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ABSTRACT 

We report on the mathematical and numerical modelling of 

amplified rogue waves driving a wave-energy device in a con- 

traction. This wave-energy device consists of a floating buoy 

attached to an AC-induction motor and constrained to move up- 

ward only in a contraction, for which we have realised a working 

scale-model. A coupled Hamiltonian system is derived for the 

dynamics of water waves and moving wave-energy buoys. This 

nonlinear model consists of the classical water wave equations 

for the free surface deviation and velocity potential, coupled to a 

set of equations describing the dynamics of a wave-energy buoy. 

As a stepping stone, the model is solved numerically for the case 

of linear shallow water waves causing the motion of a simple 

buoy structure with V-shaped cross-sections, using a variational 

(dis)continuous Galerkin finite element method. 

 
 

INTRODUCTION 

The study of water waves has attracted scientists for 
decades, especially due to their effect on ships, offshore struc- 
tures and oil exploitation. The interaction of waves can often lead 
to extreme wave phenomena, e.g. waves with irregular height. 
Waves with anomalously high amplitudes relative to the ambient 
waves are called rogue waves and can appear either at the coast 
or in the open ocean. Such waves can have significant impact on 
moving ships and wave-energy devices, and the main goal of our 
study is to investigate the effect of rogue waves on such floating 
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bodies. 

A water wave model is derived based on potential flow the- 
ory,  a famous mathematical method in the modelling of wa-   
ter waves which describes the fluid velocity as the gradient of   
a scalar field: the velocity potential. Here we remain entirely 
within a variational framework [1, 2] in order to ensure zero nu- 
merical damping, important for wave propagation. The poten- 
tial flow water wave model is coupled to a moving wave-energy 
buoy. This nonlinear model consists of the classical water wave 
equations for the free surface deviation and velocity potential, 
coupled to a set of equations describing the dynamics of the 
wave-energy buoy. The developed wave-buoy system is an es- 
sential step towards advancing in the modelling of wave impact 
on ships, as such an extension is straightforward. We explain this 
further in the discussion. 

Similar fluid-structure interaction models using variational 
methods have been reported by other researchers [3, 4, 5, 6]. In 
this paper, we also present numerical solutions based on a vari- 
ational (dis)continuous Galerkin finite element method. The nu- 
merical implementation employs 2nd-order continuous Lagrange 
polynomial approximations in space and a 2nd-order discontinu- 
ous Stö rmer-Verlet symplectic scheme in time [7]. We obtain nu- 
merical results for the dynamics of the coupled system linearised 
around a rest state. In this case the problem becomes linear and 
we solve the system in the shallow water approximation, i.e. the 
dynamics are reduced to those on the free surface. Considering 
the shallow water limit is a stepping stone because the funda- 
mentals of the wave-buoy coupling actually lie at the free surface 
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Variarional Principle For Shallow Water 
The classical potential flow model describes the evolution 

of the free surface h(x, y, t) and the velocity potential φ (x, y, z, t), 

y where x, y ∈ Ω = [0, Lx] × [0, Ly] are the horizontal spatial coor- 

dinates, z ∈ [0, h(x, y, t)] is the vertical coordinate and t ∈ [0, T ] 
is time.  Here we consider shallow water waves and this  allows 
us to reduce the dynamics to the ones on the free surface, by 

seeking solutions for the free surface height h(x, y, t) and the free 
FIGURE 1: PROBLEM CONFIGURATION WITH A LINEAR 

BUOY AT THE RIGHT END OF THE WAVE TANK. THE 
POINT DENOTED BY yb IS THE FAR-LEFT POINT WHERE 
THE WATER MEETS THE BUOY. 

surface velocity potential φs(x, y, t) = φ (x, y, h(x, y, t), t). A varia- 
tional principle for the dynamics of the wave-buoy system can be 

found by extending Luke’s variational principle [1] for shallow 
water waves and a buoy, and is given by 

 

and not the interior of the fluid, therefore the extension to poten- ¸ 0 = δ T 
.¸¸ . 1 2 1 2

.
 

tial flow then becomes straightforward.  For simplicity, we  also 
0 Ω 

−ρ h∂tφs + 
2 

h|∇φs| +  g(h− H0) 
dx dy 

consider a simple buoy structure consisting of V-shaped    cross- 

sections; such a buoy structure is important because it can be 
easily extended to become the bow of a ship. Numerical results 
are first obtained for a problem where waves are generated    by 

+ MW Ż − 
2 

MW 

. 

