1. Introduction
The one-dimensional Kuramoto -Sivashinsky equation (KSE)
Ut + UUKx + Uxx + Uxxxx = 0, (1.1a)
u(x,t) =u(x + 2L, t), u(x, 0)=uo(X), (1.1b)

where 00 x< 2L is the spatial coordinate and tis time; solutions are sought on spatially periodic
domains of size2L, and ug(X) istheinitial condition. The KSEis one of the simplest nonlinear
PDEs exhibiting complex spatio-temporal dynamics. It was derived by both Homsy [ 1] and
Nepomnyashchii [2] in their studiesofthin liquid film flows down inclined planes,by LaQuey et
al.[3] in trapped ion mode instabilities, by Kuramoto [4] in diffusion -induced chaosin reaction
systems,and Sivashinsky and collaborators [507] in their studies of flame front propagation. It has
sincebeenfound to describethe asymptotic behaviour of other physical phenomena,including
two dphaseflows in cylindrical pipes[8], interfacialflows [10,11], plasmaand chemicalreaction
dynamics [4,12,13], and models of ion-sputtered surfaces[14] that extend the equation to higher
dimensions also.Note that (1.1)isequivalent (in onedimension) to theintegrated form

12
Vx + Vxx + Wxxxx = 0, (1.2)

2
through the transformation u= v. Flame propagation applications are usually governed by the

integrated form ( 1.2) whereas fluid film flows are governed by the conservative form ( 1.1).

In addition to its intrinsic physical relevance, the 1D KSE has attracted significant
mathematical interest, becoming a premier model for studying complex dynamics in spatially
extended systems. There have been numerous analytical 15619] and numerical [ 20823] studies
of the 1D KSE with 2L1 periodic boundary conditions (see below also). The 1D KSE has been
proven to possess a unique smooth solution that depends continuously on its initial data [ 19].
Its convective Burgersdtype nonlinearity provides a transfer of energy between active and
dissipative modes, and the essence of the dynamics can be captured by a finite dimensional
dynamical systemof ordinary differential equations for the Fourier coefficients of the solution.

A significant portion of the analytical work on the 1D KZSLE has focused on how the energy

> 2 -1/2
(defined as the L2l norm of the solution, "u"L,:= o u (X, Hdx ) scales with domain
length. Assuming that the domain is finite ( L < B ; if L= B the PDE is ill-posed), longdtime
solutions are bounded by an absorbing ball with an LI dependent radius (in L2 and higher
Sobolev spaces) such that

vt +

lim sup'u'L, =O'LP", (1.3)
tY D
Thefirst value of p obtained was p=5/2 for odd dparity solutions [18], though this estimate has
beenimproved over the yearsby many mathematicians [15,17,24628]. The current bestknown
analytic bound is 0(L3/2) [26,28], though the numerical study by Whittenberg & Holmes [29] has
suggestedthe optimal value p=1/2.

In addition to the energy, there have been several notable studies examining how thesolution
itself changes with system size. For domain lengths smaller than 2", the 1D KSE is linearlystable
and small perturbations from the trivial state will decay exponentially in time. As the domain
length increases beyond 2", the trivial solution lose s stability to a unimodal steady state, which
in turn becomes unstable to multi dmodal steady states, travelling waves, oscillatory solutions,
and finally to chaotic solutions for sufficiently large L. The transition to chaos occurs through a
period doublin g cascade that follows the Feigenbaum scenario £2,23,30]. As the solution enters
the chaotic regime, it remains of O(1), adding more oscillations as L increases.It was proved by
Kukavica [31] that the number of rapid oscillations of the solution is universally bounded by an
expression exponential in L. This estimate was later improved by Grujidfg2] to yield a bound
essentially algebraic in L, though numerical experiments suggest that asL increases, the number
of oscillations should be O(L) - [29]. Numerical studies have alsoshown that the chaotic dynamics



are extensive in that the local dynamics are asymptotically independent of L for LA 1and the
energy is equally distributed amongst the lowest Fourier modes [ 29].

Despite the rich dynamics established for the 1D KSE, studies in higher dimensions are
somewhat limited and primarily analytical. The spatially periodic 2D KSE is

m+% |+ au + afu=0, (1.4)
uix,y; t) =u(x + 2Lx, y; t) = u(x, y+ 2Ly, t), u(x, y, 0) = uo(x, y), (1.5)

where ae:O’-X+O°'.)Jt hasbeenestablishedby Cao & Titi [33] that the only locally integrable
stationary solutions of the 2D KSE (on infinite domains) are constant values, but the question of
global regularity for the KSE in higher dimensions is still an open problem in nonlinear analysis.
Thefirst attempts at proving boundedness,analyticity, and stability for the 2D KSEwere by Sell&
Taboada[34] and Molinet [ 35]. Assuming a thin domain, [ 34] showed the existence of abounded
absorbing set in H%er([o, 2'] x [0,2" P for s sufficiently small. Molinet [ 35] improved this result
showing that with some restrictions on the initial data,
R T 8/5 U2’
limsup'u'L,, 0 Qx Ly |, (1.6)
4D
on the bounded domain (0, 2Ly) x (0, 2Ly ) with 2Ly O 2°,0< 2Ly < 2’ satisfying
_ 4
- -1
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"Ly OCLLET, .7
For radially symmetric solutions, Demirkaya & Stanislavova [ 36] proved that there exists a time
independent bound for the Lodnorm of the solution, while Michelson [37] showed the existenceof
anontrivial radial steady solution that is asymptotically periodic. Other authors have considered
variants of the 2D KSE, mostly taking the form
1-2 2" 2

