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Abstract—Motivated by the fact that image patches could be
inherently represented by matrices, single-image super-resolution
is treated as a problem of learning regression operators in a
matrix space in this paper. The regression operators that map
low-resolution image patches to high-resolution image patches
are generally defined by left and right multiplication operators.
The pairwise operators are respectively used to extract the
raw and column information of low-resolution image patches
for recovering high-resolution estimations. The patch based
regression algorithm possesses three favorable properties. Firstly,
the proposed super-resolution algorithm is efficient during both
training and testing, because image patches are treated as
matrices. Secondly, the data storage requirement of the optimal
pairwise operator is far less than most popular single-image
super-resolution algorithms because only two small sized matrices
need to be stored. Lastly, the super-resolution performance
is competitive with most popular single-image super-resolution
algorithms because both raw and column information of image
patches is considered. Experimental results show the efficiency
and effectiveness of the proposed patch-based single-image super-
resolution algorithm.

Index Terms—Single-image super-resolution, matrix
space, matrix-value operator regression, left and right
multiplication operators.

I. INTRODUCTION

Single-image super-resolution [1] can be understood as a
problem of learning a regression function which maps low-
resolution image patches to high-resolution image patches
from the perspective of machine learning. Low- and high-
resolution images are transformed into a training set in which
each training sample consists of low- and high-resolution
image features extracted from training image patches. For
super-resolving a test image, we need to model the relation
between low- and high-resolution features with a regression
function which maps low-resolution image features to high-
resolution image features. Therefore, different single-image
super-resolution algorithms could be developed by choosing
different features to represent low- and high-resolution image
patches and choosing different regression methods.

The common strategy of transforming training image
patches into training feature vectors is adopted by most of
the existing single-image super-resolution algorithms. High-
resolution training image patches are mostly represented as
feature vectors by vectorizing the corresponding gray level
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image patches. Low-resolution training image patches are rep-
resented as feature vectors according to different motivations.
For example, the low-resolution feature vectors used in [2]–
[4] are generated by vectorizing difference images of low-
resolution training images because difference images could
highlight the high-frequency features of low-resolution images.
And HOGs (histograms of oriented gradients) [5] are used
in [6] for generating low-resolution feature vectors because
local geometric structures of low-resolution image patches
could be emphasized by HOGs. Another special case could be
found in [7] where low- and high-resolution image patches are
all transformed into sparse coding vectors by using coupled
dictionaries because local geometric structures of low- and
high-resolution training image patches could be characterized
by the learned coupled dictionaries.

Transforming low- and high-resolution image patches into
feature vectors also has some shortcomings, even though
many promised results have been reported. It is clear that
the low- and medium-frequency information of low-resolution
image patches is abandoned when difference image based or
HOG based feature vectors are used. Even the training image
patches are just transformed into vectors without any feature
extraction, the information about the relations between rows
or columns of these training image patches will disappear.
Therefore, it is valuable to consider the single-image super-
resolution by preserving the inherent expression of image
patches.

Recently, some works such as [8], [9] try to consider single-
image super-resolution without changing the inherent expres-
sion of image patches. Matrices, the inherent expression of
image patches, are used to represent low- and high-resolution
image patches. It is clear that all raw information about low-
and high-resolution image patches is preserved without the
processing of vectorizing these image patches. In [8], [9], re-
gression method is employed to learn the matrix-value operator
which maps low-resolution image patches to high-resolution
image patches. According to [9], the proposed single-image
super-resolution algorithm is so efficient that it could be
trained with a very large training set because of introducing the
matrices to represent image patches. Meanwhile, it is asserted
in [8] that the way of representing image patches as matrices
offers more effective method to representing the local relations
between training low- and high-resolution image patches. In
fact, each high-resolution training image patches could be
exactly recovered from its counterpart low-resolution training
image patches by using the image-pair operators proposed in
[8].

However, the mentioned patch based single-image super-
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resolution algorithms cannot make full advantages of the
information of low- and high-resolution image patches in
the view of matrix algebra. It should be noticed that only
left multiplication operators are used to define the regres-
sion function mapping low-resolution image patches to high-
resolution image patches in [8], [9]. According to the fact in
matrix algebra, left multiplication operators means applying
row transformations to a given matrix. In the field of single-
image super-resolution, it means just the information of rows
of low-resolution image patches is used in estimating high-
resolution image patches.

For making the best of the raw information of training
image patches, a novel pairwise operator learning algorithm
is proposed in this paper for developing more efficient and
effective single-image super-resolution algorithm. Specifically,
left and right multiplication operators are simultaneously used
to define a regression function which generates high-resolution
image patches according to the observed low-resolution image
patches. Clearly, the row and column information of low-
resolution image patches can be well used during estimating
high-resolution image patches because both of row and column
transformations are appeared in the regression function.

