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Abstract—In this paper, we propose a novel subspace learning algorithm called

Local Feature Discriminant Projection (LFDP) for supervised dimensionality

reduction of local features. LFDP is able to efficiently seek a subspace to improve

the discriminability of local features for classification. We make three novel

contributions. First, the proposed LFDP is a general supervised subspace

learning algorithm which provides an efficient way for dimensionality reduction of

large-scale local feature descriptors. Second, we introduce the Differential Scatter

Discriminant Criterion (DSDC) to the subspace learning of local feature descriptors

which avoids the matrix singularity problem. Third, we propose a generalized

orthogonalization method to impose on projections, leading to a more compact

and less redundant subspace. Extensive experimental validation on three

benchmark datasets including UIUC-Sports, Scene-15 and MIT Indoor

demonstrates that the proposed LFDP outperforms other dimensionality reduction

methods and achieves state-of-the-art performance for image classification.

Index Terms—Dimensionality reduction, local feature, image-to-class distance,

fisher vector, image classification
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1 INTRODUCTION

RECENTLY, the use of local features has gained great popularity in
computer vision. Based on local feature descriptors, e.g., SIFT [1],
the sparse coding algorithm [2], dictionary learning [3], the naive
Bayes nearest neighbor (NBNN) classifier [4], and Fisher kernels
(FK) [5] have achieved state-of-the-art performance for image clas-
sification [6], [7]. Nevertheless, the increasingly large quantity of
local feature descriptors makes local feature based algorithms
severely restricted and even computationally intractable on large-
scale data spaces. Dimensionality reduction algorithms [8], [9],
[10], [11], [12] are needed to reduce the computational complexity.
However, due to the huge number N (up to 100 M) of local feature
descriptors, traditional algorithms [13], [14], e.g., manifold learning
using nearest neighbor search (NN-search) with a computational

complexity of at least OðN2Þ, tend to be computationally prohabi-
tive. Efficient algorithms are highly desirable to handle such huge
amount of local feature descriptors for dimensionality reduction.

Furthermore, local feature descriptors, e.g., SIFT, are typically
constructed in an unsupervised way, which would be less discrimi-
native and contain redundant information. In contrast, supervised
subspace learning [15] can not only reduce dimensions of local fea-
ture descriptors by removing redundant features but also improve
the discriminability of local feature descriptors for classification. In
fact, the label information could be used to achieve supervised
dimensionality reduction of local feature descriptors, which how-
ever has not previously been investigated in the literature.

In this paper, we propose a novel, efficient supervised subspace
learning algorithm called Local Feature Discriminant Projection

(LFDP) for dimensionality reduction of local features. Most
dimensionality reduction methods are performed on the image
representation level, while this paper focuses on the local feature
level. LFDP offers an efficient discriminant analysis which can not
only reduce the dimensionality but also enhance discriminative
ability of local features. To achieve a supervised local feature
reduction, we adopt the image-to-class (I2C) distance [4], [10], [16]
which provides an effective measurement of distances between
images and classes by incorporating class label information into
local features. The discriminative analysis is established by adopt-
ing the Differential Scatter Discriminant Criterion (DSDC) [17], [18]
into the I2C based image representations. The advantage of using
DSDC is the avoidance of the matrix singularity problem [19], a
shortcoming of LDA, which enables more accurate computation.
Towards efficient computation of I2C distances, we use k-means
clustering to reduce the range of NN-search into the centroids of
local feature clusters in each class, which makes our algorithm
computational efficient without compromising the performance.

With the DSDC, we build our objective function to minimize
the within-class variance while maximizing the between-class
variance. However, the solution of our objective function is non-
trivial due to its quartic form. We use the gradient descent
algorithm on a sphere to solve this problem. In addition, an
orthogonality constraint is imposed on the projections to make
the subspace more compact and less redundant [8]. Unfortu-
nately, existing orthogonalization methods [20], [21] cannot be
straightforwardly applied to our scheme since they only orthogo-
nalize the projections of the eigen-decomposition problem, which
motivates us to propose a general orthogonalization on the projec-
tions via an induction method. The proposed generalized orthog-
onalization can also be widely applied to any other projection
optimization problems. To summarize, the proposed LFDP pos-
sesses the following attractive merits:

� Unrestricted dimension: Unlike LDA, in which the reduced
dimension is restricted by the number of classes, LFDP can
project data onto any lower-dimensional space without
suffering from the matrix singularity problem.

� OðNÞ complexity: The time complexity of our algorithm is
linear for N . In contrast to most manifold learning meth-

ods that need at least OðN2Þ time, our algorithm can be
practically used for dimensionality reduction on large-
scale data spaces.

