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Abstract 

Purpose 

A large proportion of the diagnosed prostate cancer patients are suffering 

from low grade or indolent tumours. Transrectal ultrasound guided biopsy 

which is conventionally used as the means of diagnosis has a weak 

correlation with cancer grade or aggressiveness because of its random 

sampling nature, so that many indolent tumours are treated aggressively 

with serious side effects. Quantitative magnetic resonance imaging has 

shown relative success in distinguishing aggressive tumours. It is important 

to assess the feasibility of different MR modalities such as T2 or diffusion 

weighted imaging and to optimise them. 

Methods 

A variety of biophysical analyses were performed to find correlations 

between diffusion and T2 weighted magnetic resonance parameters and the 

changes in complex compartmental structure of the prostate (consisting of 

ducts, epithelial and stromal cells, and vascularity) with increasing cancer 

grade. For this aim, Monte Carlo simulations of a semi-restricted 

compartment (ductal lumen) and two compartmental exchange model 

(stromal-epithelial or cellular compartment) were used. Additionally, 

optimisations were performed for T2 and diffusion weighted imaging 

protocols.  

Results 

The biexponential model for diffusion explicitly explained the biophysical 

changes in prostate cancer. The fast and slow ADC values respectively 

varied from 2.36 and 0.9 µm2ms-1 in healthy prostate to around 1 and 0.5 

µm2ms-1 in the most aggressive tumours. Biexponential T2 acquisitions 

were optimised to distinguish indolent tumours. There was a 10-20% 

reduction in estimation errors compared to equally distanced acquisitions, 

if the target values of T2slow and T2fast were respectively 360 and 60 ms. 

The optimisations were extended to non-Gaussian diffusion weighted 

imaging protocols. 

Conclusion 

In order to substantially improve the diagnostic accuracy of prostate cancer 

MR acquisitions, it is recommended to consider the biophysical model and 

the optimised protocols introduced here. Also, diffusion time and other 

acquisition details should be considered prior to the imaging. 
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Chapter 1: Background 

1-1: A Brief History of MRI 

Felix Bloch (Bloch 1946) and Edward Mills Purcell (Purcell 1946) 

simultaneously discovered Nuclear Magnetic Resonance (NMR). Shortly 

afterwards Hahn (Hahn 1950) showed that the random thermal motion of 

the spins would reduce the amplitude of the observed NMR signal if a 

magnetic field inhomogeneity is present, which is currently the basis of 

diffusion MRI. Currently, diffusion weighted imaging is well known to 

give insights of cell size and shape, geometric packing and permeability 

levels for tumours or other diseases (Le Bihan and Johansen-Berg 2012; 

Koh and Collins 2007).  

Non-invasive imaging at high spatial resolution is possible using MRI. 

Currently, there are two main MR methodologies: one is to extract 

anatomical or structural information such as in T1, T2 or proton density 

weighted imaging and the other one is to measure functional activity such 

as movement or diffusion of water molecules in diffusion weighted 

imaging, blood flow measurements in perfusion MRI, changes in 

concentration of metabolites in magnetic resonance spectroscopy (MRS) or 

concentration of contrast agents in dynamic contrast enhanced (DCE) 

imaging. (McRobbie et al. 2007) 

1-2: Quantitative MR Methods 

For either anatomical or functional MR, instead of directly reporting image 

related parameters which make up the medical image, a wide range of 

quantities could be tested to see if they lie within the normal range or not. 

With the increasing interest in such quantitative analysis, MRI is going 

through a “paradigm shift” in which acquiring high quality images might 

not be the diagnostic goal. The goal of these analyses is to find parameters 

that have changes at smaller scales than the visible MR scales or might not 

be demonstrable in MR images in general (Tofts 2005), such as changes in 

permeability of cell walls, blood vessels, residence times of water 

molecules inside a diffusion compartment, etc.  
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In general, all the reported MR parameters whether image producible or 

not, are called quantitative MR parameters and the methods that produce or 

make use of these parameters are called quantitative MR methods. 

1-3: Proton Density, T1 and T2 Weighted MRI 

Proton density, T1, and T2 weighted MRI are the three main MR methods 

in which a sequence of RF and gradient pulses are designed to produce 

images whose contrast mainly depends on differences between the proton 

density, T1 (longitudinal or spin-lattice) relaxation, and T2 (transverse or 

spin-spin) relaxation characteristic of samples, respectively.  

When a magnetic field is applied to a sample its nuclei start to precess 

around the main magnetic field. In the case of T1 and T2 weighted imaging, 

a 90 degree radiofrequency pulse (. perpendicular to the main MR 

magnetic field) is applied to rotate the axis of the nuclei away from the 

main field and towards the transverse plane, where they give a detectable 

signal. The angle through which the nuclei are rotated relative to the main 

magnetic field is adjusted by varying its timing.  After removal of the 

pulse, the spins tend to realign with the main magnetic field, reducing the 

measurable signal (T1 relaxation). Simultaneously, spins start to get out of 

phase from their coherent precession following the application and 

removal of the radiofrequency pulse, again reducing the measured signal. 

This process of dephasing is depended on the T2
* characteristics of the 

sample. T2
* relaxation rate of a sample is dependent on spin-spin 

characteristics of the tissue in addition to external factors such as magnetic 

field inhomogeneity. In order to cancel out external effects, 180 degree 

pulses are applied to create “spin echoes”; in this case the measured 

transverse relaxation is called T2 relaxation and is solely dependent on 

spin-spin characteristics of the sample. (Mitchell 1999) 

1-4: Diffusion Weighted MRI 

Diffusion MRI has proven useful in characterizing tumours in a number of 

different cancers (Padhani et al. 2009; Koh and Collins 2007) such as 
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breast (Theilmann et al. 2004; Sigmund et al. 2011; Iima et al. 2015), 

prostate (Rosenkrantz et al. 2012), and brain (Hayashida et al. 2006).  

Generally, diffusion weighted imaging is a probe of random Brownian 

motion of water molecules in the tissue using a pair of diffusion sensitizing 

gradients (Stejskal and Tanner 1965). The diffusion sensitizing gradients 

are linear variations of the main MR magnetic field in the directions that 

diffusion is being measured; The application of these gradients results in 

decreases in the final acquired signal from the spins that have higher 

diffusion coefficients (Zubkov et al. 2016). During the application of the 

first gradient pulse, the spins have different precession speeds depending 

on their distance from the central point with zero gradient. After the 

gradient is removed, the spins are allowed to diffuse for a certain amount 

of time. Finally, a gradient in the opposite direction is applied; if the spins 

have not moved the phase of their precession is the same as having no 

gradients. Conversely, fast moving spins are dephased from each other and 

hence their accumulated signal is decreased (Hall and Alexander 2009).  

 Diffusion weighted imaging could be considered as a derivative of T1 

imaging (stimulated spin-echo (Tanner 1970)) or T2 imaging (spin-echo 

(Stejskal and Tanner 1965)) depending on the combination of 

radiofrequency pulses used during the acquisition.   

1-5: Anatomy of the Prostate  

The prostate gland is surround by the bladder base from its superior side 

and urogenital diaphragm from its inferior side. The prostate capsule 

contains the prostatic urethra and the ejaculatory ducts. There are five 

zones associated with the prostate. There four zones with the prostate 

capsule: the peripheral zone (PZ), the transition zone (TZ), the central 

gland (CG), and the periurethral glandular tissue; additionally, the prostate 

is covered by non-glandular anterior fibromuscular stroma. Fig. 1.1 is a 

depiction of these zones. Benign hyperplasia or proliferation of epithelial 

and smooth muscle cell occurs in the transition zone of the prostate. 

Whereas, metastatic prostate tumours are mostly located within the 

peripheral zone. (McNeal 1988; Villeirs et al. 2005). 
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The glandular structure of the prostate consists of ductal lumen surrounded 

by secretary epithelial cells. These glandular structures are surrounded by 

muscle cells that control urine flow and ejaculation plus the fibrous cells 

that strengthen the structure of the gland (Shier, Butler, and Lewis 2006). 

The latter two are called (fibro-muscular) stromal cells throughout this 

thesis. Fig. 1.2 shows the three main compartments of the prostate (i.e. 

ducts, epithelial cells, and stromal cells). 

 

Figure 1.1 Prostate Zones: (A) The urethra (blue), the seminal vesicles and ejaculatory 

(yellow), the periurethral glands (pale green stripe), and the transition zone (dark green). 

(B) The central zone (orange) bounding the posterior surface of the transition zone and 

urethra and enclosing the ejaculatory ducts. (C) The peripheral zone (red); the ratio of 

peripheral zone to central gland increases downward from base to apex. (D) The prostate 

is covered by non-glandular fibromuscular stroma (brown) on its anterior side. The figure 

is copied from (Villeirs et al. 2005) with permission from the journal of Radiotherapy and 

Oncology. 
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Figure 1.2 (a) MR and (b) histology images of normal prostate tissue containing the ducts 

(d), epithelial cells (e), and stromal cells (s). The figure is copied from (Bourne et al. 

2011), with permission from Magnetic Resonance in Medicine. 

1-6: Diagnosis and Grading of Prostate Cancer 

Prostate cancer is the fourth most common cancer with 1.1 million 

diagnosed cases worldwide in 2012 after lung(1.82 million), breast(1.67 

million) and colorectal(1.36 million) and is the second most common 

cancer in men after lung cancer. Prostate cancer accounts for 15% of the 

cancers diagnosed in men with about 70% of them occurring in more 

developed countries making it the most common cancer in men in these 

countries. It is the fifth cause of death from cancer in men worldwide with 

estimated 307000 deaths representing 6.6% of the total male cancer 

mortality. (Ferlay et al. 2015) 

These statistics indicate high occurrence of prostate cancer,  however most 

prostate tumours are relatively indolent and could be left untreated but 

monitored regularly (active surveillance). 

Prostate specific antigen (PSA) is an enzyme that is secreted from the 

epithelial cells into the glandular ducts and later seminal flow (Stenman et 

al. 1999). PSA secretion levels are increased in prostate cancer; as a result 
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PSA is a sensitive marker for prostate cancer. However, specificity of PSA 

is low because of high frequency of elevated values in benign prostate 

hyperplasia (Stenman et al. 1999). Thus, due its high sensitivity, PSA test 

is necessary but not enough to diagnose prostate cancer. Hence, additional 

tests are required to verify the cancer. 

Conventionally, prostate of patients with elevated PSA levels are assessed 

using transrectal ultrasound guided biopsy (TRUSGB). Due to its random 

sampling nature this test might miss cancer, overestimate low grade 

tumours or underestimate clinically significant tumours (Kim et al. 2015; 

Singh et al. 2004; Scattoni et al. 2007). Because of this inability to reliably 

detect intermediate or high risk prostate cancer, urologists tend to act 

conservatively and choose aggressive treatment (Kim et al. 2015) instead 

of active surveillance. With this conservative approach, 37 men undergo 

prostatectomy to avoid one cancer-related death (Schröder et al. 2012). The 

aggressive treatment is associated with common side effects such as sexual 

and urinary dysfunction (Pardo et al. 2010).  



18 

 

 

Fig. 1.3 Gleason grading system. Figure reproduced with permission from (Epstein et al. 

2005; Gleason 1992). 

The current grading system for TRUSGB samples is the Gleason grading 

system which was originally developed between 1966 and 1974 (Gleason, 

Mellinger, and Group 2002). Samples are graded based on their 

aggressiveness pattern from 1 to 5 (known as the Gleason Score) and the 

sum of the two most common patterns, which ranges between 2 to 10, is 

referred to throughout the remainder of this thesis as the Gleason Sum. 

Grades of 3 and below are for poorly differentiated (non-aggressive) 
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cancer, whereas grades of 4 and 5 are for well differentiated (aggressive) 

cancer. For example a Gleason score of 3+4 is for higher percentage of 

poorly differentiated and smaller percentages of well differentiated cancer 

and a Gleason score of 4+3 is for higher percentage of well differentiated 

and smaller percentages of poorly differentiated cancer (Epstein, Zelefsky, 

et al. 2016). This grading system has gone through substantial revisions in 

2005 (Epstein et al. 2005) and 2014 (Epstein, Egevad, et al. 2016). There 

have been a wide range of proposed revisions such as inclusion of new 

categories and exceptions, and also efforts to make the Gleason grading 

system more quantitative. However, there are still some deficiencies 

associated with Gleason scoring system as a marker of prostate cancer 

aggressiveness. As a result, introducing new prostate cancer (PCa) grading 

systems is the subject of recent studies (Epstein, Zelefsky, et al. 2016). 

Specifically, there is a considerably higher rate of biochemical recurrence 

and mortality associated with Gleason score 4+3 compared to Gleason 

score 3+4 (Rasiah et al. 2003; Rosenkrantz et al. 2015); hence it has been 

recommended by (Rosenkrantz et al. 2015; Reese et al. 2012) to report the 

percentage of the more aggressive component in the Gleason sum. 

Additionally, it is important to stage prostate cancer. For this aim, a 

numbering system consisting of three letters TNM (Tumour, node, and 

Metastasis) exists to characterise the levels of extension of tumours inside 

or outside the prostate capsule, lymph node invasion and also metastasis to 

other organs. Three letter are used to stage prostate cancer. T1, T2, T3 and 

T4 are respectively for small microscopic tumours that could not be felt 

during digital exam, tumours within the prostate capsule that could be felt 

during digital rectal exam, tumours spreading outside the prostate capsule 

but not beyond, and fixed tumours spreading to nearby structures such as 

seminal vesicles. N0 means there is no lymph node invasion and N1 means 

that cancer has invaded nearby lymph node(s). M0 means that cancer has 

not spread to other organs such as bones or lungs but M1 means that cancer 

has spread into other organs. (Parker et al. 2015)  

Usefulness of quantitative MRI in characterising tumours in a number of 

different cancers, including prostate cancer has been shown in several 
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previous studies (Gibbs et al. 2009; Rosenkrantz et al. 2012; Tamada et al. 

2008; Vargas et al. 2011; Verma et al. 2011; Yoshimitsu et al. 2008). 

Hence, it has been recommended by National Institute for Health and Care 

Excellence (NICE) that patients with elevated PSA levels should have MRI 

scans prior to having biopsies (Streeter and Brewster 2015) in order to 

better diagnose prostate cancer.  

This characterisation of prostate tissue can be based on proton density and 

T1 and T2 relaxometry, diffusive behaviour of water molecules inside the 

prostate gland (diffusion weighted imaging), investigating microvascular 

structure and function by use of pharmacokinetic modelling parameters 

(dynamic contrast enhanced imaging), or a combination of some or all of 

these methods (Kozlowski et al. 2006).  

Interpretation of prostate MR measurements is complicated by prostate 

diffusion micro-environment which consists of four distinct compartments: 

vascular compartment, fibromuscular stromal cells, epithelial cells and 

ductal lumen (Gorelick et al. 2013; Zynger and Parwani 2014; Doyle et al. 

2012). Random flow of blood in the first gives a pseudo-diffusion signal 

called the intra-voxel incoherent motion (IVIM) effect (Le Bihan et al. 

1988; Le Bihan et al. 1986). Diffusion of water molecules inside the other 

three compartments gives the main diffusion or the so called self-diffusion 

signal. (Bourne et al. 2011) and (Bourne, Kurniawan, Cowin, Stait-

Gardner, Sved, Watson, Chowdhury, et al. 2012) have characterised these 

compartments ex vivo by both histology and diffusion weighted imaging at 

16T.  For healthy prostate the composition is glandular ducts 

(diameter~300 μm (Gilani, Malcolm, and Johnson 2016b)), stromal cells 

and epithelial layers (thickness ~10-20 μm) that separate the first two. 

Because of the large diameters of the ducts compared with typical 

diffusion distances (~40μm) (Le Bihan and Johansen-Berg 2012) and the 

fact that these ducts are filled with fluid instead of having cellular 

structure, they have long T2’s and considerably higher diffusion 

coefficients. Additionally, such ductal sizes result in negligible exchange 

between the ductal lumen and the other two compartments which means 

that biexponential diffusion MR and biexponential T2 might yield 
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important information on tissue state.  However, current approaches ignore 

this compartmentalisation so that estimated parameters represent a 

weighted average of the properties of the individual compartments. Since 

some of properties of these compartments such as their volume fraction, 

average size, cellularity, etc. change for different grades of cancer, separate 

estimation of the properties of each compartment and correlating them with 

one or more MR parameter may help in assessing tumour malignancy. 

