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Abstract 

A series of Ni1-xCux/Sm-doped ceria (Ni1-xCux/SDC) anodes have been prepared 

through introducing a soluble pore former with the co-pressing and co-sintering 

process. Uniform hierarchical porous microstructures are formed in Ni0.9Cu0.1/SDC 

anode with interconnected large pores of 2~5 µm and 100~300 nm small pores on the 

wall. The solid oxide fuel cell (SOFC) based on such anode exhibits exceptional  

electrochemical catalytic activity for dry CH4 oxidation and a maximum power 

density of 379 mW cm-2 is acquired at 600°C. Durability test results show only 2.4% 

power density drop is observed after 72 h operation under a constant cell voltage of 

0.5 V. The results have demonstrated that the optimization of anode microstructures is 

an effective way to improve the performance and long-term stability of Ni1-xCux 

alloy-based anode-supported SOFC.  
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1. Introduction 

Intermediate temperature solid oxide fuel cells (IT-SOFCs) offer a clean and 

environmentally friendly technology to convert chemical energy directly into 

electricity with high efficiency and low pollution at 800°C to 600°C or even lower 

temperature region [1-5]. One of the major advantages of IT-SOFCs over other types 

of fuel cells is the excellent fuel flexibility, which means SOFCs possess the ability to 

handle more convenient hydrocarbon fuels, for direct oxidation without internal or 

external reforming processes [6-10]. The direct electrochemical oxidation is to render 

the SOFCs with high conversion efficiency, relatively simple system design, and 

avoiding many problems associated with the generation and storage of hydrogen 

[11-13]. 

As the most commonly used anode materials for SOFCs, the low-cost Ni-cermet 

anodes possess excellent electrochemical catalytic activity for fuel oxidation, high 

electrical conductivity, as well as good stability and compatibility with electrolyte 

materials. However, when the typical Ni-based anode is used directly in a dry 

hydrocarbon environment, the corresponding SOFCs exhibit a performance slightly 

increased initially, and then degraded with elongated operation time. This is owing to 

that Ni is also an active catalyst for C-C bonds formation. The produced carbon forms 

carbon deposits that cover the catalytic active sites and reduce the length of 

triple-phase boundaries (TPBs). Moreover, the carbon deposition can block the anode 

pores, increase gas diffusion resistance and disrupt the anode structure eventually [10, 

14-18]. Therefore, anode materials with appropriate microstructure, high catalytic 
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activity, effective carbon deposition inhibition, and long-term stability at intermediate 

temperatures are critical for direct oxidation of hydrocarbon fuels in SOFCs. 

In order to avoid or minimize carbon deposition of traditional Ni-based anodes, 

many studies have focused on small part substitution of Cu in Ni-based anode to 

improve the catalytic activity for the electrochemical oxidation and reduce the carbon 

deposition. This is because of Cu is relatively inert for the formation of C-C bonds 

although the catalytic activity of Cu is lower than that of Ni for the electrochemical 

oxidation of the fuel [19]. One approach is to modify the Ni-cermet anode with Cu 

through the wet impregnation technique. When Cu nanoparticles are uniformly 

distributed in the porous Ni/Sm-doped ceria (Ni/SDC) matrix, the cell stability in dry 

methane is significantly improved [20]. In literature, the Cu-ceria composites have 

been co-impregnated into the Ni/yttria-stabilized zirconia (Ni/YSZ) supported outer 

layer, resulted in a Ni/YSZ electroactive inner layer exhibiting high electrochemical 

performance without anode coking for the direct operation on ethanol [21]. Such wet 

impregnation/infiltration has been proved to be a very effective approach to fabricate 

and/or optimize SOFC anodes to obtain better performance and stability. However, 

too many repeated cycles are required to get the desired impregnation loading and 

microstructures, which lead to the complexity and instability for fabrication [22-25]. 

Replacing Ni with Ni1-xCux alloy for hydrocarbon utilization is another approach 

[26-29]. The co-sintering is the most commonly used method to prepare the Ni1-xCux 

alloy-based anode. A Ni0.95Cu0.05/SDC anode-supported cell has been prepared by 

co-sintering and operated with hydrocarbon at 600°C. Although pretty good 
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performance with a power density of 338 mW cm-2 has been achieved, carbon has still 

formed on the anode due to the low concentration of Cu in the solid solution [20]. C. 

