated to a volume of ~8mL at a 

concentration of ~16mg/mL.  

A sample of the concentrated protein was retained for SDS-PAGE analysis. 

Recombinant 3C protease was added to concentrated protein prior to incubation at 

4˚C overnight in order to cleave the hexa-histidine tag. A further sample was 

retained immediately following removal from 4˚C for SDS-PAGE analysis whilst 

the rest of the sample was applied to a pre-equilibrated nickel column manually. 

Eluted protein was concentrated to <10mL total volume and manually applied to a 

SEC column for further, preparative purification. Once again, CSEP016 eluted as a 

single, broad peak with a slight shift in peak elution volume from ~200mL to 

~210mL, which is expected given the smaller molecular mass of the protein lacking 

a hexa-histidine tag (see Figure 38 and compare peak to Figure 37). Fractions under 

the peak were pooled and concentrated and a sample of this final preparation was 

prepared for SDS-PAGE analysis alongside pre-3C protease incubation and post-3C 
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protease incubation samples which demonstrated almost no observable 

contamination and a pure protein sample suitable for crystallisation screening.  

 

 

 

 

 

 

 

 

  

 

 

Figure 37| IMAC purification of native CSEP0162.  

SDS-PAGE (17%) analysis of purified CSEP0162. Lane one contains molecular weight marker, 

lane two contains whole cell lysate, lane three contains clarified lysate and subsequent lanes contain 

SEC fractions collected under the A280 peak shown (below). A280 trace shows profile of SEC elution of 

HIS
6
-CSEP0162.  Peak spans all fractions shown in SDS-PAGE gel (above).  

 

 

 

a) 

 

 

 

 

b) 

 

Elution Volume (mL) 
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Figure 38| Purification of untagged CSEP0162.  

Following His
6 

tag cleavage, CSEP0162 was purified once more to remove 3C 

protease from the final prep. SDS-PAGE (17%) analysis showing; Lane 1 – molecular 

weight marker, lane 2 – CSEP0162 without 3C protease, lane 3 – CSEP0162 with 3C 

protease and lane 4 final prep of CSEP0162 used in crystallisation trials following IMAC 

purification to separate CSEP0162 and 3C protease and a second round of SEC. SEC A280 

trace shown below. Peak was collected and concentrated to give ‘final prep’. 

a) 

 

 

 

 

 

b) 
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5.2.2. Circular Dichroism Spectroscopy of native CSEP0162 

 

To determine whether or not purified CSEP0162 formed an ordered protein with 

interpretable secondary structure, we subjected the protein to Circular Dichroism 

(CD) Spectroscopy. CD spectroscopy is a technique which analyses the difference in 

absorption of Left Circularly-Polarised Light (LCPL) and Right Circularly-Polarised 

Light (RCPL) by a molecule containing one, or more, chiral chromophores. As 

different secondary structure elements absorb circularly polarised light of different 

wavelengths at different rates, CD spectroscopy can be used to determine the relative 

composition of secondary structural elements in a protein.  

Native CSEP0162, prepared as described previously, was diluted to ~0.8mg/mL 

in phosphate buffer in order to reduce the interfering effects of A4 buffer 

components (NaCl and HEPES). In a 0.5mm cell, at a temperature of 20˚C, CD 

spectra were collected as described in (Walden et al., 2014) from 180nm to 260nm at 

1nm intervals, with measurements at each wavelength being taken in triplicate and 

averaged. Raw output in millidegree units was corrected by subtracting the 

absorbance of the phosphate buffer and converted to Mean Residue Elipticity (MRE) 

(degrees cm
2 

dmol
-1 

residue
-1

) using the equation: 

 

Where θ = raw millidegree units, MRW = Mean Residue Weight as determined 

by dividing the molecular weight of the protein in Da by the number of residues – 1, 

l = path length of CD cell and c = concentration in mg/mL.  The CD spectrum for 

native CSEP0162 is shown in Figure 39. 



173 

 

 

Figure 39| Circular dichroism spectrum of native CSEP0162.  

Average (3 measurements per wavelength) and buffer subtracted CD spectrum for native 

CSEP0162. Data were collected from 190nm to 260nm in 1nm steps and converted from millidegree 

units to mean residue elipticity. Signal from averaged buffer only sample was subtracted in order to 

give final trace. 

In order to assign secondary structure elements, the averaged CD spectrum was 

submitted to the DichroWeb server where the Cdsstr method – using reference set 7 

– was applied to the data (Whitmore and Wallace, 2008, Sreerama et al., 1999, 

Sreerama and Woody, 2000). Interpretation is shown in Error! Reference source 

not found.. 
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Helix 

1 

Helix 

2 

Total Strand 

1 

Strand 

2 

Total Turns Unordered Nrmsd  

0.00 0.04 0.04 0.22 0.09 0.31 0.17 0.48 0.029  

Table 11| Secondary structural assignment from CD spectra of native CSEP0162. 

Figures represent fraction of CSEP0162 secondary structure composed of each secondary 

structure element. Helix1 and Strand 1 refer to regular helices and strands whilst Helix 2 and Strand 2 

refer to distorted helices and strands. Nrmsd = normalised root mean squared deviation and provides a 

measure of goodness of fit of this result to the raw data. 

Analysis of secondary structure elements of native CSEP0162 reveals a 

predominantly β-stranded protein, with a smaller proportion of α-helical elements 

and nearly half of the protein made up of unordered loops. An Nrmsd value of 0.029 

gives a strong indication that the model is reliable.  

5.2.3. Crystallisation of native CSEP0162 

5.2.3.1 Screening 

 

Protein purified as outlined in section 5.2.1 was used in crystallisation trials at a 

final concentration of ~49mg/mL using the sitting drop vapour diffusion method 

(Figure 33). Crystallisation proceeded in 96 well plates capable of accommodating 

two protein drops per well, one of which contained CSEP0162 at 1x concentration 

with the other containing CSEP0162 at 0.5x concentration in order to explore the 

effects of concentration on crystallisation. Initially, one commercially available 

crystallisation trial was used – the JCSG-plus
™ 

screen (Molecular Dimensions) – in 

order to assess a sparse matrix of crystallisation conditions exploring well known 

polyethylene glycol (PEG) and salt conditions and pH values ranging from 4.0-10.0.  

