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Abstract—In this paper, we aim at learning compact and
discriminative linear regression models. Linear regression has
been widely used in different problems. However, most of the
existing linear regression methods exploit the conventional zero-
one matrix as the regression targets, which greatly narrows the
flexibility of the regression model. Another major limitation of
theses methods is that the learned projection matrix fails to
precisely project the image features to the target space due
to their weak discriminative capability. To this end, we present
an elastic-net regularized linear regression (ENLR) framework,
and develop two robust linear regression models which possess
the following special characteristics. First, our methods exploit
two particular strategies to enlarge the margins of different
classes by relaxing the strict binary targets into a more feasible
variable matrix. Second, a robust elastic-net regularization of
singular values is introduced to enhance the compactness and
effectiveness of the learned projection matrix. Third, the resulting
optimization problem of ENLR has a closed-form solution in
each iteration, which can be solved efficiently. Finally, rather
than directly exploiting the projection matrix for recognition, our
methods employ the transformed features as the new discriminate
representations to make final image classification. Compared with
the traditional linear regression model and some of its variants,
our method is much more accurate in image -classification.
Extensive experiments conducted on publicly available datasets
well demonstrate that the proposed framework can outperform
the state-of-the-art methods. The MATLAB codes of our methods
can be available at http://www.yongxu.org/lunwen.html.

Index Terms—Elastic-Net regularization, discriminative meth-
ods, linear regression, image classification

I. INTRODUCTION

ISCRIMINATIVE methods (e.g., regression models)
have a good reputation in both theoretical research
and practical applications, and also have been extensively
applied to solving many computer vision problems [1], [2].
Different from the probabilistic models, discriminative meth-
ods typically project image features to some continuous or
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discrete targets, and then exploit the projection matrix to
make image classification or regression [3], [4]. In addition,
discriminative methods can achieve impressive performance
when constructing robust projection matrix and providing
sufficient training samples [5], [6]. However, the problem
of robust discriminative learning has not been exhaustively
explored and perfectly solved.

Least square regression (LSR) is a typical and fundamen-
tal technique in statistics theory. Due to its mathematically
tractable and efficient solution as well as simple yet effec-
tive formulation, LSR has been widely used in many other
applications such as computer vision and pattern recognition
[7]. Many variations have been proposed to enhance the
performance of the conventional LSR, such as partial LSR
[8], weighted LSR [9], and nonnegative least squares [10].
Moreover, extensive discriminative LSR methods have been
developed to improve the robustness and effectiveness of the
existing regression approaches. For example, Xiang et al. [7]
designed a general framework of discriminative least square
regression (DLSR) by introducing the e-dragging technique
for image classification and feature selection, and Zhang et
al. [11] introduced a method of retargeted LSR by learning
transformed regression. A unified least square framework [12]
is constructed to formulate many component analysis methods
and generate their regularized and kernel extensions. Thus,
LSR model has become a popular technique and also has been
widely adopted to deal with recognition and classification tasks
[13].

Another important and fundamental variant of LSR is the
problem of least absolute shrinkage and selection operator,
i.e. LASSO [14], or sparse representation problem [6], [15].
Sparse representation based classification (SRC) method [15]
has been extensively applied to addressing the face recognition
problem, and the performance is very impressive. Subse-
quently, numerous representation based classification methods
have been proposed to improve its effectiveness, robustness
and efficiency of face recognition [16]. For example, linear
regression based classification (LRC) [17] method exploits
the linear combination of each class of training samples to
represent the test sample, and then classifies the test sample to
the class which leads to the minimum representation residual.
Collaborative representation based classification method (CR-
C) [18] introduces the lo-norm regularization instead of the /;-
norm regularization for efficient face recognition. Specifically,
literature [18] demonstrates that SRC theoretically is a special
case of the collaborative representation method, and the com-
putational efficiency of CRC is dramatically higher than SRC
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without sacrificing much classification accuracies. Moreover,
locality-constrained linear coding (LLC) enforces the locality
constraints to perform a local embedding of the descriptors
[19], [20]. In addition, the representation based technique has
been introduced to a wide range of applications.

The low-rank minimization problem has attracted a lot of
attention due to its effectiveness on data representation [21].
It is worth noting that robust PCA (RPCA) [22] is one of the
most popular methods based on the low-rank minimization.
Providing that data are lying in a single subspace, RPCA
decomposes the observed data into two components, the low-
rank uncorrupted data term and sparse noise term. The low-
rank regression model [23] has been studied because of the
apparent advantage of the low-rank characteristics [22], [24],
[25]. Based on the traditional low-rank linear regression (L-
RLR) model, Cai et al. [23] proposed two low-rank regression
models, i.e. low-rank ridge regression (LRRR) and sparse low-
rank regression (SLRR) methods. Specifically, these three low-
rank regression models are equivalent to linear discriminant
analysis based regressions [23]. Furthermore, all of them are
based on the nature of the low-rank minimization, which can
capture the underlying structure of data correlation patterns
[22], [24]. Latent low-rank representation (LatLRR) [26] ex-
plores the unobserved hidden information of data, and can
robustly extract salient features from noise or corrupted data.
Subsequently, many variations of the low-rank minimization
have been applied to solve different problems [3], [27]-
[29]. For example, Li and Fu [3] proposed a supervised
regularization-based robust subspace learning method by joint-
ly removing noise term with low-rank constraint and learning
a discriminate subspace from the clean data. Wei et al. [27]
designed a method of low-rank matrix recovery method by
embedding the structure incoherence (LRSI) information for
robust face recognition. Li et al. [28] constructed a classwise
block-diagonal structure (CBDS) dictionary by imposing the
class-wise discriminative structure regularization term to make
the samples from different classes be reconstructed with d-
ifferent bases. Benefiting from recent advances on low-rank
minimization, a framework of robust regression model [2] was
proposed to solve several computer vision problems.

Nonetheless, most existing regression methods in the learn-
ing phase only focus on directly projecting the original visual
features to conventional zero-one target matrix, which pro-
vides too little freedom to fit the strict binary label matrix.
Moreover, the projection matrices learned by these methods
fail to precisely project the image features to the target fields
due to its weak discriminative capability. It is notable that
a robust and discriminative regression method should equip
with three-fold characteristics, i.e. compact projection matrix,
discriminative regression targets and robust to errors in the
data. Given these deficiencies, this paper develops a novel
elastic-net regularized linear regression (ENLR) framework,
and two robust ENLR methods, i.e. discriminative ENLR and
marginalized ENLR, are proposed to construct a robust and
compact regression model for multi-category image classifi-
cation. More specifically, the elastic-net regularization term is
accumulated to learn a more compact projection matrix, and
at the same time, enlarging the margins of different classes is

significant and beneficial to the classification tasks. Based on
the e-dragging technique, the discriminative regression targets
are further formulated to better fit regression tasks. Moreover,
marginalized regression targets are learned directly from data
by enforcing a strong constraint on the learned targets between
the true and false classes. Furthermore, instead of directly
exploiting the projection matrix for classification, the data
points under the simple linear transformation using the learned
projection matrix are employed to final classification such
that the transformed data is more discriminative and robust
to errors. In addition, the low-rank model always suffers from
heavy computational burden due to singular value decomposi-
tion procedure. To efficiently solve it, ENLR introduces an al-
ternative definition of the nuclear-norm with a strong convexity
strategy such that our method can be scalable to large data sets.
To the best of our knowledge, this is for the first time to unify
the elastic-net regularization of singular values and learning
discriminative regression targets into one framework, which is
a very simple but extraordinarily effective method for image
classification. The effectiveness of the ENLR framework is
demonstrated on different classification tasks. Therefore, the
main contributions of this paper are summarized as follows.

(1) In this paper, the elastic-net regularization of singular
values and constructing distinctive regression targets are for
the first time integrated into one unified discriminative lin-
ear regression framework. The underlying characteristics of
the elastic-net regularization of singular values are explicitly
uncovered and analyzed such that the elastic-net theory is
extended to the elastic-net regularization of singular values.

(2) By virtue of enlarging the margins of different classes,
we propose two robust elastic-net regularized linear regression
methods as well as the corresponding alternative efficient
methods. Specifically, the discriminative ENLR (DENLR)
method interpolates the e-dragging technique into the ENLR
framework, and a more flexible marginalized ENLR (MENLR)
method is developed by directly learning the marginal regres-
sion targets from data, in which a strong marginalized con-
straint is enforced to make the learned targets distinguishable.

(3) Two efficient algorithms are proposed to solve the result-
ing optimization problems, and theoretical and experimental
analysis are conducted to prove the convexity and convergence
of the designed optimization algorithms. Additionally, the the-
oretical relationships between the proposed ENLR framework
and the prevailing LSR models are revealed.

