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Beta-binomial model for meta-analysis of
odds ratios
Ilyas Bakbergenuly and Elena Kulinskaya*†

In meta-analysis of odds ratios (ORs), heterogeneity between the studies is usually modelled via the additive ran-
dom effects model (REM). An alternative, multiplicative REM for ORs uses overdispersion. The multiplicative
factor in this overdispersion model (ODM) can be interpreted as an intra-class correlation (ICC) parameter. This
model naturally arises when the probabilities of an event in one or both arms of a comparative study are them-
selves beta-distributed, resulting in beta-binomial distributions. We propose two new estimators of the ICC for
meta-analysis in this setting. One is based on the inverted Breslow-Day test, and the other on the improved gamma
approximation by Kulinskaya and Dollinger (2015, p. 26) to the distribution of Cochran’s Q. The performance of
these and several other estimators of ICC on bias and coverage is studied by simulation. Additionally, the Mantel-
Haenszel approach to estimation of ORs is extended to the beta-binomial model, and we study performance of
various ICC estimators when used in the Mantel-Haenszel or the inverse-variance method to combine ORs in
meta-analysis. The results of the simulations show that the improved gamma-based estimator of ICC is superior
for small sample sizes, and the Breslow-Day-based estimator is the best for n ⩾ 100. The Mantel-Haenszel-based
estimator of OR is very biased and is not recommended. The inverse-variance approach is also somewhat biased
for ORs ≠ 1, but this bias is not very large in practical settings. Developed methods and R programs, provided in
the Web Appendix, make the beta-binomial model a feasible alternative to the standard REM for meta-analysis
of ORs. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

Meta-analysis aims to combine effects estimated from a number of studies to achieve greater precision
of the conclusions. The great majority of meta-analyses use the odds ratio (OR) or its logarithm (LOR)
as the effect measure of interest. The OR arises as an effect of interest when the aim is to compare
binary outcomes in the treatment and control groups of K studies, or to quantify the relation between
disease and exposure. Standard models of meta-analysis are the fixed effect model (FEM) and the random
effects model (REM). The former assumes that the LORs 𝜃j, j = 1, · · · ,K, do not differ across the
studies, that is, 𝜃j ≡ 𝜃; the latter assumes that the LORs themselves are a random sample from, usually, a
normal distribution, 𝜃j ∼ N(𝜃, 𝜏2) with the between-studies variance 𝜏2. Further, for large sample sizes,
estimated LORs are approximately normally distributed, 𝜃̂j ∼ N(𝜃j, 𝜎

2
j ). Therefore, the REM considers

that 𝜃̂j ∼ N(𝜃, 𝜎2
j + 𝜏2), and the FEM follows for 𝜏2 = 0. Importantly, the variances 𝜎2

j are of order
O(1∕Nj) for sample sizes Nj, j = 1, · · · ,K of the studies. Standard inference concerns the combined
effect 𝜃̂, estimated as the weighted mean of the individual effects

𝜃̂IV =
K∑

j=1

wj𝜃̂j∕
K∑

j=1

wj, (1.1)

with weights equal to inverse estimated variances, wj = 𝜎̂−2
j in FEM, and wj = (𝜎̂2

j + 𝜏2)−1 in

REM. The distribution of the combined effect 𝜃̂ is customarily approximated by a normal distribution,
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N(𝜃, (
∑K

j=1 wj)−1). Estimated within-studies variances 𝜎̂2
j are often assumed to be known. Establishing an

effect of treatment corresponds to testing the null hypothesis 𝜃 = 0, and a confidence interval calculation
in REM requires an estimate of the between-studies variance 𝜏2, which is also of interest for quantifying
heterogeneity. See [1] for further details on traditional meta-analytic techniques.

The shortcomings of the inverse-variance method, as described earlier, in meta-analysis in general
and in its application to the LORs are well known. They include the bias in estimation of the combined
effect, underestimation of its variance, and poor coverage of the obtained confidence intervals, especially
for sparse data and/or small sample sizes, see [2] for discussion and further references. Under FEM, a
considerably better way to combine ORs is the Mantel-Haenzsel (1959) [3] method. Unfortunately, there
is no analogue to this method under the REM.

Further, the most popular method of estimating the between-studies variance 𝜏2 in REM is the DerSi-
monian and Laird (1986) [4] method, based on the approximate moments of the Cochran’s Q statistic,
[5], but this method is not satisfactory, both in general and in application to the heterogeneity estimation
of LORs, see [6–8]. [7] recommend the use of the Breslow-Day (BD) test [9] for testing the heterogeneity
of ORs, and also provide a new gamma-based approximation to the distribution of Q.

Alternative approaches to REM include the use of fixed weights [10,11] and the overdispersion model
(ODM) introduced by [12]. The ODM allows the interpretation of overdispersion through intra-cluster
correlation (ICC) 𝜌 or its transformation.

In this paper, we study the beta-binomial (BB) model, an important particular case of the ODM for
ORs. Both REM and the BB model are compound random-effects models. Both models include bino-
mial distributions for positive responses in both arms, conditional on the probabilities. The standard
REM accounts for between-study variation imposing a normal distribution on LORs, or on log-odds
in treatment and control arms [13]. Similarly, the BB model includes beta-distributed variation of the
probabilities of events in one or both arms across the studies.

For the log-odds-ratios from a pair of BB distributions, a normal approximation has been suggested by
[14] and [15]. To obtain the combined effect, we study the standard inverse-variance method and a version
of the Mantel-Haenszel (MH) method adjusted for clustering, [16]. Both methods require estimation of
the ICC 𝜌. We study several methods of estimating 𝜌, including two new methods, one based on the
profiling of the BD test, and another based on the gamma approximation to the distribution of Q by [7].

The structure of this paper is as follows. In Section 2, we briefly provide some background for meth-
ods of meta-analysis of LORs. The proposed BB model for meta-analysis of ORs and the MH-inspired
estimation of the combined OR are introduced in Section 3. Five methods for estimation of an overdis-
persion parameter 𝜌, including a new method based on the BD test, are given in Section 4. An example
is provided in Section 5. A large simulation study is described in Section 6. Discussion and conclusions
are in Section 7.