� Generalized orthogonalization: The proposed orthogonali-
zation method is more general and intuitive than previous
methods [20], [21], and can also be applied to any other
algorithms that need to compute projection matrices with
the orthogonality constraints.

2 RELATED WORK

Principal Component Analysis (PCA) is a popular dimensionality
reduction method that can be directly applied to local features,
which, like most unsupervised methods, makes the reduced fea-
tures relatively less discriminative compared to supervised meth-
ods. Ke and Sukthankar [22] applied PCA to project the gradient
image vector of a patch to a more compact descriptor, which is
shorter than the standard SIFT descriptor but more robust to
image deformations. Existing manifold learning algorithms, e.g.,
Laplacian Eigenmap (LE) [23], Locally Linear Embedding (LLE)
[24] and ISOMAP [25], were proposed to learn the nonlinear
structure of the data manifold. These algorithms suffer from the
out-of-sample problem [26]. Locality Preserving Projections (LPP)
[27] and Neighborhood Preserving Embedding (NPE) [28] as the
linearized versions of LE and LLE, respectively, were developed
to solve the out-of-sample problem. As unsupervised methods,
they can be used for both global and local feature reduction.
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However, applying them to a large number of local features is
computationally infeasible due to their high complexity. More-
over, similar to PCA, their discriminative ability is limited, as
class label information is not used.

Linear Discriminant Analysis (LDA) is a conventional super-
vised method based on the Fisher criterion, which can also be
imprudently employed for local feature reduction by using the
class labels of the images from which local features are extracted.
However, the large variability of local features will inevitably mis-
lead the classifier since similar local features could be shared by
images from different classes. Discriminative local descriptor
learning has been explored individually in [8] and [9], both of
which use the same covariance matrices of pair-wise matched and
unmatched feature distances to find the linear projection. Recently,
Simonyan et al. [29] proposed learning local feature descriptors
using convex optimization. In fact, class labels of images are not
used in the learning process, which makes the projections lose con-
nection with classification and are therefore suboptimal. These dis-
criminative methods [8], [29] need huge amount of ground truth
with matched/unmatched pairs of local feature descriptors for
training, which is not applicable in a realistic setting. Zhen et al.
[10] proposed a supervised algorithm named I2C Distance Dis-
criminative Embedding (I2CDDE) for dimensionality reduction of
local features, which is specifically designed for the NBNN classi-
fier and also computationally expensive. Furthermore, these
dimension reduction methods have at least OðN2Þ computational
complexity, which severely limits their application in large-scale
data spaces.

3 LOCAL FEATURE DISCRIMINANT PROJECTION

In this section, we introduce our Local Feature Discriminant Projec-
tion algorithm before which the I2C distance is revised. With image
representations based on I2C distances, we build our objective
function by incorporating the DSDC for discriminant analysis of
local features. To solve the objective function, we present a gradi-
ent descent optimization algorithm with a novel, generalized
orthogonalization procedure.

3.1 Notations

We are given n imagesX1; . . . ; Xn from C classes. For the c-th class,
it contains nc samples, c ¼ 1; . . . ; C. Each image Xi is represented

by a set of local feature descriptors fxi1; . . . ; ximi
g, where xij 2 RD

is the jth local feature of the ith image, j ¼ 1; . . . ;mi, i ¼ 1; . . . ; n.

We denote N ¼Pn
i¼1 mi as the total number of local feature

descriptors from training images.

3.2 Image-to-Class Distance

The I2C distance introduced in the naive Bayes nearest neighbor
classifier [4] represents the average of the sum of all distance
squares from the local feature descriptors of an image to their cor-
responding nearest neighbors in each class. To be specific, the I2C
distance from imageXi to class c is defined as

Dc
Xi
¼ 1

mi

Xmi

j¼1
kxij � xcijk2;

where xcij is the nearest neighbor of xij in class c and k � k is the L2

norm. However, in our scheme, to reduce the complexity of NN-
search in the computation of I2C distances, we first employ the
K-means clustering algorithm on the set of local feature descriptors
of each class [30], [31], i.e.,

S
Xi2class cXi, c ¼ 1; . . . ; C. The search

range is now reduced to the cluster centers, i.e., we let
xc 2 Centroids of

S
Xi2class cXi for each c.