Ut+£ ux+Uy +(Uxx+Db w)+aeu=0, (1.8)
subjectto boundary and initial conditions (1.5), though other variants have also beenstudied [38].
In (1.8), Uand b are real parameters controlling the anisotropy of the nonlinear and linear terms,
respectively. This anisotropic equation was derived by Cuerno & Barabéci [ 14] to describe the
nonlinear evolution of surfaces eroded by ion bombardment. It was also studied by Rost & Krug
[39] for different combinations of the signs of Uand b. For U= b  Gand O(1), the solutions are
bounded and develop into travelling waves that can becomeoscillatory or chaotic.

In this paper, we provide a comprehensive numerical study of the 2D KSE to complement
(and possibly guide) the emerging body of analytical work on this equation. The combination of
numerical and analytical studies of the 1D KSEhasprovided adeepunderstanding of its solutions
and the physical phenomena it describes. It is our goal to extend this tandem approach to the 2D
KSE. While there have been a number of numerical studies dedicated to the damped 2D KSE
(see for example B0,41] and references therein), a complete numerical study of the 2D KSE (.4)
has not been performed, to the best of our knowledge. In what follows, we study in detail how
the solution varies with the domai n size by identifying the different attractors and describing
their characteristics. We find that many results from the 1D case apply to the 2D equation also,
but many others, including the hierarchy of bifurcations, are quite different. In addition, we
study the energy of the solution in the chaotic regime. We examine both the dependence of the
energy on systemsize and the dependenceof the energy spectrum on wavenumber. We show that
equipartition of energy holds in the chaotic regime for the differentiat ed version of the 2D KSE
(seeequation (2.4) below). We alsofind that the energy spectrum is radially symmetric in Fourier
space and link this property to the xT ysymmetry of the equation.

The structure of this paper is as follows: after introducing the doubly periodic solutions in
Section 2, we study how the energy grows with system size and present results demonstrating
the equipartition of energy and extensiv e dynamics in Section 3. In Section 4, we present the
linear stability properties of the equation followed by adetailed numerical study for alarge range



of domain lengths in Section5. Finally, the main results and findings of this study are summarised
in Section 6.

2. Initial value problem and numerical methods

Throughout this study, we will be considering the initial value problem for the two ddimensional

Kuramoto 8Sivashinsky equation (1.4) on 2Ly x 2Lyl periodic domains asgiven by given by (1.5

We note that the mean
1 2Lk 2Ly

&) = u(x, y,t) dxdy (2.1)
4 xLy o o
of the solution is non-zero and grows in time according to
d - - P 2lxs 2L
TwH=1 _1 1 @ ? dxdy. (2.2)
dt 8LxLy 0 o)

To focus on the dynamics of the spatially varying part of the solution, we subtract off the growing
mean value in our simulations (this is possible since @t) does not contribute to the dynamics of
the higher modes). Therefore, we consider the following meandzero equation
- - s 2Ly s 2L :
| St
wagt | 0P ALy | @i’ dxdy +aev+adv=0 (2.3)
o o

for v(x,y,t) = u(x,y,t) T t), subjectto the same periodic boundary conditions (1.5). The mean
canalsoberemoved by differentiating (1.4) with respectto xand yto obtain the system

Ut+ (U - q)U +a) +afU =0 (2.4)

of two meandzero equations for U = q u. This approach has been adopted in many analytical
studies [33336], though for our computations we found using ( 2.3) to be more straightforward.
With the mean removed, we solve (2.3) subject to the initial condition

V(X,y,0) =sin{ xx{ " yy)ksin( x) tsin( yy) L (2.5)

using a Fourier pseudospectral method. This particular choice of initial condition is discussed in
Section 4. The spatial domain [0, 2Ly] in the xI direction is split into 2My equidistant points and
similarly the domain in the yI direction is discretised using 2My points. We express the solution
as a Fourier series defined on these grid points and consider the system of ordinary differential
equations for a finite number of Fourier modes. We compute the nonlinear terms on the grid
using FFTsto go from Fourier to real space and back again. The time integration of the Fourier
modesis carried out using a seconddorder accuratebackwards difference scheme(BDF)that treats
the linear terms implicitly. All codes are home -grown, written in Fortran 95 and compiled using
an Intel Fortran compiler. For mor e details on these numerical methods see 42] for a related
two -dimensional equation, and [ 43] for the dispersive 1D KSE.

