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Progressive Shape-distribution-encoder for Learning
3D Shape Representation

Jin Xie, Fan Zhu, Guoxian Dai, Ling Shao, and Yi Fang

Abstract—Since there are complex geometric variations with
3D shapes, extracting efficient 3D shape features is one of the
most challenging tasks in shape matching and retrieval. In
this paper, we propose a deep shape descriptor by learning
shape distributions at different diffusion time via a progressive
shape-distribution-encoder (PSDE). First, we develop a shape
distribution representation with the kernel density estimator
to characterize the intrinsic geometry structures of 3D shapes.
Then, we propose to learn a deep shape feature through an
unsupervised PSDE. Specially, the unsupervised PSDE aims at
modeling the complex non-linear transform of the estimated
shape distributions between consecutive diffusion time. In order
to characterize the intrinsic structures of 3D shapes more
efficiently, we stack multiple PSDEs to form a network structure.
Finally, we concatenate all neurons in the middle hidden layers of
the unsupervised PSDE network to form an unsupervised shape
descriptor for retrieval. Furthermore, by imposing an additional
constraint on the outputs of all hidden layers, we propose a
supervised PSDE to form a supervised shape descriptor. For
each hidden layer, the similarity between a pair of outputs
from the same class is as large as possible and the similarity
between a pair of outputs from different classes is as small as
possible. The proposed method is evaluated on three benchmark
3D shape datasets with large geometric variations, i.e., McGill,
SHREC’10 ShapeGoogle and SHREC’14 Human datasets, and
the experimental results demonstrate the superiority of the
proposed method to the existing approaches.

Index Terms—3D shape retrieval, shape descriptor, denoising
auto-encoder, heat kernel signature, heat diffusion.

I. INTRODUCTION

IN recent years, 3D shape retrieval has been receiving
more and more attention in a wide range of fields such

as computer vision, mechanical engineering and molecular
biology. A core problem in shape retrieval is to develop
an effective shape descriptor that can capture the distinctive
properties of 3D shapes. It is desirable that the shape descriptor
is discriminative to represent the shapes and insensitive to de-
formations and noises for retrieval. Once the shape descriptor
is formed, given a query shape, we can calculate the distances
between the shape descriptors to retrieve similar shapes.

Based on the projected images of 3D models, view-based
shape descriptors such as the light field descriptor (LFD)
[1], compact multiview descriptor (CMVD) [2] and elevation
descriptor (ED) [3] have been proposed, where 2D features
(e.g., 2D Polar-Fourier transform and 2D Zernike moments)
are extracted to represent 3D models. In [4], the authors
applied the auto-encoder on the projected images to extract

Jin Xie, Fan Zhu, Guoxian Dai and Yi Fang are with NYU Multimedia and Visual
Computing Lab, the Department of Electrical and Computer Engineering, New York
University Abu Dhabi, UAE and the Department of Electrical and Computer Engineering,
New York University Tandon School of Engineering, USA. Ling Shao is with the
School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK. (e-
mail:{jin.xie, fan.zhu, guoxian.dai, yfang}@nyu.edu. {ling.shao}@ieee.org).

shape features for retrieval. Bai et al. [5] proposed the two
layer coding framework to encode the projected images for
retrieval. In the first layer, the visual descriptors from a pair of
views are encoded. Then, the encoded features with different
eigen-angles are further encoded in the second layer and
the encoded features in the second layer are concatenated
for retrieval. Although these descriptors can characterize the
shape well, they are sensitive to different non-rigid transfor-
mations. Moreover, in the view-based shape retrieval methods,
multiview features are extracted on the projected images to
represent 3D shapes. Thus, the complex multiview matching
methods [2, 6] are usually employed to calculate the similarity
between the multiview features for retrieval.

In order to obtain the robust shape representation, the
classical local image descriptors such as SIFT [7], shape
context [8] and HOG [9] are generalized to 3D shapes. By
overcoming the problem that the non-Euclidean surface lacks
the global coordinate system, the local shape descriptors, 3D
SIFT [10], 3D shape context [11] and mesh HOG [12], are
formed. Nonetheless, since these local shape descriptors do not
capture the spatial relations of the meshed surface, they cannot
characterize the global geometric structures of shapes well.
Apart from the local shape descriptors stemmed from 2D im-
age features, based on the diffusion geometry theory [13, 14],
another class of popular local shape descriptors [14–16] have
been proposed. Rustamov et al. [14] proposed to use a high
dimensional vector associated with the scaled eigenfunctions
of the Laplace-Beltrami operator to characterize each vertex,
which is called global point signature (GPS). Based on the fun-
damental solution of the heat equation (i.e., heat kernel), Sun
et al. [15] proposed to employ heat kernel signature (HKS) to
describe shapes, which is the diagonal of the heat kernel. Since
HKS is not invariant to the scale transformation, Bronstein
and Kokkinos [17] constructed a logarithmically sampled scale
space to develop a scale invariant HKS (SI-HKS). Based on
the evolution of a quantum particle on the meshed surface, the
wave kernel signature (WKS) [18] is proposed to characterize
3D shapes. These shape descriptors can achieve state-of-the-
art performance in many shape analysis tasks such as shape
retrieval [19] and shape correspondence [16, 20].