The rest of this paper is organized as follows. We briefly
introduce some related works in Section II. Then, we describe
the proposed ENLR framework and theoretical analysis in
Section III, and optimization algorithm is presented in Section
IV. Extensive experiments are reported in Section V. Finally,
the conclusion remarks and our future work are summarized
in Section VI.

II. RELATED WORK
A. Notation

The matrix is denoted by bold uppercase letters, e.g. X, and
the i-th row and j-th column element of matrix X is denoted
as X;;. Column vectors are denoted by bold lower letters, e.g.
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z. | X|% =tr(XTX) = tr(XXT) designates the Frobenius
norm of matrix X, where t¢r(e) is the trace operator. || X]|.
is the nuclear norm of the matrix X, ie. || X[, = >_, |0
where o; is the i-th singular value of matrix X. X7 denotes
the transposed matrix of X and I denotes an identity matrix.

B. Linear regression model

Linear and non-linear regression have been widely applied
to many computer vision problems, such as classification
[2], [7], [11]. Standard linear regression model for classifi-
cation is to learn a linear projection matrix in the training
stage, and uses it to project the observed image features
X = [®1, -, Tn] € R¥" approximate to the target matrix
Y = [y1, -, Yn]T € R"*¢ by minimizing

min | X*D — Y[}, (1)

where X is the given data set, D € R%*¢ is the learned
projection matrix, and Y is the corresponding binary class
indicator matrix. Specifically, y; € R€ is the label vector of
the i-th sample x;, and n and c are the number of samples and
classes, respectively. A more popular-used regularized linear
regression model is formulated by addressing the following
optimization problem

min | XTD + enb” — Y |7 + || D||%. @

The general steps of the linear regression model for image
classification task are as follows. In the training stage, we
learn the projection matrix D, and any test point is estimated
by DTz, in the test step.

C. Low-rank linear regression model

The low-rank linear regression (LRLR) model [23] is a
modified version of the standard linear regression model (1).
Compared to the conventional linear regression model, a more
compact low-rank projection is learned by enforcing the rank
minimization constraint to explore the underlying correlation
structures between classes [23], and the objective function of
LRLR is formulated as

mLi)n | XTD — Y| + Arank(D). (3)

Because of the discrete property of the rank function, which
is a non-convex non-smooth problem, a tractable optimization
problem is reformulated by replacing the rank function with
the nuclear norm regularization [32], i.e.

min | XD — Y} + A| D]l @

The nuclear norm regularization can effectively discover the
hidden structures between classes such that the learned low-
rank projection matrix is more compact and discriminative
than the traditional projection matrix. The low-rank linear
regression model is demonstrated to be equivalent to the linear
discriminant analysis based regression [23]. It is worth noting
that the low-rank linear regression models can provide better
data mining results in comparison with the existing full-rank
linear regression models [23].

III. THE PROPOSED ENLR FRAMEWORK

In this section, we focus on learning a compact and dis-
criminative regression model for robust multi-category image
classification. For linear regression model, compact projection
matrix and discriminative regression targets are both impor-
tant. We introduce an elastic-net regularization of singular
values term to formulate robust projection matrix, and the
enlarged slack regression targets are constructed to improve
its discriminant. Therefore, an elastic-net regularized linear
regression (ENLR) framework and two discriminative linear
regression methods are proposed for image classification.

A. A general framework of elastic-net regularized linear re-
gression model

To learn a compact and discriminative projection matrix,
a general framework of elastic-net regularization based linear
regression model is formulated as

. A
min o(D) + A D + 2| DI )

where \; and A, are the regularization parameters for balanc-
ing respective terms. The most straightforward regression loss
function is ¢(D) = || XTD — Y'||%. For the above objective
function (5), we have the following proposition.

Proposition 1: Objective function (5) is a robust regression
problem with an elastic-net regularization of singular values.

The singular value decomposition (SVD) factorizes the
linear transformation matrix D into

D=UxvT = Zuio'iviT, (6)
=1

where r = min{c, d} is the rank of D, u; € R¢ and v; € R°
are respectively the left and right singular vectors of D, and
o; is the i-th singular value of matrix D.

It is notable that the nuclear norm of matrix D can be
interpreted as a sum of the singular values, ie. |D|, =
37 |o;|, and the Frobenius norm of matrix D is || D% =
tr(DDT) = trUEVTVIUT) = tr(2?) = 3, |oi%
Thus, by integrating the nuclear norm and the Frobenius norm
penalties of matrix D, we have the elastic-net regularization of
singular values term, i.e. | D+ | D||F = >, los|+ >, ||

Typically, the large singular values always highlight the
components where the fundamental information lies. It is
interesting to note that the singular values can directly reflect
the importance of underlying components of data. For exam-
ple, smaller singular values always come from the redundant
or noise-contaminated components when the data contains
redundant information or noise. It seems natural to use the
measurement of singular values to analyze data. Based on
these observations, the elastic-net regularization of singular
values provides an advisable approach to removing the redun-
dant components based on the following proposition.

Proposition 2: The elastic-net regularization of singular
values can effectively enable automatic grouped variable s-
election of principal components and continuous shrinkage of
redundant components.
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Based on Proposition 1, we know that the elastic-net reg-
ularization of singular values is composed of the lo-norm
and [;-norm regularization of singular values. It is known
that the lo-norm regularization of singular values tends to
shrink a variable towards zero but generally keeps all the
components in the model, which may lead to redundant
information in predictors. However, this deficiency of the [-
norm regularization fortunately generates the grouping charac-
teristic in the model-fitting procedure. On the contrary, the /;-
norm regularization of singular values can produce automatic
selection of principal information and continuous shrinkage
of redundant information simultaneously [14]. However, one
significant limitation of the /;-norm regularization is that when
the correlations among a group of variables are very high, it
tends to select only one variable from the group, but neglects
the remaining ones, which may lead to sub-optimal results.
The feasible way of overcoming this deficiency is to regard the
highly-correlated group as a whole to make variable selection,
i.e. grouped variable selection. Therefore, it is reasonable to
mix the lo-norm and /;-norm regularization of singular values,
yielding the elastic-net regularization of singular values, which
can effectively enable automatic grouped variable selection of
principal components and continuous elimination of depen-
dencies and redundancies in data. In this way, the proposed
ENLR framework is a succinct and stable linear regression
formulation.

Furthermore, given optimal regression D, we will project
x to the target space (e.g. label space) by

,r.’
D'z = Zai(uiTas)vi, (7
i=1

where 7 is the number of selected singular values. Herein the
target space can be viewed as a weighted linear combination
of target-component vectors {v;}!_;, and the i-th weight
is composed of two terms, i.e. the ¢-th singular value o,
and transformed feature value uiT:n, which is determined by
the feature-component vectors {u;}/_,. We can see that the
optimized selection of singular values can generate the optimal
feature-component and target-component vectors such that the
importance of the feature correlations and target correlations

is simultaneously uncovered.

Moreover, the elastic-net regularization of features has
shown its great superiorities in comparison with the ridge
regularization [18] and LASSO [14] in many applications
such as feature selection [33] and matrix factorization [30].
However, the elastic-net regularization of features can not
effectively capture and mine the subtle information from data,
whereas exploiting the elastic-net regularization of singular
values can attain a more compact and distinctive projection
matrix, which improves the performances of linear regression
models. Based on the elastic-net regularized linear regression
framework in Eq. (5), two robust elastic-net regularized linear
regression methods are proposed, i.e. discriminative elastic-
net regularized linear regression (DENLR) and marginalized
elastic-net regularized linear regression (MENLR).

B. Discriminative Elastic-net Regularized Linear Regression

To enhance the discriminative capability of regression re-
sults, the e-dragging technique is introduced to transform
the strict zero-one regression targets into the disjunctive but
discriminative ones such that the regression model is more
robust. Due to the weak separability of the strict binary
regression targets in (1), the e-dragging technique enforces the
regression targets of different classes moving along mutual
opposite directions such that the margins between different
classes are enlarged and more discriminative regression targets
are achieved.

We take an example to introduce the rationale of the
e-dragging technique and demonstrate that the reformulated
regression targets are more discriminative than Y. Let zi,
T9, T3 be three training samples, which are respectively
from the third, first and second classes, and then the

corresponding binary-class label matrix is defined as
0 0 1

Y =|1 0 0| € R3>3, However, we expect that the
01 0

strict binary regression target matrix can be relaxed into
some soft extent to fit the data. To this end, a slack variable
matrix is constructed by using the e-dragging technique,
which drags these binary outputs far way along different
directions. More specifically, if we take the above three
samples as an example, the regression target matrix is defined

_ —miy —miz 14+ mig
as Y = 1+ mo1 —MmMa2 —MmMa3 , S.T. My > 0.
—mg1 1+ m3z —ma3

Apparently, the distance of each sample in matrix Y is v/2,
while the distance between each sample in Y is bigger than or
equal to /2 owing to the nonnegative constraint of parameter
ms. For example, the first and second sample in Y is

\/(—mn —1—m91)? 4+ (—m12 + ma2)? + (1 + my3 + ma3)
> V2. It is easy to see that the margins of the different
classes are enlarged.