The I2C distance is a non-parametric approximation of the log-
likelihood log pðXijcÞ ¼ log

Qmi
j¼1 pðxijjcÞ [4]. When using Gaussian

kernel density estimation, we have

pðxjcÞ ¼ 1

Lc

XLc

k¼1
exp � 1

2s2
kx� x

ðcÞ
k k2

� �
;

where x represents an arbitrary local feature descriptor and

x
ðcÞ
1 ; . . . ; x

ðcÞ
Lc

are the local features extracted from all the images in

class c. Note that with fixed centers, diagonal covariance matrices
and equal weights, the density estimation turns out to be a special
case of Gaussian mixture models (GMM) used in a state-of-the-art
image representation called Fisher vectors [5], [32]. If we choose
the centers, covariance matrices and weights of the GMM as, for
instance, all of the training local features fx1; � � � ; xNg, diagonal
matrices and equal weights respectively, we have

pðxjQÞ ¼ 1

N

XN
i¼1

exp � 1

2s2
i

kx� xik2
� �

:

In this case, if the number of local features in each class (Lc) is the
same, the log-likelihood of the GMM is positively related to the
“average” of all the I2C distances and its gradients with respect to
parameters construct a Fisher vector.

Based on I2C distances, we propose local feature discriminant
projection by applying a discriminant analysis to local features for
supervised dimensionality reduction. It is worthwhile to highlight
that our LFDP is not restricted to the I2C distance. Other measure-
ments, e.g., Kullback-Leibler divergence, the Hausdorff distance
and the Bhattacharyya distance, could also be used to measure the
relationship between images and classes. More importantly, our
LFDP is a general supervised algorithm for dimension reduction
which can be applied to any local feature descriptors including not
only the handcrafted SIFT used in this paper, but also recent deep
learning based representations [33], [34].

In addition, local features reduced by our LFDP can be fed to
existing different representation methods, e.g., the bag-of-words
model, sparse coding, NBNN and Fisher kernels. We use the Fisher
kernels for the final image representations in order to achieve state-
of-the-art performance.

3.3 Discriminant Analysis

Our goal is to seek a matrix w 2 RD�d to project the original local

features xij with dimension D to wTxij in a lower-dimensional

but more discriminative space Rd. Note that after applying projec-
tion matrix w, the nearest neighbors may change. However, for
the large-scale local feature space, we approximately adopt the

sum of the distances from wTxij to the projected nearest neighbor

wTxcij. Denote DXic ¼ 1ffiffiffiffiffi
mi
p ½ðxi1 � xci1Þ; . . . ; ðximi

� xcimi
Þ�T 2 Rmi�D.

Then the projected I2C distance becomes

bDc
Xi
¼ 1

mi

Xmi

j¼1
kwTxij � ðwTxijÞck2

� 1

mi

Xmi

j¼1
kwTxij �wTxcijk2

¼ tr
�ðDXicwÞðDXicwÞT

�

¼ tr
�ðDXicwÞT ðDXicwÞ

�

¼ tr
�
wTDXT

icDXicw
�
:

Without loss of generality, we first consider the condition thatw
is a column vector in the algorithm, i.e., d ¼ 1. In fact, we will com-
pute the column vectors of the projection matrix one by one. In this
case, the projected I2C distances of an image will be
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di ¼ ð bD1
Xi
; . . . ; bDC

Xi
Þ

¼ ðwTDXT
i1DXi1w; . . . ;wTDXT

iCDXiCwÞ;
(1)

which is called an I2C vector. In other words, for each image Xi, we

have a corresponding vector di in linear space RC which is called
I2C vector space. Then we have the mean of the vectors in class i
and the mean of all the vectors, denoted by mi and m, respectively.
Having the representations with I2C vectors, we incorporate the
Differential Scatter Discriminant Criterion in the I2C vector space
to obtain our objective function in the following form that needs to
be maximized:

J ¼
XC
c¼1

nckmc � mk2 � �
XC
c¼1

X
dk2class c

kdk � mck2; (2)

where � is a tuning parameter. mc and m are computed by the fol-
lowing equations

mc ¼
1

nc

X
dk2class c

dk :¼ ðwTMc1w; . . . ;wTMcCwÞ;

m ¼ 1

N

XN
k¼1

dk :¼ ðwTM1w; . . . ;wTMCwÞ;

where

Mcj ¼ 1

nc

X
dk2class c

DXT
kjDXkj; c; j ¼ 1; . . . ; C;

and

Mj ¼ 1

N

XN
i¼1

DXT
ijDXij; j ¼ 1; . . . ; C:

Now we can formulate J as a function ofw as follows:

JðwÞ ¼
XC
c¼1

nc

XC
j¼1
ðwTDMcjwÞ2

� �
XC
c¼1

X
dk2class c

XC
j¼1
ðwT V c

kjwÞ2;
(3)

where DMcj ¼Mcj �Mj and V c
kj ¼ DXT

kjDXkj �Mcj for dk 2 class c,
c; j ¼ 1; . . . ; C.

