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ABSTRACT  

This study aims at investigating the molecular level organization and molecular mobility in 

montmorillonite nanocomposites with the uncharged organic low-molecular-weight compound 

lactose commonly used in pharmaceutical drug delivery, food technology, and flavoring. 

Nanocomposites were prepared under slow and fast drying conditions, attained by drying at 

ambient conditions and by spray-drying, respectively. A detailed structural investigation was 

performed with modulated differential scanning calorimetry, powder X-ray diffraction, solid-

state nuclear magnetic resonance, scanning electron microscopy, microcalorimetry, and 

molecular dynamic simulations. The lactose was intercalated in the sodium montmorillonite 

interlayer space regardless of the clay content, drying rate, or humidity exposure. Although, the 

spray-drying resulted in higher proportion of intercalated lactose compared with the drying under 
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ambient conditions, non-intercalated lactose was present at 20 wt% lactose content. This 

indicates limitations in maximum load capacity of nonionic organic substances into the 

montmorillonite interlayer space. Furthermore, a fraction of the intercalated lactose in the co-

spray-dried nanocomposites diffused out from the clay interlayer space upon humidity exposure. 

Also, the lactose in the nanocomposites demonstrated higher molecular mobility than that of neat 

amorphous lactose. This study provides a foundation for understanding functional properties of 

nanocomposites, such as loading capacity and physical stability. 

INTRODUCTION 

The main constituent of bentonite, montmorillonite (MMT), gain much scientific interest as a 

material with wide array of potential use including catalysis, functional clay-polymer 

nanocomposites or as a material for nuclear waste storage.1 MMT is a 2:1 phyllosilicate mineral 

that belongs to the smectite group and consists of clay mineral particles made of turbostratically 

stacked MMT sheets, about 10 Å thick.2, 3 Imperfections in the MMT crystal lattice due to 

isomorphous substitution induce a negative net charge which is counter-balanced by cations such 

as Na+ in the interlayer space and at the outer basal surfaces.4 Its layered structure and extremely 

high surface area enable intercalation of large quantities of other substances leading to 

nanomaterials with novel and/or improved properties compared to a simple mixture of the two 

components.5 It has been reported that clay-polymer nanocomposites demonstrate improved 

mechanical properties, increased heat resistance, gas permeability, flammability and 

biodegradability of polymers.5 MMT has been used recently as an excipient in pharmaceutical 

applications, including transdermal formulations, tablets for oral administration, and as an 

extended release agent for tablets.6-10 Furthermore, inclusion of photodegradable drug molecules 

within MMT may increase the photostability.11 In this context, we further explore possible use of 
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MMT as a pharmaceutical excipient. Use of naturally sourced and regulatory accepted materials 

may lead to a development of novel functional composites with no need for extensive 

documentation which is associated with approval of new excipients for market authorization. 

The arrangement of clay sheets in mixtures with other compounds may change the properties 

of the nanocomposite significantly. On a microscopic level, MMT can either exist in an ordered 

layered structure, and thereby form stacked particles, also denoted tactoids, or be exfoliated and 

dispersed in the mixture with another solid or semisolid material.5 Furthermore, several 

(metastable) phases can be present simultaneously in nanocomposites of MMT. These include 

neat MMT, MMT with the organic component intercalated into its interlayer space and the 

amorphous organic compound. The structure and uniformity of clay-based materials depends on 

the preparation procedure and clay/organic phase ratio.5 

There is significant amount of published research on organic polymer-clay nanocomposites, 

but only few report on MMT combined with low-molecular-weight organic compounds 

including peptides and amino acids.7-19 In these reports, the most important mechanism involved 

in intercalation into MMT is cationic exchange.7-9, 12, 13, 19  Anionic and nonionic compounds 

have also been demonstrated to interact with MMT.10, 15-18  

In this study, lactose was chosen as a model nonionic organic substance and co-spray-dried 

with Na-MMT to form nanocomposites in with different host-guest ratios. Lactose is a 

hydrophilic low-molecular-weight compound (342.3 g/mol) and one of the most commonly used 

excipients in pharmaceutical drug delivery, food technology, and flavoring.20 It is well-known 

that lactose turns amorphous upon spray-drying when the solvent evaporation is very rapid 

during the spray-drying process. The molecular structure of this nonionic compound displays 
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many hydrogen bonding groups, making it of interest for studies of interactions and mixing 

behavior in nanocomposite with the negatively charged surfaces and counter ions of MMT.  

The material properties of powdered lactose and similar disaccharides are highly dependent on 

its solid state form. For instance, the tablet binding properties of α-lactose monohydrate can be 

improved by spray-drying a suspension of fine milled α-lactose monohydrate in a solution of 

lactose, thereby introducing amorphous regions into the excipient.20 Also, amorphous 

disaccharides are important in preserving protein structure in freeze-dried formulations.21 The 

main disadvantage of disordered systems is their thermodynamic instability. Physical stability 

against recrystallization of an amorphous material is often improved through processing of the 

drug with a polymer to form an amorphous mixture. Recently it has been demonstrated that 

increased stabilization of amorphous drug and excipients can be obtained by mixing these with 

inert clay or silicate particles, or by nanoconfinement within mesoporous silica.22-27 The 

advanced studies of structure and dynamics in such materials at different lengths scales, that is, 

from molecular level to meso- and microstructure are needed to provide a more detailed insight 

into the origins of control of physical stability and compaction properties.  

This study aims at investigating the nanoscale structure of composites consisting of Na-MMT 

and lactose, formed when drying a water dispersion of the components. An understanding of the 

driving forces behind interlayer space intercalation of lactose and nanoscale domain formation is 

sought by studying the solid state (that is, the basal spacing of the MMT and the properties of the 

amorphous phase), interactions between lactose and MMT, and the molecular mobility of the 

nanocomposites formed at different drying conditions and after humidity exposure. 
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EXPERIMENTAL SECTION 

Materials 

Alpha-lactose monohydrate (Ph. Eur., Fluka Analytical, Sigma-Aldrich, Buchs, Germany) was 

used to prepare 41 mM solutions using de-ionized water. The sodium montmorillonite, Cloisite® 

Na+ (Na-MMT), was kindly provided by BYK Additives & Instruments (Wesel, Germany). 

