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The (Human) Sampler’s Curses 

By Mark Thordal-Le Quement* 

 
We present a cheap talk model in which a receiver (R) sequentially 
consults multiple experts who are either unbiased or wish to max- 
imize R’s action, bias being unobservable. Consultation is costly 
and R cannot commit to future consultation behavior. We find that 
individual  expert  informativeness  negatively  relates  to  consulta- 
tion extensiveness and expert trustworthiness due to biased experts’ 
incentive to discourage further consultation by mimicking unbiased 

experts. We identify three (sampler’s) curses: R may lose from an 
increase in the number or in the trustworthiness of experts as well as 

from a decrease in consultation costs. (JEL D82, D83) 

 
n a complex world, decision makers rely on experts for most of their information. 

A crucial issue is that experts can often be legitimately suspected of pursuing an 

own agenda and that adequate information about these outside motives is typically 

lacking. An important instance of this problem is the case of online product reviews. 

American novelist J. Franzen, discussing Amazon’s book selling business,  reports 

a claim that about one-third of posted reviews are fakes.1 Given the anonymity of 

reviews, writing fake positive (negative) reviews of own (competitors’) products 
appears like an easy way to game the system. Another instance of the problem arises 

in the market for credence goods where, as noted in Ely and Välimäki (2003), “the 
seller first diagnoses the client’s needs and then chooses a product to sell.” Doctors, 

mechanics, as well as management and legal consultants are examples. These may 

be tempted to recommend the most expensive (and profitable) procedure rather than 
the most adequate one. Though a share of experts doubtlessly succumbs to this 

temptation, many are committed to unbiased advice. 

A helpful strategy in the above situations is to consult multiple experts in the 

hope of encountering a truthful person at some point. This process is typically 

sequential. After hearing a first expert, one asks for a second opinion if still uncer- 

tain, then potentially for a third, etc. The sequential nature of the process can have 

different underlying motives. Information may be complex and take time to decode 
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(e.g., scientific reports, specialized product reviews) or experts may be located in 

different locations (e.g., doctors, lawyers). Even the process of googling is essen- 
tially a sequential consultation problem. One types a set of keywords and the search 

engine presents an ordered list of results that can only be examined sequentially. 

Consultation may also be sequential (as opposed to simultaneous) by choice, because 
it spares wasteful consultations whenever uncertainty is resolved early. Why  order 

three reports if one is likely to have a clear picture after reading the first two? A final 
dimension of sequential consultation is the absence of a commitment ability on the 

part of the decision maker regarding future consultation behavior (whether or    not 
she will ask for another opinion). 

This paper evaluates key dimensions of the sequential consultation problem. A 

decision maker (R) faces a set of experts who all know the state ω. Each of these 
either shares R’s preferences or wishes to maximize her action, expert   preferences 

being unobservable. R consults experts sequentially and is unable to commit to her 

consultation behavior. We ask three questions: Does R necessarily gain from facing 

a larger pool of experts, from experts being on average more trustworthy and from 

consultation being less costly? These questions are relevant because the rise of the 

internet seems to be driving precisely such changes in parameter values thanks to the 

multiplication of sources of expertise (blogs, independent news websites, product 

reviews). We provide negative answers to all three questions. The set of instances 
identified and their underlying mechanisms constitute what we call the human 

sampler’s curses. We speak of the human sampler’s curses for two reasons. First, 

because repeated consultation is a sampling problem in which exogenous signals are 

replaced by strategic experts. Second, because the decision maker is human, all too 

human in the sense that she cannot commit not to ask for another opinion whenever 

this is advantageous. We speak of curses because our insights are of a negative, 

sobering nature. 

The sampler’s curses originate in two main trade-offs. The first trade-off is that 

more equilibrium consultations imply a lower quality of individual communication. 

Accordingly, a larger pool of experts or a lower consultation cost, by leading to 

more equilibrium consultation and worsened individual reporting, can decrease R’s 

expected payoff. The second trade-off is that higher average trustworthiness implies 

coarser individual reporting. For a fixed number of equilibrium consultations an 

increase in average trustworthiness can thereby cause a decrease in R’s expected 

payoff. The source of both trade-offs lies in biased experts’ incentive to discourage 

future consultation. This incentive increases when more experts are consulted in 

equilibrium or when the chance of R encountering an unbiased expert increases. 

Biased senders’ incentives are best seen in the two experts case. An equilibrium 
with multiple sequential consultations takes the form of a partitional equilibrium with 

N intervals, interval 1 (N) being the lowest (highest), an unbiased expert  truthfully 
reveals the interval in which the state ω is located by sending mi if ω is in interval i. A 

biased expert systematically claims that ω is in the highest interval. R in turn asks for 

a second opinion if the first expert consulted claims that ω is in the highest interval. 
By consulting again, R will receive mi ≠ mN if ω is located in interval i < N and 

the second expert is unbiased, in which case she correctly learns that ω is   located 

i. If ω is located in a low interval, this behavior of R, however, creates an incentive 



 

 

 

 

 
for a biased expert to deviate to sending mN−1  so as to discourage R from ask-    
ing a second opinion. For such a downward deviation by a biased expert not to be 

profitable it should be costly, implying that the second highest interval (N − 1) 
should cause low beliefs, which requires the latter to be large. By the incentive 
conditions of unbiased senders, this in turn implies that the third highest interval 

(N − 2) should be large, etc. 
In the case of a unique equilibrium consultation, there exists a qualitatively  dif- 

ferent semi-revealing scenario involving a continuum of equilibrium messages and 

described by a unique threshold θ ∈ (0, 1). An unbiased expert sends m  = ω if 
ω < θ and sends m = θ for any ω ≥ θ. A biased expert always sends m = θ.  

R’s beliefs are monotonically increasing and continuous in m for m  ∈ [0, θ].  The 
distinctive feature of this scenario is that unbiased experts communicate perfectly 

below θ, making individual communication very informative. The scenario is incen- 

tive compatible because R does not consult again after m = θ, implying that a 

biased sender has no incentive to deviate to m′ = θ − ε (for ε positive but small) 
so as to discourage a further consultation. 

 

Literature Review.—A main strand in the cheap talk literature (e.g., Crawford 

and Sobel 1982; Morgan and Stocken 2003) studies one-to-one interaction and 
shows  that  preference  misalignment  causes  noisy  communication.  Papers    on 

the multiple sender case identify externalities between senders. In Krishna and 

Morgan (2001), if two senders have different biases and at least one of them is not 
an “extremist,” consulting two senders is always beneficial and may induce full 

revelation. Battaglini (2002) studies a setup featuring multiple perfectly informed 
experts and a multidimensional state. Full revelation of information in all states  of 

nature is generically possible, even when the conflict of interest is arbitrarily large. 
What really matters is the local behavior of senders’ indifference curves at the 

ideal point of R rather than the proximity of players’ ideal point. Battaglini  (2004) 
studies a setup with noisy sender signals and identifies a trade-off between    infor- 

mation aggregation and information extraction: Multiple consultation reduces 

idiosyncratic noise but comes at the cost of less precise communication by each 

sender. The key is that noisy information means that each sender’s message affects 

R’s decision on all dimensions, which in turn implies that a sender can always 

profitably bias R’s decision by deviating in a putative truthtelling equilibrium. 

Kawamura (2013) studies a sampling problem with uncertainty about the pref- 
erences of senders and similarly finds a trade-off between the quality of commu- 

nication and sample size. The intuition is that as the sample size increases, each 
sender’s influence on R decreases, thus generating an incentive for each sender    
to exaggerate his reporting. In the limit, only binary communication is feasible. 

Morgan and Stocken (2008) study a polling problem and assume a binary message 
space, thus discarding the issue of how the fineness of the equilibrium partitioning 
changes with respondents’ strategic incentives. R can always learn more by polling 

more agents and information aggregates in the limit. Li (2010) examines a simple 
cheap talk game in which a decision maker faces two experts whose privately 
known bias can be null, negative, or positive. If deciding to hear both experts, R 

may use a simultaneous, sequential, or hierarchical communication protocol (we 



 

 

 

 
 

omit the latter, which we find less immediately relevant). Sequential communi- 
cation is modeled differently than in our model: The first expert sends a message 
that is observed by the second expert who then sends his message, after which the 
decision maker finally observes both messages simultaneously. A first result is that 

all two-expert mechanisms do better than the one-expert mechanism. The commu- 

nication strategy of experts under multiple simultaneous consultation replicates 

that used given a single consultation, so that there is no trade-off between indi- 

vidual informativeness and the number of experts consulted. Adding more experts 

simply increases the likelihood of different biases and increases the probability     

of receiving undistorted information from one of the experts. A second finding is 

that simultaneous communication is mostly better than sequential communication 

because allowing the second expert to condition his messaging on the first expert’s 

message reduces the informativeness of the second sender’s   communication. 