Several conditions yielded crystalline precipitate or small crystals/needles whilst 

two conditions yielded substantial crystals, one of which yielded crystals considered 

suitable for harvesting (see Figure 40a). All crystals from this screen grew in clusters 

of rods around a central nucleation point. Both conditions yielding clear, rod-like 

crystals contained ammonium sulphate, Bis-TRIS at pH 5.5 and PEG3350 at varying 

concentrations. The condition yielding harvestable crystals contained 1.0M 
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Ammonium Sulphate, 0.1M Bis-TRIS pH 5.5 and 1% PEG3350. Crystals formed in 

both 1x and 0.5x concentrated protein drops after 2 days and ceased growth after 3-4 

days. Three crystals were harvested from the 1x concentrated drop, one of which was 

suspended in cryoprotectant solution comprising the mother liquor supplemented 

with 25% ethylene glycol as described in section 2.7.3. A further two crystals were 

harvested and soaked in the aforementioned cryoprotectant solution supplemented 

with 0.5M Potassium Iodide (KI) for ~60s. Notably, the crystals were extremely 

fragile, particularly when suspended in the 0.5M KI soaking solution. Despite the 

presence of far more than three crystals, the Ammonium Sulphate in the drop was 

quick to precipitate once the drop was allowed to evaporate making it difficult to 

distinguish between protein crystal and salt crystal.  

 

 

 

 

 

 

Figure 40| Native and SeMet derivative crystals of CSEP0162. 

a) Representative image of initial hit described in section 5.2.3.1. Rod-like crystals 

growing in clusters around a central nucleation point. b) Optimised native CSEP0162 crystals 

from screens described in section 5.2.3.2. c) SeMet derivative crystals from screens described 

in section 5.2.4.   

a)                                       b)                                          c) 
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5.2.3.2 Optimisation 

 

The condition described in 5.2.2.1 from which crystals were harvested was used 

to design a 48 condition optimisation. Bis-TRIS concentration was kept constant and 

the same protein prep from the initial screen was used, again, at ~49mg/mL. 

Ammonium sulphate concentration was varied from 0.0M to 1.0M and PEG3350 

was varied from 0% to 25%.  

Crystals of a new form appeared after ~3 weeks in 1.0M Ammonium Sulphate, 

0.1M Bis-Tris pH 5.5 and 5% PEG3350 (see Figure 40b). Crystals were harvested as 

described in 5.2.2.1 and 2.7.3. Notably, these crystals were far more stable than their 

counterparts from initial screening conditions.  
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5.2.4. Expression and purification of a CSEP0162 

Selenomethionine derivative 

 

Two pieces of information are required in order to derive the 3D structure of a 

macromolecule by X-ray crystallography; the amplitude of diffracted X-rays and 

their phases. A diffraction spot on a detector is produced by a diffracted X-ray wave 

which has both an amplitude and a phase, but the detector only records information 

related to the amplitude of the wave. The phase information is lost. If one were to 

attempt to solve a crystal structure without phase information, a map of vectors 

between atoms could be produced – known as a Patterson map – but in order to 

obtain information on the electron density and produce an accurate map of a 

macromolecule then phase information is required. This is known in crystallography 

as ‘the phase problem’ and solving the phase problem is often the most important 

step toward solving the 3D structure. In order to provide more data with which to 

solve the phase problem, it was necessary to produce a derivative of CSEP0162 in 

which native methionine residues were replaced with L-selenomethionine to produce 

a protein henceforth referred to as ‘SeMet CSEP0162’. As outlined in Figure 34, 

there are three methionine residues adjacent to each other from residue 126-129 in 

the effector domain. In the final pOPINF:CSEP0162 construct produced by 

Agnieszka Siwoszek (Univ. Copenhagen) there is an additional methionine residue 

at residue 3 which is retained following hexa-histidine tag cleavage giving a total of 

4 methionine residues in the final protein.  
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Full procedure for production of SeMet CSEP0162 is outlined in section 2.6.3 

but broadly speaking two methods were attempted and highlighted the importance of 

proper disulphide bond formation for CSEP0162 solubility. Initially, a methionine 

auxotrophic strain of E. coli (B834(DE3)) was used and protein expression was 

induced with 1mM IPTG in minimal media supplemented with L-selenomethionine 

only. CSEP0162 could be detected using this method but it was almost completely 

insoluble as the band corresponding to CSEP0162 was more intense in the lane 

containing whole cell lysate relative to the lane containing clarified lysate (data not 

shown). A second method, entailing metabolic inhibition of methionine biosynthesis 

Figure 41| Expression and purification of L-selenomethionine derivative of 

CSEP0162. 

SDS-PAGE (17%) analysis of L-selenomethionine derivative CSEP0162. Lane one contains 

molecular weight marker, lane two whole cell lysate, lanes 3 and 4 contain clarified lysate and 

following lanes contain size exclusion chromatography (SEC) fractions collected under the A280 

peak shown below. A280 trace shows profile of SEC purification of HIS6-CSEP0162 (L-

selenomethionine derivative). Peak spans all fractions shown in SDS-PAGE gel above. 

a) 

 

 

 

 

b) 
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was employed to greater success. Briefly, the SHuffle E. coli cells successfully used 

to produce native protein were grown in minimal media until an OD600 of 0.6 was 

reached. At this point high concentrations of lysine, isoleucine and threonine are 

added to the growth medium in order to inhibit aspartate kinase activity and block 

synthesis of native methionine. Subsequent supplementation of growth medium with 

L-selenomethionine followed by induction with 1mM IPTG encourages 

incorporation of L-selenomethionine into nascent proteins. Cells were harvested and 

protein purified as described previously. Once again, protein eluted as a single, broad 

peak and fractions collected under the peak were analysed by SDS-PAGE (Figure 

41). Yield was considerably lower than obtained from expression of native protein 

but sufficient levels of pure, soluble protein were obtained for crystallisation. 

Samples were pooled and concentrated as described previously and hexa-histidine 

tag was cleaved. Cleaved protein was manually applied to a nickel IMAC column 

and eluted protein lacking a hexa-histidine tag was concentrated with buffer 

exchange to replace IMAC elution buffer with gel filtration buffer. The final gel 

filtration step described for native CSEP0162 was not carried out to avoid sample 

loss and was deemed unnecessary as SDS-PAGE analysis revealed the sample was 

already very pure (Figure 42a).  