The overall purpose of this PhD project was therefore to develop, optimise 

and assess methods of measuring the properties of different tissue types in 

the prostate. The specific aims were to: 

1. Better characterize changes in cell size and density, and ductal 

volume occurring with increasing tumour grade and to correlate 

them with MR parameters. 

2. Use Monte Carlo simulations of random walks of water molecules 

inside the prostate compartments to explore diffusion in the 

prostate. 

3. Introduce a new model for diffusion weighted imaging of the 

prostate and compare it with the results from patient studies 

4. Perform covariance matrix calculations to measure parameter 

estimation errors and determine the echo times that provide the 

greatest precision in measurements of bi-exponential T2 values in 

the prostate. 

1-7: Monte Carlo Simulation of Diffusion MR 

In recent decades, random walk simulations have found applications in 

many fields of medicine, science and engineering involving transport of 

particles or waves (Shibata, Tominaga, and Tanaka 2014; Flamm, 

Diamond, and Sinno 2009; Zhu and Liu 2013; Davis and Dunn 2015; 

Ansari-Rad, Abdi, and Arzi 2012; Pesch et al. 2015; Dreyer et al. 2014; 

Tian et al. 2014; Novikov et al. 2011; Jabbari and Monadi 2015; Zhang et 

al. 2014; Gilani, Malcolm, and Johnson 2016b; Fieremans et al. 2010; 

Stamatakis and Vlachos 2012; Liu et al. 2015; Mascali and Romano 2014). 

Some examples are random walks of photons, electrons or other particles 
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in radiotherapy or brachytherapy to calculate absorbed doses (Jabbari and 

Monadi 2015; Zhang et al. 2014), restricted random walk (Novikov et al. 

2011) of water molecules or gases with applications in diffusion weighted 

magnetic resonance imaging for either medical purposes (Gilani, Malcolm, 

and Johnson 2016b; Fieremans et al. 2010) or determining pore structures 

(Kärger, Ruthven, and Theodorou 2012), catalytic reactions using kinetic 

Monte Carlo methods (Stamatakis and Vlachos 2012; Liu et al. 2015), 

transport of electrons or ions in semiconductors (Ansari-Rad, Abdi, and 

Arzi 2012) and many more. 

These applications are quite different from each other in nature such as 

being relativistic (Zhu and Liu 2013; Davis and Dunn 2015) or non-

relativistic (Stamatakis and Vlachos 2012; Novikov et al. 2011) or needing 

quantum (Bouchard and Bielajew 2015) or classical non-quantum 

(Stamatakis and Vlachos 2012; Novikov et al. 2011) considerations; as a 

result each requires different types of differential equation for transport. 

However, for any type of transport particle or wave such as ions, 

molecules, charge, photons, spins, etc., the Boltzmann transport equation 

(Harris 2004) gives a comprehensive understanding of the parameters or 

interactions affecting the transport. Practically, for diffusion weighted 

imaging applications, this comprehensive formalism is reduced to 

simplified equations such as Fick’s law for diffusion (Fick 1855) to 

minimize the number of simulation parameters. 

Generally, reductionism in science (Gallagher, Appenzeller, and Normile 

1999) is known as the attempt to minimize the number of physical 

parameters involved to measure, explain, formulate or simulate an entity. 

In the case of diffusion weighted imaging, the phases of precession of 1H 

spins (from the complete multi-dimensional phase space of the particles 

(Penrose and Jorgensen 2006)) are made dependent on their location using 

a combination of magnetic gradients and electromagnetic pulses. Using 

this reductionism approach the random diffusive walks of water molecules 

in different diffusion environments and diffusion times that give the final 

MR signal are simulated.  
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If diffusion is not restricted, the probability density function describing 

diffusion at any arbitrary time is Gaussian. For MR application, usually a 

Gaussian estimate of diffusion is used (i.e. a Gaussian probability density 

function is used to describe diffusion); in this case the estimated diffusion 

coefficients are called apparent diffusion coefficient (ADC). However, this 

assumption is not always valid; for this case the non-Gaussian behaviour of 

diffusion is better modelled by additional parameter kurtosis which will be 

explained in chapter two. (Jensen et al. 2005; Jensen and Helpern 2010) 

Additionally, diffusion could be characterized by its dependency on 

measurement direction. Diffusion is either isotropic (independent of 

measurement direction) or anisotropic (direction dependent). In the case of 

isotropic diffusion, measurements could be made in one direction or 

averaged in more than one direction. Whereas, for anisotropic diffusion, 

measurements should be performed separately in each direction to 

characterize the direction dependency of diffusion (diffusion tensor 

imaging). (Westin et al. 2002) 

The trend in the 1990’s was to solve diffusion related equations by using 

deterministic methods and hence to derive a diffusion coefficient for every 

geometry (Callaghan 1995, 1997; Codd and Callaghan 1999) such as 

cylinders, planes, spheres and etc.  While there was a relative success in 

giving estimates of diffusion using this methodology, it did not expand 

further in the twenty first century for two main reasons. First, it is not 

generally accurate to assume a Gaussian probability function describing 

random walk of water molecules (Jensen et al. 2005). Second, extension of 

these solutions to patterns consisting many randomly oriented or shaped 

geometries requires solving complex and calculation intensive formalisms.  

So far, there have been many diffusion-related application of Monte Carlo 

methods: (Regan and Kuchel 2000, 2003; Fieremans et al. 2010) used 

Monte Carlo methods to establish relations between permeability levels of 

membranes and the residence times of the corresponding compartments. 

Similarly, (Novikov et al. 2011) used Monte Carlo simulations to assess 

restricted diffusion for different barrier structures. (Xing et al. 2013) 
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showed how the choice of elastic or non-elastic scattering for Monte Carlo 

simulations would not significantly affect the results. (White and Dale 

2014) used Monte Carlo methods to simulate intra and extra cellular 

diffusion. (Sukstanskii and Yablonskiy 2008; Grebenkov, Guillot, and 

Sapoval 2007) simulated diffusion of gases in lungs for diffusion NMR 

applications. (Grebenkov, Nguyen, and Li 2013) simulated diffusion NMR 

of porous media using random walk methods.  Finally, here Monte Carlo 

simulations were used to simulate hindered or semi-restricted diffusion in 

prostate ducts  (Gilani, Malcolm, and Johnson 2016b).    
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Chapter 2: MR Related Histological Changes in PCa 

2-1: Introduction 

Histopathology is a field science dedicated to microscopic assessment and 

characterization of different types of disease from biopsies or surgically 

resected specimen. Samples are fixed by freezing or using chemical 

methods and later examined under electron microscopes. Tumours are 

commonly characterized by their gross descriptions such as site, size, 

appearance and edge, histological type, differentiation or aggressiveness 

grade, tumour stage or extent of spread, lymphovascular invasion, etc. 

(Allen 2000) 

In order to assess aggressiveness of PCa histology samples, the Gleason 

grading systems is used (Gleason 1992; Gleason, Mellinger, and Group 

2002; Epstein et al. 2005; Fine and Epstein 2008; Epstein, Zelefsky, et al. 

2016; Epstein, Egevad, et al. 2016; Sauter et al. 2016; Gleason 1977). 

While morphological changes in the cells occur with increasing Gleason 

grade, they are not used to calculate the Gleason grade. Hence, Gleason 

grading system is solely a measure of the extent of abnormalities in 

glandular architecture (Sauter et al. 2016). Grades of 3 and below are for 

poorly differentiated (non-aggressive) cancer, whereas grades of 4 and 5 

are for well differentiated (aggressive) cancer. For needle biopsies two or 

three samples with the most and worst Gleason pattern are used to 

calculate the score (such as 3+4, 5+4 or 5+4+3), whereas for radical 

prostatectomy specimens and transurethral resections the first two or three 

most frequent patterns give the score. Obviously, the scores for needle 

biopsies are not as accurate as whole mount prostate specimens due to 

sampling error (Sauter et al. 2016; Corcoran et al. 2012). This is because 

prostate tumours are highly multifocal and heterogeneous compared to 

other tumours and hence small volumes of high grade tumours might be 

missed during the biopsies (Corcoran et al. 2012). The most important 

deficiency of Gleason grading is being qualitative; consequently better 

quantification of its components or introducing alternative grading systems 
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has been the subject of recent studies (Sauter et al. 2016; Epstein, Zelefsky, 

et al. 2016).   

There have been several studies, such as (Bourne, Kurniawan, Cowin, 

Stait-Gardner, Sved, Watson, and Price 2012; Bourne et al. 2011; Bourne 

et al. 2013; Bourne, Kurniawan, Cowin, Stait-Gardner, Sved, Watson, 

Chowdhury, et al. 2012; Chatterjee et al. 2015) investigating histological 

changes observed in cancerous samples and their effect on high field 

diffusion MR ex vivo. Since there are not any biological concerns for 

examining ex vivo samples using very high magnetic fields (generally 

greater than 7 Tesla) and very long scan times, considerably high 

resolution T2 or diffusion images could be acquired for ex vivo specimens 

such as in (Bourne et al. 2011; Bourne et al. 2014; Chatterjee et al. 2015). 

While some of the diffusion-related parameters extracted from these 

studies show the extent of such correlations, care should be taken if the aim 

is to apply the results to in vivo MRI analysis. The extracted parameters 

from in vivo and ex vivo MR are considerably different because of a variety 

of fixation effects (Bourne et al. 2013), temperature differences (Bourne et 

al. 2013) and also diffusion time differences (Hall et al. 2015; Gilani, 

Malcolm, and Johnson 2016b). 

For example, using micro-diffusion MRI methods ex vivo, the diffusion 

coefficients of pure ducts, stromal cells and epithelial cells have been 

respectively estimated to be around 2-2.2, 0.7-0.9, and 0.3-0.5 μm2ms-1 

(Bourne, Kurniawan, Cowin, Stait-Gardner, Sved, Watson, and Price 2012; 

Bourne et al. 2011). These results imply relatively free diffusion in the 

ductal lumen and restricted diffusion in the stroma and epithelial 

compartments. However, these values are substantially less than the 

diffusion measurements from in vivo diffusion MRI of the prostate. 

Additionally, microscopic volume measurements of fixated prostate tissue 

are usually an underestimate of the actual volume by a factor of 1.22 to 1.5 

(Schned et al. 1996; Noguchi et al. 2000; Tran et al. 2015). While so far it 

is not known which of the three compartments accounts for most of this 

tissue shrinkage, the ducts as empty spaces are the primary candidates for 

this volume shrinkage. This alters the diffusion-related parameters in 
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addition to significant effects of temperature and other fixation effects. The 

ex vivo samples are usually scanned at room temperatures, and hence the 

measured diffusion coefficients are considerably lower than in vivo MR 

scans. Additionally, there are other fixation effects which result in 

differences for ex vivo and in vivo measurements. Moreover, the scanning 

protocols are different such as most importantly having different diffusion 

pulses or diffusion times ex vivo (Bourne et al. 2013; Thelwall et al. 2006; 

Kim et al. 2007). 

Although the changes seen in cellular parameters are qualitatively well 

understood, few MR related quantitative measurements exist, such as 

measurements of compartmental volume fractions in (Chatterjee et al. 

2015). Here, measurements of ductal radius (Gilani, Malcolm, and Johnson 

2016b), cell size and cellular density were therefore performed. 

Changes in Volume Fraction of the Compartments in PCa 

It has been shown in (Chatterjee et al. 2015) that increases in cell density 

with increasing cancer grade does not directly lead to decreases in apparent 

diffusion coefficient (ADC) values for prostate cancer, unlike other 

cancers. Rather, it is the replacement of stromal cells and ductal spaces by 

epithelial cells that leads to increases in cellularity and hence indirectly 

results in reductions in ADC’s seen in prostate cancer. Table 2.1 shows the 

volume fraction of each of the three self-diffusion compartments for 

different grades of cancer from (Chatterjee et al. 2015). 

Table 2.1: Volume percentage of ducts, epithelial, and stromal cells for different grades of 

cancer from (Chatterjee et al. 2015). TZ is the transitional zone, PZ is the peripheral zone 

and CG is the central gland. The values were extracted with permission from the journal 

of Radiology. 

 Stroma Epithelium Lumen 

PZ (n=198) 39.4 31.4 29.3 

TZ (n=102) 48.9 26.6 24.6 

CG  (n=75) 38.0 35.9 26.1 

Gleason Grade 3 (n=94) 34.2 48.9 16.8 

Gleason Grade 4 (n=23) 28.6 58.5 12.8 

Gleason Grade 5 (n=14) 24.3 68.6 7.2 
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Changes in the Ductal Sizes 

The radius of the ductal lumen seen in histological sections of the normal 

prostate is around ~300 μm (Gorelick et al. 2013; Zynger and Parwani 

2014) which is at least an order of magnitude greater than three 

dimensional Einstein diffusion distance of ~45 μm (assuming a diffusion 

time of 80 ms, typical of clinical scanners, and diffusion coefficient of 3 

μm2ms-1, similar to that of water (Mills 1973; Harris and Woolf 1980) at 

body temperatures). Therefore, the residence time of a water molecule 

within ducts in normal prostate is likely to be long compared with the 

diffusion time. Consequently, the ductal and cellular (i.e., epithelial plus 

stromal) spins will effectively reside in separate compartments and 

generate separate signals each with its own characteristic parameters. 

Although there are no direct experimental demonstrations of separate 

ductal and cellular compartments, the hypothesis is consistent with the 

observation of biexponential diffusion (Mulkern et al. 2006; Shinmoto et 

al. 2009) and T2 relaxation (Storås et al. 2008) . The ADC of the fast 

diffusing (2-3 μm2mm-1) (Mulkern et al. 2006; Shinmoto et al. 2009) and 

long T2 (~500ms) (Storås et al. 2008) components in the prostate are 

typical of fluids and are much greater than values found in cellular tissue 

(ADC ~ 0.7 μm2mm-1 (Papanikolaou et al. 2002) and T2 ~80ms (Steens et 

al. 2004) in the brain, for example). Therefore it was hypothesised that the 

biexponential signal components seen in DWI (and T2 relaxometry) of the 

prostate arise primarily from the distinctly different diffusion and T2 

glandular fluid and the cellular compartments within the prostate.  

Changes in Cell sizes 

It has been observed in (Montironi et al. 2000) that the average nuclear 

area of the columnar epithelial cells surrounding the ducts increases with 

increasing Gleason grade. They measured average nuclear area of the 

epithelial cells to be around 36, 56, and 61 μm2 for normal prostate and 

Gleason Scores 6 and 7, respectively. This corresponds to average radii of 

respectively around 3.4, 4.2 and 4.4 μm for each, if the cells are assumed to 
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be perfectly spherical. Consequently, there might be increases in the total 

ADC with increasing cancer grade but the effects is negligible.  

Changes in Cell Density 

With increasing cancer grade, cellular density (nuclear density) of the 

epithelial compartment increases (Langer et al. 2010; Gibbs et al. 2009). 

(Langer et al. 2010) measured percentage area of cells (with total area 

including ducts, stroma and epithelium) in histology samples to be 14.5%, 

22.4%, and 25.4%, respectively, for healthy PZ and Gleason scores of 6 

and 7 in 22 patients. In another study, Gibbs et al. (Gibbs et al. 2009) have 

measured this parameter to be 9% and 19.2% for healthy PZ and unknown 

grades of cancer in 65 patients, respectively.  

It should be noted that the measured densities above are interdependent on 

the volume fractions measured in (Chatterjee et al. 2015). To nullify this, 

here cellular densities of cellular and stromal compartments were estimated 

separately from histology images (Zynger and Parwani 2014; Gorelick et 

al. 2013; Epstein, Egevad, et al. 2016; Epstein et al. 2005) using ImageJ 

(Schneider, Rasband, and Eliceiri 2012) as shown in table 2.3. 

Changes in the Vascular Compartment 

With increasing cancer grade the vascular compartment increases in size. 

Schlemmer at al.(Schlemmer et al. 2004) measured vascular volumes of 

2% in normal peripheral zone, rising to 4% in prostate cancer.  

2-2: Methods 

Ductal Radii Measurements 

Here, average radii of the ducts for different grades of PCa were measured 

using two different references (Zynger and Parwani 2014; Gorelick et al. 