− MgZ dt. (2) 

temporarily removing a sluice gate in a rectangular wave channel 
(see also [8] for a related problem concerning small-amplitude 
and long water waves). Finally, we present results for waves 
generated by a piston wavemaker in a wave channel that employs 
geometric wave amplification to create rogue-wave effects; such 
waves are in general nonlinear, but here we concentrate on linear 
wave impact on wave-energy buoys. 

 
 

MATHEMATICAL MODEL 
Model For Wave-Energy Buoy 

We consider three-dimensional water wave dynamics cou- 
pled to the dynamics of a wave-energy buoy of mass M. This 
buoy is restricted to move only in the vertical direction and its 
motion can be described by the position of its centre of mass Z 

and the conjugate velocity W . We assume that the buoy has a 
simple linear hull structure, given by 

hb(x, y;t) = Z(t) − H − tan α (y− Ly), (1) 

 
as demonstrated in Fig. 1. Here, α is the angle between the hull 
and the horizontal, Ly is the length of the domain and H > 0 is 
the vertical distance between the centre of mass Z and the keel of 

the buoy (the keel of this V-shaped buoy resides at y = Ly). The 
point yb shown in the figure is defined as the far-left point where 
the water meets the buoy. 

We should note that the buoy we considered initially was 
symmetrically extended to the right such that the point Z was 
indeed the centre of mass of the triangular (or tetrahedral) body; 
we then decided to consider only “half” of the domain of interest 
because of the symmetry of the buoy, but kept the point Z at the 
original position of the centre of   mass. 

Here, g is the gravitational force, ρ is the density of water and H0 

is the flat water depth at rest. The gradient operator ∇ = (∂x, ∂y)T 

is in the horizontal plane only. 
 

Linearisation 

The problem admits a steady state solution in the case when 
the water is flat and the buoy is floating at rest. The steady state 
solution is given by 

 
h = H0, φ = 0, hb  = Hb(y), 

Z = Z̄, W = 0, yb  = Lb. (3) 

 
The waterline point Lb has now a fixed position. The form of the 
hull of the buoy at the floating rest state is Hb(y) = Hb(y; Z̄) = 
Z̄ − H − tan α (y − Ly), where Z̄ = H0 + H − 

,
(2M tan α)/ρ Lx 

is the rest position of the buoy’s centre of mass. This is obtained 

by linearising the equations of motion (coming from (2)) and ap- 
plying Archimedes’ principle which indicates that the displaced 
volume of water should equal the mass of the buoy. 

We linearise around the rest state (3) by adding small pertur- 
bations to the steady state solution, i.e. 

 

h = H0 + η, φ = φ ,̃ hb  = Hb(y)+ ηb, 

Z = Z̄ + Z̃ , W = W̃ , yb  = Lb + ỹb. (4) 

 
A linear shallow water model can be then derived by considering 
only quadratic terms in the variational principle (in what follows, 
all tildes are dropped for simplicity and the subscript s is omitted 
from the free surface potential). We first integrate the term MW Ż 
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∆t 

k̃ 

by parts and then change the sign of the quadratic variational 
principle, which is finally given by 

(DIS)CONTINUOUS GALERKIN DISCRETISATION 
Finite Element Discretisation In Space 

We expand the variables η, φ and λ in terms of continuous 

0 = δ 
¸ T 

.¸¸ . 
ρη∂tφ + ρ H0|∇φ|2

 basis functions ϕk(x, y), such that 

0 Ωw 2 

+ ρg
. 1 

η2 − η η
.. 