M. Grgicak et al. [27] have demonstrated that the Ni1-xCux alloy is insufficient to 

suppress carbon formation in Ni1-xCux-YSZ anode prepared by sintering even with x 

up to 0.21. Interestingly, Kim et al. [29] fabricated a Ni0.2Cu0.8 alloy based anode by 

dually impregnating Cu and Ni nitrate solution into a porous YSZ anode followed by 

reduction at 900°C. The single cell with such anode has shown good thermal stability 

and operation stability in methane. This implies that improving the Ni1-xCux 

alloy-based anode microstructure is an effective approach for directly utilizing 

hydrocarbon when the x of Cu in the solid solution is lower than 0.21.  

In literature, the studies of Ni1-xCux alloy-based anode microstructure 

optimization are mainly focused on the wet impregnation method [22, 29] and few 

works have been done by introducing the hierarchical porous microstructure in the 

anode. In order to simply the complex multiple fabrication process of the wet 

impregnation, in this work, the conventional fabrication techniques by the co-pressing 

and co-sintering process are modified through using a soluble pore former and a novel 

Ni1-xCux alloy-based anode with hierarchical porous microstructure is successfully 

fabricated. Such an anode is expected to have longer TPBs and possesses excellent 

electrochemical catalytic activity and coking tolerance for dry CH4 oxidation. The 

Ni1-xCux/SDC-supported cells have been tested with dry CH4 as fuel and the cell 

stability of direct oxidation of dry CH4 is to be discussed as well. 
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2. Experimental details 

2.1. Anodes and fuel cell preparation 

A series of nanosized Ni1-xCuxO (x=0.1, 0.15, 0.2) powders were synthesized by 

the glycine-nitrate combustion process [30-31] with stoichiometric amounts of 

Ni(NO3)2·6H2O (99.9%), Cu(NO3)2·6H2O (99.9%) and glycine (NH2-CH2-COOH). 

The SDC and SSC (Sm0.5Sr0.5CoO3) powders were also prepared with the 

corresponding nitrates. The anode materials with 65 wt.%                     

NixCu1-xO powder and 35 wt.% SDC powder, while the cathode materials with 70 wt.% 

SSC powder and 30 wt.% SDC powder,  were mixed by wet ball-milling for 72h 

with ethanol as liquid medium and then dried in the drying oven at 50 °C. 

In order to fabricate a single Ni1-xCux/SDC anode-supported cell, the anode 

materials were mixed with 5 wt.% ethylcellulose in the ethanol by ball-milling for at 

least 6h to make ethylcellulose dissolved completely. After vacuum drying at room 

temperature, the mixture was pressed at 100 MPa in the die. Then, SDC powder was 

added and co-pressed at 200 MPa to form a bilayer disc with a diameter of 15 mm and 

a thickness of about 1 mm. The bilayer disc was sintered at 1350°C for 4h. The 

porous cathode was prepared on the electrolyte surface by spin-coating with a 

suspension consisting of cathode material, ethylcellulose and ethanol, followed by 

sintering at 950°C for 2h in air. All the NixCu1-x/SDC supported cells were fabricated 

with the same processes to avoid cathodic polarization resistance variations. 

2.2. Characterization and cell testing 

The phase of anode material before and after reduction was characterized by 
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X-ray diffraction (XRD, Bruker) using Cu Kα radiation. Prior to the electrochemical 

test, the single cell was reduced in the flowing H2 at 600°C for 4h. The cross-sectional 

microstructures of the prepared electrodes and cells were investigated by scanning 

electron microscope (SEM, SIGMA, ZEISS) and the copper distribution was detected 

with an attached energy dispersive spectroscopy (EDS). The anode porosity was 

characterized by Archimedes’ density measurements and the conductivity was 

measured using the four-probe method after the NixCu1-xO/SDC cermet was reduced 

by H2. 