2013). The histology sections were scanned and loaded in to ImageJ V1.48 

(Schneider, Rasband, and Eliceiri 2012). The lumen of individual ducts 

were segmented and the area measured precisely. Later, in order to 
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estimate the Radii from the measured areas, circular lumen assumption was 

made (i.e., /r A  , where A is the lumenal area). A minimum of 20 

different measurements were obtained for each figure from each source 

and the minimum, maximum and mean radii recorded. The process was 

performed on sections of normal peripheral zone, Gleason grades 3, 4 and 

5, and a section with Gleason score 3+4. 

Cell Radii and Density Measurements 

Here, the radii of epithelial and stromal cells for healthy and different 

grades of cancer were estimated from histology images of references 

(Zynger and Parwani 2014; Gorelick et al. 2013; Epstein, Egevad, et al. 

2016; Epstein et al. 2005).  Images were scanned and cell area measured 

using ImageJ (Schneider, Rasband, and Eliceiri 2012). Individual cells 

were segmented and the precise area measured. Later, radii were calculated 

assuming circular cells (i.e., /r A   where A is the cellular area). A 

minimum of 10 - 20 different measurements were obtained for each figure 

from each source and the mean radii recorded. The process was performed 

on sections of normal peripheral zone, Gleason grades 3, 4 and 5.  

Additionally, the cellular density of stromal and epithelial cells were 

measured separately for each of the above samples. The stromal cell 

density (Dens) was defined as percentage of intracellular area to the total 

area in a pure stromal section. Similarly, epithelial cell densities (Dene) 

were measured for pure epithelial sections. 

Epithelial Thickness Measurements 

Additionally, to obtain an estimate of stromal/epithelial exchange times, 

the average thickness of epithelial cells was estimated by making 

measurements from histology images of normal and cancerous prostate 

(Gorelick et al. 2013) using ImageJ (Schneider, Rasband, and Eliceiri 

2012). 

.  



31 

 

2-3: Results 

Ductal Radii Measurements 

Radius measurements obtained on data from the two different sources 

(Zynger and Parwani 2014; Gorelick et al. 2013) did not appear to differ 

substantially, so they were combined. Consistent reductions in diameter 

with increasing tumour grade were observed. The results are given in table 

2.2. 

Table 2.2 Ductal radius for different Gleason grades and Gleason Score of 3+4 from 

(Gilani, Malcolm, and Johnson 2016b) 

 Ductal Radius 

Mean ± SD (range) / µm 

Healthy PZ 300 ± 120 (50 - 500) 

Grade 3 65 ± 36 (15 - 110) 

Score 3+4 45 ± 24 (5 -110) 

Grade 4 30 ± 13 (5 - 50) 

Grade 5 20 ± 8 (3 - 40) 

 

Cell Radii Measurements 

The cell radii and density measurements for sections of normal peripheral 

zone, Gleason grades 3, 4 and 5 are shown in table 2.3. There were 

consistent increases in the epithelial cell sizes and densities with increasing 

cancer grade. 

 

 

Table 2.3 The measured radii and cell density of stromal and epithelial cells for normal 

and different grades of prostate cancer. rs, re, Dens and Dene are respectively the average 

radii of stromal and epithelial cells and average cell density of stromal and epithelial 

cells. Std is for standard deviation. 
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 Healthy 

(mean ±std) 

G3 

(mean ±std) 

G4 

(mean ±std) 

G5 

(mean ±std) 

rs / µm 
3.7 ± 0.35 

 

3.7 ± 0.35 

 

3.7 ± 0.35 

 

3.7 ± 0.35 

 

Dens (%) 

 

13 ± 3 13 ± 3 13 ± 3 13 ± 3 

re / µm 
3.4 ± 0.15 4.25 ± 0.13 

 

4.55 ± 0.15 

 

4.75 ± 0.2 

 

Dene (%) 

 

45 ± 5 60 ± 6 

 

65 ± 7 70  ± 8 

Epithelial Thickness Measurements 

Average epithelial thickness measured to be 8.2±1.3 µm (12 

measurements) and 18.3±5.4 µm (7 measurements) for healthy prostate 

and Gleason score 7, respectively.  
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Chapter 3: Monte Carlo Simulation of Ducts 

The material in this chapter is mostly derived from (Gilani, Malcolm, and 

Johnson 2016b) with copyright permission license (3915891478574) from 

John Wiley and Sons to use the full article. 

3-1: Introduction 

In order to consider diffusion within the complex tissue structure of 

prostate, it is better to consider each compartment separately. This is 

possible only if the residence times within each compartment are long 

compared to the diffusion times. Accordingly, the main purpose of this 

chapter is to test whether ducts give an independent diffusion signal and, if 

yes, to simulate their corresponding signal. 

Hyperpolarized 3He studies in the lungs (Fain et al. 2010) and studies in 

porous media (Shemesh et al. 2010; Sen 2004; Latour et al. 1995) have 

demonstrated that ADC depends on the size of the cavity in which the 

studied molecule resides as well as diffusion times. Additionally, (Jensen 

et al. 2005; Jensen and Helpern 2010) have shown how hindrance, 

compartmentalisation and restriction result in non-Gaussian diffusion. 

References (Codd and Callaghan 1999; Callaghan 1997, 1995; Price 2009) 

presented analytical formulations for restricted diffusion inside cylindrical, 

spherical and planar cavities. The non-Gaussian nature of restricted 

diffusion was recognised in these studies but the diffusion decays were 

assumed to be simple exponentials for simplicity. Presenting analytical 

solutions that include the effects of non-Gaussian behaviour of diffusion 

might be possible but is mathematically complex even for simple 

geometries. Monte Carlo simulation is an alternative to analytical methods 

that is both easily extensible to non-Gaussian distributions and also to 

complex geometries. Monte Carlo simulations of restricted diffusion in two 

compartments (Fieremans et al. 2010) and in-depth analysis of restricted 

diffusion (Novikov et al. 2011) have already been published; however 

Monte Carlo simulation of non-Gaussian diffusion in single compartments 

has not been published previously. 
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It has been shown in the previous chapter that the average radius of ducts 

decreases with increasing cancer grade. The purpose of this chapter was 

therefore to use Monte Carlo simulations of permeable cavities to 

determine the relationship between permeability, cavity size, and residence 

times; and to establish plausible limits to residence times. Consequently if 

the residence times were long enough, to use Monte Carlo simulattions of 

impermeable cavities to investigate the effect of increasing cancer grade 

(reductions in ductal sizes) on diffusion. Approximating permeable cavities 

with long residence times by impermeable cavities greatly simplifies the 

simulations and has been adopted in previous studies (Li, Calhoun, et al. 

2014). 

3-2: Residence Times 

Permeability, residence time and MC methods 

Residence time of water molecules within the ductal compartment is 

determined by size of ducts and the permeability of their boundaries, which 

is described in units of µms-1 for MR applications. (Regan and Kuchel 

2002, 2000) and (Lee, Bennett, and Debbins 2013) calculated the 

equivalent probability, p, of crossing upon hitting a barrier in random walk 

simulations: 

  

p =k
6Dt

D
free

                                                                               (3.1) 

where κ is permeability, Dfree is the diffusion coefficient in the absence of 

barriers, and Δt is the time step of the random walks. 

Here, the residence time calculations were performed in MATLAB Release 

2013b (MathWorks, Natick, MA, United States). Residence times were 

estimated from simulations similar to those of (Regan and Kuchel 2000) 

and (Fieremans et al. 2010). Spins were placed randomly within spherical 

cavities and random walks were simulated as follows. At each time step, 

the spin was moved a fixed distance Δr in a random direction. The length 

of Δr was determined by the unrestricted diffusion coefficient of the fluid, 
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6 freeD t  r        (3.2) 

where Δt, the step time, is TD divided by Ns, the number of steps in the 

simulation. Here it has been assumed that Dfree was that of free water at 

37°C (3.08 μm2ms-1) (Mills 1973; Harris and Woolf 1980). A Δt of 25μs 

was used giving r  ≈ 0.65μm. 

If the step Δr took the spin beyond the boundary of the cavity a random 

number was drawn from a uniform distribution with minimum zero and 

maximum one. If this value was less than the assigned probability of 

crossing (3.1), the spin was assumed to have exited and the total time to 

that point recorded. Otherwise, the spin was placed back at its previous 

position and randomly moved in a different direction at the next step. This 

approach has previously been shown to give similar results to the 

alternative of elastic reflection (Xing et al. 2013). This procedure was 

repeated for 1,000,000 spins and the mean of all times recorded as the 

mean residence time. 

The ductal lumen is surrounded by a layer of epithelial cells with thickness 

of ~10-20 µm measured from histologic samples of (Gorelick et al. 2013; 

Zynger and Parwani 2014). As it was shown in the previous chapter, the 

thickness of the epithelial layer increases with cancer grade and hence 

makes ducts relatively less permeable to the cellular compartments. The 

permeability of cells walls has been estimated to be anywhere between 6 

and 200 µms-1 (Finkelstein 1987; Regan and Kuchel 2003; Benga et al. 

2000; Haines and Liebovitch 1995). Therefore, the simulations were 

performed with somewhat conservative overestimates of permeability for 

the ductal walls, twice the maximum value found in cell walls, 400 µms-1.  

With this permeability, the probability of a spin crossing the cavity wall on 

hitting it is 8.8% from Eq. (3.1). 

Residence times of the ducts 

Table 3.1 gives the estimates of residence times for ducts in tissues of 

different Gleason grades, conservatively assuming a high permeability 
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value of 400 μms-1. These times are at least comparable with typical in vivo 

diffusion times at least up to Gleason score 3+4. The times are also 

somewhat greater than intracellular residence times measured for glioma 

cells (50 ms (Pfeuffer et al. 1998)), bovine optic nerve (62 ms (Stanisz et 

al. 1997)), and red blood cells (10-14 ms (Herbst and Goldstein 1989)). 

Also it should be noted that for high grades of cancer the ducts are covered 

by fully packed epithelial cells (i.e. the epithelial thickness measurements 

in the previous chapter) which means that the permeability levels are lower 

than the pessimistic value of 400 μms-1 and are in orders of cell walls. As a 

result, their corresponding residence times might be substantially longer 

that the values in table 3.1. 

Table 3.1: Residence time of water molecules in the ducts for different Gleason grades 

and Gleason Score of 3+4 assuming constant pessimistic permeability of 400 μms-1 

 Residence Time / ms 

Healthy PZ 2100 

Grade 3 130 

Score 3+4 70 

Grade 4 35 

Grade 5 21 

 

3-3: DWI Simulations 

The average distance moved by a freely diffusing spin in three dimensions 

is given by the Einstein diffusion equation (Einstein 1905): 

6 free TDr D T        (3.3) 

where Dfree is the unrestricted diffusion coefficient or diffusion coefficient 

in very small times compared to the boundaries and TTD is the total 

diffusion time or the time over which diffusion measurement occurs. Note 

the distinction between the total diffusion time, TTD, and diffusion time, TD, 

as normally defined in the MRI literature; TTD (Lori, Conturo, and Le 
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Bihan 2003) is the total period over which diffusion affects the outcome of 

the experiment 

TDT           (3.4) 

where δ is the length of the diffusion gradients, and  Δ is the interval 

between their centers, TD is a convenient constant that arises when 

calculating gradient b-values 

3
DT


          (3.5) 

When the spin is constrained within a small cavity the apparent diffusion 

coefficient, D, will be reduced. From Eq. (3.3) it is clear that D is a 

function of the ratio, α: 

2

d

TD

r

T
         (3.6) 

where rd is the radius of the cavity. In other words, when diffusion times 

are long, spins diffuse further and reach the walls of relatively large 

cavities. Conversely, spins reach the walls of small cavities in short 

diffusion times. 

The following asymptotic behavior of D is expected: 

0
lim

6

lim free

D

D D









      (3.7) 

i.e., for very small α, all spins traverse the cavity many times and the 

measured diffusion coefficient is dependent on dr r ; for very large α, 

most spins never reach the walls of the cavity and diffusion is effectively 

free. 

When diffusion is restricted or the diffusion signal arises from more than 

one compartment, the probability density function, P(r), describing 

diffusional displacement becomes non-Gaussian. The excess kurtosis, K, is 
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the normalized the fourth moment of P (Jensen et al. 2005; Jensen and 

Helpern 2010): 

4

2 2

( )
3

( ( ) )

r P r dr
K

r P r dr
 



       (3.8) 

where r is displacement and the subtraction of 3 is conventionally applied 

to ensure that the kurtosis of a Gaussian is zero. For non-Gaussian P, K 

becomes non-zero. Kurtosis is a complex function that depends on tissue 

complexity and microgeometry, the disparity in diffusion coefficients 

between different tissue components and the degree of restriction (Jensen 

et al. 2005). In this chapter, kurtosis is only a function of the degree of 

restriction in the simulated component. When α is large, P is nearly 

Gaussian and K is close to zero. Conversely, when α is small, each 

molecule traverses the cavity many times, P becomes increasingly 

platykurtic (boxy) as it approaches a boxcar function for which it is simple 

to show that K = -1.2. Accordingly the following asymptotic behavior of K 

is expected: 

0
lim 1.2

lim 0.0

K

K






 


      (3.9) 

If residence times are long compared to diffusion times, then semi-

permeable cavities can be approximated by impermeable cavities. This 

approach has been used previously and greatly simplifies simulations (Li, 

Calhoun, et al. 2014). Moreover, the probability that a spin crosses the 

boundary at a single collision is less than 10% even with a high 

permeability value of 400 μms-1. Hence, even with permeable barriers 

diffusion is substantially impeded. Therefore the approximation is 

reasonable.  

Six different radii (rd  = 10, 20, 30, 40, 50, and 60μm) and 12 values of TD 

(40, 50, 60, 64, 70, 80, 90, 100, 133, 150, 180 and 200 ms) were simulated 

to give a total of 27 different values of α for spherical cavities. This range 

of values gives a range of α such that predicted values of D range between 

zero and Dfree. Five different radii (rd = 10, 20, 30, 50 and 90μm) and 3 
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values of TD (50, 80 and 100 ms) were simulated to give a total of 12 

different values of cylindrical α. Cylinder height, z, was either two or four 

times the radius. Some values of α were simulated multiple times with 

different combinations of rd and TD.  

Spins were placed randomly in these cavities and 40,000 random walks 

generated as above for each cavity.  

Phase shifts caused by Stejskal-Tanner (Stejskal and Tanner 1965) PGSE 

gradients and hence the signal were calculated using the method of (Hall 

and Alexander 2009). At each step, i, each spin accumulates a phase δϕi 

relative to spins at the zero point of the gradients 

.i t   G r       (3.10) 

where γ is the gyromagnetic ratio, r is the position of the spin, G is the 

applied gradient and Δt is the time of each step. The signal from each spin 

is equal to the cosine of the final phase 

 1
cos

sN

ii
s


        (3.11) 

and total signal is the sum of the signals from all spins. This calculation 

was performed separately for x, y and z diffusion weighting gradients 

using the same trajectories. 

It is required to average the signal in at least 6 non-perpendicular or 3 

perpendicular acquisition directions to derive the weighted ADC values if 

the Gaussian estimate of diffusion is used (Westin et al. 2002). However, 

for non-Gaussian diffusion kurtosis imaging, the averaging should be 

performed in at least 15 directions (Jensen et al. 2005). Diffusion is 

direction dependent in cylinders and diffusion coefficients are different in 

the direction parallel to the axis of the cylinders compared to the 

perpendicular directions. As a result, these calculations were performed in 

15 different directions and averaged to cancel directionality effects.  
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Estimates of apparent diffusion coefficient and apparent diffusion kurtosis 

were obtained from the simulated signals. The following expression 

(Jensen et al. 2005) was fitted to the signals 

 

2 2

6( ) (0)
KD b

bD

S b S e
 

      (3.12) 

where D and K are the apparent diffusion coefficient and apparent 

diffusion kurtosis respectively, S(0) is the signal at b-value of zero, and b 

or b-value is the diffusion encoding parameter which for the Stejskal-

Tanner diffusion pulse sequence is given by (Stejskal and Tanner 1965) 

      

 (3.13) 

where γ is the gyromagnetic ratio, δ is the length of the diffusion weighting 

gradient pulses, Δ is the time interval between the pulses, and g is the 

amplitude of the gradients.  