In our simulations, we retain Mx Fourier modesin the x-direction and My modesin the y-
direction. For the mostwidely studied casewhere Lx=Ly=L,the number of Fourier modes
Mx =My = M depends on L or equivalently 3=" L? (see(4.4)). For 3 between 0.6 and 1.0,
M =16modes were found to provide sufficient resolution. For the smallest value 3=0.005
however, M = 256 modes were needed. For large values ofs, the time step used was dt =
5x 10 3though this was reduced near bifurcation points in order to obtain asharper estimate
of where these occur. We used dt=10 * or larger for the smallest values of 3 in order to
accurately capture fast changesin the dynamics. The total time required to enter and characterise
an attractor again depends on the value of 3. For some chaotic or quasiperiodic cases finaltimes
of T=15x 10*were needed, though typical final times were T =5000r smaller. Simulations
took less than a minute to run for the larger values of 3, but took several days and sometimes
over a week for small 3. All runs used double precision floating point numbers and were run on
a 64bit linux machine with dual Intel Xeon 2.67GHz CPUs, with 6 processor cores in each CPU
and 16 GB of memory.
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Figure 1. Timei averaged energyversusdomainareafor(a) Caseiand(b) Caseiii.In panel (b),thecrossescorrespond
tothecaseLy = 2 while the circles correspondtoLy =2" .

3. Chaos and Energy equipartition

We begin our study by exploring the statistical properties of the solution after it becomeschaotic.
As shown later in Section 4, the long-time solutions of the 2D KSE exhibit spatiodtemporal chaos
for large values of Lx, Ly. The rapid oscillations of these solutions suggest a universal bound
for both space and time averages of the solutions P7]. We investigate the dependence of the
time-averagedenergy

1 > Tos 2Lxs 2Ly
(E(Lx, Ly, 1)) = = VA(x, y ) dxdydt (3.1)
Tal T1 1, 0o o

on domain size as Lx, Ly becomelarge. Here, (()) = T?]lﬁ > % () dt denotes timedaverage, and

the times 0< T1< Toare large enough to ensure that the solution has entered the chaotic attractor.
As discussed in [28], this quantity for the 1D KSE shares the same scaling with system sizeL as
limsupy p "u"L,, and sowe adopt (3.1) in order to establish numerically the dependenceof Lx

and Ly on limsupy p "u(,; t)"L,. In the computations described below the domain size is at
leastaslarge as30x 30.Wealsocompute the averageenergy spectrum (i.e.the power spectrum)

Stka, ko) =4lxly W@ ke, D12 = 1 " 7 401 u@, ke, )2 dt, (3.2)
T2l T1 T,
which we normalise by including the factor 4lLxLy . By examining the power spectrum, we can
understand how the energy is divided among different Fourier modes.

For the 2L1 periodic 1D KSE, numerical studies have shown that the time-averaged energy
density (E(L, t)), where E(L, t) = "\/'2|_2 is asymptotically proportional to the system size L [21,
29,44). This suggests that the solution remains O(1) and the energy density, 2(E(L, 1)), remains
finite for L A 1. The numerically observed upper bound for the L2 normis

lim supv'L, O cLY?, (3.3)
)

while the best available analytic bound is O-L5/6- [28]. Wittenberg & Holmes [29] also show

that the time-averaged normalized energy spectrum S(k) =2L |18, t)|2 , is independent of k
in the region where k" 1. This property is referred to asthe equipartition of energy and is in
line with the 1D KSEshowing extensivedynamics, where alarge systemis composedof smaller
subsystemseachexhibiting the samebehaviour. Toexplore how theseresults might carry overto
the 2D KSE, we compute (E(Lx, Ly, t)) and S(ki, k2) for long -time solutions of the 2D KSE for
the following three cases:



Caseilx=Ly=LandLA 1
Here we solve the 2D KSE over square domains that increase in size. Théime daveraged

energy (E(L, L, 9) is plotted against LZin Figure 1(a) and shows a linear dependence. A
least squares fit to the data data yields a resulting slope of approximately 1.01sothat

(E(L,L,t)). constL? LA 1. (3.4)

Caseii:Lx=10y=10Land LA 1
This case is similar to Case ,i but the domain is now a rectangle with aspect ratio 10
Though not shown, we obtain a slope of about 0.98by a least squares fit to the dataThis

suggeststhat (E(10L, L, t)) =0 L2 .

Case iii: Ly fixed, Lxa 1
Here the domain is arectangle with fixed width 2Ly = O(1) and increasing length 2Ly.
For two fixed valuesofLy= 2" 2", thetime-averagedenergy is plotted against LxLy
in Figure 1(b). These values ofLy are chosen to ensure that there are unstable modes in
the y-direction (for large Lx the domains are thin, but not as thin as the ones studied
in [34] who had no unstable modes in the yI direction). Least squares estimates of the
slopes found them to be approximately 1.01in both cases; hence, when one sié of the
domain is of fixed length and the other increases, the time-averaged energy scales with
the dimension that is varied and produces the same scaling as the 1D KSE.

