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Hetero-manifold Regularisation for Cross-modal
Hashing
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Abstract —Recently, cross-modal search has attracted considerable attention but remains a very challenging task because of the
integration complexity and heterogeneity of the multi-modal data. To address both challenges, in this paper, we propose a novel
method termed hetero-manifold regularisation (HMR) to supervise the learning of hash functions for efficient cross-modal search. A
hetero-manifold integrates multiple sub-manifolds defined by homogeneous data with the help of cross-modal supervision information.
Taking advantages of the hetero-manifold, the similarity between each pair of heterogeneous data could be naturally measured by
three order random walks on this hetero-manifold. Furthermore, a novel cumulative distance inequality defined on the hetero-manifold
is introduced to avoid the computational difficulty induced by the discreteness of hash codes. By using the inequality, cross-modal
hashing is transformed into a problem of hetero-manifold regularised support vector learning. Therefore, the performance of
cross-modal search can be significantly improved by seamlessly combining the integrated information of the hetero-manifold and the
strong generalisation of the support vector machine. Comprehensive experiments show that the proposed HMR achieve advantageous
results over the state-of-the-art methods in several challenging cross-modal tasks.

Index Terms —Cross-modal hashing, Manifold regularisation, Information propagation, Hinge loss constraint, Cumulative distance
inequality.

✦

1 INTRODUCTION

SEARCHING is dramatically changed by the amount and the
appearance of multi-modal data. Multi-modal data are het-

erogeneous and large-scale because of the advancement of digital
technologies and the Internet. Both of these fundamental charac-
teristics of multi-modal data require measuring the cross-modal
similarity when developing any searching algorithms by hashing.

To bridge the gap between modalities, various straightforward
strategies have been developed to learn the cross-modal similarity.
Some methods focus on the supervision information including
correspondences [1], semantic correlation [2], pairwise sets [3]
and semantic affinities [4] between heterogeneous data, while
others including composite multiple information sources [5], α-
average technique [6], [7], Markov random field [8] and deep neu-
ral networks [9] emphasise the value of homogeneous manifold
in the problem of multi-modal similarity learning in a common
space.

However, despite the progress made by existing methods
considering certain aspects of the problem, cross-modal search
remains a very challenging task because of the integration com-
plexity and heterogeneity of the multi-modal data. In fact, the
nature of multi-modal data is a combination of heterogeneity and
the homogeneity. Thus, in cross-modal search, the cross-modal
and within-modal similarity information should be simultaneously
considered. On the one hand, the methods developed based on
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supervision information mainly focus on the similarity information
of heterogeneity without considering the homogeneous informa-
tion, but it is obvious that the within-modal similarity benefits
to capture the intrinsic geometric structure. On the other hand,
the methods generated by emphasising within-modal similarity
decompose multi-modal data into a set of uni-modal data, which
means multi-modal similarity learning cannot be treated as a
whole because more than one manifold are needed to represent
both cross-modal and within-modal similarities. Therefore, it is
necessary toconnect and integrate all information from data
in different modalities to describe the diversity of the world.
To achieve this, the key of cross-modal search is to overcome
the obstacle of multiple modalities by considering both the local
geometric and global supervision information.

In this paper, by integrating the supervision information and
the local structure of heterogeneous data, a novel method termed
hetero-manifold regularisation (HMR) is proposed to learn hash
functions for efficient cross-modal search. Three significant ad-
vantages are illustrated in the schematic diagram of a hetero-
manifold shown in Fig.1. Firstly, a hetero-manifold well describes
the local information by representing homogeneous data on the
sub-manifolds. In Fig.1, the data in three different modalities
are represented by three sub-manifolds which well model the
relationship between homogeneous data. Secondly, the hetero-
manifold emphasises the global information of multi-modal data
as well, by modelling theinformation propagationacross modal-
ities with three-order random walks. It is clear in Fig.1 that
any pair of points could be connected via two steps on homo-
geneous sub-manifolds and one step crossing two different sub-
manifolds. Thus, the samples across modalities could be compared
by integrating the information from all related homogeneous
sub-manifolds. Lastly, the hetero-manifold is flexible and can
be extended to model any number of modalities. As far as we
know, most of existing cross-modal searching algorithms either
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Fig. 1. A hetero-manifold with three modalities: the blue, red and green
closed curves represent three uni-modal data sub-manifolds; the lines
used to connect two uni-modal data sub-manifolds constitute a cross-
modal sub-manifold; all uni- and cross-modal sub-manifolds constitute a
hetero-manifold; any change of a uni- or cross-modal sub-manifold will
result in a change of the hetero-manifold.

are limited to two modalities [2], [9], [10], [11], [12], [13] or
strive to cope with more than two modalities but are still evaluated
on the datasets with only two modalities [5], [14], [15].

Given a training set, the inherent similarity of multiple modal-
ities on the hetero-manifold is represented by the hetero-Laplacian
matrix. Thus, by minimising the regularisation item via the graph
hetero-Laplacian, a set of cross-modal hash functions which are
smooth on the hetero-graph can be learned to embed original
data points into a Hamming space. In other words, the learned
hash functions will preserve the geometrical structure and global
supervision information of the hetero-manifold. Meanwhile, a
novel weighted cumulative distance inequality on hetero-graph
is introduced to cross the gap between Hamming distance and
Euclidean distance. By using this novel distance inequality, the
problem of learning hash functions is transformed into training a
hetero-manifold regularised support vector machine.

In summary, our contributions are four-fold: (1) A novel
hetero-manifold is firstly proposed as a well-defined platform to
capture both local information of sub-manifolds corresponding
to homogeneous data and global information of hetero-manifold
corresponding to multi-modality data. (2) A weighted cumula-
tive distance inequality on the hetero-manifold is provided to
theoretically guarantee the reasonability of replacing Hamming
distance by Euclidean distance during supervised learning. (3) A
novel hetero-manifold regularised support vector machine, taking
advantages of the hetero-manifold in representing the information
of multi-modality data and the support vector machine in gener-
alisation, is proposed based on the proposed weighted cumulative
distance inequality for generating more efficient hash functions
for cross-modality searching. (4) Extensive experiments on the
multi-modality data with six modalities are reported for showing
the flexibility of the hetero-manifold regularised support vector
machine as more than two modalities are considered.

The rest of this paper is organised as follows. The related
work is introduced in Sec.2. In Sec.3, constructing a Hetero-
manifold for the multi-modal data is detailed. Next, based on
this Hereo-manifold, learning a set of hash functions for cross-
modal retrieval is presented in Sec.4. Then, Sec.5 provides a
sequential strategy to solve a complicated objective function. Sec.
6 illustrates comprehensive experimental results for four datasets.
Section7 draws our conclusions.