dx dy 

2 
R 

¸¸  . 1 2
 

η ≈ ηh  = ηk(t)ϕk(x, y), φ ≈ φh = φk(t)ϕk(x, y), (8) 

λ ≈ λh = λkϕk(x, y), 

+ ρηb∂tφ + 
Ωb 2 

ρ Hb(y)|∇φ| where the Einstein summation convention is adopted. The total 
number of nodes will be denoted by k, A, the nodes at the   free + ρg

. 1 
η2 − η η 

. 
− ρλ (η − Z)

. 
dx dy 

2  b R   b b water surface by k̂, Â  (including nodes at y = Lb) and the nodes ˜   ˜ 

+MZẆ  + 
1 

MW 2
. 

dt. (5) 
2 

at the buoy’s surface by k, A.  Substituting these finite element 
expansions in Eqn. (5) and introducing the matrices 

 
Here we added a (gravitational) potential ηR(y, t) to model a 
sluice gate release problem (more details in a later section).    In 

 

MkA = 

¸¸ 

ϕkϕA dx dy, 
Ω 

¸¸ 

¸¸ 

M̃k̃Ã  = 
Ωb 

¸¸ 

 
ϕk̃ ϕÃ  dx dy, 

the above variational principle, the spatial domain is split in two 

parts: in the water subdomain Ωw, η is the usual surface devi- 
ation, while in the buoy subdomain Ωb, the water surface ηb    is 

QA  ̃= 

AkA = 

ϕA  ̃dx dy, Rk(t) = 
Ωb 

¸¸ 

H0∇ϕk̂ · ∇ϕÂ  dx dy + 

ηR(y, t)ϕk dx dy, (9) 
Ω 
¸¸ 

Hb(y)∇ϕk̃ · ∇ϕÃ  dx dy, 
constrained by the buoy.  This condition is imposed by   using a Ωw Ωb 

Lagrange multiplier λ , which enforces the constraint ηb = Z, es- 
sentially meaning that the water under the buoy takes exactly the 
shape of the wetted part of the buoy. 

At the waterline point, we impose that the height of the 

yields the time continuous but space discrete variational principle 
 

T 
0 = δ 

¸    .
ρ M   η φ̇  + 

1 . 1 .
 

fluid’s free surface should be equal to the buoy’s surface height, kA   k  A 
0 

ρ AkAφkφA + ρg 
2 

MkAηkηA − Rkηk 

i.e. h(x, yb, t) = hb(x, yb;t). In the linearised case, this becomes 
˙ 1 2

. 

η(x, Lb, t) = − tan α ỹb + Z̃. This condition hence provides an ex- 

pression for the perturbation of the waterline point and is  given 

by 

−ρ (M̃k̃Ãηk̃ λÃ  − QÃλÃZ) + MZW + 
2 

MW 

Time Discretisation 

dt.   (10) 

 
ỹb  = 

 
Evolution Equations 

Z̃  − η(x, Lb, t) 

tan α 
. (6) 

The variational principle in (10) is discretised in time using 
the RATTLE symplectic algorithm [9], which is an extension of 
the (discontinuous) symplectic Stö rmer-Verlet method for con- 
straint Hamiltonian systems [10, 11, 12]. The final space-time 
discrete equations of motion are the following 

The final constrained system of evolution equations emerges 
from the variational principle (5) by applying the variations with MkAφ

n+1/2 
= MkAφ n 

respect the η, φ , Z, W , λ and is given by 
A A 

∆t 
. n n+1/2 n+1/2

.
 