Information elicitation from multiple experts has also been studied from a mech- 
anism design perspective allowing R to commit to sophisticated decision rules. In 

Gerardi, McLean, and Postlewaite (2009), a mediator uses the correlation among 
signals to threaten individual experts with punishment if their report does not match 

that of others. In Wolinsky (2002), truthtelling is achieved through an ex post ineffi- 
cient decision rule generating pivotal scenarios in which lying is costly. 

Sarvary and Parker (1997) and Sarvary (2002) examine how the value of infor- 
mation is influenced by the presence of multiple senders. In the first paper, the value 
of the information sold by one information provider may increase when a  compet- 

itor enters the market. In the second paper, featuring sequential purchase of infor- 

mation, the second information seller may be able to charge a higher price than the 

first information seller. 

Finally, another literature involving multiple consultations (typically across time 

but sometimes also across individuals) is the reputational concerns literature (see 
Sobel 1985; Ottaviani and Sørensen 2001; Morris 2001; Ely and Välimäki 2003; 

Avery and Meyer 2012). The broad idea of these models is that experts have incen- 
tives to bias their reports so as to ensure a good reputation, the latter being intrinsi- 

cally valued or instrumental to generating future opportunities to be consulted. 

The paper contributes to the existing literature in two main ways. It considers 

the little studied sequential consultation problem and proposes a simple partitional 

communication scenario that is analytically tractable. In so doing, it identifies a new 

strategic incentive to affect future consultation and demonstrates that this can gen- 

erate the basis for nontrivial comparative statics. A substantial caveat to the  above 

remarks is that novelty comes at the price of extreme (perhaps excessive) simplifi- 
cation in remaining assumptions. 

We proceed as follows. Section I presents a simple example with three states 

aimed at demonstrating the key mechanism underlying our results. Section II 

introduces the general model featuring a continuous state space. Section III pro- 

vides an analysis of the general model for the two experts case. Section IV extends 

results to the n-experts case. Section V discusses other main extensions. Section VI 

concludes. Unless explicitly remarked upon, proofs are relegated to Appendixes. 

Part I of the online Appendix examines in detail the case of simultaneous consul- 

tation. Part II of the online Appendix contains the joint proof of Lemmas 6 and   8. 
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I. A Simple Example 

 
A receiver R faces two experts. The state of the world is given by a variable ω 

drawn from a commonly known uniform distribution on {−1, 0, 1}. We call the 
states L, M, and H, where L  =  −1, M  =  0, and H  =  1. Each sender   privately 
knows the state, while R only knows the ex ante distribution. Given a choice of 

action a and a state ω, R’s utility is u(a, ω) = −(a − ω)2. It follows that R’s opti- 
mal action is the expected value of the state given available information. The prefer- 

ence type of individual senders is privately known to these and drawn from {U,  B} 
according to the distribution {β, 1 − β},  each sender’s type being    independently 
drawn. If a sender’s type is U, his utility function coincides with that of R, while if 

his type is B, his utility function is given by u (̂a, ω) = a. A sender thus either wants 
to induce correct beliefs or to maximize beliefs. 

R may consult senders at a cost of c per consultation. If consulted, a sender does 

not know his position in the consultation sequence. This implies that if he is con- 

sulted second, he does not observe the message sent by the preceding expert. We 

consider two communication strategy profiles. Strategy profile σsr specifies that  

an unbiased sender sends m = ω, while a biased sender always sends m = H. 

Strategy profile σp specifies that an unbiased sender sends m = L if ω = L and 

otherwise sends H, while a biased sender always sends m =  H. Communication  
by unbiased senders is thus less informative in the second profile. We consider two 

consultation strategies of R. The first (φ1) consists in consulting only once. The 

second (φ2) specifies that after consulting once, R consults again if she may learn 
new information from asking for a second opinion. In equilibria featuring the   two 

communication strategy profiles defined above, this means that on the equilibrium 

path R consults again only after message H. After stopping consultation, R picks the 

expected payoff maximizing action given her beliefs. 

In what follows, we show that committing to consulting only once can lead to 
more informative individual communication and more learning than retaining the 
option to ask for a second opinion. In all scenarios considered, we assume that R 

believes that the state is −1 after an out of equilibrium message profile. We speak of 
R’s belief to describe her expected value of the state. 

 

Single Consultation.—Consider a putative equilibrium featuring σsr and φ1, 

assuming that R is able to commit to φ1. Beliefs of R after L and M are given by −1 
or 0, respectively. After H, R’s belief is 
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Note that this equilibrium exists if and only if μsr
 

 

≥ 0, because otherwise   a 
biased sender profitably deviates to M, which triggers the higher belief 0. It is easily 
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checked  that μsr
 ≥ 0  for  any β,  so  that  the  equilibrium  always  exists. Setting 

c  = 0, this guarantees R an expected payoff of 
 

sr 2 _1 sr 2 _1 sr  2 

Π1(β)  =  − _1 (1 − β)(μH(β) + 1) − 
3 

(1 − β)(μH(β)) − 
3 
(μH(β) − 1) . 

 
Note that conditional on R committing to φ1, there also always exists an equi- 

librium featuring σp. In such an equilibrium, deviating to L is never an attractive 

option for a biased sender because it yields belief −1. Note furthermore that the first 

equilibrium is more Blackwell-informative (see Blackwell 1951) than the second, 
so that R always favors the first over the second equilibrium. 

 

Repeated  Consultation.—We  shall  now  examine  two  (putative)  equilibria  

in which R asks for a second opinion whenever this is informative, i.e., uses φ2. 

Consider first a scenario in which senders use σsr. R consults again if and only if 
the first consultation yielded H. Indeed, after any other message, she knows that she 

encountered an unbiased sender and will not learn more from a second consultation. 
Beliefs after an equilibrium message profile containing at least one L or M message 

are given by −1 and 0, respectively. After two H messages, R’s belief is 
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We now check deviation incentives of senders. If we can ensure that at ω = −1 a 
biased sender has no profitable deviation to M, then a biased sender never has a prof- 
itable deviation. Message M triggers belief 0 for sure as R does not consult   again. 

sr sr 

Message H either leads to μHH or to −1. R’s final belief will be μHH in two  events 

(A and B). In A, the expert is the second expert consulted. In B, the expert is the 
first expert consulted, R consults again and meets a biased expert. The probability of 

(A  ∪ B) can be shown to be 

2β(1 − β) 

1 − (1 − β)2
 

 

A biased sender thus has no deviation incentive if and only if 

 
2β(1 − β) sr 2β(1 − β) 

(1) _ μHH (β) + 1 −_ (−1)  ≥ 0. 

1 − (1 − β)2 ( 1 − (1 − β)2) 
 

It can be shown that (1) is satisfied if and only if β < 0.5. It follows that (σsr, φ2) 
is an equilibrium if and only if β  < 0.5. 

Consider now a putative equilibrium featuring the communication strategy σp and 

the consultation strategy φ2. After two H-messages, R’s belief is μHH. This equilib- 
rium always exists because a biased sender trivially never deviates to message L 
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which yields the minimal belief −1. Assuming c = 0, the expected payoff of R in 
this scenario is 

p 2 p 2 p 2 

Π2(β)  =  − _1 (1 − β)2(μHH (β) + 1)  − _1 (μHH (β) − 0) − _1 (μHH (β) − 1) . 

 
Comparing Single and Repeated Consultation.—We may now conclude. It can 

be shown that for β large enough, Π1(β) > Π2(β), implying that R learns more 
from a highly informative single consultation than from two moderately informative 

consultations. 

 
II. Model 

 
A receiver R faces a set of M experts. The state of the world is given by a 

variable ω drawn from a uniform distribution F on [0, 1]. Each of the send-        

ers (or experts) is perfectly informed of the state, while R only knows F. Given      

a choice of action a and a state ω, R’s utility is u(a, ω) = 1 − (a − ω)2. It fol- 

lows that R’s optimal action, given information I, is to choose a = E[ω | I ]. The 
preference type of individual senders is privately known to these and drawn   from 

{U, B} according to the distribution P(U) = β, each sender’s preference  type 
being drawn independently. If a sender’s type is U, his utility function coincides 

with that of R, while if his type is B, his utility function is given by u (̂a, ω) =  a.  
A sender of type B thus simply aims at maximizing R’s action. 

