
 

 

1. Introduction 

The one-dimensional Kuramoto-Sivashinsky equation (KSE) 

ut + uux + uxx + uxxxx = 0, (1.1a) 

u(x, t) = u(x + 2L, t), u(x, 0) = u0(x), (1.1b) 

where 0 ≤ x < 2L is the spatial coordinate and t is time; solutions are sought on spatially periodic 

domains of size 2L, and u0(x) is the initial condition. The KSE is one of the simplest nonlinear 

PDEs exhibiting complex spatio-temporal dynamics. It was derived by both Homsy [1] and 

Nepomnyashchii [2] in their studies of thin liquid film flows down inclined planes, by LaQuey et 

al. [3] in trapped ion mode instabilities, by Kuramoto [4] in diffusion-induced chaos in reaction 

systems, and Sivashinsky and collaborators [5–7] in their studies of flame front propagation. It has 

since been found to describe the asymptotic behaviour of other physical phenomena, including 

two–phase flows in cylindrical pipes [8], interfacial flows [10,11], plasma and chemical reaction 

dynamics [4,12,13], and models of ion-sputtered surfaces [14] that extend the equation to higher 

dimensions also. Note that (1.1) is equivalent (in one dimension) to the integrated form 

1  2 

vt + 
2 

vx + vxx + vxxxx = 0, (1.2) 

through the transformation u = vx. Flame propagation applications are usually governed by the 

integrated form (1.2) whereas fluid film flows are governed by the conservative form (1.1). 

In addition to its intrinsic physical relevance, the 1D KSE has attracted significant 

mathematical interest, becoming a premier model for studying complex dynamics in spatially 

extended systems. There have been numerous analytical [15–19] and numerical [20–23] studies 

of the 1D KSE with 2L−periodic boundary conditions (see below also). The 1D KSE has been 

proven to possess a unique smooth solution that depends continuously on its initial data [19].  

Its convective Burgers–type nonlinearity provides a transfer of energy between active and 

dissipative modes, and the essence of the dynamics can be captured by a finite dimensional 

dynamical system of ordinary differential equations for the Fourier coefficients of the solution. 

A significant portion of the analytical work on the 1D KSE has focused on how the energy .¸2L    2 .1/2 

(defined  as  the  L2−norm  of  the  solution, "u"L2 := 0   u (x, t)dx )  scales  with domain 

length. Assuming that the domain is finite (L < ∞; if L = ∞ the PDE is ill-posed), long–time 

solutions are bounded by an absorbing ball with an L−dependent radius (in L2 and higher 
Sobolev spaces) such that 

lim sup "u"L2 = O
.
L 

t→∞ 

p.
. (1.3) 

The first value of p obtained was p = 5/2 for odd–parity solutions [18], though this estimate has 

been improved over the years by many mathematicians [15,17,24–28]. The current best known 

analytic bound is o(L3/2) [26,28], though the numerical study by Whittenberg & Holmes [29] has 

suggested the optimal value p = 1/2. 

In addition to the energy, there have been several notable studies examining how the solution 
itself changes with system size. For domain lengths smaller than 2π, the 1D KSE is linearly stable 

and small perturbations from the trivial state will decay exponentially in time. As the domain 
length increases beyond 2π, the trivial solution loses stability to a unimodal steady state, which 

in turn becomes unstable to multi–modal steady states, travelling waves, oscillatory solutions, 
and finally to chaotic solutions for sufficiently large L. The transition to chaos occurs through a 
period doubling cascade that follows the Feigenbaum scenario [22,23,30]. As the solution enters 

the chaotic regime, it remains of O(1), adding more oscillations as L increases. It was proved by 

Kukavica [31] that the number of rapid oscillations of the solution is universally bounded by an 
expression exponential in L. This estimate was later improved by Grujić  [32] to yield a bound 

essentially algebraic in L, though numerical experiments suggest that as L increases, the number 

of oscillations should be O(L) - [29]. Numerical studies have also shown that the chaotic dynamics 
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are extensive in that the local dynamics are asymptotically independent of L for L ≫ 1 and the 

energy is equally distributed amongst the lowest Fourier modes [29]. 

Despite the rich dynamics established for the 1D KSE, studies in higher dimensions are 

somewhat limited and primarily analytical. The spatially periodic 2D KSE is 

ut + 
1 
|∇u|

2
 + ∆u + ∆

2
u = 0, (1.4) 

u(x, y; t) = u(x + 2Lx, y; t) = u(x, y + 2Ly, t), u(x, y, 0) = u0(x, y), (1.5) 

where ∆ = ∂2 + ∂2. It has been established by Cao & Titi [33] that the only locally integrable 
x y 

stationary solutions of the 2D KSE (on infinite domains) are constant values, but the question of 

global regularity for the KSE in higher dimensions is still an open problem in nonlinear analysis. 

The first attempts at proving boundedness, analyticity, and stability for the 2D KSE were by Sell & 

Taboada [34] and Molinet [35]. Assuming a thin domain, [34] showed the existence of a bounded 

absorbing set in H1     ([0, 2π] × [0, 2πǫ]) for ǫ sufficiently small. Molinet [35] improved this result 
showing that with some restrictions on the initial data, 

. 
8/5 1/2

.
 

lim sup "u"L2 ≤ O 
t→∞ 

Lx   Ly , (1.6) 

on the bounded domain (0, 2Lx) × (0, 2Ly ) with 2Lx ≥ 2π, 0 < 2Ly < 2π satisfying 
4 .

1 − (Ly/2π)
2
.−    

Ly ≤ CLx
−67/35

. (1.7) 

For radially symmetric solutions, Demirkaya & Stanislavova [36] proved that there exists a time 

independent bound for the L2–norm of the solution, while Michelson [37] showed the existence of 

a nontrivial radial steady solution that is asymptotically periodic. Other authors have considered 

variants of the 2D KSE, mostly taking the form 
1 . 2 2 

. 
2 

ut + 
2   

ux + αuy   + (uxx + βuyy ) + ∆ u = 0, (1.8) 

subject to boundary and initial conditions (1.5), though other variants have also been studied [38]. 
In (1.8), α and β are real parameters controlling the anisotropy of the nonlinear and linear terms, 

respectively. This anisotropic equation was derived by Cuerno & Barabáci [14] to describe the 
nonlinear evolution of surfaces eroded by ion bombardment. It was also studied by Rost & Krug 

[39] for different combinations of the signs of α and β. For α = β > 0 and O(1), the solutions are 

bounded and develop into travelling waves that can become oscillatory or chaotic. 