2. Background on meta-analysis of 2 × 2 tables

2.1. Fixed effect model

Consider K comparative studies reporting summary binary outcomes. The data from each study, j =
1, · · · ,K, constitutes a pair of independent binomial variables, X1j and X2j, the numbers of events out of
n1j and n2j subjects in the treatment and control arms

X1j ∼ Binom(n1j, p1j) and X2j ∼ Binom(n2j, p2j),

where pij for i = 1, 2 are the risks in the treatment and the control arms, respectively.
In meta-analysis of these data, the effect measure that we focus on is the logarithm of the OR, 𝜃j =

log(𝜓j), where the OR for study j is

𝜓j =
p1j(1 − p2j)
p2j(1 − p1j)

estimated by 𝜓̂j =
X1j(n2j − X2j)
X2j(n1j − X1j)

. (2.1)

The approximate variance of the log-odds-ratio 𝜃̂j = log(𝜓̂j) derived by the delta method is

𝜎2
j = Var(𝜃̂j) =

1
n1jp1j(1 − p1j)

+ 1
n2jp2j(1 − p2j)

. (2.2)
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For a study of sample size Nj = n1j + n2j, this variance is of order O(1∕Nj). The variance is estimated by
substituting the estimates p̂1j = X1j∕n1j and p̂2j = X2j∕n2j in (2.2), [17], resulting in

𝜎̂2
j = Var(𝜓̂j) =

1
X1j

+ 1
X2j

+ 1
n1j − X1j

+ 1
n2j − X2j

. (2.3)

To reduce the bias of 𝜓̂ and its estimated variance, or in the case of zero entries, a correction a is
usually added to each cell. The most common choice is a = 1∕2 [18], but alternatives are available, [19].

The FEM assumes homogeneity of ORs across the studies. The inverse-variance-weighted method for
pooling LOR estimates from individual studies uses 𝜃̂IV given by (1.1) with weights wj = 𝜎̂−2

j .
An attractive alternative is the MH method, introduced by [3] to combine ORs from stratified 2 × 2

contingency tables. The MH estimator for pooling ORs 𝜓̂j from K tables is

𝜓̂MH =

K∑
j=1

X1j(n2j − X2j)∕Nj

K∑
j=1

X2j(n1j − X1j)∕Nj

=

K∑
j=1

Wj𝜓̂j

K∑
j=1

Wj

, (2.4)

with weights Wj =
[ 1

n1j
+ 1

n2j

]−1(1− p̂1j)p̂2j for the ORs 𝜓̂j given by (2.1). The advantages of MH estimator

are its robustness and its ability to handle empty cells without corrections, [20]. The variance of the MH
estimator, for both sparse data (K → ∞) and large-strata (Nj → ∞) limiting models was derived by [21]
and [22] and can be used to obtain confidence intervals for LOR.

2.2. Random effects models

The FEM is usually too restrictive. REMs take into account between-studies heterogeneity, usually by
introducing a mixing distribution for 𝜃j, or by directly inflating the within-study variances. The standard
REM described in Section 1 uses a normal mixing distribution. More generally, let individual

𝜃̂j ∼ F(𝜃j, 𝜈j) and h(𝜃j) ∼ G(h(𝜃), 𝜏2), (2.5)

where 𝜃j and 𝜈j are within-study parameter of interest and (if relevant) a nuisance parameter, (for instance,
location and scale parameters), 𝜃 is the overall parameter of interest, h(⋅) is a transformation, and 𝜏2 is
an unknown variance parameter of the between-study mixing distribution G, describing the variability
and heterogeneity of the effect measures. The distributions F and G are commonly assumed to be nor-
mal. However, other combinations of distributions are possible. Examples of non-normal G distributions
include t, skewed normal or skewed t, whereas F can be binomial, [23]. For a binomial distribution F,
the transformation h can be a log or log-odds transformation. The REM for ORs discussed by [13] com-
bines an exact non-central hypergeometric distribution for F with a normal mixing distribution for G.
This hypergeometric-normal model is a generalized linear mixed model.
When both F and G are normal and 𝝂j = 𝝈

2
j
, the standard REM is obtained. In this case, the marginal

REM for an estimated effect measure 𝜃̂j in study j is

𝜃̂j ∼ N(𝜃, 𝜎2
j + 𝜏2), for j = 1,… ,K. (2.6)

For the estimated log-odds-ratio 𝜃̂j, the within-study variance 𝜎2
j is approximated by (2.2). For the case

of risk difference, [24] discuss the dangers of treating the within-study variances as known.
The main concern in the REM lies in estimating the unknown between-studies variance 𝜏2. A vari-
ety of moment-based or likelihood-based estimators of 𝜏2 have been proposed, see [25, 26]. Among
the moment-based estimators, the one derived by [4] is commonly used in practise. Among the likeli-
hood based estimators, the restricted maximum likelihood (REML) estimator is popular because of its
reduced bias.
An alternative approach to REM, aimed at incorporating heterogeneity through overdispersion, was
proposed by [27] and found advantageous by [28]. [27] introduced a multiplicative REM in the form

𝜃̂j ∼ N(𝜃, 𝜙𝜎2
j ), (2.7)
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where 𝜙 is a multiplicative random effects parameter. This parameter allows deflation and inflation in the
variance of 𝜃̂j.

A new REM for meta-analysis based on overdispersion is proposed by [12]. In their model, the multi-
plicative parameter 𝜙 becomes study-specific and is defined by 𝜙j = 1+ aj𝛾 , where aj = a(Nj) is a linear
function of sample size Nj. The advantage of this model is an interpretation of the overdispersion param-
eter 𝛾 as an ICC or a transformation of it. For comparative studies, the within-study variance 𝜎2

j can be
written as 𝜎2

j = vj(Rj)∕Nj, where Rj = n1j∕n2j is the allocation ratio of treatment to control group sizes
and vj is some function of Rj and relevant distribution parameters of order O(1). The ODM by [12] for
two-sample effect measures is

𝜃̂j ∼ N

(
𝜃,

vj(Rj)
Nj

(1 + aj𝛾)
)

for 𝛾> − 1
max(aj)

. (2.8)

The variance in this model consists of two parts: the FEM variance vj(Rj)∕Nj and the variance-inflation
term [vj(Rj)aj∕Nj]𝛾 of order O(1). Therefore, this model is intermediate between the standard additive
REM (2.6), which adds the constant term 𝜏2 of order O(1) to each within-study variance, and the mul-
tiplicative REM (2.7), which, inflating variances by a constant factor 𝜙, keeps them of order O(1∕Nj),
similar to the FEM.

3. Overdispersed binary data

3.1. The beta-binomial distribution

The BB distribution is obtained by mixing a binomial distribution Binom(n, p) by a beta distribution for
its success probability p. When Y ∼ Binom(n, p) and p ∼ Beta(𝛼, 𝛽), then unconditionally, Y follows a
BB distribution with parameters 𝛼, 𝛽, and n. This distribution arises naturally in Bayesian statistics as
the beta distribution is the conjugate prior distribution for the parameter p if the data are binomial. The
expected value and variance of Y are

E(Y) = n𝛼
𝛼 + 𝛽

, Var(Y) = n𝛼𝛽(n + 𝛼 + 𝛽)
(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)

.