R may consult senders at a cost of c per consultation. Consultation is sequential 

and sequentially rational. R randomly picks a first sender, receives a message, then 

consults a second sender if she wishes to, and potentially a third, etc. Once she stops 

consultation, R makes a decision. A strategy of R specifies a consultation strategy 

as well as a decision rule. A consultation strategy is a complete specification of R’s 

consultation behavior at every information set. A decision rule determines the action 

chosen by R at the end of the consultation phase given messages observed. 

A sender does not observe whether any other sender has been consulted before 

him, which entails that he also does not observe other senders’ reports. A set of mes- 

sages [0, 1] is available to each sender, the emission of a message being costless. A 
strategy for a sender Si specifies a distribution over [0, 1] at each information set of 

Si. A pure communication strategy of Si is a mapping {U, B} × [0, 1] → [0, 1]. We 
focus on strategy profiles, such that all senders use the same pure communication 

strategy (so-called symmetric profiles). 
We examine Perfect Bayesian equilibria and simply call them equilibria. An equi- 

librium of the game is given by a communication strategy profile and a receiver 

strategy, such that none of the parties has an advantageous deviation. R thus has no 

incentive to stop consulting earlier or later than specified by her strategy, and always 

simply chooses the ex post optimal action given beliefs. Furthermore, an individual 

sender has no incentive to deviate from his prescribed communication strategy. We 

speak of R’s gross expected payoff in a given equilibrium if ignoring consultation 

costs. Once these costs are included, we instead speak of R’s net expected payoff or 

simply of her expected payoff. 



 

 

 

 
 
 
 

III. The Two Experts Case 

 

We now analyze the case of M = 2. We shall examine three types of communi- 
cation strategy profiles that are ordered in terms of the informativeness of individ- 
ual experts’ communication. As we shall see, the first two types of communication 
strategies are not compatible with sequential consultation. The first is only incentive 

compatible for senders under repeated consultation, but discourages a second con- 

sultation. The second incentivizes a second consultation, but is not incentive com- 

patible for senders given repeated consultation. The third type of communication 

strategy is in contrast compatible with sequential consultation. 

 

A. Fully Revealing Communication 

 
A  first  scenario   is   fully   revealing   communication:   Each   sender   sends 

m = ω, ∀ω. Consider a putative equilibrium in which R consults sequentially two 
experts. In such a scenario, R, however, stops consultation after the first expert 

given that she learns nothing from the second consultation. Note that there exists 
no equilibrium involving fully revealing communication and a single consultation. 
In such a putative equilibrium a biased sender profitably deviates to sending the 

highest message m  =  1. 

B. Semi-Revealing Communication 

 
We now introduce a communication strategy originally proposed by Morgan and 

Stocken (2003) for the case of a single consultation of an expert with unknown bias. 
We generalize it to the case of more than one consultation. 

 
DEFINITION 1: A semi-revealing strategy profile is characterized by a threshold 

θ ∈ [0, 1], such that (i) an unbiased expert sends m  = ω if ω < θ and sends    

m  = θ if ω ≥ θ, while (ii) a biased expert always sends m  = θ. 
 

In an equilibrium involving the above strategy, the highest message m = θ is 

suspicious (and is the only one to be so). The latter message renders a second con- 

sultation potentially informative. By asking for a second opinion after m = θ, R 

may, with positive probability, receive m′ < θ, in which case she will know that 

she now met an unbiased expert, and will adopt belief m′. If in contrast R first 

receives a message m < θ, she recognizes that she cannot learn more about the 
state than what she already knows. By consulting again, she will either receive m 

again or m′ = θ, both cases leading to no change in her beliefs, which continue    

to assign probability one to ω = m. As a matter of fact, after m < θ, all R learns 

through a second consultation is whether the second expert is unbiased (if m′ = m) 
or biased (if m′ = θ). We now introduce the following sequential consultation 
strategy of R. 

 

DEFINITION 2: Assume that experts use the semi-revealing strategy profile θ. 

The sequential consultation strategy τ2 specifies that R consults for sure once  and 
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consults a second expert if and only if she receives the high message m = θ in the 

first consultation. The sequential consultation strategy τ1 specifies that R consults 
exactly once for sure. 

 
We  shall now define conditions under which given the consultation strategy    

τn ∈ {τ1, τ2}, the semi-revealing strategy profile θ is incentive compatible. Define 
first the following function: 

 

B(θ, β, n) = 
(1 − (1 − β) )(1 − θ) E(ω | ω ≥ θ) 

(1 − (1 − β)n)(1 − θ) + (1 − β)n
 

 

(1 − β)nE(ω) 
+ 

(1 − (1 − β)n)(1 − θ) + (1 − β)n 
.
 

 

The function B(θ, β, n) denotes the expected value of the state conditional on 

(i) senders being known to use the semi-revealing strategy profile θ and (ii) R using 
τn and having over the course of n sequential consultations received n times message 

m  = θ. It can be checked that for given β, n, a unique θ ∈ (0, 1) satisfies 

 

(2) B(θ, β, n) = θ. 

 

It is given by  
θ∗(β, n) = 1 . 

√(1 − β)n + 1 
 

Uniqueness of a solution to (2) follows because B(θ, β, n) is a concave function of 

θ and B(0, β, n)  >  0 as well as B(1, β, n)  < 1. We may now state the following: 
 

LEMMA 1: (i) Assuming that R uses τn ∈ {τ1, τ2}, θ is incentive compatible for 

unbiased senders if and only if θ = θ∗(β, n): 

(ii) Assuming that R uses τ1, θ
∗(β, 1) is incentive compatible for biased senders. 

(iii) Assuming that R uses τ2, θ
∗(β, 2) is not incentive compatible for biased 

senders. 

 
Point (i) states a necessary condition for (θ, τn) to constitute an equilibrium strat- 

egy profile. Given n, the belief of R after receiving n times message m = θ should 

be equal to θ. It follows that the set of final beliefs induced in an equilibrium (θ, τn) 
is the interval [0, θ]. Point (iii) implies that there exists no equilibrium featuring    
a semi-revealing strategy profile and τ2. The argument is as follows. In the only 

possible candidate semi-revealing profile θ∗(β, 2), given ω = 0, a biased   sender 
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deviates to θ∗(β, 2) − ε, for ε positive and small. He thereby preempts a potentially 
damaging next consultation and ensures beliefs arbitrarily close to the maximum 

equilibrium belief θ∗(β, 2). 
Point (ii) implies that there may exist an equilibrium of the form (θ∗(β, 1),  τ1). 

We  now examine incentives of R in such a putative equilibrium. We  introduce 
some preliminary notation for the marginal value of a consultation in equilibrium 

for R. Given β and senders using θ∗(β, 1), let v 1(β) denote the increase in gross 
expected payoff achieved through the first consultation under the assumption   that 

no consultation is subsequently done. Clearly, given a sequentially rational consul- 

tation strategy in which R consults a second time if advantageous, the value of  the 

first consultation is weakly larger than v 1(β). Similarly, given β and senders using 

θ∗(β, 1), let v 2(β) denote the gain in gross expected payoff achieved through a sec- 

ond and final consultation, evaluated conditional on having received m  = θ∗(β, 1) 
in the first consultation. 

 

LEMMA 2: Assume that senders use θ∗(β, 1): 

(i) For c sufficiently low, τ1 is not incentive compatible. 

(ii) Let c = v 2(β) + ε. For β large enough and ε sufficiently small, τ is incen- 
tive compatible. 

 

Point (i) trivially follows from the fact that after receiving m = θ∗(β, 1) in the 
first consultation, R may potentially learn more from consulting again and will thus 

deviate to doing so if c is sufficiently low. Point (ii) offers sufficient conditions 
for the existence of an equilibrium featuring the strategy profile (θ∗(β, 1), τ1). 1 2 1 
The key behind point (ii) is that for β large vsr(β) >  vsr(β) because limβ→1  vsr(β) 
= _1 2 

12
, while limβ→1 vsr(β) =  0. It follows that for β large enough, one can pick  a 

c  ∈ (0, 1) s.t. 
 1(β) ≥  c  ≥ v 2(β), 

vsr sr 

 

thus making τ1 incentive compatible given θ∗(β, 1). 