By introducing the e-dragging technique, a discriminative
elastic-net regularized linear regression (DENLR) model is
developed, and its objective function is formulated as

. A
min¢(D) + M| D« + Dl ®)

where ¢(D) = |XTD — Y||% and Y is the relaxed
regression target matrix.

To obtain an optimal Y, an elaborate strategy is devised as
follows. Let E be a constant matrix, and the ¢-th row and j-th
column entry is defined as

1 if
Eij_{—1 if

and then, we have Y=Y+Eo M, where M € R"*¢
is a learned nonnegative matrix. Thus, the proposed DENLR
model (8) is rewritten as the following optimization problem:

Y, =1

min [ XTD — (Y + E© M) + M| D]
’ Ay (10)
+?||D||’fm st. M >0.

1057-7149 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2017.2651396, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING, JAN. 2017

C. Marginalized Elastic-net Regularized Linear Regression

From problem (10), we can see that the relaxed target space
of DENLR is subject to the bound that the regression results
should be larger than 1 for true classes and smaller than O for
false classes. However, this target space is still based on the
zero-one label matrix Y, which greatly confines the flexibility
of the regression model. To this end, we propose to directly
learn the regression targets from data, and a marginalized con-
straint is enforced to make the learned targets distinguishable.
We consider the following marginalized elastic-net regularized
linear regression (MENLR) problem:

A
. TH _ P2 A2 2
min [ X°D — Bl + A D]l + 5 |Dllr

(1)
st. Ty, —maxry; > Ci=1,---,n,
J#Yi
where R = [r1, -+ ,7,]T € R"X¢ is the learned regression

targets, and C' is a constant. Herein y; denotes the index of
the true class for the ¢-th sample x;. That is, if the ¢-th sample
is from the m-th class (i.e. y;=m), the value of the m-th
element of the learned target vector 7;, i.e. 7;,,, should be
bigger than the rest of the elements by a fixed margin of
C. Similar to SVM [43], we simply set the marginal value
between the true and the false classes to 1, ie. C = 1.
Apparently, the marginalized constraint makes the learned
regression targets between the true and false classes separable
by a fixed distance such that the proposed MENLR is more
flexible and discriminative.

D. Efficient ENLR

For large-scale image classification tasks, the computation
complexity of the designed model should be seriously taken
into consideration. Thus, the following theorem [34] can make
our models appropriate for practical applications.

Theorem 1. For any matrix D, we have the following equa-
tion:
. o1
ID|l. = jmin_ | Allp|Blr= min >(lAl} -+ |B]3).
(12)

Proof. For better flow of the paper, we move the proof of
Theorem 1 to Appendix A. O

Based on the Theorem 1, we make an equivalent represen-
tation of DENLR as

A
A T 2 1 2
min (| X D—(Y—i—E@M)HF—i-f2 (1 All%

(13)
A
+HBI}) + FIDIE st. D=AB, M >0,
and MENLR is rewritten as
. A1
min XD - R|% + 7(||A||% +Bll%)
’ (14)

A
+2|D|3 sit. D= AB,ry, —maxry > C.
2 J#Yi

IV. OPTIMIZATION AND ALGORITHM ANALYSIS

In this section, we present two efficient and effective opti-
mization algorithms to solve (13) and (14). In general, the two
optimization problems with the low-rank constraint D = AB
are both non-convex and non-smooth problems. Fortunately,
ALM provides a preferable way to find minimum points of
such optimization problems with equality constraints as (13)
and (14). To obtain efficient solutions, we utilize the ALM
strategy to optimize the resulting problems in an alternative
minimization manner, i.e. minimizing the loss with respect to
one variable when fixing the rest variables [35].

A. Optimization of DENLR

The ALM strategy solves the problems by alternatively
minimizing the augmented Lagrangian of the original prob-
lems and maximizing the dual problems. Here the augmented
Lagrangian function of problem (13) is

A
L(D.M,A B,C\)=|X"D (Y +Eo M)|} + DI}

A
+ 514l + |BI}) + (C1.D - AB) + £ | D - AB|}.,
15)
where (P,Q)=tr(PTQ), C; is a Lagrange multiplier and
1 > 0 is a penalty parameter. The minimum points of £ with
respect to primal variables can be found via the block coor-
dinate descend (BCD) method. The augmented Lagrangian is
minimized along one coordinate direction at each iteration. We
expand this procedure in more details.
Updating A: Fix the other variables and update A by
solving the following problem.

A
A* —argmin || A} + < C1,D — AB > +§||D _ ABJ|%

—argmin 214} + 41D - 4B+ 3,
A 2 2

(16)
where the rest terms irrelevant to A in £ are viewed as con-
stants and ignored in the loss since they make no differences
in this particular procedure. The resulting problem (16) is a
typical regularized least square problem, hence its solution is
easily obtained as

AT = (Cy +pD)B"(\MI+pBB")". (17)

Updating B: The variable B plays a symmetric role to

that of A in £, hence the updating of B is performed in
a symmetric way:

A
B* —argmin 2| B|} + (C1. D — AB)+ 2| D - ABJ},

o . /\1 2 I Cl 2
=argmin 7| Bl + 5| D ~ AB + ~ |7
(18)
Similarly,
BT = (\MI+puATA)LAT(Cy + D). (19)
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Algorithm 1. Optimization of DENLR by Exact ALM

Require: Feature Matrix X; Label Matrix Y'; Constant matrix
E; Parameters A1, As.
Initialization: M = 0, D € R4%¢, A € RI*", B € RTXc,
Cip e RIXC X1 >0, A0 >0, > 0.
While not converged do
While not converged do
Step 1. Update A by solving problem (16);
Step 2. Update B by solving problem (18);
Step 3. Update D by solving problem (20);
Step 4. Update M by solving problem (22);
End While
Step 5. Update the Lagrange multipliers C by
C1 =Ci+ u(D — AB).
End While
Output: Projection matrix D

Updating D: Fix the other variables and update D by
solving the following problem.

. A2
D* = argmin| XD — 8|3 + 2| D|}3

+(C1,D — AB) + 5D - AB|}}

. T 2 A2 2 (20)
= argmin|| X~ D — S|z + | Dl
H Ci 2
—||D - AB + —
+5 + R
where S =Y + E ® M. By setting the derivative g—lg =0,

we can infer the optimal solution of D as
DT = (2X X" 4 Mol 4 puI) ' (2XS + uAB — C,). (1)

Updating M': Fix the other variables and update M by
solving the following problem.

Mt = argmin [T — E © M|% st M>0, (22)
where T = X7 D — Y. Considering that the squared Frobe-
nius norm of matrix can be optimized element by element,
and problem (22) can be divided into n x ¢ subproblems. For
the 4-th row and j-th column entry of M, i.e. M;;, we have
the following subproblem:

(Ej - EijMij)z s.t Mij Z 0. (23)

Based on the result from [7], the optimal solution of M;; is

Mij = maX(EijTij, 0) (24)

Therefore, the compact form of the optimal solution of prob-
lem (22) is formulated as

Mt =max(E®T,0). (25)

With the block coordinate descend procedures (17), (19),
(21) and (25) recursively repeated, the asymptotic point
(A,B,D, M) converges to a minimum point of £ with
respect to those variables, which is guaranteed by the theorem
as follows.

Theorem 2. Given X, Ci, and E defined as (9), suppose
{(A¥, B*, D* M*)} is a sequence generated recursively via
the process (17), (19), (21) and (25), and then every limit point

of {(A*, B* D¥ M¥)} is a minimum point of the augmented
Lagrangian L(A, B, D, M, C).

Proof. It can be easily verified that the loss function
L(A,B,D,M,C,) is continuously differentiable with re-
spect to A, B, D, M respectively, and in every subproblems
of (16), (18), (20), and (22), the minimum point is uniquely
obtained, according to the Proposition 2.7.1 in [36], every limit
point of the sequence is a minimum point of L. O

We iteratively optimize all the variables until the conver-
gence condition is satisfied. To more clearly show the main
procedures, the detailed algorithm of our optimization process
of DENLR is outlined in Algorithm 1.