Clay mineral characterization 

Laser diffraction particle size analysis on suspended Na-MMT (see below for suspension 

preparation) was conducted on a LS 230 (Beckman-Coulter, Brea, CA). Three measurements 

were done on each of two separately prepared suspensions. The size of suspended Na-MMT was 

also determined by photon correlation spectroscopy (Zetasizer 4000, Malvern Instruments, 

Worcestershire, UK). Two measurements were performed on each of two separately prepared 

suspensions.  

The cryogenic-Transmission Electron Microscopy (cryo-TEM) specimens of Na-MMT was 

prepared according to method described by Bodvik et al.28 The grid with the vitrified sample was 

transferred to the Zeiss Libra 120 TEM (Oberkochen, Germany) using a Gatan CT3500 

(Pleasanton, CA) cryo-transfer apparatus. The specimen was kept at a temperature below 108 K 

during both transfer and examination. 

Sample preparation 

Na-MMT (4.9 g/L) was dispersed by sonicating it in water with an ultrasonic bath (Branson 

5210, Soest, Netherlands) for 1 h and then stirred for 18 h in room temperature followed by 4 h 

in a water bath at 353 K. The suspensions were mixed with water and a lactose solution (41 mM) 
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that had equilibrated with regard to spontaneous mutarotation, in proportions leading to a 

combined fraction dry material (clay + lactose) of 6.5 wt% and 0-100 wt% Na-MMT in lactose.  

The prepared suspensions were co-spray-dried with a Mini Spray Dryer B-290 (Büchi, Flawil, 

Switzerland). A nozzle tip of 0.7 mm and nozzle screw cap of a diameter of 1.5 mm were used. 

The spray-dryer was operated in an open mode, whereby the drying gas was passed through a 

filter and a dehumidifier (B-296). A high-performance cyclone was used. During the spray-

drying, volume flow, nozzle cleaning, inlet temperature, spray air flow, and feed rate were set at 

38 m3/h, level 2, 423 K, 473 l/h, and 4 ml/min respectively. 

The suspensions were also poured into petri dishes to let the water evaporate under ambient 

conditions for 4 weeks. The formed films were milled into powders with a mortar and pestle. 

Finally, the powders were dried at 353 K for 10 min with a HR73 Halogen Moisture Analyzer 

(Mettler Toledo, Greifensee, Switzerland). 

The prepared samples were placed over silica gel until examination or further treatment. Co-

spray-dried nanocomposites samples were also stored for 15 days in a sealed container at room 

temperature above a saturated KNO3 solution, controlling the relative humidity (RH) to 94% RH. 

The associated water was then dried at 353 K for 10 min. These samples will be referred to as 

humidity stressed nanocomposites. 

Thermogravimetric analysis 

The lactose content was quantified using a thermogravimetric approach. In the first set of 

experiments, we used a TQ 500 thermogravimetric analyzer (TA Instruments, New Castle, DE) 

to quantify residual water and loss of organic content, that is, the lactose, up to 903 K. All 

samples (5-10 mg) were loaded on platinum pans and heated from room temperature to 383 K 

with heating rate of 5 K/min to quantify residual water followed by a heating to 903 K and 
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isothermal calcination for 45 minutes. A sample and a balance nitrogen purge flow of 25 mL/min 

and 10 mL/min were applied, respectively. All results were analyzed using TA Instruments 

Universal Analysis 2000 (TA Instruments, New Castle, DE). Due to only partial decomposition 

of the lactose in nitrogen atmosphere, calcination at higher temperatures in air atmosphere was 

required. The materials were accurately weight onto ceramic dishes and heated from room 

temperature with a heating rate of 20 K/min to 1073 K. The samples were kept in an aerated 

atmosphere at 1073 K for 10 h then cooled to room temperature and weighed again. The weight 

of the residual powder corresponds to the Na-MMT content. 

Scanning electron imaging 

The co-spray-dried nanocomposites and the humidity stressed nanocomposites were imaged with 

scanning electron microscopy. The samples were sputter coated for 120 s at 2 kV with gold using 

a Polaron SC7640 sputter coater (Quorum Technologies Ltd, Newhaven, UK) and imaged using 

a LEO 1550 (Zeiss, Oberkochen, Germany) operated at 2.0 kV. 

Powder X-ray diffraction  

Powder X-ray diffraction (XRD) was measured using a Bruker D8 Advance coupled 2- 

diffractometer with a position sensitive detector, LynxEye (Bruker AXS, Inc., Madison, WI). 

Specimens for XRD were placed in Ø 25 mm holders and compacted to produce an even surface. 

The samples were rotated at 66.6 rpm and irradiated with X-rays generated by a CuKα1 tube 

operated at 40 kV and 40 mA with a wavelength of 1.5406 Å. A motorized primary divergence 

slit with 0.1° opening was used. A step size of 0.02° with an integration time of 1.8 s was used 

from 280° 2. The measurements were performed at room temperature, that is, ca. 295 K and 

the RH was ca. 2535% RH. 
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Molecular dynamic simulations 

Molecular dynamic simulations (MD) were performed using the MD code LAMMPS29 to 

calculate the average atomic structure in the interlayer space, in order to find the relation 

between the lactose/Na-MMT nanocomposite basal spacing (d001) with varying lactose and water 

loading, and to calculate the one-dimensional layer structure factors, G, needed for interpretation 

of the XRD results.12, 13, 30, 31 Since only a limited number of similar organic/water/clay studies 

have previously been reported, finding and implementing a self-consistent set of force-fields for 

organic/water/clay is not trivial. In this study, a topology built from α-lactose with the charmm-

gui server and the ch2lmp LAMMPS tool was used with the CHARMM36 all-atom carbohydrate 

force-field to describe the lactose molecules. A comparison of the simulated bond lengths and 

bonded angles of this molecule in water with the reported crystalline structure can be found in 

the supporting information.32 33, 34 As is shown in Figure S6, bond lengths generally differed by 

less than 0.02 Å (~1.5%) from to the original bond lengths, and all atoms having bond lengths 

differing by more than 0.04 Å involved hydrogen atoms. Analogously, all angles differing by 

more than 2° (more than ~2%) belonged to C-O-H groups. Hence the overall parameterization of 

the lactose molecule with the charmm all36_carb force field was quite satisfactory, where 

smaller discrepancies in bond lengths and angles of the lactose hydrogen atoms possibly could be 

explained by their sensitivity to solvation and interactions with the surrounding water molecules. 