In order to confirm the identity of expressed protein, a 25 pmole sample of 

protein in solution was submitted for intact mass analysis by Dr Gerhard Saalbach 

(JIC Proteomics Platform) which confirmed an intact mass of 16188.17 Da, this was 

consistent with a theoretical intact mass of 16,188.59 Da (Figure 42b).  
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5.2.5. Crystallisation of CSEP0162 Selenomethionine derivative 

 

Protein was concentrated to ~6mg/mL and taken forward into the previously 

described JCSG-Plus
™ 

screen as well as a screen devised by Dr Clare Stevenson 

(John Innes Centre Protein Crystallography Platform) – Keep It Simple Screen 

(KISS). KISS explores Ammonium Sulphate concentrations ranging from 0.0M to 

a) 

b) 

Figure 42| His6 tag cleavage by 3C protease and subsequent intact mass analysis of 

selenomethionine CSEP0162 derivative. 

a) SDS-PAGE (17%) analysis of CSEP0162. Lane 1 shows protein without 3C protease 

addition (auto-cleavage is evident), lane 2 shows protein with 3C protease addition and lane 3 

shows final prep following IMAC purification to remove 3C protease and subsequent 

concentration for crystallographic screening. b) Intact mass analysis confirms incorporation of 

selenomethionine.  
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3.2M and PEG3350 concentrations ranging from 0% to 40% against a range of 

buffers and pH values. A total of 192 unique conditions, therefore, were screened. 

KISS was chosen based on the knowledge that native CSEP0162 crystallises in the 

presence of Ammonium Sulphate and PEG3350. SeMet CSEP0162 formed no 

crystals in the JCSG-Plus™ screen. However, harvestable crystals appeared in one 

condition from KISS within 24 h (0.8M Ammonium Sulphate, 0.1M CHES pH 9.0). 

Like crystals from initial screens of native CSEP0162, crystals grew as long rod 

shapes in clusters around a central nucleation point (Figure 40c). The concentration 

at which SeMet crystals grew was markedly lower than the concentration at which 

native crystals grew. In most cases SeMet crystals will crystallise in similar 

conditions and at similar concentrations to native crystals of the same protein. 

However, overall solubility of SeMet crystals is often slightly lower than that of their 

native counterparts due to the enhanced hydrophobicity of Selenomethionine relative 

to native methionine. It should also be noted that we did not investigate lower 

concentrations of native CSEP0162. 
 

 

5.2.6. Data collection 

 

Crystals were harvested and cryo-protected as described in section 5.2.3.1 and 

5.2.3.2 and flash frozen in liquid N2 before transport to the Diamond Light Source 

(DLS) synchrotron radiation facility, Oxfordshire, UK for collection of X-ray 

diffraction data. Table 12 provides a list of crystals that best datasets were collected 

from at the synchrotron, their origin, details of cryoprotectant and any heavy atom 

soak.  
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Xtal ID Native/SeMet Cryoprotectant Soak 

CSEP0162_23 Native 1M (NH4)2SO4, 0.1M 

BIS-TRIS (pH 5.5), 5% 

PEG3350 + 25% ethylene 

glycol 

N/A 

CSEP0162_18 Native As above 0.5M KI (~60s) 

CSEP0162_32 SeMet 0.1M CHES (pH 9.0), 

0.8M (NH4)2SO4 
+

 25% 

(w/v) ethylene glycol 

N/A 

CSEP0162_33 SeMet As above N/A 

Table 12| List of crystals from which data were collected in this study including details 

of cryoprotectant and heavy atom soaks. 

All crystals were subjected to 5 test shots (Ω = 0.5˚) to inform the automated  

data collection strategy calculation software EDNA. 

CSEP0162_23 provided the best native dataset without a heavy atom soak. Data 

was collected on the i02 beamline at an incident wavelength of 0.9795Å with a 

maximum resolution of 2.2Å. 2400 images in total were collected with a rotation 

angle of Ω = 0.15˚. Heavy atom soak data was obtained from CSEP0162_18, which 

was soaked in a 0.5M Potassium Iodide solution for ~60s before being washed in 

cryoprotectant and flash frozen in liquid N2. Two datasets were collected on this 

crystal, with beamline intensity at 5% for one dataset and increased to 20% for the 

second dataset. Both datasets were collected with an incident wavelength of 1.8Å and 

a maximum resolution of 2.6Å. 3000 images were collected for both datasets with a 

rotation angle of Ω = 0.2˚.  

Four SeMet datasets were collected, on crystals CSEP0162_32 and 

CSEP0162_33, using the i04-1 beamline. Three datasets were collected from 

CSEP0162_32 with an incident wavelength of 0.9282Å and a maximum resolution of 

3.2Å. 5000 images were collected initially with a rotation angle of Ω = 0.1˚ and a 

further two datasets comprising 3000 images each were collected subsequently to 

enhance multiplicity of data. A single dataset comprising 8000 images with a 

rotation angle of Ω = 0.1˚ was collected from CSEP0162_33 with an incident 

wavelength of 0.9282Å and a maximum resolution of 3.0Å. All four datasets were 

collected at a beamline intensity of 47%.  
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Close analysis of diffraction images from native and KI soaked crystals revealed 

the presence of streaky reflections which do not correspond to where reflections are 

predicted to appear if hexagonal or trigonal space groups are accurate representations 

of crystal geometry (Figure 43). This may indicate a pathology in the data known as 

partially disordered ordered-disordered twinning (OD twinning). This occurs when a 

translation operator along a given axis for a subset of layers in a crystal lattice is 

offset relative to other layers in the same lattice. This type of twinning is 

characterised by the streaky, diffuse diffraction spots also observed in Figure 44 

which are indicative of a perturbation in translational symmetry. This phenomena 

was first reported in (Bragg et al., 1954) and methods for solving crystal structures 

despite the presence of this pathology were made by (Wang et al., 2005) which also 

presents an example of OD twinning in Figure 1.  

Tellingly, when data were re-processed in lower symmetry space groups, the 

twinning prediction programme ‘truncate’ indicated that the data collected is most 

likely the result of twinning in the crystal. Only in higher symmetry space groups 

Figure 43| Diffraction images from crystal CSEP0162_23 indicates possible 

OD-twinning pathology. 

(a) Shows observed reflections from one representative diffraction image from 

CSEP0162_23 (native) with well-defined, punctate diffraction spots interspersed with 

streaky reflections. (b) Shows the same representative image with predicted positions of 

reflections if a hexagonal or trigonal indexing solution were valid. Punctate diffraction spots 

correspond to these predictions but streaky spots do not. Predictions were made using 

iMOSFLM (Leslie and Powell, 2007).   
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like P6 2 2 did the probability of twinning reduce. Twinning is a fairly common 

problem in macromolecular crystallography and occurs when multiple crystals share 

lattice points in a symmetrical manner forming an interface between the separate 

crystals often called the composition surface. Twinning convolutes the interpretation 

of X-ray diffraction data as data is produced from multiple crystal domains in 

different orientations to each other, producing difficult to interpret diffraction 

patterns.  