Recently, learning-based feature has gained popularity in
the computer vision and pattern recognition communities.
Inspired by the great success of the learning-based features
in image classification and retrieval, the learning-based shape
descriptors have been proposed. The global shape descriptors
are learned for retrieval from a set of local shape descriptors
such as HKS [15], SI-HKS [17] and WKS [18]. In [21], the
authors proposed the shapegoogle descriptor with the bag-of-
features (BOF) method, where the dictionary is first learned
from the training HKSs by the K-means clustering method and
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the spatially sensitive bag of features are then extracted as the
shape descriptor for retrieval. Tabia et al. [22] generalized the
BOF paradigm to the Riemannian manifold of the symmetric
positive definite matrices. The frequencies of the words are
then used to represent shapes. By employing sparse coding
to learn the dictionary, Litman et al. [19] proposed to use
the histogram of encoded representation coefficients over
the learned dictionary for retrieval. Moreover, a task driven
dictionary is specially constructed in a supervised way to learn
the highly discriminative representation coefficients. In [23],
Xie et al. imposed the Fisher discrimination criterion on the
neurons in the hidden layer to develop a deep discriminative
auto-encoder. With the multiscale shape distribution as input
to the discriminative auto-encoder, the neurons in the hidden
layers are concatenated to form a supervised shape descriptor
for shape retrieval.

In this paper, we propose a deep shape descriptor for
retrieval by learning shape distributions between consecutive
diffusion time. First, based on the heat kernel, we develop
a shape distribution representation with the kernel density
estimation method. The developed shape distribution repre-
sentation can efficiently characterize the intrinsic geometry
structures of 3D shapes. Inspired by the observations that the
shape distributions change non-linearly but smoothly in the
temporal domain, we model the complex non-linear change
of the shape distributions between consecutive diffusion time
through a deep network. Particularly, we restore the denoising
auto-encoder to propose an unsupervised progressive shape-
distribution-encoder (PSDE) to achieve this goal. Finally, we
concatenate all neurons in the middle hidden layers of the
unsupervised PSDE network, i.e., the discriminative shape
distributions, to form an unsupervised deep shape descriptor.
Furthermore, in order to better exploit the discriminative
information from the hidden layers of the unsupervised PSDE,
we impose a constraint on all hidden layers to propose a
supervised PSDE so that for each hidden layer the outputs
from the same class are as similar as possible while the
outputs from different classes are as dissimilar as possible. The
neurons in the middle hidden layers of the supervised PSDE
are concatenated to form a supervised shape descriptor. The
proposed deep shape descriptors are verified on the benchmark
shape datasets and show very promising performance.

The rest of the paper is organized as follows. Section
II briefly introduces the background of the heat kernel and
denoising auto-encoder. Section III presents the proposed
shape descriptors. Section IV performs extensive experiments
and Section V concludes the paper.

II. BACKGROUND

Since our proposed learning-based shape descriptor is
highly related to the heat kernel and denoising auto-encoder,
in this section, we will briefly review these two methods.

A. Heat Kernel

Provided that there is an initial Dirac delta distribution
defined on the meshed surface X at time t = 0, heat diffusion

on X can be defined as:
∂kt
∂t

= −Pkt (1)

where kt denotes the heat kernel at diffusion time t, P
is the Laplace-Beltrami operator. It is well known that the
fundamental solution of Eq. (1), i.e., heat kernel kt(x, y) on
vertices x and y, can be expressed by the eigenfunctions
and eigenvectors of the Laplace-Beltrami operator described
below:

kt(x, y) =
∑
i

e−λitφi(x)φi(y) (2)

where λi is the ith eigenvalue of the Laplace-Beltrami opera-
tor, φi is the ith eigenfunction.

The heat kernel controls the geometry dependent propaga-
tion of heat flow across the shape. Heat kernel kt(x, y) can
be viewed as the quantity of heat that passes from vertex x
to vertex y after time interval t. The heat kernel is related to
the curvature of the meshed surface. Points in the flat regions
tend to dissipate heat while points of the high curvatures such
as the corners tend to attract heat. Therefore, the heat kernel
can characterize the intrinsic geometry structure of the shape
well.

Based on the heat kernel, the heat kernel signature (HKS)
[15] of vertex x at time t, st(x), is defined as the diagonal
value of the heat kernel of vertex x:

st(x) = kt(x, x) =
∑
i

e−λitφi(x)
2. (3)

The HKS, as a point signature, can encode geometric infor-
mation of shapes and is isometrically invariant.