The clay lattice was constructed from a pyrophyllite structure35 subjected to isomorphic 

substitution to yield a surface charge of -0.11 C/m2 and modeled with Clayff,36 which originally 

was parameterized with the SPC water model,37 as it is well-known to reproduce the structure 

and outer dimensions of clay mineral unit cells, whereas the interaction parameters for the Na+ 

ions were taken from Joung and Cheatham.38 
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9 different simulations were performed with 0-32 (in steps of 4) randomly placed α-lactose 

molecules, initially hydrated with 2,700 TiP3P water molecules between two montmorillonite 

layers consisting of 6x4 unit cells in the x and y directions, respectively, yielding equilibrated 

box sizes of 31±0.1×36.1±0.1 Å in the x and y directions (within 0.5% of the theoretical size), 

respectively, and 80-90.1 Å in the z direction depending on the lactose content. All simulations 

were performed with a 1 fs timestep in the NPzzT ensemble with periodic boundary conditions in 

all directions. After 4 ns of equilibration and depending of the number of lactose molecules, the 

simulation cells contained in total 9,076-10,516 particles and approximated 3.1x3.6x(8.2-9.1) 

nm. In order to check the consistency of our simulations, two different sets of simulations were 

performed, differing only in the total simulation time. Hence, following equilibration, the water 

molecules in each of the two sets of simulations were sequentially removed through 45 

evaporative steps39 using production runs of 100-200 or 250-500 ps between each evaporative 

step (increasing the simulation time with decreasing water loading). 

XRD profile fitting 

One-dimensional XRD profile modeling was performed to calculate the average basal spacing 

and estimate the amount of intercalated lactose in the nanocomposite Na-MMT particles. This 

was accomplished using a recursive mixed layer modeling algorithm similar to the popular 

Newmod software which can handle random interstratification of clay phases,40 albeit enabling 

global fitting to experimental data with custom layer types and log normal particle size 

distributions. In one-dimensional XRD profile modeling of a single phase, the intensity of 

diffracted X-rays can generically be described by: 

𝐼(2𝜃) =  𝐿𝑃𝐺2𝜙 (1) 
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where LP is the particle orientation and instrument dependent Lorentz-polarization factor and  

is the periodic interference function describing the unit cell and crystallite size dependent Bragg 

reflections. The relative magnitude of I(2) and the 00l reflections is, however, modulated by the 

highly non-linear layer structure factor G.31 

𝐺 = ∑ 𝑝𝑛𝑓𝑛𝑐𝑜𝑠(4𝜋𝑧𝑛𝑠𝑖𝑛(𝜃)/𝜆)𝑛 +  𝑖 ∑ 𝑝𝑛𝑓𝑛𝑠𝑖𝑛(4𝜋𝑧𝑛𝑠𝑖𝑛(𝜃)/𝜆)𝑛  (2) 

The G factor depends on the electron density in the unit cell, and is thus affected by the number 

(p) and positions (z) of all n atom types with their respective atomic scattering factors (f), in the 

nanocomposite three-component unit cell containing the clay lattice, lactose and water 

molecules. Furthermore, in order to model two or more interstratified layered clay phases, the 

fraction of each phase and their mixing order must also be taken into account, making it 

necessary to incorporate terms covering all possible combinations of G and Φ, for each clay 

layer and interlayer type into Equation 1.31  

Initially 7 different G-factors were calculated from the MD trajectories of lactose, Na+ ions and 

water molecules, for systems having d001 values approximating the experimental data (using 

Braggs law). For the clay lattice however, the frequently used semi-empirical structural 

parameters were used to describe the clay lattice.31 This is because the non-bonded Clayff 

parameters do not necessarily reproduce the inner unit cell atomic positions as well as the outer 

unit cell dimensions of montmorillonite (the oxygen basal-basal plane distance was ~6.6 Å 

compared to the tabulated value of 6.54 Å). The G-factors was calculated with 0, 4, or 8 lactose 

molecules with 7.5, 5, or 0 water molecules per unit cell for the 14 Å peak, respectively, and 0, 8, 

12, or 16 lactose with 12.5, 10, 7.5, or 5 water molecules per unit cell for the 18 Å peak. These 

3+4 G-factors hence allowed for 3*4=12 different G-factor combinations to be used to model the 
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interlayer lactose content. For neat Na-MMT, four additional G-factors were calculated 

corresponding to 9.6, 12.4, 15.6, 18.9 Å, representing the 0W, 1W, 2W and the 3W water layer 

hydration state. As recommended by Ferrage et al.,30 all interlayer coordinates obtained from the 

MD simulations using Clayff were shifted 0.2 Å from the clay basal plane. In general, up to four 

mixed phases was used in the modeling, where each mixed phase consisted of two phases of 

either neat Na-MMT (9.6, 12.4, 15.6, 18.9 Å) or lactose/Na-MMT (14 and 18 Å), at different 

lactose and water loadings. In total 15 fitting parameters were used: the basal spacings 

(d0010.2Å, n=3), the probability weights of each mixed phase (W, n=4) with its two respective 

individual phases (PA/B), the average nanocomposite particle orientation (*), sample roughness, 

particle size (Nave) and lattice strain (). For denotations and terminology see references.31, 41 

Solid-state nuclear magnetic resonance 

13C solid-state nuclear magnetic resonance (NMR) spectra were acquired using a Bruker 400 

MHz Avance III spectrometer equipped with a triple resonance probe at frequencies 400.23 MHz 

(1H), 100.64 MHz (13C). 29Si solid-state NMR spectra were acquired using a Bruker 300 MHz 

Avance III spectrometer with a double resonance probe at frequencies 300.13 MHz (1H) and 

59.63 MHz (29Si). The materials were packed to the 4 mm zirconia rotors and rotated at an MAS 

rate of 10 kHz (13C) and 4 kHz (29Si). All materials were characterized using 29Si (29Si π/2 pulse 

length 4.1 μs with 30 s recycle delay), 1H-13C and 1H-29Si cross-polarization magic angle 

spinning (CP/MAS) techniques (13C π/2 pulse length 3.5 μs, 29Si π/2 pulse length 4.5 μs with a 

contact time of 2 ms, SPINAL64 decoupling was used during signal acquisition and recycle 

delay of 30 s was applied). The Hartmann-Hahn conditions for 1H-13C and 1H-29Si CP/MAS 

NMR experiments were set with hexamethylbenzene and kaolinite respectively. Typically 2048 

scans were acquired for 29Si and 1H-13C CP/MAS and 1024 for 1H-29Si CP/MAS NMR 
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experiments. The 13C and 29Si chemical shifts were recorded with respect to TMS. As lactose in 

crystalline and amorphous state demonstrates significantly different 1H T1 relaxation, recycle 

delay for crystalline lactose monohydrate (540 s), co-spray-dried amorphous lactose (30 s), 

lactose/Na-MMT nanocomposites (30 s) and humidity stressed samples (180 s) was optimized in 

set of 1H-13C CP/MAS experiments with different delay times. These conditions allowed full 

relaxation of carbon atoms.  