C. Partitional Communication 

 
Lemmas 1 and 2 imply that given an equilibrium consultation plan specifying 

multiple consultations the communication strategy of senders must be some third 

type of strategy. We now introduce the class of partitional communication strategies 

and show that it is compatible with repeated consultation. 

 
DEFINITION 3: An N-intervals strategy profile is characterized by thresholds      

t0  = 0  < t1  < .. < tN−1  < tN  =   1, such that (i) an unbiased sender sends mi if 

ω ∈ [ti−1, ti), ∀ i  ∈ {1, .., N} and sends mN if ω = 1, while (ii) a biased  sender 
always sends mN. 



 

 

(3) B(tN−1, β, n) − tN−1  =  tN−1 − (
_ 

 

 

 
In what follows, we denote an N-intervals strategy profile by (t1, .., tN−1), thus 

omitting t0 and tN whose values are exogenously fixed at 0 and 1, respectively. In 

such a profile, an unbiased expert correctly reveals the interval to which ω belongs, 

while a biased expert claims that ω belongs to the highest interval. As in the case 

of an equilibrium featuring a semi-revealing profile θ, the highest message is the 
only one justifying further consultation. By asking for a second opinion after mN,  

R may receive mi ≠ mN in which case she will know that she now met an unbi-  

ased expert and will revise her beliefs to E[ω | ω ∈ [ti−1, ti)]. If instead R receives 

mi  ≠ mN in the first consultation, she recognizes that another consultation will    
not affect her beliefs. Whether the second consultation yields mi again or mN, she 

will indeed continue to assign probability one to ω ∈ [ti−1, ti). We now introduce a 

sequential consultation strategy that is a counterpart of τ2. 

DEFINITION 4: Assume that senders use an N-intervals strategy profile. φ2 spec- 
ifies that R consults once for sure and consults a second expert if and only if she 
receives the high message mN in the first consultation. The sequential  consultation 

strategy φ1 specifies that R consults exactly once for sure. 

 
In what follows, we study putative equilibria involving a partitional strategy pro- 

file and φ1 or φ2, with a primary focus on φ2. Before going into formal detail, we 
provide a general intuition for the strategic incentives faced by senders given that 

R uses φ2. A biased expert, conditional on ω = 0 and being consulted first, would 
prefer the receiver not ask for a second opinion as she might meet an unbiased expert 

who will send the low message m1. This creates an incentive for the biased expert 

to deviate to reporting mN−1 instead of mN. Indeed, by not sending mN, he signals 

himself as a truthful expert and preempts a second consultation. A biased sender will 

only refrain from deviating to mN−1 if the latter is very costly because mN−1 trig- 

gers very low beliefs. To make mN−1 very unattractive, [tN−2, tN−1) should be large, 

which in turn implies that [tN−3, tN−2) also should be large to ensure that unbiased 
senders are indifferent between mN−1 and mN−2, etc. Large intervals to the left of 

tN−1, however, imply that an unbiased expert communicates in a very coarse fashion. 
Ensuring that a biased expert does not deviate thus requires that unbiased   senders 

communicate noisily by a logic of contagion. 

The next two lemmas provide a formal characterization of sender incentives. We 

define the conditions under which an N-intervals strategy profile is incentive com- 

patible for unbiased senders and biased senders, respectively, given that R  follows 

the sequential sampling strategy φn, for n ∈ {1, 2}. We call such a profile U-IC and 
B- IC, respectively. 

 

LEMMA 3: Assume that R uses φn ∈ {φ1, φ2}: 

(i) The N-intervals strategy profile (t1, .., tN−1) is U-IC if and only if 
 

tN−1 + tN−2 

2 ) 



 

 

_ 

_ 

5 

 

 
 

and 
 

(4) ti+1 − ti  =  ti − ti−1, ∀i ∈ {1, .., N − 2}. 

(ii) For every N ≥ 2, there exists a unique U-IC N-intervals strategy profile. 

Note for later reference that (3) and (4) together imply 

B(tN−1, β, n) 
( ) tN−1 

=
 

2(N − 1) + 1
.
 

2(N − 1) 
 

Equalities (3) and (4) state the standard indifference condition on thresholds 
defining intervals. At every interior threshold ti, an unbiased sender must be indif- 

ferent between mi and mi+1. For t1, .., tN−2, indifference requires 

ti − E[ω | ω ∈ [ti−1, ti)] = E[ω | ω ∈ [ti, ti+1)] − ti , 

which simplifies to (4). The condition stated for tN−1 in (3) is slightly more com- 
plex because the belief triggered by mN is not given by E[ω | ω ∈ [tN−1, 1]],    

but instead by B(tN−1, β, n). Recall indeed that a homogeneous profile of n mN-
messages implies E[ω | ω ∈ [tN−1, 1]] only if it was sent by n unbiased senders, 
which cannot be ascertained. 

Point (ii) implies that at most one N-intervals strategy profile can constitute   an 
N−1 

equilibrium for any given N  ≥  2. We  henceforth denote by {tr (β, N, n)}r=1    the 
unique threshold profile that is incentive compatible for unbiased senders for given 

β, N, n. Point (ii) also demonstrates that restrictions on the fineness N of equilib- 
rium partitions do not originate in unbiased senders given that there exists a U-IC 

N-intervals profile for any N  ≥ 2. 
Finally, it is easily shown that given β and n  ∈    {1, 2}, for N tending to infin- 

ity the unique U-IC N-intervals strategy profile tends to the semi-revealing  

strategy  profile  θ∗(β, n).  To   see  this,  note  two  facts.  First,  as  N     increases 
B(tN−1(β, N, n), β, n) tends toward tN−1(β, N, n), so that in the limit tN−1(β, N,  n) 
satisfies the same condition as θ in (2). Second, as N increases, intervals to the left 

of tN−1 become infinitely many and infinitely small. 
We now examine incentives of biased senders. Note that if R consults only once 

in equilibrium (i.e., uses φ1), the U-IC N-intervals profile is always incentive com- 
patible for biased senders because message mN trivially maximizes R’s expected 

beliefs. If R instead uses φ2, whether mN maximizes R’s expected beliefs is nontriv- 
ial because mN triggers further consultation and may lead to a low message if the 
state is low and the next sender is unbiased. 

 
LEMMA 4: Assume that R uses φn ∈ {φ1, φ2}. The U-IC N-intervals strategy pro- 

file (t1, .., tN−1) is B-IC if and only if 
 

B(tN−1, β, n) _3 nβ(1 − β) n−1 

(6)  _  ≥ − 1_   . 
tN−1 (2 2  1 − (1 − β)n) 



 

 

_ 

1 

_ . 

2 

 
 

 

The above condition ensures that a biased expert prefers to send mN rather than 

deviating to mN−1 if ω = 0, which is in turn sufficient to ensure that he has no prof- 

itable deviation for any ω > 0. The condition is trivially satisfied for n = 1 given 
that the right-hand side reduces to 1 while the left-hand side is always greater  than 

1. Consider now the case of n = 2, i.e., where R asks for a second opinion after mN. 

Let ω = 0. Sending mN−1 triggers for sure belief μ(mN−1) satisfying 

(7) μ(mN−1) = 
tN−1 + tN−2 

2 

4tN−1 − 2B(tN−1, β, 2) 

= ( 2 ) , 

as R will not consult again after mN−1. On the other hand, the final belief of R after 
mN is uncertain. One possible scenario (Scenario 1) is that R consults again and 
meets an unbiased expert, thus adopting μ(m1) satisfying 

t 
μ(m1) = _ 

2(B(tN−1, β, 2) − tN−1) 

2 
. 

 
R’s final belief will instead be μ(mN)  =  B(tN−1, β, 2) if the expert is the second  

to be consulted (Scenario 2.a) or if R consults again and meets a biased expert 

(Scenario 2.b), the summed probability of Scenarios 2.a and 2.b being 

2β(1 − β) 

1 − (1 − β)2
 

The expected belief triggered by mN is thus given by 

 

(8) 
(1

 2β(1 − β) 
(1 − β)2) 

μ(mN) + 1 − 
2β(1 − β) μ(m1). 