It is more convenient to re-parametrize this distribution as BetaBinom(n, 𝜋, 𝜌), where 𝜋 = 𝛼∕(𝛼 + 𝛽) and
𝜌 = 1∕(𝛼 + 𝛽 + 1). Then

E(Y) = n𝜋, Var(Y) = n𝜋(1 − 𝜋)(1 + (n − 1)𝜌) , (3.1)

which shows the BB distribution to be an overdispersed binomial distribution. A distribution with the
same two moments can be obtained as the distribution of the sum of n Bernoulli(𝜋) random variables with
ICC 𝜌. Such distributions may be obtained through various generation mechanisms [29,30] and differ in
the higher moments. To guarantee approximate normality of LORs, we consider only the BB distribution.
This distribution is widely used in combining overdispersed binomial data, see, for example, [31].

3.2. Odds-ratios under beta-binomial model

In the context of meta-analysis, we assume that the observations in the treatment and control arms of
each study are independent, and that within each arm, the observations follow a BB distribution with the
same parameter 𝜌, that is,

X1j ∼ BetaBinom(n1j, p1j, 𝜌) and X2j ∼ BetaBinom(n2j, p2j, 𝜌).

This is equivalent to requiring that the sum of parameters 𝛼+𝛽 of the mixing beta distributions not differ
between the two arms. The ORs 𝜓j and their estimates 𝜓̂j are defined as in (2.1), and the log-odds-ratios
𝜃̂j are approximately normally distributed. However, the variances of individual ORs and log-odds-ratios
have to be adjusted for overdispersion. The adjusted approximate variance of LOR, obtained by using
the delta method, is

Var(𝜃̂j) =
1 + (n1j − 1)𝜌
n1jp1j(1 − p1j)

+
1 + (n2j − 1)𝜌
n2jp2j(1 − p2j)

, (3.2)
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with restriction for 𝜌

𝜌 > max1⩽ j⩽K

{
− 1

n1j − 1
, − 1

n2j − 1

}
.

For 𝜌 = 0 this model is the standard FEM for binomially distributed data. In this case, the variance of
LOR (2.2) can be written as 𝜎2

j = vj(Rj)∕Nj with

vj(Rj) = (Rj + 1)
(

1
Rjp1j(1 − p1j)

+ 1
p2j(1 − p2j)

)
.

Substituting this expression into (3.2), the variance of LOR for overdispersed binomial data is

Var(𝜃̂j) =
vj(Rj)

Nj
+
[ (n1j − 1)

n1jp1j(1 − p1j)
+

(n2j − 1)
n2jp2j(1 − p2j)

]
𝜌.

This variance is clearly inflated in comparison with the standard variance (2.2). For large n1j and n2j,
the inflation term is

[
[p1j(1 − p1j)]−1 + [p2j(1 − p2j)]−1

]
𝜌, therefore it is of order O(1) and increases with

ICC. It also may be large for probabilities in either arm close to 0 or 1.
Defining

𝜏2
j =

[ (n1j − 1)
n1jp1j(1 − p1j)

+
(n2j − 1)

n2jp2j(1 − p2j)

]
𝜌, (3.3)

it is clear that when both parts of (3.3) do not depend on j, the BB model results in the same first and
second moments of the LORs 𝜃̂j as the standard REM, with the relation between 𝜌 and 𝜏2 given by (3.3).
This is the case when the probabilities in the treatment and control arms do not differ, pij ≡ pi, and the
sample sizes are all equal, or are large enough so that (nij − 1)∕nij ≈ 1.

The variance of the sample log-odds-ratio can also be written in the ODM (2.8) form as Var(𝜃̂j) =
(vj(Rj)∕Nj)(1 + aj𝜌) for

aj =
NjRj[(1 − p2j(1 − 𝜓j))2 + 𝜓j]

(Rj + 1)[(1 − p2j(1 − 𝜓j))2 + Rj𝜓j]
− 1.

Thus, aj is a linear function of Nj and has the same order as Nj. For balanced studies Rj = 1, and aj
simplifies to aj = Nj∕2 − 1.

An alternative model considers overdispersion only in the treatment arm:

X1j ∼ BetaBinom(n1j, 𝛼1j, 𝛽1j), X2j ∼ Bin(n2j, p2j)

This is perhaps closer to the standard REM, which usually has a random effect only in the treatment arm
[27]. In this case, the variance for OR is

Var(𝜓̂j) =
1 + (n1j − 1)𝜌
n1jp1j(1 − p1j)

+ 1
n2jp2j(1 − p2j)

,

which is still inflated, in comparison to the FEM variance, by the term
[(n1j − 1)∕(n1jp1j(1 − p1j))]𝜌. Subsequent methods are easily adapted to this version of the BB model,
and we do not pursue this model further.

3.3. Adjusted Mantel-Haenszel method for combining odds ratios

Applying the standard MH method for overdispersed binary data results in a bias and a wrong variance
of the combined OR, and a wrong type I error of the associated test, [32]. An adjusted version of the MH
test and related estimator of the combined OR appropriate for the meta-analysis of cluster-randomized
trials were studied by [16], [33], [32]. In cluster-randomized trials, arm i of trial j contains mij clusters of
size nij, and an ICC 𝜌j is common to all clusters in trial j. This can be adapted to a case of one cluster in
each arm, which is equivalent to the ODM by [12]. This adapted MH method is as follows.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017
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Introduce a set of correction factors

Cij = 1 + (nij − 1)𝜌 for i = 1, 2; j = 1, · · · ,K. (3.4)

These are referred to as design effects by [34]. Next, define the adjusted weights for the ORs 𝜓̂j, j =
1, · · · ,K

WjC =
[C1j

n1j
+

C2j

n2j

]−1

(1 − p̂1j)p̂2j.

The corrected MH estimate of the OR for overdispersed binomial data is

𝜓̂cMH =
∑K

j=1 WjC𝜓̂j∑K
j=1 WjC

for 𝜓̂j =
(1 − p̂2j)p̂1j

(1 − p̂1j)p̂2j
. (3.5)

We propose to use this corrected version of the MH estimator for combining ORs in the BB model. When
there is no overdispersion, 𝜌 = 0, Cij = 1 and the expression (3.5) reduces to standard MH estimator
(2.4) for the fixed effects model.
When 𝜌→ −1∕max(aj),

𝜓̂cMH →

∑
n1j=n2j=max(nj)

n1jn2jp1j(1 − p2j)∕(n1j + n2j)∑
n1j=n2j=max(nj)

n1jn2jp2j(1 − p1j)∕(n1j + n2j)
,

which is the standard MH estimator for the subset of the studies of the largest sample size. The proof is
provided in the Web Appendix.
To obtain the asymptotic variance of 𝜓̂cMH , we adjusted for overdispersion the asymptotic variance of the
MH estimator derived by [21] and [22]:

Var(𝜓̂cMH) =

K∑
j=1

RjPj

2R2
+

K∑
j=1

(PjSj + QjRj)

2RS
+

K∑
j=1

SjQj

2S2
,

where

Pj =
C1j(n2j − X2j) + C2jX1j

C1jn2j + C2jn1j
, Rj =

(n2j − X2j)X1j

C1jn2j + C2jn1j
,

Qj =
C2j(n1j − X1j) + C1jX2j

C1jn2j + C2jn1j
, Sj =

(n1j − X1j)X2j

C1jn2j + C2jn1j
,

and R =
∑K

j=1 Rj and S =
∑K

j=1 Sj.