Differential scanning calorimetry 

Modulated differential scanning calorimetry (mDSC) Q2000 (TA Instruments, New Castle, DE) 

with a refrigerated cooling system was used to determine the glass transition temperature (Tg), 

glass transition temperature width (from onset to end point temperature, Tg) and weight 

normalized (per gram lactose) change in heat capacity at Tg (Cp
Tg). The mDSC was calibrated 

for heat flow and temperature as well as heat capacity using high purity indium and sapphire, 

respectively. A nitrogen flow of 50 ml/min was used as purge gas. The samples (5-12 mg) were 

analyzed in triplicates using aluminum pans with pin-holed lids (TA Instruments, New Castle, 

DE). The measurements were carried out at a heating rate of 1 K/min, a modulation temperature 

of 2 K, and a period of 80 seconds between 373 K and 503 K. This protocol also served to 

evaporate any residual water. The Tg was taken as the inflection point.  

Investigation of structural relaxation with isothermal microcalorimetry 

A modified method described by Liu et al.42 was used to investigate of the structural relaxation 

(-relaxation) of spray-dried neat amorphous lactose and the co-spray-dried lactose/Na-MMT 

nanocomposite with 63% Na-MMT. An isothermal microcalorimeter, 2277 Thermal Activity 

Monitor (Thermometric AB, Järfälla, Sweden), was used to measure the rate of enthalpy 
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relaxation. Sample loads equivalent to 450 mg lactose were weighted into 3 mL glass ampoules 

for each measurement. Crystalline glycine equivalent to the lactose load and neat spray-dried Na-

MMT equivalent to the Na-MMT load in the sample was used as reference. The measurement 

was started immediately after the spray-drying to minimize the influence of the thermal history 

in the samples. It took less than 30 min from starting the spray-drying until the samples were 

loaded into the microcalorimeter. The samples were pre-thermostated for 30 min, and then 

lowered down into the measurement position. Data was acquired for at least 100 h. The 

measurements were commenced at 333 K. Only the data after the first hour were used for 

evaluation due to initial disturbances of lowering the samples to the measurement position. The 

MSE equation expressed for heat power P, µW/g, with time in hours, as follows  

𝑃 =
(𝑇𝑔−𝑇)∙∆𝐶𝑝

𝜏0
(1 +

𝛽𝑡

𝜏1
) (1 +

𝑡

𝜏1
)

𝛽−2

𝑒𝑥𝑝 [− (
𝑡

𝜏0
) (1 +

𝑡

𝜏1
)

𝛽−1

] (3) 

was used to evaluate the acquired data, where Tg is glass transition temperature determined with 

mDSC, T is the relaxation temperature, ∆Cp is the change in heat capacity at the Tg, t is the time, 

and 1, 2, and  are constants. 1, 2, and  were determined by fitting P as a function of time t to 

Equation 3. The relaxation time  could then be calculated from1, 2, and , as in the following 

𝜏 = 𝜏0
1/𝛽

∙ 𝜏1
(𝛽−1)/𝛽

 (4) 

The stretched relaxation time,  was reported as a value of the structural relaxation and 

subsequently the molecular mobility in the samples. 

RESULTS 

Montmorillonite characteristics  

The Na-MMT suspensions had median particle size by volume of 163±75 nm (mean ± SEM) 

measured with photon correlation spectroscopy prior spray-drying. Measured with laser 
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diffraction, the median particle size by volume was 418±31 nm (mean ± SEM). No particles or 

aggregates of particles were detected with a particle size larger than 1 µm. The cryo-TEM 

indicated similar particle size for Na-MMT (Figure 1).  

Nanocomposite composition and morphology 

The lactose content in the co-spray-dried lactose/Na-MMT nanocomposites was determined with 

thermogravimetric analysis and was found to be in agreement with expected based on amount of 

components added during preparation (see Supporting information, Table S1). The neat spray-

dried lactose and the co-spray-dried nanocomposites with low Na-MMT content consisted of 

spherical particles (Figure 2) whereas the nanocomposite particles at high Na-MMT contents 

showed “raisin-like” morphology. In the humidity stressed nanocomposites, about 5 µm large 

crystals were apparent.  

XRD and MD results 

No diffraction peaks that could be attributed to crystalline lactose (Figure 3) or the d001 typically 

found in hydrated and neat montmorillonite, could be observed in the diffractograms of the co-

spray-dried lactose/Na-MMT nanocomposites.3 Instead peaks representing two populations of 

Na-MMT with d001 at ca. 14 or 18 Å were found. The peak corresponding to a d001 at 18 Å was 

pronounced mostly at low Na-MMT content and the peak with a d001 at 14 Å was prevalent at 

high Na-MMT content. To extract more detailed information of the d001 populations and the 

amount of intercalated lactose in the lactose/Na-MMT nanocomposites, the d00l reflections were 

modeled with XRD profile fitting based on MD simulations (Figure 3, Table 1). An indication to 

the amount of intercalated lactose was found by fitting the complete experimental data set with 