Each single cell was mounted onto a quartz tube using silver paste. The current 

collector was a Ag-mesh (Alfa Aesar，0.003 in) which was sintered on the both sides 

of cell and two silver wires (Alfa Aesar，0.01 in) were used as the leads for both 

electrodes. The anode side was fed with dry CH4 at a flow rate of 60 mL min-1 and the 

cathode side worked in air atmosphere. A potentiostat (CHI760C, CH Instrument) was 

used to record the current density-voltage (I-V) curves and electrochemical impedance 

spectra. The AC impedance of the cell under open-circuit conditions was collected in 

the frequency range from 0.01 Hz to 100 kHz with the signal amplitude 5 mV. The 

carbon deposition was analyzed with EDS after electrochemical test. 

3. Results and discussion 

3.1. Structural characterization and morphologies 

Fig.1 shows the XRD patterns of Ni0.9Cu0.1O/SDC cermet before the reduction 

and Ni0.9Cu0.1/SDC anode after the reduction under H2. The XRD pattern (Fig. 1(a)) 

of the anode cermet shows diffraction peaks of both SDC and Ni0.9Cu0.1O, without 
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any other impurity peaks. The results indicate that there is no chemical reaction 

between Ni0.9Cu0.1O and SDC during sintering. After reduction with H2, the XRD 

pattern of the corresponding anode is shown in Fig. 1(b), the diffraction peaks of 

Ni0.9Cu0.1 alloy match the (111) and (200) characteristics of fcc structured Ni but 

shifted to lower angles, with no any residual Cu phase detected. The results have 

demonstrated the formation of pure Ni0.9Cu0.1 alloy.  

    Fig. 2(a) shows the cross-sectional microstructure of a single Ni0.9Cu0.1/SDC 

anode-supported cell with reduced anode. The single cell consists of ~35 µm 

SSC-SDC cathode, ~35 µm SDC electrolyte and ~500 µm anode. The crack-free 

dense SDC electrolyte layer bonds strongly to the porous anode substrate. The 

porous thin cathode shows good adhesion to the electrolyte and no obvious collapsed 

pores in it. The microstructure of the Ni0.9Cu0.1/SDC anode is shown in Fig. 2(b) and 

there are two types of pores can been observed inside the anode. The larger pores are 

2-5 µm in diameter, which are interconnected within the structure. As shown in the 

inset in Fig. 2(b), the smaller pores are 100~300 nm in diameter, which are 

homogeneously distributed in the anode matrix. Such a hierarchical porous anode 

structure is ideal for application owing to the following two characteristics: the 

larger pores can promote rapid gas transport through the porous electrodes, while the 

smaller pores provide high surface areas for gas adsorption/desorption with more 

catalytically active sites for reactions [32]. 

Fig. 3 shows the cross-sectional microstructures (left) and corresponding EDS 

mapping of the copper distribution (right) of the Ni1-xCux/SDC anodes. It is obvious 
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that the morphology of the anode varies with the copper concentrations in Ni1-xCux 

alloy. The Ni0.9Cu0.1/SDC anode shows a uniform hierarchical porous microstructure 

and the smaller pores are homogeneously distributed in the framework. The number 

of smaller pores gradually decreases with increasing copper content and almost 

disappears when x increased to 0.2. This result is consistent with the changing trend 

of the porosity in different anodes that is listed in Table 1. The EDS element mappings 

show that the copper is uniformly distributed in the Ni0.9Cu0.1/SDC anode but 

aggregates are observed with the increased concentration x. These trends are related 

with the size of alloy particle. C. M. Grgicak et al. [27] have reported that the alloy 

particle sizes increase with the increasing of the copper concentration in it. As shown 

in Table 1, the electrical conductivity of the anode can be improved with the larger 

alloy particle because the electrical conductivity is mainly attributed to the alloy 

particle connections and the larger alloy particle size leads to better electrical 

connection [33]. However, the larger particle size is against the formation of the 

uniform microstructure and the uniform phase distribution [34]. Meanwhile, the 

porosity of the microstructure is also affected by the alloy particle size in the anode 

[33], because the increasing of the alloy particle size may lead to reduced number of 

the smaller pores. These are undesirable effects that lead to the reduction of the active 

area for fuel oxidation. 