In this paper, we provide a comprehensive numerical study of the 2D KSE to complement 

(and possibly guide) the emerging body of analytical work on this equation. The combination of 

numerical and analytical studies of the 1D KSE has provided a deep understanding of its solutions 

and the physical phenomena it describes. It is our goal to extend this tandem approach to the 2D 

KSE. While there have been a number of numerical studies dedicated to the damped 2D KSE 

(see for example [40,41] and references therein), a complete numerical study of the 2D KSE (1.4) 

has not been performed, to the best of our knowledge. In what follows, we study in detail how 

the solution varies with the domain size by identifying the different attractors and describing 

their characteristics. We find that many results from the 1D case apply to the 2D equation also, 

but many others, including the hierarchy of bifurcations, are quite different. In addition, we 

study the energy of the solution in the chaotic regime. We examine both the dependence of the 

energy on system size and the dependence of the energy spectrum on wavenumber. We show that 

equipartition of energy holds in the chaotic regime for the differentiated version of the 2D KSE 

(see equation (2.4) below). We also find that the energy spectrum is radially symmetric in Fourier 

space and link this property to the x − y symmetry of the equation. 
The structure of this paper is as follows: after introducing the doubly periodic solutions in 

Section 2, we study how the energy grows with system size and present results demonstrating 

the equipartition of energy and extensive dynamics in Section 3. In Section 4, we present the 

linear stability properties of the equation followed by a detailed numerical study for a large range 
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t 

 

 
of domain lengths in Section 5. Finally, the main results and findings of this study are summarised 

in Section 6. 

 

2. Initial value problem and numerical methods 

Throughout this study, we will be considering the initial value problem for the two–dimensional 

Kuramoto–Sivashinsky equation (1.4) on 2Lx × 2Ly −periodic domains as given by given by (1.5). 
We note that the mean 

     1 
¸
 

ū(t) = 
2Lx 

¸ 2Ly 

u(x, y, t) dxdy (2.1) 
4LxLy   0 0 

of the solution is non-zero and grows in time according to 

d 
ū(t) = − 

¸

 
2Lx 

¸ 2Ly 

|∇u|
2 

dxdy. (2.2) 
dt 8LxLy   0 0 

To focus on the dynamics of the spatially varying part of the solution, we subtract off the growing 
mean value in our simulations (this is possible since ū(t) does not contribute to the dynamics of 

the higher modes). Therefore, we consider the following mean–zero equation 

 

v + 
1  

2 

. 

|∇v|
2
 

     1 
¸ 2Lx 

¸ 2Ly − 
4LxLy |∇v|

2
 

. 

dxdy + ∆v + ∆
2
v = 0 (2.3) 

0 0 

for v(x, y, t) = u(x, y, t) − ū(t), subject to the same periodic boundary conditions (1.5). The mean 

can also be removed by differentiating (1.4) with respect to x and y to obtain the system 

Ut + (U · ∇) U + ∆U + ∆
2
U = 0 (2.4) 

of two mean–zero equations for U = ∇u. This approach has been adopted in many analytical 

studies [33–36], though for our computations we found using (2.3) to be more straightforward. 

With the mean removed, we solve (2.3) subject to the initial condition 

v(x, y, 0) = sin(πx/Lx  + πy/Ly ) + sin(πx/Lx) + sin(πy/Ly ) (2.5) 

using a Fourier pseudospectral method. This particular choice of initial condition is discussed in 

Section 4. The spatial domain [0, 2Lx] in the x−direction is split into 2Mx equidistant points and 

similarly the domain in the y−direction is discretised using 2My  points. We express the  solution 
as a Fourier series defined on these grid points and consider the system of ordinary differential 

equations for a finite number of Fourier modes. We compute the nonlinear terms on the grid 

using FFTs to go from Fourier to real space and back again. The time integration of the Fourier 

modes is carried out using a second–order accurate backwards difference scheme (BDF) that treats 

the linear terms implicitly. All codes are home-grown, written in Fortran 95 and compiled using 

an Intel Fortran compiler. For more details on these numerical methods see [42] for a related 

two-dimensional equation, and [43] for the dispersive 1D KSE. 

In our simulations, we retain Mx Fourier modes in the x-direction and My modes in the y- 
direction. For the most widely studied case where Lx = Ly = L, the number of Fourier modes 

Mx = My = M depends on L or equivalently ν = π2/L2 (see (4.4)). For ν between 0.6 and 1.0, 
M = 16 modes were found to provide sufficient resolution. For the smallest value ν = 0.005 

however, M = 256 modes were needed. For large values of ν, the time step used was dt =     

5 × 10−3 though this was reduced near bifurcation points in order to obtain a sharper estimate 

of where these occur. We used dt = 10−4  or larger for the smallest values of ν in order to 

accurately capture fast changes in the dynamics. The total time required to enter and characterise 

an attractor again depends on the value of ν. For some chaotic or quasi-periodic cases final times 

of T = 1.5 × 104 were needed, though typical final times were T = 500 or smaller. Simulations 
took less than a minute to run for the larger values of ν, but took several days and sometimes 

over a week for small ν. All runs used double precision floating point numbers and were run on 

a 64-bit linux machine with dual Intel Xeon 2.67GHz CPUs, with 6 processor cores in each CPU 

and 16 GB of memory. 
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(a) Lx = Ly = L. (b) Ly fixed. 
 

Figure 1. Time–averaged energy versus domain area for (a) Case i and (b) Case iii. In panel (b), the crosses correspond 

to the case Ly = 
√

2 π while the circles correspond to Ly = 2π. 

 

 
3. Chaos and Energy equipartition 

We begin our study by exploring the statistical properties of the solution after it becomes chaotic. 

As shown later in Section 4, the long-time solutions of the 2D KSE exhibit spatio–temporal chaos 

for large values of Lx, Ly . The rapid oscillations of these solutions suggest a  universal bound  

for both space and time averages of the solutions [27]. We investigate the dependence of the 

time-averaged energy 

1 
(E(Lx, Ly, t)) = 

T  − T
 

¸ T2 
¸ 2Lx 

¸ 2Ly 

 

v
2
(x, y, t) dxdydt (3.1) 

2 1   T1   0 0 

on domain size as Lx, Ly  become large. Here, ((·)) = T 

 

1 
2 −T1 

¸T2 (·) dt denotes time–average, and 

the times 0 < T1 < T2 are large enough to ensure that the solution has entered the chaotic attractor. 
As discussed in [28], this quantity for the 1D KSE shares the same scaling with system size L   as 

lim supt→∞ "u"L2 , and so we adopt (3.1) in order to establish numerically the dependence of Lx 

and Ly  on lim supt→∞ "u(·, ·; t)"L2 . In the computations described below the domain size is at 
least as large as 30 × 30. We also compute the average energy spectrum (i.e. the power spectrum) 

S(k1, k2) = 4LxLy 

.
|v̂(k1, k2, t)|

2
. 