5.2.6.1 Fluorescence scan of SeMet CSEP0162 

 

In order to accurately determine appropriate wavelengths for Multi-wavelength 

Anomalous Diffraction (MAD) experiments, and to further confirm the presence of 

Selenomethionine in SeMet CSEP0162 crystals, we performed a fluorescence scan at 

the K edge of selenium. Tabulated, theoretical values for the wavelength an 

element’s absorption edge corresponds to are insufficiently accurate as the 

absorption properties of the heavy atom in a given macromolecule will almost 

certainly be affected by its immediate environment. When an atom absorbs X-ray 

radiation, one of its electrons may be excited to a higher energy level or, indeed, 

Figure 44| Diffraction images from crystal CSEP0162_18 indicate possible OD-

twinning pathology. 

As Figure 43, except data shown are representative images from crystal CSEP0162_18 

(KI soaked). 
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ejected from the atom altogether. Energy is lost during this process in the form of 

fluorescence. The likelihood of a package of fluorescence being produced at an 

absorption edge is known as fluorescence yield. The absorption coefficient is directly 

related to fluorescence by this value and can be experimentally determined by a 

fluorescence scan. From this information, the anomalous scattering factors – f” and 

f’ – can be derived and appropriate wavelengths for MAD experiments determined. 

In X-ray crystallography, the absorption edge of the innermost electron shell – the K 

shell – is determined.  

Selenium K edge scan of SeMet CSEP0162 was carried out on the i03 beamline 

on crystal CSEP0162_36, between X-ray energies 12628eV and 1282eV. Data was 

analysed automatically on the DLS pipeline using the CHOOCH programme (Evans 

and Pettifer, 2001) which normalises the recorded fluorescence spectrum and 

automatically calculates experimentally determined f” and f’ values. Output from 

CHOOCH is shown in Figure 45.  
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Figure 45| CHOOCH output showing normalised fluorescence spectrum for SeMet 

CSEP0162. 

Crystal was scanned at wavelengths along the theoretical K edge for Selenium and values for 

anomalous scattering factors f” and f’ were experimentally determined by CHOOCH as; f” = 4.78e 

and f’ = -7.38e where energy at the peak was 12.654KeV. 

5.2.7. Data processing and structure solution  

 

5.2.7.1 SAD approaches to experimental phasing  

 

All data were processed with the XIA2 pipeline with XDS and XSCALE (Evans, 

2006, Kabsch, 2010, Winter et al., 2013). XIA2 indexes and integrates all data, 

reducing its complexity. A summary of data used for attempts at initial structure 

solution is presented in Table 13.  
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 Native KI SeMet 

Data collection    

Instrumentation DLS-i02 DLS-i02 DLS-i04-1 

Wavelength (Å) 0.9795Å 1.8Å 0.9282Å 

Resolution range 

(Å) 

51.64-2.40 42.32-2.8 52.19-3.20 

Space group P62 2 2 P62 2 2 P62 2 2 

Unit cell 

parameters 

A=B=59.62, 

C=74.50, α=β=90.0, 

γ=120.0 

A=B= 59.41, 

C=74.39, α=β=90.0, 

γ=120.0 

A=B=60.26, 

C=75.10, α=β=90.0, 

γ=120.0 

Completeness (%) 99.9 (100) 98.5 (95.1) 99.0 (98.9) 

Unique reflections 3373 2127 1537 

Redundancy 34.5 (35.2) 57.4 (57.2) 149.5 (150.9) 

Anomalous 

redundancy 

- 34.1 (32.4) 91.0 (87.2) 

Anomalous slope - 1.298 (0.000) 1.443 (0.000) 

Anomalous 

correlation 

- 0.853 (0.108) 0.908 (0.186) 

Rmerge 0.07 (2.220) 0.145 (3.067) 0.156 (1.115) 

I/σ(I) 29.6 (2.4) 29.7 (1.9) 42.2 (9.7) 

No. of SAD sites - 7 4 

Table 13| Summary statistics of data used for experimental phasing. 

Data from XIA2 automated pipeline. Data in parentheses corresponds to data from high-

resolution shells. SAD sites were determined using the AutoSol programme in the PHENIX pipeline. 

Note – P62 2 2 space group assignment is an estimate.   

AutoSol, in the PHENIX (Adams et al., 2010) suite of crystallography software, 

was used for initial experimental phasing. Heavy atom soak data was combined with 

high-resolution native data, heavy atom soak data from two different beamline 

intensities was combined with high-resolution native data and SeMet data was 

combined with high-resolution native data. However, no combination of datasets 

yielded an interpretable electron density map, with Rfree values (a measure of how 

confident one can be of a solution) ranging from 0.4-0.59 for all strategies employed, 

indicating that no solutions were reliable. Further to this, all Figure of Merit (FOM) 

values were lower than 0.4 (FOM ≤ 0.45 means that initial phases are ‘marginally 

accurate’). This, coupled with the electron density map itself not suggesting the 

interpretation of any secondary structural elements and not showing many regions of 
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continuous electron density or clear solvent channels, indicated that attempts to 

derive initial phases from SAD experiments had been unsuccessful.  

The space group of a crystal provides a description of its symmetry within the 

unit cell by giving information on the point of a molecule (its origin of symmetry), 

and how it is rotated, translated and inverted in a crystal lattice. All raw datasets 

were assigned to space group P62 2 2 by automated XIA2 processing. However, all 

space groups assigned to a crystal during the process of solving its structure are 

hypothetical and applied as a best fit of the data available. Data were re-indexed in 

alternative hexagonal space groups; P6, P62 and p6 2 2. In addition to this, the 

trigonal space groups (starting at P3) were also explored as the trigonal and 

hexagonal space groups are related. As were the C-centred orthorhombic space 

groups and monoclinic space groups. The lowest symmetry space group – P1 – was 

also investigated. A solution remained unobtainable with data re-indexed in the 

aforementioned space groups.  

(Note – Subsequent independent attempts by Professor Mark Banfield (JIC) and 

Dr David Lawson (JIC protein crystallography platform) using the CCP4 suite of 

crystallography programmes also proved unsuccessful in obtaining initial phase 

information.)   

5.2.7.2 Molecular replacement approach to experimental phasing 

 

Where structural information is available for a protein which may have a similar 

3D structure to the protein of interest, a technique for obtaining phase information 

known as molecular replacement (MR) may be used (Tickle and Driessen, 1996). 