3.2. Performance with dry CH4 fuel 

Fig. 4 shows the voltage and power density as a function of current density for 

Ni1-xCux/SDC anode-supported cells operated at different temperature with dry CH4 
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as the fuel. The results are summarized in Table 2. It can be seen that the open circuit 

voltages (OCVs) of Ni0.9Cu0.1/SDC, Ni0.85Cu0.15/SDC and Ni0.8Cu0.2/SDC supported 

cells at 600°C are 0.915, 0.894 and 0.875 V, respectively. These results are all smaller 

than the theoretical value of 0.943 V when the methane is completely oxidized. Such 

a result implies that some side electrochemical reaction [35] may have occurred in the 

anode. On the other hand, the doped ceria electrolyte exhibits mixed ionic and 

electronic conduction due to partial reduction of Ce4+ into Ce3+ in the reducing 

atmosphere, which also leads to the decrease of the OCV of a SOFC [36]. 

Furthermore, it can be seen that the OCV of the SOFCs decreases with the increasing 

of Cu content. This is partly due to that the electrochemical catalytic activity of Cu is 

inferior to that of Ni for fuels [19] and the increasing content of Cu in anode leads to 

the decrease of catalytic activity of the alloy. In addition, Cu diffusion into ceria 

electrolyte further induces the transition from Ce4+ to Ce3+ [37] and the larger amount 

of Cu content leads to higher percentage of cerium in the +3 oxidation state, which 

results in the larger loss of the OCV. 

The maximum power densities for Ni0.9Cu0.1/SDC, Ni0.85Cu0.15/SDC and 

Ni0.8Cu0.2/SDC supported cells at 600°C are 379, 337 and 273 mW cm-2, respectively. 

The results show that the cell performance decreases with the increase of Cu content 

in Ni1-xCux alloy at the same testing temperature. This is also due to the fact that the 

catalytic activity of Cu is inferior to that of Ni for the electrochemical oxidation of 

fuel [19]. Comparing the maximum power density of 338 mW cm-2 from our previous 

work on Ni0.95Cu0.05/SDC supported cell [20], the maximum power density of the 
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Ni0.9Cu0.1/SDC supported cell with the hierarchical pores is increased clearly, while 

the maximum power density of Ni0.85Cu0.15/SDC supported cell in this study is very 

close to the previous one. These results have clearly indicated good catalysis activities 

of Ni1-xCux/SDC anode with improved microstructure. 

In order to investigate the effects of microstructure on the cell performance, 

typical electrochemical impedance spectra (EIS) have been measured at 600°C under 

open circuit conditions with a two-electrode configuration. The EIS Nyquist plots of 

three cells are shown in Fig. 5. On the left-hand side of the EIS Nyquist plot is the 

high high-frequency intercept, which represents the inherent ohmic resistance of the 

system. The polarization resistance of both anode and cathode, caused by polarization 

losses under operation, corresponds to the difference of the low and high frequency 

intercepts of the impedance spectrum with the real axis in the Nyquist plot [38]. It can 

be seen that the ohmic resistances of three cells are almost similar and the polarization 

resistances of Ni0.9Cu0.1/SDC, Ni0.85Cu0.15/SDC and Ni0.8Cu0.2/SDC supported cells 

are 0.22, 0.30 and 0.41 Ω cm2, respectively. As aforementioned, all the 

anode/electrolyte substrates were manufactured under identical conditions, the 

cathodes of three cells were prepared with the same materials and processes, and the 

anode polarization resistance contributes to the low frequency part of the impedance 

measured with a tow-wire configuration [7]. Therefore, the differences in the 

polarization resistance are mainly caused by the anodic polarization resistance. One 

can see that the anodic polarization resistance is increased with decreasing of the 

hierarchical porous microstructure. The result shows that with optimized anode 
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microstructure the anode-electrolyte interface is improved and more effective TPBs 

are extended in the anode. Such an anode with the hierarchical porous microstructure 

can provide higher electrochemical and catalytic activity for CH4 and improve 

stability of the CH4-fueled SOFC. 

3.3. Long-term stability and post-run analyses 

The longer-term stability of an SOFC depends on the anode composition and 

structure when the hydrocarbon is used as fuel. In addition, the electrochemical 

reaction can only occur at the TPBs. The schematic of different anode TPBs are 

shown in Fig.6. During the operation of the cell, the continuous Ni atomic structure in 

the Ni-SDC anode leads to the formation of continuous carbon deposition on the 

TPBs and the carbon deposition is to cover the catalytically active Ni sites ultimately. 