B. Denoising Auto-encoder

The denoising auto-encoder [24] is a variant of the basic
auto-encoder [25, 26]. Different from the basic auto-encoder,
it is trained to reconstruct the original input from a corrupted
version of it. A denoising auto-encoder [24] also consists
of two components, i.e., encoder and decoder. The encoder,
denoted by f , maps the input x ∈ Rd×1, which is the
corrupted version of the original data y ∈ Rd×1 by Gaussian
noise or masking noise, etc, to the hidden layer z ∈ Rr×1,
where d and r are the dimensions of the input and the hidden
layer, respectively. Usually, the output activation function is
non-linear, such as sigmoid function ϕ(x) = 1

1+e−x or tanh
function ϕ(x) = ex−e−x

ex+e−x . Therefore, the output of the hidden
layer is :

z = ϕ(W1x+ b1) (4)

where W1 and b1 denote the weights and biases connecting
the input layer and the hidden layer, respectively. The decoder,
denoted by g, maps the hidden layer representation z back to
the original input y, i.e.,

y = ϕ(W2z + b2) (5)

where the matrices W2 and b2 denote the weights and biases
between the hidden layer and the output layer, respectively.
Let W and b be {W1,W2} and {b1, b2}. To optimize the
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parameters W and b, the denoising auto-encoder minimizes
the following cost function:

< Ŵ , b̂ >=argminW ,b
1

2

C∑
i=1

‖yi − g(f(xi))‖22

+
1

2
λ
∑

(‖W1‖2F + ‖W2‖2F )

(6)

where xi represents the ith training sample, C is the total
number of training samples, and parameter λ is a positive
scalar. In Eq. (6), the first term is the reconstruction error
and the second term is the regularization term that prevents
overfitting. Compared to the basic auto-encoder, the denoising
auto-encoder can extract much more stable and robust high
level representation under corruptions of the input. The reader
can refer to [24] for more details of the denoising auto-
encoder.

III. PROPOSED APPROACH

A. Shape Distribution Estimation
Given a shape, we can define a probabilistic distribution of

the diagonal values of the heat kernel (i.e., HKS) as shape
distribution. Since the heat kernel is highly dependent on
the curvature of the meshed surface, shape distribution can
intrinsically characterize the geometric structures of shapes.

Suppose that there are N vertices on the meshed surface of
the shape. Given HKSs of the ith shape at diffusion time t,
si,t(1), si,t(2), · · · , si,t(N), the shape distribution, pi,t(s), can
be estimated by the kernel density estimator. For simplicity,
here we choose the Gaussian kernel to estimate the shape
distribution:

pi,t(s) =
1

N

N∑
n=1

1

(2πh2i,t)
1/2

e
−
‖s−si,t(n)‖22

2h2
i,t (7)

where hi,t denotes the bandwidth of the Gaussian kernel at
diffusion time t. Since at different diffusion time the scales
of HKSs are different, we employ the adaptive bandwidth
selection method [27] to calculate the bandwidth:

hi,t = 1.06σi,tN
−1/5 (8)

where σi,t is the standard deviation of the HKS samples
at diffusion time t. By parameterizing s, we can form
a discrete shape distribution to represent the shape. Here
we parameterize s by s = smini,t + u(smaxi,t − smini,t )/m,
where smini,t and smaxi,t are the minimum and maximum of
si,t(1), si,t(2), · · · , si,t(N), respectively, u = 0, 1, · · · ,m.

Figs. 1 and 2 show the shape distributions of the Centaur and
Wolf shapes during the diffusion process. From this figure, one
can see that the shapes of different classes have different shape
distributions (e.g., the shape distributions of the Centaur and
the Wolf models at t = 3) while the shapes of the same class
have similar shape distributions (e.g., the shape distributions
of the Centaur models a and b at t = 2). Moreover, since the
heat diffusion processes of the shapes from different classes
are different, the changes of the shape distributions between
consecutive diffusion time are different. In the next subsection,
we will model the change of shape distributions between
consecutive diffusion time to learn discriminative features of
3D shapes.

B. Unsupervised PSDE Based Shape Descriptor

Assuming the shape distributions at diffusion time t and t′

are pi,t and pi,t′ , we can formulate the change of the shape
distributions at t and t′:

pi,t′ = η(pi,t) (9)

where η : Rm+1 → Rm+1 is a non-linear transform. The
denoising auto-encoder can model the non-linear transforma-
tion η by the encoder and decoder, where the input is the
corrupted version of the original data and the output is the
original data, the stochastic corruption can be viewed as a
non-linear transform. And the output of the hidden layer is
discriminative and usually used as the high-level feature.

Inspired by the denoising auto-encoder, we propose an
unsupervised progressive neural network to learn a shape
descriptor by modeling the non-linearity between the shape
distributions during the diffusion process. Particularly, we
specify the shape distributions at consecutive diffusion time
as the input and output of the denoising auto-encoder, which
is called the unsupervised PSDE. The unsupervised PSDE
attempts to learn a discriminative shape distribution within
a certain amount of diffusion time. In order to model the
complex transform between the shape distributions during the
diffusion process, the stacked PSDE network with multiple
input levels is preferred. Thus, once the unsupervised PSDEs
in the current level are trained, the outputs of the middle
hidden layers can be fed into the PSDEs in the next level
to learn an unsupervised deep feature. As shown in Fig. 3, the
shape distributions at diffusion time t = 1, 2, 3 are used as the
inputs and outputs of the first and second unsupervised PSDEs
in the first level, respectively. Then the learned hidden layer
representations are fed into the first unsupervised PSDE in the
second level to learn an unsupervised deep representation.