3.4 Gradient Descent on Sphere

The classic eigen-decomposition of a matrix is not applicable to our
problem due to the quartic form of the objective function. We
adopt a procedure of gradient descent on a sphere to find the pro-
jection vector. Our goal is to find the optimal w by maximizing
JðwÞ. To obtain the final orthonormal projection matrix, we set a
norm constraint kwk ¼ 1 for each vector. However, the update rule
of the traditional gradient descent for a maximization problem:

wðtþ1Þ ¼ wðtÞ þ grJðwðtÞÞ does not guarantee this constraint. Thus
we amend the original algorithm and constrain it on the D-dimen-
sional unit sphere.

Define two matrix-valued functions:

MðwÞ ¼
XC
c¼1

nc

XC
j¼1

wTDMcjw � DMcj (4)

and

V ðwÞ ¼
XC
c¼1

X
dk2class c

XC
j¼1

wT V c
kjw � V c

kj: (5)

We obtain the gradient of JðwÞ:

rJðwÞ ¼ 2MðwÞw� 2�V ðwÞw: (6)

We project rJðwÞ onto the tangent direction of w on the sphere
as p ¼ rJðwÞ � hrJðwÞ;wiw and normalize it as p0 ¼ p=kpk.
By using the first-order Taylor expansion, we know rJðwÞ is
the steepest increasing direction. For direction p, we have hp;r
JðwÞi ¼ hrJðwÞ;rJðwÞi � hrJðwÞ;wi2 ¼ krJðwÞk2 � krJðwÞk2
cos 2a � 0, where a is the angle between rJðwÞ and w. Thus p
is still an increasing direction. Then for the tth step, we have
the following update rule:

wðtþ1Þ ¼ wðtÞ cos u þ p
ðtÞ
0 sin u; (7)

where u 2 ½0;p=2� is the step size. Since w and p0 are orthogonal,
the norm of the updated variable remains of unit length. In addi-
tion, to accelerate the convergence, we also employ an adaptive

step size ut, i.e., if Jðwðtþ1ÞÞ � JðwðtÞÞ, we set utþ1 ¼ minð2ut;p=2Þ,
otherwise, utþ1 ¼ ut=2. The iterative procedure is described in
Algorithm 1.

Algorithm 1. The Gradient Descent for Local Feature Discrimi-
nant Projection

Input: The local feature descriptors fxijg of each image and the
parameterK in K-means.

Output: The projection vectorw in the first dimension.
Employ K-means algorithm for the local feature set of each
class;
Find the nearest neighbor xcij of fxijg in the centroids of each
class;
Compute matrix-valued functions MðwÞ and V ðwÞ in
Eqs. (4) and (5);
Initialize step size u1 2 ð0;p=2Þ and randomly initialize unit

vectorwð1Þ;
repeat

Compute the projection of rJðwðtÞÞ on the tangent direction

of wðtÞ: pðtÞ ¼ rJðwðtÞÞ � hrJðwðtÞÞ;wðtÞiwðtÞ and apply

normalization p
ðtÞ
0 ¼ pðtÞ=kpðtÞk;

Computewðtþ1Þ ¼ wðtÞ cos ut þ p
ðtÞ
0 sin ut;

repeat
ut  ut=2;

until Jðwðtþ1ÞÞ � JðwðtÞÞ
Update utþ1 ¼ minð2ut; p=2Þ;

until convergence.

3.5 Orthogonality Constraints

Until now we have only computed the projection vector for the first
dimension. In this section, we use the induction method to com-
pute the remaining vectors successively and make them mutually
orthogonal by using the matrix composed by previous output vec-
tors. Previous works [8], [20] have highlighted the benefits of
orthogonality constraints, for instance, avoidance of overfitting
and redundancy in representing the subspace. With this orthogo-
nalization procedure, we can establish our whole algorithm.

Suppose we have obtained the first p ðp � 1Þ discriminant vec-
tors w1;w2; . . . :wp. We want to compute the next vector wpþ1 to

maximize JðwÞwith the orthogonal constraints

wT
1wpþ1 ¼ wT

2wpþ1 ¼ � � � ¼ wT
pwpþ1 ¼ 0; (8)

and an additional norm constraint on wpþ1, i.e., kwpþ1k ¼ 1. The
method in [20] can not be applied in our scheme due to the high
degree of Lagrangian in our case. We use an alternative but more
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general method by basis transformation to solve this issue. In other
words, we compute the next discriminant vector in a special sub-
space in which the orthogonal constraints vanish.