B. Optimization of MENLR

It is easy to find that optimization of MENLR is very similar
to the optimization procedures of DENLR, except for deducing
the regression targets matrix R. By ignoring the constant terms
independent of R, minimizing (14) becomes the following
optimization problem:

min |H — R||% s.t. Tiy, —maxry; > Li=1,--- ,n, (26)
R ' J#Yi

where H=XTD € R"*¢. Because problem (26) is a con-
strained quadratic programming problem, it can be decom-
posed into n independent subproblems. Suppose that the i-th
sample x; is from the mth-class, and then the i-th subproblem
of (26) is

min ||h; — fri||2 8.t Ty —maxr; > 1, 27
T JjF#EmM

where r; € R and h; € R° are the i-th row of R and H,
respectively. It should be noted that || h; —7;||? = 25:1 (hij—
r;;)%. To optimize problem (27), we introduce an auxiliary
variable ¢ € R¢, and for the j-th entry, ¢; = r;; +1 — 74,
where ¢; < 0 indicates the optimal target, otherwise a
unsatisfactory target. Assume that the optimal target for the
true class 7;, can be obtained by a modification of the
regression result h;y,, i.e. 7, = hin,+(, where ( is a learning
parameter. For the false class Vj # m, we need 7, —r;; > 1,
and then the j-th subproblem of (27) is

min(hij — Tij)g st. hjm + ¢ — i > 1,Vj # m, (28)
Tij

which is a very simple quadratic programming problem. In
this way, the optimal solution is 7;; = h;; + min(¢ — ¢;,0),
and the optimal solution of problem (28) is achieved by

_{hz‘j+C7 if j=m,
'I"ij—

hi; + min(¢ — ¢;), otherwise.

By substituting (29) into problem (27), we can obtain the
following optimization problem:

argmin 6(C) = ¢* + 3 (min(C — ¢;))”,

Jj#Em

and its first-order derivation ¢'(¢) = 2(¢ + 324, min(¢ —
s;)). By setting ¢’({) = 0, we can achieve the optimal value
of learning factor ( as

(- > jzm Pill(d ;) > 0)
14 Y pil(¢ (p)) > 0)

(29)

(30)

€1y
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Algorithm 2. Solving Problem (27)

Input: r = [rq,--- ,'rc]T € RC, the true class index m.
Initialization: Vj, o; = hij + 1 — hypy, ( =0, iter = 0.
for j # m do

if 9/ () > 0 then ¢ = ¢ + ;, iter = iter + 1 end
end
Define ¢ = {/(1 + iter), and then update 7; by Eqn.(29).
Output: Marginalized target vector r;.

Algorithm 3. Optimization of MENLR by Exact ALM

Require: Feature Matrix X ; Label Matrix Y'; Parameters A1, A2.
Initialization: T =Y, D € R¥%¢, A € R¥*X" B € R7x¢,
A1 >0, A2 >0, Cp € R¥¥e, > 0.
While not converged do
While not converged do
Step 1. Update A by using (17);
Step 2. Update B by using (19);
Step 3. Update D by using (32);
Step 4. Update R row-by-row by using Algorithm 2;
End While
Step 5. Update the Lagrange multipliers C1 by
Ci =Ci1+ u(D — AB).
End While
Output: Projection matrix D

where TI(-) is the indicator operator. The detailed process of
learning the optimal solution of the i-th row of R is given in
Algorithm 2. The optimal solution of D is computed as

Dt = (2XXT 4+ Mol +pI) ' (2XR+ nAB — C)). (32)

In addition, the optimal solutions of A and B are the same
as the optimization of DENLR. The detailed procedures of
learning the optimal solutions of MENLR are summarized in
Algorithm 3. Similarly, because optimization of R is a convex
constrained quadratic programming problem, the following
theorem is doubtlessly guaranteed.

Theorem 3. Suppose {(D*, R*, A* B*)} is a sequence
generated recursively via (32), iterative Algorithm 2, (17),
and (19), and then every limit point of {(D*, RF, A* B*)}
is a minimum point of the augmented Lagrangian
L£(D,R,A,B,C,) of MENLR.

Proof. The proof of Theorem 3 is similar to that of Theorem
2. O

C. Classification

When the resulting problems of DENLR and MENLR are
solved, the compact and discriminant projection matrix D is
obtained. Then, we exploit projection matrix D to make linear
transformations of both training and test samples. Finally, we
employ a simple nearest neighbor (1-NN) classifier to perform
multi-category image classificaton. The complete procedures
of our classification model are summarized in Algorithm 4.

D. Algorithm Analysis and Computation Complexity

It is worth noting that our ENLR framework is a generalized
but robust extension of the conventional LSR and low-rank
linear regression models. The following proposition shows the

Algorithm 4. Classification

Input: Training feature set X with label vectors Y, test sample
set Z C X,
Output: Predicted label matrix Lz for test samples.
Step 1. Normalize all the samples of both training and test
samples to unit-norm by using @; = @;/||x;]2.
Step 2. Transform the training sample matrix X to the centering
matrix by subtracting its mean value.
Step 3. Exploit Algorithm 1 or Algorithm 3 to obtain an optimal
projection matrix D is obtained.
Step 4. Project X and Z onto D by
X=XT"D,Z=2"D
Step 5. Predict the label matrix Lz of test samples Z
by utilizing the nearest neighbor (NN) classifier.

close relationship between our proposed DENLR and MENLR
methods and the LSR and LRLR methods.

Proposition 3: The proposed ENLR framework is a gener-
alized but robust linear regression model, and both of LSR
and LRLR are the special cases of the proposed DENLR and
MENLR methods.

Proof. For model (13), when A\;y = 0, Ay = 0 and M =
0, x¢, it will degenerate to the conventional LSR model (1).
Moreover, if we set Ay = 0 and M = 0,,«., it will become
the regularized LSR model (2), where the e,bT term can be
absorbed into the X T D term. Furthermore, if we set Ao = 0
and M = 0,,x., our DENLR model will degenerate to the
LRLR model (4). So both of the LSR and LRLR models are
the special cases of the proposed DENLR model, which is a
general framework of linear regression. Similarly, we can find
that the proposed MENLR method (14) is also a generalized
version of the LSR and LRLR models.

More importantly, our DENLR and MENLR methods en-
large the margins of different classes by introducing the e-
dragging technique and enforcing the marginalized constraint,
respectively. In this way, the regression targets are more
reliable to fit the regression tasks such that the proposed
methods are more discriminative and robust in comparison
with existing linear regression models. Therefore, our methods
can be viewed as a generalized discriminative framework of
linear regression, and it can also be simply extended to other
regression models.

Therefore, our ENLR framework not only intrinsically
generalizes the previous LSR and LRLR models, but also
extends the existing linear regression model to more robust
and discriminative cases by seamlessly incorporating the slack
and feasible regression targets. O

The overall computation complexity of our DENLR method
mainly depends on the complexity of Algorithm 1. In Al-
gorithm 1, the main computation load is mainly consumed
on steps 1-4. The computational complexity of steps 1 and
2 is O(dcr) where d is the dimensionality of the samples,
c is the number of classes, and r is the rank of matrix D.
Note that calculating D will scale in about O(2d?nc + d)
due to the matrix inverse calculation, and computing M costs
O(nc). So the total computational complexity of DENLR is
O(2d?nc + 2der + d). Similarly, the only difference between
DENLR and MENLR is the calculation of R, of which the
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complexity is O(nc). Therefore, the runtime complexity of
MENLR is also O(2d?nc + 2dcr + d) in each iteration.

E. Convergence Analysis

We present a convergence results of the proposed Algorithm
1 and 3. First, it is worth noting that both of algorithms
DENLR and MENLR have optimal solutions, and values of
the objective functions are bounded. Although it is difficult
to obtain a strong convergence property of the proposed
algorithms, the empirical results suggest their strong conver-
gence properties. Nevertheless we present a week convergence
property of the proposed algorithm.

Theorem 4. For DENLR, denote (D*, M* A* B* C¥) as
Wk and suppose {W*} is a sequence generated via the
Algorithm 1. Given X, and E defined as (9), if the sequence
is bounded, and

lim {@F - wF} =0,

k— 400

(33)

then every limit point of {¥*} is a Karush-Kuhn-Tucker point
of the problem (13).

Proof. The detailed proof of the Theorem 4 is moved to
Appendix B for better flow of the paper. O

Similarly, the convergence nature of MENLR is also easily
demonstrated by the following theorem.

Theorem 5. For MENLR, denote (D*, R¥, A¥, B* C¥) as

&%, and suppose {®F} is a sequence generated via the

Algorithm 3. Given X, if the sequence is bounded, and
lim {®"T! — &%} =0,

k——4o00

(34)

then every limit point of {®*} is a Karush-Kuhn-Tucker point
of the problem (14).