= 4LxLy |v̂(k1, k2, t)|
2 

dt, (3.2) 
T2 − T1   T1

 

which we normalise by including the factor 4LxLy . By examining the power spectrum, we can 

understand how the energy is divided among different Fourier modes. 

For the 2L−periodic 1D KSE, numerical studies have shown that the time-averaged energy 

density (E(L, t)), where E(L, t) = "v"2 , is asymptotically proportional to the system size L [21, 

29,44]. This suggests that the solution remains O(1) and the energy density, 1 (E(L, t)), remains 

finite for L ≫ 1. The numerically observed upper bound for the L2−norm is 

lim sup "v"L2 ≤ cL 
t→∞ 

1/2 
 

, (3.3) 

while the best available analytic bound is O
.
L5/6

. 
[28]. Wittenberg & Holmes [29] also show 

that the time-averaged normalized energy spectrum S(k) = 2L 
.

|v̂(k, t)|2
.

, is independent of k 

in the region where k ≪ 1. This property is referred to as the equipartition of energy and is in 

line with the 1D KSE showing extensive dynamics, where a large system is composed of smaller 

subsystems each exhibiting the same behaviour. To explore how these results might carry over to 

the 2D KSE, we compute (E(Lx, Ly, t)) and S(k1, k2) for long-time solutions of the 2D KSE for 

the following three cases: 

Ly  = 
√

2π 

Ly  =   2π 

  1 
¸
 

(E
(L

, L
, t

))
 

T2 



2 2 2 2 2 2 2 2 2 

0.005 

k 

k 
2 

 

 

Case i: Lx = Ly = L and L ≫ 1 
Here we solve the 2D KSE over square domains that increase in size. The time–averaged 

energy (E(L, L, t)) is plotted against L2 in Figure 1(a) and shows a linear dependence. A 
least squares fit to the data data yields a resulting slope of approximately 1.01 so that 

(E(L, L, t)) ∼ const. L
2
, L ≫ 1. (3.4) 

Case ii: Lx = 10Ly = 10L and L ≫ 1 

This case is similar to Case i, but the domain is now a rectangle with aspect ratio 10. 
Though not shown, we obtain a slope of about 0.98 by a least squares fit to the data. This 

suggests that (E(10L, L, t)) = O
.
L2
.

. 

Case iii: Ly fixed, Lx ≫ 1 
Here the domain is a rectangle with fixed width 2Ly = O(1) and increasing length 2Lx. 
For two fixed values of Ly = 

√
2 π, 2π, the time-averaged energy is plotted against LxLy 

in Figure 1(b). These values of Ly are chosen to ensure that there are unstable modes in 
the y-direction (for large Lx  the domains are thin, but not as thin as the ones studied     

in [34] who had no unstable modes in the y−direction). Least squares estimates of the 
slopes found them to be approximately 1.01 in both cases; hence, when one side of the 

domain is of fixed length and the other increases, the time-averaged energy scales with 

the dimension that is varied and produces the same scaling as the 1D KSE. 

 
In addition to the energy, we characterise the average energy spectrum for domains chosen from 

Cases i and ii. The values of S(k1, k2) are shown in Figure 2(a)  against 
      . 

k = 
,

k2 + k2 = 
¸ 

n1π 
,2 

¸ 
n2π 

,2
 

+ , (3.5) 
1 2 Lx Ly 

for two different sets of (Lx, Ly ) (here the integers 1 ≤ n1 ≤ Mx and 1 ≤ n2 ≤ My represent the 

Fourier modes of the two-dimensional solution). It can be seen that the average energy spectra for 
both sets of (Lx, Ly ) have the same dependence on k. The independence of the average energy 

spectrum on domain size is also observed for the 1D KSE [45]. For k ≪ 1, we find that S(k1, k2) ∼ 
k−2, in contrast to a constant value found for the 1D KSE equation (1.1) in [29]. The factor of 

k−2, however, is due to the form of the nonlinearity in (2.3) rather than the dimensionality of the 

problem. To see this, we note that (1.1) is not only (1.4) reduced to one dimension (i.e. equation 

(1.2)), but also differentiated with respect to x. The differentiation alters the form of the nonlinear 

term and yields the additional factor of |ik|2 = k2 to the energy spectrum. INote that this k−2
 

dependence was observed by Yamada and Kuramoto [46] for the integrated equation (1.2). 

Considering the differentiated system (2.4), we see that in Fourier space, 

|Û1k|
2 
= | (vx)   |  = |ik1v̂k|  = k  |v̂  |  , |Û2   |  = | (vy )   |  = |ik2v̂k|  = k  |v̂  | (3.6) 

ˆ k 1  k k ˆ k 2  k 

where U1 = vx and U2 = vy . Adding these expressions together gives 

|Û1k|
2 
+ |Û2k|

2 
= 
.
k

2 
+ k

2
. 

|v̂  |
2 
= k

2
|v̂  |

2
. (3.7) 

1 2 k k 
 

Figure 2(b) shows k2S(k1, k2) alongside the sum of the two spectra S1(k1, k2) + S2(k1, k2) where 

Si(k1, k2) = 
.

|Ûik|2
.

. Here, we have taken the domain size to be Lx = Ly = √  π . The spectra 

coincide and the small differences can be attributed to statistical fluctuations in the data. 

We further establish that the average energy spectrum for the 2D KSE is a function of the 

magnitude of the wavenumber, k = 
,

k2 + k2  alone. This can be seen in Figures 2 and 3(a). We 
1 2 

note that this radial symmetry is present even if we have Lx ƒ= Ly . To investigate this further, we 

consider (2.3) in Fourier space and multiply it by v̂∗ , the complex conjugate of v̂k , to obtain 
 

v̂
∗
 

¸ 

(v̂k)t + 
1  
2 

.
ˆ

. 

|∇v|  
k
 

, 

− (k
2 

− k
4
)v̂k 

 
= ĉ0(t) (3.8) 
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(a) Spectrum, single equation. (b) Spectrum comparison. 

Figure 2. Panel (a) shows the energy spectrum S(k1 , k2), versus k for Lx = Ly = π/
√

0.005 (crosses), and Lx = 

10Ly = π/
√

0.0009  (circles).  Panel  (b)  provides  a  comparison  between  k2 S(k1 , k2)  (circles)  and  S1(k1 , k2) + 

S2(k1 , k2) (crosses) for Lx = Ly = π/
√

0.005. 