4. Estimation of 𝜌

To evaluate the corrected MH estimator (3.5), an estimate of the ICC 𝜌 is required. We consider two
modifications of established methods, namely a moment estimator based on Cochran’s Q statistic similar
to the DerSimonian and Laird (1986) [4] estimator of 𝜏2, and a REML estimator. We also consider related
confidence intervals: an interval based on profiling the Q statistic as in [35] and a REML-based interval.
According to [35], these two approaches perform the best for estimation of the between-studies variance
𝜏2 in the additive REM. We also use a version of the Mandel and Paule (1970) [36] method to estimate
𝜌 from the large-sample approximation of Q by the 𝜒2 distribution. All three methods were proposed
in [12] for estimation of 𝜌, but have not so far been explored by simulation. However, the chi-square
distribution is a poor approximation to the distribution of the Q statistic for LORs [7], and the modified
Q test based on the improved gamma approximation developed by [7] and the Breslow and Day (1980)
[9] (BD) test are attractive alternatives for testing the heterogeneity of ORs. In the section, we propose
two new methods of point and interval estimation of 𝜌, based on inverting the modified Q test and the BD
test. The point estimation is based on an adaptation of the Mandel and Paule (1970) [36] method, and the
interval estimation is achieved through profiling the modified Q and BD tests.
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4.1. Restricted maximum likelihood estimation of 𝜌

The restricted likelihood for the normal distribution with mean 𝜃 and variances vj(1 + aj𝜌)∕nj is

lR(𝜌, 𝜃) = −1
2

log
(∑

w∗
j

)
− 1

2

∑
w∗

j (𝜃j − 𝜃)2 +
1
2

∑
log(w∗

j ), (4.1)

for inverse-variance weights w∗
j = wj∕(1 + aj𝜌). Following [12], the REML equation for 𝜌 is

(W∗)−1
∑

w∗
j

aj

1 + aj𝜌
+
∑

w∗
j (𝜃j − 𝜃)2

aj

1 + aj𝜌
=
∑ aj

1 + aj𝜌
, (4.2)

where W∗ =
∑

w∗
j . The mean 𝜃REML is obtained as 𝜃REML =

∑
w∗

j 𝜃̂j∕W∗, and an iterative procedure
readily yields a solution, denoted by 𝜌̂REML.

The REML confidence intervals are given by all values of 𝜌 that satisfy

lR(𝜌) ⩾ lR(𝜌̂REML) − 𝜒2
1;1−𝛼∕2, (4.3)

where 𝜒2
1;1−𝛼 is the (1−𝛼) quantile of the chi-square distribution with 1 degree of freedom. We will see in

Section 6 that the REML-based point and interval estimators of 𝜌 are generally inferior to other methods,
and we will not recommend them.

4.2. Q-statistic-based estimation of 𝜌

Cochran’s statistic is Q =
∑

ŵj(𝜃̂j − 𝜃̄w)2, for the inverse-variance weights ŵj = 𝜎̂−2
j and 𝜃̄w =∑

ŵj𝜃̂j∕
∑

ŵj. Under the null hypothesis of no over- or underdispersion 𝜌 = 0, the Q-statistic is approxi-
mately chi-square distributed with K − 1 degrees of freedom, so that E(Q) = K − 1. This approximation
is extremely conservative whenever either binomial parameter is far from 0.5, but its performance is
reasonable when the binomial parameters are relatively close to 0.5, [7]. Under the ODM (2.8),

E(Q) = K − 1 + (Kā − āw)𝜌, (4.4)

where ā =
∑

aj∕K, āw =
∑

wjaj∕W, and W =
∑

wj, [12]. The estimate of 𝜌 from (4.4) should satisfy
the condition 𝜌̂ > −1∕max(aj).

A moment (M) estimator in the spirit of DerSimonian and Laird (1986) [4] proposed by [12] is

𝜌̂M = max

(
Q − (K − 1)

Kā − āw
,− 1

max(aj)

)
; (4.5)

underdispersion may be present for Q < K − 1. If only positive values of 𝜌 are acceptable, then 𝜌̂ can be
truncated at zero.

When the correct weights w∗
j = wj(𝜌) = wj∕(1+ aj𝜌) are used, 𝜃̄w∗ =

∑
ŵ∗

j 𝜃̂j∕
∑

ŵ∗
j , and the corrected

Q statistic given by Q∗(𝜌) =
∑

w∗
j (𝜃̂j − 𝜃̄w∗ )2 has approximately the 𝜒2

K−1 distribution.
The Mandel and Paule (1970) [36] method of estimating between-studies variance 𝜏2 in the standard

REM was studied subsequently by [37] and [25]. This method uses the approximate chi-square distribu-
tion 𝜒2

K−1 of the Cochran’s Q statistic under homogeneity to find an estimate of 𝜏2. In our context, the
estimating equation Q∗(𝜌) = K−1 provides another moment-based estimator of 𝜌 in the spirit of Mandel
and Paule (1970) [36], also proposed by [12]. We refer to this estimator as 𝜌MP.

A related confidence interval is obtained by inverting the Q test. The confidence interval is
constructed as {

𝜌 > −1∕max(aj) ∶ 𝜒2
K−1;𝛼∕2 ⩽ Q∗(𝜌) ⩽ 𝜒2

K−1;1−𝛼∕2

}
, (4.6)

where 𝜒2
K−1,𝛼 are the quantiles of the 𝜒2 distribution with K − 1 degrees of freedom. [35] shows that the

standard REM confidence intervals for 𝜏2 based on this approach, named Q-profile, perform very well,
better than the REML confidence intervals described in Section 4.1. However, we will see in Section 6
that the methods introduced in this section are generally inferior to the methods based on the corrected
distribution of Q or on the BD test, described in Sections 4.3 and 4.4, respectively, and we will not
recommend them.
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4.3. Corrected Q-statistic based estimation of 𝜌

According to [7], the distribution of the Q statistic can be well approximated by a gamma distribution
with shape and scale parameters

r(𝜌) = E(Q)2

Var(Q)
and 𝜆(𝜌) = Var(Q)

E(Q)
.