The main contributions of the novel patch based single-
image super-resolution algorithm include the followings.

• Taking advantages of the row and column information of
image patches
Row and column information of image patches is ex-
tracted by introducing left and right multiplication oper-
ators into single-image super-resolution algorithm. There-
fore, right multiplication operators substantially enrich
the information used by the reported algorithm with
additional column information of image patches.

• An effective and efficient patch based single-image super-
resolution algorithm
The explicit formulation of left and right multiplication
operators enable the reported algorithm can be trained
and tested with low computational cost. The learned
left and right multiplication operators can also be effi-
ciently stored because both operators are represented by
two small sized matrices. Meanwhile, the performance
of the novel patch based single-image super-resolution
algorithm is competitive because the row and column
information of image patches are all considered.

The rest of this paper is organized as follows. A brief review
about some existing single-image super-resolution algorithms
are reported in Sec. II. The main algorithm and some remarks
on the novel patch based single-image super-resolution algo-
rithm are reported in Sec. III. Experimental results are shown
in Sec. IV. This paper ends with a conclusion in Sec. V.

II. A BRIEF REVIEW ON SINGLE-IMAGE
SUPER-RESOLUTION

Single-image super-resolution [10], also named example-
based super-resolution [1], is a problem of estimating a
high-resolution image from a given low-resolution image
with the help of training samples that consist of low- and
high-resolution image pairs. The task of single-image super-
resolution is modeling the information containing in these

training samples for super-resolving a test low-resolution
image. We will briefly review some existing single-image
super-resolution algorithms according to different methods of
modeling these training samples.

Most of existing single-image super-resolution algorithms
adopt the patch based method to analyze the information of
training samples. In the patch based method, an image is
treated as a set of image patches. Then a pair of low- and
high-resolution training images is thought as a set of low- and
high-resolution image patches. These image patches are often
represented as feature vectors in many single-image super-
resolution algorithms such as [2], [3], [11], because these
feature vectors can highlight the high-frequency information of
low-resolution image patches. Different from the vector-based
representation, the matrix-based representation has been re-
cently used by some single-image super-resolution algorithms
such as [8], [9] where an image patch is represented by a
matrix. It is clear that more raw information of image patches
is preserved because these image patches are represented in
their original form without any transformation.

For utilizing the information of these low- and high-
resolution image patches, different strategies are used by
different single-image super-resolution algorithms. Nearest
neighbor embedding is mostly used in single-image super-
resolution. For example, Chang et al. [2] proposed an al-
gorithm to estimate super-resolution estimations according to
the manifold information [12] of K nearest neighbors of test
image patches. Gao et al. [6] proposed a sparse neighbor
embedding algorithm by introducing the sparse representation
assumption into nearest neighbor embedding. Refer to [4],
[13]–[15] for more related works. Dictionary based methods
are also used in designing single-image super-resolution al-
gorithms. In the framework of dictionary based methods, the
training pairs of low- and high-resolution image patches are
summarized by dictionary learning [16], [17] as a coupled
dictionary which consists of a low-resolution dictionary and
its high-resolution counterpart. Yang et al. [3] proposed the
first dictionary based single-image super-resolution algorithm
by assuming low- and high-resolution image patches share
common sparse codings [18], [19]. Lu et al. [20] introduced
geometry restriction on the sparse codes into dictionary based
single-image super-resolution algorithms. Dong et al. [21]
introduced the multi-dictionary based method into the field
of single-image super-resolution. For more references, please
see [22]–[25]. Regression based methods are also popular in
modeling the relation between low- and high-resolution image
patches. For example, kernel based regression [26], [27] was
used to learn nonlinear regression functions for mapping low-
resolution feature vectors to high-resolution feature vectors
in [11], [28]. Steering kernel regression was used by [29],
[30]. Wang et al. [31] used active-sampling Gaussian process
regression for super-resolution. He et al. [32] used Gaussian
process regression to model the relation of self-similarity
among multi-scale test images. Different from these vector-
value regression methods, matrix-value linear regression was
introduced into single-image super-resolution in [8], [9], [33].