2 RELATED WORK

The cross-modal similarity is generally established by mapping
multi-modal data into a common space. The projection based
method is motivated by the fact that multi-modal data are used
to represent common objects. For example, in [1], a non-linear
dimension reduction technique is introduced for cross-modal re-
trieval, where bimodal data are represented in a common low-
dimensional Euclidean space and the cross-modal similarity is
defined by using the Euclidean distance in the learned space.
Mao et al. [2] propose a cross-modal retrieval algorithm based on
parallel field alignment in which heterogeneous data are mapped
into a common Euclidean space to measure the similarity between
heterogeneous data. Deep learning [9], [14], [16] is also employed
to learn a common feature space which could be shared by hetero-
geneous data. Similar to classical discriminant analysis methods,
in [3], two pairwise sets (must-link and cannot-link) on the cross-
modal samples are considered to learn a similarity function. More
references can be found [12], [17], [18], [19], [20], [21], [22].

The Hamming space is more attractive than the Euclidean
space because of its efficiency of searching in a large-scale multi-
modal dataset [23]. Some existing cross-modal search algorithms,
such as [5], [15], [24], adopt an ideal hash coding restriction that
heterogeneous data representing common objects share the same
hash coding. Others, such as [10], [11], [25], [26], [27], accept
a more relaxed hash coding restriction that heterogeneous data
representing common objects share similar binary codes which
means the Hamming distance of their binary codes, should be
small enough. Some other interesting methods could be found
[23], [28], [29], [30], [31], [32].

Many works of cross-modal search adopt the manifold concept
to model multi-modal data, however, the motivations of construct-
ing the manifold are different. Firstly, multi-modal data are treated
as an ensemble of homogeneous data, which are modeled as
multiple homogeneous manifolds, such as [2], [5], [6], [33]. For
example, Gaoet al. [33] constructed a similarity graph matrix
for each uni-modal feature or label feature, and then learned an
optimal similarity graph matrix for the given multi-modal data
by fusing the similarity information of uni-modal similarity graph
matrices and the label information with semi-supervised learning.
Secondly, a cross-modal manifold is constructed whereas uni-
modal manifolds are omitted, such as [1]. In [1], Mahadevanet
al.focused on using covariance between the labels of different
modal data to measure the similarity between cross-modal data.
Lastly, both uni- and cross-modal manifolds are adopted to model
the similarity relation between multi-model data. For example,
Masci et al. [34] use two uni-modal manifolds and one cross-
modal manifold to represent bi-modal data; however, the informa-
tion of these two uni-modal manifolds cannot be used at the same
time because of the usage of gradient based optimization. Zoidiet
al. [35] employed a high-order similarity matrix (similarity tensor)
to represent the similarity information of uni- and cross-modal
data. Amiri and Jamzad [36] modeled the similarity information
of multi-modal data with a supergraph in which the similarity
information of uni-modal data is represented by a subgrahp of the
supergraph and the similarity information between cross-modal
data is modeled by the connected weights between subgraphs.

Besides manifold-related methods, other techniques are also
explored for cross-modal retrieval. For example, Masciet al. [34]
proposed a novel deep learning framework to simultaneously learn
multiple hash functions for preserving multi-modal similarity.
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Songet al. [37] proposed another deep learning framework for
integrating semi-supervised similarity learning and hash function
learning. Lai et al. [38] proposed deep neural networks for
simultaneous feature learning and hash functions learning. Zhu
et al. [18] proposed a cross-modal dictionary learning framework
for representing multi-modal features with common sparse codes.
Pereiraet al. [17] paid more attention on the role of semantic
correlation matching in multi-modal retrieval. More references for
similarity search on locality sensitive hashing and learning to hash
can be found in [39], [40].

The methods, such as [2], [5], [15], [19], support our view that
exploiting the manifold structure is very important for boosting
the performance of cross-model retrieval. However, no general
frameworks for multi-modalities are available, no higher-order
relationships have been considered, and, except for CHMIS [5],
most existing methods can hardly be extended to more complex
multi-modalities. As stated before, in this paper, a general-purpose
multi-modal graph embedding framework, which can preserve the
uni-modal local structure and cross-modal similarity of high-order
random walks, is proposed for cross-modal hashing.

3 HETERO-MANIFOLD OF MULTI -MODAL DATA

Let O = {O1, O2, · · · , ON} be a set containingN objects. For
theu-th modality,O is recorded as adu × N matrix Xu where
thei-th column vector ofXu, xu

i corresponds toOi, 1 ≤ u ≤ M ,
M is the number of modalities, anddu is the dimension ofxu

i .
Generally, the number of modalities is larger than2, i.e.,M ≥ 2.

A hetero-manifold is an ensemble of uni- and cross-modal
sub-manifolds. Uni-modal sub-manifolds are the manifolds whose
elements corresponding to different objects share a common
modality. For example,Xu is a dataset in which all samples are on
the u-th uni-modal sub-manifold. It is clear that uni-modal sub-
manifolds are used to represent the intra-structure of uni-modal
data. In contrast, cross-modal sub-manifolds serve as bridges to
connect different uni-modal data. Ideally, any pair of data points
on different uni-modal sub-manifolds could be connected via a
path on the cross-modal manifolds and the distance of the path
could be used to represent the similarity between the cross-modal
data.

Given training samples, the hetero-manifold could be repre-
sented as a hetero-graphG = (V,S), whereV is the set of
vertices andS is the set of edges. In this paper,V contains
all feature matricesX1, X2, · · · , XM , and the edge between
two vertices is defined as the similarity measurement between
these two vertices. Following the idea of the hetero-manifold, a
hetero-graph could be decomposed into a set of sub-graphs on
the homogeneous sub-manifolds and a set of sub-graphs on the
cross-modal sub-manifolds. Generally, both sub-graphes could be
defined as follows:

Definition 1. Uni-modal sub-graph. Guu = (V uu, Suu) is a
uni-modal sub-graph, if all vertices in this graph come fromXu.

Definition 2. Cross-modal sub-graph. Guv = (V uv, Suv) is a
cross-modal sub-graph, if, for each edge of this graph, one vertex
comes fromXu and the other vertex comes fromXv.

Definition 3. Hetero-graph. G = (V,S) is a hetero-graph, if,
its vertices correspond to all multi-modal dataX1, X2, · · · , XM ,

and the similarity matrixS satisfies

S =









S11 S12 · · · S1M

S21 S22 · · · S2M

· · · · · · · · · · · ·
SM1 SM2 · · · SMM









, (1)

whereS(xu
i , x

v
j ) = Suv(xu

i , x
v
j ).

Three-order random walks on the hetero-graph is used to
model the information diffusion among the vertices on the hetero-
graph. For each pair of verticesxu

i , x
v
j on the hetero-graph, the

connection between them consists of three steps: from the endxu
i

to a possible neighbour ofxu
i , from the neighbour ofxu

i to the
neighbour ofxv

j , and from the neighbour ofxv
j to the endxv

j ,
just like the path shown in Fig.2. On the one hand, for the first
and third steps, the neighbours of the end must be represented
in a common modality. Thus, the similarity betweenxu

i and its
neighbourxu

i′ is generally measured by a Gaussian kernel, such as

Su(xu
i , x

u
i′) = exp{−

||xu
i − xu

i′ ||
2

σ2
}, (2)

where σ 6= 0 is a kernel parameter. Similarly, the similarity
Sv(xv

j , x
v
j′ ) betweenxv

j and its neighbourxv
j′ for the third step

can be also defined by the Gaussian kernel.
On the other hand, for the second step, the similarity between

xu
i′ andxv

j′ should be defined according to the different situations
of their modalities. Ifxu

i′ andxv
j′ share a same modality where

u = v, the similarity between them could be defined according to
their neighborhood relationship, such as:

Puv(xu
i′ , x

v
j′ ) =

{

1, Su(i′, j′) ≤ δ,
0, Su(i′, j′) > δ,

(3)

where δ ≥ 1 is a parameter for controlling the connection
between two points on a uni-graph. Otherwise, ifxu

i′ andxv
j′ are

represented in different modalities, the similarity between them
should be defined according to the credible priori. For example,
the similarityPuv(xu

i′ , x
v
j′ ) betweenxu

i′ andxv
j′ could be set to

be1 if they correspond to a same object, and set to be0 otherwise.
More meaningful priori depending on a particular task can be used
here, such as labels [41], semantic affinities and correlations.