Suppose that there are C shapes. Formally, the jth un-
supervised PSDE in the first level aims at mapping shape
distribution pi,j at diffusion time j to shape distribution pi,j+1

at diffusion time j + 1, where j = 1, 2, · · · , T − 1. The cost
function is formulated as follows:

J(W1,j , b1,j) = argminW1,j ,b1,j

1

2

C∑
i=1

‖pi,j+1 − q1,Ki,j ‖
2
2

+
1

2
λ

K−1∑
k=1

‖W k
1,j‖2F

(10)
where q1,Ki,j is the output of the jth PSDE in the first level,
q1,Ki,j = g1j (f

1
j (pi,j)), W1,j and b1,j are the weight and

bias matrices, W1,j = {W 1
1,j ,W

2
1,j , · · · ,W

K−1
1,j }, b1,j =

{b11,j , b21,j , · · · , b
K−1
1,j }, f1j and g1j are the encoder and de-

coder.
For each unsupervised PSDE in the first level, the encoder

f1j maps the shape distribution pi,j at diffusion time j to the
middle hidden layer and the decoder g1j maps the output of
the middle hidden layer to the shape distribution pi,j+1 at
diffusion time j+1. The output of the middle hidden layer can
be viewed as a discriminative shape distribution at diffusion
time j′ (j < j′ < j + 1), which can be used to characterize
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t=2 

t=3 

a b 

Fig. 1. Shape distributions of the Centaur model at diffusion time t = 2, 3. The first and third columns show the HKS maps of the Centaur models a and b
at different diffusion time, respectively. The second and fourth columns show the shape distributions of the corresponding HKS maps, respectively.

t=2 

t=3 

c d 

Fig. 2. Shape distributions of the Wolf model at diffusion time t = 2, 3. The first and third columns show the HKS maps of the Wolf models c and d at
different diffusion time, respectively. The second and fourth columns show the shape distributions of the corresponding HKS maps, respectively.
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Fig. 3. The framework of the proposed unsupervised PSDE. The shape distributions at t = 1 and t = 2 are fed into the fist unsupervised PSDE in the first
level while the shape distributions at t = 2 and t = 3 are fed into the second unsupervised PSDE. Then, the learned middle hidden layer features f1

1 (p1,1)
and f1

2 (p1,2) are used as the input and output of the unsupervised PSDE in the second level. Thus, the middle hidden layer features of a set of the PSDEs
in level l are recursively fed into the unsupervised PSDEs in level l + 1 to form an unsupervised deep representation.
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the heat diffusion process from time j to time j + 1. Thus,
the outputs of the middle hidden layers of a set of PSDEs,
f11 (pi,1), f

1
2 (pi,2), · · · , f1T−1(pi,T−1), can describe the whole

diffusion process to represent the ith shape.

Once the outputs of the middle hidden layers in the T−1 un-
supervised PSDEs, f11 (pi,1), f

1
2 (pi,2), · · · , f1T−1(pi,T−1), are

obtained, we can feed these outputs to the T −2 unsupervised
PSDEs in the next level. The procedure is repeated until the
PSDEs in the Lth level are trained. We then concatenate all
neurons in the middle hidden layers to form an unsupervised
deep shape descriptor for retrieval.

C. Supervised PSDE Based Shape Descriptor

In this subsection, we propose a supervised PSDE to char-
acterize the non-linear transformation between shape distribu-
tions at consecutive diffusion time. In order to better exploit
the discriminative information from the hidden layers of the
PSDE, for each hidden layer, we enforce a pair of outputs
from the same class to be as similar as possible and a pair of
outputs from different classes to be as dissimilar as possible.
To this end, for the jth supervised PSDE in the first level, we
propose the following cost function:

J(W1,j , b1,j) = argminW1,j ,b1,j

1

2

C∑
i=1

‖pi,j+1 − q1,Ki,j ‖
2
2

+
1

2
γ

C∑
i=1

K−1∑
k=2

(
1∑
ni

∑
v∈c(i)

‖q1,ki,j − q
1,k
v,j ‖

2
2 −

1∑
mi

∑
v/∈c(i)

‖q1,ki,j − q
1,k
v,j ‖

2
2) +

1

2
λ

K−1∑
k=1

‖W k
1,j‖2F

(11)
where W k

1,j and bk1,j are the weight and bias matrices in layer
k, k = 1, 2, · · · ,K − 1, c(i) is the class label of the ith
shape, ni is the number of training samples from class c(i),
mi is the number of training samples different from class
c(i), q1,ki,j and q1,kv,j are the outputs of the kth hidden layer
associated with the ith shape and the vth shape, respectively,
γ and λ are the regularization parameters. In the proposed
objective function Eq. (11), the second term minimizes the
distance between the outputs of each hidden layer from the
same class and maximizes the distance between the outputs of
each hidden layer from different classes. Thus, it is expected
that the change between the shape distributions at consecutive
time from the same class is as similar as possible while the
change between the shape distributions from different classes
is as dissimilar as possible.