Proof. The proof of Theorem 5 is similar to Theorem 4. [

Although each exact minimum of the augmented La-
grangian of the Algorithms 1 and 3 guarantees a sound
convergence property, it is impractical to obtain an exact
solution in each iteration. The inner loop of BCD embedded in
the main loop of ALM is time consuming. It is very common
to boost up the computation time of ALM via inexact solution
of the subproblems. Precision in each iteration is favored
but not indispensable. In many cases the convergence of a
recessive method could be preserved within a mild loss of
precision in subproblems. Hence in this paper we speed up
the Algorithm 1 and 3 by quitting the inner loop of BCD
after one iteration. As a result the convergence issue may be
questioned, but we empirically show in Section V-E that the
convergence of the resulting inexact ALM is well preserved.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our proposed
methods on publicly available databases, and compare them
with currently popular linear regression methods for different
classification tasks, i.e. face recognition, objection recognition
and scene categories recognition. All the experiments are run

10 times with random data splits of training and test samples,
and then the average classification results are reported on
different datasets. We test our proposed methods on six public
databases for three main tasks. Specifically, the performance
of face recognition task is evaluated on four face databases:
Extended YaleB [37], CMU PIE [38], AR [39], LFW [40].
Object recognition and scene recognition are performed on
COIL-100 [41] and fifteen scene categories databases [42],
respectively. It is worth pointing out that these databases
are commonly used in multi-category image recognition and
the existing methods have achieved decent results. Thus,
challenging recognition results are convincing enough to verify
the superiority of our methods, and a number of related state-
of-the-art classification methods are enumerated as follows.

1) SRC [15]: Tt is to learn sparse representation based
regression model with the /;-norm regularization. Both
reconstruction error and sparse codes are employed for
classification.

2) LLC [19]: It is to learn a locality constrained regres-
sion model for large scale image classification. Locality-
constrained codes are used for classification.

3) CRC [18]: It is to learn a linear regression model by using
all the training samples with the [5-norm regularization.
Both reconstruction error and collaborative representation
codes are used for classification.

4) LRC [17]: Tt is to learn a linear regression model by using
each class of training samples with the l5-norm regu-
larization. Similar to CRC, the reconstruction error and
learned representation codes are used for classification.

5) LRLR [23]: It is to learn a low-rank regression model by
introducing the low-rank (nuclear norm) regularization.
The learned projection matrix is used for classification.

6) LRRR [23]: It is to learn a low-rank ridge regression
model by adding a Frobenius norm regularization on
linear regression loss. Similar to LRLR, the learned
projection matrix is used for classification.

7) SLRR [23]: It is to learn a sparse low-rank regression
for feature section by imposing sparsity constraint on the
low-rank regression loss. The low-rank projection matrix
and selected features are used for classification.

8) RPCA [22], [27]: It is to learn clean images by de-
composing a data matrix into low-rank term and sparse
noise term, and then SRC on the clean data is used for
classification.

9) LatLRR [26]: It is to learn salient features from the
original dataset, and then linear regression model (2) is
used to learn projection matrix. Subsequently, the linear
transformation of the salient features obtained by using
the learned projection matrix is employed for classifica-
tion.

10) LRSI [27]: It is to learn a low-rank structured incoherence
dictionary with shared features, and then the SRC method
on the learned dictionary is used for classification.

CBDS [28]: It is to learn the data representation of
training samples, test samples and dictionary with class-
wise block-diagonal structure by imposing the low-rank
regularization, and then the learned representation is used

11)
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for classification.

12) DLSR [7]: It is to learn a discriminative LSR model

by enlarging the distance between different classes in

regression targets. The learned projection matrix are used
for classification.

SVM [43]: Tt is to utilize support vector machine with

Gaussian kernel on raw image features for classification.

We use the LibSVM software [43]. Note that there exists

an important regularization parameter C' in SVM. A cross

validation approach is utilized to select it from the range

of [0.001,0.01, 1.0, 10.0, 100.0]. Actually, SVM is also a

popular derivation of LSR model.

14) DENLR: The proposed model is to learn a compact
and discriminative regression model by imposing the
elastic-net regularization and enlarging the margin of the
regression targets. The objective function is Eqn. (13). To
justify the effectiveness of the e-dragging technique, we
remove the e-dragging term, i.e. £ © M, from Eqn.(13),
and denote it as ENLR* in the experiments.

15) MENLR: The proposed model is to learn a marginal-
ized regression model by embedding the marginalized
constraint of the regression targets into the elastic-net
regularized framework, which is presented in Eqn. (14).

13)

For fair comparison, we directly use the Matlab codes from
the corresponding authors with the optimal parameter settings,
or directly cite the experimental results from their original pa-
pers. Specifically, to guarantee the same experimental settings
between all the compared methods and our methods on each
benchmark, we re-implemented all the methods using opti-
mal parameters via tenfold cross validation, and the training
and test samples were randomly selected from each dataset.
Moreover, the experimental settings on scene recognition is the
same as that of the LC-KSVD [42] method, and we directly
cite some experimental results from the original paper. For the
compared methods that are not included in [42], we rerun them
following the same experimental settings in [42]. Therefore,
all the methods presented in our paper are performed for each
dataset on the same testbed such that our experimental results
are convincing and reliable.

A. Face Recognition Evaluation

In this section, we evaluate the performances of our method
for face recognition on four face databases.

The Extended YaleB Database: The extended YaleB
database contains 2414 front face images of 38 individuals
and each subject has around 64 near frontal images under
different illuminations. We randomly select 15, 20, 25, 30
images per subject for training, and the rest for testing. For all
the compared methods, we exploit the suggested parameters
in their papers for classification. The number of neighbors of
LLC algorithm is set to fifteen, which is suggested as the best
parameter for this dataset. Each image in this database for our
experiments has been simply resized to 32x32 pixels. The
classification accuracies of different methods on this database
are summarized in Table I. Note that the mean classification
accuracy and corresponding standard deviation (acctstd) are
reported, and the bold numbers suggest the best classification

TABLE I: Classification accuracies (mean =+ std %) of dif-
ferent methods with different numbers of training samples on
the Extended YaleB database. The bold numbers are the best
classification accuracy.

[ Alg. ] 15 [ 20 [ 25 [ 30 |
LLC 88.63+0.31 | 91.5240.48 | 94.20+0.58 | 95.21£0.35
LRC 89.47+1.16 | 92.05+0.99 | 93.501+0.67 | 94.62+0.66
CRC 91.39£1.35 | 94.26+1.27 | 9591£0.90 | 97.04+0.72
SRC 91.72+0.48 | 93.71£0.69 | 95.56+0.36 | 96.37£0.45

LRLR 82.05+0.98 | 83.81+1.53 | 85.03+1.00 | 85.29+1.00
LRRR 82.37+1.24 | 83.65+0.78 | 85.46+0.93 | 86.01+0.94
SLRR 82.32+1.03 | 84.25+0.70 | 85.16%+1.12 | 85.84+1.20
DLSR 92.37+0.73 | 94.78+0.71 | 95.84+0.42 | 96.97+0.43
RPCA 90.52+£0.44 | 93.524+0.61 | 95.41£0.36 | 96.68+0.46
LatLRR | 90.924+1.32 | 92.924+0.92 | 93.81+0.78 | 95.13+0.83
LRSI 92.71£0.58 | 94.26+0.33 | 96.16£0.55 | 96.98+0.45
CBDS 93.13£1.39 | 95.89+1.07 | 96.46£0.83 | 97.44+0.74
SVM 89.35+1.24 | 92.744+0.87 | 95.07+0.57 | 96.20+0.46
ENLR* | 92.184+0.89 | 94.284+0.62 | 95.70+0.61 | 96.80+0.48
DENLR | 94.344+1.05 | 96.66+0.56 | 97.70+0.57 | 98.51£0.45
MENLR | 94.76+0.62 | 97.2740.62 | 97.68+0.65 | 98.74+0.48

TABLE II: p-values between the proposed DENLR and
MENLR methods and other methods on the Extended YaleB
database.

DENLR MENLR
Alg. 15 [ 75 15 [ 75
LLC 2.09x10~10 [ 2.95x10712 | 3.48x10~12 | 1.50x10~11
LRC 435x1079 | 2.05x10713 | 541x10~11 | 1.09%x10~12
CRC 3.55x10~2 6.53x106 1.46x10—6 2.15x10~°
SRC 3.55%107% | 2.09%x10~12 | 3.83x10~10 | 1.08x10~10
LRLR | 4.95x10716 | 2.09x10719 | 6.61x10~18 | 4.93x10~19
LRRR | 4.55x10717 | 1.54x10719 | 8.67x10~20 | 4.33x10—19
SLRR | 4.64x10716 | 1.09x10~17 | 45110718 | 2.03x10~17
DLSR 2.42x10~% 1.33x10~9 6.22x10~7 278108
RPCA | 6.56x10712 | 2.50x10~7 | 2.09x10~10 | 7.64x10~7
LatLRR | 4.76x10=6 | 1.75x10~11 | 1.33x10~7 | 6.01x10~ 11
LRSI 447x10~4 2.51x10~7 1.60x10~6 1.86x10~6
CBDS 0.0412 6.87x10~4 3.3x1073 23%x1073
SVM 1.38x1078 | 5.02x10~11 | 3.16x10~19 | 4.39x10—10

accuracies. From Table I, it is clear to see that our method
can consistently achieve the best classification accuracies with
varying number of training samples. Moreover, we can see that
if we remove the relax term of the regression target matrix,
the performance of ENLR* is obviously better than other LSR
methods, such as LRC, SRC, LRLR, LRRR and SLRR. This
also reflects the fact that the elastic-net regularization term
can lead to a more compact projection matrix such that higher
classification accuracies can be achieved. Moreover, DENLR
and MENLR can achieve the best classification accuracies in
comparison with all the compared algorithms.