According to the inductive assumption, vectors w1;w2; . . . ;wp

should be an orthonormal basis of a subspace in RD. Let us denote
spanVp ¼ ðw1;w2; . . . ;wpÞ and Wp ¼ ½w1;w2; . . . ;wp�. Then Vp is a

p-dimensional subspace and Wp is a D� p matrix. Recall that our

primary goal is to seek an optimalw by maximizing JðwÞ:

argmax
w2RD

JðwÞ: (9)

Once we have obtained subspace Vp, wpþ1 is required to be orthog-
onal to all the vectors in Vp. Consequently, we need to compute the

constrained optimization problem

argmax
w2V?p

JðwÞ (10)

to find the solution of wpþ1, where V ?p is the null space of Vp and

dimV ?p ¼ D� p. Straightforwardly, the data can be projected onto

subspace V ?p so that the computation process is completely per-

formed in a ðD� pÞ-dimensional linear subspace, i.e., the new

coordinates are in RD�p. Then the output will be orthogonal to any
vectors in Vp. For this reason, we need to find a basis

Bp ¼ ½b1; . . . ;bD�p� 2 RD�ðD�pÞ of V ?p . In fact, we need only to solve

the linear equation WT
p X ¼ 0, which is commonly used in linear

algebra. Furthermore, we make this basis orthonormal by follow-
ing the Gram-Schmidt procedure.

Now with this orthonormal basis Bp, we project data from RD

onto subspace V ?p . Specifically, for a local feature and an I2C vec-

tor, we have transformations xij  BT
p xij and di  ðvTBT

pDX
T
i1D

Xi1Bpv; . . . ; v
TBT

p DX
T
iCDXiCBpvÞ, respectively, where v is a vector

in RD�p. Then we only need to solve the unconstrained problem in
a lower-dimensional space:

argmax
v2RD�p

JpðvÞ ¼ argmax
v2RD�p

�
vTMpðvÞv� �vT VpðvÞv

�
; (11)

where Mpð�Þ and Vpð�Þ are the images of matrix-valued functions
Mð�Þ and V ð�Þ after the projection, respectively, i.e., DMcj  
BT

p DMcjBp and V c
kj  BT

p V
c
kjBp. Now it is an optimization problem

where the constraints vanish and here we return to our first goal in
the ðD� pÞ-dimensional space.

Algorithm 2. Local Feature Discriminant Projection

Input: The input of Algorithm 1 and the target dimension d.
Output: The projection matrixw.
Initialization: w ; and B I;
for i ¼ 1 to d do
Project training data onto the null space of spanðwÞ by
using the basis B;
Call Algorithm 1 to compute the corresponding projection
vectorwi in subspace spanðwÞ? and updatewi  Bwi;
Update w ½w;wi� and let B be an orthonormal basis of

spanðwÞ? by solving the corresponding linear equation
and following the Gram-Schmidt procedure.

end for

Having the solution v	 for the optimization problem (11) inRD�p,
we transform it to an element in V ?p 2 RD. Actually, RD�p and V ?p
are two isomorphic linear spaces and Bp can be regarded as a linear

isomorphism between them. Through the representation of an

orthonormal basis, for each w 2 V ?p , we have w ¼PD�p
i¼1 wibi,

where wi 2 R, and the inner product of w and bi will be

hw;bii ¼ wi, 8i. Then ðw1; . . . ; wD�pÞT ¼ ðhw;b1i; . . . ; hw;bD�piÞT ¼
½b1; . . . ;bD�p�T w ¼ BT

pw, i.e., the result of multiplying the left side

of w by BT
p is the coefficient of the representation by Bp. Finally,

we setwpþ1 ¼ Bp � v	 2 V ?p as a linear combination ofBp. The whole

LFDP algorithm is illustrated in Algorithm 2.

Remark. The proposed orthogonalization procedure is a more gen-

eral way to compute orthogonal projection matrices. Note that,

in Algorithm 2, given the input of Algorithm 1, we need only

Algorithm 1 to output a projection vector without need to know

the computation process. Therefore, Algorithm 1 could be seen

as a black box that is able to compute the projection vector (for

those that output a matrix, we only need its first column). Now

we have the following general proposition.

Proposition. Given maximizing (minimizing) algorithm A which takes

projected data wTx as input and outputs the optimal vector, and an

orthonormal basis Bp of ðD� pÞ-dimensional subspace V ?p 
 RD, if

v	 is the optimal solution of AðvTBT
p xÞ in RD�p, w	 ¼ Bpv

	 is the
optimal solution of AðwTxÞ in V ?p .

3.6 Relations between Algorithm 2 and the Ordinary
Eigen-Decomposition

In fact, assuming that the optimization problem is simplified to

the eigen-decomposition of a symmetric matrix A 2 RD�D such as

PCA, we prove that the proposed orthogonalization method finds

the same eigenvectors with the eigen-decomposition by adopting

mathematical induction. Suppose A ¼PD
i¼1 �iwiw

T
i ¼WLWT is

the spectral decomposition of A and �1 � . . . � �D, where L ¼
diagð�1; . . . ; �DÞ and W ¼ ½w1; . . . ;wD�. Then wT

i wj ¼ 0 if i 6¼ j

and wT
i wi ¼ 1 for i ¼ 1; . . . ; D.