To solve the optimization problem in Eq. (11), we employ
the gradient descent algorithm to obtain parameters W µ

1,j and
bµ1,j , µ = 1, 2, · · · ,K−1. The gradients of objective function
J(W1,j , b1,j) with respect to W µ

1,j and bµ1,j ,
∂J(W1,j ,b1,j)

∂Wµ
1,j

and ∂J(W1,j ,b1,j)
∂bµ1,j

, can be computed with the back-propagation

method as follows:

∂J(W1,j , b1,j)

∂W µ
1,j

=

C∑
i=1

(δ1,µ+1
i,j (q1,µi,j )

T ) + γ

C∑
i=1

K−1∑
k=µ

(
1∑
ni∑

v∈c(i)

(θ1,k+1
i,j (q1,ki,j )

T + θ1,k+1
v,j (q1,kv,j )

T )− 1∑
mi

∑
v/∈c(i)

(θ1,k+1
i,j

(q1,ki,j )
T + θ1,k+1

v,j (q1,kv,j )
T )) + λW µ

1,j
(12)

∂J(W1,j , b1,j)

∂bµ1,j
=

C∑
i=1

δ1,µ+1
i,j + γ

C∑
i=1

K−1∑
k=µ

(
1∑
ni

∑
v∈c(i)

(θ1,k+1
i,j

+ θ1,k+1
v,j )− 1∑

mi

∑
v/∈c(i)

(θ1,k+1
i,j + θ1,k+1

v,j ))

(13)
where δ1,k+1

i,j , θ1,k+1
i,j and θ1,k+1

v,j , k = K − 1,K − 2, · · · , 1,
are computed as follows:

δ1,Ki,j = (q1,Ki,j − pi,j+1) • σ′(a1,K
i,j )

θ1,Ki,j = (q1,Ki,j − q
1,K
v,j ) • σ′(a1,K

i,j )

θ1,Kv,j = (−q1,Ki,j + q1,Kv,j ) • σ′(a1,K
v,j )

δ1,k+1
i,j = ((W k+1

1,j )T δ1,k+2
i,j ) • σ′(a1,k+1

i,j )

θ1,k+1
i,j = ((W k+1

1,j )Tθ1,k+2
i,j ) • σ′(a1,k+1

i,j )

θ1,k+1
v,j = ((W k+1

1,j )Tθ1,k+2
v,j ) • σ′(a1,k+1

v,j ).

(14)

Here a1,k+1
i,j = W k

1,jq
1,k
i,j + bk1,j , σ

′(a1,k+1
i,j ) is the derivative

of the activation function in layer k + 1 with respect to
a1,k+1
i,j , k = 1, 2, · · · ,K − 1, • denotes the element-wise

multiplication. Then W µ
1,j and bµ1,j can be updated with the

gradient descent algorithm as:

W µ
1,j =W

µ
1,j − β

∂J(W1,j , b1,j)

∂W µ
1,j

bµ1,j = b
µ
1,j − β

∂J(W1,j , b1,j)

∂bµ1,j

(15)

where β is the learning rate.
Once the supervised PSDEs in the first level are trained,

we can feed the outputs of the middle hidden layers to the
supervised PSDEs in the next level until the supervised PSDEs
in level L are trained. We then concatenate all outputs of
the middle hidden layers to form a supervised deep shape
descriptor for retrieval.

IV. EXPERIMENTAL RESULTS

In this section, we first evaluate our proposed shape de-
scriptor, and then compare it with the state-of-the-art methods
on three benchmark datasets, i.e., McGill shape dataset [28],
SHREC’10 ShapeGoogle dataset [21] and SHREC’14 Human
dataset [29].

A. Experimental Settings

We compute 300 eigenvalues and eigenvectors of the
Laplace-Beltrami operator and compute the HKS by uniformly
sampling T = 26 points in the logarithmical scale over the
time interval [4ln(10)/λ300, 4ln(10)/λ2], where λ300 and λ2
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are the 300th and 2th eigenvalues of the Laplace-Beltrami
operator. And m = 127 is used to estimate the shape
distribution, which results in a 128-dimensional input to the
proposed progressive neural network. In the progressive neural
network, the number of levels is set to 2, i.e., L = 2. And in
the first level, the progressive denoising auto-encoder consists
of an encoder with layers of 128-1000-500-100 and a decoder
with layers of 100-500-1000-128. Since the dimension of the
hidden layer features in the first level is 100, the dimension of
the inputs in the second level is 100. The layers of the encoder
and decoder in the second level are set to 100-250-500-30 and
30-500-250-100. Moreover, in Eq. (10), λ is set to 0.005. In
Eq. (11), λ and γ are set to 0.005 and 0.01, respectively. For
retrieval the L2 norm distance is used to compare the shape
descriptors.

B. Evaluation of The Proposed Shape Descriptor

In order to demonstrate the effectiveness of the proposed
shape descriptor, we compare the proposed shape descriptor to
the estimated shape distribution on the McGill dataset [28]. In
addition, we also investigate the performance of the proposed
shape descriptor in terms of robustness to noise corruption.