Different learning strategies make the cost of training and
testing these single-image super-resolution algorithms various.
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For example, nearest neighbor embedding based algorithms
can be tested without any training, but they need a large
enough training set to ensure the better performance of
super-resolving test images. It is clear that searching nearest
neighbors in a large training set will make these algorithms
time-consuming in estimating super-resolution images. Mean-
while, it is also space-consuming for the nearest neighbor
embedding based algorithms because a large training set must
be stored. Dictionary based algorithms release the burden
of storing the training set by summarizing a large training
set into a coupled dictionary. But the computational cost of
learning a coupled dictionary from a large training set is very
high, which makes these dictionary based algorithms time-
consuming during the training process. However, the learned
coupled dictionary heavily reduces the computational time
during the testing process because of the existence of efficient
sparse coding algorithms such as [19]. Similar to dictionary
based algorithms, kernel regression based algorithms also suf-
fer from time-complexity during the training process because
the computational cost is very high to train a support vector
machine on a large training set. Fortunately, the burden of
storing the learned kernel based regression function is low
enough because just a small set of training samples, namely a
set of support vectors [26], [27], is needed during the testing
process. Meanwhile, the explicit formula of the learned kernel
based regression function makes the kernel regression based
algorithms very efficient during testing.

Beside these patch based algorithms, some image based al-
gorithms were recently proposed based on deep convolutional
neural networks [34]. For example, Dong et al. [35], [36]
designed a convolutional neural network for directly mapping
low-resolution images to their super-resolution counterparts.
Liu et al. [37] introduced the sparse prior into deep networks
for generating robust super-resolution estimations. Yan and
Shao [38] also used deep learning technique to estimate image
blur blindly. For more reference about the application of deep
learning, see [39], [40] Taking advantages of deep learning,
these image based algorithms offer more promising super-
resolution estimations than most of patch based algorithms.
However, the huge burden of training a convolutional neural
network makes these image based algorithms time-consuming
during the training process.

Therefore, more and more effort is paid to balancing the
performance and the cost of training, testing and storing
learned data in designing novel single-image super-resolution
algorithms. For example, Zhang et al. [41] proposed a novel
single-image super-resolution algorithm where multiple linear
mappings are used to model the relation between low- and
high-resolution image features. Because all of these linear
mappings are learned based on sub-dictionaries, the multiple
linear mappings based algorithm well balances the perfor-
mance and the computational complexity for both training and
testing. Similarly, Tang et al. [9] also proposed a fast single-
image super-resolution algorithm based on learning matrix-
value operators. Zhu et al. [42] proposed a fast single image
hazing removal algorithm based on color attention prior. For
more references on fast single-image super-resolution algo-
rithms, please see [43], [44].

III. PAIRWISE OPERATORS LEARNING

A. Linear regression for patch based single-image super-
resolution

Let X ,Y ⊆ Rw×w be separately the low- and high-
resolution image patches spaces, where w > 0 is the size
of each image patches. Let training set be

Sn = {(xi, yi) ∈ X × Y|i = 1, 2, · · · , n} , (1)

where n > 0 is the number of training samples. Let A :
X 7→ Y be the operator which recovers high-resolution image
patches from the observed low-resolution image patches, and
A be the hypothesis space of matrix-value operators.

The optimal operator in the hypothesis space A could
be learned by minimizing the regularized empirical super-
resolution error [9], [33], that is

A∗ = argmin
A∈A

n∑
i=1

∥yi −A(xi)∥2F + λΩ(A), (2)

where ∥·∥F means Frobenius norm of matrices, λ > 0 is a
regularization coefficient, and Ω(A) is a regularization term
for measuring the complexity of an operator A. Because of
the advantages of efficient training and testing, A is assumed
as a linear operator space in this paper. Different from the
linear operators defined on vector space, the linear operators
defined on matrix space consist of left and right multiplication
operators, such as A(x) = LxR, where L ∈ Rw×w and R ∈
Rw×w are respectively left and right multiplication operator.
The complexity of the pair of left and right multiplication
operators (L,R) is defined as

Ω(A) = Ω(L,R) = ∥L∥2F + ∥R∥2F . (3)

Therefore, the optimal linear operator could be learned by
searching the optimal pair of left and right multiplication
operators, that is,

(L∗, R∗) = argmin
L∈L,R∈R

n∑
i=1

∥yi − LxiR∥2F + λΩ(L,R), (4)

where L and R are respectively the hypothesis spaces of left
and right multiplication operators.

Left and right multiplication operator bear specific meaning
in patch based single-image super-resolution. According to
matrix algebra, left and right multiplication operators respec-
tively correspond to left and right transforms of a matrix x. In
the field of single-image super-resolution, the fact means that
the row and column information of x could be used by the
left and right multiplication operator L and R. Therefore, left
and right multiplication operators represent respectively the
relation between rows and columns of low- and high-resolution
image patches.