The technique requires an experimentally determined diffraction pattern for the 

protein of unknown structure and the atomic coordinates for the protein of known 

structure (termed the search model). An attempt is then made, computationally, to 

place the search model in the unit cell of the protein of unknown structure so as to 

match – as closely as possible – the theoretical diffraction pattern of the search 

model to the experimentally determined diffraction pattern for the protein of 

unknown structure.   
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With many potential search models deposited in the PDB, the chance of finding a 

suitable structure with which to attempt MR is often high. Typically, 30-40% 

sequence identity is a minimum requirement and the closer the identity, the greater 

the chances of success. At the time of writing, there are no published structures for 

any B. graminis CSEPs and there are no crystal structures available for any close 

homologs of CSEP0162. One crystal structure exists for a CSEP from B. graminis f. 

sp. hordei (unpublished data). However, there is limited sequence similarity between 

this potential search model and CSEP0162. Therefore, attempts at a MR solution for 

the structure of CSEP0162 using this search model in the Phenix Phaser-MR 

pipeline failed.   

 

5.3. Discussion 

 

Our understanding of the roles B. graminis CSEPs play in virulence is currently 

limited but developing, with studies utilising HIGS against putative CSEPs 

unravelling their importance in pathogen fitness (Ahmed et al., 2015, Ahmed et al., 

2016). Some bioinformatically identified CSEPs are predicted to adopt a 

ribonuclease-like core fold which is hypothesised to be the ancestral state of this 

gene family (Pedersen et al., 2012). It has even been suggested that the CSEPs 

diverged from ribonuclease proteins and subsequently lost ribonuclease activity, but 

retained the core fold. It is currently unknown whether or not all of these predicted 

ribonuclease-like proteins adopt this fold in reality. Furthermore, only 72 of the >400 

CSEPs identified are predicted to adopt this structure. CSEP0162 is not predicted to 

adopt the ribonuclease-like fold based on its primary amino acid sequence and 

solving the crystal structure of this protein would provide a unique insight into 

whether or not sequence divergent CSEP effectors adopt the same core-structure as 

one another, as a template around which functional diversity can evolve in a manner 

similar to the WY-fold identified in oomycete RXLR effectors (Boutemy et al., 

2011, Win et al., 2012). This may point to a general strategy among plant-associated 

microbes of adopting a stable, core structural scaffold around which functional 

diversity can evolve.  



190 

 

We aimed to use protein expressed heterologously in E. coli in order to solve the 

crystal structure of CSEP0162 from B. graminis f. sp. Hordeii and to provide novel 

insights into the type of virulence functions barley powdery mildew CSEPs might 

perform, as well as into their evolution. One potential bottleneck in protein 

crystallography studies is the production of sufficient soluble protein from 

heterologous expression systems. This can be particularly problematic when 

attempting to express eukaryotic proteins in prokaryotes which do not have the 

capacity to perform all of the post-translational modifications which may be required 

for proper folding of eukaryotic proteins. However, soluble expression of native 

CSEP0162 in E. coli under standard growth and induction conditions, using a strain 

of E. coli well suited to expression of disulphide bond containing proteins, proved 

successful.  

To date diffraction data from native CSEP0162 and native CSEP0162 soaked in 

a solution containing heavy atoms proved insufficient to solve the phase problem 

and produce an interpretable electron density map despite the presence of a clear 

anomalous signal from heavy atom-soaked crystals. We, therefore, attempted to 

incorporate anomalous scatterers into the protein directly – by replacing methionine 

residues with Selenomethionine. Two methods for incorporation of 

Selenomethionine into proteins are commonly adopted. Expression of SeMet 

CSEP0162 by the first method – which uses a methionine auxotrophic strain of E. 

coli - yielded almost no soluble protein, although the protein was expressed. 

However, the second method permits the use of E. coli strains which specialise in the 

proper folding of disulphide bond containing proteins. Tellingly, when this method 

was used and expression was induced in Shuffle cells, soluble protein was produced 

in quantities sufficient for crystallisation, indicating the presence of at least one 

disulphide bond in CSEP0162 (as predicted) and highlighting the importance of 

choosing suitable expression hosts in protein purification studies.  

Unfortunately, despite the presence of a clear anomalous signal in data collected 

from SeMet crystals, confirmation of SeMet incorporation from intact mass 

spectrometry, a fluorescence scan of selenium’s K-edge and what appeared to be 

reasonable data based on summary statistics, SAD phasing again proved 

unsuccessful in yielding an interpretable electron density map. Automated Xia2 data 
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processing on the DLS pipeline classified the crystals in the hexagonal space group 

P62 2 2. Although we investigated re-indexing the data to a variety of other space 

groups including lower symmetry hexagonal space groups, the trigonal space groups 

(which are related to the hexagonal space groups), C-centred orthorhombic space 

groups, monoclinic groups and back to the lowest symmetry space group: P1 with no 

success.  

One method for obtaining phase information which was not attempted in the 

present work is multi-wavelength anomalous diffraction (MAD), which became a 

possibility with the advent of beamlines using tuneable synchrotron radiation. MAD 

experiments involve the exposure of a single crystal to multiple incident X-ray 

wavelengths. Typically, data is collected at three different wavelengths; the K-edge 

(absorption edge) of the anomalous scatterer (e.g. selenium), at the f” maximum 

(where differences between Bijoevet pairs are greatest) and at a wavelength distant 

from the K-edge where Δf and f” are relatively small. Theoretical values for these 

wavelengths do exist (Cromer and Liberman, 1981) but are unsuitable for the design 

of MAD experiments as they fail to take into account the context in which the 

anomalous scatterer exists within a macromolecule. The inaccuracies with these 

experimental values are most pronounced at wavelengths near the absorption edge of 

a given element. Wavelengths for a MAD experiment, therefore, must be 

experimentally determined by a fluorescence scan of the crystal, as in Figure 45. The 

fluorescence scan performed here should inform future MAD experiments on SeMet 

derivative CSEP0162 crystals.  

Despite data which was processed and indexed with acceptable statistics and the 

identification of a clear anomalous signal from both KI soaked and SeMet derivative 

crystals, indicating that a structure solution was possible, it has not been possible to 

obtain a realistic electron density map for CSEP0162. This may indicate a pathology 

in the data that is not immediately obvious. Despite a clear preference for the space 

group P62 2 2 by auto-processing software, this space group is not necessarily an 

accurate description of the symmetry of the crystals in the lattice and it remains a 

prediction until the crystal structure is solved. When data is re-processed in lower 

symmetry space groups, twinning fractions of almost 40% are predicted by truncate. 