In addition, we conducted a statistical significance test for
the results summarized in Table I to judge the significant
improvements of the developed models in comparison with
the state-of-the-art regression methods. The significance level,
i.e. p-value, is typically set to 0.05, which means that if the
significance evaluation is lower than this level, the perfor-
mance difference between the evaluated methods is statistically
significant. The p-values between the proposed DENLR and
MENLR methods and the compared methods are shown in
Table II, when the number of training samples for each subject
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TABLE III: Classification accuracies (mean=+std %) of differ-
ent methods with different numbers of training samples on the
CMU PIE database.

TABLE 1V: Classification accuracies (mean4dstd %) of differ-
ent methods with different numbers of training samples on the
AR database.

[ Alg. ] 15 20 25 30 [ Alg. ] 8 11 14 17 |
LLC 84.621+0.57 | 90.90+0.25 | 93.274+0.36 | 94.46+0.41 LLC 54.26+1.27 | 60.87£0.91 | 66.88£1.03 | 71.58£1.32
LRC 85.614+0.62 | 90.174 0.52 | 92.654+0.38 | 94.014+0.22 LRC 63.87+1.42 | 76.87£1.13 | 85.20£1.00 | 90.88+0.97
CRC 89.76+0.59 | 92.42+0.29 | 93.804+0.29 | 94.61+£0.12 CRC 86.53+1.07 | 91.66+0.77 | 94.06+0.77 | 95.74+0.76
SRC 88.97+0.66 | 91.144+0.39 | 92.62+0.38 | 93.71+0.18 SRC 84.08+0.98 | 89.45+0.74 | 92.20+£1.19 | 95.14+0.67
LRLR 83.70+0.57 | 85.73£0.58 | 86.80+0.45 | 87.62+0.48 LRLR 76.75+1.37 | 88.93+0.86 | 93.024+0.63 | 94.92+0.68
LRRR 83.88+0.69 | 85.78+0.61 86.79+0.58 | 87.59+0.47 LRRR 91.40£0.71 | 93.824+0.70 | 95.42+0.48 | 96.47+0.70
SLRR 83.694+0.64 | 85.85+0.50 | 86.77+0.61 | 87.58+0.47 SLRR 90.02+0.76 | 93.70+0.55 | 95.15+0.70 | 96.04£0.49
DLSR 90.73£0.50 | 92.53+0.45 | 93.68+0.29 | 94.47+0.29 DLSR 89.561+0.68 | 93.65+0.67 | 94.36+0.62 | 95.18+0.46
RPCA 84.26+0.41 88.24+0.32 | 91.06%£0.12 | 92.26+0.22 RPCA 77.32+£1.43 | 84.39+1.33 | 88.82£0.90 | 92.62+0.77

LatLRR | 84.2610.41 88.244+0.32 | 91.061+0.12 | 92.264+0.22 LatLRR | 88.424+0.76 | 92.13+1.06 | 95.961+0.70 | 97.13+0.80
LRSI 87.56£0.58 | 90.60£0.36 | 93.254+0.61 | 94.52+0.54 LRSI 78.78£1.02 | 85.93+1.01 | 89.92+0.76 | 93.17+0.97
CBDS 88.58+0.65 | 91.504+0.42 | 93.41+0.46 | 94.53+0.37 CBDS 88.65+0.73 | 92.924+0.69 | 95.17+0.60 | 96.63+0.63
SVM 86.661+0.75 | 90.704+0.63 | 92.664+0.53 | 93.061+0.35 SVM 75.74£1.60 | 86.194+1.02 | 91.9940.70 | 95.084+0.91

ENLR* | 90.4740.53 | 92.824+0.45 | 93.944+0.45 | 94.671+0.26 ENLR* | 90.4240.87 | 93.8040.83 | 95.4140.68 | 96.311+0.56

DENLR | 92.25+0.49 | 94.06+0.41 95.61£0.31 | 95.85+0.09 DENLR | 91.944+0.80 | 95.69+0.70 | 97.30+0.62 | 98.21+0.54

MENLR | 93.21+0.44 | 94.88+0.29 | 95.74+0.23 | 96.18+0.15 MENLR | 92.61+0.64 | 95.63+0.75 | 97.16£0.59 | 98.56+0.61

is set to 15 and 25. We can see that the performance differences
between our methods and all the compared methods are
statistically significant, which also improves the effectiveness
of our methods.

The CMU PIE Database: The CMU PIE face database
contains 41,368 face images from 68 subjects as a whole. The
images under five near frontal poses (C05, C07, C09, C27
and C29) are used in our experiment. We randomly select 15,
20, 25, 30 images from each subject as training samples and
the remaining images as test samples. The classification rates
using different methods are summarized in Table III. We can
see that our methods DENLR and MENLR always outperform
the compared methods in different cases, and the performance
of ENLR¥* in most cases is better than or competitive with all
the compared methods.

The AR Database: The AR face database contains about
4,000 color face images of 126 subject, which consist of the
frontal faces with different facial expressions, illuminations
and disguises. In this experiment, we select a subset including
2600 images from 50 female and 50 male subjects. We
randomly select 8, 11, 14, 17 images for each subject as
training samples and the rest of images as test samples.
Following the implementation in [44], each image is project-
ed onto a 540-dimensional feature vector with a randomly
generated matrix from a zero-mean normal distribution. The
experimental results obtained by using different classification
methods are shown in Table IV. Apparently, our methods in
most cases achieve the best classification results, which also
verify that the proposed regression models outperform all the
other regression models under different training conditions.

The LFW Database: The Labeled Faces in the Wild (LFW)
face database is designed for the study of unconstrained
identity verification and face recognition. It contains more
than 13,000 face images from 1680 subject pictured under the
unconstrained conditions. In this experiment, we use a subset
including 1251 images from 86 peoples and each subject has
only 10-20 images [45]. Each image was manually cropped
and resized to 32 x 32 pixels. We randomly choose 5, 6,
7, 8 images of each subject as training samples, and the

TABLE V: Classification accuracies (mean+tstd %) of differ-
ent methods with different numbers of training samples on the
LFW database.

[ Alg. ] 5 6 7 8 |
LLC 27.424+1.42 | 29.50+1.59 | 31.06£1.25 | 31.90£0.80
LRC 29.88+£1.58 | 33.13+1.76 | 35.42£1.79 | 37.23+1.86
CRC 29.54+1.16 | 31.72+1.22 | 32.86+£1.36 | 33.81£1.32
SRC 29.03+1.57 | 32.21+£1.53 | 33.36+£2.00 | 36.21+£2.54

LRLR 29.88+£1.02 | 30.184+0.74 | 34.45£1.63 | 35.16%+2.17
LRRR 30.58+1.39 | 32.83+1.74 | 34.80£1.33 | 36.48£1.77
SLRR 30.72+1.23 | 33.02+1.53 | 35.32+1.41 | 36.40£1.69
DLSR 31.22+0.83 | 33.81%+1.53 | 35.87£1.60 | 37.02+1.58
RPCA 29.82+1.59 | 32.52+1.36 | 34.45+£1.63 | 36.27£1.43
LatLRR | 29.96+1.06 | 33.22+1.85 | 35.30%+1.90 | 37.12£1.65
LRSI 29.51£1.91 | 32.16+1.34 | 34.62£1.49 | 36.61+1.65
CBDS 31.13+1.44 | 32.83+1.46 | 34.30+£1.52 | 36.30£1.82
SVM 29.66+£1.64 | 32.36+1.70 | 35.46£1.42 | 36.73+1.45
ENLR* | 30.66+1.01 | 33.284+2.13 | 35.2241.67 | 36.41£1.87
DENLR | 32.69+1.26 | 36.04+1.43 | 38.32+1.51 | 40.09+£1.80
MENLR | 34.97+1.35 | 37.13+1.37 | 39.79+1.29 | 41.26+1.65

remaining face images are exploited as test samples. Because
the LFW database is a very difficult database for image
classification, the accuracies obtained by utilizing different
classification methods are comparatively not high, but the
highest classification accuracies are still established by using
our methods, which again certify the effectiveness of the
proposed methods.

Overall, the proposed ENLR methods outperform all the
compared regression methods on the four face image databas-
es, which demonstrates that our methods can effectively solve
the face recognition problem.