In addition to the energy, we characterise the average energy spectrum for domains chosen from
Cases and ii. The values of Ski, ko) are shown in Figure 2(a) against

- T2 Cno
k= K+k= "m’ 77, Dz
1 2 Lx Ly

Yz

: (3.5)

for two different setsof (Lx, Ly) (here the integers 10 n1 O Mx and 1 O n; O My represent the
Fourier modesofthetwo -dimensional solution). It canbeseenthat theaverageenergyspectrafor
both setsof (Lx,Ly) have the samedependenceon k. The independence of the average energy
spectrum on domain sizeis alsoobservedfor the 1D KSE[45]. Fork” 1,we find that S(ki, ko).
k{ 2, in contrast to a constant value found for the 1D KSE equation (1.1) in [29]. The factor of

k' 2, however, is due to the form of the nonlinearity in ( 2.3) rather than the dimensionality of the
problem. To see this, we note that (L.1) is not only (1.4) reduced to one dimension (i.e. equation
(1.2), but also differentiated with respectto x. The differentiation alters the form of the nonlinear
term and yields the additional factor of |ik|?= k’to the energy spectrum. INote that this k' 2
dependence was observed by Yamada and Kuramoto (6] for the integrated equation ( 1.2).

Considering the differentiated system ( 2.4), we see that in Fourier space,

6 =1 (g l2=likatde=tals  02=] (g [2=likebde=kalkle  (36)

where U1 = w and U2 =w . Adding these expressions together gives

2 + |0 = ki+kz |1Ll202=k2|u|202. 3.7)

Figure 2(b) _shows _I<28(k1, ko) alongside the sum of the two spectra Si(ki, ko) + Sp(ka, ko) where

Si(k1, ko) = |l!¥r2 . Here, we have taken the domain sizeto be Lx =Ly = éﬁ. The spectra

coincide and the small differences can be attributed to statistical fluctuations in the data.
We further establish that the average energy spectrum for the 2D KSE is a function of the

magnitude of the wavenumber, k= k21+ k22alone. This can be seenin Figures 2 and 3(a). We
note that this radial symmetry is present even if we have Lx & Ly . Toinvestigate this further, we
consider (2.3) in Fourier spaceand multiply it by i4J the complex conjugate of 14Jto obtain

B M + 17 W2 T (@7 Kug =tel) (3.8)

2 1
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Figure 2. Paanel (a) shows the energy spectrum S(Kk1, k2), versus K for Lx =Ly ="/ 0.005 (crosses), and Lx =
10Ly ="/ 0.0009 (circles). Panel (lg provides a comparison between k?S(kz, k2) (circles) and S1(k1, k2) +
S2(K1, k2) (crosses) for Lx =Ly ="/ 0.005

whgre %%Qt) 2Ii_s real2 and denotes the (0,0) Fourier coefficient of the integral term
L, o o0 "I ol dxdy Taking the complex conjugate of (3.8) yields

BT -y o1 e T T KHLT =e . (3.9)
kit o K k 0
Adding ( 3.8) and (3.9) and averaging in time results in
a7 2" Ty wE vud w2 T 2081 K |l =
g+ v@lgfk wlgfk @1 K juf =2(t).  (3.10)

Sinced (4P /dt=0and the right hand side is independent of k, [ ? will beafunction of k

only if ukJ'l |(’V‘|2 +J” | .EV_IZ " depends on kalone. As a consistency check, we calculated
this term numericall'§/ and confirmelf that indeed it depends only on k. This analysis suggests that
the radial symmetry of the average energy spectrum is tied to the form of the nonlinearity of the
2D KSE,which is symmetric with respectto xand y. If we consider instead the following equation

Vit + VWK + Vix + 2V =0 (3.11)

that arisesin falling film applications [42,47549] and lackssymmetry with respectto xandy, we

find that its energy spectrum is not radially symmetric in (kq, ko)-space;for completenessthis is
shown in Figure 3(b) where we havetakenLx=Ly=__
001

4. Domain rescaling and linear stability

Before classifying how the solutions vary with domain size, we first rescale the spatial and time
variables according to,

XY (Ld % yY Lyl Dy tY () (4.1)
in order to fix the domain sizeat[0, 2 ] x [0, 2" ]. Thetransformed equation is given by
ut+112, gu|2+8au+3188u=0, (4.2)
where 7 " y
L, e=d+%2a (4.3)
q 3: O(! g%Q/ 3 X 31 y

are the transformed operatorsand

a1=(C /B 32=( B (4.4)
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(a) Symmetric 2D KSE(1.4). (b) Asymmetric equation (3.11).