However, in the Ni1-xCux/SDC anode, Cu addition can inhibit the continuous carbon 

deposition at TPBs between Cu, electrolyte and the fuel because Cu is relatively inert 

for carbon formation. Meanwhile, such TPBs can still provide activation for the fuel 

oxidation to produce steam, which can further enhance the tolerance to coking of 

Ni1-xCux-based anodes [39]. Therefore, the Ni1-xCux/SDC anodes possess great 

potential for long-running in IT-SOFCs fueled with dry methane. 

In order to investigate the stability of the cells with different anodes for oxidation 

of dry CH4, the time dependence of the power density of the three cells have been 

measured with a constant cell voltage of 0.5 V, shown in Fig. 7. As demonstrated in 

this figure, all the outputs of different anode-supported cells decrease versus operation 

time, but the difference clearly exists in the loss of total performance among these 
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cells as shown in Table 3. The total performance drop of the Ni0.9Cu0.1/SDC supported 

cell is only about 2.4% after 72h operation, which indicates that the Ni0.9Cu0.1/SDC is 

stable under the operating conditions in CH4 atmosphere at 600 °C. However, the total 

performance drop of the Ni0.85Cu0.15/SDC supported cell and the Ni0.8Cu0.2/SDC 

supported cell has reached 6.9% and 14.5% respectively, indicating the Ni1-xCux/SDC 

anodes still suffer from the carbon poisoning with the decreased number of the 

hierarchical pores in these two anodes, although carbon deposition can be inhibited by 

increasing the addition of copper. 

The impedance spectra measured at 600°C under open circuit conditions for three 

cells after 72h operation are shown in Fig. 8. Comparing with the initial ohmic 

resistance, there are almost no changes after 72h operation. The polarization 

resistance values of Ni0.9Cu0.1/SDC, Ni0.85Cu0.15/SDC and Ni0.8Cu0.2/SDC supported 

cells are 0.20, 0.34 and 0.52 Ω cm2, respectively. The changes of polarization 

resistance are summarized in Table 3, from which one can see that the anodic 

polarization resistance of Ni0.9Cu0.1/SDC supported cell has decreased by 0.02 Ω cm2, 

while other two have increased. This is caused by different carbon deposition rate of 

three cells during the operation with dry CH4.  

In order to investigate the carbon formation on the anode surface, EDS element 

mapping after electrical performance test has been carried out on these three anodes, 

shown in Fig. 9. It is clear that these anodes show different degrees of improved 

tolerance to coking under dry CH4-fuelled operating conditions. It is believed that 

coking is caused by the deposition and absorption of carbon on the alloy surface and 
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the TPBs between alloy, electrolyte and fuel [39]. The Ni0.9Cu0.1/SDC supported cell 

shows least carbon deposition, which is uniformly distributed on its surface. Fewer 

coking can enhance the electronic conductivity and decrease the anode polarization 

resistance consequently. In contrast, there are larger amount of carbon deposited on 

the surface of Ni0.8Cu0.2/SDC anode and carbon clusters at the anode matrix. The 

deposited carbon blocks the anode pores and obstructs gas transportation, resulting in 

an increasing of the concentration polarization of the anode. Meanwhile, the covered 

TPBs lead to a decrease of the active site for fuel oxidation and increased the 

polarization resistance. 

4. Conclusion 

In summary, a uniform hierarchical porous Ni1-xCux alloy-based anode has been 

developed through introducing a soluble pore former with the conventional 

fabrication techniques. It is found that the hierarchical porous microstructure is 

affected by the copper content in Ni1-xCux alloy. Such an improved anode can promote 

gas transport and provide longer TPBs within the cell. The optimized Ni0.9Cu0.1/SDC 

anode with such microstructure shows exceptional performance and the 

corresponding cell exhibits a maximum power density of 379 mW cm-2 in dry CH4 at 

600°C. Durability test shows that there is only 2.4% power density drop after 72 h 

operation. These results have proved that the hierarchical porous microstructure can 

improve electrochemical and catalytic activities of Ni1-xCux alloy-based anode and the 

long-term stability of CH4-fueled SOFC operated at intermediate temperature. 
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Table 1 Porosity and conductivity of anodes after reduction with H2 at 600 °C 
Anodes Porosity (%) Conductivity at 600 °C 