B. Object Recognition Evaluation

To verify the assumption that our methods are feasible to
solve object recognition task, we evaluate the performances of
our methods on Columbia Object Image Library (COIL-100)
database [41], which contains various views of 100 objects
with different lighting conditions. In our experiments, the
images are converted to gray-scale images with the 32 X
32 pixels, and then the robustness is evaluated on alternative
viewpoints. We randomly select 15, 20, 25, 30 images per
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TABLE VI: Classification accuracies (meandstd %) of differ-
ent methods with different numbers of training samples on the
COIL-100 database.

[ Alg. ] 15 [ 20 [ 25 [ 30 |
LLC 86.93+0.49 | 90.25+0.46 | 92.501+0.50 | 93.84+0.37
LRC 85.33+0.66 | 88.794+0.75 | 91.09+0.55 | 92.63£0.42
CRC 81.36+£0.42 | 84.33+0.59 | 86.33+0.52 | 87.72+0.51
SRC 86.10+0.83 | 89.47+0.45 | 91.99+0.45 | 93.91+0.58

LRLR 70.59£0.64 | 72.79+0.82 | 74.47£0.70 | 76.00£0.76
LRRR 70.61£0.69 | 73.224+0.85 | 74.64+0.57 | 75.80+0.57
SLRR 71.85+0.59 | 73.81£0.70 | 73.69+0.53 | 76.47+0.51
DLSR 88.07£0.50 | 90.194+0.39 | 92.09+0.46 | 93.24+0.29
RPCA 88.31+0.87 | 91.7240.31 93.53+0.35 | 95.28+0.34
LatLRR | 85.3040.40 | 88.43+0.43 | 90.72+0.44 | 92.471+0.45
LRSI 87.87+0.39 | 91.56+0.47 | 93.74%0.51 95.22+0.43
CBDS 77.04£0.80 | 77.84£0.66 | 79.55+0.60 | 81.32+0.75
SVM 84.8940.62 | 88.10+0.47 | 90.801+0.65 | 92.4440.42
ENLR* 88.404+0.36 | 91.2840.39 | 93.374+0.39 | 94.66+0.27
DENLR | 91.924+0.40 | 94.36£0.41 95.80+£0.43 | 96.8740.37
MENLR | 92.75+0.51 | 94.88+£0.48 | 96.34+ 0.41 | 97.36:+£0.32

object to construct the training set, and the test set contains
the rest of the images. The experimental results of different
methods are summarized in Table VI. We can see that our
methods always outperform all the other methods. Specifically,
when the number of the training samples is 15, more than three
percentages of classification rates are improved in comparison
with the rest of methods. Accordingly, our methods have great
potential in solving objective recognition task, which also
reflects their effectiveness for multi-category recognition.

TABLE VII: Classification accuracies (mean=+std %) of dif-
ferent methods on the fifteen scene database.

[ Alg. [ Accuracy | ] Alg. [ Accuracy |
LLC 79.4 SVM 93.6
LLC* 89.2 LRSI 924
LRC 91.9 LatLRR 91.5
CRC 92.3 CBDS 95.7
LRLR 94.4 DLSR 95.9
LRRR 87.2 SRC 91.8
SLRR 89.5 Lazebnik [42] 81.4
RPCA 92.1 Lian [46] 86.4

LC_KSVDI1 [44] 90.4 Xie [47] 83.27+0.83
LC_KSVD?2 [44] 92.9 ENLR* 97.1+0.24
LRRC [29] 90.1 DENLR 98.71+0.17
SLRRC [29] 91.3 MENLR 98.8+0.22
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Fig. 1: Confusion matrices on the Fifteen Scene Categories
database.

C. Scene Recognition Evaluation

We evaluate the performance of our methods for
scene recognition task by utilizing the Fifteen Scene
Categories database [42]. It contains 4485 pictures
falling into 15 categories, such as living rooms
and Kkitchens. The data features of this database are
provided in [44], which can be publicly available at
http://www.umiacs.umd.edu/zhuolin/projectlcksvd.html. The
following steps are processed to obtain the features. First,
we compute a spatial pyramid feature with a four-level
spatial pyramid [42] on the SIFT-descriptor codebook with
size of 200, and then the final spatial pyramid features are
reduced to 3,000 by PCA based feature dimension reduction.
Following the common experimental settings [42] [44], we
randomly select 100 images per category as training data,
and use the remaining samples for testing. The number of
neighborhoods of LLC* and LLC are respectively set to 30
and 70. The comparison results are summarized in Table VII.
Our methods again establish the highest classification results
and consistently outperform the performances of all the
compared methods. Specifically, the classification accuracy
of our method is better than the second best competitor
about three percent. Furthermore, the confusion matrix of
our DENLR method on the this database has been shown
in Fig. 2. From confusion matrix of Fig. 2, we can see
that each category classification accuracy is presented along
the diagonal elements. It is notable that the classification
accuracies for all the categories are close to 100%, and the
worst performance is still very impressive with 95%, which
also reflect the effectiveness of our DENLR method.

D. Experiment Analysis

The average classification rates on six databases demon-
strate the robustness and effectiveness of the proposed regres-
sion framework. Based on the experimental results on these
databases, the following observations are achieved.

(1) DENLR and MENLR simultaneously consider the
elastic-net property of the projection matrix and discriminative
structure of the regression targets. As a result, it outperforms
other regression methods, which only hold part properties.
Our experimental results verify our previous key point that
the proposed ENLR framework is better than the compared
regression methods including representation based methods,
linear regression and low-rank regression models.

(2) The proposed DENLR and MENLR methods are greatly
superior to other regression models such as DLSR, LRLR, L-
RRR, LRC and SLRR, because it takes the elastic-net property
into consideration. The elastic-net property not only can better
estimate the underlying distribution and structure of samples
but also can enhance the generalization capabilities of DENLR
and MENLR such that the learned projection matrix is more
robust and discriminative. Specifically, low-rank regularization
can capture the underlying subspace structure and correlation
information of classes, while the Frobenius norm regulariza-
tion avoids over-fitting of the proposed models. Integrating
both terms as an elastic-net regularization of singular values
is reasonable, and this also indicates that a compact and
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Fig. 2: Convergence curves of the relative error and classification accuracies versus the number of iterations for DENLR on
(a) Extended YaleB, (b) AR, (c) CMU PIE and (d) Fifteen scene categories databases.
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Fig. 3: Convergence curves of the relative error and classification accuracies versus the number of iterations for MENLR on
(a) Extended YaleB, (b) AR, (c) CMU PIE and (d) Fifteen scene categories databases.

discriminant projection matrix is significant and beneficial.
The experimental results of ENLR* also demonstrate the
above standpoint that in most cases ENLR* can achieve better
classification results in comparison with the conventional LSR
methods, such as LRC, CRC, LRLR, LRRR, SLRRR, and even
recently proposed DLSR method.

(3) Instead of employing the binary regression targets in
conventional LSR methods, enlarging the margins of different
classes in regression targets makes the regression task be
further favorable such that accuracies of the proposed method
are greatly improved. This is the another main reason that
DENLR and MENLR outperform conventional LSR models.
In addition, SVM is difficult to find the best decision function
when the margins of different classes are close, while our
method can obtain the optimal margins under the slack but
discriminative target matrix. Thus, the performances of our
methods are better than the compared low-rank and linear
regression models. Due to slackening the strict binary matrix
to the relaxed regression targets, there is no doubt that the per-
formances of our robust ENLR methods are greatly improved,
and DENLR and MENLR achieve the highest classification
results in comparison with state-of-the-art linear regression
methods.

(4) In addition, the experimental results of DENLR and
MENLR are better than ENLR*, which further demonstrates
that discriminative regression targets are beneficial to regres-
sion tasks. Moreover, we can see that MENLR in the most
cases is better or comparable to DENLR, which indicates that
providing more flexibility of regression targets is helpful to
enhance the performances of linear regression models.

E. Convergence condition and parameters sensitivity

In this subsection, the convergence condition of the pro-
posed method is analyzed and the influences of parameters
A1, Ag are studied.