Figure 3. Energy spectra from (a) the 2D KSE (2.3), and (b) the asymmetric equation (3.11) for Ly = bES = o

are bifurcation parametersthat play animportant role in the dynamics. In rescaling spaceand
time, information regarding the domain size has beentransferred to these parameters which
decreaseasLy and Ly increase.The corresponding rescaled meandzero equation for v(x,y,t) =

uix,y, )T @&t is

T 1022
tv +21 | QV|2 ' 712 | qv|2 dxdy +aav +318§3v=0. (4.5)
0
We assesghe linear stability of the uniform statev= 0 and establishthe region of instability
in (31,32) parameter space.Perturbing about the uniform statev= 0, anormal mode solution is
soughtin theform

v,y t) =i gMmx it oo (4.6)

where ni, n are nondzero integer wavenumbers in the xI and yl directions respectively, i " 1,0
is the complex amplification rate and c.c.denotescomplex conjugates. Substituting (4.6) into (4.5
and linearising with respectto 0, results in the following dispersion relation

= n2+2n27 <17 3 2Inan? 4.7)
11 22
1502
that in turn implies the condition
31 n21 + 32 n22< 1 (4.8)

for instability. Theinequality (4.8) canbe satisfied for sufficiently small 31, 32 (physically this is
equivalent to large unscaled domains). By fixing 31 and 32, we candetermine the modes (n1,n)
for which thetrivial solution isunstable,assummarised in Figure 4.Weseethat for 3;>1and
32> 1, (4.8 cannotbesatisfied for any n1,n2WZ+and all sufficiently small perturbations from

thetrivial statedecayto zeroexponentially fast.If 31 0r 32islessthan unity, instability setsin.

For instance, if initially v(x,y,0)=sinfk+ y) sothat n1=1and no= 1, apositive growth rateis
ensuredif 31+ 32< 1. A choiceof aninitial condition independent of y,i.e.n2=0,resultsin the
instability condition being independent of 32 and yields the stability conditions for the 1D KSE
(analogousresults hold if n;=0). Basedon the linear stability analysis, we take

V(X,Y,0)=sinik +y) + sinK) + sinfy) (4.9)

asthe initial condition in our numerical experiments. This choice gives three initially unstable
modes (ng, n2) = (1, 1), (1, 0), (O, 1) that, as we will see later, evolve into solutions with rich
dynamical behaviour, including quasidperiodicity and chaos.
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Figure 4. Stability diagram for the twoi dimensional Kuramotoi Sivashinsky equation. The equation is stable when both
31, 32 > 1. Ifeither 31 or 32 isless than 1, then the dynamics are described by the 1D KSE. If both 31, 32 < 1 thenthe
solutions are fully twoi dimensional.

5. Solutions and their dynamics

Using the numerical method described in Section2, we solve the rescaledKSE (4.5) subjectto
the initial condition (4.9) for arange of 31, 32 in the unstable region, namely 0 < 31, 320 1 (see
Figure 4). For the 1D KSE, steady state solutions arise for 0.3< 3< 1, approximately, where 3=
' tz while smaller values of 3 result in travelling waves and time dperiodic bursts [ 22,23]. When
3 0 0.12115chaotic solutions appear via Feigenbaum subharmonic period ddoubling bifurcations
[22,23,30]. For the 2D KSEsolutions alsoincreasein complexity as3i, 324 0, however, thereare
infinitely many routes to chaotic dynamics depending on the path in (31,32) space.We explore
the path dependencein detail for two cases3; =32 =3 with 34 0,and 324, 0with 3; fixed.

We begin by performing numerical simulations over the unstable range of 3;and 32using
stepsizeas = 0.05in eachdirection and classifying the solution ateach(31, 32) point. We exploit
the symmetry of the 2D KSE about 31 = 32 (under a space and a time scale transformation)to
reducethe number of simulations required: If v(x,y,t)isthe solution corresponding to the values
(31, 2),3hen the solution for (32, 31) isv y,)gle’—2 - this can be seen by multiplying the 2D KSE
by 33—12 We identify and study the different attractors by monitoring the energy of the solution

L2 L
EQ=Ive0lf= VA(x, y1) dxdy. (5.1)

This is related to the definition presented in ( 3.1 for 2Ly x 2Ly 1 periodic domains by E(t) =
aﬁs\ 32 E(Lx, Ly, t). We also consider

2, .32 2 - - 20z 3 5
E®=2wl*+272 v | IR 22wy 1217 7 v P+ 2 axdy,

X
ol o . 2y Y

(5.2)
which we obtain by multiplying ( 4.5) by v and integrating over the periodic domain. Since the
solution is periodic, quadratures are performed using the trapezoid rule to compute E(t) and
é(t) to spectral accuracy; these values are in turn used to construct phasedplanes (E(t), Et(t))
which are particularly useful in identifying periodic and chaotic attractors. We alsodetermine
the Poincaré maps where é(t) =0 in order to numerically generate return maps to describe
the dynamics [22,23,30,43)]. Using seconddorder polynomial interpolation, we find the times  tp,
n=12,..., that give é(tn) =0. With En =E(tn), n=1,2,..., return maps are constructed by
plotting the sequence of points (En, En+1). The resulting geometric object provides information
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Figure 5. Phase diagram classifying the solutions obtained for different values of 31 and 32 for which the KSE is unstable.

about the attractor. If the return map contains just one point t he solution is time dperiodic with

a single minimum in the E(t) signal (the period of oscillation can be estimated by calculating
the time difference between two consecutive minima). If the return map contains continuous o
looking curves that fill with p oints as nincreases, the solution is quasdperiodic, while foldings

and selfésimilarity provide strong evidence for chaotic solutions [22,23,30,43,50].