B. Iteration optimization

The matrix based regression (4) has no closed formula
because left and right multiplication operators should be
simultaneously learned. In this paper, the near optimal pair
of left and right multiplication operators is learned by using
iteration optimization.
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Noticed the optimization problem (4), left multiplication
operator has closed-form expression given right multiplica-
tion operator, and vice versa. Therefore, right multiplication
operator R is initialized as a unit matrix I which means
mapping low-resolution image patch x to itself. By using
the initialization, the left multiplication operator could be
generated by using necessary conditions of the optimization,
which means the first learned left multiplication operator
satisfies

∂

∂L

∣∣∣∣
L1

n∑
i=1

∥yi − Lxi∥2F + λ ∥L∥2F = 0, (5)

where L1 is the optimal left multiplication operator learned
from the first iteration. It is clear that the formula (5) is equal
to

n∑
i=1

∂

∂L

∣∣∣∣
L1

∥yi − Lxi∥2F + λ
∂

∂L

∣∣∣∣
L1

∥L∥2F

=
n∑

i=1

(
∂

∂L

∣∣∣∣
L1

∥Lxi∥2F − 2
∂

∂L

∣∣∣∣
L1

⟨yi, Lxi⟩F ) + 2λL1

=
n∑

i=1

(L1xix
′
i − yix

′
i) + 2λL1

= L1(
n∑

i=1

xix
′
i + 2λI)−

n∑
i=1

yix
′
i = 0

⇔ L1 = (
n∑

i=1

yix
′
i)(

n∑
i=1

xix
′
i + 2λI)−1. (6)

Given the k-th left multiplication operator Lk, the cor-
responding k-th right multiplication operator Rk could be
deduced from the formula

∂

∂R

∣∣∣∣
Rk

(

n∑
i=1

∥yi − LkxiR∥2F + λ ∥R∥2F ) = 0. (7)

Similar to the closed-form expression (5), the k-th right
multiplication operator Rk becomes

Rk = (
n∑

i=1

x′
iL

′
kLkxi + 2λI)−1(

n∑
i=1

x′
iL

′
kyi). (8)

Then the k + 1-th left multiplication operator Lk+1 could
be generated when the k-th right multiplication operator Rk

is learned.

∂

∂L

∣∣∣∣
Lk+1

(
n∑

i=1

∥yi − LxiRk∥2F + λ ∥L∥2F ) = 0 ⇒

Lk+1 = (

n∑
i=1

yiR
′
kx

′
i)(

n∑
i=1

xiRkR
′
kx

′
i + 2λI)−1. (9)

The process of iteration optimization is summarized in Alg.
1.

IV. EXPERIMENTS

In this section, the characters of POL are firstly discussed
by analyzing the experimental results. Specifically, the impacts
of the size of image patches are shown by testing over 300
images.

Algorithm 1 Pairwise operators learning for patch based
single-image super-resolution (POL)
Require:

Training set Sn = {(xi, yi)|i = 1, 2, · · · , n} , a regular-
ized parameter λ > 0 and the number of iterations K.
Initializing right multiplication operator

1: R1 = I
Generating the first left multiplication operator as (6)

2: L1 = (
∑n

i=1 yix
′
i)(

∑n
i=1 xix

′
i + 2λI)−1.

Iteration optimization
3: for k = 2, · · · ,K do
4: Generating the k-th right multiplication operator as the

formula (8)

Rk = (
n∑

i=1

x′
iL

′
kLkxi + 2λI)−1(

n∑
i=1

x′
iL

′
kyi);

5: Generating the k + 1-th left multiplication operator as
the formula (9)

Lk = (
n∑

i=1

yiR
′
kx

′
i)(

n∑
i=1

xiRkR
′
kx

′
i + 2λI)−1.

6: end for
7: return The optimal pair of left and right multiplication

operators (LK , RK);

The convergence of POL is also shown by modeling the
relation between the number of iterations and the peak signal-
to-noise ratio (PSNR) or the structural similarity (SSIM) [45].
According to Zhou et al. [45], SSIM is defined as

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
,

where x, y are two images whose pixels are respec-
tively denoted as xi and yi, C1, C2 are constants, µx =

1
W∗H

∑W∗H
i=1 xi, µy = 1

W∗H
∑W∗H

i=1 yi, and σx =

( 1
W∗H−1

∑W∗H
i=1 (xi − µx)

2)1/2, σy = ( 1
W∗H−1

∑W∗H
i=1 (yi −

µy)
2)1/2, σxy = 1

W∗H−1

∑W∗H
i=1 (xi − µx)(yi − µy).