Thus, all possible one-order similarities between the vertices
on a uni- or cross-modal sub-graph could be respectively repre-
sented by the two kinds of matricesSu andPuv . Furthermore, in
this paper, we assume that the priori matrixPuv satisfies:

Puv = (P vu)T . (4)

By combining these one-order similarities, the similarity infor-
mation diffusion model could be defined by a three-order random
walk as

Suv = SuPuvSv. (5)

As a special case, the similarity matrix of a uni-modal sub-graph
is Suu = SuPuuSu. The similarity matrixSuv satisfies the
following Lemmas.

Lemma 1. Non-negativity. The elements of similarity matrixSuv

are non-negative.

Lemma 2. Asymmetry. In general, if two matricesSuu andSvv

are unequal,Suv is an asymmetric matrix.
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Fig. 2. Cross-modal similarities between features of two objects Oi and
Oj captured in two modalities. The lines represent the similarity between
two points. The longer the lines, the less similar the two points are.
The black lines represent the uni-modal similarity while the dashed lines
represent the similarity defined by three-order random walks from one
modality to another modality. Among them, we can see that the features
x1
1 and x2

2 are connected by two red dashed lines whilst the two features
x1
2 and x2

1 are connected by only one dashed blue line. This point reflects
the asymmetry of Suv in Lemma 2.

Lemma 3. Equivalence. Any pair of similarity matricesSuv and
Svu satisfies the relationship:

Suv = (Svu)T . (6)

Therefore, the similarity matrixS on the hetero-graph satisfies
S = ST . Lemma1 is a result of the non-negativeness of Gaussian
kernel (2) and the definition ofp(xu

i′ , x
v
j′ ). Lemma2 is the result

of the definition of matrix multiplication. The proof of Lemma3
can be found in AppendixA.

Lemma1 is the theoretical base of learning hash functions
on a hetero-manifold. Lemma2 unveils the intrinsic barrier of
treating a multi-modal problem in a cross-modal view because of
the asymmetry of both similarity matricesSuv andSvu. Lemma
3 hints the advantages of the global view to understanding multi-
modal data as the hetero-manifold because of the symmetry of the
similarity matrix on the hetero-manifoldS. See Fig.2 for more
details.

4 HASH FUNCTION LEARNING ON THE HETERO -
MANIFOLD

A hetero-manifold integrates multi-modal data into a common
manifold, however, a huge gap still exists for efficient cross-modal
retrieval because of the difference of different modalities. To this
end, a framework of hetero-manifold regularised hash function
learning is introduced to embed multi-modal data into a common
Hamming space and simultaneously preserve the cross-modal and
within-modal similarities on the hetero-manifold.

For theu-th uni-modal dataXu, a set of functionsFu =
{fu

k , 1 ≤ k ≤ K} is used to generate the hash codes ofXu,
where K is the length of codes. Using these functionsFu,
for each samplexu

i , a vector of real values1 F (xu
i ) =

(fu
1 (x

u
i ), f

u
2 (x

u
i ), · · · , f

u
K(xu

i ))
T ∈ RK can be obtained. Then,

a binary code vectoryui of xu
i can be learned by usingyui =

(F (xu
i ))+, where (·)+ is an operator which sets all positive

1. For simplicity,F (xu
i ) = Fu(xu

i ) without confusion.

numbers to1 and other numbers to0. Specifically, we have the
k-th element ofyui :

yui (k) = (fu
k (x

u
i ))+. (7)

4.1 Distance inequality on a graph

In general, learning to hash tries to minimise a cumulative Ham-
ming distance with some constraints. If the distance is defined on a
manifold, then a weighted cumulative Hamming distanceLh

c (G)
should be minimised.

Lh
c (G) =

M
∑

u,v=1

N
∑

i,j=1

Suv(xu
i , x

v
j )Dh(y

u
i , y

v
j ), (8)

whereDh(y
u
i , y

v
j ) is the Hamming distance betweenyui andyvj .

Actually, the weights between the samples embody the intrinsic
structures and useful information including local neighbourhood,
prior semantic cues and affinities. By considering these weights,
the original structure and information can be preserved in a new
learned space. In this paper, the weights reflect the information
contained in the hetero-manifold.

Meanwhile, besides the Hamming distance, for any pair of
pointsxu

i andxv
j on graphG, an accompanied Euclidean distance

can be defined asDe(F (xu
i ), F (xv

j )) = ||F (xu
i ) − F (xv

j )||
2
2.

Same as Hamming distance, a weighted cumulative Euclidean
distance on graph(G,S) is given as:

Le
c(G) =

M
∑

u,v=1

N
∑

i,j=1

Suv(xu
i , x

v
j )De(F (xu

i ), F (xv
j )). (9)

Normally, during the matching stage, the Hamming distance is
far less computationally expensive than the Euclidean distance.
However, despite the simplicity in Eq.8, minimisation of the
Hamming distance is generally intractable, because it is a con-
crete quantity. Thus, we seek to minimise an alternative item,
which guarantees that the Hamming distance will be minimised
simultaneously.

First, a constraint [42] will be given as follows:

Definition 4. Hinge loss constraint. For a functionfu
k in the

u-th modality, if any pointxu
i captured in this modality and its

corresponding hash code defined in Eq.7 satisfies

yui (k)f
u
k (x

u
i ) ≥ 1− ξuik, (10)

whereξuik is a minimal non-negative value, thusfu
k is the hinge

loss constraint-satisfied function in theu-th modality.

Next, under the above constraint, a distance inequality in the
following can be obtained:

Lemma 4. Distance inequality. If two sets of functionsFu and
Fv are the hinge loss constraint-satisfied functions in modalitiesu
andv respectively, for any two samplesxu

i andxv
j , the two types of

distance in the learned Hamming space and the Euclidean space
have the following relationship, when satisfying∀k, ξuik+ξvjk ≤ 1:

Dh(y
u
i , y

v
j ) ≤ De(F (xu

i ), F (xv
j )), (11)

whereDh andDe are defined in Eq.8 and9, respectively.

It is worth to point out thatfu
k is a hinge loss constraint-

satisfied function only when all the samples in modalityu satisfy
condition 10. And Eq. 11 can be proved, when a condition
∀k, ξuik + ξvjk ≤ 1 is given. We can see thatξuik and ξvjk are
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two minimal non-negative values in the definition of the hinge
loss constraint. If the two modalities are the same (u = v), the
same inequality can be established for any two samples captured
in the same modality.