Simulations results from the (31, 32) parameter sweep are summarised in the phase diagram
in Figure 5 with the different solution states indicated by differe nt coloured circles as indicated
on the figure. The diagram includes a relatively large region of non -uniform steady states (SS),
starting from the bifurcation point (31, 2) 3 (1, 1) and covering almost half of the computational
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Figure 6. Solutions obtained along the line 31 = 32 = 3 in parameter space. The solution abbreviations are given in the
caption of Figure 5. The system size increases as we move to the left.

domain. As we decrease the values of3; and 32, the steady state solutions are succeeded
by travelling waves (TW) or time dperiodic waves (TP), including periodic homoclinic bursts
(PHoB) and periodic heteroclinic bursts (PHeB). For relatively small values of 31, 32, solutions
characterised by quasidperiodic (QP) or chaotic (C) oscillations in time emerge. Chaotic solutions
alsoappearin the form of chaotic homoclinic bursts (CHoB) or chaotic heteroclinic bursts (CHeB).

(a) Paths in (31, 2)I3space

In this sectionamore detailed examination isundertaken to determine the dynamics along paths
in (31, 32) spaceassi, 324 0.Wefirst take 31 = 32 = 3 and compute solutions at equally spaced
values of 3 with step size as = 0.01 An outline of the most attracting solution types is given in
the schematicdiagram of Figure 6 (note that complexity emergesaswe move from right to left).
The first solutions to emerge are steady statesfor parameter values 0450 3 < 1. For 0.43<3<
0.45 the fixed point attractor overlaps with atime dperiodic attractor, while for smaller values
0.350 3 O 0.45 periodic heteroclinic bursts emerge as the timedperiodic attractor competes with
a new fixed point attractor. We see the first chaotic solutions for 3 as high as 0.32. As we let
34 0, the solutions alterate between travelling waves and chaotic dynamics until 3= 0.1, after
which the solutions remain chaotic. This route to chaos was not found to follow the pattern of
period doubling bifurcations found in the 1D KSE [ 22,23]. A notable characteristic of the chaotic
solutions is that they retain O(1) amplitudes as 3 decreases but the number of spatial oscillations
increase. A similar result holds for the 1D KSE where it was proved that the number of rapid
spatial oscillations increases linearly with the system size[32)].

We also investigate the paths3zY 0 for small but fixed 31between0< 1® 0.35 Weare
particularly interested in seeingwhether the 1D KSEsolutions 3=3; arerecovered in this limit

W, 31

W 0.10 0.15 0.20 0.25 0.30 0.35

N 0.05

0.04 C C TP[1] C C C C
0.03 C C QP C TP[1] C C
0.02 C C C C T™W TP[3] C
0.01 C C C C TP[5] C C
0.005 C C C C TP[1] C C
iD_}:jE SS CHoB SS PHoB T™W T™W SS

Table 1. Solutions for 0 <31 O 0.35and 32 < 0.05 For comparison, solutions to the 1D KSE for0< 3 O 0.35are also
provided. Mostabbreviations are giveninthe caption of Figure 5. We use TP[m] toreferto atimei periodic solutionwith
mdistinctminimainits energy signal.
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- setting 32=01in (4.2) canbe seento yield the 1D KSEwith 3= 3;1. The results are summarised
in Table 1and it canbe seenthat as3, decreasessolutions are mostly chaotic. Interestingly, our
computations do not reduce to the given solution type obtained from the 1D KSE for 3 = 3y,
thus suggesting that the limit 324 0Ois singular. In order to observethe quantitative nature of
the attractors, two representative return mapsareshown in Figure 7. Panel(a)correspondsto a
quasidperiodic solution obtained for (31,32) = (0.150.03)- quasidperiodicity is surmised by the
continuous dlooking curves. The return map for the solution obtained for (31,32) = (0.250.04)is
illustrated in panel (b),which issurmised to bechaoticdue to the presenceoffoliations.

It can also be seen from Figure5 that steady states emerge when3j and 32 are relatively close
to unity. In what follows we analyse asymptotically the bifurcated steady states emerging from
these critical parameter values.

(b) Steady states

For 31> 1, 2>81, solutions are attracted to the trivial state v= 0. At 31 = 32 = 1, a pitchfork
bifurcation occursand nondtrivial solutions first appear. In alarge region approximately enclosed
by the lines 31 = 0.35 32 = 0.35 and 31 + 32 = 0.95 (see Figure 5), the solutions are two-
dimensional unimodal steady stateswith relatively low energy. A typical steady statefor 31=
32 = 0.9 is given in Figure 8(a); it is fully two -dimensional and unique up to a translation -
equation (4.5)istranslation invariant (we do not haveauniquenessproof -our statementisbased
on numerical experiments starting from arbitrary initial conditions). We cananalyse solutions
near the bifurcation point (31,32) =(1,1) by writing