Given that a solution is not forthcoming when data are assigned the P62 2 2 space 
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group, it seems likely that one of these lower symmetry space groups are a better 

description of the crystal and that the data may be twinned. Whilst twinned-data is 

not always useless, as modern computational methods are able to deconvolute 

diffraction patterns produced by twinned crystals, the data collected here has not 

provided a solution for the 3D structure of CSEP0162.  Crystallisation at higher 

temperatures may enhance the risk of twinning in crystals. Growing crystals at a 

lower temperature may produce un-twinned crystals a solution for the 3D structure 

of CSEP0162.  

Whilst we have been unable to solve the crystal structure of CSEP0162, we have 

developed reliable methods for expressing, purifying and crystallising both native 

CSEP0162 and a SeMet derivative. From this, we have been able to gain limited 

information on the composition of secondary structural elements in CSEP0162 

through CD spectroscopy, which reveals a primarily β-stranded protein. Given that 

we can reliably produce SeMet protein, it should be possible to attempt MAD 

experiments in the near future if crystals free from pathologies like twinning and 

OD-twinning can be produced.  
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Chapter 6 General Discussion 

 

In the post-genomic era, unprecedented levels of data are available with which to 

investigate the factors governing the outcomes of plant-microbe interactions at the 

molecular level. Whole genomes – and transcriptomes - of plant pathogens, pests and 

symbionts can be readily sequenced and assembled more cheaply, and in a more 

automated fashion, than ever before. Effector proteins can be predicted 

bioinformatically from these datasets through conserved sequence motifs and 

characterised through investigating their virulence functions, avirulence function and 

through assessing the effects on pathogen fitness of knocking them down through 

techniques such as HIGS or through the exogenous application of siRNA. Predicted 

effectors validated as bona fide effectors which contribute to the virulence activity of 

the pathogen and/or recognition by host NLRs, can then be functionally 

characterised. In the case of avirulence function, this may take the form of 

identifying a cognate NLR(s). In the case of virulence function, this will often take 

the form of searching for a host target. It is increasingly apparent, again through 

improved bioinformatics techniques, that the former may inform the latter. Many 

NLR genes have now been identified which contain non-canonical domains – termed 

‘integrated domains’ – which are thought to be the result of integration of a host 

target into the NLR in order to act as a decoy, promoting recognition of the effector 

by NLRs (Kroj et al., 2016, Sarris et al., 2016). Methods for this include pulling 

down an epitope-tagged construct of the effector expressed in planta and analysing – 

by mass spectrometry – its interactors. Also, large cDNA libraries derived from 

infected plant tissues can be maintained and used to screen bait constructs derived 

from an effector of interest.  

The process of functional characterisation of bona fide effector proteins may be 

rapidly accelerated by knowledge of their structure. Where clear structural homology 

to a protein of known function is revealed, mutagenesis experiments to investigate 

whether or not that homology is artefactual or contributing to real effector function 

can be designed rapidly. This allows functional characterisation both in planta and in 

vitro, as a protein which has been successfully crystallised is by default amenable to 

heterologous expression and purification to high levels of homogeneity. Advances in 
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eukaryotic heterologous expression systems will serve to further accelerate this 

process for effector proteins secreted by eukaryotic pathogens like oomycetes and 

fungi, as well as the expression and purification of host targets, susceptibility factors 

and NLRs.  

This increasingly well-developed level of understanding of the molecular 

interplay between plants and the microbes with which they interact has coincided 

with a revolution in our ability to manipulate genomes. Thanks to targeted genome 

editing technologies like TALENs, ZFNs and CRISPR/Cas9, we are in a unique 

position to take the functional knowledge gained through in planta and structural 

studies of plant pathogen effectors and their host targets and rapidly translate this 

into crop improvement, in order to further safeguard the world’s food supply.  

The present project aimed to investigate all three themes discussed above; the 

dissection of an interaction identified between an oomycete effector protein and a 

host MAPK, the possibility of engineering a well-characterised virulence target of an 

oomycete effector protein for enhanced resistance and to investigate the 3D structure 

of an as yet uncharacterised effector protein from a fungal pathogen of barley.  

6.1. Development of variants of a host target which exhibit 

insensitivity to its cognate effector in a model system 

 

At the time of writing, efforts to manipulate host-targets of plant pathogenic 

effector proteins were scarce. This may be due to a reluctance to interfere with what 

are – in general – proteins which are targeted due to their important roles in 

immunity, development, hormone signalling, intracellular trafficking and other 

processes.  

We deployed random mutagenesis PCR in order to generate a library of variants 

of a well characterised effector target and screened them for insensitivity to PexRD2. 

A small number of these variants proved reproducible and were investigated further. 

In total, four amino acid substitutions were found to contribute to insensitivity to 

PexRD2 and protein-protein interaction studies revealed that this is likely due to a 

weakened interaction between the effector and the insensitive variants of its target. 
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The observation that all four variants contribute, to some degree, to PexRD2-

insensitivity is surprising and may signal the need for further investigation. The 

result seems improbable given the procedure used for generating the variants and if 

they are not bona fide PexRD2-insensitive variants the most likely explanation is a 

mutation in the promoter region of the pERCH vector leading to higher levels of 

kinase expression overcoming the cell death suppression activity of PexRD2, 

possibly through enhanced response to β-estradiok. Sequencing of the vectors would 

indicate whether or not there is a mutation in the promoter region.  

The strategy used to develop effector-insensitive targets here should be employed 

by other researchers where there is a well characterised effector-target interaction, 

and little to no knowledge of the protein’s structure with which to inform rationally 

designed mutations which one would predict to condition insensitivity.  

Future experiments on this theme might include in planta protein-protein 

interaction studies – in particular Co-IP, to further confirm the loss of interaction 

between effector and variant which correlates with insensitivity. In addition to this, 

developing a reliable strategy for expression of MAPKKKƐ and the PexRD2-

insensitive variants described here would enable actual binding affinities – and any 

difference between the wild type and the variants – to be accurately determined 

through in vitro techniques such as surface plasmon resonance. Further to this, the 

ability to express and purify wild type MAPKKKƐ would be a step toward a long-

standing goal of co-crystallising the effector in complex with its target and deriving a 

3D structure of the complex. This would provide insights into how the PexRD2 

dimer interacts with its target and may help explain why the insensitive mutants 

identified in this screen interfere with the interaction between PexRD2 and 

MAPKKKƐ. 

One concern may be the ability of an effector – which exists in the context of a 

rapidly evolving genome – to evolve in such a way that makes the variants of 

MAPKKKƐ described here sensitive to its cell death suppression effects once more. 