_ _ 

− ( 1 − (1 − β)2) 

 

Summarizing, the U-IC N-intervals strategy profile (t1, .., tN−1) is incentive com- 

patible for a biased sender given φn if and only if (8) is larger than (7), which is 

equivalent to (6). 
We  may now gather the conditions ensuring incentive compatibility of a   given 

N-intervals profile for unbiased as well as biased senders. Applying simultaneously 

(5) and (6), we may state the following: 

LEMMA 5: 
 

(i) Given β and φ2, there exists an incentive compatible N-intervals profile if and 

only if N ≤ 
_2 . If there exists one, it is furthermore unique. 
β 

(ii) Given β and φ1, there exists a unique incentive compatible N-intervals profile 

for any N  ≥ 2. 

= 



 

 

N (β, 2) =  ⟨
2

 

N ( 

N ( 

N ( 
3  

N ( 

n { r }r=1 

β⟩ 

 

 
 

 

 

Point (i) is obtained by combining (5) and (6), yielding 
 

2(N − 1) + 1 3 1 2β(1 − β) 2(N − 1) 
≥  

2 
− 

2  1 − (1 − β)2 
,
 

_ _ __ 

 

which simplifies to _2  ≥  N. Point (ii) is immediate given that (6) is always true for 
β 

n  = 1. 
Given that R uses φ2, for any β there is thus a finite maximal partition  fineness _ 

_ ≥ 2, where we let _2 ⟨β⟩ denote the highest integer smaller  than 
_2 . The upper bound 

_ 
β, 2) furthermore decreases in β. For any integer X  ≥  2, 

β _ 
we may also state that N (β, 2) =  X if and only if β  ∈  (

_2  , _2 . Equilibria with 
X+1 X] 

more than two intervals thus exist only for β small enough, while a    two-intervals 
equilibrium exists for any β. High individual trustworthiness thus implies coarse 

reporting. Note that 
_ 

β, 2) very quickly decreases as β increases. For β  ∈ _1, _2  , 
( 

we have 
_ 

β, 2) = 3, while for β > _2, 
_ 

β, 2) =  2. 
2  3] 

Having now stated incentive conditions for senders formally, we briefly    refine 

the intuition behind sender incentives. First, note that a high N implies very small 

partition intervals, which in turn means that the belief E[ω | mN−1] triggered by the 

second highest message mN−1 is high and close to that triggered by two messages 

mN. For a biased sender, the deviation payoff attached to mN−1 thus increases mono- 
tonically in N, which means that keeping fixed the expected payoff attached to mN, 
finer equilibria are less likely to be incentive compatible for biased senders. Second, 

assuming ω = 0 a higher β or n implies a higher chance that R meets an unbiased 

truthteller if she consults again and thereby adopts belief E[ω |m1]. Keeping fixed 

the payoff attached to mN−1, sending mN thus becomes increasingly unattractive  as 
β or n increases. It thus follows that as β or n increases equilibria break down in  a 
top-down order. Very fine equilibria first disappear, then fine ones, then   relatively 

coarse ones, etc., until only the two-intervals equilibrium is left. The latter never 

breaks down because in this equilibrium sending m2 is always by definition more 

attractive than sending m1 for a biased sender given ω = 0. 
 

D. Preliminary Comparative Statics of R’s Welfare 

 
We now proceed to the welfare analysis. We first state some preliminary results 

relating to the comparative statics of gross expected payoffs and subsequently use 

these to derive the sampler’s curses. 

Define Vsr(β, 1) as the gross expected payoff of R in an equilibrium featuring a 

unique consultation and the semi-revealing profile θ∗(β, 1). Let Vp(β, N, n) denote 
the gross expected payoff of R in an equilibrium featuring the sequential  sampling 

N−1 

strategy φ  and the N-intervals strategy profile   t (β, N, n)     . 

 
LEMMA 6: 

 

(i) Vsr(β, 1) is continuous and increasing in β. 



 

 

N 

r=1 r }r=1 

2 

 

 

 

 

(ii) Vp(β, N, n) is continuous and increasing in β as well as increasing in N  
and n. 

 

(iii) lim Vp(β, N, 1) = Vsr (β,   1). 
→∞ 

 

To understand why Vsr (β, 1) is increasing in β, note that increasing β increases 

the threshold θ∗(β, 1) as well as the probability that the consulted expert is unbiased, 

both effects being beneficial. The comparative statics of Vp(β, N, n) are also simple 

and intuitive. It increases with expert quality β, the fineness N of communication 

and the (maximal) number n of experts consulted. Points (ii) and (iii) together imply 
that conditional on R’s strategy specifying a unique consultation, she favors the 

equilibrium featuring the semi-revealing profile over any equilibrium featuring a 

partitional profile. 

Note   that   given   two   partitional   equilibria   featuring   φ2   together     with 
N 

tr{(β, N, 2)}N−1 or {t (β, N +  1, 2) , respectively, the second (and finer) equi- 
librium dominates the first not only in terms of R’s gross expected payoff but also in 

terms of her net expected payoff. Indeed, condition (5) implies that tN(β, N + 1, 2) 
>  tN−1(β, N, 2), which means that R is less likely to consult a second time in   the 
second equilibrium. Consider now expert utilities. An unbiased expert has the same 

preferences as R except he does not consider consultation costs. His payoff ranking 

of equilibria is accordingly the same as R’s (net and gross) payoff ranking of equi- 
libria. On the other hand, a biased expert’s expected payoff from a given equilibrium 

depends only on the expected value of R’s beliefs. This being by definition the same 
in any equilibrium (and equal to _1   , biased experts are ex ante indifferent across all 

2) 

equilibria. It follows that given a fixed φn ∈ {φ1, φ2}, R’s (gross and net) payoff 

ranking of partitional equilibria (and the semi-revealing equilibrium if φn = φ1) is 
also a Pareto ranking. 

 
E. The Sampler’s Curses 

 
We now turn to the key welfare-related comparative statics of our model. We ask 

whether R necessarily gains from an increase in the number M of available experts, 

a decrease in consultation costs c or an increase in expert trustworthiness β. We shall 
see that the answer to all three questions is negative, thereby identifying a set of 

sampler’s curses. A note of caution on the nature of our exercise is here warranted: 

For each set of parameters β, n, we exclusively consider the R-optimal equilibrium 
within the limited class of equilibria that we study. We thus focus on the semi-reveal- 

ing communication scenario in the case of only one equilibrium consultation and on 

N-intervals strategy profiles in the case of multiple equilibrium consultations. 

We first identify a case in which R loses from an increase in the number of experts 

available. 

 
PROPOSITION 1 (The Curse of Manyness): There is a β∗  ∈  (

_1, 1), such that 

given β ≥ β∗ and c low enough, R’s expected payoff is larger if facing only one 
expert than if facing two experts. 
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The above result bases on the simple trade-off faced by R between the quality of 

individual reporting and the quantity of experts consulted. For c low enough, when 

facing two experts, R cannot commit to not consulting again after the first   consulta- 

tion if an extra consultation is informative. It follows that there exists no equilibrium 

featuring a single consultation and the semi-revealing strategy profile (see Lemma 2). 
Instead,  there  only  exist  simple  finite  N-intervals equilibria  in which partitioning 

bounds the amount of information  that  can be retrieved  by R even  if she consults 

an arbitrary number of experts. When in contrast only one expert is available, R is   

de facto committed to a unique consultation, thereby allowing semi-revealing commu- 

nication to constitute an equilibrium outcome. The informativeness of such an  equi- 

librium scenario furthermore converges smoothly to 1 as β tends to 1. It follows that 

for β high enough and c low enough, R prefers to face a single expert rather than two. 
We now identify a case in which R loses from a decrease in the cost of consul- 

tation. Recall that v 2(β) denotes the gross value of a second and final consulta- 

tion conditional on having received m = θ∗(β, 1), assuming that senders use the 

semi-revealing profile θ∗(β, 1). 
 

PROPOSITION 2 (The Curse of Inexpensiveness): Let there be two experts. For β 
sufficiently high, there is an ε∗ > 0, such that for ε ≤ ε∗ R’s expected payoff is 

larger given c  = v 2(β) + ε than given c′ = 0. 

The above result builds on the same mechanism as Proposition 1. An exces- 
sively low c breaks the equilibrium in which R consults once and senders use      

the  semi-revealing  profile  θ∗(β, 1) because  R  asks  for  a  second  opinion after 
m  = θ∗(β, 1). Semi-revealing communication being very informative, a    strictly 

positive (though not too high) c serves as a beneficial commitment device that 
enables semi-revealing communication. 