Then, based on the condition10, we can extend the inequality
11 to a weighted cumulative distance inequality on a graph.

Corollary 1. Weighted distance inequality. For a graphG =
(V,S), if two sets of functionsFu andFv satisfy the condition in
Eq.10, thus the following weighted cumulative distance inequality
can be established, whenS is a similarity matrix with non-
negative members:

Lh
c (G) ≤ Le

c(G). (12)

Consequently, with the help of the inequality in the Corollary
1, a relaxed optimisation problem which will be introduced in
the following section can be generated. In this paper, we will
consider to learn linear hash functions via minimising the upper
boundLe

c(G) of the cumulative Hamming distanceLh
c (G). In

fact, Corollary1 is a direct result of Lemma4. More proof details
of Lemma4 are provided in the AppendixB.

4.2 Objective function

Specifically, the binary codes ofxu
i are defined by linear functions

as yui = (((wu
1 )

Txu
i )+, ((w

u
2 )

Txu
i )+, · · · , ((w

u
K)Txu

i )+)
T =

((Wu)Txu
i )+, whereWu is a matrix whosek-th column vector

iswu
k . Then, for theu-th uni-modal datasetXu, the corresponding

binary code set isY u = ((Wu)TXu)+, in which thei-th column
yui is the binary code vector ofxu

i .
Furthermore, denote projection matrix

WT = ((W 1)T , (W 2)T , · · · , (WM )T ), (13)

and multi-modal data matrix

X =









X1 0 · · · 0
0 X2 · · · 0
· · · · · · · · · · · ·
0 0 · · · XM









. (14)

Thus, the binary codes can be obtained:

Y = (WTX)+. (15)

Using Y u = ((Wu)TXu)+, it is easy to prove thatY =
(Y 1, · · · , Y u, · · · , Y M ). Meanwhile, using Eq.13 and 14, the
cumulative Euclidean distanceLe

c(G) can be rewritten as

Le
c(G) = 2tr(WTXLXTW), (16)

where Laplacian matrix L = D − S, D =
diag(d11, d12, · · · , dui, · · · , dMN ) anddui =

∑

v,j S(x
u
i , x

v
j ).

In this paper,diag is an operator to generate a diagonal matrix.
The detailed proof of Eq.16 is given in AppendixC.

With the hinge loss constraint, the problem of hash function
learning on hetero-manifold (8) could be approximated by min-
imising its upper bound (16) with some constraint conditions:

W∗ = argmin
W

1

2
tr(WTXLXTW) (17)

s.t. ∀u, i, k

(i) yui (k)(w
u
k )

Txu
i ≥ 1− ξuik, ξ

u
ik ≥ 0,

(ii) ξuik + ξujk ≤ 1,

(iii) WTW = I,

where ξuik is a slack variable. The first and second constraint
conditions which are from Lemma4 ensure Euclidean distance
based lossLe

c(G) be the upper bound of the Hamming distance
based lossLh

c (G). The third constraint condition corresponds to
the requirement of orthogonality between two hash functions.

To further simplify the optimisation problem (17), the last
two constraint conditions are slightly relaxed and transferred into
the objective function by using the Lagrangian principle. The
constraint condition (iii) will be considered when the projections
are learned using a sequential strategy. As for constraint condition
(ii), the total number of pairsξuik, ξ

u
jk is M2N2K

2 because of
the structure of the hetero-graph, and eachξuik exists inMN
constraint conditions. Thus all of these constraint conditions can
be summed up and the conditions will be relaxed as

M
∑

u=1

N
∑

i=1

K
∑

k=1

ξuik ≤
MNK

2
. (18)

Therefore, the original optimisation problem (17) is trans-
formed by replacing the constraint conditions(ii) with the relaxed
constraint conditions (18) and using the Lagrangian principle into

W∗ = argmin
W

1

2
tr(WTXLXTW) (19)

+C1

M
∑

u=1

N
∑

i=1

K
∑

k=1

ξuik

s.t. ∀u, i, k

(i) yui (k)(w
u
k )

Txu
i ≥ 1− ξuik, ξ

u
ik ≥ 0

(ii) WTW = I,

whereC1 > 0 is the regularisation parameter.
It should be noticed that the Laplacian matrixL depends on

all uni- and cross-modal similarity matrices because any sole sub-
matrix used to define the similarity matrixS, for exampleSuv,
is not enough for defining the counterpart sub-matrix ofL. It
implies that the Laplacian matrix contains the global information
of the hetero-manifold. Therefore, the optimisation problem (19)
is a hetero-manifold regularised hash function learning problem.

5 SEQUENTIAL OPTIMISATION

In order to solve the problem in Eq.19, we first divide it into sub-
problems, in each of which only one projection for thek-th code
is considered. Thus, in Eq.15, thek-th row vectoryk of Y is a
binary vector which corresponds thek-th bits of all samples in all
modalities while the correspondingk-th column vector ofW is
denoted aswk. Then, we have

yk = (wT
k X)+, (20)

where the vectorwT
k = ((w1

k)
T , (w2

k)
T , · · · , (wM

k )T ).
Although these sub-problems are not independent with each

other, they are convex when all the other variables are fixed. The
convexity will be reflected by the standard quadratic programming
problems in the following Eq.21 and23. Hence, the optimisation
problem (19) could be resolved bit by bit in a sequential way. A
similar work of sequential learning could be found in [43], when
the sub-problems can be solved by a direct eigen-decomposition.
In this paper, more specifically, the local optimal solutionW∗

is learned by sequentially optimising each of its column vec-
tors w∗

k, k = 1, 2, · · · ,K. For distinguishing the iterations of
optimisation, theτ -th W∗ and w∗

k are denoted asW(τ) and
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w
(τ)
k , respectively. In roundτ , before solving the sub-problem,

the binary codesy(τ−1)
k should be initiated using codes in the last

round or generated randomly.

5.1 The first hash function learning

To train the hash functions, the hash codesy
(0)
1 will be randomly

initialised in the first round whenτ = 1. Then,w(1)
1 could be

learned from the optimisation problem

w
(1)
1 = argmin

w1

1

2
wT

1 XLXTw1 (21)

+C1

M
∑

u=1

N
∑

i=1

ξui1

s.t. ∀u, i, yui (1)(w
u
1 )

Txu
i ≥ 1− ξui1, ξ

u
i1 ≥ 0.

The optimisation problem (21) is derived from the problem
(19) where the orthogonal constraint condition becomes zero
because it is assumed thatw

(1)
1 is orthogonal with the other pro-

jection directionsw(1)
k , k = 2, 3, · · · ,K without any information

aboutw(1)
k , k = 2, 3, · · · ,K.

It is clear that the optimisation problem (21) is convex.
Meanwhile, the Lagrange dual of the optimisation problem (21)
is a problem of quadratic programming. Therefore, the optimal
w

(1)
1 could be defined as

w
(1)
1 = (XLXT )−1X(0)

y1
α
(1)
1 , (22)

where X
(0)
y1 = diag(X1

y1
, · · · , XM

y1
)2, the matrix Xu

y1
=

(yu1 (1)x
u
1 , · · · , y

u
N(1)xu

N ), andα(1)
1 is the result of the Lagrange

dual problem of (21). yui (1) is the initial bit fromy
(0)
1 for object

Oi in theu-th modality.