Then the performance of POL is firstly compared with
some of existing single-image super-resolution algorithms for
showing its effectiveness and efficiency in super-resolution.
The effectiveness is measured by the visual experience, PSNR,
SSIM, feature-similarity (FSIM) index [46] and visual saliency
induced (VSI) index [47]. Both image quality indexes of FSIM
and VSI pay more attentions on simulating human visual
system which offer more possibility to unveil the difference
among super-resolved images. The efficiency is measured not
only by the CPU time of training algorithms and recovering
high-resolution images but also the size of storing the learned
super-resolution model. All of the algorithms compared with
POL are summarized in Tab. I. The codes of these compared
algorithms are all obtained from their original authors except
for the code of MLM, which we re-implemented ourselves.
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TABLE I
COMPARATIVE ALGORITHMS

Abbreviation Algorithm Strategy
BINT Bilinear interpolation pointwise
MF Manifold-based algorithm [2]

vectorwise
DL Dictionary learning algorithm [3]

RDL regularized dictionary learning algorithm [20]
MLM multiple linear mapping algorithm [41]
SNE Sparse neighbor embedding algorithm [6]

MVOR Matrix-value operator regression algorithm [9]
patchwiseIPO Image-pair operator based algorithm [8]

POL The proposed Algorithm 1

(a) training images (b) test images

Fig. 1. Samples of training and test images

A. Experiment settings

Training and test images are natural images randomly
downloaded from internet. Some of samples of training and
test images are respectively shown in Figs. 1(a) and 1(b).
The low-resolution images are generated by down-sampling
these downloaded images with a zooming factor κ = 3, and
all of these downloaded images are treated as high-resolution
images. All of these pairs of low- and high-resolution images
are respectively processed for generating training sets as the
original settings reported in corresponding reference for all
algorithms compared with POL.

For POL, the training set is generated as following settings.
Firstly, low-resolution images are interpolated with bicubic
interpolation operator to the same size of its high-resolution
counterparts. The interpolated images are serviced as low-
resolution images in following steps. These low- and high-
resolution images are represented by using the YCbCr chan-
nels, and only Y channel of these images are used during
training and testing POL. Secondly, all of low- and high-
resolution images are blocked into pairs of image patches for
training and testing POL. The size of each image patch is
denoted as w×w. The value of w will be specified in different
experiments.

B. Characters of POL

1) Effects of the patch size: The effects of the size of image
patches is shown by considering the variation of PSNRs and
SSIMs of more than 300 super-resolved images. The sizes of
image patches vary from 3 × 3 to 27 × 27 with a step of 2
pixels, and the overlap equals to w− 2. Both ratios of PSNRs
and SSIMs ρPSNR and ρSSIM defined as

ρPSNR =
PSNRs of w × w

PSNRs of 3× 3
, (10)

ρSSIM =
SSIMs of w × w

SSIMs of 3× 3
, (11)
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Fig. 2. Effects of the patch sizes: The patch sizes corresponding to the
horizontal axis vary from 3 pixels to 27 pixels with a step of 2 pixels.
ρPSNR and ρSSIM corresponding to the vertical axis show the degree of
improvement when different patch sizes are used. The PSNR and SSIM of
POL corresponding to the patch size of 3 pixels are separately used as the
baseline.

are used to show the performance of POL given different sizes
of image patches, where w varies from 3 to 27 with a step of
2. The curves of ρPSNR and ρSSIM are shown in Fig. 2 where
horizontal axis corresponds to the size of image patches, and
vertical axis corresponds to the values of ρPSNR and ρSSIM .
According to both curves of ρPSNR and ρSSIM , POL could
benefit from the larger size of patches because ρPSNR and
ρSSIM almost get larger along with the enlargement of the
sizes of patches. Meanwhile, the improvement of ρPSNR and
ρSSIM gets slight and the standard deviation gets larger when
the size of patches w is larger than 11 pixels. We think these
facts show that POL could adopt more complex information
from image patches because larger image patches will contain
more complex structures than the smaller ones, however, POL
cannot be well trained by too complex structure information
from too large image patches. Therefore, the size of patches
w sets to be 11 for balancing the performance of PSNR and
SSIM of POL in the following.

2) Effects of the pairwise operators: According to the
definition of matrix multiplication, pairwise operators learned
by POL contain respectively column and row information for
describing the relation between low- and high-resolution image
patches. The column and row information connected with left
and right multiplication operators is detected by observing the
ratios of PSNR and SSIM which are defined as

τPSNR =
PSNRs of (Lk, Rk)

PSNRs of baseline
, (12)

τSSIM =
SSIMs of (Lk, Rk)

SSIMs of baseline
, (13)

where the baseline means the mapping defined by the first
pair of left and right multiplication operators. It should be
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noticed that the first right multiplication operator R1 is defined
as an identity operator according to Alg. 1, which means no
more than trivial column information of low-resolution image
patches is introduced into the process of super-resolution.
Therefore, the variation of both ratios of τPSNR and τSSIM

could reflect if more information is introduced into the process
of super-resolution by using nontrivial right multiplication
operators. Because of the symmetry of left and right multipli-
cation operators, the effects of left multiplication will coincide
with the effects of right ones.