The expected value and variance of the Q statistic for log-odds-ratio based on this gamma approximation
can be estimated from the relations

(K − 1) − E(Q) = 0.678[(K − 1) − Eth(Q)] (4.7)

and

Var(Q) = 4.74(K − 1) − 12.17E[Q] + 9.42E[Q]2∕(K − 1),

where Eth(Q) is the theoretical approximation to the mean of Q for log-odds- ratio, [7]. The Mandel-Paule
estimator of 𝜌 based on the gamma approximation to the distribution of the Q statistic, denoted by 𝜌̂cMP,
is found from Q∗(𝜌) = E(Q), given that a solution exists, where E(Q) is the solution of equation (4.7).
The related confidence interval based on the gamma approximation to the distribution of Q statistic can
be obtained from {

𝜌 > −1∕max(aj) ∶ Γr(𝜌),𝜆(𝜌);𝛼∕2 ⩽ Q∗(𝜌) ⩽ Γr(𝜌),𝜆(𝜌);1−𝛼∕2

}
, (4.8)

where Γr(𝜌),𝜆(𝜌);𝛼 are the quantiles of the gamma distribution with r(𝜌) and 𝜆(𝜌) as shape and scale parame-
ters. We will see from the simulations described in Section 6 that this method performs well when sample
sizes are small (up to 100).

4.4. Breslow-Day-based estimation of 𝜌

The BD test is based on the statistic

X2
BD =

K∑
j=1

(X1j − E(X1j|𝜓̂MH))2

Var(X1j|𝜓̂MH)
∼ 𝜒2

K−1, (4.9)

where E(X1j|𝜓̂MH) and Var(X1j|𝜓̂MH) denote the expected number and the asymptotic variance, respec-
tively, of the number of cases in the treatment arm under the assumption of homogeneity of odds
ratios, given the fitted MH OR 𝜓̂MH . The expected value E(X1j|𝜓̂MH) in (4.9) is obtained from the
quadratic equation

E(X1j|𝜓̂MH)[Nj − m1j − n1j + E(X1j|𝜓̂MH)]
[m1j − E(X1j|𝜓̂MH)][n1j − E(X1j|𝜓̂MH)]

= 𝜓̂MH , (4.10)

where m1j = X1j+X2j. Its asymptotic variance Var(X1j|𝜓̂MH) is a particular case, for 𝜌 = 0, of the variance
of X1j under overdispersion given by [38]

Var(X1j|𝜓̂MH) =
[ 1
E(X1j|𝜓̂MH)C1j

+ 1
(m1j − E(X1j|𝜓̂MH))C2j

+ 1
(n1j − E(X1j|𝜓̂MH))C1j

+ 1
(Nj − m1j − n1j + E(X1j|𝜓̂MH))C2j

]−1
,

(4.11)

where the Cij are given by equation (3.4). The asymptotic variance given in (4.11) is not defined when
any of the cells of the j-th table are empty. In these cases, a correction of 0.5 is added to each cell of the
table.

The BD statistic X2
BD = X2

BD(𝜌) is now a function of 𝜌, and X2
BD(𝜌̂) has a 𝜒2

K−1 distribution under
the homogeneity of ORs when the value of 𝜌 is estimated correctly. Equating the BD statistic to its
first moment,

K∑
j=1

(X1j − E(X1j|𝜓̂MH))2

Var(X1j|𝜓̂MH)
= K − 1, (4.12)
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and solving this estimating equation for 𝜌̂ result in the Mandel-Paule-type estimator 𝜌̂BD, which can be
used for the calculation of 𝜓̂cMH given by (3.5).
The range of values for the overdispersion parameter 𝜌 is the interval (max{−1∕amax,−1∕max(nij −
1)}, 1). When 𝜌 → −1∕(nij − 1), the variance in the denominator of X2

BD(𝜌) converges to zero, and the
BD statistic tends to infinity. When X2

BD(𝜌 = 0) < K − 1, the solution of equation (4.12) always exists
and is negative. On the other hand, 𝜌 = 1 provides the lower limit for the BD statistic, so if this lower
limit of X2

BD(𝜌 = 1) > K − 1, the equation (4.12) does not have a solution; in this case we set 𝜌̂ = 1.
The confidence interval for 𝜌 can be obtained by profiling the BD test, similarly to confidence interval

for 𝜏2 obtained by profiling Cochran’s Q under REM by [35]. The confidence interval with 95% coverage
probability for the ICC parameter 𝜌 based on the modified BD test is given by{

1 > 𝜌 > max{− 1
amax

,− 1
max(nij − 1)

} ∶ 𝜒2
K−1,0.025 ⩽ X2

BD(𝜌) ⩽ 𝜒2
K−1,0.975

}
. (4.13)

We will see from the simulations described in Section 6 that the methods developed in this Section are
best utilized when sample sizes are large (greater than about 100).

5. Example: effects of diuretics on pre-eclampsia

A well-known meta-analysis of nine trials which include the total of 6942 patients, evaluated the effect
of diuretics on pre-eclampsia [39]. These data have been studied repeatedly, for example in [40], [41],
[35], and [12]. The basic data with ORs and their logs are provided in [12, Table 2a] and are reproduced
in the Web Appendix. These data demonstrate considerable heterogeneity in incidence of pre-eclampsia
in both the treatment and the control groups, [12], suggesting that the BB model may be appropriate.
There is also considerable heterogeneity in effect sizes. The overall incidence of pre-eclampsia varies
from 0.015 in study 6 to 0.412 in study 9. The ORs of effect of diuretics vary from 0.229 in study 4, a
study with high incidence of 0.308, to 2.971 in study 8, a study with low incidence of 0.038. Cochran’s
Q-statistic is Q = 27.265, and the total sample size N = 6942. Estimated values of 𝜏2 for standard REM,
and of 𝜌 assuming the BB model and using various estimating methods are provided in Table I. The
Der-Simonian-Laird estimate of the variance component in standard REM is 𝜏2

DL = 0.23, and 𝜏2
REML =

0.30. For 𝜏2 estimation in REM, Q-profile confidence intervals [35] are given for the DL, and profile
likelihood confidence intervals [40] for the REML method. In BB model, five methods of estimation
provide estimates of 𝜌̂ varying from 0.008 for the moment estimator to 0.019 for the BD-based estimator.
The confidence interval for 𝜌 is shortest for REML and longest for the BD estimator. These values are
directly interpretable as the estimated ICCs and their confidence limits. To see the effect of these estimates
of heterogeneity on the inference about the OR, we compare the corresponding estimates for LOR and
OR, and their confidence intervals, in the same table. The OR is highest (0.672) in the FEM, and, not

Table I. Values and confidence intervals for 𝜌, for log odds ratios and for odds ratios for diuretics on pre-
eclampsia example; FEM is the fixed effect, REM is the random effects, and BB is the beta-binomial model.
Heterogeneity parameter estimated is 𝜏2 in REM, and 𝜌 in BB model. L and U are the lower and upper limits
of the respective confidence intervals (CIs).