− 
2    

g(MkAηA  − Rk ) − M̃kÃλÃ
 

, (11a) 

∂tφ + g(η − ηR) − λ Θ(y− Lb) = 0, in Ω,  (7a) MWn+1/2 = MWn 
ρ Q λ

n+1/2 

∂tη + ∇ · ((H0Θ(Lb − y)+ HbΘ(y− Lb))∇φ ) = 0, in Ω,  (7b) ηb = Z, in Ωb, (7c) 
 

MkAηn+1 
− 

2
 

kA  k 

A˜   A˜ 

n+1/2 
kA 

, (11b) 

k = M ηn + ∆tA φk , (11c) 

MẆ  + ρ 

¸¸

 
Ωb 

λ Θ(y − L  ) dx dy = 0, in Ω , (7d) Zn+1 = Zn + ∆tW n+1/2, (11d) 

0 

b b 
Ż = W. (7e) 

= M̃k̃Ãη
n+1 − QA˜Z n+1 , (11e) 

MkAφn+1 n+1/2 

In the above equations, Θ(y − Lb) is a heavyside step  function 
A = MkAφA ∆t 

.
g(M 

 
ηn+1 

 
R

n+1/2
)
 M   λ

n+1/2
.

 

such that Θ(y − Lb) = 0 if y ≤ Lb and Θ(y − Lb) = 1 if y > Lb. − 
2 

kA  A −  k 
∆t 

− 
˜

kÃ    Ã  ,   (11f) 

Equation (7c) is the constraint imposed in Eqn. (5) by use of the MWn+1 = MWn+1/2 − ρ Q ̃  n+1/2 

2 
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Lagrange multiplier λ . 2 Aλ
A  ̃

. (11g) 



 

˜ 

k 

ρ 

kA 2 

Q ˜  
n+1/2 

A µ ̃ Q ˜  
n+1/2 

  1 0 if y < y 

We  first solve for the Lagrange multiplier λ
n+1/2

, i.e.     we 
A 

solve the constraint equation (11e).  The Lagrange multiplier  is 

determined by substituting the updates ηn+1 and Zn+1 from (11c) 
and (11d), respectively, into the discrete constraint (11e), leading 
to a linear system for this Lagrange multiplier. This is given be- 
low, where we have defined µ

n+1/2 
= ∆t λ

n+1/2 
for convenience, 

 

 

0.15 
 
 

 
0.1 

 
t =0.00 s 

Ã 2   Ã  
0.05 

 

.
M̃Ãk̃ M

−1 −1 
   

 

n+1/2 
m̃ 

k̃A  
AAkMkñ  M̃ñm̃  + 

M 
QÃQm̃ 

.
µ 

(12) 0 
0 0.2 0.4 0.6 0.8 1 1 n n n − ∆t n n y 

= 
∆t 

(QA˜Z 
− M̃k̃Ãηk̃ )+ QÃW + M̃Ãk̃ M˜ AAk

. 
gηk  − φk 

.
. 

 
 

0.15 

 
t =0.50 s 

Notice that as the enforced constraint is relevant to the region 
under the buoy only, any sluice gate contribution cancels out in 
the above equation. 

Having obtained the solution for µ
n+1/2 

= ∆t λ
n+1/2 

by solv- 

 

 

 

0.1 

Ã 2   Ã  

ing the constraint equation, the rest of the equations in the system 
(11) are then explicit and are solved in the following order 

0.05 

 
MkAφ

n+1/2 

 

n  

∆t 

 

 
n n+1/2 
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A = MkAφA − 
2 

g(MkAηA − Rk ) 
n+1/2 

 

 
0.15 

 
t =1.00 s 

+ M̃kÃµ
Ã
 

Wn+1/2 = Wn − 

, (13a) 
ρ 

M  A µA  ̃ , (13b) 

 

 

 
0.1 

MkAηn+1 n n+1/2 

k = MkAηk + ∆tAkAφk , (13c) 

Zn+1 = Zn + ∆tW n+1/2, (13d) 
∆t 

 

 
0.05 

MkAφn+1 n+1/2    n+1 n+1/2 

A = MkAφA − 
2 

g(MkAηA − Rk ) 
n+1/2 

 
0 
0 0.2 0.4 0.6 0.8 1 

+ M̃kÃµ
Ã
 , (13e) y 

Wn+1 = Wn+1/2 − 
ρ 

M A 
. (13f) 

 

0.15 
t =1.31 s 

 