1) Comparison to Shape Distribution: In our proposed
shape descriptor, we use the estimated shape distribution as
input to the PSDE. Learning deep feature from the estimated
shape distribution with the PSDE can be viewed as an en-
hancement of the estimated shape distribution. We denote our
unsupervised PSDE based shape descriptor and supervised
PSDE based shape descriptor by UPSDE and SPSDE, respec-
tively. In order to demonstrate the effectiveness of the proposed
UPSDE and SPSDE, we compare them to the estimated shape
distribution on the McGill shape dataset.

For shape distribution, we concatenate the 128-dimensional
shape distributions at 26 sampled diffusion time to form a
3328-dimensional vector to describe the shape. For a fair
comparison, we use the PSDE network with a single level to
learn the shape descriptor. Since the dimension of the hidden
layer feature in each PSDE is 100, a 2500-dimensional shape
descriptor is formed to represent the shape. Fig. 4 shows the
precision-recall curves for the shape distribution, the proposed
UPSDE and SPSDE. As can be seen in this figure, compared to
the shape distribution without the progressive neural network
structure, although the dimension of the learned descriptor
is lower than that of the shape distribution, the proposed
UPSDE/SPSDE is much more discriminative and can signifi-
cantly improve the retrieval performance.

2) Robustness to Noise: In this experiment, by corrupting
the mesh with various levels of noises, we also demonstrate
that the proposed shape descriptor is robust to noise. The
noise can be generated by a multivariate Gaussian distribution
with mean µ and covariance matrix R ×Σ, where µ is a 3-
dimensional mean vector of all coordinates of the vertices, Σ is
a 3×3 covariance matrix of all coordinates of the vertices, and
R is a ratio to control the level of noise. The proposed PSDE-
based descriptors (UPSDE and SPSDE) of the clean human
and spectacle models, and their noisy models with different
levels of noise are shown in Figs. 5 and 6, respectively. As

can be seen in these figures, with noise of R = 0.04 and 0.08,
although the geometric structures of the mesh are corrupted
by noise, the variations of the proposed UPSDEs and SPSDEs
of the clean and noisy models (plotted with the red, green
and blue curves, respectively) are still small. The experimental
results indicate that UPSDE and SPSDE are robust to noise.

C. Comparison Evaluation

1) McGill Shape Dataset: In the McGill 3D shape dataset
[28], there are 10 classes of shapes: ant, crab, spectacle,
hand, human, octopus, plier, snake, spider and teddy-bear. The
McGill 3D shape dataset consists of 255 3D meshes with
significant part articulations. The large pose changes of the
shapes make the McGill 3D shape dataset challenging. Fig.
7 shows the large pose changes of the teddy-bear model and
large deformations of the hand model in the McGill 3D shape
dataset.

In our proposed UPSDE and SPSDE methods, 10 shapes
per class are randomly chosen as the training samples to train
the PSDE and the remaining samples per class are used to test.
Moreover, the experiments are repeated over 20 times to report
the retrieval accuracy. We compare our proposed methods to
the state-of-the-art methods: the Hybrid BOW [30], the PCA
based VLAT method [31], the hybrid 2D/3D approach [32]
and covariance descriptor [22]. Four performance criteria, i.e.,
the Nearest Neighbor (NN), the First Tier (1-Tier), the Second
Tier (2-Tier) and the Discounted Cumulative Gain (DCG) are
used to evaluate these methods. The retrieval performance
of these methods is illustrated in Table I, where the results
of the compared methods are cropped from [22]. From this
table, compared to the state-of-the-art methods [22, 30–32],
one can see that the proposed UPSDE/SPSDE can achieve
better performance on the four criteria. As can be seen in
Fig. 7, the large non-rigid deformations of the objects usually
make the McGill shape dataset challenging. For example, the
hand model has different gesture changes while the Teddy-bear
model has large pose changes in this dataset. Nonetheless, due
to the discriminative feature representation in the hidden layer
of the proposed PSDE, UPSDE and SPSDE are still robust
to non-rigid deformations. Therefore, our proposed shape
descriptor can obtain better performance with four different
retrieval criteria.

TABLE I
RETRIEVAL RESULTS ON THE MCGILL DATASET.

Methods NN 1-Tier 2-Tier DCG
Covariance descriptor [22] 0.977 0.732 0.818 0.937

PCA based VLAT [31] 0.969 0.658 0.781 0.894
Hybrid BOW [30] 0.957 0.635 0.790 0.886
Hybrid 2D/3D [32] 0.925 0.557 0.698 0.850

UPSDE 0.984 0.783 0.841 0.941
SPSDE 0.986 0.883 0.911 0.952

2) SHREC’10 ShapeGoogle Dataset: In the SHREC’10
ShapeGoogle dataset [21], there are 1184 synthetic shapes.
Among them, 715 shapes from 13 classes are generated by the
five simulated transformations, i.e., isometry, topology, isom-
etry+topology, partiality and triangulation, and 456 shapes are
unrelated to the 13 classes of shapes. Following the setting in
[19], all shapes are re-meshed to have about 1500 vertices. Fig.
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Fig. 4. The precision-recall curves for the shape distribution, the proposed UPSDE and SPSDE on the McGill shape dataset.