Similarly, more than 300 test images are used to measure
the effects of left and right multiplication operators learned by
different optimization iterations. All experimental results are
shown in Fig. 3 where the vertical axis correspond respectively
τPSNR in subfig. 3(a) and τSSIM in subfig. 3(b), and both
horizontal axis correspond to the number of optimization
iterations.

According to Fig. 3, the means of τPSNR will increase
from 1 to 2.2, and the means of τSSIM will increase from
1 to 1.4 along with the increase of the number of iterations.
This demonstrates that some meaningful information is grad-
ually learned by the iteration optimization method reported
in Alg. 1 because the performance of the learned pairwise
operators (Lk, Rk) is gradually improved in terms of PSNR
and SSIM along with the increase of the number of optimiza-
tion iterations. It could be also observed that the significant
improvement of the means of τPSNR and τSSIM appears after
the second iteration. It should be noticed that the first pair of
nontrivial left and right multiplication operators was learned
after two iterations. Considering the algebraic meaning of the
right multiplication matrix, this pair of learned left and right
multiplication operators brings row and column information of
image patches into the matrix-value regression model. Because
row and column information is simultaneously used in the
learned matrix-value regression model, the performance of
Alg. 1 is more promising.

The convergence of the means of τPSNR and τSSIM shows
the convergence of Alg. 1. It is clear in Fig. 3 that the curves
of the means of τPSNR and τSSIM approximate a line when
the number of iterations gets large enough. Meanwhile, the
variances of τPSNR and τSSIM get larger when the number
of iterations gets larger. Both facts show that the power of
learning more meaningful information is decaying along with
the increase of the number of iterations. According to the
experimental results shown in Fig. 3, the means of τPSNR

and τSSIM cannot change significantly after 10 iterations. The
experimental evidence shows that Alg. 1 will converge at the
very beginning. Therefore, Alg. 1 will be stopped after 10
iterations in the following experiments.

C. Performance of POL

1) Quality of super-resolved images: Three groups of
super-resolved images are shown in Figs. 4, 6, 8, 10 and 12
for comparing the performance of POL with the other known
super-resolution algorithms in term of vision. For showing
the visual quality of super-resolved images more clearly, the
corresponding local images are also shown in Figs. 5, 7, 9, 11

5 10 15 20 25 30 35 40 45 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Number of iterations

R
at

io
 o

f P
S

N
R

(a) Curve of τPSNR

5 10 15 20 25 30 35 40 45 50
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of iterations

R
at

io
 o

f S
S

IM

(b) Curve of τSSIM

Fig. 3. Effects of the pairwise operators: The horizontal axis corresponds
to the number of iterations which varies from 1 to 49 with a step of 1.
τPSNR and τSSIM show the change of PSNR and SSIM against to the
baselines when the number of iterations becomes larger where the first-round
experimental results of PSNR and SSIM used separately as the baselines.

and 13. Related experimental results about PSNR/SSIM and
FSIM/VSI are reported in Tab. II.

As shown in Tab. I, the algorithms compared with POL use
different strategies to training themselves and reconstructing
super-resolved images. BINT uses pixel-based information,
and MF, DL and SNE employ the vector-based information
which relates with the feature vectors extracted from images.
MVOR and IPO designed with the similar strategy of POL
focus on patch-based information which directly relates with
the image patches generated from training and test images.
Because of the difference in training strategies, the different
performance of recovering high-resolution images with dif-
ferent super-resolution algorithms could be found from the
following super-resolved images and the corresponding quan-
titative experimental results. Generally, all of these qualitative
and quantitative experimental results show the patch-based
information is more attractive than the other two.

In Fig. 4, the picture Zebra is used to test the performance
of different super-resolution algorithm in recovering black and
white stripe. According to the local images shown in Fig. 5,
it is clear that the performance of the patch-based methods
including MVOR, IPO and POL is better than the vector-
based and pixel-based methods because less black diffusion
is found in the white area of the zebra, for example the
subfigures 5(h), 5(i), and 5(j). Comparing the performance of
these triple patch-based algorithms, the super-resolved image
generated by MVOR is more obscure than IPO’s and POL’s.
Meanwhile, the quantitative results shown in Tab. II are shown
that the performance of POL is better than IPO’s in terms
of PSNR/SSIM and FSIM/VSI. We think that all of these
experimental results show that the image patches could offer
more information for training a super-resolution algorithm, and
the pairwise operator used in POL is more effective than single
left multiplication operator used in MVOR or IPO in extracting
the information of image patches.