NUMERICAL SIMULATIONS 
Waves Generated By Removing A Sluice Gate 

We consider a wave generated by removing a sluice gate af- 
ter a finite time Ts (see also [8] for a related water wave problem). 
We solve the linear shallow water equations coupled to a buoy, 

with initial condition φ = 0 and η = ηR, where ηR is defined by 

0.1 
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(h  − h 
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(Ts−t) 

Ts 1 FIGURE 2:  SNAPSHOTS OF THE NUMERICALLY   COM- 

ηR(y, t) = (h1 − h0)
(Ts−t) 

.
1 −  y−y1  

.    
if  y1 ≤ y ≤ y2 (14) 1 

Ts y2−y1 PUTED WAVE  HEIGHT h(x, y, t) AT  x = 2 Lx  AND FOR t = 
0 if  y > y2, 0.0, 0.5, 1.0, 1.31 s. THE BLACK DOT AT y = Ly  SYMBOL- 

for t < Ts and ηR = 0 for t ≥ Ts. Here, 0 < y1 < y2 < Ly, the 

initial water level difference is h1 − h0 > 0 at t = 0 and Ts > 0 is 

the sluice gate release time. In the numerical simulation, we take 
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FIGURE 4: SKETCH OF THE TOP-VIEW OF A WAVE TANK 
WITH A CONTRACTION AT THE RIGHT END. 

 

multaneously causing the buoy to shift upwards. The waterline 
point is plotted according to relation (6) and follows an antici- 
pated motion, i.e.  it moves higher when the wave hits the  buoy 

FIGURE 3: ENERGY OF THE PROBLEM WITH A REMOV- 

ABLE SLUICE GATE. THE TOTAL ENERGY E(t) IS CON- 
SERVED (TOP RIGHT PANEL) AND HAS SMALL VARI- 

ATIONS  FROM  THE  “INITIAL”  ENERGY  E(Ts),  CALCU- 
LATED AT THE TIME WHEN THE SLUICE GATE IS COM- 
PLETELY REMOVED (TOP LEFT PANEL). THE BOTTOM 
ROW  ILLUSTRATES  THE ANTICIPATED  EXCHANGE OF 

ENERGY BETWEEN WATER (BOTTOM LEFT PANEL) 
AND BUOY (BOTTOM RIGHT PANEL). 

 
 

y1 = 0.15 m, y2 = 0.16 m, lower and upper water levels h0 = H0, 
h1 = 1.2H0 and a sluice gate release time Ts  = 0.5 s. 

The parameter values used in the numerical simulation are 
the following: the channel is rectangular, with width Lx = 1 m, 
length Ly = 1 m and height Lz = 0.2 m. Water fills half the height 

of the channel, i.e.  the flat water depth is H0  = 0.1 m.  On  the 
right end of the channel there a buoy of mass M = 5 kg and occu- 
pying about 1/4 of the channel, i.e. the location of the  waterline 

is at Lb = 0.75 m at the rest state. The angle α is computed via 
the relation α = tan−1(2M/ρ Lx(Ly − Lb)2).  The rest of the pa- 

rameters are taken equal to their physical values, i.e. g = 9.81 
m/s2 and ρ = 997 kg/m3. 

The numerical calculation is performed on  a   quadrilateral 

mesh with Nx = 10 and Ny = 160 elements in each horizontal di- 

and then moves to a lower position to the right when the buoy is 
shifted upwards. 

Figure 3 illustrates the behaviour of the energy of the sys- 

tem. It is clear that the total energy E(t) is conserved, in the 
sense that it is bounded and shows no drift - it is not  increasing 
or decreasing in time - and has small variations from the “ini- 

tial” energy E(Ts) (found as soon as the sluice gate is  completely 
removed).  The deviation E(t) − E(Ts) is of the order of   10−7 

for the simulation presented here, and we have confirmed    that 

this error is reduced by (∆t)2 since we employ a second-order 
numerical method in time. Moreover, at the beginning of the 
simulation the buoy is motionless and has zero energy. When the 

water wave reaches the right end area of the wave tank, it causes 
the vertical motion of the buoy and thus it loses energy which 
converts to kinetic energy of the buoy. This exchange of energy 
is such that the total energy is conserved, as expected. 