For the first vector, both Algorithm 2 and the eigen-decomposi-
tion output the eigenvector w1 corresponding to the largest eigen-
value of A. Assume Algorithm 2 has output the first k eigenvectors
w1; . . . ;wk. For the ðkþ 1Þ-th vector, wkþ1 is the eigenvector corre-
sponding to the eigenvalue �kþ1. Algorithm 2 first finds an ortho-

nomal basis B 2 RD�ðD�kÞ of spanðw1; . . . ;wkÞ?. Since W is an

orthogonal matrix, we have spanðw1; . . . ;wkÞ? ¼ spanðwkþ1; . . . ;
wDÞ. Then there exists an orthogonal matrix P 2 RðD�kÞ�ðD�kÞ such
that B ¼ Wkþ1P , where Wkþ1 ¼ ½wkþ1; . . . ;wD�. In the ðkþ 1Þth
step of Algorithm 2, we eigen-decompose the matrix BTAB to com-
pute its largest eigenvalue. Note that

BTAB ¼ PTWT
kþ1

XD

i¼1 �iwiw
T
i

� �
Wkþ1P

¼ PTWT
kþ1

XD

i¼kþ1 �iwiw
T
i

� �
Wkþ1P

¼ PTWT
kþ1Wkþ1Lkþ1WT

kþ1Wkþ1P

¼ PTLkþ1P;

where Lkþ1 ¼ diagð�kþ1; . . . ; �DÞ. Therefore, the largest eigenvalue

of BTAB is still �kþ1, which indicates that the corresponding eigen-
values of the output vectors of Algorithm 2 are �1; . . . ; �D. Then the
whole output set of Algorithm 2 is fw1; . . . ;wDg up to sign.

3.7 Complexity Analysis

Our LFDP is computationally more efficient thanmost of the existing
manifold learningmethods.We provide a complexity analysis on the
two procedures: gradient descent and orthogonalization of our LFDP
in terms of time complexity and memory cost, since in the test phase,
the complexity depends on the classifier and the time complexitywill
apparently be reduced after dimensionality reduction.
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Gradient descent. During the iterative procedure of gradient
descent, the main cost is induced by the computation of the I2C dis-
tances. The time complexity of a brute-force method of
NN-search in K centroids with D-dimension is OðKNDÞ. Comput-

ingMðwÞ and V ðwÞ needsOðD2C2Þ andOðD2CnÞ time respectively,
where n is the number of training images. Then the time complexity
of the gradient descent with Niter steps in a D-dimensional space is

OðNiterðD2C2 þD2CnÞÞ and the time complexity of the whole pro-

cedure is atmostOðKNDþNiterD
2C2Þ. Thememory cost of the iter-

ative procedure isOðD2C2 þD2CnÞ.
Orthogonalization. We can observe that the main step in the

orthogonalization procedure is the Gram-Schmidt procedure,
which requires at most Oðnm2Þ time and Oðnmþm2Þ memory for
computing on m n-dimensional vectors [35]. Notice that, in our
algorithm, m varies from 1 to d and n varies from D to D� dþ 1,
where d is the dimension of the projected space.

In total, with the complexity OðTKNDÞ in the K-means, where
T is the number of iterations in the K-means, our LFDP algorithm

requires at most OððT þ 1Þ KNDþ dNiterðD2C2 þD2CnÞ þ 1
6 d

3DÞ
time complexity and OðD2C2 þD2Cnþ 1

2 d
2Dþ 1

6 d
3Þ memory. Due

to the large number of local feature descriptors, generally N � D,
we show the computational complexity on N through comparing
our algorithm with other dimensionality reduction methods in
Table 1, where K is the parameter of K-means and k is the parame-
ter of the k-nearest neighbor (KNN) algorithm. In fact, KNN-based
algorithms highly rely on the neighborhood structure of each point,
which will be changed by K-means clustering. In addition,
K-means may also change the order of I2C distances where there
are similar classes or noisy data points, and therefore, mislead the
learning of I2CDDE leading to the failure of NBNN. In contrast,
our discriminant analysis considers the relationships of intra-class
and inter-class variations among I2C vectors, achieving a global
optimization objective. Therefore, using K-means centroids can not
only make our LFDP computationally more efficient but also toler-
ant to the fluctuation of I2C distances.

4 EXPERIMENTS

We have extensively validated our LFDP algorithm on three
widely used benchmark datasets, i.e., UIUC-Sports, Scene-15 and
MIT Indoor. Experimental results show that our LFDP largely out-
performs representative dimension reduction algorithms and
achieves state-of-the-art performance.