5.2 The following hash function learning

Given w
(1)
1 ,w

(1)
2 , · · · ,w

(1)
k−1, the next optimal projectionw(1)

k

could be defined via the following optimisation problem

w
(1)
k = argmin

wk

1

2
wT

k XLXTwk (23)

+
C2

2
wT

k Q
(1)
k wk + C1

M
∑

u=1

N
∑

i=1

ξui,k

s.t. ∀u, i, yui (k)(w
u
k )

Txu
i ≥ 1− ξui,k, ξ

u
i,k ≥ 0,

where C2 > 0 is a regularisation parameter, andQ(1)
k =

∑k−1
l=1 wlw

T
l which is used to measure the orthogonality between

wk and the other learnedwl, l = 1, 2, · · · , k− 1. It is clear that

wT
k Q

(1)
k wk =

k−1
∑

l=1

(wT
k wl)

2, (24)

where wT
k wl defines the linear correlation betweenwk and

wl. By minimising the termwT
k Q

(1)
k wk, the learned projection

directionw
(1)
k will be approximatively orthogonal to all of the

other learned projection directions. Similar to formula (22), the
optimisation problem (23) could also be resolved by using the
Lagrange dual method

w
(1)
k = (XLXT + C2Q

(1)
k )−1X(0)

yk
α
(1)
k , (25)

2. Without confusion, the subscriptX
y
(0)
1

will be simplified asX(0)
y1

.

whereα(1)
k is the result of Lagrange dual of optimisation problem

(23) andX(0)
yk

will be updated according to the binary vectory
(0)
k .

WhenW(1) is learned according to the formulas (21) and (25),
the followingW(τ), τ = 2, 3, · · · , t could be learned by using a
similar objective function. The differences to problem (21) are the
definition of the orthogonal item:

Q
(τ)
k =

∑

l6=k

w
(τ−1)
l (w

(τ−1)
l )T −w

(τ−1)
k (w

(τ−1)
k )T ,

and, according to the bits learned in the last roundy
(τ−1)
k , the

quantityX(τ−1)
yk

should be also updated. Similarly, the optimal
resultw(τ)

k could be represented as

w
(τ)
k = (XLXT + C2Q

(τ)
k )−1X(τ−1)

yk
α
(τ)
k . (26)

The objective functions in Eq.21and23can be considered as a
general dual problem3, when we defineH = XLXT + C2Q

(1).
Thus, the optimal solution can be obtained by a Representation
Theory in AppendixD. Therefore, all of these steps of optimising
the original optimisation problem (19) can be summarised in
Algorithm 1.

Algorithm 1 Hetero-manifold Regularised Hashing (HMR)

Input: Dataset{X1, · · · ,XM}, parametersC1, C2, the number of iterations
t and the length of hash coding vectorK.

Output: Wt.
Initialisation
(0) Construct matrixS according to Eqs. (2), (5), and (1).
(1) Construct Laplacian graphL according to Eq. (16).
(2) Randomly initiate the binary codesy(0)

1 and calculateX(0)
y1

.

(3) Generate the first projectionw(1)
1 according to Eq. (22).

For k = 2, · · · ,K

(4) Randomly initiate the binary codesy(0)
k

.

(5) CalculateQ(1)
k

andX(0)
yk

.

(6) Generatew(1)
k

according to Eq. (25).

(7) UpdateW(1) andy(1)
k

using Eq.20.
End
For τ = 2, · · · , t

For k = 1, · · · ,K

(8) CalculateQ(τ)
k

andX(τ−1)
yk

.

(9) Generate thek-th projectionw(τ)
k

according to Eq. (26).
(10) UpdateW(τ) andyτ

k
using Eq.20.

End
End
Return

6 EXPERIMENTS

The proposed HMR is validated on four recent public datasets: the
VIPeR [44] and CUHK01 [45] datasets for cross-camera person
re-identification, the Wiki dataset [17] for cross-modal retrieval
and the FG-NET ageing dataset [46] for cross-age face image
retrieval where the number of modalities is6. Four state-of-the-art
cross-modal binary code learning methods, including PDH [10],
CVH [15], CMSSH [24] and CMFH [11], are mainly compared
with and some other area-specific methods are also used for
comparative analysis in our experiments.

Evaluation Metrics: On the one hand, for identification sys-
tems, the Cumulated Matching Characteristics (CMC) [47] are
commonly used for performance evaluation and measuring how
well an identification system ranks the identities in the gallery

3. In the case of Eq.21, the parameter can be set toC2 = 0.
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Fig. 3. Some image examples of the two person re-identification
datasets: VIPeR (left) and CUHK01 (right).
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Fig. 4. The CMC rankings of the compared methods on the VIPeR
dataset with #316 test persons. Numbers in legend are the Rank-1
accuracies and HMR-512 means the length of learned codes of HMR
is 512.

with respect to a probe sample. Moreover, the Area Under Curve
(AUC) corresponding to the CMC curves is also reported to show
the overall performance at ranks from1 to a fixed maximum. A
larger AUC score means the corresponding method is more robust.
On the other hand, for the ranking cases of multiple feedbacks, the
precision and recall are normally calculated:

precision =
|ℑ ∩ ℜ|#
|ℜ|#

, recall =
|ℑ ∩ ℜ|#
|ℑ|#

,

where ℜ is a set of retrieved samples,ℑ is a set of relevant
samples and|· |# denotes the size of the set. Precision-Recall
(PR) curves [48] which are often used in information retrieval are
used to measure performance in cross-modal retrieval. By varying
the similarity measurement between the pair of retrieved samples
(Hamming distance in this paper) and evaluating the precision,
recall and the number of retrieved points accordingly, PR curves
can be obtained. Furthermore, Mean Average Precision (MAP)
[11], which is the average precision at the ranks where recall
changes, is generally used to evaluate a ranking system.

6.1 Cross-camera re-identification

Cross-camera person re-identification is a very challenging task
because of the variation of camera views and the environment.
Given a probe image containing a person, the most popular method
of recognising the person is to rank the similarities between the
probe image and the images in the gallery (captured by other

Method R1 R5 R10 R15 R20 AUC
HMR 0.299 0.590 0.729 0.826 0.880 0.897

CMFH 0.247 0.528 0.712 0.766 0.816 0.871
PDH 0.171 0.449 0.604 0.693 0.778 0.822

CMSSH 0.190 0.437 0.639 0.725 0.791 0.831
CCA 0.168 0.427 0.551 0.633 0.693 0.776
CVH 0.085 0.209 0.294 0.345 0.399 0.551

TABLE 1
Ranking accuracy comparison at ranks 1, 5, 10, 15 and 20 and overall
AUC performance comparison when 512 dimensional binary codes are

learned. R1 denotes Rank 1.

cameras). In this experiment, the similarity is calculated in the
learned Hamming space across the cameras and the maximum
rank of AUC is85.