The following proposition identifies a case in which R loses from an increase   

in β. 

 

PROPOSITION 3 (The Curse of Trustworthiness): Let there be two experts. For 

every N  ≥ 2, for c sufficiently small there is an ε∗ > 0, such that for ε ≤ ε∗  R’s 

expected payoff is smaller under β′  =  _2  + ε than under β″  =  _2  − ε. 
 

The above result bases on a simple trade-off. Given that R uses φ2, a higher β 
increases a biased expert’s incentive to deviate to mN−1 conditional on ω = 0 and 
thereby negatively affects the achievable fineness of individual reporting. At the 

threshold value of β  =  _2 , an infinitesimal increase in β leads to a discontinuous 
downwards jump in the maximal achievable number of intervals while affecting 

only infinitesimally the likelihood of meeting a biased expert. Such an increase in β 
is thus unambiguously disadvantageous. 

 
IV. More than Two Experts 

 
We now examine the general case of M ≥ 2 senders. Given an N-intervals strat- 

egy profile, the consultation strategy φn specifies that R stops consulting as soon 
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as she receives a message mi ≠ mN and continues consulting for a maximum of n 
rounds as long as receiving mN. By the arguments given in Lemmas 3 and 4, we may 
state the following: 

LEMMA 7: Assume that R uses φn, for n ≥ 1. There exists an incentive compatible 
N-intervals strategy profile if and only if 

2(N − 1) + 1 3 1  nβ(1 − β)n−1
 2(N − 1) 

≥  
2 

− 
2  1 − (1 − β)n . 

_ _ __ 

If there exists one, it is unique. 

Given φ  and β, we denote by   t (β, N, n)  
N−1 

the unique incentive compatible 

N-intervals strategy profile. On the basis of the above, we may state the following 

three comparative statics properties of the equilibrium set w.r.t. N, β, and n. The 
comparative statics result for N reads as follows. For any β and n ≥ 2, there is 
a  finite  upper bound 

_ 
, n)  ≥  2 on the feasible number of intervals given φ  . 

N (β n 
The bound 

_ 
, n) furthermore decreases in β and n. A two-intervals profile is 

N (β 
always incentive compatible no matter n and β. The comparative statics result   for 

β_ reads as follows. For any given N  >  2 and n  ≥  2 there is a finite upper bound 

β(N, n), such that g_iven φn, there exists _an incentive compatible N-intervals profile 

if and only if β  ≤  β(N, n). The bound β(N, n) furthermore decreases in N and  n. 
The comparative statics result for n reads as follows. For given β and N > 2, there 
is a finite upper bound n

_ 
β, N) ≥  1 such that there exists an incentive compati- ble N-intervals strategy profile if and only if φn satisfies n  ≤  n

_ 
β, N). The bound 

n
_   

, N  furthermore decreases in ( and N. 
(β ) β 
Extending our definition of the gross expected payoff Vp(β, N, n) to n  ≥  2, we 

may now state the following: 

 

LEMMA 8: For any n ≥ 1, Vp(β, N, n) is continuous and increasing in β and 
increasing in N and n. 

 
It can furthermore be shown that 

 

lim 
n→∞ 

Vp(β, N, n)  =  1 +_1 − 3N 
. 

6N 2 
 

The above limit expression is increasing in N and converging to 1 as N tends to 

infinity. When consulting infinitely many experts, bias is thus immaterial while the 

number of intervals is the only determinant of payoffs. 

Note that as in the two experts case, given two equilibria featuring φn and 

either  {t (β, N, n)  
N−1  

or  {t (β, N + 1, n)  
N   

,  the  second  (and  finer) equilib- 
rium also dominates the first in terms of R’s gross expected payoffs. Indeed, it 

follows from (5), which carries over to the n-experts case, that tN(β, N + 1, n) 
> tN−1(β, N, n). This implies that R is less likely to consult an mth time for any 

m  ∈  {2, .., n}  in  the  second  equilibrium.  The  second  equilibrium  thus saves 
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consultation costs in expectation. Given the nature of expert utilities (see a discus- 

sion for the two experts case), it follows that for any fixed φn R’s (net and gross) 
payoff ranking of partitional equilibria is also a Pareto ranking. 

We now present counterparts of Propositions 1, 2, and 3 for the n-persons case. 

We start with a counterpart of Proposition 1, identifying cases in which R loses from 

an increase in the number of experts available. 
 

PROPOSITION 4 (The Curse of Manyness): 

(i) For every M  >  1, there is a β∗  ∈  (
_1, 1), such that given β  ≥  β∗ and c 

low enough, R’s expected payoff is larger if facing one expert than if facing 

M experts. 
 

(ii) For every M  >  2, given β  ∈  (β, _2 and c low enough R’s expected payoff 

is larger if facing two experts than if facing M experts. 
 

The mechanism behind point (i) is the same as that behind Proposition 1. As 
to point (ii), note that if β  ∈  (

_1, _2 , N  =  3 is the finest achievable  partitioning 
2  3] 

given φ2 while the finest achievable partitioning drops to N  =    2 for φ3, .., φM. 
Furthermore,  for  β  ∈  (

_1, _2  ,  limn V (β, 2, n)  <  V (β, 3, 2),  which  implies 
2  3] →∞   p p 

that R is better off in an equilibrium featuring a 3-intervals profile and the sequential 

consultation strategy φ2 rather than in an equilibrium featuring a 2-intervals profile 

and a sequential consultation strategy φn for any n  ≥ 3. 
We now present a counterpart for the n-persons case of Proposition 2. We  intro- 

duce some preliminary notation for the marginal value of a consultation in equilib- 

rium for R. For fixed β and M and given experts using θ∗(β, 1), let ṽ2 (β, M) denote 
the critical value of c above which there exists no sequentially rational consultation 

plan specifying consulting again after a first consultation yielding m  = θ∗(β, 1). 
 

PROPOSITION 5 (The Curse of Inexpensiveness): Let there be M ≥ 2 experts. For 

β sufficiently high there is an ε∗ > 0, such that for ε ≤ ε∗ R’s expected payoff is 

larger under c  = ṽ2 (β, M) + ε than under c′ = 0. 

The underlying mechanism behind the above being the same as in Proposition 2, 
we do not repeat the intuition. Propositions 4 and 5 admittedly do not provide as 
strong generalizations of Propositions 1 and 2 as one might wish or expect. In the 

case of Proposition 4, one would want a result comparing the cases of M and M + 1 
experts for any M. Achieving more general results would require the ability to pro- 
vide welfare comparisons of pairs of partitional equilibria of the form 

 
N−1 N−2 

(φn, {tr(β, N, n)}r=1 ), (φn+1, {tr(β, N − 1, n +  1)}r=1 ). 

One would focus on values of β, n, such that 
_ 

, n + 1) = 
_ 
N (β, n) − 1, mean- 

ing that given β, n, increasing consultation by one unit induces a decrease of one 
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unit in the maximal feasible intervals number. One would then identify cases in 

which transiting from φn to φn+1 decreases R’s gross payoff because one more con- 
sulted sender does not make up for the caused loss in individual informativeness. 

In seeking to obtain such a result, the problem encountered is that there is no sim- 

ple formula for the difference between (or the ratio of) Vp(β, N − 1, n + 1) and 

V (β, N, n), let alone for the difference (or the ratio of) V (β, , n) − 1, n + 1) 
and Vp(β, N (β, n), n). We leave a further examination of this issue for further work. 

We now present a counterpart of Proposition 3. The underlying mechanism is the 

same as in Proposition 3 and thus not repeated. 

 
PROPOSITION 6 (The Curse of Trustworthiness): Let there be M ≥ 1 experts. 

For  every  N  ≥  2,  for  c  sufficiently  small  there  is  a_n              ε
∗ >  0,  such  that for 

ε ≤ ε∗ R’s  expected  payoff  is  smaller  under  β =  β(N, M) + ε  than    under 

β′ = β(N, M) − ε. 
 

V. Extensions 

 
A. Asymmetric Equilibria and Babbling 

 
It may appear problematic that we do not consider the possibility of babbling by 

a subset of experts given that excessive consultation often hurts R. A first response 

to this critique is that equilibria featuring babbling can be eliminated if we  assume 

an expert cost to becoming informed or to communicating. An expert would not bear 

the cost of becoming informed and/or of producing a report (and even writing a 

bogus report is demanding) if he knows that his report will be ignored. The only way 
to reconcile costs on the sender side with babbling would be to assume that senders 

receive a monetary transfer. But why would a sender known to babble and who is 

never consulted be paid and who would pay him? 