 

 

where ĉ0(t)   is   real   and   denotes   the   (0, 0)   Fourier   coefficient   of   the   integral   term 
      1      2Lx    2Ly 2 

4LxLy  

¸
0 

¸
0 |∇v| dxdy. Taking the complex conjugate of (3.8) yields 

v̂k 
¸
.
v̂∗ . 

+ 
1  .
ˆ

.∗ |∇v| 
, 

− (k
2 

− k
4
)v̂

∗
 = ĉ   (t). (3.9) 

k  t 2 k 
k 0 

Adding (3.8) and (3.9) and averaging in time results in 

d . 2
. 

dt    
|v̂k| + 

.
v̂

∗
 
.
ˆ

. 

|∇v|  
k
 

 

+ v̂k 
.
ˆ

.∗ . 

|∇v|  
k
 

− 2(k
2

 − k ) 
.

|v̂k|
2
.

 = 2 (ĉ0) . (3.10) 

Since d 
. 

v̂  |2
. 
/dt = 0 and the right hand side is independent of k, 

.
|v̂  |2

. 
will be a function of k 

. 

only if    v̂∗
 
.
ˆ

. 

|∇v|  
k
 
+ v̂k 

.
ˆ

.∗ . 

|∇v|  
k
 

depends on k alone. As a consistency check, we calculated 

this term numerically and confirmed that indeed it depends only on k. This analysis suggests that 
the radial symmetry of the average energy spectrum is tied to the form of the nonlinearity of the 

2D KSE, which is symmetric with respect to x and y. If we consider instead the following equation 

vt + vvx + vxx + ∆
2
v = 0 (3.11) 

that arises in falling film applications [42,47–49] and lacks symmetry with respect to x and y, we 

find that its energy spectrum is not radially symmetric in (k1, k2)-space; for completeness this is 
shown in Figure 3(b) where we have taken Lx = Ly = π    . 

0.01 

 

4. Domain rescaling and linear stability 

Before classifying how the solutions vary with domain size, we first rescale the spatial and time 

variables according to, 

x → (Lx/π)x, y → (Ly/πy), t → (Lx/π)
2
t, (4.1) 

in order to fix the domain size at [0, 2π] × [0, 2π]. The transformed equation is given by 

 

 
where 

ut + 
1 
|∇νu|

2
 + ∆νu + ν1∆

2 
u = 0, (4.2) 

¸ 
ν2

 

, 

, ∆  = ∂
2 
+ 

ν2 
∂

2
, (4.3) 

∇ν = 

are the transformed operators and 

∂x, ∂y 
1 

ν x ν1  
y 

ν1 = (π/Lx)
2
, ν2 = (π/Ly )

2
, (4.4) 
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(a) Symmetric 2D KSE (1.4). (b) Asymmetric equation (3.11). 

Figure 3. Energy spectra from (a) the 2D KSE (2.3), and (b) the asymmetric equation (3.11) for Lx = Ly =  π 
 

. 

 

 

are bifurcation parameters that play an important role in the dynamics. In rescaling space and 
time, information regarding the domain size has been transferred to these parameters which 
decrease as Lx and Ly increase. The corresponding rescaled mean–zero equation for v(x, y, t) = 

u(x, y, t) − ū(t) is 

 

v + 
1  

2 

. 

|∇νv|
2
 

  1  
¸ 2π ¸ 2π 

− 
4π2 |∇νv|

2
 

. 

dxdy + ∆νv + ν1∆
2 
v = 0. (4.5) 

0 0 

We assess the linear stability of the uniform state v = 0 and establish the region of instability 

in (ν1, ν2) parameter space. Perturbing about the uniform state v = 0, a normal mode solution is 

sought in the form 

v(x, y, t) = δ 
.

e
i(n1 x+n2 y)+σt 

+ c.c.
. 

, (4.6) 

where n1, n2 are non–zero integer wavenumbers in the x− and y−directions respectively, δ ≪ 1,σ 

is the complex amplification rate and c.c. denotes complex conjugates. Substituting (4.6) into (4.5) 
and linearising with respect to δ, results in the following dispersion relation 

¸    
σ =  n

2 
+ 

ν2 
n

2
 1 − ν n

2 
− ν n

2
.
 
 

(4.7) 
1 ν1   

2 

that in turn implies the condition 

1  1 2  2 

ν1 n
2  

+ ν2 n
2 

< 1 (4.8) 
 

for instability. The inequality (4.8) can be satisfied for sufficiently small ν1, ν2 (physically this is 

equivalent to large unscaled domains). By fixing ν1 and ν2, we can determine the modes (n1, n2) 

for which the trivial solution is unstable, as summarised in Figure 4. We see that for ν1 > 1 and 

ν2 > 1, (4.8) cannot be satisfied for any n1, n2 ∈ Z+ and all sufficiently small perturbations from 

the trivial state decay to zero exponentially fast. If ν1 or ν2 is less than unity, instability sets in. 

For instance, if initially v(x, y, 0) = sin(x + y) so that n1 = 1 and n2 = 1, a positive growth rate is 

ensured if ν1 + ν2 < 1. A choice of an initial condition independent of y, i.e. n2 = 0, results in the 

instability condition being independent of ν2 and yields the stability conditions for the 1D KSE 

(analogous results hold if n1 = 0). Based on the linear stability analysis, we take 

v(x, y, 0) = sin(x + y) + sin(x) + sin(y) (4.9) 

as the initial condition in our numerical experiments. This choice gives three initially unstable 

modes (n1, n2) = (1, 1), (1, 0), (0, 1) that, as we will see later, evolve into solutions with rich 

dynamical behaviour, including quasi–periodicity and chaos. 
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Figure 4. Stability diagram for the two–dimensional Kuramoto–Sivashinsky equation. The equation is stable when both 

ν1 , ν2 > 1. If either ν1 or ν2 is less than 1, then the dynamics are described by the 1D KSE. If both ν1 , ν2 < 1 then the 

solutions are fully two–dimensional. 

 
 

 

5. Solutions and their dynamics 

Using the numerical method described in Section 2, we solve the rescaled KSE (4.5) subject to 

the initial condition (4.9) for a range of ν1, ν2 in the unstable region, namely 0 < ν1, ν2 ≤ 1 (see 

Figure 4). For the 1D KSE, steady state solutions arise for 0.3 < ν < 1, approximately, where ν = 
. 