4.1 Implementation Details

The optimal tuning parameter � for each dataset is selected fromone
of f0:1; 0:2; . . . ; 1g, which yields the best performance by 10-fold

cross-validation on the training data.We fixK ¼ 300 in K-means for
all datasets and set the maximum number of the K-means iteration
as 20. In addition, the K-means clustering for each class can be per-
formed in a parallel way to save time complexity. We take the
Improved Fisher Kernel (IFK), which is an improved version of
Fisher kernels [36], based on raw SIFT descriptors without dimen-
sion reduction as the baseline. We compare with PCA as a represen-
tative unsupervised algorithm which has shown competitive and
even better performance than manifold learning algorithms includ-
ing ISOMAP, LLE and LE on diverse tasks [37]. LDA is included for
comparison as a supervised algorithm. The parameter k of the KNN
algorithm in LPP and NPE is tuned by selecting from f5; 6; . . . ; 15g.
By following the setting in [9], we randomly select 1:5� 105 local fea-
tures fromall the training sets for training the projection of LDP. ISO-
MAP is not involved in the comparison due to the out-of-sample
problem. All the experiments are implemented using Matlab 2013b
on aworkstation configuredwith an i7 processor and 32GBRAM.

4.2 Datasets

UIUC-Sports. The Sports event dataset was introduced in [38], con-
sisting of eight sports event categories. The number of images in
each class ranges from 137 to 250. We follow the experimental set-
ting in [38] to randomly select 70 and 60 images per class for train-
ing and testing respectively. The procedure is repeated five times
and the average is reported as the final result. Differently, we use
the original images rather than the resized ones.

Scene-15. The Scene-15 dataset [39] consists of 4,485 images
which are labeled in 15 distinct classes. The number of images in
each class varies from 200 to 400. Following the experimental set-
ting in [39], we randomly select 100 images in each class as training
data and test the remaining images. The procedure is repeated five
times and the average is reported as the final result.

MIT Indoor. The MIT Indoor scene dataset [40] contains
67 indoor scene categories for a total of 15,620 images. The number
of images in each class varies from 100 to 734. Eighty and 20 images
are selected in each category for training and testing respectively
by following the experimental setting in [40] and the average is
reported.

4.3 Local Feature and Classifier

We use the software provided by Yang et al. [41] to compute the
SIFT descriptors. In contrast to existing works which either use
multi-scale SIFT descriptors [42], spatial pyramid representation
[43] or multiple descriptors [4], [42], we simply use single-scale
SIFT descriptors in patches of 16� 16. In our experiments, the aver-
age numbers of local features extracted from each image in three
datasets are all 1,500. Then the total numbers (N) of the training
local features in the above three datasets are 900;000, 2;000;000 and
8;000;000, respectively.

We employ a linear SVM classifier with IFK [36] and compute
the Fisher vector for each image based on its local features by fol-
lowing the settings in [36] using 256 Gaussians in the GMM.

4.4 Resource Requirements

In Table 2, we list the resource requirements for training the projec-
tions by different dimensionality reduction methods. The nearest
neighbor search and the computation for pairwise distances make

OðN2Þ methods suffer from the high computational complexity.

TABLE 1
Comparing the Complexity of LFDP with Other Linear Algorithms on N WhereK Is the Parameter of K-Means and k Is the

Parameter of the KNN Algorithm

Method LFDP PCA LDA I2CDDE [10] LDE [8] LDP [9] LPP [27] NPE [28]

Complexity OðKNÞ OðNÞ OðNÞ OðN2Þ OðN2Þ OðN2Þ OðkN2Þ OðkN2Þ

TABLE 2
Resource Requirements of Different Methods for the
900;000 SIFT Features from the UIUC-Sports Dataset

Method Memory cost Runtime

LFDP 1 GB 30 mins
I2CDDE 1 GB 8 hrs
LDE / LDP 1 GB 8 hrs
LPP / NPE 900 GB 16 hrs
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Note that the runtime for LPP and NPE is a theoretical value since
it is infeasible to implement them with such large memory. There-
fore, to use the largest possible number of features that can be han-

dled by our workstation, a subset consisting 1:5� 105 local
features is randomly selected from the whole training set for evalu-
ating these methods.

4.5 Results

The performance comparison of LFDP with other dimensionality
reduction methods is shown in Figs. 1a, 1b and 1c for UIUC-
Sports, Scene-15 and MIT Indoor, respectively. The baseline repre-
sents the performance of SVMs with IFK in the original
128-dimensional SIFT space without dimensionality reduction.
The proposed method shows consistent advantages on all the
three datasets. Our method improves the baseline phenomenally
with a large margin. PCA usually reaches its highest accuracy
around the dimension of 50 and remains stable with the increase
of dimensionality. Other methods such as LPP, NPE, LDP and
I2CDDE only sightly outperform PCA. In contrast with the above
methods, we can observe that LFDP goes up rapidly with the
increase of the dimension when the dimension is low and
achieves the competitive results around the dimension of 40 (even
at 30). With the reduced local feature descriptors by LFDP, the
dimensionality of Fisher vectors is several times shorter than the
original dimension, which reduces the computational cost for clas-
sification but strengthens the discriminative ability due to the
supervised learning.