A second argument builds on the neologism proofness criterion (see Farrell 1993). 
The criterion assumes availability of a rich exogenous language endowed with a   lit- 

eral meaning and involves asking whether given neologisms are credible and thereby 

break the equilibrium. Let M  =   2 and let experts be called S1 and S2. Consider an 
equilibrium in which S1 uses the semi-revealing strategy θ∗(β, 1), S2 babbles, and 

R only consults S1. Suppose that R (voluntarily or inadvertently) encounters S2 after 
having consulted S1 and having received m = θ∗(β, 1). The statement “ω is strictly 

below _2  θ∗(β, 1)” constitutes a credible neologism. Indeed, supposing it is believed 

and assuming that R already consulted S1 and received θ∗(β, 1), S2 would only want 

to state this if true. To see this, note that threshold t ∗ = 

∗ 
_ 
2 

_2  θ∗(β, 1) satisfies 

implying that an unbiased S2 strictly prefers inducing belief _t   to the equilibrium 
2 

belief θ∗(β, 1) if and only if ω < t ∗. Anticipating the possibility of credible com- 
munication by S2, for c low enough R would thus want to consult S2 after having 

consulted S1 and received m  =    θ∗(β, 1). The equilibrium is thus not neologism 
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proof according to a slightly extended definition of the criterion that includes endog- 

enous consultation choice. A major caveat is that the neologism proofness criterion 

would also destroy equilibria with symmetric partitional communication and no 
babbling. Indeed, given an equilibrium partitional profile {tr}

N−1, any neologism of 

the form “ω  <  _1  t1,” would be credible.2 

I conjecture that an adapted version of announcement proofness (see Matthews, 

Okuno-Fujiwara, and Postlewaite 1991) would eliminate equilibria featuring bab- 

bling by a subset of M − n experts while at the same time preserving equilibria 
featuring a symmetric informative partitional profile, given c low enough. The mod- 

ification of the criterion entails considering endogenous consultation (as above) as 
well as suitably restricting the set of available announcement strategies to ones that 

are isomorphic (not necessarily exactly identical) to the partitional strategy profile 
used by non-babbling agents. In any equilibrium featuring babbling by a subset of 

experts, I conjecture that some permitted announcement strategy (together with cor- 

responding announcements) is credible for a babbling expert conditional on being 
consulted. Given c low enough R, anticipating this, deviates to consulting a babbling 

expert after a nth consultation yielding mN. In contrast, in an equilibrium involving 

no babbling, I conjecture that no permitted announcement strategy (and correspond- 

ing messages) is credible. 
 

B. Asymmetric Equilibria and Observable Expert Position 

 
In many situations, experts are likely to know their position in the consultation 

sequence. Search engines provide a fairly predictable ordering of results for any 

given search. On a given US economic issue, Wall Street Journal articles appear 

above New York Times articles, which themselves appear before Washington Post 

articles, etc. Most people examine the highest ranked result first, then the sec- 

ond, etc. Some experts might also be marginally more credible, cheaper, or better 

accessible and thus tend to be consulted earlier than others. Claiming that experts 

know their position can refer to two possible cases. One possibility is that this is 

hardwired into the game: Experts simply observe their position in the consultation 

sequence. Another possibility is that experts do not observe their position but know 

it in equilibrium because R’s strategy specifies a specific deterministic consultation 

sequence. A key difference is that in the first case, a deviation from the equilibrium 

consultation order is detected by experts. We shall focus primarily on the first case. 

Could R benefit from experts observing their position in the consultation sequence 

rather than ignoring it? The answer is negative if we consider symmetric N-intervals 

communication strategy profiles. Conditional on sending mN, early (late) experts   

in the observable position scenario anticipate a higher (lower) expected number of 
future consultations than experts in the unobservable position scenario. It   follows 

that early biased experts in the observable position scenario face increased misre- 

porting incentives while late biased experts face decreased misreporting incentives. 

Restricting ourselves to symmetric equilibria, incentives exhibit a lowest  common 

 

2 If M = 1 (a unique sender), the semi-revealing profile θ∗(β, 1) appears to be neologism proof. This is note- 
worthy given that in the Crawford and Sobel (1982) model, no influential equilibrium is neologism proof. 
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denominator property: A symmetric equilibrium featuring very refined individual 

communication requires that even early senders face no deviation incentives, which 

is impossible to achieve. 

If we allow for asymmetric strategies, it is less clear that the observable position 

regime is dominated. One would then expect optimal equilibria to feature coarse 

communication by early senders and increasingly refined communication as one 

moves along the consultation sequence. Suppose there are two experts {S1, S2} and 
that S1 is consulted first. A simple scenario is partitional communication by both 
with  S2’s  partition  featuring  more  intervals.  Let Sj  use  the N j-intervals strategy j    N

j−1
, assuming N 2 N 1. If biased, S sends m   . If unbiased, S sends m given 

{tr}r=1 > 
j j) 

j Nj j r 
j 

ω ∈ [tr−1, tr   (including the upper bound for r  = N ). 
One might first consider equilibria in which R only asks for a second opinion 

after a suspicious high message mN 1, as in the main analysis. Checking incentives 
here is, however, very complex. If S2 is much more informative than S1, there are 
now new potential deviation incentives for S1 and R as compared to symmetric par- 

titional equilibria. An unbiased S1 might deviate to sending mN for ω low in order to 
encourage a second consultation, in the hope that R meets an unbiased S2 and learns 

very accurate information. For the same reason R may wish to consult again after a 

low message. 

One might instead consider equilibria in which R always asks for a second opin- 

ion, this being sequentially rational. Consultation behavior is now unaffected by 
the message received in round 1 and S1’s incentives are as a consequence much 

1   N 1−1 2   N 2−1 

simpler. We now examine such a scenario. Given the profile {tr }r=1 , {tr }r=1 , let 1     , t 2 
2    , β, 2   be the expected value of ω upon receiving   m followed by 

 
AQ 1 

B̃(t
N 1−1    N −1 ) N 

1
 

mN 2. Necessary (NB: not sufficient) conditions for the above to be incentive compat- 

ible for senders are as follows. For each j  ∈ {1, 2}, 

t   j    + t  j 1    , t 2 
2 , β, 2 − t j = t j − _N   −_1   N  −_2 

B̃(t
N 1−1 N  −1 ) −1 Nj−1 ( 2 ) 

 

and  j j j j   
, ∀i ∈ 1, .., Nj − 2 . 

t i+1 − t i  = t i − t i−1 { } 
 

The partitional strategy of each sender Sj thus features Nj − 1 equally sized inter- 
vals to the left of t j . Note that these conditions echo those given in Lemma 3. 

We now 
Nj−1 

consider a class of partitional profiles parametrized by N 1 and the integer 
x. In this class, x describes the relative fineness of S2’s communication with respect 

to S1’s communication . Given N 1 and x ≥ 2, set N 2 = (2x + 1) (N 1 − 1) + x + 1. 
In other words, each interval to the left of t 1 

1    in S1’s partitional strategy gives rise 

to 2x + 1 nested intervals in the partitional strategy of S2 . The latter sender can thus 
potentially refine the information provided by S1. Set furthermore 

 

2 =  t 1 
1 + 1 

N 1−1     x      . 
t
N 2−1 N  −1 

(2(N 1 − 1))(x + _1 



 

 

N  −1 

N  −1 

N−1 

 

 
 

 

We  focus on the limit strategy for x  →  ∞. As x tends to infinity, N 2 tends    to 
2 1 2 

infinity and it can be shown that tN 2−1  tends to B̃ (tN 1−1, tN 2−1, β, 2). In the limit, 
1 

S2 thus uses a semi-revealing strategy with threshold t 1 
1       + 

1 

tN 1−1 

2(N1 − 1) 
. To find the 

value of tN 1−1 featured in such a limit equilibrium given N1 , we simply need to find 
a t that solves 

t + t    B  t, t + t , β, 2 . 