Additional experimental results show the similar phenom-
ena. The super-resolved images of the picture Butterfly (Fig. 6)
are used to show the performance of preserving the structure
constructing by slim lines. In Fig. 7, the super-resolved image
(Fig.7(j)) generated by POL preserve more structure of the
butterfly’s wing similar to the ground truth shown in Fig. 7(a).
Especially, comparing the low right part of these local images
shown in Fig. 7, the edges of the texture shown in Fig. 7(j) are
clearer and sharper. The experimental results shown in Fig. 8
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(a) Ground
truth

(b) BINT (c) MF (d) DL (e) RDL

(f) MLP (g) SNE (h) MVOR (i) IPO (j) POL

Fig. 4. Zebra: Ground truth and super-resolved results of different single-
image super-resolution algorithms.

are used to comparing the performance of all considered super-
resolution algorithms in preserving the structure consisted of
little points. According to the results shown in Fig. 9, it is
hard to identify the little points on the super-resolved lily
generated by the point-based method (BINT) and the vector-
based methods (MF, DL and SNE). However, more point
structures could be recognized on the images generated by
patch-based methods (MOVR, IPO and POL). Among these
super-resolved images generated by MOVR, IPO and POL,
the performance of POL is better than the other two in terms
of PSNR, SSIM, FSIM and VSI because of using pairwise
operator to extracting row and column information of image
patches. The test image of Tablecloth (Fig.10(a)) is used to
test the performance of preserving the structure of mesh. All
super-resolved results of Tablecloth are shown in Fig. 10. Just
as the super-resolved results shown in Fig. 11, only the super-
resolved results generated by IPO and POL show a mesh-style
structure which is similar to the ground truth structure. The
performance of super-resolving characters is also tested even
though the images of characters are out of the range of the
training images. The super-resolved results of Characters are
shown in Fig. 12. Observing the local images shown in Fig.
13, the arc structure of the character ’g’ is well preserved by
the super-resolved result of POL. Though similar phenomena
could be found in the super-resolved results of SNE, MVOR,
and IPO, POL’s result is better than the others in terms of
PSNR and SSIM.

The quantitative experimental results including PSNR,
SSIM, FSIM and VSI of all super-resolved results shown
in Tab. II support the qualitative experimental results shown
above in most cases. According to Tab. II, the optimal exper-
imental results belong to POL with high probability.

2) CPU time of training and test: All of these super-
resolution algorithms are trained and tested on the per-
sonal computer with an Intel(R) Core(TM) i3-3217U
CPUs(1.80GHz) and 2.00GB RAM. No parallel technique
is used in all super-resolution algorithms tested by us. All
experimental results on CPU time are reported in Tab. III.

According to Tab. III, the patch-based algorithms have more
advantages than vector-based algorithms in training and testing
CPU time because of replacing the vector calculation by the
matrix calculation. More detailed discussions on the efficiency
of using matrix calculation in the field of single-image super-
resolution have reported in [9] or [8]. The CPU time of training
POL is slightly longer than the time of training the fastest

(a) Ground
truth

(b) BINT (c) MF (d) DL (e) RDL

(f) MLM (g) SNE (h) MVOR (i) IPO (j) POL

Fig. 5. Local images of the ground truth and super-resolved Zebra

(a) Ground
truth

(b) BINT (c) MF (d) DL (e) RDL

(f) MLM (g) SNE (h) MVOR (i) IPO (j) POL

Fig. 6. Butterfly: Ground truth and super-resolved results of different single-
image super-resolution algorithms.

(a) Ground
truth

(b) BINT (c) MF (d) DL (e) RDL

(f) MLM (g) SNE (h) MVOR (i) IPO (j) POL

Fig. 7. Local images of the ground truth and super-resolved Butterfly

(a) Ground
truth

(b) BINT (c) MF (d) DL (e) RDL

(f) MLM (g) SNE (h) MVOR (i) IPO (j) POL

Fig. 8. Flowers: Ground truth and super-resolved results of different single-
image super-resolution algorithms.
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TABLE II
PSNR/SSIM AND FSIM/VSI OF SUPER-RESOLVED RESULTS

PPPPPPAlg.
Fig. Zebra Butterfly Flowers Tablecloth Characters

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
BINT 24.4384/0.788871 22.6693/0.863462 15.6736/0.662267 17.6842/0.685531 14.5375/0.809692
MF 25.7421/0.733008 27.1119/0.838649 26.4377/0.743447 25.6724/0.706499 23.0025/0.851883
DL 26.9204/0.82603 28.9778/0.899462 27.7657/0.816394 26.067/0.745366 23.6447/0.833726

RDL 26.7247/0.81703 28.1662/0.881333 27.3581/0.802569 26.2163/0.742701 23.5181/0.843319
MLM 26.8085/0.827681 28.2182/0.915265 27.7872/0.80445 26.2015/0.75388 23.9364/0.899195
SNE 26.0683/0.764756 27.6428/0.865422 27.0133/0.779194 25.8126/0.719243 23.4302/0.871481