Hetero length
Model Method geneity L U LOR L U of CI OR L U

FEM 0.000 −0.398 −0.573 −0.223 0.530 0.672 0.564 0.800
REM DL&IV 0.230 0.072 2.202 −0.517 −0.916 −0.117 0.799 0.596 0.400 0.889
REM REML&IV 0.300 0.043 1.475 −0.518 −0.956 −0.080 0.876 0.596 0.384 0.923
BB M&IV 0.008 0.002 0.095 −0.436 −0.792 −0.080 0.712 0.647 0.453 0.923

M&MH −0.427 −0.775 −0.080 0.695 0.652 0.461 0.923
BB REML&IV 0.010 0.001 0.060 −0.447 −0.835 −0.059 0.776 0.640 0.434 0.942

REML&MH −0.431 −0.809 −0.053 0.756 0.650 0.445 0.949
BB MP&IV 0.017 0.002 0.095 −0.469 −0.920 −0.018 0.902 0.626 0.399 0.982

MP&MH −0.459 −0.898 −0.020 0.879 0.632 0.407 0.981
BB cMP&IV 0.018 0.003 0.094 −0.474 −0.942 −0.007 0.936 0.623 0.390 0.993

cMP&MH −0.472 −0.927 −0.016 0.911 0.624 0.396 0.984
BB BD&IV 0.019 0.003 0.107 −0.475 −0.944 −0.006 0.938 0.622 0.389 0.994

BD&MH −0.463 −0.920 −0.021 0.899 0.630 0.399 0.980

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017



I. BAKBERGENULY AND E. KULINSKAYA

surprisingly, its confidence interval is the shortest. The OR is lowest (0.596) in the standard REM, and
various estimators based on inverse variances or the MH method provide intermediate values of OR, the
one based on MH and method-of-moments estimator 𝜌M providing the highest value of OR, 0.652. For
each estimator of 𝜌, the MH estimation of OR results in a somewhat higher value of OR than the inverse-
variance-based estimation, with a somewhat shorter confidence interval for OR. The sample sizes are
reasonably large in all included studies, and based on the results of simulations reported in Section 6, we
recommend to use the estimated ICC 𝜌̂BD = 0.019 and corresponding value of the pooled OR 𝜓̂IV = 0.622
with confidence interval (0.389, 0.994).
In this example, the CI’s for 𝜌 and for 𝜏2 do not include 0 so the evidence for REM or BB is stronger
compared with FEM. Unfortunately, it is very difficult to distinguish between the REM and BB (see
Section D.4 in Web Appendix.)

6. Simulation study

In this section, we provide a simulation study to assess the performance of point and interval estima-
tors of the overdispersion parameter 𝜌 and the combined LOR 𝜃 in the BB model of meta-analysis. We
assess the bias of five point estimators of 𝜌: the moment method (4.5), the Mandel-Paule-inspired method
𝜌MP, the corrected Mandel-Paule estimator based on the gamma approximation to Q distribution 𝜌cMP,
the REML method (4.2), and the BD-based method (4.12). We also assess four related confidence inter-
vals for 𝜌 (4.6), (4.8), (4.3), and (4.13) for their coverage at the 95% confidence level. Additionally, we
compare two estimation methods for obtaining point and interval estimators of the combined odds ratio
or its log, the inverse-variance method 𝜃̂w =

∑
wi(𝜌)𝜃̂i∕

∑
wi(𝜌) and the modified MH method (3.5). We

combine the five above-mentioned point estimators of 𝜌 with these two methods of obtaining the com-
bined effect 𝜃̂, resulting in 10 possible combinations, and we assess these estimators of 𝜃̂ for bias and
for coverage.

Typically, small values of 𝜌, below 0.1, appear in bio-medical applications, [42,43]. Overdispersion is
mostly due to clustering by healthcare provider. However, our range of values of 𝜌 up to 0.3 is compa-
rable with 𝜏2 values of up to 5 in the standard REM for our choice of values of probabilities and LORs
provided below. This correspondence between heterogeneity in the additive REM and BB model is given
by equation (3.3).

6.1. Simulation design

Sizes of the control and treatment groups were taken equal n1j = n2j = nj and were generated from a
normal distribution with mean n and variance n∕4 rounded to the nearest integer and left truncated at
5. For a given probability p2j, the number of events in the control group X2j was simulated from a BB
(nj, p2j, 𝜌) distribution using the R package emdbook [44]. The number of events in the treatment group
X1j was generated from a BB (nj, p1j, 𝜌) distribution with p1j = p2j exp(𝜃)∕(1−p2j+p2j exp(𝜃)) for a given
LOR value of 𝜃. When 𝜌 = 0, the numbers of events for treatment and control arm Xij were generated
from binomial distributions with sample size nj and probabilities pij, preserving the relation between the
probabilities in the treatment and control arms.

The following configurations of parameters were included in the simulations. The number of studies
K = (5, 10, 20, 30, 50, 80); average sample sizes in each arm are n = (10, 20, 40, 50, 80, 100, 160, 250,
640, 1000); overdispersion parameter 𝜌 varies between 0 and 0.1 in steps of 0.01, and between 0.1 and
0.3 in steps of 0.05. The values of LOR 𝜃 vary from 0 to 3 in steps of 1. The probability in the control
group p2j takes values 0.1, 0.2, 0.4. A total of 10000 simulations were produced for each combination.

6.2. Simulation results

Figures 1 and 2 show the bias and coverage of 𝜌 estimated by the five methods mentioned earlier for 12
combinations of K and n for the case of p2j ≡ 0.1 and 𝜃 = 0 and varying values of 0 ⩽ 𝜌 ⩽ 0.3. The bias
and coverage of true log-odds-ratio 𝜃 estimated by the inverse-variance (𝜃IV ) for values of 𝜃 = 0, 1, 2, are
shown in Figures 3–6, respectively. Similar figures for bias and coverage of 𝜃 by the modified MH method
(𝜓̂cMH) are given in the Web Appendix, Figure B25–Figure B28. A number of figures show fewer than
five lines, because the standard methods including moment based estimation, REML and the Mandel-
Paule method perform similarly. The differences between the standard methods and two new methods,
the corrected Mandel-Paule method and the BD based method, are clearly visible.
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Figure 1. Bias estimated from K studies of the intra-cluster correlation 𝜌 in the beta-binomial model for p2j = 0.1,
𝜃 = 0 and 0 ⩽ 𝜌 ⩽ 0.3 for average sample sizes n = 20, 50, 100, and 1000. Estimation methods: circles – Moment
estimator 𝜌̂M , squares – Corrected Mandel-Paule estimator 𝜌̂cMP), diamonds – 𝜌̂REML, triangles- Breslow-Day

based estimator 𝜌̂BD, reverse-triangles – Mandel-Paule estimator 𝜌̂MP. Light grey line at 0.