12 different combinations of the 7 different G-factors having different lactose/water ratios and 
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d001 values approximating 14 and 18 Å, respectively. The set of G-factors that led to the best fit 

corresponded to 120 water molecules plus 4 and 16 lactose molecules per simulation cell for the 

d001 at 14 and 18 Å respectively, although it was necessary to include a fraction of neat Na-MMT 

to get a good fit. This was thus equivalent to 5 water molecules and 1/6 lactose or 4/5 lactose 

molecules, respectively, per MMT unit cell area (0.467 nm2). These results were independent of 

nanocomposite preparation conditions. Irrespective of the two sets of simulation times (100-200 

ps or 250-500 ps), the corresponding MD results for these systems showed that intercalated 

lactose yielding a d001 of approximately 14 Å was in fact formed by a lactose mono-layer, 

whereas a d001 of 18 Å resulted from overlapping lactose molecules. Although the agreement 

between the d001 values versus water and lactose loading were generally good between the two 

simulation times, sporadic differences in the d001 values was found between the two sets of 

simulations at higher lactose contents due to an increasing number of occasional overlap of 

individual pairs of lactose molecules. Figure S7 and Figure S8 in the supporting information 

show the resulting d001 versus lactose and water loading data and the atomic and electron density 

profiles used in calculation of the final G-factors. It should however be stressed that the electron 

density in lactose and water molecules is of similar magnitude making precise estimates difficult, 

unless using a combination of X-ray and neutron diffraction techniques.30 In fact, due to the 

many fitting parameters used, reasonable good fits could also be found using G-factors computed 

with slightly different lactose/water ratios (Figure S1). Nevertheless, by comparing the interlayer 

space size with the results from simulations without lactose, the volume fraction of the 

intercalated lactose could also be estimated, assuming small and insignificant differences in the 

density of water and clay lattice between the simulations. In agreement with a previous study,39 

simulations with only 5 water molecules per unit cell resulted in a d001 at ca. 12.4 Å, equivalent 
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to the first hydration state (single monolayer) of neat montmorillonite,3 and a interlayer space 

size of 3.1 Å. With 1/6 lactose molecules per unit cell, the equivalent interlayer space size was 

found to be 4.7 Å, that is, 50% larger than without lactose. This suggests that the volume fraction 

of lactose in the interlayer corresponding to the d001 at 14 Å was approximately 1/3. Similarly, 

the equivalent volume fraction was nearly 2/3 for the 18 Å population.  

The average basal spacing (d001,Ave) which can be used as a measure of the relative distribution 

between the different populations of the nanocomposites, increased with increasing amount of 

lactose (Figure 3, Table 1). In the humidity stressed nanocomposites, d001,Ave remained at about 

14 Å independent of composition (Table 1, Figure S2). In these samples, diffraction peaks that 

could be attributed to -lactose monohydrate were also apparent. Lactose/Na-MMT 

nanocomposites were also prepared by drying Na-MMT-lactose suspensions under ambient 

conditions to investigate whether the extent of lactose intercalation was kinetically controlled 

and, hence, dependent on method of preparation. Overall, the results resemble the humidity 

stressed nanocomposites with d001,Ave at about 14 Å and diffraction peaks characteristic of -

lactose monohydrate (Figure S2, Table 1). 

Solid-state NMR results 

1H-13C solid-state NMR spectra of spray-dried lactose and co-spray-dried lactose/Na-MMT 

nanocomposites demonstrated broad peaks characteristic of amorphous solids (Figure 4A). 

Increase of the Na-MMT content in the nanocomposites was followed by a decrease of the 13C 

lactose peaks intensities. It is important to note that such a change in peaks intensities was not 

linear with respect to the chemical composition of the materials.  
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The humidity exposure of the lactose/Na-MMT nanocomposites resulted in a significant 

narrowing of the peaks in the 1H-13C solid-state NMR spectra. The chemical shifts of the peaks 

were similar to those observed for crystalline lactose monohydrate (Figure 4B). The deviation 

from linearity for 13C peak intensity as a function of Na-MMT content was also apparent for 

these crystallized nanocomposites, but this deviation was less pronounced than for the 

amorphous nanocomposites (Figure 4B (Inset)).  

29Si MAS NMR spectra of co-spray-dried lactose/Na-MMT nanocomposites displayed two 

peaks at -94.0 and -109.0 ppm. The peak at -94 ppm can be assigned to (SiO)3Si(OAl(VI)) 

environment (Q3 site) in the tetrahedral sheet of the clay and it is in agreement with previously 

reported 29Si solid-state NMR spectra of smectites.43-46 The peak at -109.0 ppm corresponds to 

Q4 site of silicon in α-quartz, which is a common impurity in the montmorillonite clays.44, 46 A 

decrease of the Na-MMT content within the mixture resulted in the expected, linear decrease of 

the 29Si peaks intensity. Similarly, 29Si spectra of the humidity stressed nanocomposites had two 

distinct 29Si sites at -94.0 and -109.0 ppm and the same linear decrease of the 29Si peaks 

intensities with decreasing Na-MMT content within the nanocomposite (Figure 5A and B). In 

contrast to 29Si MAS NMR experiment, 1H-29Si CP/MAS NMR spectra of Na-MMT and 

obtained nanocomposites demonstrated only one peak at -94.0 ppm assigned to 

(SiO)3Si(OAl(VI)) environment (Q3 site).  

mDSC results 

Figure 6 illustrates the glass transition characteristics (see Figure S3 for the mDSC response). 

Only minor changes in the glass transition temperature (Tg) were detected. The Tg was increased 

for the nanocomposites with 72% Na-MMT (2.1 K) and 80% Na-MMT (3.1 K). No other 

changes in Tg were significant. Co-spray-drying of lactose with Na-MMT however led to a 
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broadening of the glass transition of lactose, that is, Tg increased with Na-MMT content, from 

6.1 K in neat amorphous lactose to 17.6 K in the nanocomposite with 80% Na-MMT. The Cp
Tg 

decreased as a function of Na-MMT content in the nanocomposites, from 0.60 J/(g lactose  K) in 

neat amorphous lactose to 0.17 J/(g lactose  K) in the nanocomposite with 80% Na-MMT. No 

glass transition could be detected in the humidity stressed nanocomposites. 

Investigation of structural relaxation with isothermal microcalorimetry 

The stretched relaxation time,  for the co-spray-dried lactose/Na-MMT nanocomposite with 

63% Na-MMT was significantly lower (4.9 ± 0.2 (-)) compared with the neat amorphous lactose 

(23.3 ± 1.5 (-)) (unpaired two-tailed t-test, p < 0.05, see Figure S4 for the MSE equation fitted to 

the experimental data).  

DISCUSSION 

MMT platelets are less than 1 nm thick flat flakes with a very high aspect ratios (100-1500).47 

Separate platelets form spontaneously by exfoliation when mixed with water and resume its 

stacked (lamellar) structure upon drying.48, 49 The analysis of the particle size of the Na-MMT 

dispersions with laser diffraction, photon correlation spectroscopy and cryo-TEM revealed no 

larger aggregates; the platelets were exfoliated when dispersed in the water.  