Furthermore, the advantage of our method has been also shown
by comparing with LDA. Note that LDA learns the projection
matrix by directly labeling the local features with class labels of
images they belong to. Since the performance of LDA is also
restricted by the number of classes [44], the upper bound of
reduced dimensionality of LDA is C � 1, on which LDA reaches its

best performance. We report the best results of PCA and LDA on
different datasets for the comparison with the results of LFDP in
Table 3. LDA with the Fisher criterion produces results below the
baseline on the UIUC-Sports dataset since it contains only eight
classes so that the result is obtained by seven-dimensional local
descriptors. To alleviate the dimension restriction of LDA with the
Fisher criterion, we implement LDA with the DSDC criterion using
the parameter � similar to Eq. (2). We tune � in f0:1; 0:2; � � � ; 1g and
the best results are reported in Table 3. With the DSDC, the
reduced dimension of LDA is not restricted by the number of clas-
ses and the results are significantly improved.

LFDP can efficiently find lower-dimensional but more discrimi-
native feature space and achieves the state-of-the-art results [42],
[45], [46], which reveals its capability in dimensionality reduction of
ubiquitous local feature spaces in large scale.

4.6 Algorithm Analysis

We also evaluate the performance of Algorithm 1 in terms of con-
vergency. We randomly initialize w 50 times on the UIUC-Sports
dataset and the average value of the objective function in Eq. (3)

and the average difference kwðtÞ �wðt�1Þk on the first dimension
are reported in Fig. 2, where t is the number of iteration and � is
fixed at 0:1. We can observe that w converges within only 10 steps.
Therefore, we always fix the maximum number of iteration at 10 in
the experiments.

In addition, LFDP achieves the best performance with a small
value of K in K-means, which guarantees the computational effi-
ciency. We have investigated the performance under different val-
ues of parameter K as shown in Table 4. On all the three datasets,
our method yields the best results with K ¼ 300 which is much
smaller than the number of local feature descriptors, which is up
to 120;000 in each class. This largely reduces the computational
complexity.

TABLE 3
Performance (Percent) of Linear SVMs with IFK After PCA, LDA and

LFDP Reduction on Local Features

Method UIUC-Sports Scene-15 MIT Indoor

Baseline 83:1� 0:3 79:2� 0:2 37:0� 0:3
PCA 85:7� 0:2 82:9� 0:4 42:1� 0:4
LDA1 81:2� 0:4 79:9� 0:4 38:6� 0:5
LDA2 85:4� 0:4 83:0� 0:3 42:3� 0:4
LFDP 88:1� 0:5 84:0� 0:5 46:6� 0:4

LDA1 is the LDA with the Fisher criterion and LDA2 is the LDA with the
DSDC. The results listed in the table are their best accuracies. The baseline is
the classification result of IFK without dimensionality reduction of local fea-
ture descriptors.

Fig. 1. Performance (percent) of linear SVMs with IFK in different lower-dimensional subspaces on the UIUC-Sports, Scene-15 and MIT Indoor datasets. Note that we
only use one type of local descriptor: SIFT in single-scale patches.

Fig. 2. The convergency of the objective function and the difference of variables
with respect to the number of iteration.
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5 CONCLUSION

A new subspace learning algorithm called Local Feature Discrimi-
nant Projection has been proposed for supervised dimensionality
reduction of local features. The projections for reduction are
obtained by optimizing an objective function constructed based on
the Differential Scatter Discriminant Criterion and the I2C represen-
tations. A general orthogonalization method has been proposed to
learn the projections which guarantees a more compact space with
less redundancy. The proposed LFDP has a much lower complexity
than popular manifold learning methods, providing an alternative
way to efficiently analyze large-scale data. The experimental results
on three widely used benchmarks for image classification have vali-
dated the effectiveness of LFDP and shown its advantages over
traditional dimensionality reduction algorithms. In future work, we
aim to extend our algorithm to the semi-supervised and unsuper-
vised settings for more practical applications.
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TABLE 4
Comparing the Results (Percent) of LFDP

with DifferentK Values

K
Dataset

50 100 200 300 400 500

UIUC-Sports 76.5 83.2 86.7 88.1 88.0 88.0
Scene-15 75.3 82.7 83.6 84.0 83.8 84.0
MIT Indoor 36.7 40.3 44.8 46.6 46.4 46.4

The best results while varying the target dimension are listed.
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