One way to tackle this eventuality may be to ‘stack’ the variants in a manner similar 

to the strategy employed by those looking to introduce multiple NLRs into crop 

cultivars. A method to investigate the possibility or PexRD2 overcoming 

insensitivity could involve an experiment similar to the random mutagenesis 
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approach used to generate kinase variants. Natural evolutionary processes could be 

simulated by subjecting PexRD2’s effector domain to random mutagenesis, and 

variants could be screened against the four kinase variants in the transient 

expression, cell death suppression assays described in the present thesis – any 

PexRD2 variants identified as able to re-establish cell death suppression activity may 

be indicative that any resistance derived from these MAPKKKƐ mutants may be 

relatively easy to overcome. 

It is worth noting that of the integrated domains in NLRs mentioned earlier (Kroj 

et al., 2016, Sarris et al., 2016), domains encoding putative kinase domain are the 

best represented. As well as pointing to kinase signalling cascades as a highly 

conserved, general target of plant pathogen effector proteins, this also opens up the 

possibility that gaining a deep understanding of the interaction between kinases and 

effectors will also inform our understanding of recognition specificity by NLRs. 

Such understanding could, in the future, lead to the development of a synthetic, 

universal kinase integrated domain capable of conditioning immunity to a wide 

range of pathogens, in multiple hosts.  

6.2.  Deploying the CRISPR/Cas9 system in tomato 

 

Few examples of CRISPR/Cas9 genome editing for disease resistance in tomato 

existed at the time of writing as most efforts have, thus far, been directed at 

establishing the technique in model systems such as A. thaliana and N. benthamiana. 

Here, we used a transient method with which to confirm the activity of sgRNAs prior 

to stable transformation using a PCR-RE assay.  

Unfortunately, stable transformation of tomato plants with our confirmed active 

sgRNAs and Cas9 did not result in the generation of any plants homozygous, or even 

heterozygous, for deletion of endogenous MAPKKKƐ, as determined by PCR-RE 

assay. Screening of plants for smaller INDELs suggested the presence of a small 

number, although the only INDEL detected homozygously resulted in deletion of 

one amino acid and no frameshift in the rest of the protein resulting in aberrant 

termination of translation. We could detect the deletion in EcoRV treated gDNA 

samples subjected to PCR using primers bounding the targeted genomic region, but a 



198 

 

strong band corresponding to endogenous MAPKKKƐ gDNA was present in all 

samples tested, suggesting that induction of large deletions was a rare event.  

Nevertheless, we were able to sequence the large deletion, through cloning, in 

order to determine its exact nature and revealed two cuts precisely 3bp upstream of 

the sgRNA2 PAM site and 4bp upstream of the sgRNA4 PAM site. Unfortunately, 

due to low yields from PCR we could not sequence the deletion directly from gel 

extractions in order to determine its zygosity in the tissue sampled.  

CRISPR/Cas9 mediated genome editing is clearly a technology of the future, 

however it is still in its infancy. The present work demonstrates, to the author’s 

knowledge, the first instance of CRISPR/Cas9 mediated knockout of an endogenous 

gene with simultaneous complementation of a transgene. This should demonstrate 

that additional genes can be studied, alongside any gene presented as a HDR cassette 

in CRISPR/Cas9 experiments.  

6.3. Transgene expression indicates that one insensitive 

kinase variant may contribute to enhanced resistance to 

P. infestans 

 

Despite a failure to knock out endogenous MAPKKKƐ, primary transformants 

were assayed for enhanced resistance to two strains of P. infestans. The Q50R 

mutation appeared to contribute to significantly enhanced resistance to two strains of 

P. infestans. However, given that we have failed to knock out endogenous 

MAPKKKƐ it is impossible to rule out the possibility that enhanced resistance is due 

to a dosage effect related to greater than normal expression levels of MAPKKKƐ, a 

known positive regulator of immunity. Given that V2 (Q50R) did exhibit some 

developmental abnormalities relative to other transformants, which may be 

associated with aberrant expression levels of MAPKKKƐ, it would be wise to remain 

cautious until the T1 generation is investigated and, hopefully, homozygous 

MAPKKKƐ knockouts are obtained. An alternative possibility explaining 

developmental abnormalities is that T-DNA integration, in certain plants, has 
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occurred in a genomic context which has disrupted some gene important for normal 

development. However, this does not account for enhanced resistance to P. infestans.  

V3 and V4 (S200T and D241N, respectively) appeared to condition enhanced 

susceptibility when stably expressed in S. lycopersicum. This is a confusing result as 

there is no obvious, logical basis for this phenotype.  

Taken together, we feel that the work presented on manipulation of MAPKKKƐ 

in the present thesis provides a valuable proof of concept that host targets can 

certainly be manipulated for insensitivity to their cognate effector proteins. We also 

tentatively suggest that this can confer enhanced resistance in planta.  

6.4. STE20-Like MAPKKKK is not a virulence target of 

PexRD2 

 

Potato MAPKKKK was investigated as a potential virulence target of PexRD2 

through a series of overexpression assays in the model host N. benthamiana. This 

revealed that it is unlikely to be a virulence target as overexpression does not reduce 

pathogen fitness, a hallmark of virulence targets. Although it remains a possibility 

that it is, indeed, a positive regulator of immunity to P. infestans and a likely 

virulence target but that it produces a systemic effect which obfuscated any detection 

of suppression of P. infestans virulence in our assays. 

 Investigations into whether or not it may function as a helper protein of PexRD2 

remain inconclusive although pathogenicity assays suggest that it is. The discovery 

of a novel helper of an effector protein from P. infestans would be of particular 

interest as this has not been reported previously. The importance of helper proteins in 

plant-microbe interactions for virulence – or avirulence – outcomes is becoming 

increasingly well-understood (Win J, 2012) and serves to highlight both the 

sophistication of microbial infection strategies as well as the internal surveillance 

mechanisms of plants.  
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6.5. Expression of CSEP0162 yields protein crystals which 

diffract X-ray radiation but 3D structure remains 

unsolved 

 

A reliable system for producing SeMet-tagged CSEP0162 was established which 

should serve to produce data for solving the 3D structure of CSEP0162 by MAD 

techniques, as SAD, IR and MR phasing techniques have, so far, failed to yield an 

interpretable electron density map suitable for refinement to a high resolution 3D 

structure.  

It is hoped that understanding the 3D structure of CSEP0162 will provide deeper 

insights into not only the function of CSEP0162 itself, but into the evolution of the 

CSEPs themselves.  