Intercalation of lactose 

The observed atypical basal spacing (d001) of the lactose/Na-MMT nanocomposites, 

approximating the size of lactose molecules strongly indicate that lactose was intercalated 

between the Na-MMT sheets when Na-MMT was co-spray-dried with lactose. The MD 

simulations in combination with XRD profile fittings support this finding, since it was required 

to have a G-factor with significant amounts of lactose to achieve satisfactory agreement between 
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the experimental and modeled XRD patterns. Intercalation of lactose in Na-MMT is not 

unexpected since the lactose is very hydrophilic and has hydroxyl groups which can interact with 

the charged surfaces and counter-ions in between the MMT sheets.50 The XRD data demonstrate 

that the Na-MMT with intercalated lactose appear as of two coexisting populations, one with d001 

at ca. 14 Å and the other at ca. 18 Å. The mass fraction of one population, relative to the other, 

varies with composition. This means that the increase in d001 of the Na-MMT occurs in two 

steps, each at about 4 Å when increasing the mass fraction of lactose in the nanocomposite.  

The size of lactose molecules can be estimated from the size of the unit cell of crystalline 

lactose and from wrapping box calculations implemented in Olex2 crystallographic software. The 

dimensions of the lactose unit cell ranges from 4.8 to 21.6 Å depending on orientation and which 

polymorphic modification is considered.51-53 The wrapping box calculations yielded a smallest 

dimension of the lactose molecule of 6.5 Å. The thickness of the MMT sheets can be estimated 

to 9.3 Å from the mineral pyrophyllite, which has the same basic structure as MMT but without 

anything intercalated, due to lack of isomorphous substitution.54 Thus, the observed increase in 

d001 is in the lower end of the smallest dimension of the lactose molecule, which indicates that 

the lactose molecules lay flat in the Na-MMT interlayer space. This is in agreement with 

previously described results for intercalation of 5-fluorouracil,9 oxytetracycline,12, 13 and timolol 

maleate7 in MMT.  

Kevadiya et al.9 reported that the d001 increased in two approximately equal steps at increasing 

loading of 5-fluorouracil and chitosan in MMT. It was speculated that the enlarged d001 indicates 

a double layer of intercalated chitosan in MMT. Double layer conformations have also been 

suggested for aliphatic ammonium bentonite complexes.55-57 In the present study, the MD 

simulations on the nanocomposites with lactose and Na-MMT indicated that the lactose 
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molecules are partly overlapping in the nanocomposites at high loadings of lactose (Figure S8). 

Therefore, the population with d001 at 14 Å represent monolayer configuration of intercalated 

lactose, whereas the population with d001 at 18 Å most likely represents a partially overlapping 

configuration of the intercalated lactose in the Na-MMT.  

The d001 decreased in the nanocomposites with low Na-MMT content from 18 to 14 Å upon 

humidity stress of the nanocomposites. The decreased rate of drying at ambient conditions also 

led to nanocomposites with d001, Ave
 of approximate 14 Å. The intensity of 1H-13C CP NMR peaks 

from the intercalated lactose was lower in the co-spray-dried nanocomposites that were stored 

over silica gel compared with the humidity stressed nanocomposites. This indicates a higher 

degree of intercalated lactose in these nanocomposites since more lactose molecules could be in 

close proximity (up to 1 nm) to the paramagnetic center or have increased mobility in 

comparison with lactose species in the humidity stressed nanocomposites.  

The MD simulations in combination with XRD profile fittings can be used as a semi-

quantitative measure of the amount intercalated lactose. In the samples with a d001 at 14 Å, the 

simulations indicated that approximate 1/6 lactose molecules per MMT unit cell, but significant 

higher amounts of lactose in the samples with a d001 at 18 Å, that is, approximate 4/5 lactose 

molecules per MMT unit cell. Thus, the lowered d001 from 18 to 14 Å in the humidity stressed 

nanocomposites with low Na-MMT content combined with the differences in 1H-13C CP NMR 

peaks signal intensities clearly demonstrate diffusion of intercalated lactose out from the Na-

MMT interlayer space.  

The diffusion of intercalated lactose molecules to the non-intercalated phase in the humidity 

stressed nanocomposites was further confirmed by 1H-29Si CP/MAS solid-state NMR spectra of 

the nanocomposites. As the signal intensity in CP/MAS experiment depends on the transfer of 
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magnetization from highly abundant nuclei (1H) to low abundant nuclei (29Si) through dipolar 

interactions, the peak at -94.0 ppm can obtain magnetization from both structural hydrogen in the 

clay and dispersed lactose molecules in close proximity to the 29Si nuclei.  

An ideal behavior of the 1H-29Si CP/MAS spectra of the nanocomposites would be a gradual 

decrease of the peaks intensity as the Na-MMT content in the nanocomposites decreases. 

Interestingly, the intensity of the peak at -94.0 ppm was constant irrespectively of Na-MMT 

content (Figure 5C). This observation could be due to the fact that in the co-spray-dried 

nanocomposites lactose species located in the interlayer space of the nanocomposites become the 

dominant source of 1H sites contributing to CP transfer to 29Si nuclei. Since such nanocomposites 

show a considerable population of the phase with d001 at 18 Å and an increased amount of 

intercalated lactose, the deviation from the ideal trend of the intensity of 1H-29Si CP/MAS 

spectra reflect a higher population of 1H sites contributing to cross polarization.  

The 1H-29Si CP/MAS spectra of humidity stressed nanocomposites show an ideal behavior, 

that is, a linear decrease of the 29Si peak intensity with decreasing Na-MMT content within the 

nanocomposites. This indicates partial separation of lactose molecules from clay particles 

followed by its recrystallization and formation of lactose monohydrate as confirmed by XRD, 

solid-state NMR and scanning electron microscopy (Figure 4B and Figure S2). In summary, 

lactose has an affinity to be intercalated as a monolayer in between the Na-MMT layers, and the 

nanocomposites are kinetically trapped with a d001 at 18 Å at the rapid evaporation during the co-

spray-drying. 

Domains of non-intercalated lactose 

The detection of a Tg confirms that a neat amorphous lactose phase is present in the lactose/Na-

MMT nanocomposites. Domains of non-intercalated lactose are expected when the amount of 
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added lactose exceeds the amount that can be intercalated in the interlayer space. Assuming 

thermodynamic equilibrium, the neat lactose phase would be absent at compositions below a 

critical composition where all interlayer space have been filled and a linear increase of non-

intercalated lactose above this critical point (that is, the solubility of lactose in Na-MMT).  