31=11 Uss, 32=11 s (5.3)

for O, (b>0and 0< 's 1. In the analogous 1D analysis Frisch et al. 0] show that the modes
k= +1and + 2 alone are relevant to order s, and a similar procedure is adopted here to analyse
bifurcated steady states of the 2D KSE.We do this by considering the system of equations (2.4)
(after transforming itto 2° x 2'1 periodic domains) and obtaining asymptotic solutions for Uj,
Uz ass Y 0. The solutions Uy, Uz are first expanded in powers of s¥2 and all the coefficients are

written as Fourier series; the coefficients are determined by ensuring that resonant forcing terms
vinish at eachorder, and this processcanbe carried out to any order. The expressionfor v follows
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Figure 8. (a) Steady state profile for 31 = 32 = 0.9. (b) The L2T norm "V" of steady states for different values of i€ for

the numerical (crosses) and analytical (circles) solutions. The analytical norm is found using (54) up to order el 2,

from the transformations Ui=ux = vx, U2=uy = vy . The resultis

v=212)Y2 (2 cos(x + (i1) + UY2 cos(y + liz) +s[Th cos(2(x + (1)) + Ub cos(2(y + (i2))]
1 2

va P2 2 C
12 1 cos(3+U0G1))+U, cos(3¢+a2) * Os , (5.4)

where (i1, (i2 are phase shifts in the x and y directions, respectively, that are present due to
translation invariance and canbe setto zerowithout lossof generality. Though not shown, we find
good pointwise agreementbetween the analytical solution (5.4) and that determined numerically.
Figure 8(b) shows abifurcation diagram of the final constant value of "v'., againsts (here U=
(b = 1). The asymptotic solution (5.4) correct to order V2 corresponds to the circular markers
while the energyofthe numerical solution isindicated by the crossesagreementisvery good for
saslargeas0.1. As expected,the difference betweenthe two solutions deterioratesassincreases.
Note alsothat if sO 0 (i.e. 31O 1 and 32 O 1) the solutions are trivial since lim supy p "V'L, =0,
andthis isthe casefor both the asymptotic and numerical solutions.

(c) Travellingwaves

As 31 and 32 are decreased the steady states described above give way to a traveling wave
attractor. It is found that traveling waves are supported for 3= 0.25 0.3 and 0550 3;0 1 and
also in the region 0.7 O 31+ 32 O 0.9 (these are depicted on the bifurcation diagram 5). The
solutions are two-dimensional nonlinear waves of permanent form that travel with constant
speedcin a direction that makes an angle d with the y-axis, and can be expressd as

v(x,y,t) = v(G Y), G=x+ctsind , y=yl ctcod . (5.5)

Substituting (5.5) into (4.5) yields

- 3227
1 = +& vy+zaf v=0, (5.6)
2

. 7 Vg + Vy G, 16, Y
csindve I ccosdvy +,, 3, ¥ ¥

where gy = &, 2§ and aay =& + 2. Expressionsfor ¢ and d that are useful for
31 G 31 Y

their numerical determination with spectral accuracy (L

by multiplying equation ( 5.6) by ve and vy , respectively, and integrating over the domain to
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Figure 9. Variation of the wave speed C (panel (a)), and energy (panel (b)) with 31, for a fixed value of 32 = 0.3.

provide two equations for cand d. Solving these yields

. - 52 52 2 2 2 -
d=tan 1 - a g,deGdyAY’oz’ozvevdedy (5.7)
O’OVGdeGd_yAY’O’vadey
where
- S -y -
A=t e V+ P2 dedw, =12 % v Ve gy 68)
20 o 6 g ¥ Y 29 o ¥ & 3 ¥
and
A
c= — . 5.9
cosq 2 2 > (5.9)

0o "o VeV d 6 d ysind’ ’Oszd cdy
We computed the variation of cwith 31 for the two casessz = 0.3 and 32 = 0.25.In both caseghe
speedincreasesmonotonically as3idecreasesi.e.asthe systemsizeinthexl direction increases.
Typical results are depicted in Figure 9(a) for the case3z = 0.3. We note that the energy of the
traveling waves also changeswith 31, and the variations for the fixed value 3= 0.3 aregiven in
Figure 9(b). Wealsofind that this monotonic behaviour with 3; doesnot persist for all values of
32. In fact, for 32 =0.25the energy increasesto apeak value at 31 0.6, after which it decreases.

(d) Time periodicsolutions

As we decrease the values of31 and 3 further, we find that various time -periodic solutions
emerge. Periodic homoclinic bursts are observed first, and theseare found to occur when 32 = 0.2
and 0.7 O 31 0 1. These solutions can be characterised by their energy evolution consisting of
plateaus disrupted by abrupt, though regular, time-periodic bursts. The variation of the period
between bursts with 3; and 32 =0.2fixed, is given in Table 2; the periods of oscillation in the range
0.70 310 1aregiven in thefirst line of the table (lower values of 31 appearing in the secondline
of the Table arediscussedbelow). The results indicate that the period decreasesnonotonically,
albeit rather slowly, from a value of approximately 12675 at 31 = 1 to 899 at 31 = 0.7. This
indicates that the persistence of the steady state attractor becomes weaker as; decreases.
An example of these homoclinic burst solutions is gi ven in Figure 10for (31, 32) = (0.8, 0.2).
The energy E(t) and its corresponding phase plane (E,é), are shown in panels (a) and (b),
respectively - the phase plane is a closed curve that is traversed a single time as the solution
evolves over one period in time. The fast bursting dynamics connecting homoclinic states are
clearly visible in these numerical results; the solution spends most of its time in the constant
energy region and this corresponds to the corner-like part of the phase plane in the vicinity of