Signals were simulated for 50 equally distanced b values using the same 

spin trajectories. The maximum b-value was dependent on α and ranged 

from around 500 s.mm-2 for very high α values to around 15000 s.mm-2 for 

very low α values. The values of D and K were obtained by averaging the 

signal in all directions. 

3-4: Results 

Estimated values of D and K derived from the sphere and cylinder 

simulations are plotted against α in Fig. 3.1. Asymptotic values of D (3.7) 

are also plotted for the sphere as α approaches zero.  

The simulation results agree very well with the expected asymptotes. At 

large radii and shorter diffusion times, D approaches the free diffusion 

coefficient and kurtosis approaches zero. Conversely at small radii and 

long diffusion times, D approaches zero and kurtosis approaches a value of 

-1.2, equal to that of a uniform distribution. 
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(a) 

(b) 

Fig. 3.1 Diffusion parameters derived by fitting Eq. (3.12) to simulated signals, plotted as 

a function of α. Simulations were performed at six different radii with TTD adjusted to 

provide the required value of α. (a) D versus α. The dotted line denotes the asymptote for 

(α/6) from Einstein’s formula. (b) K versus α. 

 



42 

 

Fig. 3.2 is a plot of D/Dfree and K for different Gleason sums using the 

measured radii of table 2.2. Other parameters were TD = 80 ms and Dfree = 

3.08 mm2ms-1. 

Fig. 3.2 D/Dfree and K of lumenal fluid predicted for different Gleason sums (normal 

peripheral zone = 0). TD = 80 ms and Dfree = 3.08 mm2ms-1. 

To illustrate the effect of negative kurtosis, 0ln( / )S S was plotted against 

the dimensionless product bD, for three different values of α in Fig. 3.3 

(bD was chosen as the abscissa to emphasize the increase in relative size of 

the kurtosis effect at low α.) As α approaches zero, diffusion becomes 

increasing platykurtic and the signal drops relative to Gaussian diffusion.  
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Fig. 3.3 Plot of ln(S/S0) versus dimensionless parameter bD for α = 1, 10, and 1 (ie, free 

diffusion), corresponding to D = 0.15, 1.44, and 3.08 mm2mm-1 and K =-1.1, -0.42, and 0. 

3-5: Discussion 

The existence of biexponential diffusion signal for the prostate could only 

be explained by having at least two separate compartments with long spin 

residence times. It highly seems likely that the two compartments 

correspond to spins within the ductal fluid and the surrounding cellular 

tissue (stroma plus epithelium). This is consistent with two observations. 

First, the fast diffusion coefficient and long T2 are typical of fluids and 

much greater than seen in cellular tissues. Second, simple biophysical 

arguments show that spin residence times in ductal fluid are long in normal 

prostate because ductal diameter is much greater than diffusion distances. 

Panagiotaki et al. (Panagiotaki et al. 2015) have attributed biexponential 

behavior to slow exchange between intra- and extra-cellular water. 

However, biexponential T2 values observed in other tissues are ~10 and 

~80 ms (Steens et al. 2004) both much shorter than the long T2 seen in the 

prostate (~500 ms). Moreover, the residence times estimated for ductal 

lumen are rather greater that those observed for intracellular water 

(Pfeuffer et al. 1998; Stanisz et al. 1997; Fieremans et al. 2010). It 

therefore seems probable that at least some (if not most) of the observed 



44 

 

biexponential behavior should be attributed to separate ductal and cellular 

compartments. 

(Jensen et al. 2005) suggested platykurtic diffusion may occur for 

restricted diffusion in pores but most previous reports (e.g., (Lu et al. 2006; 

Trampel et al. 2006; Raab et al. 2010; Fieremans, Jensen, and Helpern 

2011; Anderson et al. 2014; Pentang et al. 2014)) have suggested that 

leptokurtic diffusion is the norm; Fig. 3.4 denotes the difference between 

Gaussian, platykurtic, and leptokurtic probability density functions. 

However, these studies considered the net diffusion properties of tissues 

consisting of multiple tissue components with a variety of different water 

exchange rates. The results here, are therefore consistent with Jensen et 

al.’s (Jensen et al. 2005; Jensen and Helpern 2010) finding of overall 

leptokurtic diffusion in tissues consisting of two exchanging Gaussian 

compartments. Similarly, (Rosenkrantz et al. 2012) found apparent 

leptokurtic diffusion for all the three compartments of the prostate as a 

whole but did not consider the possibility of biexponential diffusion which 

will mimic monoexponential diffusion with positive kurtosis over the 

range of b-values used (maximum 2000 smm-2). The possibility of 

restricted, platykurtic diffusion may need to be taken into account in 

investigations of the net diffusion properties of tissues with different 

slowly exchanging compartments, e.g., between intra- and extra-cellular 

water fractions. 
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Fig. 3.4 Leptokurtic (green), Gaussian (blue), and platykurtic (red) probability density 

functions for diffusion in an arbitrary time t. 

The effect of compartment size on measured diffusion coefficient is 

recognized in hyperpolarized gas imaging of the lungs (Fain et al. 2010) 

where alveolar enlargement in emphysema explains increases in measured 

diffusion coefficient. The phenomenon is also well known in diffusion 

measurements in porous media (Shemesh et al. 2010; Sen 2004; Latour et 

al. 1995) where cavity size is often explored using diffusion measurements 

at multiple values of TD. Here Monte Carlo simulations were used to show 

that lumenal size may influence the measured diffusion coefficients of 

ductal fluid in the prostate. This finding is consistent with several recent 

studies of the prostate both in vivo and in vitro.  

First, (Shinmoto et al. 2009) observed biexponential diffusion in prostate 

tissue and found fast ADCs of 2.9 and 1.7 μm2ms-1 in healthy prostate and 

prostate cancer respectively. Their diffusion time is not given but TE was 

91ms, so TD would be around 80ms. With this TD an ADC of 1.7 μm2ms-1 

corresponds to rd = 35μm (Fig. 1a). This is similar to the ductal radii 

measured in tissues with Gleason scores between 7 and 8 (Table 2.2). 

Second, measured fast diffusion coefficients have been shown to depend 

on diffusion time in ex vivo prostate samples (Hall et al. 2015) using either 

Gaussian or non-Gaussian biexponential fits. This time dependency and the 
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dependency on cavity size are essentially the same phenomena viewed 

from different perspectives as could be observed in Eq. (3.6). 

Finally, Chatterjee et al. (Chatterjee et al. 2015) recently showed that the 

relative volumes of the different prostate compartments is a determining 

factor in ADC measurements and, furthermore, that correlations between 

ADC and relative volumes were stronger than with changes in cellularity.  

An association between lumenal radius and diffusion within the ductal 

fluid, if confirmed, would have a number of interesting implications. First, 

if D, K and the ductal signal fraction, fd are all well-defined functions of rd 

then an estimate of any one would allow estimation of the others, 

minimising the number of b values required for measurement. 

Furthermore, fd could be estimated from biexponential T2 measurements, 

thus further simplifying measurement. Second, as recently discussed in 

(Bourne 2015; Lemberskiy et al. 2015), given the diffusion time 

dependency of measurements, it is important that future diffusion studies 

of the prostate should include this parameter and consequently that scanner 

manufacturers should include it in sequence specifications. Finally, since 

the ducts have smaller sizes for higher grades of cancer, by measuring 

ADC as a function of diffusion time it might be possible to estimate ductal 

radius. Hence, at least for MR applications, the ductal sizes could more 

quantitatively determine Gleason grade rather than the abnormalities in 

ductal patterns. Although this could be challenging, Shinmoto et al. 

(Shinmoto et al. 2009) have previously measured reductions in the ADC of 

the fast diffusing component in cancer. 

There are a number of limitations to these simulations. First, simulations of 

restricted diffusion assumed impermeable spheres. This is an unrealistic 

approximation that, at first sight, invalidates the assumption that restricted 

diffusion occurs in the prostate ducts. However, even with high 

permeability assumed here, the probability of a spin crossing the barrier at 

an individual collision is less than 10%. Consequently, although diffusion 

is not strictly restricted, it is heavily hindered and ADC will be reduced as 

a result. However, the estimates of ADC and K presented here must be 
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regarded as lower limits. Second, cylinders or spheres might not be 

realistic models for lumenal ducts. However, the main objective was to 

demonstrate that diffusion within structures of size similar to that of the 

ductal lumen can demonstrate restricted diffusion and thus can determine 

measured Dd. Finally, the free diffusion coefficient of ductal fluid may be 

somewhat less than that of water as assumed here because of protein 

concentrations (Bourne et al. 2013). This would reduce the effect of 

changes in ductal radius on diffusion. Conversely, the ducts may have 

larger sizes in vivo than ex vivo. Usually a factor of 1.15-1.5 is considered 

for shrinkage in size of prostate tissue ex vivo compared to in vivo (Schned 

et al. 1996; Noguchi et al. 2000; Tran et al. 2015). The ductal structure of 

prostate tissue is possibly the most suitable explanation for this shrinkage. 

This means that possibly most of the shrinkage happens in ducts and hence 

the results here might be an underestimate of ADC values in the ducts. 

In conclusion, hindered or semi-restricted diffusion in cavities of similar 

sizes to prostate ducts may reduce ductal ADCs. This may contribute to 

reductions in total ADC seen in prostate cancer. Since the ADC’s of the 

ducts are considerably greater than the cellular tissue, their effect is more 

dominant at lower b-values. Jensen et al.(Jensen et al. 2005; Jensen and 

Helpern 2010) have calculated the maximum b-values for the validity of 

equation (3.12) to be 3/DK. Knowing that the maximum K is 0.5 for 

highest grade, its effect is significant on b-values of greater than 2,000 

smm-2 which are not practical in clinical applications; this is because of the 

low signal to noise ratios of the scanners at such high b-values. Hence, it 

would be quite realistic to use Gaussian fits on diffusion signal arising 

from the ducts as one of the three diffusion compartments in the prostate. 
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Chapter 4: A Model for Prostate DWI 

The material in this chapter is mostly derived from (Gilani, Malcolm, and 

Johnson 2016b) with copyright permission license (3915900076709) from 

John Wiley and Sons to use the full article. 

4-1: Introduction 

To date, the heterogeneity of prostate tissue has not been considered and 

diffusion MR parameters represent a weighted average of the contributions 

of the different compartments. Here a model of prostate tissue that takes 

tissue compartmentalisation of diffusion into account is introduced. As a 

result, the ambiguities in previous measurements are resolved and also 

estimation of some of the diffusion-related characteristics of ducts, stroma 

and epithelium might be possible. Since changes in ductal radii and the 

volume fractions of the three compartments are affected by cancer 

aggressiveness, this approach could provide an equivalent MRI score 

capable of distinguishing aggressive and indolent tumours. Furthermore, 

DWI can cover the whole prostate and hence avoids sampling error and 

will provide greatly improved pre-operative assessment. 

4-2: Tissue Model 

The model is based on measured or estimated values for the different tissue 

volumes and diffusion coefficients in normal prostate and cancer. The net 

signal arising from the tissue will depend on these parameters and on the 

exchange of water between different compartments. If exchange is slow 

relative to the time over which the signal is acquired (typically 50–100 

ms), then each water molecule will effectively be confined to a single 

compartment and will contribute a signal characteristic of that 

compartment alone. Conversely, if water exchange is very fast between 

two compartments they are well mixed and cannot be distinguished. At 

intermediate exchange rates, water molecules will spend time in both 

compartments and will contribute a signal that represents an average 

between them. In normal prostate the ductal lumen is 300μm in radius 

(Gilani, Malcolm, and Johnson 2016b) compared with typical 2D water 
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diffusion distances of ~20 μm (assuming a total diffusion time of 80ms, 

typical of clinical scanners, and diffusion coefficient of 3.08 μm2ms-1, 

similar to that of water at body temperatures (Mills 1973; Harris and Woolf 

1980). Thus exchange of water between the lumen and the cellular (i.e., 

epithelial plus stromal) compartments is expected to be small. With 

increasing Gleason grade the lumenal volume decreases. Nonetheless, as it 

was shown in the previous chapter exchange of water molecules between 

the two is likely to remain slow. Similarly, the observation of an IVIM 

signal in most tissues suggests that exchange between the intra- and extra-

vascular compartments is also slow (Koh, Collins, and Orton 2011). 

Stromal and epithelial layers are relatively thin, so exchange will be 

significant but the two cannot be considered well mixed. The validity of 

these assumptions is confirmed by the finding of biexponential, but not 

triexponential T2 values in the prostate (Storås et al. 2008). The model 

(Fig. 4.1) is based on these assumptions, i.e., slow exchange between intra- 

and extravascular compartments; slow exchange between ductal and 

cellular compartments; and moderate exchange between stroma and 

epithelium. 

 

Fig. 4.1 Block diagram of the model for prostate diffusion. The model consists of four 

compartments: vascular, fluid-filled ductal lumen, stroma, and epithelium. Water 

exchange between both the vascular space and the ductal lumen and the other 

compartments is assumed to be negligible. Exchange between stroma and epithelium 

occurs, but the two are not well mixed.  
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With this model, the total signal, S, is the sum of the signals from each 

slow-exchanging compartment, i.e.: 

v d cS S S S                                                                             (4.1)  

where Si is the signal from compartment i and the subscripts v, d and c 

indicate the vascular, ductal lumen and cellular compartments respectively.  

Vascular Signal 

The vascular fraction is small (less than 5%, see section 2-7) and becomes 

rapidly dephased at even low b values due to the relatively rapid capillary 

flow (Iima et al. 2015). Sv can thus be approximated by a delta function at 

b = 0.  

Ductal Signal 

It was shown in chapter 3 that the reductions in lumenal diameter found in 

prostate cancer will reduce Dd. The ducts were approximated as 

impermeable spherical cavities with different radii at different diffusion 

times and hence differing values of dimensionless parameter β: 

          
2

d

free free

TD d d

r

T D D



                                                                         (4.2) 

rd is the lumenal radius (μm), TTD is the total diffusion time and  is the 

diffusion coefficient in the absence of barriers. (See below for a discussion 

of the distinction between total diffusion time and diffusion time.) The two 

parameters D and K describing Ductal diffusion can be approximated by 

the following biexponential function: 

 0.0459 0.40241 0.46 0.54freeD D e e                                         (4.3) 

0.0787 0.61080.44 0.76K e e                                                       (4.4) 

Functions (4.3) and (4.4) were derived by fitting on figures 3.1 (a) and (b) 

respectively, scaling them to dimensionless parameters D/Dfree and β. It 
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should be noted that the fits are precise only for routine MR diffusion 

times and cavity sizes in orders of prostatic ducts. 

Cellular Signal 

The cellular compartment consists of the stroma and epithelial sub-

compartments. Exchange between these sub-compartments is intermediate 

between fast and slow. In such circumstances diffusion behaviour is 

complex. Jensen et al. (Jensen and Helpern 2010) have shown that the 

behaviour can be approximated by monoexponential diffusion with a 

kurtosis term. The cellular diffusion and kurtosis are then (Kärger 1985; 

Kärger, Pfeifer, and Heink 1988; Jensen and Helpern 2010) 

nox

c cD D                                                                                     (4.5) 
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c c
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 

                                                (4.6) 

where Dc
nox and Kc

nox are the diffusion coefficient and kurtosis with no 

exchange, TD is the diffusion time, and τ is the exchange time between 

stromal and epithelial sub-compartments. 

Dc
nox and Kc

nox are the given by 

nox s s e e
c

s e

v D v D
D

v v





                                                                     

 (4.7) 

2 2

2

( ) ( )
3

( )( )

nox nox
nox s s c e e c
c nox

s e c

v D D v D D
K

v v D

  



                                    (4.8)

  

where vi is the water volume fraction of compartment i and subscripts s and 

e refer to the stromal and epithelial sub-compartments respectively. The 

exchange time, τ, is given by 

e s s e

s e s e

v v

v v v v

 
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 
                                                                      (4.9) 

where τs and τe are the stromal and epithelial residence times respectively. 

Thus, the diffusion coefficient of the cellular compartment is the average 

of the individual stromal and epithelial diffusion coefficients weighted by 
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the relative amounts of water in each; the kurtosis is similarly a weighted 

measure of the variance of the diffusion coefficients. When TD >> τ, the 

compartments are effectively in fast exchange, are well mixed and behave 

as a single monoexponential compartment with Kc close to zero. 