The overall convergence properties of our methods have
been generally proved in theorems 4 and 5, which show
that under mild conditions the iteration sequence of objective
formulations of DENLR and MENLR can converge to the
stationary point satisfying the KKT conditions, respectively.
However, too much iterations can not fully meet the needs
of practical applications. To this end, in our experiments we
consider that the main concern of our regression model is
to learn a compact and discriminative projection matrix D
to make multi-category image classification. So, we directly
take ||[D¥T! — D¥||2 < 107° as the convergence condition
of algorithms, where D is the value of D for the k-th
iteration. To confirm the efficient convergence of our methods,
we implement the proposed DENLR and MENLR methods on
four different datasets, i.e. the extended YaleB, AR, CMU PIE
and fifteen scene categories databases. Figs. 2 and 3 show
the convergence curves of DENLR and MENLR from the
perspective of the relative error and classification accuracies
versus the number of iterations on different databases, in which
#T'r denotes the number of training samples selected from
each subject. The results shown in figs. 2 and 3 demonstrate
that the proposed optimization algorithms are effective and
converge efficiently. Furthermore, empirical evidences show
algorithms 1 and 3 converge within a small number of
iterations and usually no more than 50 iterations, and the
classification results become stable after 35 iterations.
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In order to further investigate the properties of the proposed
method, the classification performances versus the different
values of regularization parameters, A; and Ao, are explicitly
explored. To clearly show the results, we perform experiments
on four databases, i.e. the extended YaleB, AR, CMU PIE and
fifteen scene categories databases, to verify the parameters sen-
sitivity. Specifically, we tune the value of both parameters from
{0.0001, 0.0005, 0.001,0.005,0.01,0.05,0.1,0.5,1}. Figs. 4
and 5 respectively show the classification results of DENLR
and MENLR over variations of parameters. From figs. 4 and
5, we can observe that the performances of our DENLR and
MENLR models are not very sensitive to the settings of \;
and \o. Apparently, when the parameters are not very large,
the classification accuracies of our methods are not severely
influenced. This also demonstrates that both regularization
terms are indispensable for superior performances, and the best
classification accuracies are achieved when both parameters
are nonzero. Overall, the proposed regression models are not
sensitive to the parameters provided they’re in a reasonable
range.

FE. Efficiency Comparison

To manifest the efficiency of the proposed methods, the
runtime comparisons of our DENLR and MENLR methods
with other compared methods are presented in this section.
All algorithms were reimplemented using Matlab 2013a under
Window 7 on a PC with a 3.3-GHZ CPU and 8-GB memory.
We conduct experiments on the extended YaleB dataset to
evaluate the computational time of different methods. For

TABLE VIII: Run time comparisons of different methods (s).

[ Alg. [ Train | Test | | Alg. [ Time [ Test |
LLC — 42.83 LatLRR 128.80 0.63
LRC — 59.50 LRSI 9.29 44.41
CRC — 43.39 CBDS 153.90 1.71
SRC — 899.55 DLSR 4.56 0.36
LRLR 3.74 0.13 SVM 0.12 4.24
LRRR 2.58 0.14 LC_KSVD 64.50 0.84
SLRR | 20.44 0.16 DENLR 1.19 0.26
RPCA 89.43 0.61 MENLR 291 0.24

simplicity, we randomly choose 25 images from each subject
as training samples, and the remaining images are utilized
as the test samples. The computational time comparisons of
different methods are summarized in Table VIII. We can see
that most of methods have the training and test time, but the
representation based methods, such as LLC, LRC, CRC and
SRC, have only test time because they are designed to learn
specific representations of test samples, and then directly use
the representations to make classification. From Table VIII,
we can see that our DENLR method is the fastest algorithm
in comparison with all the other methods. Therefore, the
efficiency of the proposed methods is demonstrated.

VI. CONCLUSION

In this paper, we developed a novel regression framework
(ENLR) based on the elastic-net regularization of singular
values for multi-category image classification. By introducing
the elastic-net regularization scheme to capture the underlying
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structures of different classes, a more compact and discrimi-
native projection matrix can be learned. Moreover, two robust
elastic-net regularized linear regression methods were also in-
troduced to demonstrate the effectiveness of the ENLR frame-
work. Unlike conventional linear regression models which use
the binary regression targets, our discriminative ENLR model
relaxes the regression targets into a slack formulation, and the
margins between different classes are enlarged to construct
a more feasible regression scheme. Experimental results on
public databases for different tasks demonstrated the superior
performance of our DENSR and MENLR methods against the
state-of-the-art image classification methods. We believe that
the proposed method is not limited to classification tasks, and
can be used for other general problems. For future work, we
also plan to extend the proposed method to large-scale image
analysis and understanding tasks.

APPENDIX A
PROOF OF THEOREM 1

Here we give a simple proof the Theorem 1. Suppose that
D = AB, A € R¥" and B € R"*¢ where r is the rank of
D. Denote the singular value decomposition of D = UXVT,
where U and V are unitary, and X is diagonal with non-
negative entries. Then, ¥ = UTDV = UT ABV, and then
we have

1Dl = 1r(%) = tr(UT ABV) < [UT Al BV I,
= || Allr|I Bl -

Thus, the first equality is obtained. For the second inequality
‘<’ holds just according to the well-known inequality of
arithmetic and geometric means (AM-GM inequality).

Notably, let A = U+vS and B = VIV, and then
D = AB. 1t is easy to know that |D|, = ||AB|. =
|[UEZVT||, = tr(X). Furthermore,

1], = tr() = \/tr(UVEVEUT) 1r(VEVIVVE)
— VIUVEAIVEVT|3 = Al ¢l B r.
(36)

and then, the first ‘=" in Eqn. (11) holds such that the
minimization of ||A| || B||F is || D]|«. On the other hand,

|D|, = tr(X) = %(tr(U\/f\/iUT) +tr(VEVTVVE))

—~

1
(IUVE|:+ IVEVT|F) = g(HAH% + | B|l%)-
(37
and then, the second ‘=" in Eqn. (35) holds. Therefore, under

the constraint D = AB, the minimization of 1(||Al% +
| B||% is || D]« In this way, the above conclusion is proved.

DN =

APPENDIX B
PROOF OF THEOREM 4

Denote the loss function of the problem (13) as
U (A, B, D, M). Karush-Kuhn-Tucker points of the problem

(13) are those points which satisfy the conditions as follows:

D - AB =0,
oV T T
W
S—B = (MI+pATA)B — AT(C, + uD) = 0,
(38)
% = (2XXT 4+ \oI +uI)D —2X S
~uAB +C, =0,
oV
—_— E — M = .
o~ RO 0

where S =Y +E®M and T = X7 D — Y. We can obtain
the Lagrange multipliers C; from Algorithm 1 as

Ci =C{ ™' +u(D - AB), (39)

where C¥ is the k-th iteration of C; in a sequence {CF}3° .
If the sequences of multipliers {C}}$°, can converge to
a stationary point, ie. (CF — CyY™') — 0, the following
approximation results are obtained: (D — AB) — 0. So the
first condition in Eqn. (38) is obtained.

For the second condition of the KKT conditions, the follow-
ing equation can be obtained by using the optimization result
of A in Algorithm 1 such that

AF — A* L = (€ 4+ uD)BT (M I+ uBBT)™! — A, (40)
which is equivalent to

(A* — A=Y\ T+ uBBT)=C, BT + uDBT

41
-MA - uABBT, )

where A*~! = A here. Based on the first condition D —
AB = 0, we can infer that (C; BT — A\ A) — 0, if (A* —
A*=1) — 0. So the second condition is obtained.

Similar to the procedure of verifying the second condition,
the third condition also can be obtained by utilizing the
optimization result of B in Algorithm 1 such that

(MI + pATA)(B* — B¥1) = (ATC, — M\ B)

+uAT(D - AB), 2

where B¥~1 = B here. Similarly, we can infer that (AT01 —
A B) — 0, when (B¥ — B¥~1) — 0. So we get the third
condition.

Based on the optimization result of D in Algorithm 1, We
also can get the following equation

2XXT 4+ \oI + puI)(D* — D* ') = (WLAB — D)

T (43)
+(2XS+-Cy —2XX"D - \;D).

Based on the previous conditions, AB — D is approximate
to zero such that the forth condition is satisfied based on the
condition, i.e. (2XS — C; — 2XXTD — \I) — 0, when
(D* — D*~1) — 0. Thus, the forth condition is achieved.
For the last condition, if we do not consider the constraint
M > 0, the optimization problem (22) can be rewritten as

f=IT-EoM|7, (44)

1057-7149 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2017.2651396, IEEE

Transactions on Image Processing

IEEE TRANSACTIONS ON IMAGE PROCESSING, JAN. 2017

where T = XTD — Y. Similarly, the problem (44) can be
divided into n x c subproblems. If we take the derivative of
each subproblem and set it to zero, the final optimal solution
is

where E © E = 1,4, based on the definition of Eqn. (9).
Like before operations, the following equation is satisfied

(46)

where M*~! = M here. So, if (M* — M*~1) — 0, then
(T' ® E — M) — 0. Furthermore, with the nonnegative
constraint of M > 0, we directly threshold the values of
M, which does not influence the convergence process.

It is easy to see that the value of our objective function has
the minimum bound. Thus, the value sequence {¥*}2° ~ of
the objective function (13) is bounded, and {(AF)T A%}
and {B*(B*)T}2 | in Eqn. (42) and (41) are bounded. As
a result, lim {WF+1 — ¥k} = 0 can deduce that both sides
of equationsof39), (41), (42), (43) and (46) are approximate to
zero when k — oo. Therefore, the value sequence {¥*}2°
of the objective function (13) can gradually satisfies the KKT
conditions and the optimization algorithm, Algorithm 1, can
converge to a local optimal solution. This is the end of proof.

MF-—M'=ToOE-M,
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