π 
.2

, while smaller values of ν result in travelling waves and time–periodic bursts [22,23]. When 

ν ≤ 0.12115, chaotic solutions appear via Feigenbaum subharmonic period–doubling bifurcations 

[22,23,30]. For the 2D KSE solutions also increase in complexity as ν1, ν2 → 0, however, there are 

infinitely many routes to chaotic dynamics depending on the path in (ν1, ν2) space. We explore 

the path dependence in detail for two cases, ν1 = ν2 = ν with ν → 0, and ν2 → 0 with ν1 fixed. 

We begin by performing numerical simulations over the unstable range of ν1 and ν2 using 

step size ∆ν = 0.05 in each direction and classifying the solution at each (ν1, ν2) point. We exploit 

the symmetry of the 2D KSE about ν1 = ν2 (under a space and a time scale transformation) to 

reduce the number of simulations required: If v(x, y, t) is the solution corresponding to the values 

(ν1, ν2), then the solution for (ν2, ν1) is v 
.
y, x, ν2 t

. 
- this can be seen by multiplying the 2D KSE 

by ν1 . We identify and study the different attractors by monitoring the energy of the solution 
 

2π 

E(t) := ||v(·, ·, t)||2 
2  = 

¸ 2π 
 

v
2
(x, y, t) dxdy. (5.1) 

0 0 

This is related to the definition presented in (3.1) for 2Lx × 2Ly −periodic domains by E(t) = 
√

ν1
√

ν2 E(Lx, Ly, t). We also consider 

2 
2π 2π  ¸ , 

Ė (t) = 2||vx||
2 
+ 2 

ν2
 vy  

2
 2ν1||vxx||

2 
− 4ν2||vxy ||

2 
− 2 

ν2 ||vyy ||
2 
− 

¸  ¸ 

v    v
2 
+ 

ν2 
v

2
 dxdy, 

ν1 
|| || − 

ν1
 x 

0  0 ν1   
y  

(5.2) 

which we obtain by multiplying (4.5) by v and integrating over the periodic domain. Since the 
solution is periodic, quadratures are performed using the trapezoid rule to compute E(t) and 

Ė (t) to spectral accuracy; these values are in turn used to construct phase–planes (E(t), Ė (t)) 

which are particularly useful in identifying periodic and chaotic attractors. We also determine 
the  Poincaré  maps  where  Ė (t) = 0  in  order  to  numerically  generate  return  maps  to  describe 
the dynamics [22,23,30,43]. Using second–order polynomial interpolation, we find the times   tn, 

n = 1, 2, . . ., that give Ė (tn) = 0. With En = E(tn), n = 1, 2, . . ., return maps are constructed by 

plotting the sequence of points (En, En+1). The resulting geometric object provides information 
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Figure 5. Phase diagram classifying the solutions obtained for different values of ν1 and ν2 for which the KSE is unstable. 

 
 
 
 

about the attractor. If the return map contains just one point the solution is time–periodic with   

a single minimum in the E(t) signal (the period of oscillation can be estimated by calculating   

the time difference between two consecutive minima). If the return map contains continuous– 

looking curves that fill with points as n increases, the solution is quasi–periodic, while foldings 

and self–similarity provide strong evidence for chaotic solutions [22,23,30,43,50]. 

Simulations results from the (ν1, ν2) parameter sweep are summarised in the phase diagram 

in Figure 5 with the different solution states indicated by different coloured circles as indicated 

on the figure. The diagram includes a relatively large region of non-uniform steady states (SS), 

starting from the bifurcation point (ν1, ν2) = (1, 1) and covering almost half of the computational 
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Figure 6. Solutions obtained along the line ν1 = ν2 = ν in parameter space. The solution abbreviations are given in the 

caption of Figure 5. The system size increases as we move to the left. 

 
 
 

domain. As we decrease  the  values  of  ν1  and  ν2,  the  steady  state  solutions  are  succeeded 

by travelling waves (TW) or time–periodic waves (TP), including periodic homoclinic bursts 

(PHoB) and periodic heteroclinic bursts (PHeB). For relatively small values of ν1, ν2, solutions 

characterised by quasi–periodic (QP) or chaotic (C) oscillations in time emerge. Chaotic solutions 

also appear in the form of chaotic homoclinic bursts (CHoB) or chaotic heteroclinic bursts (CHeB). 

 

(a) Paths in (ν1, ν2)−space 

In this section a more detailed examination is undertaken to determine the dynamics along paths 

in (ν1, ν2)−space as ν1, ν2 → 0. We first take ν1 = ν2 = ν and compute solutions at equally spaced 

values of ν with step size ∆ν = 0.01. An outline of the most attracting solution types is given in 

the schematic diagram of Figure 6 (note that complexity emerges as we move from right to left). 

The first solutions to emerge are steady states for parameter values 0.45 ≤ ν < 1. For 0.43 < ν < 

0.45, the fixed point attractor overlaps with a time–periodic attractor, while for smaller values 

0.35 ≤ ν ≤ 0.45, periodic heteroclinic bursts emerge as the time–periodic attractor competes with 

a new fixed point attractor. We  see the first chaotic solutions for ν  as high as 0.32.  As we let       

ν → 0, the solutions alterate between travelling waves and chaotic dynamics until ν = 0.1, after 

which the solutions remain chaotic. This route to chaos was not found to follow the pattern of 

period doubling bifurcations found in the 1D KSE [22,23]. A notable characteristic of the chaotic 

solutions is that they retain O(1) amplitudes as ν decreases but the number of spatial oscillations 

increase. A similar result holds for the 1D KSE where it was proved that the number of rapid 

spatial oscillations increases linearly with the system size [32]. 