Diffusion Time 

Note the distinction between the total diffusion time, TTD, and diffusion 

time, TD, as normally defined in the MRI literature. TTD is the total period 

over which diffusion affects the outcome of the experiment 

TDT  
                                                                          

 (4.10) 

where δ is the length of the diffusion gradients and Δ is the interval 

between their centres. TD is a convenient constant that arises when 

calculating gradient b values 

3
DT


                                                                                   (4.11) 

Diffusion time also occurs in other MRI diffusion equations. However, 

these expressions often only strictly apply when δ << Δ. In most in vivo 

imaging sequences the diffusion gradients are applied for as long as 

possible to maximize b for a given echo time. It has recently been 

suggested (Lori, Conturo, and Le Bihan 2003) that in these circumstances 

it is better to use TTD as the diffusion time. 

Diffusion time is not in any case generally available (and is usually 

unknown to all but the sequence designers). In developing the model 

therefore the same approximation was used for TTD. 

 25msTD ET T                                                                         (4.12) 

This is based on the assumption that echo times have been minimized to 

improve SNR and a few milliseconds are required for the EPI readout 

gradients following diffusion weighting.  
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Total Signal 

Both cellular and ductal compartments display non-Gaussian diffusion 

(i.e., the probability density function describing diffusional motion is non-

Gaussian) and so should include a kurtosis term in the signal equation. 

However, the difference in ductal signal with and without the kurtosis term 

is typically less than 1%. Hence, the total signal is therefore given by 

2 2

6
0 ( )

c c
c

d

b D K
bD
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v d cS S f b f e f e
 


  

    
 

    (4.13) 

where S0 is the signal without diffusion weighting, fv, fd and fc are the 

signal fractions of the vascular, ductal and cellular compartments, 

respectively (so that fv + fg + fc = 1), δ is the Dirac delta function, b is the 

diffusion weighting constant and Dd and Dc are the ductal and cellular 

diffusion coefficients and Kc is the cellular diffusional kurtosis. 

Model Parameters 

The parameters that define the model are of two types. First, there are a 

priori parameters that are derived from literature values. Second are 

parameters for which no reliable estimates can be found. These are 

optimized by minimization of the mean square error (MSE) between model 

predictions and measured values. 

The vascular, stromal, epithelial and ductal fractional volumes, and ductal 

radius of benign and cancerous prostate tissue were defined a priori using 

literature values (Chatterjee et al. 2015; Gilani, Malcolm, and Johnson 

2016b) (Table 4.1). Vascular volumes are based on the measurements of 

Schlemmer at al. (Schlemmer et al. 2004) who found vascular volumes of 

2% in normal peripheral zone, rising to 4% in prostate cancer. Gleason 

score was not specified so the value of 4% was assumed to correspond to 

Gleason 7 and other values derived using linear interpolation and 

extrapolation.  
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Table 4.1 Tissue fractional volumes, vi, signals, fi, and ductal radii, rd, used in the model 

for benign peripheral zone and different Gleason sums. Fractional volumes were 

extracted from histology measurements of (Chatterjee et al. 2015), fractional signals were 

calculated using Eq.(4.14), and ductal radii were calculated in the previous chapter. 

Tissue 

Fractional Volumes (Signals) Ductal 

radius, 

rd / μm Vascular 
Ductal 

lumen 
Stroma Epithelium 

Normal PZ 
0.020 

(0.031) 

0.284 

(0.614) 

0.382 

(0.195) 

0.314 

(0.160) 
300 

Gleason sum 4 
0.031 

(0.055) 

0.203 

(0.500) 

0.333 

(0.194) 

0.433 

(0.252) 
135 

Gleason sum 5 
0.034 

(0.062) 

0.183 

(0.467) 

0.325 

(0.196) 

0.457 

(0.275) 
95 

Gleason sum 6 
0.037 

(0.070) 

0.164 

(0.432) 

0.318 

(0.198) 

0.481 

(0.300) 
65 

Gleason sum 7 
0.040 

(0.079) 

0.144 

(0.394) 

0.298 

(0.193) 

0.518 

(0.335) 
45 

Gleason sum 8 
0.043 

(0.088) 

0.124 

(0.353) 

0.278 

(0.187) 

0.555 

(0.373) 
32 

Gleason sum 9 
0.046 

(0.099) 

0.100 

(0.299) 

0.253 

(0.179) 

0.601 

(0.424) 
25 

Gleason sum 10 
0.049 

(0.111) 

0.076 

(0.239) 

0.228 

(0.169) 

0.647 

(0.481) 
20 

 

The difference in water density between the vascular, ductal and cellular 

compartments and differences in transverse relaxation time must also be 

taken into account when calculating signal fractions from volume fractions. 

In the absence of diffusion weighting, the signal from compartment i, is 

2/

0
E iT T

i i iS k v e 
       (4.14) 

where k is a constant describing system gain, ρi is water spin density (water 

hydrogen atoms per unit volume), vi is the volume fraction, TE is the echo 

time of the diffusion sequence and T2i is the transverse relaxation time. The 

fractional signal from compartment i, fi, is therefore the ratio of Si0 to the 

sum of the signals from all compartments, i.e., 
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     (4.15) 

The ductal fluid contains few solids so that water content is ~100% 

whereas most soft tissues have a water content of about 75% (Reinoso, 

Telfer, and Rowland 1997; Kiricuta and Simplaceanu 1975) and blood is 

about 80% water (Beilin et al. 1966). Long and short T2s, which 

supposedly correspond to the ductal and cellular (i.e., stromal plus 

epithelial) fractions respectively, have been measured to be about 450 ms 

and 60 ms (Storås et al. 2008). The T2 of blood is about 280ms and largely 

independent of field strength (Stanisz et al. 2005). Signal fractions 

calculated from Eq. (4.15) using the above figures are given in Table 4.1. 

It is not simple to obtain independent estimates of ductal, stromal and 

epithelial diffusion coefficients in vivo. Ex vivo MRI measurements in 

formalin fixed tissue at 22°C give diffusion coefficients of 2.0-2.2, 0.7-0.9 

and 0.3-0.5 μm2ms-1 for ducts, stroma and epithelium respectively (Bourne 

et al. 2011; Bourne, Kurniawan, Cowin, Stait-Gardner, Sved, Watson, and 

Price 2012). However, changes in diffusion characteristics due to cell 

death, fixation and temperature differences make these measurements 

difficult to interpret (Bourne et al. 2013; Thelwall et al. 2006; Kim et al. 

2007). Several studies have reported biexponential diffusion measurements 

in normal PZ (Döpfert et al. 2011; Mulkern et al. 2006; Shinmoto et al. 

2009). However, the fast and slow diffusion coefficients (presumably 

corresponding to glandular and cellular diffusion respectively) covered 

very large ranges: 2.5 – 8.8 and 0.2 – 1.2 μm2ms-1 respectively. The fast 

diffusion coefficient is difficult to interpret because it includes perfusion 

signals (the IVIM effect) and variations in this measurement will also 

affect the slow diffusion estimate. The values of Ds and De that gave the 

best agreement between the model and experimental results were therefore 

found empirically in this chapter. 

Cellular kurtosis depends on the ratio of diffusion time to the exchange 

time between stroma and epithelium. Exchange time is also unknown but 

can be estimated from the average diffusion distance (Einstein 1905): 
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2 c TDx D T        (4.16)  

If it is assumed that τ is approximately the time it takes to diffuse from the 

centre of the stromal or epithelial layer to its edge, then 

2

~
2

c

c

r

D
         (4.17)  

where rc is half the thickness of either the epithelial or stromal layer. 

Diffusion coefficients are inversely correlated with cell density (Hayashida 

et al. 2006; Ellingson et al. 2010) and consequently reduced in tumours. 

The precise relationship between ADC and cancer grade is unknown but 

ADC values typically decrease with increasing grade, dropping to about 

50% of normal values in high-grade tumors (Schmainda 2012; Svolos et al. 

2014; Kim et al. 1999). Therefore it was assumed that the epithelial 

diffusion coefficient De drops linearly with Gleason score from a value 

De
norm at Gleason 0 (i.e., normal) to 0.5De

norm
 at Gleason 10, i.e.,  

 1 0.05norm

e eD D g                                                                 (4.18)
 

where g is the Gleason score.  

Finally, as only diffusion characteristics of epithelial cells are variable for 

different grades of cancer, it was assumed that the stromal diffusion 

coefficient is independent of grade, 

norm

s sD D                                                                                   (4.19) 

where Ds
norm

 is the diffusion coefficient of normal stroma. 

The model is thus Eq. (4.13) with Dd given by Eq.(4.3), Dc by Eq. (4.7), 

and Kc by Eq. (4.8), with signal fractions given by Eq. (4.15). 

4-3: Methods 

All algorithms were implemented in MATLAB (MathWorks, Natick, MA, 

USA). Only published patient data were used for this study so no ethical 

consent was sought. 
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Optimum Compartmental Diffusion Coefficients, Di 

Forty-three papers were identified that presented diffusion measurements 

with associated Gleason scores (Anwar et al. 2014; Boesen et al. 2014; 

Caivano et al. 2013; De Cobelli et al. 2015; deSouza et al. 2008; Doo et al. 

2012; Esen et al. 2013; Gibbs et al. 2009; Hambrock et al. 2011; 

Hosseinzadeh and Schwarz 2004; Ibrahiem et al. 2012; Issa 2002; Jambor 

et al. 2016; Kagebayashi et al. 2012; Kozlowski et al. 2006; Langer et al. 

2010; Li, Margolis, et al. 2014; Luczynska et al. 2014; Manenti et al. 2007; 

Mazaheri et al. 2012; Nagarajan et al. 2012; Nguyen et al. 2016; 

Panagiotaki et al. 2015; Park et al. 2016; Pickles et al. 2006; Reinsberg et 

al. 2007; Rosenkrantz et al. 2012; Rosenkrantz et al. 2015; Sato et al. 2005; 

Shinmoto et al. 2009; Suo et al. 2014; Tamada et al. 2008; Tamura et al. 

2014; Tanimoto et al. 2007; Turkbey et al. 2011; Ueda et al. 2016; van As 

et al. 2009; Vargas et al. 2011; Verma et al. 2011; Wang et al. 2015; 

Woodfield et al. 2010; Xu et al. 2009; Yoshimitsu et al. 2008) and included 

b values. (No attempt was made to perform an exhaustive search and this 

does not represent a complete list of prostate diffusion studies.) In three 

studies, field strength was not reported (Anwar et al. 2014; Woodfield et 

al. 2010; De Cobelli et al. 2015). Studies were divided into two categories 

according to the precision with which Gleason score was specified: 

I ADC recorded for individual Gleason scores. 

II ADCs recorded for groups with an average (mean or median) 

Gleason score. 

If separate ADC estimates were made for different Gleason scores with the 

same Gleason sum in a study, each measurement was included separately 

with the same Gleason sum. If measurements of multiple readers were 

reported for the same Gleason sum in a study, each was treated as a 

separate measurement. Additionally, in one case (Hambrock et al. 2011) 

tertiary Gleason scores were given but were ignored.  

In all studies, measurements were made at two or more b values and ADCs 

were estimated assuming a single compartment displaying Gaussian 

diffusion so that signals were assumed to be given by 
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                                                                                 (4.20) 

These data were used to find the compartmental diffusion related 

parameters (i.e., Dd
free, De

norm
, Ds

norm) that maximise agreement with the 

model predictions. Fig. 4.2 gives a flow chart outlining the process. The 

initial data were derived from the published data. Gleason score and b 

values were passed to the model and used to generate a set of signals, S(b) 

using Eq. (4.13), with trial values of Di. Eq. (4.20) is then fitted to the 

model signal to obtain model estimates of ADC, Dmodel. Non-linear least 

squares fitting (MATLAB function lsqcurvefit) is then used to find the set 

of Di that minimize mean-square error, MSE, 

2

1

( )

MSE

N

i

i

D

N








       (4.21)  

where ΔD is the difference between measured and model ADC and the 

sum is over each measurement in the published data sets. 

The above procedure was initially performed using ADC measurements 

reported in all 43 papers to find an initial set of optimum model parameters 

Di. The difference between model estimates and measured values of ADC, 

Δ, was then calculated for all measurement using these initial optimum 

values. The mean and standard deviation of the differences, Δ, were then 

calculated. Any measurement where Δ was greater than 1.96 standard 

deviations away from the mean difference were considered an outlier. Any 

paper reporting more than a single outlier was removed from the analysis 

set since this suggested the possibility of a systematic error such as 

incorrectly calibrated b values. The optimization procedure was then 

repeated with the reduced set to generate the final set of optimum model 

parameters. 

  
S = S

0
e-bD
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Fig. 4.2 Flow chart of the method used to determine empirical parameters of the diffusion 

model. 

Cross-validation 

Cross-validation was performed using 10-fold cross-validation (Arlot and 

Celisse 2010). Briefly, all tissue measurements from the 43 studies were 

collected into a single set of N measurements. This set was split into 10 

folds, each with a group of ~N/10 test points used for testing with the 

remaining points used for training. Each training group is used to find a set 

of optimum Di. The differences between Dmeasured and Dmodel were then 
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found for all points in the test group using these parameters. The process 

was repeated for each fold and the MSE found over all test points in all 

folds. This method provides a moderately conservative estimate of the true 

MSE. 

4-4: Results 

Epithelial/Stromal mixing times 

Using the estimates of epithelial thickness from section 2-6 and using Eq. 

(4.17) assuming rc (half thickness of the epithelial layer) is ~10µm and the 

cellular diffusion coefficient is ~1 µm2ms-1, the cellular mixing time (τ) 

estimated to be around 50ms using Eq. (4.17). 

Compartmental Diffusion Coefficients 

Two of the 43 papers produced more than one outlier each and were 

removed leaving 41 papers and a total of 140 different diffusion 

measurements. Optimum compartmental diffusion coefficient values of 

Dd
free, Ds

norm and De
norm for this reduced set were 2.368, 1.222 and 0.571 

μm2ms-1 respectively.  
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Fig 4.3 Plot comparing measured values of measured ADC (Dmeasured) with values 

predicted by the model (Dmodel). Measurements made at 1.5 T and 3 T respectively are in 

blue and red respectively; measurements for which the field strength is not known are 

indicated in black. Triangles and circles represent Category I (measurements represent a 

single Gleason score) and II (measurements represent an average Gleason score) papers 

respectively. The solid line is the line of identity.  
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Fig. 4.4 Bland-Altman plot of Dmodel – Dmeasured, vs. mean, (Dmodel + Dmeasured)/2. 

Measurements made at 1.5T and 3T respectively are in blue and red respectively; 

measurements for which the field strength is not known are indicated in black. Triangles 

and circles represent Category I and II papers respectively. The solid, dotted and dashed 

lines represent the mean difference, and the mean ± 1.96 standard deviations (i.e., the 

95% limits of agreement) respectively. 
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Fig. 4.5 Plot of ductal, epithelial, stromal and cellular (stromal and epithelial combined) 

ADC and cellular kurtosis vs. Gleason score. A score of 0 corresponds to normal 

peripheral zone tissue. 

Fig. 4.6 Plot of signal vs. b value for normal peripheral zone (PZ) and Gleason scores 5 – 

9. Note the discontinuity near b = 0 due to the delta function in Eq. (4.13). 
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Figs. 4.3 and 4.4 gives plots comparing measured values of diffusion 

coefficient with values predicted by the model. Fig. 4.3 is plot of Dmeasured 

vs. Dmodel; Fig. 4.4 is a Bland-Altman plot of ADC difference vs. mean 

ADC. As might be expected field strength shows little or no influence on 

the measurements. There appears to be a slight suggestion that the scatter 

is greater for Category II than Category I as might be expected. Overall 

agreement is very good and the 10-fold cross-validation gave an MSE of 

0.046 equivalent to a root MSE of 0.21 μm2ms-1  

Fig. 4.5 gives plots of Dd, Ds, De, Dc and Kc vs. Gleason score. 

(Diagnostically the most important distinction is between scores of less 

than and greater than six.) 

Fig. 4.6 gives a plot of signal intensity predicated by the model vs. b value 

for normal prostate and Gleason scores 5 – 9.  