The decrease of the Cp
Tg as a function of Na-MMT content (Figure 6) is due to a decrease in 

the fraction of the lactose that is contributing to the magnitude of Cp
Tg. Similar observations 

have been demonstrated in nanocomposites with silica or carbon nanotubes as fillers.27, 58-61 

Assuming that the intercalated lactose is the fraction that not contributes to the magnitude of 

Cp
Tg, the fractions of the lactose being intercalated lactose and non-intercalated as a function of 

composition can be semi-quantitatively calculated. This is corroborated by a loss of 1H-13C 

CP/MAS solid-state NMR signal intensity in the nanocomposites compared with what could be 

expected from simple physical mixtures of the lactose and Na-MMT.  Overall, the plot in Figure 

7 follows the assumed phase behavior for the co-spray-dried nanocomposites with a decreasing 

non-intercalated lactose fraction at increasing Na-MMT content in the nanocomposites, and both 

methods confirm presence of non-intercalated lactose even at high Na-MMT content. 

Interestingly, non-intercalated lactose is also present in the co-spray-dried nanocomposites with 

as high as 80% Na-MMT content, in which all the lactose present was expected to be 

intercalated.  

It is important to note that the signal intensity in CP/MAS NMR experiments depends on the 

efficiency of magnetization transfer from high abundance to low abundance nuclei, which in turn 

is affected by the local atom environment. In high mobility regimes, magnetization transfer 

during CP step may not be efficient, leading to a loss of the 13C NMR signal intensity.62 It is 

known that nanoconfined/surface molecules demonstrate increased mobility that may lead to loss 
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of CP signal.22, 63-66  Furthermore, the decreased signal intensity in the CP/MAS experiment can 

be related partially to the paramagnetic impurities present in the naturally sourced clay, that is, 

2.9 wt% of the Fe(III) ions.67 The substantial decrease in the longitudinal (T1) relaxation times 

due to contribution from electron-nuclear spin relaxation mechanism led to an overall decrease 

of the signal intensity. Reduction of the 13C and 1H signal intensity together with peak 

broadening due to the presence of paramagnetic species have previously been reported for 

polymer/MMT nanocomposites.68, 69 It is known that paramagnetic interactions from Fe(III) ions 

mostly located at the surface of the clay sheets may perturb the observable signal from the nuclei 

which are in 1 nm distance from the paramagnetic center.68, 69 VanderHart et al.70 used changes 

in the 1H T1 relaxation times induced by paramagnetic species as one of the indicators of uniform 

dispersion of MMT in the polymer-clay nanocomposites.  Thus, the non-linear decrease in the 

1H-13C solid-state NMR intensities of the nanocomposites can be explained by both these 

phenomena. 

The molecular mobility of the non-intercalated lactose in the co-spray-dried nanocomposites 

was estimated with structural relaxation studies conducted with microcalorimetry. Structural 

relaxation (-relaxation) reflects motion of the whole molecule, such as diffusional motion and 

viscous flow.71, 72 The structural relaxation time,  is reverse proportional to the molecular 

mobility. Thus, the lowered  in the nanocomposite demonstrate an increase of the molecular 

mobility of the amorphous lactose phase in the nanocomposites compared with neat amorphous 

lactose, also in agreement with the interpretation of solid-state NMR data above.  

The glass transition width, Tg, was increased with increasing Na-MMT content (see Figure 

6), which can be interpreted as heterogeneity in the non-intercalated amorphous lactose phase, 

since the relaxation of the amorphous domains can take place on slightly different time scales.73, 
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74 This may indicate the non-intercalated lactose consists of a large number of local environments 

with slightly different dynamic properties.73, 74 There are two contributions to the heterogeneity 

of the amorphous non-intercalated lactose. The g is a bulk phase property reflecting the 

molecular mobility of the amorphous phase, but molecules near surfaces may show significantly 

different mobility,75 either increased76 or decreased.77 Thus, the increased solid surface to lactose 

phase ratio when increasing the Na-MMT component in the nanocomposite may increase the 

Tg. Also, varying size of the domains with non-intercalated lactose, which at low lactose 

fractions can be considerably small, can also contribute.78  

The humidity stress of the nanocomposites resulted in recrystallization of the non-intercalated 

lactose where relatively large lactose crystals formed (Figure 2 and Figure S2). Most likely, these 

crystals also consisted of lactose that diffused out of the intercalated phase upon the humidity 

exposure as well as recrystallized amorphous lactose domains. 

SUMMARY AND CONCLUSIONS 

MMT can be utilized in drug delivery applications due to its layered structure and extremely 

high surface area which enable intercalation of other substances.7-18 In this study, we 

demonstrated that co-spray-drying of lactose and Na-MMT leads to lactose intercalation, 

showing that an uncharged organic compound may intercalate in interlayer space of the 

nanoclay. It can be assumed that the hydrogen bonding capacity of the lactose plays an important 

role for interaction with clay surfaces. 

The intercalated lactose either formed a monolayer or partially overlapping layers in the Na-

MMT, resulting in stacks with a basal spacing, d001 at 14 or 18 Å, respectively. The degree of 

intercalation was dependent on nanocomposite preparation conditions, that is, the drying rate. 

This implicates that during fast drying, as provided by spray-drying, the dissolved lactose can be 
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trapped in between clay layers during dehydration. Thus, the formation of lactose-intercalated 

stacks of Na-MMT with d001 at 18 Å is kinetically controlled. This was supported by the 

increased tendency to form 18 Å stacks upon increasing the lactose content in the 

nanocomposites. However, at slow drying preferentially stacks with d001 at 14 Å were formed, 

indicating that the intercalation resulting in monolayer intercalation was thermodynamically 

driven. This was further supported by the observation that the system formed 14 Å stacks upon 

humidity exposure, whereas the 18 Å stacks thereby where eliminated. Importantly, stacks of 

Na-MMT intercalated with lactose giving d001 at 14 Å remained despite recrystallization of the 

lactose upon storage in high humidity.  