MOVR 26.729/0.800548 28.2125/0.884023 27.4539/0.806092 26.0899/0.736519 23.5517/0.884761
IPO 27.4663/0.841975 29.7314/0.917275 27.7891/0.822953 26.8912/0.775717 24.6545/0.879675
POL 28.1477/0.851719 29.7752/0.924526 28.213/0.830801 26.9117/0.782724 24.7798/0.885434

FSIM/VSI FSIM/VSI FSIM/VSI FSIM/VSI FSIM/VSI
BINT 0.937812/0.97591 0.888631/0.963502 0.844818/0.952489 0.951883/0.984445 0.79902/0.932565
MF 0.930198/0.972148 0.872506/0.956238 0.831981/0.945701 0.944816/0.982696 0.794457/0.932518
DL 0.959794/0.985435 0.902297/0.967317 0.865558/0.956997 0.958477/0.987229 0.79982/0.928281

RDL 0.951038/0.98.213 0.887987/0.96317 0.869205/0.958313 0.958173/0.986899 0.775652/0.922208
MLM 0.97516/0.989241 0.923941/0.971373 0.860927/0.959041 0.969587/0.988804 0.845651/0.948148
SNE 0.921663/0.967473 0.881482/0.95959 0.838037/0.948869 0.940772/0.980121 0.825859/0.94249

MOVR 0.941763/0.976147 0.882229/0.960313 0.844301/0.951027 0.952567/0.9838 0.820513/0.939563
IPO 0.955805/0.984365 0.911859/0.970025 0.860528/0.956934 0.969569/0.989993 0.810684/0.934826
POL 0.966494/0.987869 0.910226/0.969887 0.868662/0.959302 0.968868/0.989866 0.807559/0.934364

(a) Ground
truth

(b) BINT (c) MF (d) DL (e) RDL

(f) MLM (g) SNE (h) MVOR (i) IPO (j) POL

Fig. 9. Local images of the ground truth and super-resolved Flowers

(a) Ground
truth

(b) BINT (c) MF (d) DL (e) RDL

(f) MLM (g) SNE (h) MVOR (i) IPO (j) POL

Fig. 10. Tablecloth: Ground truth and super-resolved results of different
single-image super-resolution algorithms.

algorithm MVOR, however its testing CPU time is much
faster than MOVR’s because a larger patch size is used in
POL. Similar to POL, a larger patch size is also used in
IPO, however the CPU time of training IPO is significantly
longer than POL’s because square optimization is used in
IPO. Therefore, by employing pairwise operator to describe
the relation between low- and high-resolution image patches,
POL could well balance the CUP time of training and testing.

(a) Ground
truth

(b) BINT (c) MF (d) DL (e) RDL

(f) MLM (g) SNE (h) MVOR (i) IPO (j) POL

Fig. 11. Local images of the ground truth and super-resolved Tabelcloth

(a) Ground
truth

(b) BINT (c) MF (d) DL (e) RDL

(f) MLM (g) SNE (h) MVOR (i) IPO (j) POL

Fig. 12. Characters: Ground truth and super-resolved results of different
single-image super-resolution algorithms.

3) Size of learned models: In Tab. III, the sizes of stor-
ing learned models by different algorithms are reported. It
is clear that all training samples should be stored for MF
which means very large size of data is needed. In fact, the
largest storage size belongs to MF. All patch-based algorithms
including MOVR, IPO and POL just need significantly small
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(a) Ground
truth

(b) BINT (c) MF (d) DL (e) RDL

(f) MLM (g) SNE (h) MVOR (i) IPO (j) POL

Fig. 13. Local images of the ground truth and super-resolved Characters

size to store the learned models. Especially, the smallest size
belongs to MOVR. Therefore, patch-based algorithms are also
more efficient in storing learned models than other mentioned
algorithms.

V. CONCLUSION

In this paper, we discussed a novel operator learning method
for single-image super-resolution which describes the relation
between low- and high-resolution image patches with a pair of
left and right multiplication operators. By using left and right
multiplication simultaneously, the raw and column information
between low- and high-resolution image patches which are
represented by matrices could be separately described. In
subsection IV-B, we empirically showed that the pairwise
operator learning method is more effective than the existing
left operator learning methods which just benefit from column
information of image patches. Additional experimental results
shown in subsection IV-C also indicated that the performance
of POL is not only competitive to some existing vector- and
matrix-based single-image super-resolution algorithms but also
efficient in training and testing processes. Moreover, the size
of storing the learned model is far smaller than most existing
single-image super-resolution algorithms.
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