4-5: Discussion 

The value of an accurate model of tissue diffusion is threefold. First, it 

allows association of diffusion measurements with specific cellular 

changes, which may have valuable diagnostic implications. In this case, 

diffusion changes are direct consequences of changes in the relative 

volumes of glandular lumen, stroma and epithelium. These volumes are a 

key aspect of histopathological analysis and largely determine Gleason 

score. Hence estimates from diffusion measurements may allow 

calculation of an “MR Gleason Score” that predicts tumour aggressiveness. 

Second, knowing how changes in individual tissue compartments influence 

signal changes allows optimization of acquisitions (specifically choice of b 

values) to minimize errors in tissue estimates. For example, the effect of 

ductal size reductions is more dominant in low b-value ranges because the 

ducts have faster diffusion coefficients, the fractional value of 

compartments affects the signal in mid b-value ranges such as 700-1000 

s.mm-2, and the effect of cellular diffusion is observable at higher b-values. 

Finally, the model explains the contradictions and ambiguities found in the 

literature. For example, a number of studies have described the b value 

dependence of measured ADCs (Mazaheri et al. 2012; Esen et al. 2013; 
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deSouza et al. 2008; van As et al. 2009). However, this is entirely to be 

expected as a linear relationship between ln(S) and b will only be found for 

diffusion in a single Gaussian compartment. In any more complex system, 

the ln(S) vs. b is non-linear and cannot be described by a single ADC (i.e., 

a single value for the slope). The problem is particularly acute in the 

prostate since the two main compartments, glandular and cellular, have 

markedly different diffusion coefficients. The optimum prostate diffusion 

protocol is not then a simple matter of finding a single optimum b value 

(Metens et al. 2012) but of acquiring images at a sufficient large number of 

b values to fully describe the data. Similarly, the model explains the 

finding of a lowered IVIM “perfusion fraction” in tumours (Döpfert et al. 

2011; Pang et al. 2013). This finding is not only counterintuitive since 

tumour angiogenesis generally increase blood volume, it is also 

contradictory to DCE perfusion measurements (Pang et al. 2013). 

However, the rapidly diffusing signal is not simply flowing blood 

displaying pseudo-diffusion, but also includes signal from the rapidly 

diffusing glandular compartment which shrinks in cancer. 

Others have previously investigated multiexponential diffusion in the 

prostate. The Mulkern group observed bi-exponential diffusion behaviour 

in both normal prostate (Mulkern et al. 2006) and cancer (Shinmoto et al. 

2009) but offered no explanation of its origin. Hall and colleagues (Hall et 

al. 2015) also observed bi-exponential diffusion in fixed samples. 

Panagiotaki et al. (Panagiotaki et al. 2015) observed tri-exponential 

prostate diffusion which they interpreted as arising from separate vascular 

(i.e., IVIM), intracellular and extracellular compartments. However, 

previous attributions of non-monoexponential behaviour to intra- and 

extracelluar compartments in the brain has been questioned for a number 

of reasons. First, it is simply unnecessary since non-Gaussian diffusion will 

always occur in the presence of hindered diffusion (Jensen and Helpern 

2010). Second the signal fractions do not agree with known intra- and 

extra-cellar volumes (Mulkern et al. 1999; Niendorf et al. 1996). Third, 

magnetization transfer rates are similar for both components, which would 

not be expected for intra- and extracellular water (Mulkern et al. 2005). 
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Furthermore, if the two non-vascular diffusion components are assigned to 

intra- and extracellular spaces in the prostate then the cellular and 

glandular signals must be well mixed. This seems less likely 

glandular/cellular compartmentalization is a more plausible explanation of 

bi-exponential diffusion behaviour.  

Several groups have also used non-Gaussian fits, either with a kurtosis 

term or using a “stretched exponential model” to describe diffusion in the 

prostate (Rosenkrantz et al. 2012; Hall et al. 2015; Suo et al. 2014). These 

methods will naturally provide better fits than more simple models. 

However, without including the multi-compartment nature of the prostate, 

these models provide little biophysical insight into the relationship 

between diffusion measurements and the changes that occur in cancer.  

The IVIM signal in this model is described by a delta function at b = 0; 

namely, it is assumed that any diffusion weighting would effectively 

eliminate the perfusion signal. This is a simplification and it might be 

possible to develop a more accurate model with a pseudo-diffusion term 

that would help in diagnosis. However, there are a number of problems 

with this approach. First, the perfusion signal is very sensitive to low b 

values. However, the “b = 0” signal does have a small amount of diffusion 

weighting due to the imaging gradients. This is especially true with the 

large, repeated gradient pulses that are used in the EPI sequences. This 

introduces errors into estimates of the pseudo-diffusion parameters. 

Second, although blood volume is increased with tumour angiogenesis, it is 

not certain that blood flow is also increased since increased interstitial 

pressure caused by hyperpermeable vessels can retard flow decreasing the 

IVIM signal. Given the difficulty in interpretation. It is preferable to use a 

low, non-zero b ~150smm-2 for the “b = 0” signal. 

The results primarily show that the diffusion properties of benign and 

cancerous prostate tissue can be described by a simple model. Most model 

parameters were defined a priori using non-MRI data. The rest were 

obtained by fitting the model to empirical data. The estimated values seem 

reasonable. Dd
free is somewhat lower than that of free water at 37°C (3.08 
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μm2ms-1) (Mills 1973; Harris and Woolf 1980) and is similar to the ex vivo 

estimate of Bourne et al. (Bourne, Kurniawan, Cowin, Stait-Gardner, Sved, 

Watson, and Price 2012). Ds
norm and De

norm are both of the same order as 

the slow ADCs found by Shinmoto et al. (Shinmoto et al. 2009). 

Furthermore, the relative sizes are similar to those found by Bourne et al. 

(Bourne et al. 2011) in fixed tissue and are consistent with histological 

observations of greater cell density in epithelium than in stroma (Gibbs et 

al. 2009). All the a priori parameters are subject to noise and could 

undoubtedly be improved with further experiment. 

One interesting implication of this study is that diffusion values are a 

product of the diffusion coefficients of the individual tissue types and 

Gleason score alone. Assuming the former are known, Gleason grade can, 

in principle, be determined via a diffusion measurement using only two b 

values. However, as is well known, noise in these measurements is 

relatively large. Furthermore changes in Gleason score affect the shape of 

the signal curve, not just the overall decay rate, so multiple b values will 

help in accurately determining Gleason score. 

There are a number of limitations of this study. First, and most 

importantly, the data used to construct and test the model were obtained 

from the literature. Although this does have the advantage of explaining 

the variation found between measurements reported in different studies, it 

would be better to construct the model from measurements specifically 

designed for the purpose (i.e., to characterize both Dg and Dc). Such 

experiments are currently underway. Second, the histological diagnoses 

reported were derived from either biopsy samples or post-surgical whole-

mount histology. It is well known that the former are much less reliable 

than the latter due to sampling error (Fine and Epstein 2008; Mufarrij et al. 

2010; Boccon-Gibod et al. 2005; Anast et al. 2004). Similarly association 

between diffusion measurements and the corresponding histopathological 

assessments was made through a variety of different methods (quadrant by 

quadrant, MRI visible abnormality vs. overall Gleason score, etc.). 

Optimally, however, comparisons should be made between co-registered 

histological and MRI images. Finally, several model parameter estimates 
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were obtained by linear interpolation between actual measurements at 

particular Gleason scores. However, this is likely to be a relatively minor 

effect. Moreover, more accurate estimates are only likely to improve the fit 

of the model.  
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Chapter 5: Optimization of Biexponential T2 

Acquisitions 

This chapter mostly draws on material from (Gilani et al. 2015) co-

authored with Dr.’s Andrew Rosenkrantz, Paul Malcolm and Glyn Johnson 

with copyright permission license (3898710176396) from John Wiley and 

Sons to use the full article. 

5-1: Introduction 

It was shown in the previous chapters that exchange of spins between the 

ductal lumen and epithelium/stroma is slow. Hence the fluids in the ductal 

compartment demonstrate a characteristic long T2 and the cellular tissue 

has a T2 similar to that of other tissue types in the body (Storås et al. 2008). 

Accurate assessment of these two T2 relaxations could help in 

distinguishing low and high grade tumours. 

Biexponential T2 measurements are made by acquiring signal in at least 

four different echo times and finding the parameters with a variety of 

fitting methods such as non-linear least squares, two segmented algorithms 

or combinations of the two. Errors in these measurements will depend on 

acquisition SNR’s and the choice of echo times (Anastasiou and Hall 

2004). Fleysher et al. (Fleysher, Fleysher, and Gonen 2008) previously 

determined the acquisition strategy that minimised noise in 

monoexponential T2 measurements. Here, their method was extended to 

biexponential T2 measurements. 

Parameter estimation errors in non-linear least square fitting could be 

assessed either deterministically (covariance matrix) (Huang, Feng, and 

Phelps 1986) or by using probabilistic methods (Monte Carlo noise 

simulation). Here, first the covariance matrix calculations were used to 

minimise parameter estimation errors and then these results were tested by 

comparison with Monte Carlo simulations. Since it is not possible to derive 

general results that are applicable to any combination of T2s, only values 

that were typical of the healthy and low grade tumours were studied. 

Furthermore, since the cellular signal fraction (1- ductal signal fraction) 
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was likely to be the most diagnostically useful parameter (Sabouri, Chang, 

et al. 2016; Sabouri, Fazli, et al. 2016), echo times that minimise errors in 

estimation of these parameters in particular were derived. 

5-2: The covariance matrix 

In general a function relating a set of measured signals, yi (i=1, 2, …, m), 

to a set of measurement parameters, xi (e.g., echo times in T2W or b-values 

in DWI) is given by: 

1 2( ; , ,... )i i ny f x a a a                                                                    (5.1) 

where aj (j=1,2,…,n) are the parameters to be estimated (e.g., T2, D, K, 

etc.). 

The co-variance matrix, Q, equals 
1( . )T 

A A  where A is an m×n matrix: 

                                           (5.2) 

where  is the acquisition noise which is assumed to be Gaussian and 

equal for all acquisition points. This is a reasonable assumption provided 

SNR is greater than about five, below which the Rician nature of noise will 

become apparent in the low SNR signals (Gudbjartsson and Patz 1995). 

Each row of A corresponds to a single measurement and each column to 

one of the estimated parameters. Thus m must be greater than or equal to n 

and the co-variance matrix, Q, is an n×n matrix. Each diagonal element, 

 
s

0
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Qii, is the variance in corresponding parameter ai (Huang, Feng, and Phelps 

1986) and the coefficient of variation (CoV), Vi, is therefore given by: 

/i ii iV a Q         (5.3) 

The error in the ith parameter may thus be minimized by minimizing Vi. In 

principle it might be possible to derive Q analytically. However, this is not 

generally possible so that the calculations must be performed numerically 

over a discrete n-dimensional grid of ai values in limited ranges. 

5-3: Methods 

All programs and numerical simulations were performed in MATLAB 

Release 2013b (The MathWorks, Inc., Natick, Massachusetts, US). 

Prostate T2 values 

This study was approved by the Institutional Review Board. Twenty-five 

men (age 45 to 80) with biopsy-proven prostate cancer were studied. A 

study of diffusion kurtosis imaging based on this cohort has previously 

been published (Rosenkrantz et al. 2012). Scanning was performed on a 3T 

MRI scanner (Siemens Magnetom Trio, Erlangen, Germany). Each subject 

underwent a standard, multi parametric clinical MRI examination 

including multi planar T2-weighted, diffusion-weighted and dynamic 

contrast-enhanced imaging. T2 measurements were obtained with a multi 

echo turbo-spin echo T2-mapping sequence (TR 8000, 16 echoes at 18-

msec intervals, TE 18 to 290 msec, slice thickness 5 mm, no interslice gap; 

field of view [FOV] 160 × 160 mm2; matrix 128 × 129; parallel imaging 

factor of 2; 1 signal average). Signal measurements were made by a 

radiologist (A.B.R.) with 3 years of experience in prostate MRI. Regions 

of interest (ROIs) were placed in areas that appeared benign in all 

sequences. Both mono- and biexponential expressions were fitted to the 

data and adjusted R2 calculated to determine whether biexponential fits 

were statistically justified. 
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Covariance Matrix Calculations 

The equation describing biexponential T2 decay is: 

2 22 2

0( ) ( (1 ) )

E EE E

f fs s

T TT T

T TT T

E f s f fS T S e S e S f e f e
  

           (5.4) 

where S0 is the total signal at zero TE; TE is the echo-time; Sf  and Ss are 

signal amplitudes of the fast and slow decay components, respectively; T2f  

and T2s are the T2 values of the fast and slow decay components, 

respectively; and ff is the fractional signal of the fast component, i.e., Sf / ( 

Sf  + Ss ). 

Each row of the matrix A is then: 

2 2 2 2
/ / / /

2 2

0 2 2

1 1 1
( ( ) ( ) )Ei f Ei f Ei s Ei s

T T T T T T T T

i Ei f Ei s

f s

e T S e e T S e
T T

   
A        (5.5) 

Each row  corresponds to one of the measured signals. Total 

error can be minimized by choosing echo times that minimize the mean 

square error (MSE) given by the trace of the covariance matrix in the fits. 

Errors in individual parameters (T2f, T2s, etc.) can be minimized by 

choosing the echo times that minimize their corresponding CoV. Errors in 

ff can be minimized by choosing echo times that minimize V2 and V4 (Eq. 

(5.3)).  

Echo times that minimise errors in measurements of the normal prostate 

parameters were found. The number of TEs was between four and eight, 

either freely variable (i.e., separate acquisitions for each echo) or at equally 

spaced intervals (i.e., a standard Carr-Purcell-Meiboom-Gill (CPMG) 

acquisition (Meiboom and Gill 1958)). Optimum TEs were searched over 

uniform n-dimensional TE grids of 10 ms from 0 to 1000 ms. 

To investigate the sensitivity of optima to the precise values of T2 and ff, 

CoVs were calculated using the optimum echo times and varying T2s and ff 

around normal values. CoVs were found with T2s varied from 230 to 700 

with T2f and ff normal, T2f varied from 40 to 80 with T2s and ff normal and ff 

varied from 0.3 to 0.9 with T2s and T2f normal. 

( 1, 2, ..., m)i 
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Monte-Carlo Simulation 

Monte Carlo simulation of noise was used to confirm the selected 

covariance matrix variations. Biexponential signal decays were simulated, 

and Gaussian noise (variance 1% of peak signal) was added. The 

biexponential was then fitted to the noisy signals using MATLAB’s non-

linear least squares curve fitting algorithm, ‘lsqcurvefit’. The procedure 

was repeated with 100,000 different sets of noise (noise realisations) and 

the CoV of each parameter estimate calculated. These calculations were 

then repeated over the same n-dimensional grids of TE values and the 

combination of TE values that minimize CoV found. 

5-4: Results 

Prostate T2 values 

T2 measurements were obtained in twenty-five subjects. Biexponentials 

were found to give statistically better fits in all but one subject (96%). This 

result was similar to that of (Storås et al. 2008) who found better fits in 

86% of subjects. Table 5.1 gives measured values of ff, T2f and T2s along 

with values found in two previous studies. The measured values were 

similar to those of (Storås et al. 2008) and somewhat different from those 

of (Kjaer et al. 1987). However, the latter measurements were based on 

twice log linear fitting method which has been replaced by non-linear least 

squares fitting in recent years due to its fitting inaccuracy. Based on these 

measurements normal and low grade tumour prostate were averaged for the 

optimisations: T2s (prostate glandular lumen) 360 ms; T2f 

(epithelium/stroma) 60 ms; ff 0.58.  
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Table 5.1 Prostate T2 parameters found in this and previous studies 

Source N Field ff    

Mean 

(Range) 

T2f / ms 

Mean 

(Range) 

T2s / ms 

Mean 

(Range) 

This thesis 22 3.0 0.58  

(0.18-0.87) 

60  

(22-196) 

360  

(123-1150) 

(Kjaer et al. 

1987)* 

5 1.5 - 86  

(67-102) 

111  

(96-137) 

(Storås et al. 

2008) 

16 1.5 0.7  

(0.2-0.97) 

64  

(43-92) 

546  

(161-1319) 

*T2s estimated from log-linear fitting of first and last echoes. 