VIPeR: This dataset contains632 pedestrian image pairs in
an outdoor environment. Each pair contains two images of the
same individual taken from two different camera views. Changes
of viewpoint, illumination and pose are the most significant causes
of appearance change. Each image has been scaled to be128 ×
48 pixels. Some example images in VIPeR are shown in Fig.3
(Left). The experimental setting is the same as [49]. Half of the
dataset including316 images for each view is used for training the
algorithms and the remaining (316 pedestrian) is used for testing.

CUHK01: Two cameras setting in different places of a campus
environment are used to collect the samples. Camera A captures
the frontal view or back view of pedestrians, while camera B
captures the side view. This dataset contains971 persons, each
of which has two images. Some example images in CUHK01 are
shown in Fig.3 (Right). All the images are normalised to 160×60
for evaluations. The experimental setting is the same as [50] where
486 persons are chosen for testing and the remaining persons for
training.

In this experiment, the Local Maximal Occurrence Feature
(LOMO) which was proposed in [51] is used. The original
dimension of the LOMO feature is26960 and then is reduced
to 70 as suggested by [51]. In this experiment, the parametersC1

and C2 of Algorithm 1 are set to20 and2, respectively. All the
results are reported by averaging10 runs.

To compare the performance with the state-of-the-art person
re-identification methods, we evaluate the proposed HMR and the
recently published algorithms on the VIPeR dataset including:
SDALF [52], CPS [53], KISSME [54], eSDC [55], SalMatch
[56], MLF [50] and LADF [57]. For the proposed HMR, two
lengths of binary codes512 and 800 have been learned and
the experimental results corresponded to both code lengths are
denoted as HMR-512 and HMR-800, respectively. The compari-
son results are shown in Fig.4. Firstly, we can see that, except
for LADF, HMR (HMR-512 and -800) significantly outperforms
other methods and the advantages are more obvious especially
at higher ranks (from5 to 60). It is worth to point out that
HMR is the only hashing method among the compared ones
and still achieves comparative results to a non-hashing metric
learning method LADF. In fact, due to quantisation loss, the
performance of hashing methods is normally lower than that of
non-hashing methods in many applications. Secondly, HMR-512
achieves similar results as HMR-800 and this demonstrates that
the performance keeps stable when the code length is above a
certain threshold. Finally, we also compare with other hashing
methods on the VIPeR dataset when the binary code length is
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fixed at5124 and the comparison results are illustrated in Table1.
We can see that, both from the perspectives of ranks1, 5, 10, 15
and20 and the overall performance AUC, HMR achieves much
better results than state-of-the-art hashing methods.

To further compare with other hashing methods, binary codes
of shorter lengths (32, 64 and128) are learned on the CUHK01
dataset. The results are shown in Fig.5 and Table2. We can
observe that, as the code length increases, the performance of
eigenvalue decomposition based methods such as CVH decreases
since the first few projection directions occupy most of variances.
However, it is reasonable that our HMR can achieve better when
the code length increases. More information can be kept because
HMR considers both the orthogonality and the cross-modal in-
trinsic structure. We can see that HMR achieves best results at
all code lengths. Specifically, the advantages of HMR are more
obvious, when the length of learned codes increases. The rank1
scores of the five methods are also shown in the legend of Fig.5
and HMR obtains at least0.024 higher scores than other methods.

Method CVH CMFH PDH CMSSH HMR
32 bits 45.66 65.39 58.96 54.21 67.99
64 bits 38.47 65.37 66.59 54.78 69.36
128 bits 30.13 67.03 69.29 55.15 72.14

TABLE 2
AUC Comparison on CUHK01 corresponding to the curves in Fig. 5.

6.2 Cross-modal retrieval

Images and texts are the two popular modalities for testing cross-
modal retrieval methods. There are several datasets available but
Wiki is the most popular one. Thus, in this experiment, the Wiki
[17] dataset is used for our evaluations.

Wiki: It is generated from the “Wikipedia featured articles”
and consists of2866 image-text pairs in10 most populated
categories. The texts are represented by10 dimensional latent
Dirichlet allocation model and each image has a128 dimensional
SIFT histogram feature. We follow the data partition adopted in
[17] to split the dataset into a training set of2173 pairs and a test
set of 693 pairs. In our setting, both gallery and query samples
are from the test set which is different to the setting in [11]. In
[11], the gallery samples are from the training set and thus their
retrieval results are better than ours. If the query comes from the
test set, then the samples in the text test set will be considered as
the database and vice versa. In this experiment, the parametersC1

andC2 of Algorithm 1 are set as30 and 1.2, respectively. The
number of retrieved instances is set to|ℜ|# = 50.

The MAP results on the test set are shown in Table3. The
same phenomenon of performance reduction as the code length
increases for the eigenvalue decomposition based methods can
be also observed on Wiki. From Table3, we can see that HMR
outperforms the state-of-the-art methods at code lengths32 and
64, and achieves very close scores to the best method at code
length16. Moreover, the Precision-Recall (PR) curves on the Wiki
dataset, which are obtained by varying the Hamming distance
between the query points and the retrieved points, are reported in
Fig. 6. HMR can obtain higher scores for almost all the Hamming
radii from 1 to the maximum at code lengths32 and64 and get a

4. Because of the limitation of covariance, CVH and CCA cannot learn
functions with a number exceeding the rank of the matrix. Thus, best results
are reported at a certain length.

Task Method 16 bits 32 bits 64 bits

Image
Query

CVH 0.2021 0.1668 0.1723
CMSSH 0.2276 0.1940 0.1982

PDH 0.1885 0.1796 0.2086
CMFH 0.2583 0.2567 0.2691
HMR 0.2503 0.2621 0.2833

Text
Query

CVH 0.2560 0.1902 0.2019
CMSSH 0.2483 0.2431 0.2505

PDH 0.2309 0.2278 0.2279
CMFH 0.3192 0.3347 0.3351
HMR 0.3151 0.3408 0.3511

TABLE 3
MAP Comparison on Wiki.

similar PR curve to the best one at code length16. Finally, MAP
performance on each category is shown in Fig.7. The retrieval
difficulties of the10 categories to the five methods are similar and
three of them, i.e., Biology, Geography and Warfare, seem to be
more easily classified. From Fig.7, we can see that HMR is more
robust on different categories over other methods. Very recently,
deep neural networks were also exploited for multi-modal hashing
[16] or cross-modal hashing [14] and achieved more advanced
results than some other types of methods. However, the complexity
of code generation in deep neural networks is generally much
higher than that in linear functions. Take the model of layers
100− 256− 128− 64− 32− 32 in [16] for example, the number
of multiplications is 68608 times of that in the corresponding
linear function. Nevertheless, the capacity of hypothesis space
and the non-linearity exploited in deep learning make it feasible
to perform better in most cases. Thus, this motivates us to,
besides exploring the structure of the hetero-manifold, rewrite the
proposed framework in Reproduced Kernel Hilbert Space [58] in
the future to capture the non-linearity as well.