 
Waves Generated By A Piston Wavemaker 

We now consider that a wave is generated by a (linearised) 

wavemaker located at the left side of the channel,  i.e.   at   y = 
R(t) ≈ 0,  with R(t) = A (1 − cos(ωt)).   The channel has a V- 
shaped contraction at the other end (Fig. 4) and in the corner there 

is a wave-energy buoy limited to move only in the vertical. We 
solve a set of modified linear shallow water equations coupled 
with the buoy,  resulting from a variational principle similar    to 

mension and linear polynomial approximation in each  element, (5) but with ηR = 0 and the term ρ H0 
¸ Lx  dR φ 

.
 dx added on the 

0    dt     
.
y=0 

i.e. a total of Nk = NxNy = 1600 elements and Nn = (Nx + 1)(Ny + 
1) = 1771 nodes. The time step was calculated such that to sat- 
isfy the CFL condition ∆t = Ly/(2π Ny

√
gH0) = 0.001. The nu- 

left boundary. The corresponding term in the space-time discrete 
evolution equations (11) is 

merical simulations were first executed on MATLAB (based on 
our own stand-alone code) and then also using the automated 
system Firedrake [13], with equal results. 

dR 

∆tH0  
dt 

|tn+1/2Wk, with    Wk  = 

¸ Lx
 

ϕk|y=0 dx, (15) 
0 

The outcome of the numerical simulation is demonstrated in 
Fig. 2, for a sluice gate and buoy uniform in x. The wave height 

at the middle of the cross-section x = 1 Lx is shown at four dif- 

ferent times t = 0.0, 0.5, 1.0, 1.31 s (see also [14] for a video of 
the simulation).  We can see that the removal of the sluice   gate 

which appears on the right hand side of Eqn. (11c). Moreover, 
note that in this case the rest position of the buoy’s centre of mass 
is 

.   
3M tan θ (tan α)2 

generates a single wave, which travels along the channel until it 
reaches the other end.  It is then reflected on the right wall,   si- 

Z̄  = H0 + H − 3
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, (16) 
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FIGURE 5: SAMPLE MESH STRUCTURE IN THE CON- 

TRACTION FOR Nx = 10 AND Ny = 30. THE ADDITIONAL 
NODES IN THE CONTRACTION ARE DENOTED WITH  A 

RED ×. 

 

0.1 
 
 

0.05 

 
and α = tan−1(3M tan θc/ρ (Ly −Lb)3). The angle θc = 68.26◦ is 

the angle between the opening of the contraction and the vertical 
(see also the magnified right hand side panel in Fig. 4). 
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The system is solved with initial conditions φ = 0 and η = 0. 
The wavemaker starts from rest and moves only in the horizontal 

with an amplitude of A = 0.0284 m and frequency ω =  8π √gH0 

(this corresponds to a physical frequency of approximately 2 Hz). 
The rest of the parameter values used in this numerical simula- 

tion are the following: the channel has dimensions Lx = 0.2 m, 

Ly = 2 m and Lz = 0.2 m. The initial constant water depth is  

H0 = 0.1 m. In the contraction of the channel there a buoy of 

mass M = 0.05 kg, with Lb = 1.9 m at the rest state. The mesh is 

0.15 
 
 

0.1 
 
 

0.05 
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0.1 
0.2 

t =2.20 s 

assembled by uniform quadrilateral elements up to the  entrance 
x 

0 0.5 y   1 
1.5 2 

of the contraction, with Nx = 20 and Ny = 175. In the contrac- 
tion, a quadrilateral mesh is still formed but the nodes are only 

aligned in every other line (see Fig. 5). In total, Nk = 3710 el- 
ements are used, with Nn  = 3916 nodes.  The time step used  is 
∆t = 0.0011. 