6.2.1. Bias and coverage in estimation of intra-cluster correlation 𝜌. Bias of estimated ICC 𝜌 is negative,
and its magnitude clearly increases in 𝜌, Figure 1 for p2j = 0.1, Figure B1 and Figure B2 in Web Appendix
for p2j = 0.2 and 0.4. For small numbers of studies K combined with small sample sizes (n ⩽ 50),
𝜌̂cMP estimation appears to be the best option. However, for larger sample sizes (n ⩾ 100), the BD-based
estimator 𝜌̂BD is the clear winner. Still, its negative bias increases almost linearly with 𝜌 and is acceptable
only for 𝜌 < 0.1. Coming to coverage of 𝜌 (Figure 2 and Figure B3, Figure B4 in the Web Appendix),
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Figure 2. Coverage at the nominal confidence level of 0.95 of the intra-cluster correlation 𝜌 estimated from K stud-
ies in the beta-binomial model for p2j = 0.1, 𝜃 = 0 and 0 ⩽ 𝜌 ⩽ 0.3 for average sample sizes n = 20, 50, 100, and
1000. Interval estimation methods: circles – Q-profile confidence interval for 𝜌 based on 𝜒2 distribution, squares
– Q-profile confidence interval for 𝜌 based on Γr(𝜌),𝜆(𝜌) distribution), diamonds – Profile likelihood confidence

intervals, triangles – Breslow-Day-Profile confidence intervals. Light grey line at 0.95.

once more, the BD-based estimator appears to be the safest option, apart from the case of very small
sample sizes n ⩽ 50, where the gamma-based approximation appears to provide better coverage for
K ⩾ 10. Figure B5 and Figure B6 in the Web Appendix show the bias and coverage in estimation of 𝜌 for
four values of 𝜃 and increasing sample size n, keeping 𝜌 = 0.1 fixed. Similar plots of bias and coverage
of 𝜌 for p2j ≡ 0.2 and p2j ≡ 0.4 are given in Figure B7–Figure B10 in the Web Appendix. BD-based
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Figure 3. Bias of overall odds ratio 𝜓̂IV obtained from K studies by the inverse-variance method with the moment
estimator 𝜌̂M in the weights, for p2j = 0.1, and 0 ⩽ 𝜌 ⩽ 0.3 for average sample sizes n = 20, 50, 100, and 1000.

The biases are given for 𝜃 = 0 (circles), 𝜃 = 1 (circle plus), and 𝜃 = 2 (circle cross). Light grey line at 0.

estimator 𝜌BD remains the best estimator of 𝜌 for all scenarios for n ⩾ 100, although it acquires a small
positive bias when p2j = 0.4 and 𝜃 = 3, the case corresponding to p1j = 0.93. Similarly, in Figure B11–
Figure B16 in the Web Appendix, the results are presented for three values of p2j and increasing sample
size n, keeping the value of 𝜃 fixed. Both bias and coverage improve when the probabilities in both arms
are farther from the edges.

6.2.2. Bias in estimation of odds ratio𝜓 . Bias of the estimated OR 𝜓̂ was practically the same regardless
of the method used for estimation of ICC 𝜌. This may be due to similarity of sample sizes across studies
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Figure 4. Coverage at the nominal confidence level of 0.95 of the overall odds ratio 𝜓 obtained from K studies by
the inverse-variance method, for p2j = 0.1, 𝜃 = 0 and 0 ⩽ 𝜌 ⩽ 0.3. The inverse-variance weights use the following
estimators of 𝜌: circles – 𝜌̂M , squares – Corrected Mandel-Paule estimator 𝜌̂cMP, diamonds – restricted maximum
likelihood estimator 𝜌̂REML, triangles – Breslow-Day estimator 𝜌̂BD and reverse-triangles – Mandel-Paule estimator

𝜌̂MP. Light grey line at 0.95.
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Figure 5. Coverage at the nominal confidence level of 0.95 of the overall odds ratio 𝜓 obtained from K studies by
the inverse-variance method, for p2j = 0.1, 𝜃 = 1 and 0 ⩽ 𝜌 ⩽ 0.3. The inverse-variance weights use the following
estimators of 𝜌: circles – 𝜌̂M , squares – Corrected Mandel-Paule estimator 𝜌̂cMP, diamonds – restricted maximum
likelihood estimator 𝜌̂REML, triangles – Breslow-Day estimator 𝜌̂BD and reverse-triangles – Mandel-Paule estimator

𝜌̂MP. Light grey line at 0.95.

in our simulations, as the inflation terms (1 + (ni − 1)𝜌) in the normalized individual weights ‘almost’
cancel. Without loss of generality, we plotted the results for bias of 𝜓̂ obtained when using the moment
estimator 𝜌̂M in Figure 3 for values of log-odds 𝜃 = 0, 1 and 2. There is no bias when 𝜃 = 0, that is, when
the probabilities of an event in two arms are the same, but the bias clearly increases with increasing values
of 𝜃 and/or 𝜌. The bias for the inverse-variance weights is within 10% for 𝜌 ⩽ 0.1 or 𝜃 ⩽ 2, which would
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Figure 6. Coverage at the nominal confidence level of 0.95 of the overall odds ratio 𝜓 obtained from K studies by
the inverse-variance method, for p2j = 0.1, 𝜃 = 2 and 0 ⩽ 𝜌 ⩽ 0.3. The inverse-variance weights use the following
estimators of 𝜌: circles – 𝜌̂M , squares – Corrected Mandel-Paule estimator 𝜌̂cMP, diamonds – restricted maximum
likelihood estimator 𝜌̂REML, triangles – Breslow-Day estimator 𝜌̂BD and reverse-triangles – Mandel-Paule estimator

𝜌̂MP) Light grey line at 0.95.

cover the major part of values of these parameters in practice, as 𝜃 = 2 corresponds to an OR of 7.39, and
the values of ICC 𝜌 are usually small. An explanation of this bias and a possible remedy are provided in
Section 6.2.3. Unfortunately, the bias is substantially higher for the modified MH method, especially for
small numbers of studies K and large values of 𝜌 and n, and the coverage deteriorates accordingly, see
Figure B25–Figure B34 in the Web Appendix, and therefore we do not pursue this estimator further.
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6.2.3. Bias of sample log-odds-ratio under beta-binomial model. The bias of a number of popular effect
measures used for binary data under REMs is discussed in [45]. For log-odds, it is well known that the
sample log-odds-ratio

𝜃̂ = log

(
p̂1

1 − p̂1

)
− log

(
p̂2

1 − p̂2

)
,

where the probabilities of events p1 and p2 in treatment and control groups are estimated by sample
proportions p̂i = Xi∕ni, i = 1, 2, has a bias of order 1∕n under the FEM 𝜌 = 0. The standard bias
correction studied by Gart et al. (1985) adds 1∕2 to Xi and to ni −Xi, that is, uses p̃i = (Xi +1∕2)∕(ni +1)
when estimating the log-odds to eliminate the 1∕n bias term at the null model 𝜌 = 0.