Of particular interest in the emerging B. graminis CSEP story is the functional 

significance of the YxC motif. Our expressed and crystallised construct contains the 

YxC motif, so a 3D structure of this protein should provide some clue as to its 

function dependent on where it is presented on, or inside any fold/pocket of, the 

protein.  

6.6. Outlook 

 

The future of genetic manipulation of crops in order to generate enhanced disease 

resistance looks promising. With better understanding of the interactions, at a 

molecular level, between microbes and their hosts and greater control than ever 

before over the genomes of organisms, we’ve never been in a better place to 

safeguard food security for a rapidly expanding population. Indeed, the present work 

demonstrates the first instance of simultaneous CRISPR/Cas9-mediated gene 

knockout and expression of an additional transgene. This, in and of itself, should 

prove useful to the community in addition to the preliminary results suggesting that 

the effector-insensitive variants in the present thesis may confer some resistance to 

P. infestans.  
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We have attempted to make strides into gaining fundamental insights into how a 

host MAP Kinase may act as a helper of a P. infestans secreted effector protein. 

Whilst this remains very much an open question, the present thesis has opened up 

several avenues for study. Efforts should be made into ascertaining, for certain, 

whether or not MAPKKKK phosphorylates PexRD2 and, if so, where 

phosphorylation occurs. Further to this, there remains a possibility that MAPKKKK 

does indeed still function as a positive regulator of immunity, making it a genuine 

candidate for a bona fide virulence target of the effector. It seems possible that a 

systemic effect of the kinases immune signalling may have prevented detection of an 

effect in side-by-side leaf pathogenesis assays. Further experiments are suggested 

which should shed light on this.  

 Progress has been made into solving the 3D structure of a candidate secreted 

effector protein (with confirmed importance for pathogen fitness) from B. graminis.  

This work also offers proof of concept that effector-insensitive variants of 

effector targets can be generated using a random mutagenesis approach and will 

hopefully encourage further work on other well-characterised effector targets. We 

also tentatively suggest that one of these variants can confer enhanced resistance to 

the pathogen, although clearly further work is needed to confirm this. Whilst we 

have not fully solved the questions we posed, the experiments required to answer 

these questions are now clear and well-defined based on the work done in the present 

thesis. 
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Appendix 

 

Supplementary figure  

Figure S1| Transgene screening primer check. 

1% agarose DNA gel demonstrating inability of phosphorothioate 

bonded oligos to amplify any target sequence and the inability of mutant 

specific oligos to amplify wild type sequence from untransformed 

tomatoes, demonstrating their specificity in amplifying transgene targets. 

Mutant specific oligos amplify target sequence from transformation 

template positive control demonstrating their ability to amplify target 

sequence. 
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List of primers used in the present study. 

Primer 

ID
13 

Sequence (5’  3’) Purpose 

 

 

 

440F 

 

 

 

CACCGAACAGCTAACAGAGAAAAAGTTC 

 

Cloning of 

StMAPKKKK into 

pENTR™/D-TOPO®. 

Starts at residue 2.  

 

 

 

 

441R 

 

 

 

TCAGCGATTCAATTTCTTTTCCAACTG 

 

Cloning StMAPKKKK 

into pENTR™/D-

TOPO®. Ends at C-

terminus 

 

 

 

 

482R 

 

 

 

TTATCAATACATTGCCTGGTTCTGTAAAAG 

 

Cloning StMAPKKKK 

into pENTR™/D-

TOPO®. Ends at 

residue 319.  

 

 

 

 

464F  

 

 

 

CACCATGGCACGTACAATCCTTGATGG 

 

Cloning StMAPKKKK 

into pENTR™/D-

TOPO®. Starts at 

residue 287.  

 

 

 

 

 

 

 

 

 

 

Random mutagenesis 

                                                 
13

 Primer ID number refers to an identifying number in the Banfield group’s store of oligonucleotides. 

‘F’ or ‘R’ refer to forward or reverse primers, respectively, with respect to the orientation of the 

coding sequence.  
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614F 

 

CAGCTCGAGCTATGTCTAGGCAAATGG... 

...CAAATGC 

PCR of MAPKKKƐ 1-

332 and cloning into 

pERCH. Contains 

XhoI site. Starts at N-

terminus. 

 

 

 

 

 

682R 

 

 

 

 

GGATTAATTAATTCAGGTGGTGCCAAT 

 

Random mutagenesis 

PCR of MAPKKKƐ 1-

332 and cloning into 

pERCH. Contains PacI 

site.  

 

 

 

 

438F 

 

 

 

CACCTCTAGGCAAATGGCAAATGCTG 

 

Cloning of MAPKKKƐ  

into pENTR™/D-

TOPO®. Starts at 

residue 2.  

 

 

 

 

1051R 

 

 

 

TCATTCAGGTGGTGCCAATGTTGT 

 

Cloning MAPKKKƐ 1-

332 into pENTR™/D-

TOPO®. Ends at 

residue 332.  

 

 

 

1147F  

 

 

TGCTATATTTTCGAAGGAAAC 

 

PCR-RE assay. 5’ of 

sgRNA1 target 

sequence.  

 

 

 

1148R 

 

 

GATCAGAATACGAGGGTCAAG 

 

PCR-RE assay. 3’ of 

sgRNA3 target 

sequence.  
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1149F 

 

AGTTAGATGTAGAAGTTCCAG 

 

PCR-RE assay. 5’ of 

sgRNA2 target 

sequence. Also used 

for sequencing of 

~850bp PCR products 

in PCR-RE assay. 

  

 

 

1149R 

 

 

GGTGTTCCAACAACTGAATGC 

 

PCR-RE assay. 3’ of 

sgRNA4 binding 

sequence. Also used 

for cloning large 

deletion band. 

 

 

 

1212F 

 

 

ATGTCTAGGCAAATGGCA 

 

RT-PCR of MAPKKKƐ 

complementation 

transgene. Forward 

from start codon.  

 

 

 

 

1213R 

 

 

 

TTAACATCTGCtTCaGTc 

 

RT-PCR of MAPKKKƐ 

complementation 

transgene. Mutant 

specific.  

 

 

 

 

1227F  

 

 

 

CACCTGCTATATTTTCGAAGGAAAC 

 

Cloning of large deletion 

band in edited 

MAPKKKƐ pENTR™/D-

TOPO®.  

 



   

Table A Entry clones used in the present study. 
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Table B Yeast 2-Hybrid clones used in the present study 
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Table C Binary constructs used in the present study 
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