E =0. Two characteristic profiles are shown in panels (c) and (d), taken from a constant energy
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Figure 10. Periodic homoclinic burst solutions for 31 = 0.8 and 31 = 0.2. Panel (a) evolution of the energy E(t); panel

(b) phase plane of the energy; panel (c) solution at t =3600n the constant energy plateau, and panel (d) solution at
t = 381taken during a burst.

31 1.00 095 0.90 0.85 0.80 0.75 0.70
Per 126.75 119 1135 108.75 102.3 96.15 89.9

31 0.65 0.60 055 0.50 0.45
Per 2.79 266 257 254 2.68

Table 2. Oscillation period for timei periodic solutions with 32 = 0.2. For 0.7 O 31 O 1 the solutions are periodic

homoclinic bursts while for 0.450 31 O 0.65 regular oscillations in the energy signal are observed.

stateand an energy peak, attimes t= 360and t= 381, respectively. For thesevalues of 31 and 32,
the steady solutions betweenbursts areunimodal in xand bimodal in y, that isthe only non-zero
Fourier modes are ng WZ and nz =2mp, mp WZ.

Next we consider even lower values of 33, that is we fix 32 = 0.2 and study the interval
0.450 310 0.65 It is now found that the solutions can be characterised by regular time -periodic
oscillations in the energy as shown in panel (a) of Figure 11 corresponding to the particular
case31 = 0.5 and 32 = 0.2; the corresponding energy phase plane is depicted in panel 11(b). The
phase plane is a closed curve confirming periodicity in time, but in addition the presence of the
competing steady attractor found for larger values of 31 (see Figure 10), is no longer felt. The
computed periods of oscillation for this range of 31 are given in the second line of Table 2. It is
evident from these values (and in particular the periods 899 at31= 0.7 and 2.79 at 31 = 0.65) that

the time periodic attractor in 0.450 31 O 0.65is unrelated to that in 0.70 31 O 1.0, in the sense

that the transition from the solution at 31 = 0.7 to that at 31 = 0.65is not continuous - the solution

jumps from onetime -periodic attractor to adifferent one.Aswith the periodic homoclinic bursts,
the period decreasesslowly as3idecreaseshowever, for the lowest value computed, 31=0.45
the period moves to a slightly higher value. The solutions at t = 139and again after one and



two consecutive periods, respectively, at t= 14154 and t= 14408 are shown in panels (c)d(e).
Interestingly, eventhough the energy completesone period of oscillation between eachprofile,
we seethat the solution requires two complete periods to return to its initial spatial form. This
canbeunderstood from theresultsin panels(c)d(e).Modulo aconstanttranslation alongtheline
x=y, the solution in panel (d) is identical to those in panels (c) and (e). This can be seenfrom

the projected contour plots of the solution onto the xI yplane;in panel (c)thereisad f i U r e
feature (i.e.asaddle point for the surface)in the middle of thedomain, and arectangular feature
(i.e.alocal maximum for the surface)in the vicinity of the origin. After oneperiod of oscillation
haselapsedthe solution isthat shown in panel (d), and inspection of the projected contour plot
confirms that the saddle and local maximum regions mentioned above are interchanged. This
holds for any three solutions separatedby oneperiod of oscillation betweenthem -we arbitrarily

took t=139asthe first solution in theseresults - and sothe attractor is of traveling periodic type

with the solution returning toitsinitial form modulo aspatial shift, after eachperiod. Wefind all

the solutions on the line 32 =0.2have this distinctive feature.

(e) Quasii periodicity and chaos

Next we decreases; further to the fixed value 32 = 0.15and vary 3; in the interval 0.350 310
1; we find solutions supporting chaotic heteroclinic bursts along with quasi periodic and fully

chaotic solutions - see Figure5. An example of a chaotic heteroclinic burst solution for (31, 32) =
(0.85 0.15) is shown in Figure 12; the energy evolution given in Figure 12(a) switches between
two different fixed points with energy approximately equal to 340and 30Q respectively, and
exhibits chaotic bursts in between - this is in contrast to the homoclinic bursts found at larger 32-
Figure 10. Evidence of the chaotic nature of the bursts is found in the corresponding energy phase
plane panel (b), which is composed of non-repeating trajectories. Panels12(c)d(e) present solution
profiles at t = 1100 1230 1300corresponding to times on the higher energy steady stateattractor,
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Figure 11. (a) Energy, (b) phase plane, and solution profiles for the periodic homoclinic solution at (31, 32) = (0.5,0.2).
Panel (c) shows the solution profile at the minimum energy att = 139 Panel (d) shows the solution one period later (t=
141.54) and (e) shows the solutiontwo periods after (c) (t=144.08).