Covariance Matrix Calculations 

Tables 5.2 to 5.5 show the echo times that minimize variance in T2f, T2s, ff 

and mean square error (MSE), respectively. Optimum echo times to 

measure the fast T2 component tend to favour signal averaging at shorter 

echo times; conversely optima for measurement of the slow T2 component 

favour signal averaging at long echo times. That is echo times that 

maximise are favoured. Optimum echo times for measurement of 

ff favour signal averaging at long and intermediate echo times. Echo times 

that minimize total error are distributed across the range that minimizes 

errors in each of the parameters separately. Overall optimum echo times 

are similar regardless of which parameter is measured. 

 

 

 

 

 
dS dT
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Table 5.2 Echo times that minimize T2f estimation errors for N (4 – 8) echo acquisitions.  

 

 

Table 5.3 Echo times that minimize T2s estimation errors for N (4 – 8) echo acquisitions.  

 

 

Table 5.4 Echo times that minimize ff estimation errors for N (4 – 8) echo acquisitions.  

 

 

 

 

1 2 3 4 5 6 7 8

4 0 40 210 780

5 0 40 40 200 770

6 0 40 40 200 200 730

7 0 40 40 220 220 780 780

8 0 40 40 40 210 210 780 780

E E E E E E E EN T T T T T T T T

1 2 3 4 5 6 7 8

4 0 30 160 670

5 0 30 170 710 710

6 0 30 180 740 740 740

7 0 30 190 760 760 760 760

8 0 30 190 780 780 780 780 780

E E E E E E E EN T T T T T T T T

1 2 3 4 5 6 7 8

4 0 30 180 740

5 0 30 190 800 800

6 0 30 190 190 750 750

7 0 30 200 200 780 780 780

8 0 40 200 200 200 750 750 750

E E E E E E E EN T T T T T T T T
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Table 5.5 Echo times that minimize mean square error (i.e., the sum of all coefficients of 

variation or the trace of the covariance matrix) for N (4 – 8) echo acquisitions. 

 

 

Figures 5.1 to 5.3 show the changes in CoV for the four echo acquisition 

when one of the measured parameters (ff, T2f , T2s) is varied around the 

normal value. CoV values are generally reasonable if these two conditions 

are met: First, T2f  and T2s are significantly different. Second, none of the 

compartments is very small. 

 

Figure 5.1 Changes in CoV for estimated biexponential parameters when the parameters 

are varied from the standard values used for the optimization. Echo times are 0, 40, 210 

and 780 which minimize the error in estimating T2f. (Table 5.2). The blue, yellow, green 

and red lines represent the CoV of Ss, Sf, T2s and T2f respectively. SNR was 100. a) T2s = 

360, T2f =60 and ff  = 0.3-0.9. b) T2s =360, T2f = 40-80 and ff =0.6. c) T2s = 230-700, T2f 

=60 and ff = 0.6. 

1 2 3 4 5 6 7 8

4 0 30 170 670

5 0 30 180 710 710

6 0 30 190 740 740 740

7 0 40 190 760 770 770 770

8 0 40 190 190 720 720 720 720

E E E E E E E EN T T T T T T T T
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Figure 5.2 Changes in CoV for estimated biexponential parameters when the parameters 

are varied from the standard values used for the optimization. Echo times are 0, 30, 160 

and 670 which minimize the error in estimating T2s (Table 5.3). The blue, yellow, green 

and red lines represent the CoV of Ss, Sf, T2s and T2f respectively. SNR was 100. a) T2s 

=360, T2f =60 and ff =0.3-0.9. b) T2s =360, T2f =40-80 and ff =0.6. c) T2s =230-700, T2f 

=60 and ff =0.6.(In Figure a the blue and green lines are very close to each other.) 

 

 

Figure 5.3 Changes in CoV for estimated biexponential parameters when the parameters 

are varied from the standard values used for the optimization. Echo times are 0, 30, 180 

and 740 which minimize CoV of ff = Sf /(Sf + Ss) (Table 5.4). The blue, yellow, green and 

red lines represent the COV of Ss, Sf, T2s and T2f respectively. SNR was 100. a) T2s =360, 

T2f =60 and ff =0.3-0.9. b) T2s =360, T2f =40-80 and ff =0.6. c) T2s =230-700, T2f =60 and 

ff =0.6. 



78 

 

 

Figure 5.4 CoV of estimates of T2f, T2f, Sf and Ss using eight equally spaced echoes where 

TEmax is the maximum echo time. Blue line, yellow line, green line and red line are 

respectively for CoV of Ss, Sf, T2s and T2f. SNR=100. 

Monte-Carlo Confirmation 

Monte-Carlo confirmations were found for normal prostate parameters and 

three different optima: five echoes from Table 5.2; six from Table 5.3; and 

eight from Table 5.4. In all cases Monte-Carlo and covariance matrix 

optima were identical within 10ms (i.e. the grid spacing over which the 

search was performed). 

5-5: Discussion 

The results are generally compatible with Fleysher et al.’s (Fleysher, 

Fleysher, and Gonen 2008) study of monoexponential decays. First, 

repeated signal averaging at the minimum number of echo times (two for 

monoexponential; four for biexponential) gives better results than 

measurements at multiple different echo times. Second, averaging of late, 

low SNR, echoes is preferable to distributing averages over all echoes 

equally. 

SNR in these calculations was assumed to be 100. Although this is quite 

high for pixel based measurements it is realistic for ROI measurements 
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where many pixels might be averaged. Furthermore, CoV values scale as 

1/SNR; as a result it is simple to calculate CoVs for any other SNR as long 

as noise profile could be approximated as Gaussian. 

There are a number of limitations of this study. First, optimisation is not 

for any combination of T2 parameters. This would require inversion of Eq. 

(5.1) to provide a function, f -1, such that  

1 2( ; , ,... )i i ny f x a a a                                                                    (5.6) 

Considering the complexity of formulation and the multiple number of 

acquisitions this inversion is almost impractical.  

Second, the main purpose of this chapter was to find echo times that 

maximize the ability to differentiate normal and cancerous tissue. These 

echo times will also provide nearly optimal measurements of marginally 

abnormal tissue but are likely to be suboptimal where T2 parameters are 

very different from normal tissue. For example, echo times that minimize 

noise in measurements of tissues with T2 = 100 ms will also produce good 

results when T2 = 110 ms but much poorer results when T2 = 500ms. 

However, since the T2 parameter differences are also much greater this is 

unlikely to hinder the ability to discriminate between the two tissues. That 

is, if echo times that maximise the ability to identify only marginally 

abnormal T2 parameters are used, grossly abnormal parameters should be 

relatively simple to identify. Luckily, optimising for any value of ff 

between 0.3 and 0.8 was found to give identical echo times.  

Third, ideally, measurements of normal prostate parameters would been 

acquired from healthy volunteers than prostate cancer patients. However, 

measurements were made in areas that appeared normal on 

multiparameteric MRI, which have over 90% negative prediction value for 

clinically significant prostate cancer (Abd-Alazeez et al. 2014; Grey et al. 

2015).  

Finally, it was found that the optima for protocols in which measurements 

at different echo times are obtained in separate acquisitions (e.g. a variety 

of spin echo sequences such as conventional, RARE, spin-echo EPI, etc.) 
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perform better that those such as CPMG, where all echoes are acquired 

following a single excitation. Depending on gradient strength, specific 

absorption rate (SAR) considerations, and the ability to deal with 

improperly refocused magnetization, it may be possible to decrease noise 

in CPMG measurements by acquisition of a large number of echoes. Also, 

uneven echo distributions could be used. Both these factors may increase 

the efficiency of CPMG sequences.         
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Chapter 6: Optimization of non-Gaussian DWI 

Acquisitions 

This chapter  mostly draws on material from (Gilani, Malcolm, and 

Johnson 2016c). 

6-1: Introduction 

Although the purpose of thesis was to optimize prostate MR acquisitions, 

the covariance matrix optimization methodology discussed in the previous 

chapter could be extended to non-Gaussian kurtosis model which could 

describe diffusion in some organs such as liver (Anderson et al. 2014), 

breast (Sun et al. 2015), and head and neck (Lu et al. 2012; Yuan et al. 

2014). 

Non-Gaussian diffusion kurtosis measurements are made by acquiring 

images at multiple different b-values and fitting the model of Eq. (3.12)  to 

these signals with a variety of non-linear least squares algorithms. Errors in 

measuring both D and K will depend both on noise in the signal and in the 

choice of b-values. Previously, Fleysher et al. (Fleysher, Fleysher, and 

Gonen 2008) determined the acquisitions that minimized noises in mono-

exponential measurements with their results being applicable to selection 

of echo-times in monoexponential T2 relaxometry and selection of b-values 

in monoexponential apparent diffusion coefficient (ADC) measurements. 

In the previous chapter, the noise in estimation of bi-exponential T2 

measurements of the prostate cancer were minimized. In this chapter, the 

method is extended to optimization of mono-exponential kurtosis 

measurements. 

6-2: Methods 

All programs and numerical simulations were performed in MATLAB 

Release 2013b (The MathWorks, Inc., Natick, Massachusetts, US). 
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Covariance Matrix in General 

The signal is measured for multiple b-values and the model is fitted using a 

variety of non-linear, least squares fitting methods. The co-variance matrix 

could be used to calculate the sensitivity of parameter estimates to each 

independent variable (i.e., b-values in here) (Huang, Feng, and Phelps 

1986; Gilani et al. 2015). Here co-variance matrix calculations were used 

to minimize parameter errors for a mono-exponential kurtosis model.  

In general a function relating a set of measured signals, yi (i=1, 2, …, m), 

to a set of measurement parameters, xi (e.g., the b-values) is given by  

1 2( ; , ,... )i i ny f x a a a                                                            (6.1) 

where aj (j=1,2,…,n) are the parameters to be estimated (e.g., D, K, etc.). 

The co-variance matrix, Q, could be calculated in a manner similar to the 

previous chapter. 

For diffusion weighted imaging SNR is usually defined as mean of signal 

divided by its standard deviation at b-value of 0. Each column of A 

corresponds to one of the estimated parameters and each row corresponds 

to a single measurement. Thus m must therefore be greater than or equal to 

n. Q, is an n×n matrix and each diagonal element, Qii, is the variance of the 

corresponding parameter ai (Huang, Feng, and Phelps 1986). The 

coefficient of variation (CoVi), is therefore given by 

ii

i

i

CoV
a


Q

      (6.2) 

The error in the ith parameter may be minimized by minimizing CoVi. 

Overall error is minimized by minimizing the mean square error (MSE), 

the trace of Q. 

Covariance Matrix of Kurtosis Model 

The mono-exponential kurtosis equation could be rewritten with a style 

similar to equation (6.1) as  
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0( ; , , )i iS f b S D K       (6.3) 

where bi (i=1,2,…m) are the b-values, Si(i=1,2,…m) are the measured 

signal at these b-values and S0, D and K are the three parameters to be 

estimated. Since there are three parameters to be estimated at least three (bi 

, Si) acquisitions are needed.  

The m×3 matrix A for equation (6.3) is: 

2 2 2 2 2 2
1 1 1

1 1 1

2 2 2 2 2 2

2 2 2

1 16 6 6
0 1 0

0
2 2 2

6 6 6
0 0

( 2 ) ( )
6 6

1

( 2 ) ( )
6 6

m m m
m m m

b D K b D K b D K
b D b D b D

b D K b D K b D K
b D b D b D

m m
m

b DK b D
e S b e S e

b DK b D
e S b e S e

     

     

 
  

 
 

  
 

  
 

A

(6.4) 

And finally Q equals 
1( . )T 

A A . In principle it might be possible to derive 

Q analytically. However, this is not generally possible so that the 

calculations must be performed numerically over a discrete grid of b-

values. It was possible to organize the results based on encoding parameter 

bD meaning that the results are not dependent on D values. For example D 

and K have been respectively measured to be around 0.86±0.37 µm2ms-1 

and 1.5±0.43 for head and neck tumours (Yuan et al. 2014). 

The optimization can be done to minimize errors in D alone, K alone or 

both of these parameters. This would require minimizing the i'th 

corresponding diagonal element of the covariance matrix, so that the 

coefficient of variation in estimating that parameter ( ii

i

i

CoV
a


Q

) is 

minimized. If covariance matrix is derived from matrix of equation (6.4) 

then the second diagonal element of the covariance matrix corresponds to 

the variance in estimating parameter D and the third corresponds to the 

variance in estimating parameter K. Here to optimize both parameters K 

and D, the sum of CoV2+CoV3 was minimized. 
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Monte Carlo Verification 

Monte Carlo simulations were used to confirm selected covariance matrix 

variations. Mono-exponential kurtosis models was simulated, and either 

Rician or Gaussian noise (standard deviation 5% of peak signal) were 

added separately. Obviously, for the case of Gaussian noise, at each b-

value a random value should be drawn from a Gaussian distribution with 

mean of zero and standard deviation derived from S0/SNR. However, for 

the case of Rician noise signal at each b-value is dependent on the acquired 

signal (Gudbjartsson and Patz 1995; Rice 1944): 

2 2 2( ( ) ( ))/2

02 2

( ) ( ). ( )
( ( )) ( )n

S b S bn n
n

S b S b S b
P S b e I

  


 
   (6.5) 

where S(b) is the signal without noise and Sn(b) is the noisy signal at each 

b-value. Accordingly, the Rician noise was constructed using MATLAB’s 

makedist program at each b-value. 

For both cases, after construction of noisy signal, a new mono-exponential 

kurtosis model was then fitted to the noisy signals using MATLAB’s non-

linear least squares curve fitting, lsqcurvefit. The procedure was repeated 

with 100,000 different sets of noise and the CoV of each parameter 

estimate calculated. These calculations were then repeated over the same 

n-dimensional grids of b-values and optimized b-values were found. 

100,000 different values of D, K were stored and were used to calculate 

CoVD and CoVK. 

Maximum b-Values 

It is obvious that greater b-values tend to minimize the error in estimating 

kurtosis parameter because the second term in the exponential ( 2 2 / 6Kb D ) 

which contains the kurtosis parameter is multiplied by b2.  

 However there are two maximum b-value criteria. The first maximum b-

value limit is imposed by the scanner noise considerations. The second 

maximum limit is related to the fitting model. Jensen et al.(Jensen and 
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Helpern 2010) calculated the maximum allowable b-value for the mono-

exponential kurtosis model to be 3/DK.  

6-3: Results 

Table 6.1 summarizes the optimization results. The optimization is based 

on the encoding parameter bD.  As observed in the table, at least one 

maximum b-value is present in the optimized acquisitions.  

In order to show the difference between the optimized results, the case of 

equally distanced b-values between 0 to maximum was also tested as 

shown in table 6.2. Comparing tables 6.1 and 6.2 it is clear that optimized 

b-values considerably reduce the estimation errors for D and K. 

To show a more tangible presentation of the optimization results, the 

values of D and K were selected to be 0.86±0.37 µm2ms-1  and 1.5±0.43 

similar to values measured in head and neck tumours in (Yuan et al. 2014). 

The optimization was performed using these target values, and estimation 

errors were compared with equally-distanced acquisitions in figure 6.1 and 

6.2 with varying D and K. In figures 6.1(a) and (b) D was assumed to be 

constant and K varied from 1 to 1.5. In figures 6.2(a) and (b) K was 

assumed to be constant and D varied from 0.35 to 0.85. 

As observed in the four figures with increasing the number of b-values 

above 5, it is always better to optimize the acquisitions than to use equally 

distanced b-value acquisitions. 
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Table 6.1: Optimum b-value acquisition strategy to minimize estimation error of D and K 

for N(3-5) b-value acquisitions, where (bD)max = 3/K is the maximum allowable 

acquisition point, CoVK, CoVD and CoVS are the coefficients of variation respectively for 

K, D and S0. SNR=20 

1 2 3 4 5 max( ) ( ) ( ) ( ) ( ) ( )

3 0 0.75 2 2 1.5 0.145 0.220 0.05

3 0 0.9 3 3 1 0.153 0.188 0.05

3 0 1 3.75 3.75 0.8 0.176 0.177 0.05

3 0 1 5 5 0.6 0.245 0.168 0.05

3 0 1.05 6 6 0.5 0.335 0.164 0.05

3 0 0.9 10 10 0.3 1.48 0.173 0.05

4 0 0.8 0.