The  numerically  computed  wave  height  and  the motion 

of the buoy in the contraction can be seen in Fig. 6 at t =     
1.0, 2.0, 2.2, 2.36 s (a video of the simulation can be found in 
[14]). The waterline is again marked with red circles. The mo- 
tion of the buoy in this example is more complicated and this is 
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0.05 
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0.1 
0.2 

t =2.36 s 

because several waves are generated by the wavemaker, which 
not only interact with each other after reflection at the end of 

x 0 0.5 y   1 
1.5 2 

the channel, but are also amplified after entering the contraction. 

Furthermore, the velocity potential at t = 2.5 s is portrayed in 
Fig. 7. We note that the distinctive structure of the potential at 
the right end in the figure is due to the presence of the buoy. 

In this numerical simulation, the total energy E(t) increases 
with time due to the motion of the wavemaker (Fig. 8), which 
essentially introduces extra kinetic energy into the system. The 
energy is expected to be conserved if the wavemaker is switched 

FIGURE 6: SNAPSHOTS OF THE NUMERICALLY COM- 

PUTED WAVE HEIGHT h(x, y, t) FOR t = 1.0, 2.0, 2.2, 2.36 s, 
IN A WAVE CHANNEL WITH A V-SHAPED CONTRAC- 
TION AT ONE END. THE RED CIRCLES DENOTE THE WA- 

TERLINE. 
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FIGURE 9: SAMPLE SHIP STRUCTURE CONSISTING OF 
V-SHAPED CROSS-SECTIONS. 
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1 1.5 2 motion are linearised around a steady state and consist of the 

classical shallow water wave equations for the free surface devi- 
ation and velocity potential, coupled to appropriate equations for 

FIGURE 7:  VELOCITY POTENTIAL AT  t=2.5 s.   THE  PO- 
TENTIAL HAS A DIFFERENT STRUCTURE IN THE RE- 
GION UNDER THE BUOY. 
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the dynamics of the wave-energy buoy. The derived system of 
evolution equations includes a Lagrange multiplier λ , imposing 
the constraint that the fluid surface under the buoy takes its exact 
shape. Our shallow water theory can be easily extended to the 
full potential flow, i.e. for the dynamics of the whole fluid and 
not only its free surface. Such an extension to include the interior 
dynamics is straightforward, since the essentials of the coupling 
lie at the free surface; this is currently work in progress and will 
be used in comparisons of long-wave solutions with the present 
shallow water results. 
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The model is discretised using a continuous Galerkin finite 
element method for the spatial discretisation, and for the time 
discretisation a (dis)continuous symplectic scheme for constraint 
systems is applied. Numerical results are demonstrated for two 
cases: (i) waves generated by removing a sluice gate in a rectan- 
gular channel with a buoy uniform in x, and (ii) waves generated 
by the sinusoidal motion of a (linearised) wavemaker in a chan- 

FIGURE 8: ENERGY OF THE PROBLEM WITH A PISTON 

WAVEMAKER. THE TOTAL ENERGY E(t) IS NOT CON- 
SERVED IN THIS CASE (TOP PANEL) BECAUSE ENERGY 

IS INJECTED IN THE SYSTEM DUE TO THE MOTION OF 
THE WAVEMAKER. 

 
 

off after a few oscillations, but this was not verified in this study 
(cf. [8] for an alternative technique to prove “energy” conserva- 
tion  for  non-autonomous systems). 

 

 

DISCUSSION 

The motion of a wave-energy buoy in a long wave chan- 
nel with a contraction is studied by variational modelling and 
numerical simulations. The wave-energy buoy is constrained in 
the contraction of the channel and is allowed to move only in 
the vertical. We present a mathematical model based on poten- 
tial flow theory, which describes the dynamics of shallow water 
waves and couples them to the dynamics of the buoy. This model 
is Hamiltonian and arises through an extension of Luke’s varia- 
tional principle [1] to include the buoy.  The final equations    of 

nel with a contraction and a tetrahedral buoy. The results confirm 
conservation of energy of the coupled system in case (i), after 
the sluice gate is completely removed. Moreover, even though 
the geometry of the channel used in case (ii) allows the genera- 
tion of nonlinear rogue waves, one needs to follow the dynamics 
in the nonlinear regime in order to study rogue-wave impact on 
wave-energy buoys. 