Expanding the log-odds by Taylor series for a general 𝜌, and taking expectations, (see [45] for details
of the derivation)

E𝜌
(

log

(
p̂

1 − p̂

))
= log

(
p

1 − p

)
−

(1 − 2p)(1 + (n − 1)𝜌)
2np(1 − p)

+ · · · ,

where, importantly, the second term includes a bias of order O(1) when 𝜌 ≠ 0. Therefore, the bias of the
sample log-odds-ratio 𝜃̂ is

bias(𝜃̂) = −
(1 − 2p1)(1 + (n1 − 1)𝜌)

2n1p1(1 − p1)
+

(1 − 2p2)(1 + (n2 − 1)𝜌)
2n2p2(1 − p2)

.

When log-odds-ratio 𝜃 = 0, that is, when the probabilities in the two arms are equal, the biases for sample
log-odds in the two arms cancel out. Thus, the estimate 𝜃̂ is unbiased to order 1∕n. However, when 𝜃 ≠ 0
and the probabilities in the two arms are not equal, the sample OR is biased to order O(1), and this bias
is not ameliorated by the correction. For example, when p1 = 0.1 and p2 = 0.4, that is, 𝜃 = −1.791, the
main bias term is (−4.444+0.417)𝜌, increasing linearly with the ICC 𝜌. Figure C35 in the Web Appendix
illustrates the quality of this linear approximation to bias. It works well for small values of 𝜌, but the bias
increases and higher-order terms become more important for larger values of 𝜌.

In meta-analysis with fixed weights, it would be possible to correct the resulting bias of the overall
effect measure for small values of 𝜌, but the use of inverse-variance weights also affects the bias and
makes such a correction much more difficult. Luckily, the resulting bias is not very large, as we have seen
in Section 6.2.2. We believe that the origin of the higher bias in the corrected MH method is similar, but
its consequences are graver.

6.2.4. Coverage of odds-ratio 𝜓 . The method used for estimation of ICC 𝜌 is of utmost importance for
correct estimation of variance, and therefore the coverage of the OR𝜓 . Plots of coverage for p2 j = 0.1 are
is presented in Figures 4–6 for 𝜃 = 0, 1 and 2, respectively. Overall, as with bias, the modified Mandel-
Paule estimator 𝜌̂cMP results in the best coverage for small sample sizes up to 50, and 𝜌BD provides superior
coverage for n ⩾ 100. All other estimators of 𝜌 result in inferior coverage, especially for large values of 𝜌.
However, there are important differences in coverage when using the best estimators of 𝜌 because of
differences in true value of the OR. For the small number of studies K = 5, the coverage is too low for all
values of 𝜃, but it drifts from about 90% to about 87% even when the best estimator of 𝜌 is used. Starting
from K = 10, the coverage is good for 𝜃 = 0, but becomes lower than nominal when 𝜃 increases. It is still
reasonable, at about 93%, for 𝜃 = 1, but reaches 90% or even somewhat lower for 𝜌̂BD used with large
sample sizes n = 1000. This is due to the increasing biases in the estimation of 𝜓 combined with the
‘improved’ precision for larger sample sizes. Similar plots of coverage for p2j = 0.2 and 0.4 when 𝜃 = 0
are given in the Web Appendix (Figure B17, Figure B18). Figure B19 - Figure B24 in the Web Appendix
present the bias and coverage when estimating 𝜃 by 𝜃̂IV for different values of p2j and increasing sample
size n, keeping the value of 𝜃 fixed. These figures clearly show the biases and reduced coverage of OR
due to transformation bias discussed in the previous section. Coverage achieved when 𝜌̂BD is used in the
weights is superior for moderate to large sample sizes.

7. Discussion

In this paper, we developed theory of meta-analysis of ORs based on the BB model. This model is a natu-
ral alternative to the standard REM based on normality of random effects. Of course, other combinations
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of distributions are possible for meta-analysis of binomially distributed data. [13] suggest using exact
hypergeometric likelihood for individual studies combined with normally distributed random effect for
log-odds. [46] discuss a family of compound binomial distributions obtained by using mixing distribu-
tions from the generalized inverse gaussian family of distributions, but these distributions have not been
used so far in meta-analysis.

We have concentrated on the case of two independent BB distributions in two arms of each study. We
have proposed two new methods of estimation of the ICC 𝜌 in meta-analysis based on this model. Both
our methods work considerably better than other, more traditional methods suggested by [12], and they
complement each other by being applicable to meta-analyses of smaller or larger studies. This model is
similar to bivariate binomial-normal REM for log-odds-ratios discussed by [13, p.3056]. The latter model
can also incorporate a correlation between the two arms of the same study. However, a similar extension
of the BB model is not straightforward.

A version of a bivariate BB distribution was proposed by [47], but this distribution has a strictly pos-
itive lower bound for correlation between the marginals, so it does not include the case of independent
BB distributions. Moreover, [47] show that ‘independence cannot be obtained as a limit in the parame-
ters without sacrificing the overdispersion’. They also discuss other, previously suggested, versions of a
bivariate BB distribution, and possible extensions aimed at resolving this problem, but none are satisfac-
tory. However, a different version that allows a range of correlation values, including zero correlation,
was applied to meta-analysis in [48]. A new bivariate beta distribution was recently proposed by [49],
but so far it has not been used for mixing binomial distributions.

An important question is how to differentiate between possible REMs, and how robust are the standard
REM methods for meta-analysis of LORs when the BB model is true. A good summary of existing
diagnostic methods to differentiate between BB and logistic-normal model is provided by [50], however
this is a difficult task, [51]. In Section D of Web Appendix, we provide a simulation study to answer
the second question. Briefly, the heterogeneity is best assessed by the moment-based DerSimonian-Laird
method, in agreement with [52], who do not recommend the use of likelihood based methods for the
dependent binary data, because these methods are not robust against model misspecification. The bias of
LOR 𝜃 is very considerable for 𝜃 = 1 and 2, Figure D42, but it is larger than and in the opposite direction
to that of 𝜃 estimated from the true BB model, Figure 3. This bias does not visibly depend on the method
of estimation of 𝜏2.

We also briefly considered a model with a BB distribution in the treatment arm only. This model is
analogous to a version of unconditional random effects logistic regression by [53]. In this model, the
study-specific log-odds of the control groups constitute K additional parameters, and this model is not
appropriate when K → ∞, [13].

We also proposed a variant of the MH method for meta-analysis of ORs. Unfortunately, in simulations
this method was very biased, especially for ORs greater than 1. Elimination of this bias will be pursued
elsewhere. The traditional inverse-variance approach to combining LORs using ICC 𝜌 in the weights
estimated by one of our methods results in reasonable, although somewhat low coverage for a realistic
range of ORs and ICCs. Developed methods and R programs, provided in the Web Appendix, make the
BB model a feasible alternative to the standard REM for meta-analysis of ORs.
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