K D SN bD bD bD bD bD bD K CoV CoV CoV

8 2 2 1.5 0.145 0.171 0.05

4 0 0.95 0.95 3 3 1 0.153 0.144 0.05

4 0 1 3.75 3.75 3.75 0.8 0.126 0.176 0.05

4 0 1.05 5 5 5 0.6 0.173 0.166 0.05

4 0 1.05 6 6 6 0.5 0.237 0.163 0.05

4 0 0.95 10 10 10 0.3 1.04 0.164 0.05

5 0 0.8 0.8 2 2 2 1.5 0.108 0.168 0.05

5 0 1 1 3 3 3 1 0.118 0.142 0.05

5 0 1.05 1.05 3.75 3.75 3.75 0.8 0.122 0.133 0.05

5 0 1.1 1.1 5 5 5 0.6 0.173 0.125 0.05

5 0 1.05 6 6 6 6 0.5 0.194 0.1618 0.05

5 0 1 10 10 10 10 0.3 0.857 0.161 0.05
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Table 6.2: Equally distanced b-value acquisition strategy for N(3-5) b-value acquisitions, 

where (bD)max = 3/K is the maximum allowable acquisition point, CoVK, CoVD and CoVS 

are the coefficients of variation respectively for K, D and S0. SNR=20 

1 2 3 4 5 max( ) ( ) ( ) ( ) ( ) ( )

3 0 1 2 2 1.5 0.145 0.223 0.05

3 0 1.5 3 3 1 0.15 0.22 0.05

3 0 1.88 3.75 3.75 0.8 0.18 0.24 0.05

3 0 2.5 5 5 0.6 0.24 0.29 0.05

3 0 3 6 6 0.5 0.34 0.36 0.05

3 0 5 10 10 0.3 1.48 1.13 0.05

4 0 0.66 1.33 2 2 1.5 0.14

K D SN bD bD bD bD bD bD K CoV CoV CoV

0.19 0.05

4 0 1 2 3 3 1 0.14 0.17 0.05

4 0 1.25 2.5 3.75 3.75 0.8 0.16 0.17 0.05

4 0 1.66 3.33 5 5 0.6 0.22 0.19 0.05

4 0 2 4 6 6 0.5 0.30 0.22 0.05

4 0 3.33 6.66 10 10 0.3 1.29 0.50 0.05

5 0 0.5 1 1.5 2 2 1.5 0.13 0.18 0.05

5 0 0.75 1.5 2.25 3 3 1 0.14 0.16 0.05

5 0 0.94 1.86 2.81 3.75 3.75 0.8 0.15 0.15 0.05

5 0 1.25 2.5 3.75 5 5 0.6 0.21 0.16 0.05

5 0 1.5 3 4.5 6 6 0.5 0.28 0.17 0.05

5 0 2.5 5 7.5 10 10 0.3 1.11 0.31 0.05
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(a) 

 

(b) 

 

Figure 6.1: Changes in the coefficient of variation in estimating D and K (respectively 

CoVD and CoVK) with varying K for target values of head and neck tumours for 3-5 

optimized or equally spaced acquisitions. (a) K varies from 1 to1.5 and CoVD is 

measured. (b) K varies from 1 to1.5 and CoVK is measured. 
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(a) 

 

(b) 

 

Figure 6.2: Changes in the coefficient of variation in estimating D and K (respectively 

CoVD and CoVK) with varying D for target values of head and neck tumours for 3-5 

optimized or equally spaced acquisitions. (a) D varies from 0.3 to 0.85 and CoVD is 

measured. (b) D varies from 0.3 to 0.85 and CoVK is measured.  
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Monte Carlo Verification 

This procedure was repeated for all the target values of D and K in table 

6.1. CoVD and CoVK were found if Rician noises was present. Since here 

only SNR’s of 20 were considered, there was a good agreement between 

the Rician Monte Carlo simulations of noise and the results from 

covariance matrix calculations.  

6-4: Discussion 

It was shown that as the number of b-value acquisitions increases, 

optimization significantly reduces errors in measuring both diffusion 

coefficient and kurtosis. Although the optimizations are dependent on both 

parameters D and K for the example of head and neck tumours, it was 

shown that the optimization works well for a wide range of variations for 

these parameters. However, in addition to the maximum b-value 

consideration regarding the kurtosis modelling, one should consider that if 

the both parameter D and K are small, then the maximum b-value criteria is 

imposed by the maximum practical b-values of the MR scanner. This 

means that since in many routine applications the maximum b-values that 

are used are smaller than the maximums of tables 6.1 or 6.2, there might be 

significant errors in estimating non-Gaussian parameters. For a clinical 

diffusion kurtosis imaging example where D is 1 μm2ms-1 and K is 0.6, if 5 

values of 0, 1000,1500, 2000 and 2500 s mm-2 are used, CoVD and COVK 

are respectively about 0.21 and 0.75 assuming SNR = 20. 

There is an inverse relation between CoV’s derived in this study and SNR (

1
CoV

SNR
 ). For example if SNR is 30 instead of 20 then CoV’s derived 

here should be multiplied by 0.66. Parameter estimations are also 

dependent on diffusion echo time (TE) or signal fading due to T2 relaxation, 

similarly this can be accounted for by considering 
2/

1
ET T

CoV
e

 . 

Optimization and noise considerations of MR relaxometry acquisitions 

from a statistical point of view is not something new (Tang et al. 2007; 

Zhang et al. 2012; Merisaari et al. 2015; Saupe et al. 2009; Jambor et al. 
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2014; Reiter et al. 2009). Jambor et el.(Jambor et al. 2014) have optimized 

biexponential diffusion measurements of the prostate. Merisaari et 

al.(Merisaari et al. 2015) have optimized monoexponential, biexponential 

and kurtosis measurements of the prostate, however only for some random 

selections of b-values instead of searching over a grid of b-values. In this 

chapter the optimization was performed for a long range of kurtosis values 

applicable to diffusion kurtosis of many organs and also the whole 

allowable grid of b-values was searched. Additionally, diffusion kurtosis 

acquisitions have already been optimised in (Poot et al. 2010) calculating 

Cramér–Rao lower bound. However the methodology here is more 

straightforward and simplified which could be routinely used. 

In most of these studies the Monte Carlo method is used. The Monte Carlo 

method could directly assess the inherent fitting errors of any algorithm 

and is relatively more accurate because the simulated noise could have 

exact profile of the acquisitions. For example for diffusion weighted 

imaging for SNR’s of less than five the Rician nature noise is more 

dominant that the Gaussian (Gudbjartsson and Patz 1995), however even in 

Monte Carlo optimizations of diffusion usually a Gaussian approximate of 

noise profile is used. This issue is not important for bigger region of 

interest (ROI) analysis because of significantly larger SNR’s, as a result it 

is valid to assume the noises are Gaussian.  

Also, the covariance matrix method for estimating errors is fast. For 

example if the number of b-values is greater than 10, the processing time 

would be around 1 or 2 hours for this method using one core of an Intel(R) 

Core(TM) i5-4690 CPU @ 3.50 GHz, whereas a similar Monte Carlo 

optimization could be significantly much more time consuming and hence 

is not feasible. 

The results in this chapter prove that using b-values of as high as possible 

would significantly improve diffusion kurtosis imaging. However there are 

two constraint that impose limitations on this, first it is the interference 

from higher terms of diffusion and the second one is the noise limitations 

for the scanners at high b-values.  
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Both covariance matrix calculations and Monte Carlo assessments of noise, 

predict the accuracy of diffusion parameter estimations and this could be 

used to optimize acquisitions. These might help in near optimal selection 

of b-values if target values of diffusion parameters are known a priori.  
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Chapter 7: Discussion, Conclusions and Future 

Research 

There is a rising interest in multi parametric MR imaging of prostate 

cancer. The main advantage of multi parametric MR is the integration of 

anatomical and functional characteristics of the tissue which results in 

more accurate risk stratification of the disease (Yuan et al. 2016). So far, 

most of the attention has gone to qualitative and semi-quantitative methods 

such as PIRADS (Weinreb et al. 2016) and Likert scores (Costa et al. 

2016) rather than in depth quantitative methods as discussed in (Yuan et al. 

2016; Shen et al. 2016). This is because quantitative methods require more 

complex analysis. However as shown in (Yuan et al. 2016; Shen et al. 

2016), inclusion of quantitative methods in multi-parametric clinical scans 

further increases sensitivity and specificity of diagnosis. This is because 

similar to prostate biopsies, qualitative image analysis are prone to inter- 

and intra-observer variability, whereas this is not the case for the 

quantitative methods (Yuan et al. 2016).  

Both quantitative diffusion and T2 weighted methods have been included in 

multi-parametric studies of prostate cancer (Bratan et al. 2013; Chung et al. 

2015) in addition to other modalities such as DCE. Two of the main 

shortcomings of the multi parametric MR protocols are the considerably 

longer scan times and the requirement for very advanced image post-

processing methods in the clinics (Yuan et al. 2016). Hence, future studies 

should concentrate on further optimisation of each modality separately and 

also better integration of multi-parametric methods. Optimisation of the 

DWI protocols requires incorporation of the model introduced in chapter 4 

to the image analysis. This results in additional complexities in diffusion 

MR analysis such as consideration of the effect of diffusion times; 

however this seems necessary to avoid ambiguities in interpreting diffusion 

parameters. In the case of T2W, although the biexponential model gives a 

more biophysically plausible explanation of prostate tissue, so far the 

concentration has been on finding faster acquisition protocols by using the 

monoexponential model (Dregely et al. 2016). Further application of the 
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biexponential model for T2W to routine scans is the subject of ongoing 

study, however the preliminary results confirm the reliability of this model. 

In addition, quantitative MR methods could directly or indirectly correlate 

with many of pathological changes in prostate cancer, many of which 

could not be measureable from histopathology because a number of 

fixation effects that prevent precise extraction of biophysical parameters 

from biopsies. Most importantly, as discussed in chapter three, a variable 

shrinkage factor of 1.15 to 1.5 is considered for microscopic measurements 

of histologic specimens (Schned et al. 1996; Noguchi et al. 2000; Tran et 

al. 2015), this results in uncertainties in the ductal or tumour size 

measurements. As a result, quantitative (biexponential) diffusion and T2 

analysis might be able to predict some biophysical parameters as more 

precise alternatives to biopsies.  

Here, it was shown that the signal fraction of the long T2 component in 

T2W and the fast diffusion coefficient in DWI correlate with the ductal 

volume fractions (Gilani, Malcolm, and Johnson 2016a; Gilani et al. 2015). 

Also it was shown in (Gilani, Malcolm, and Johnson 2016b) that shrinkage 

in the size of ducts leads to decreases in the ADC of the component with 

faster diffusion coefficient. Such correlations might even lead to proposal 

of more accurate MR grading platforms.  

Also, time dependency of the measured diffusion parameters is the focus of 

recent studies about prostate cancer. While more studies are needed to 

introduce time-dependent quantitative diffusion analysis, it has already 

been agreed on that inclusion of diffusion time related parameters (Bourne 

2015) in reports is a necessity. Although, this thesis mostly concentrated 

on the effect of having different diffusion times on only the ductal 

diffusion, it is obvious that diffusion inside the cellular compartment also 

requires consideration of time dependency.  

Chapter four of the thesis has mostly concentrated on the biophysics of 

diffusion than optimising the clinical acquisitions. The optimisation 

concept for biexponential diffusion acquisitions might be considerably 

different than T2W optimisation mostly because of non-Gaussian nature of 
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diffusion in tissue and involvement of the parameter kurtosis. A variety of 

biexponential fitting algorithms exist such as non-linear least squares 

fitting or segmented methods that are recommended to be combined for 

diffusion weighted imaging. Hence, optimization of prostate diffusion 

weighted imaging is not as easy and straightforward as the T2 weighted 

imaging. Further optimisation of b-value acquisitions is the subject of 

ongoing study. Preliminary results suggest that in order to optimise the 

diffusion weighted signal of the prostate vs. b-values, four different b-

value regions should be considered. b-values of 0-200 s.mm-2, where the 

signal is mainly affected by the IVIM effect; b-values of 200-800 s.mm-2, 

where the signal is mostly affected by ductal sizes; b-values of 700-1200 

s.mm-2, where the signal is shaped by the compartmental volume fraction; 

and finally higher b-values which are dependent on cellular diffusion and 

kurtosis. Also, care should be taken not to exceed 0-2000 b-value ranges 

because higher terms of diffusion might play a very significant role (Jensen 

et al. 2005; Jensen and Helpern 2010) which results in parameter 

estimation errors in addition to having very low SNR values in very high 

b-values. Also, the choice of fitting model (i.e. using monoexponential, 

kurtosis, biexponential) is highly dependent on the acquisition b-values 

used for the scan.    

Additionally, the model for diffusion in the prostate does not limit the 

radiologists to any certain acquisition protocols; the model explicitly 

explains the correlations between the diffusion MR signal and biophysical 

changes in prostate cancer. The model parameters could be flexibly 

updated for different b-value acquisitions, diffusion times, echo times, etc. 

However, in order to perform biexponential analysis of diffusion, it is 

recommended that diffusion acquisitions are performed using at least 6 

different b-values ranging from 0 to 1000 s.mm-2 instead of having limited 

number (i.e. less than 6) of b-values; additionally it is recommended to 

have at least four of these b-values are greater than 200 s.mm-2 to cancel 

out any IVIM effect.     

Acquiring MRI scans prior to biopsies has already been recommended by 

NICE (Streeter and Brewster 2015). It is preferable if such 
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recommendations include clearer optimum MR acquisition guidelines. 

Since the topic keeps getting updated with a fast pace, it is better if such 

recommendations are not too detailed. However, certain concepts are 

recommended to be discussed explicitly such as to using a wide range of b-

values to than limited numbers to measure diffusion related parameters D 

or K. Also, it is very important to distinguish between the IVIM effect and 

the high apparent diffusion coefficient of the ducts if biexponential are 

used; this requires shifting the minimum b-values to higher than 150-200 

s.mm-2. 

The sensitivity and specificity of MRI of the prostate cancer is variable 

from study to study depending on the methodology used. While the 

sensitivity is around 70 - 90% or higher in most studies (Harvey et al. 

2014; Mertan et al. 2016), the reported specificity values are considerably 

and controversially different. These high false positive rates are a result of 

non-cancerous lesions not being different from tumors in MR images, if 

the acquisitions are not biophysically optimised. While, better modellings 

and acquisitions similar to this thesis help in better and more quantitatively 

distinguish these lesions, it is advised to use guided biopsies of suspicious 

lesions to increase specificity (such as 82% in (Tewes et al. 2015)) of 

prostate cancer exams (Schoots et al. 2015; Tewes et al. 2015). 

Monte Carlo random walk methods have the potential to better characterize 

diffusion signal for many other organs than the prostate or brain. Extension 

of random walk simulations to other organs requires careful consideration 

of a wide range of parameters such as the shape and size of the biophysical 

tissue, free diffusion of water in them which is dependent on the protein 

concentration levels, etc.  

The diffusion concepts developed here such as negative kurtosis for 

prostate ducts and the modified two compartmental models are highly 

likely to be applicable to diffusion measurements of other organs such as 

brain. Although extension of these to pore NMR studies might not directly 

introduce parameters that are of interest, could help in better 

characterisation of time-dependent pore structures using NMR. For 
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example in (Luo et al. 2015) the non-Gaussian behaviour of diffusion for 

higher q-values and longer diffusion times has been modelled by 

considering two diffusion peaks. Whereas this could be modified by 

considering the maximum q-value limits for Gaussian estimates of 

diffusion similar to that of (Jensen et al. 2005) for b-value analysis.  

The collection of histological changes with cancer measured in chapter two 

of this thesis, are not solely helpful for MR measurements. These 

measurements could also be of interest to pathologists as additional 

quantifications to the current Gleason grading system; hence improving the 

current measurements is the subject of ongoing research.  

There are a number of ongoing studies related to this thesis, such as the 

extension of Monte Carlo simulations to study cellular tissue of prostate, 

optimisation of b-value acquisitions, and design of patient experiments for 

extracting more accurate values of ductal diffusion and T2 signal fraction.  

The most important limitation of this research was that no experiments 

were performed. The methods and models were produced or validated 

using either retrospective patient data as in (Gilani et al. 2015) or published 

literature; however, this helped in better explaining and resolving the 

ambiguities and contradictions in the previous studies.  
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