(a) (b) (c) 

Fig. 5. The proposed UPSDEs of human models a, b and c, plotted by the red, green and blue curves, respectively. Human models b and c are corrupted
by noises with R = 0.04 and R = 0.08, respectively.

(a) (b) (c) 

Fig. 6. The proposed SPSDEs of spectacle models a, b and c, plotted by the red, green and blue curves, respectively. Spectacle models b and c are corrupted
by noises with R = 0.04 and R = 0.08, respectively.

8 shows the isometry, isometry+topology, topology, partiality
and triangulation transformations of the centaur and human
models.

For the SHREC’10 ShapeGoogle dataset, we compare the
proposed shape descriptors to the bag-of-feature descriptor
with standard vector quantization (VQ) [21], unsupervised
dictionary learning (UDL) [19] and supervised dictionary
learning (SDL) [19]. For each kind of transformation, [Mi/2]
shapes per class are randomly chosen as the training samples
to train the proposed model and the remaining shapes are used
for testing, where Mi is the number of shapes of class i and
[x] is the nearest integer of x. Also, the retrieval experiments
are repeated over 20 times. Comparison results with the mean
average precision are listed in Table II. For the VQ, UDL
and SDL methods, the experimental results are cropped from
[19]. From this table, one can see that our proposed UPSDE

is superior to the BOF descriptors with VQ and UDL in
the cases of the isometry, isometry+topology and partiality
transformations. In the SDL method the positive samples from
the same class and negative samples from different classes
are employed to learn the dictionary. Therefore, SDL is a
supervised feature learning method. In comparison to SDL,
our proposed SPSDE method can obtain better shape retrieval
performance in the most cases.

In the dictionary learning based shape descriptors [19, 21],
the representation coefficients are learned from a set of
HKSs/SI-HKSs via the K-means clustering method or the
sparse coding method. They are still a shallow feature rep-
resentation. Nonetheless, in our proposed method, by us-
ing the shape-distribution-encoder to model the non-linear
transform between shape distributions during the diffusion
process, we extract the hidden layer representations of the
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(a) Teddy-bear model.

(b) Hand model.

Fig. 7. Example 3D shapes of the Teddy-bear model and the Human model in the McGill 3D shape dataset. There are large pose changes with the Teddy-bear
model in (a) while there are large deformations with the hand model in (b).

(a) Centaur model.

(b) Human model.

Fig. 8. Example 3D shapes with different simulated transformations in the SHREC’10 ShapeGoogle dataset: isometry, isometry+topology, topology, partiality
and triangulation.

shape-distribution-encoders to represent shapes. It can char-
acterize the low-dimensional manifold embedded in the high-
dimensional shape feature space and represent 3D shapes
well. Therefore, compared to the VQ and UDL methods, the
proposed method can obtain better performance. For example,
in the cases of isometry+topology and partiality, the UDL
method can obtain accuracies of 0.934 and 0.948 while our
proposed UPSDE method can achieve accuracies of 0.998 and
0.983, respectively.

3) SHREC’14 Human Dataset: The SHREC’14 Human
dataset [29] contains two sub-datasets: synthetic human sub-
dataset and scanned human sub-dataset. In the synthetic human
sub-dataset, there are 300 human shapes from 15 synthetic
human models. In the scanned human sub-dataset, there are
40 scanned human models, each having 10 different poses.

TABLE II
RETRIEVAL RESULTS ON THE SHREC’10 SHAPEGOOGLE DATASET.

Transformation VQ [21] UDL [19] SDL[19] UPSDE SPSDE
Isometry 0.988 0.977 0.994 1.000 1.000
Topology 1.000 1.000 1.000 1.000 1.000

Isometry+Topology 0.933 0.934 0.956 0.998 0.991
Partiality 0.947 0.948 0.951 0.983 0.983

Triangulation 0.954 0.950 0.955 0.943 0.950

Following the setting in [19], all human shapes are remeshed
to 4500 triangles. In the McGill 3D shape dataset and the
SHREC’10 ShapeGoogle dataset, there are 3D shape models
with different geometric structures such as horse, crab and
chair. Nonetheless, in the SHREC’14 Human dataset, there are
only human models. Large pose changes and similar geometric
structures of human shapes will result in the large within-class
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(a) Human1 model.

(b) Human2 model.

Fig. 9. Example 3D human shapes in the SHREC’14 Human dataset. (a) and (b) show different pose changes of human1 and human2 models in the scanned
human sub-dataset, respectively.

variations and the small between-class variations. As shown in
Fig. 9, human1 and human2 models are very similar in terms
of the geometric structure.