The presence of non-intercalated organic domains and the size of these domains may affect the 

physical stability and the hygroscopicity of amorphous pharmaceutical nanocomposites with 

MMT as the nanofiller. Interestingly, even at high Na-MMT content (up to ca. 90% Na-MMT) 

domains of non-intercalated lactose were detected. This indicates on the approximate quantity of 

organic compounds that are possible to formulate in amorphous pharmaceutical nanocomposites 

with Na-MMT to achieve long-term stability. The presence of non-intercalated lactose at this Na-

MMT content is also an indication of possible difficulties in loading high weight fractions of 

nonionic organic substances into Na-MMT without forming pure organic domains, despite 

having high drying rate. From the drug delivery perspective it is important to emphasize that 

drug rich domains may potentially influence the release profile by imposing rapid initial release 

before a sustained release of intercalated drug can be achieved.  

In summary, we conclude that the investigated nanocomposites consist of lactose-intercalated 

Na-MMT tactoids, in an intimate mix with a non-intercalated lactose phase. The molecular 

mobility of the lactose in the nanocomposites is more heterogeneous and generally higher than in 
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neat amorphous lactose due to the interfacial interactions between lactose and Na-MMT 

surfaces. This study provides a basis for understanding pharmaceutically relevant properties of 

MMT nanocomposites, such as loading capacity of the clay and the physical stability of the 

system. 

TABLES  

Table 1. Basal spacing (d) and total fraction (P) of the modeled basal spacing populations of 

nanocomposites prepared by co-spray-drying, humidity stressed nanocomposites (co-spray-dried 

lactose/Na-MMT that were stored in 94% relative humidity (RH) followed by drying), and 

nanocomposites prepared under ambient conditions. The subscripts denote the start value of the 

modelling. 
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20% - 12.2 13.8 18.0 - 0.00 0.26 0.74 16.9 18.2 

42% - 12.3 14.2 18.0 - 0.00 0.13 0.87 17.5 18.2 

63% - 12.2 14.2 18.1 - 0.03 0.27 0.70 16.9 18.2 

72% - 12.6 14.2 18.0 - 0.08 0.50 0.42 15.7 18.2 

80% - 12.4 14.0 18.2 - 0.10 0.76 0.14 14.4 14.1 

90% 9.7 12.4 14.0 - 0.33 0.29 0.38 - 12.1 14.1 

100% 9.7 12.5 - - 0.87 0.13 - - 10.0 10.4 
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20% - 12.6 14.1 18.2 - 0.29 0.64 0.07 13.9 13.7 

42% - 12.6 14.0 18.1 - 0.21 0.69 0.10 14.1 13.7 

63% - 12.4 13.9 18.0 - 0.02 0.97 0.01 13.9 14.2 

72% - 12.5 14.0 18.0 - 0.14 0.82 0.04 13.9 13.9 

80% - 12.5 14.0 18.0 - 0.20 0.76 0.04 13.9 13.8 

90% - 12.6 14.0 18.1 - 0.25 0.68 0.07 13.9 13.9 

100% 9.6 12.4 - - 0.74 0.26 - - 10.3 11.1 
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20% - 12.6 14.2 18.3 - 0.22 0.62 0.16 14.5 13.8 

42% - 12.6 14.2 18.0 - 0.20 0.65 0.15 14.4 13.8 

63% - 12.6 14.0 18.2 - 0.23 0.67 0.11 14.1 13.9 

72% - 12.2 14.2 18.0 - 0.06 0.47 0.48 15.9 17.9 

80% - 12.6 14.2 18.2 - 0.14 0.61 0.25 15.0 14.1 

100% 9.7 12.5 - - 0.57 0.43 - - 10.9 11.6 
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Isothermal microcalorimetry heat flow during enthalpy relaxation 

Thermogravimetric analysis of lactose mass content 

Content of lactose in the co-spray-dried lactose/sodium montmorillonite nanocomposites 

quantified using thermogravimetric analysis 

TGA of lactose monohydrate and Na-MMT in nitrogen and air atmosphere 

Comparison of the initial and the simulated lactose structure. 

Clay basal spacing versus number of lactose molecules per simulation cell 

Atomic and electron density profiles (per full composite unit cell) 
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Tg, weight normalized (per gram lactose) change in heat capacity at the glass 

transition temperature; d001, basal spacing; d001,Ave, average basal spacing; MD, molecular 
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glass transition temperature; Tg, glass transition temperature width; W, probability weights of 
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FIGURES  

 

Figure 1. Cryo-TEM image (100kX) of neat sodium montmorillonite (Na-MMT) in water 

dispersion. The MMT platelets are seen as dark grey areas, that is, face-on view, or black lines, 

that is, edge-on view, in the image.  
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Figure 2. Scanning electron microscopy images of co-spray-dried lactose/sodium 

montmorillonite (Na-MMT) nanocomposites. A) Neat Na-MMT B) 20% Na-MMT, C) 80% Na-

MMT, and D) neat spray-dried lactose stored over silica gel. E) Humidity stressed 20% Na-

MMT, and F) humidity stressed 80% Na-MMT nanocomposite. 
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Figure 3. Normalized experimental XRD profiles of for co-spray-dried lactose/sodium 

montmorillonite (Na-MMT) nanocomposites that have been subtracted from background (black 

dots), modelled (red curves) XRD profiles, and the deviation (gray curves). 
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Figure 4. 1H-13C CP/MAS NMR spectra of A) co-spray-dried lactose/sodium montmorillonite 

(Na-MMT) nanocomposites and B) humidity stressed nanocomposites. The inset demonstrates 

an enlarged part of Figure 4) from 60 to 76 ppm.  
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Figure 5. 29Si MAS NMR spectra of A) co-spray-dried lactose/sodium montmorillonite (Na-

MMT) nanocomposites, and B) humidity stressed nanocomposites. 1H-29Si CP/MAS spectra of 

C) co-spray-dried lactose/Na-MMT nanocomposites, and D) humidity stressed nanocomposites. 
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Figure 6. Glass transition temperature (Tg), Glass transition width (Tg), and the normalized 

change in heat capacity at Tg (Cp
Tg) as a function of sodium montmorillonite (Na-MMT) 

content of co-spray-dried lactose/Na-MMT nanocomposites. Error bars indicate standard error of 

mean (SEM) (n=3). 
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Figure 7. Quantification of non-intercalated lactose on co-spray-dried lactose/sodium 

montmorillonite (Na-MMT) nanocomposites estimated with mDSC from the normalized change 

in heat capacity at Tg (Cp
Tg), assuming that only non-intercalated lactose contribute to the 

magnitude of Cp
Tg. Error bars indicate standard error of mean (SEM) (n=3). 
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