6.3 Cross-age face retrieval

In this section, we validate the proposed HMR on a more challeng-
ing task: cross-age face retrieval. Given a probe face image, we
need to search for the face images of the same person but captured
in different age stages. This task is derived from age estimation
[59] but it is more difficult and novel because: 1) The principal
characteristics of the face appearance of a same person vary
hugely along with the variation of his or her age. 2) The capturing
conditions of images are quite diverse in different places and years.
3) As far as we know, the cross-age face retrieval is the first
multi-modal experiment, in which6 modalities are considered.
Intuitively, the ages of faces can be considered as modalities in
our setting, in which faces of different persons with the same age
range share similar characteristics including smoothness, wrinkles
and hair.

FG-NET: Some examples of an ageing dataset [46], which
contains82 people with age ranges from0 to 69, are shown in
Fig. 8. The images of a same person distribute unevenly and most
of the images are captured in the early ages. Thus, we divide the
ages into6 stages including0−4, 5−9, 10−14, 15−19, 20−30
and31 − 69 which correspond to6 modalities in our method. In
this experiment, the parametersC1 andC2 of Algorithm 1 are
set to 10 and 0.1, respectively.10-fold cross validation is used
and, in each fold,90% persons will be chosen as training and the
remaining as for testing. In this experiment, the maximum value
for AUC is set to50.
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Fig. 5. The CMC rankings of five methods on the CUHK01 dataset at code lengths 32, 64 and 128 with 486 test persons.
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Fig. 6. Precision recall curves on Wiki by varying the Hamming distance.
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Fig. 7. MAP performance for each category at 32 bits.

Firstly, same as most age estimation works, features are
directly extracted based on the64 landmarks offered by the FG-
NET dataset. For each landmark, a simple descriptor GIST [60] is
used for representing a fixed rectangle (19×19) around it and then
a feature for a face image can be constructed by concatenating the
features of all landmarks. Principal Component Analysis (PCA) is
adopted to reduce the feature into a space with255 dimensions.
Secondly, it is worth to point out that the number of images of
a same person differs significantly for different age stages. Thus,
compared to person re-identification and cross-modal retrieval, the
task becomes more difficult because the correspondence matrix
between two modalities is not diagonal. For some methods such

as CMFH, the optimisation is not even technically correct. By
duplicating the samples of a same person, a diagonal correspon-
dence matrix can be obtained. Moreover, except for our HMR, no
existing methods can directly tackle multiple modalities with an
inconsistent number of samples or features. To compare with these
methods, any two modalities will be considered as the input of the
two-modality methods. Taking the PDH, CMFH, CCA, CMSSH
and CVH as examples, these methods will be trained15 times
for cross-age face retrieval and, for each modality,5 different
groups of projections will be obtained. This demonstrates that
our proposed HMR is very powerful and flexible to deal with
different tasks without particular limitations and the hash functions
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Fig. 8. Some image examples of the FG-NET dataset. For person 007,
the dataset contains no image samples with age range 5-14.
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Fig. 9. Overall performance comparison between the proposed HMR,
CCA and other state-of-the-art methods. The number in the legend is
the Area Under Curve (AUC) and the possible largest AUC can be up to
1.

for different modalities can be obtained simultaneously by one
optimisation.

Modalities 0-4 5-9 10-14 15-19 20-30 31-69
0-4 – 0.108 0.102 0.059 0.043 0.000
5-9 0.248 – 0.216 0.179 0.050 0.050

10-14 0.220 0.265 – 0.134 0.125 0.163
15-19 0.096 0.220 0.162 – 0.149 0.304
20-30 0.120 0.102 0.055 0.141 – 0.322
31-69 0.033 0.113 0.132 0.125 0.103 –

TABLE 4
Rank 1 performance of cross-age retrieval on the FG-NET face dataset

with 6 modalities.

The overall performance comparison of cross-age face re-
trieval is given in Fig.9 and the different methods are ranked
according to the Area Under Curve (AUC). From this figure,
we can see that the proposed method consistently outperforms
other methods at all ranks. Moreover, we can conclude that non-
hashing method CCA achieves better results than other hashing-

Modalities 0-4 5-9 10-14 15-19 20-30 31-69
0-4 – 0.284 0.216 0.151 0.085 0.111
5-9 0.537 – 0.437 0.358 0.400 0.250

10-14 0.515 0.565 – 0.387 0.328 0.490
15-19 0.346 0.488 0.414 – 0.460 0.536
20-30 0.337 0.367 0.233 0.424 – 0.589
31-69 0.333 0.340 0.374 0.347 0.370 –

TABLE 5
Rank 10 performance of cross-age retrieval on the FG-NET face

dataset with 6 modalities.

Modalities 0-4 5-9 10-14 15-19 20-30 31-69
0-4 – 0.319 0.282 0.168 0.106 0.148
5-9 0.578 – 0.477 0.421 0.475 0.350

10-14 0.556 0.604 – 0.465 0.391 0.571
15-19 0.394 0.549 0.485 – 0.506 0.565
20-30 0.361 0.408 0.301 0.515 – 0.633
31-69 0.400 0.453 0.396 0.403 0.495 –

TABLE 6
Rank 20 performance of cross-age retrieval on the FG-NET face

dataset with 6 modalities.

based methods. Furthermore, compared to the above experiments
of two modalities, the advantages of the proposed HMR are more
obvious in this experiment. The substantial reason is that the
information can be propagated on the proposed Hetero-manifold
and then supervises the learning of hash functions. However, most
state-of-the-art methods are specially designed for two modalities
and, in the multi-modal cases (M > 2), to some extent, the global
information is ignored.

To investigate the details of cross-age retrieval, the perfor-
mance at ranks1, 10 and20 between any modalities is shown in
Tables4, 5 and6, respectively. On the one hand, we can see that,
in general, the performance of cross-age retrieval between two
adjacent modalities is higher than that of non-adjacent modalities.
In essence, the appearance changes between adjacent modalities
will be smaller than those between large age gaps. On the other
hand, it is interesting that the retrieval performance when the probe
image comes from older age stages and the gallery consists of
images from earlier ages normally will be better than the opposite
conditions. We think this is because the appearance variation
trend in the later age stages becomes smaller and some important
identification characteristics remain as age increases.

Two probe samples with first3 matches are shown in Fig.
10. The two persons have images from the0 − 4 modality to the
15− 19 modality. The left probe comes from the5 − 9 modality
while the right one comes from the0 − 4 modality. We can see
that several images with a same person have been successfully
matched in different age stages by cross-age retrieval.

7 CONCLUSION

In this paper, the concept of hetero-manifold was introduced for
integrating the uni- and cross-modal similarities of multi-modal
data in a global view. Both types of similarity are represented
in the Laplacian matrixL corresponding to the hetero-manifold.
The Laplacian matrixL appears smoothly when the Hamming
distance in Eq. (8) is replaced by the Euclidean distance in Eq.
(17), which hints that no hash functions could be learned without
all uni- and cross-modal similarities being defined on the hetero-
manifold. Therefore, the proposed framework of hetero-manifold
regularised hash function learning (Eq. (17)) could benefit from
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Fig. 10. The cross-modal first three matching results of two probe
images. The red rectangles demonstrate the correctly matched images
in the gallery of a same person.

the view of treating multi-modal data as a whole. The experimental
results demonstrate that the proposed HMR outperforms the state-
of-the-art methods on four popular datasets.