We compare the proposed UPSDE and SPSDE methods
to the recent shape retrieval methods: Histogram of area
projection transform (HAPT) [33], intrinsic pyramid matching
(ISPM) [34], reduced Bi-harmonic distance matrix (RBiHDM)
[35], deep belief network (DBN) [29], the bag-of-feature de-
scriptor with standard vector quantization (VQ) [21], the bag-
of-feature descriptor with unsupervised dictionary learning
(UDL) [19] and the bag-of-feature descriptor with supervised
dictionary learning (SDL) [19]. For the synthetic sub-dataset,
12 shapes per class are used to train the PSDE network and the
other shapes per class are used for testing. For the scanned sub-
dataset, 6 shapes per class are used as the training samples and
the rest of shapes are used to test. The mean average precision
is reported by repeating the experiments over 20 times. The
experimental results are listed in Table III, where the results
of HAPT, ISPM, RBiHDM, DBN, VQ, UDL and SDL are
cropped from [19]. As can be seen in this table, for the
synthetic sub-dataset and the scanned sub-dataset, compared
to these methods [19, 21, 29, 33–35], our proposed SPSDE
method can obtain better shape retrieval performance.

TABLE III
RETRIEVAL RESULTS ON THE SHREC’14 HUMAN DATASET.

Method Synthetic model Scanned model
HAPT[33] 0.817 0.637
ISPM[34] 0.92 0.258

RBiHDM[35] 0.642 0.640
DBN[29] 0.842 0.304
VQ [21] 0.813 0.514

UDL [19] 0.842 0.523
SDL [19] 0.951 0.791
UPSDE 0.810 0.651
SPSDE 0.970 0.811

D. Sensitivity Analysis to Parameters

In this subsection, we perform the sensitivity analysis of
our proposed UPSDE and SPSDE methods with respect to the
parameters in the training process. We conduct experiments on
the McGill shape dataset in the cases of different numbers of
training samples from all classes. We randomly choose 10%,
20%, 30%, 40%, 50% and 60% of samples as the training
samples and the remaining shapes as the testing samples.
The mean average precision (MAP) is used to evaluate the
proposed methods. From Fig. 10. (a), one can see that when
there are enough training samples both UPSDE and SPSDE
methods can obtain stable retrieval performance. Nonetheless,
when there are few training samples (e.g., 10% and 20% of
samples) the shape retrieval performance degrades. We also
evaluate the effects of training our proposed UPSDE and
SPSDE with partial classes of samples on the final retrieval
performance. We choose 50% of samples from the first 1, 2, 3,
4, 5 and 6 classes as the training samples and the samples from
the remaining classes as the testing samples. Since the partial
class information is only used to train our proposed PSDE,
the trained model cannot generalize to the “unseen” samples
from the new class well. As shown in Fig. 10. (b), when 50%
of samples per class are used as the training samples, the
performance of both UPSDE and SPSDE trained with partial
classes of training samples is inferior to that with all classes
of training samples.

In addition, we conduct experiments to evaluate sensitivity
to the sampled diffusion time in the computation of HKS and
the dimension of the estimated shape distribution. The number
of sampled points in the diffusion time interval, T , controls the
scale of HKS to characterize the neighborhood of the vertex
on the shape. The dimension of the shape distribution, m+1,
controls the discretization of the Gaussian kernel. The MAPs
of the proposed UPSDE and SPSDE methods in the cases of
different T and m are shown in Fig. 11. From Fig. 11. (a),
we can see that T ranging from 25 to 150 has few effects on
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(a) All classes (b) Partial classes

Fig. 10. Mean average precisions of the proposed UPSDE and SPSDE methods in the cases of training samples from all classes and partial classes.

(a) The sampled diffusion time (T ) (b) Dimension of the shape distribution (m+ 1)

Fig. 11. Mean average precisions of the proposed UPSDE and SPSDE methods in the cases of different T and m.

the final retrieval performance. Nonetheless, if T is too large,
the change of the HKS at consecutive diffusion time is not
distinctive so that the proposed PSDE may not characterize
the whole diffusion process well. Fig. 11. (b) illustrates the
retrieval results in the cases of different dimensions of shape
distributions. As shown in this figure, when the dimension of
the shape distribution is relatively high the performance of the
proposed UPSDE and SPSDE can keep stable. Nonetheless,
when the dimension of the shape distribution is very low
(e.g., 16-dimensional shape distribution) the performance of
the proposed UPSDE and SPSDE degrades, which may imply
that the low dimensional shape distribution cannot represent
shapes well.

V. CONCLUSIONS AND FUTURE WORK

For 3D shape retrieval, we proposed a deep unsupervised
shape descriptor by developing an unsupervised PSDE net-
work. During the diffusion process, the shape distributions at
different diffusion time are estimated by the kernel density
estimator. The stacked PSDEs are then proposed to describe
the changes between the estimated shape distributions. The
hidden layer representations in the progressive neural network
are extracted as the shape descriptor for shape retrieval. By
imposing an additional constraint on the outputs of the hidden
layers, we also proposed a supervised PSDE for retrieval so
that for each hidden layer the outputs from the same class are
as similar as possible while the outputs from different classes
are as dissimilar as possible. As evaluated, experimental results
demonstrate that the proposed shape descriptors can yield good
performance and be robust to noise.

In future, we will extend our proposed framework to cross-
dataset learning for shape retrieval. In addition, we will also
investigate other deep learning models such as LSTM to model
the non-linear transform between shape distributions to learn
shape descriptors.
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