We also investigate the paths ν2 → 0 for small but fixed ν1 between 0 < ν1 ≤ 0.35. We are 
particularly interested in seeing whether the 1D KSE solutions ν = ν1 are recovered in this limit 

 
 

❍
❍❍ 

ν1 

ν2 ❍❍ 
0.05 

0.10 0.15 0.20 0.25 0.30 0.35 

0.04 C C TP[1] C C C C 

0.03 C C QP C TP[1] C C 

0.02 C C C C TW TP[3] C 

0.01 C C C C TP[5] C C 

0.005 C C C C TP[1] C C 
 

1D KSE 

ν = ν1 

 

SS CHoB SS PHoB TW TW SS 

 
 

Table 1. Solutions for 0 < ν1 ≤ 0.35 and ν2 < 0.05. For comparison, solutions to the 1D KSE for 0 < ν ≤ 0.35 are also 

provided. Most abbreviations are given in the caption of Figure 5. We use TP[m] to refer to a time–periodic solution with 

m distinct minima in its energy signal. 
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Figure 7. Return maps for (a) a quasi–periodic solution (ν1 = 0.15, ν2 = 0.03) and (b) a chaotic solution (ν1 = 0.25, 

ν2 = 0.04) 

 
 

 

- setting ν2 = 0 in (4.2) can be seen to yield the 1D KSE with ν = ν1. The results are summarised 

in Table 1 and it can be seen that as ν2 decreases, solutions are mostly chaotic. Interestingly, our 

computations do not reduce to the given solution type obtained from the 1D KSE for ν = ν1, 

thus suggesting that the limit ν2 → 0 is singular. In order to observe the quantitative nature of 

the attractors, two representative return maps are shown in Figure 7. Panel (a) corresponds to a 

quasi–periodic solution obtained for (ν1, ν2) = (0.15, 0.03) - quasi–periodicity is surmised by the 

continuous–looking curves. The return map for the solution obtained for (ν1, ν2) = (0.25, 0.04) is 

illustrated in panel (b), which is surmised to be chaotic due to the presence of foliations. 

It can also be seen from Figure 5 that steady states emerge when ν1 and ν2 are relatively close 

to unity. In what follows we analyse asymptotically the bifurcated steady states emerging from 

these critical parameter values. 

 

 

(b) Steady states 

For ν1 > 1, ν2 > 1, solutions are attracted to the trivial state v = 0. At ν1 = ν2 = 1, a pitchfork 

bifurcation occurs and non–trivial solutions first appear. In a large region approximately enclosed 

by the lines ν1 = 0.35, ν2 = 0.35 and ν1 + ν2 = 0.95 (see Figure 5), the solutions are two- 

dimensional unimodal steady states with relatively low energy. A typical steady state for ν1 = 

ν2 = 0.9 is given in Figure 8(a); it is fully two-dimensional and unique up to a translation - 

equation (4.5) is translation invariant (we do not have a uniqueness proof - our statement is based 

on numerical experiments starting from arbitrary initial conditions). We can analyse solutions 

near the bifurcation point (ν1, ν2) = (1, 1) by writing 
 

ν1 = 1 − α1ǫ, ν2 = 1 − α2ǫ (5.3) 

for α1, α2 > 0 and 0 < ǫ ≪ 1. In the analogous 1D analysis Frisch et al. [20] show that the modes  

k = ±1 and ±2 alone are relevant to order ǫ, and a similar procedure is adopted here to analyse 

bifurcated steady states of the 2D KSE. We do this by considering the system of equations (2.4) 

(after transforming it to 2π × 2π−periodic domains) and obtaining asymptotic solutions for   U1, 

U2  as ǫ → 0. The solutions U1, U2  are first expanded in powers of ǫ1/2  and all the coefficients are 

written as Fourier series; the coefficients are determined by ensuring that resonant forcing terms 

vinish at each order, and this process can be carried out to any order. The expression for v follows 
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Figure 8. (a) Steady state profile for ν1 = ν2 = 0.9. (b) The L2−norm "v" of steady states for different values of ǫ for 

the numerical (crosses) and analytical (circles) solutions. The analytical norm is found using(5.4) up to order ǫ1/2. 

 

 
from the transformations U1 = ux = vx, U2 = uy = vy . The result is 

v = 2(12ǫ)
1/2 

.
α

1/2 
cos(x + φ1) + α

1/2 
cos(y + φ2)

. 
+ ǫ [α1 cos(2(x + φ1)) + α2 cos(2(y + φ2))] 

1 

+ 4 
. ǫ .3/2 .

α
3/2 

2 
 

3/2 

 

. . 
2
. 

12 1 cos(3(x + φ1)) + α2 cos(3(y + φ2)) + O ǫ , (5.4) 

where φ1, φ2 are phase shifts in the x and y directions, respectively, that are present due to 

translation invariance and can be set to zero without loss of generality. Though not shown, we find 

good pointwise agreement between the analytical solution (5.4) and that determined numerically. 

Figure 8(b) shows a bifurcation diagram of the final constant value of "v"L2 against ǫ (here α1 = 

α2 = 1). The asymptotic solution (5.4) correct to order ǫ1/2, corresponds to the circular markers 

while the energy of the numerical solution is indicated by the crosses; agreement is very good for 
ǫ as large as 0.1. As expected, the difference between the two solutions deteriorates as ǫ increases. 

Note also that if ǫ ≤ 0 (i.e. ν1 ≥ 1 and ν2 ≥ 1) the solutions are trivial since lim supt→∞ "v"L2 = 0, 
and this is the case for both the asymptotic and numerical solutions. 

 

 

(c) Travelling waves 

As ν1 and ν2 are decreased the steady states described above give way to a traveling wave 

attractor. It is found that traveling waves are supported for ν2 = 0.25, 0.3 and 0.55 ≤ ν1 ≤ 1 and 

also in the region 0.7 ≤ ν1 + ν2 ≤ 0.9 (these are depicted on the bifurcation diagram 5). The 

solutions are two-dimensional nonlinear waves of permanent form that travel with constant 

speed c in a direction that makes an angle θ with the y-axis, and can be expressed as 
 

v(x, y, t) = v(χ, ψ), χ = x + c t sin θ, ψ = y − c t cos θ. (5.5) 
 

Substituting (5.5) into (4.5) yields  
1 

¸ 

2 

 
ν2  2 

, 

+ ∆ 

 
 

v + ν ∆
2

 

 

 
v = 0, (5.6) 

c sin θ vχ − c cos θ vψ + 
2
 

vχ + vψ 
1 

χ,ψ 1   χ,ψ 

where  ∇χ,ψ = 
.

∂χ, ν2 ∂ψ 

. 
and  ∆χ,ψ = ∂2  + ν2 ∂2 .  Expressions  for  c  and  θ  that  are  useful  for 

ν1 
χ ν1   ψ 

their numerical determination with spectral accuracy (using Parseval’s identities), can be found 

by multiplying equation (5.6) by vχ  and vψ , respectively, and integrating over the domain to 

v
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provide two equations for c and θ. Solving these yields 
. 

Aχ 
¸2π ¸2π  2 2π  2π . 