In addition, the mathematical model presented here can be 
extended in a straightforward manner for the case of a ship.   
The similarity of the buoy’s shape to the bow of a ship, allows 
us to consider a simple ship structure consisting of V-shaped 
cross sections, similar to the one portrayed in Fig. 9. Such a  
ship is allowed to move in the three-dimensional space and has 
6 degrees of freedom: the three translational motions (heave, 
sway, surge) and the three rotational motions (pitch, roll, yaw). 
Hence the dynamics of the ship are described by the position    

of centre of mass X = (X,Y, Z) and the three rotational  angles 
θ = (θ, ϕ, ψ ) [15]. In addition, the conjugate variables are the 
velocity of the centre of mass U = (U,V,W ) and the angular mo- 
menta p = (pθ , pϕ, pψ ). The ship has mass M and moments of 
inertia I = (I1, I2, I3) (and angular velocities Ω = (Ω1, Ω2, Ω3)), 
which are known.  An extension of the variational principle  (2) 
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FIGURE  10:  THREE-DIMENSIONAL  BUOY  IN   A   
WAVE TANK CONTRACTION, ATTACHED TO AN AC- 
INDUCTION MOTOR [16]. 

 

to include the dynamics of this ship is 

[3]van Daalen, E. F. G., van Groesen, E., and Zandbergen, P. J., 
1993. “A Hamiltonian formulation for nonlinear wave- 
body interactions”. In Eighth International Workshop on 
Water Waves and Floating Bodies, IWWWFB, pp.  159– 
163. 

[4]Kock, E., and  Olson,  L.,  1991.  “Fluid-structure  interac- 
tion analysis by the finite element method-a variational ap- 
proach”. Int. J. Numer. Meth. Eng., 31, pp. 463–491. 

[5]Miloh, T., 1984. “Hamilton’s principle, Lagrange’s 
method, and ship motion theory”. J. Ship Res., 28, pp. 229– 
237. 

[6]Xing,  J.  T.,  and  Price,  W.  G.,  1997.    “Variational  prin-   
ciples of nonlinear dynamical fluid-solid interaction sys- 
tems”. Phil. Trans. R. Soc. Lond. A, 355, pp. 1063–1095. 

[7]Hairer, E., Lubich, C., and Wanner, G., 2006. Geometric 

numerical integration. Springer. 
[8]Bokhove, O., and Kalogirou, A., 2016.  “Variational water  

0 = δ 
¸ T 

.¸¸ 
−ρ 

. 
∂tφs + h|∇φs|2 + g(h − H0)2

. 
dx dy wave modelling: from continuum to experiment”. In Lec- 

tures on the Theory of Water Waves, T. Bridges, M. Groves, 
0 Ω 2 2 

. and D. Nicholls,  eds.,  LMS Lecture Note Series.     Cam- 

+ MU · Ẋ + p · θ̇ − 
1 

M|U |2 − 
1 
(I ⊗ Ω) · Ω − MgZ    dt. 

2 2 
(17) 

 

Here, symbol ⊗ is the Kronecker product defined by I ⊗ Ω = 

(I1Ω1, I2Ω2, I3Ω3)T . The above wave-ship model is the subject 
of ongoing work and numerical computations are currently in 
progress; the results will be reported elsewhere. 

Finally, we intend to perform experiments in a wave tank 
that employs geometric wave amplification through a linear V- 
shaped contraction and includes a wave-energy buoy in the cor- 
ner of this contraction [16]. The buoy is attached to an AC- 
induction motor (as shown in Fig. 10) and is restricted to move 
only in the vertical. A study aimed at comparisons between our 
numerical results and the experiment is left as future work. 
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