(S/cm) 
Ni0.9Cu0.1/SDC anode 41.6±2.8 435 

Ni0.85Cu0.15/SDC anode 36.2±2.3 458 
Ni0.8Cu0.2/SDC anode 32.4±1.9 491 
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Table 2 Open circuit voltages (OCVs) and maximum power densities (MPDs) for the 
Ni1-xCux/SDC supported cells operated at different temperature 

 

Ni1-xCux/SDC 
supported cell 

OCV (V)  MPD (mW cm-2) 

550 °C 600 °C 650 °C 550 °C 600 °C 650 °C 
Ni0.9Cu0.1 

Ni0.85Cu0.15 
Ni0.8Cu0.2 

0.936 
0.921 
0.903 

0.915 
0.894 
0.875 

0.897 
0.871 
0.862 

 227 
192 
160 

379 
337 
273 

485 
437 
370 
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Table 3 Loss of power density and polarization resistance variations of anodes after 
72h operation with dry CH4  

 

Anodes Loss of power density 
(%) 

Variation of polarization resistance 
(Ω cm2) 

Ni0.9Cu0.1/SDC anode 2.4 -0.02 
Ni0.85Cu0.15/SDC anode 6.9 0.04 
Ni0.8Cu0.2/SDC anode 14.5 0.11 
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Figure captions: 

Fig. 1. XRD patterns of (a) Ni0.9Cu0.1O/SDC cermet and (b) Ni0.9Cu0.1/SDC anode. 

Fig. 2. SEM images of (a) cross-sectional microstructure of a single Ni0.9Cu0.1/SDC 

anode-supported cell and (b) porous Ni0.9Cu0.1/SDC anode (the insert shows an 

enlargement of the smaller pores area) 

Fig. 3. SEM images of cross-sectional microstructure (left) and EDS mapping of the 

copper distribution (right) of the Ni1-xCux/SDC anodes: (a) and (b) Ni0.9Cu0.1/SDC, (c) 

and (d) Ni0.85Cu0.15/SDC, (e) and (f) Ni0.8Cu0.2/SDC. 

Fig. 4. Cell voltages (open symbols) and power densities (solid symbols) as function 

of current density of the Ni1-xCux/SDC supported cells tested at different temperatures: 

(a) Ni0.9Cu0.1/SDC supported cell, (b) Ni0.85Cu0.15/SDC supported cell and (c) 

Ni0.8Cu0.2/SDC supported cell. 

Fig. 5. Impedance spectra measured at 600 °C under open circuit conditions for 

Ni0.9Cu0.1/SDC supported cell (square), Ni0.85Cu0.15/SDC supported cell (star) and 

Ni0.8Cu0.2/SDC supported cell (triangle) with dry CH4 as fuel. 

Fig. 6. Schematic of (a) Ni/SDC anode and (b) Ni1-xCux/SDC anode three-phase 

boundaries (TPBs). 

Fig. 7. Power density of different anode-supported cells operated at 600°C with a 

constant cell voltage of 0.5 V and dry CH4 as fuel. 

Fig. 8. Impedance spectra measured at 600°C under open circuit conditions for 

Ni0.9Cu0.1/SDC supported cell (square), Ni0.85Cu0.15/SDC supported cell (star) and 

Ni0.8Cu0.2/SDC supported cell (triangle) with dry CH4 as fuel after 72 h operation. 
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Fig. 9. EDS mapping of the carbon distribution on the different anodes surface: (a) 

Ni0.9Cu0.1/SDC, (b) Ni0.85Cu0.15/SDC, and (c) Ni0.8Cu0.2/SDC. 
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Highlights 
 

� A Ni1-xCux alloy-based anode possessing a hierarchical porous structure was 

prepared. 

� Such a novel anode was fabricated by co-pressing and co-sintering process. 

� The smaller pores were homogeneously distributed in the anode matrix. 

� The performance of the cell was improved with dry CH4 fuel. 

� Durability test showed only 2.4% power density drop after 72 h operation. 