θ = tan
−1

 0 0   vψ dχdψ − Aψ 

¸
0   

¸
0   vχvψ dχdψ (5.7) 

Aχ 
¸2π   2π 2π   2π 

χ 

 
where 

0   

¸
0   vχvψ dχdψ − Aψ 

¸
0   

¸
0   v

2 dχdψ 

       2π   2π ¸ , ¸ 2π   2π ¸ , 
Aχ = 

1 
¸ ¸

 vχ    v
2 

+ 
ν2 

v
2 

dχdψ, A   = 
1 

¸ 

v v
2 

+ 
ν2 

v
2

 dχdψ (5.8) 
 

and 

2  0 0 χ ν1  
ψ 2  0 0 

ψ
 χ ν1  

ψ 

  Aχ  
c = . (5.9) 

cos θ 
¸2π  2π 2π   2π 

χ 

0   

¸
0   vχvψ dχdψ − sin θ 

¸
0   

¸
0 v

2 dχdψ 

We computed the variation of c with ν1 for the two cases ν2 = 0.3 and ν2 = 0.25. In both cases the 

speed increases monotonically as ν1 decreases, i.e. as the system size in the x−direction increases. 

Typical results are depicted in Figure 9(a) for the case ν2 = 0.3. We note that the energy of the 

traveling waves also changes with ν1, and the variations for the fixed value ν2 = 0.3 are given in 

Figure 9(b). We also find that this monotonic behaviour with ν1 does not persist for all values of 

ν2. In fact, for ν2 = 0.25 the energy increases to a peak value at ν1 ≈ 0.6, after which it decreases. 

 
(d) Time periodic solutions 

As we decrease the values of ν1 and ν2 further, we find that various time-periodic solutions 

emerge. Periodic homoclinic bursts are observed first, and these are found to occur when ν2 = 0.2 

and 0.7 ≤ ν1 ≤ 1. These solutions can be characterised by their energy evolution consisting of 

plateaus disrupted by abrupt, though regular, time-periodic bursts. The variation of the period 

between bursts with ν1 and ν2 = 0.2 fixed, is given in Table 2; the periods of oscillation in the range 

0.7 ≤ ν1 ≤ 1 are given in the first line of the table (lower values of ν1 appearing in the second line 

of the Table are discussed below). The results indicate that the period decreases monotonically, 

albeit rather slowly, from a value of approximately 126.75 at ν1 = 1 to 89.9 at ν1 = 0.7. This 

indicates that the persistence of the steady state attractor becomes weaker as ν1 decreases. 

An example of these homoclinic burst solutions is given in Figure 10 for   (ν1, ν2) = (0.8, 0.2). 

The  energy  E(t)  and  its  corresponding  phase  plane  (E, Ė ),  are  shown  in  panels  (a)  and  (b), 

respectively - the phase plane is a closed curve that is traversed a single time as the solution 

evolves over one period in time. The fast bursting dynamics connecting homoclinic states are 

clearly visible in these numerical results; the solution spends most of its time in the constant 

energy region and this corresponds to the corner-like part of the phase plane in the vicinity of 

Ė = 0. Two characteristic profiles are shown in panels (c) and (d), taken from a constant energy 
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Figure 10. Periodic homoclinic burst solutions for ν1 = 0.8 and ν1 = 0.2. Panel (a) evolution of the energy E(t); panel 

(b) phase plane of the energy; panel (c) solution at t = 360 on the constant energy plateau, and panel (d) solution at 

t = 381 taken during a burst. 

 

 
ν1 1.00 0.95 0.90 0.85 0.80 0.75 0.70 

Per 126.75 119 113.5 108.75 102.3 96.15 89.9 

ν1 0.65 0.60 0.55 0.50 0.45 
Per 2.79 2.66 2.57 2.54 2.68 

Table 2. Oscillation period for time–periodic solutions with ν2 = 0.2. For 0.7 ≤ ν1 ≤ 1 the solutions are periodic 

homoclinic bursts while for 0.45 ≤ ν1 ≤ 0.65, regular oscillations in the energy signal are observed. 

 
 

 
state and an energy peak, at times t = 360 and t = 381, respectively. For these values of ν1 and ν2, 

the steady solutions between bursts are unimodal in x and bimodal in y, that is the only non-zero 

Fourier modes are n1 ∈ Z and n2 = 2m2, m2 ∈ Z. 

Next we consider even lower values of ν1, that is we fix ν2 = 0.2 and study the interval 

0.45 ≤ ν1 ≤ 0.65. It is now found that the solutions can be characterised by regular time-periodic 

oscillations in the energy as shown in panel (a) of Figure 11 corresponding to the particular   
case ν1 = 0.5 and ν2 = 0.2; the corresponding energy phase plane is depicted in panel 11(b). The 

phase plane is a closed curve confirming periodicity in time, but in addition the presence of the 
competing steady attractor found for larger values of ν1 (see Figure 10), is no longer felt. The 

computed periods of oscillation for this range of ν1 are given in the second line of Table 2. It is 

evident from these values (and in particular the periods 89.9 at ν1 = 0.7 and 2.79 at ν1 = 0.65) that 

the time periodic attractor in 0.45 ≤ ν1 ≤ 0.65 is unrelated to that in 0.7 ≤ ν1 ≤ 1.0, in the sense 

that the transition from the solution at ν1 = 0.7 to that at ν1 = 0.65 is not continuous - the solution 
jumps from one time-periodic attractor to a different one. As with the periodic homoclinic bursts, 
the period decreases slowly as ν1 decreases, however, for the lowest value computed, ν1 = 0.45, 

the period moves to a slightly higher value. The solutions at t = 139 and again after one and 
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two consecutive periods, respectively, at t = 141.54 and t = 144.08, are shown in panels (c)–(e). 

Interestingly, even though the energy completes one period of oscillation between each profile, 

we see that the solution requires two complete periods to return to its initial spatial form. This 

can be understood from the results in panels (c)–(e). Modulo a constant translation along the line 

x = y, the solution in panel (d) is identical to those in panels (c) and (e). This can be seen from 

the projected contour plots of the solution onto the x − y plane; in panel (c) there is a “figure 8" 
feature (i.e. a saddle point for the surface) in the middle of the domain, and a rectangular feature 
(i.e. a local maximum for the surface) in the vicinity of the origin. After one period of oscillation 

has elapsed the solution is that shown in panel (d), and inspection of the projected contour plot 

confirms that the saddle and local maximum regions mentioned above are interchanged. This 

holds for any three solutions separated by one period of oscillation between them - we arbitrarily 
took t = 139 as the first solution in these results - and so the attractor is of traveling periodic type 

with the solution returning to its initial form modulo a spatial shift, after each period. We find all 

the solutions on the line ν2 = 0.2 have this distinctive feature. 