The hetero-manifold also offers some interesting problems in
the field of cross-modal hashing. Firstly, it is interesting to con-
sider a kernel extension of the proposed HMR. It is clear that the
proposed hetero-manifold regularised framework (Eq. (17)) can be
rewritten in Reproducing Kernel Hilbert Space (RKHS). By using
RKHS, nonlinear hash functions could be learned, which may
improve the performance of HMR. However, to achieve this, an
induced problem needs to be considered for multi-modalities. For
a common reproduced space or several individually reproduced
spaces, which case is more reasonable? Moreover, what is the
relationship between the reproduced spaces and the kernels? Sec-
ondly, it would be interesting to consider the proposed framework
(Eq. (17)) in semi-supervised settings.

APPENDIX A
PROOF OF LEMMA 3
Proof. We haveSuv = SuuPuvSvv andSvu = SvvP vuSuu.
The transposition ofSvu is:

(Svu)T = (SvvP vuSuu)T

= (Suu)T (P vu)T (Svv)T

= SuuPuvSvv

= Suv.

The third equation holds because matricesSuu, Svv andPuv =
(P vu)T are symmetric.

According to the definition of similarity matrixS, the symme-
try of S could be proved by using the fact of(Svu)T = Suv.

APPENDIX B
PROOF OF LEMMA 4
Proof. The Hamming distance between two binary codesyui and
yvj is defined by:

Dh(y
u
i , y

v
j ) =

∑

k

yui (k)⊕ yvj (k)

=
∑

k

1((fu
k (x

u
i ))+ 6= (fv

k (x
v
j ))+),

where1(· ) is an indicator function. Thus, for anyk, we consider
two conditions:
(1) If (fu

k (x
u
i ))+ = (fv

k (x
v
j ))+, it is obvious that

yui (k)⊕ yvj (k) = 0 ≤ |fu
k (x

u
i )− fv

k (x
v
j )|.

(2) If (fu
k (x

u
i ))+ 6= (fv

k (x
v
j ))+, we assume that(fu

k (x
u
i ))+ = 1

(Otherwise, same conclusion can be also obtained). There must be
(fv

k (x
v
j ))+ = −1. Since the two linear projections are both hinge

loss constraint-satisfied functions, we have:

fu
k (x

u
i ) ≥ 1− ξuik,

fv
k (x

v
j ) ≤ −1 + ξvjk.

So, there is2 − ξuik − ξvjk ≤ |fu
k (x

u
i ) − fv

k (x
v
j )|. Provided that

ξuik + ξvjk ≤ 1, the following inequality is true:

yui (k)⊕ yvj (k) = 1 ≤ 2− ξuik − ξvjk ≤ |fu
k (x

u
i )− fv

k (x
v
j )|.

In total, we obtain the following conclusion by satisfying∀k, ξuik+
ξvjk ≤ 1:

Dh(y
u
i , y

v
j ) =

∑

k

yui (k)⊕ yvj (k)

=
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k
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k (x
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=
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j ))+),

≤
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(fu
k (x

u
i )− fv

k (x
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2.

The third equation holds due to that02 = 0 and 12 = 1.
Therefore, we have:

Dh(y
u
i , y

v
j ) ≤ ||F (xu

i )− F (xv
j )||

2
2

= De(F (xu
i ), F (xv

j )).

APPENDIX C
PROOF OF EQUATION (16)

Proof. According to the definition ofWT (13) and the definition
of X (14), it is clear that

WTX

= ((W 1)T , · · · , (WM )T )









X1 0 · · · 0
0 X2 · · · 0
· · · · · · · · · · · ·
0 0 · · · XM









= ((W 1)TX1, (W 2)TX2, · · · , (WM )TXM ). (27)

Then

tr(WTXSXTW)

= tr
(

(

(Wu)TXu
)M

u=1

(

Suv
)M

u,v=1

(

(Xv)TW v
)M

v=1

)

=
∑

u,v

tr((Wu)TXuSuv(Xv)TW v) (28)

Notice the definition ofF (xu
i ) and Xu = (xu

1 , · · · , x
u
N ), we

have

tr(WTXSXTW)

=
∑

u,v

tr((F (xu
i ))

N
i=1S

uv((F (xv
j ))

N
j=1)

T )

=
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u,v

∑

i,j

Suv(xu
i , x

v
j )〈F (xu

i ), F (xv
j )〉2. (29)
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Meanwhile, we have the following equations

tr(WTXDXTW) =
∑

u,i

dui||F (xu
i )||

2
2

=
∑

u,i

||F (xu
i )||

2
2

∑

v,j

S(xu
i , x

v
j )

=
∑

u,v

∑

i,j

S(xu
i , x

v
j )||F (xu

i )||
2
2 (30)

where D = diag(d11, d12, · · · , dui, · · · , dMN ) and dui =
∑

v,j S(x
u
i , x

v
j ). Similarly, the following equation is true.

tr(WTXDXTW) =
∑

u,v

∑

i,j

S(xu
i , x

v
j )||F (xv

j )||
2
2 (31)

Combining the equations (29), (30) and (31) and considering
S(xu

i , x
v
j ) = Suv(xu

i , x
v
j ), we have

2tr(WTXLXTW)

= 2tr(WTXDXTW)− 2tr(WTXSXTW)

=
∑

u,v

∑

i,j

Suv(xu
i , x

v
j )‖F (xu

i )− F (xv
j )‖

2
2

= Le
c(G) (32)

APPENDIX D
PROOF OF THE FORMULA (25 AND 22)

Proof. For simplicity, we delete the index of projections and, then
the objective function in23 become similar to the function in21.
The only difference between them is Eq.23has a orthogonal item.
Thus, if further defineH = XLXT + C2Q, we obtain:

w∗ = argmin
w

1

2
wTHw+ C1

M
∑

u=1

N
∑

i=1

ξui (33)

s.t.∀u, i, yui (w
u)Txu

i ≥ 1− ξui , ξ
u
i ≥ 0,

where the elementyui of y is the bit of initial or learned in the last
round. In case of solving the problem in21, the parameterC2 can
be directly set to0. The Lagrange function of the problem33 is

L(w, ξ, α, γ) (34)

=
1

2
wTHw+ C1e

T ξ

−wTXyα+ eTα− αT ξ − γT ξ,

where α = (α1, · · · , αi, · · · , αNM )T and Xy =
diag(X1

y, · · · , X
u
y , · · · , X

M
y ), the matrix Xu

y =
(yu1x

u
1 , · · · , y

u
Nxu

N ). The gradients with respect to the parameters
are:

∂L

∂w
= Hw−Xyα;

∂L

∂ξ
= C1e− α− γ.

Thus, the optimal values should satisfy the following conditions:

w∗ = H−1Xyα;

γ = C1e− α.

Substituting the above equations into the original Lagrange func-
tion (34), we obtain the dual problem:

α∗ = argmin
α

−eTα+
1

2
αTXT

yH
−1Xyα

s.t. 0 ≤ αi ≤ C1. (35)

The problem (35) is a standard quadratic programming problem.
Therefore, ifα∗ is the solution of (35), the optimal projection
direction can be obtained as:

w∗ = (XLXT + C2Q)−1Xyα
∗.
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