 
(e) Quasi–periodicity and chaos 

Next we decrease ν2  further to the fixed value ν2 = 0.15 and vary ν1  in the interval 0.35 ≤ ν1 ≤    

1; we find solutions supporting chaotic heteroclinic bursts along with quasi periodic and fully 

chaotic solutions - see Figure 5. An example of a chaotic heteroclinic burst solution for (ν1, ν2) = 

(0.85, 0.15) is shown in Figure 12; the energy evolution given in Figure 12(a) switches between 

two different fixed points with energy approximately equal to 340 and 300, respectively, and 

exhibits chaotic bursts in between - this is in contrast to the homoclinic bursts found at larger ν2 - 

Figure 10. Evidence of the chaotic nature of the bursts is found in the corresponding energy phase 

plane panel (b), which is composed of non-repeating trajectories. Panels 12(c)–(e) present solution 

profiles at t = 1100, 1230, 1300 corresponding to times on the higher energy steady state attractor, 
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Figure 11. (a) Energy, (b) phase plane, and solution profiles for the periodic homoclinic solution at (ν1 , ν2) = (0.5, 0.2). 

Panel (c) shows the solution profile at the minimum energy at t = 139. Panel (d) shows the solution one period later (t = 

141.54) and (e) shows the solution two periods after (c) (t = 144.08). 
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Figure 12. (a) Energy,  (b) phase plane, and solution profiles for the periodic homoclinic solution at (ν1 , ν2) =    

(0.85, 0.15). The profiles correspond to the solution at the (c) higher energy plateau, during the (d) chaotic burst and at 

the (e) lower energy plateau. 

 
 
 

during the chaotic burst, and at the lower energy steady state, respectively. For the lower energy 

level (t = 1300, panel (e)), we find that the profiles are bimodal in y (i.e. y−periodic of period π), 

but unimodal during the upper energy level (e.g. t = 1100, panel (c)); during the chaotic bursts the 

solutions are also unimodal. We emphasise that for this particular example, only 12 Fourier modes 

are required in the x−direction, and 30 in the y−direction to achieve double machine precision. 

We conclude then, that analogously to the 1D KSE [22], complex chaotic solutions exhibit low 

modal behaviour and can be well characterised by low order dynamical systems. 

As ν1, ν2 decrease further, complex behaviour persists and includes quasi–periodic oscillations 

in time (analogous to quasi–periodic flows on a torus with return maps - see Section 5 - consisting 

of densely filled curves as in Figure 7(a)). Further decrease of ν1, ν2 produces large time solutions 

that are mainly chaotic. This chaotic attractor does not emerge through homoclinic or heteroclinic 

bursting and assumes a more complicated structure as seen in the return maps of Figure 7(b), for 

example, which exhibit no discernible patterns. Despite this, these solutions can be characterised 

by their statistical properties which we have done in Section 3. 

 
 

6. Conclusions 

We presented an extensive numerical study of the 2D KSE equation (1.4), inspired by recent 
analytical studies [34,35] and encouraged by the success of understanding solution dynamics 
of the 1D KSE though careful and comprehensive numerical studies. The equation was solved 

on doubly periodic domains [2Lx, 2Ly ] with particular interest on large domain dynamics. For 

L ≫ 1 we considered three cases: (i) Lx = Ly = L; (ii) Lx = 10, Ly = 10L; and (iii) Ly  fixed    and 
Lx = L, with the aim of exploring numerically optimal energy bounds as the system size increases 

and the solutions become chaotic. Case (iii) is shown to reduce to 1D KSE dynamics, while cases (i) 

and (ii) produce solutions with energy density asymptotically proportional to the system size (i.e. 
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Ė 
(t

) 



x y 

 

 

L2 in 2D), analogously to the 1D KSE [29]. We linked the long-wave energy spectrum to the form 

of the non-linearity in the 2D KSE, showing that it is responsible for both its radial symmetry   

in Fourier space and its ∼ k−2 dependence - see Figures 2 and 3. Extensive dynamics and the 
equipartition of energy are recovered by differentiating the solution and considering the energy 
spectrum of U1 = vx and U2 = vy . This is consistent with efforts [51,52] to model the large scale 

chaotic dynamics of the 2D KSE by the Kardar-Parisi-Zhang equation. 

We also examined the solutions arising when both ν1 = π2/L2 < 1 and ν2 = π2/L2 < 1 so that 

unstable modes are present and the solutions are fully two-dimensional. The ν1 − ν2 solution 

phase space was mapped by solving a large number of initial value problems - see Figure 5.  For 
values close to the bifurcation point ν1 = ν2 = 1, we constructed asymptotic solutions that are     

in good agreement with the computations. As ν1, ν2 decrease these bifurcated solutions become 

more nonlinear and unimodal fully 2D steady states emerge. For smaller (but still moderate) 

values of ν1, ν2, travelling waves and time–periodic solutions emerge, the latter appearing in the 

form of periodic homoclinic or heteroclinic bursts, or solutions with shapes that rapidly oscillate 

in time - these are similar to those found for the 1D KSE [23]. Solutions evolve to more complicated 

structures of quasi–periodic or chaotic nature as ν1, ν2 decrease sufficiently (equivalently as the 

domain size increases). These chaotic solutions can arise through an infinite number of paths    

in (ν1, ν2)-space, and we explored in detail the paths along ν1 = ν2 = ν → 0, and ν1  fixed with 

ν2 → 0. We found that the transition to chaos is via quasi–periodicity and did not observe the 
pattern of Feigenbaum period–doubling bifurcations found for the 1D KSE - [30]. 

Our computations suggest that the energy bounds of [34,35] in high aspect ratio domains could 

be extended to more general domain sizes and we suggest an optimal L2−bound proportional to 

the system size (equal to L2 in our notation). While many of our results show that the 2D KSE and 

its solutions share features with the 1D KSE, we have also seen differences due to the additional 

dimension. Perhaps the most notable pertains to transitions to chaos. We have only explored in 

detail two of the infinitely many paths in ν1 − ν2 space, and a closer examination of this aspect of 

the problem would be interesting. It would also be interesting to explore the effect of dispersion 

on the 2D KSE by including a term proportional to ∆ux in (1.4). In 1D dispersion can regularise 

chaotic dynamics into travelling wave pulses [43]. In 2D there is limited work on equations similar 

to the differentiated form of the 2D KSE [42,53]; dispersion is found to transform chaotic solutions 

into travelling wave pulses, but in many cases these travelling waves are unstable in the sense that 

they do not emerge as solutions to initial value problems. This feature of the 2D problem is quite 

distinct that in 1D where moderate amounts of dispersion produce stable travelling wave pulses. 

It would be of interest to classify such effects for the 2D KSE. 
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