2(N1 − 1) 
= 

( 2(N1 − 1) ) 

The solution of the above is unique and has a fairly simple closed form which is 

omitted here. An interesting feature of this class of equilibria is that it features grad- 

ual learning even conditional on R meeting only unbiased senders and the state being 

low. If ω ≤ t 1 
1 , an unbiased second sender refines the information provided by a 

first unbiased sender though both hold the same information and both have the same 

preferences. The only reason behind gradual learning is to make sure that R consults 

again even after a low message in the first consultation. Which is in turn necessary 

to ensure that S1’s strategy is incentive compatible, as explained earlier. 

Asymmetric equilibria might also exist given unobservable sender positions. Let 

there be two senders and assume that sender identities are still observable (S1 and 

S2), positions in the consultation sequence being, however, unobservable to senders. 
Consider an asymmetric partitional equilibrium in which the first consulted  sender 

is less informative than the second consulted sender, a second consultation taking 
place only after a high message. This appears impossible to support as an equilib- 

rium outcome. If the first consulted sender (say S1) is the least informative one,   R 
would indeed deviate to consulting S2 first. Under unobservable positions, equilib- 
ria featuring a conditional second consultation would thus have to feature a more 
informative first sender. The paradox of such equilibria is that given the equilibrium 
consultation strategy of R, the second consulted sender could in principle be much 

more informative given that he is the last one (implying no incentive to discourage 
a next consultation). The coarseness of his communication only serves to make R’s 
consultation plan incentive compatible. 

 
C. Other Forms of Expert Bias 

 
Our modeling of expert bias is very particular. Staying close to our setup, three 

crucial aspects that are eluded are the following. First, bias could also be negative. 

Second, assuming only positive bias experts may have different ex ante probabilities 

of being biased. Finally, bias could be moderate as opposed to radical. We briefly 

discuss these possibilities in what follows. 

One might consider a model with symmetric experts  whose  bias  is  either  

zero,  maximally  positive  or  maximally  negative  with  respective   probabilities 

{1 − αh − αl, αh, αl}. Consider the following so-called two-sided partitional com- 

munication strategy given by {tr}r=1 . An unbiased sender sends the message mi cor- 

responding to the ith interval. A negatively (positively) biased expert always sends 
m1 (mN). The consultation strategy of R specifies stopping consultation as soon as 

receiving some message in {m2, .., mN−1} and continuing otherwise for a maximum of 



 

 

 

 

 

 
n rounds. Equilibrium final beliefs are now much more numerous than in our current 

model with one-sided bias. In the one-sided bias model, the set of equilibrium final 

beliefs of R contains n different elements. It features one final belief for any equilib- 

rium message sequence ending with a message from {m1, .., mN−1} and one final belief 
for the message sequence containing n times mN. In the two-sided bias model, under 
the assumed consultation strategy, the set of equilibrium final beliefs of R contains 

2n − 1 elements. There is still one final belief for each equilibrium message sequence 
ending with a message from {m2, .., mN−1}. There are two final beliefs corresponding 
to unilateral sequences of n times, respectively, m1 and mN. In addition, there are now 

also n − 1 final beliefs corresponding to equilibrium message sequences containing 
exclusively messages m1 and mN and at least one of each. Given the above, the belief 
distribution attached to m1 or mN by a given sender might be more difficult to compute 
than in the one-sided bias model, thus rendering the analysis of sender incentives more 

complex. New questions arise within this model. Are negative and positive biases in 

any sense complementary? Given a total likelihood of bias α̃ = αh + αl, does R 

prefer αh and αl to be symmetric or asymmetric? 
A second variation of our model is to go back to our original setup but assume that 

experts have different likelihoods of being (positively) biased. There is thus a high 

and a low credibility expert (Sh and Sl) featuring, respectively, βh > βl. Suppose 
that the experts’ position is unobserved by the latter. Consider a partitional com- 

munication equilibrium in which Sh is consulted first and Sl is consulted only if Sh 

sends the highest message. This scenario appears more attractive than the reversed 

scenario in which Sl is consulted first for two reasons. Consulting Sh first allows   

to minimize the likelihood of having to consult again. Furthermore, a biased first 

expert’s incentive to deviate to mN−1 is minimized by letting the second consulted 

expert be the low credibility one. This allows to maximize the fineness of the first 

sender’s partitional communication, which in turn allows the second sender’s com- 

munication to be very fine without incentivizing R to reverse the consultation order 

(see discussion in previous subsection). 
A third interesting extension would be to allow for moderate as opposed to  rad- 

ical bias. Consider a model in which a given expert may be either unbiased, max- 

imally positively biased or moderately positively biased with ex ante  probabilities 

{1 − γl − γh, γh, γl}. In the second case, the expert’s utility function is given by a 

while in the last case it is given by −(a − (ω + b))2, for some positive and not too 
large b. Recall that in our main setup, the radical bias of biased senders implies that 

we can focus on simple equilibria in which only the highest message is suspicious. 

These equilibria may not exist anymore and give way to equilibria in which multi- 

ple messages are suspicious. One interesting question would be whether for   given 

γ̃ = γl + γh >  0, R prefers the case of γl  =  0 or that of γh  =  0. Another ques- 

tion is whether for a given total probability γ̃ of biased experts, R favors symmetric 
values of γl and γh or asymmetric ones. 

 

D. Simultaneous Consultation 

 
In many contexts, multiple experts are consulted simultaneously rather than 

sequentially. It is for example common practice for the editor of an academic 
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journal to simultaneously order reports on a given paper from multiple referees. The 

Amazon product page features a reviews aggregator summarizing grades awarded 

by anonymous reviewers. 

While we give a detailed analysis of simultaneous consultation in online 

Appendix I, we here offer a preview of results. We show that semi-revealing com- 

munication and multiple simultaneous consultations are compatible in contrast to 

the sequential case. Given this positive finding, whether sequential or simultaneous 

consultation is optimal for R is unclear. While the first protocol saves consultation 

costs by offering the option to terminate consultation early, the second protocol 

yields more informative individual reporting. We  explicitly compare the two   pro- 

tocols for M = 2 and show that for intermediate β and c high enough, sequential 
consultation is optimal. The intuition is as follows. A relatively high c implies that 

it is important to avoid ordering superfluous reports. An intermediate β implies that 

individual (semi-revealing) reports under simultaneous consultation are not radi- 

cally more informative than individual (partitional) reports under sequential consul- 
tation, so that the informational benefit of the former protocol does not compensate 

for its cost-inefficiency. 

Assume that R is exogenously committed to simultaneously consulting two 

experts. Given this, there exists an equilibrium with full revelation by both senders. 

As explained in online Appendix I, it is, however, not robust to the presence of noise 

in the messaging process. Given the assumed consultation strategy, there also exists 

a unique incentive compatible semi-revealing profile given by θ = θ∗(β, 2).   The 
key behind the possibility of semi-revealing communication is that a biased sender 

cannot affect the number of senders consulted and thus does not have an incentive 

(as in the sequential case) to deviate to θ∗(β, 2) − ε to preempt further consultation. 
The semi-revealing scenario is furthermore robust to the presence of noise in the 

messaging process. 

We wish to compare simultaneous and sequential consultation protocols  in 

terms of R’s welfare. Denote by Vsr (β, 2) the gross expected payoff of R given  

that she simultaneously consults two experts using θ∗(β, 2). Under sequential 

consultation,  we  a_ssume  that  R  uses  φ2  while  senders  use  the  partitional  strat- 
_ N −1 _ _ 

egy {tr(β, N , 2)}r=1 , where  N  is shorthand for  N (β, 2) which is the    maximal 
achievable intervals number given β_and φ2. For each β, we shall consider values 

_ N −1 

of c, such that given {tr(β, N , 2)}r=1 , the sequential consultation strategy φ2 is 

indeed incentive compatible. 

In order to compare the two protocols, we compare the net expected payoff of R 

under each, and thus examine the inequality 

V  (β, 2) − 2c  ≤ V (β, 
_ 

2) 

− [1 + t_ 

_ 

(β, N , 2) (1 − β) + 1 − t_ 

_ 

(β, N , 2)] c, 
 

which simplifies to 

_ _ 
Vsr (β, 2) − Vp(β, N , 2) ≤ β t _   (β, N , 2) c. 

N −1 
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In Figure 1, the dashed curve corresponds to V  (β, 2) − V (β, 
_    

2), while solid 
_ 

curves correspond to βt_   (β, N , 2) c for c  =  0.005, 0.01, 0.015, 0.02. We   con- 
sider β  ∈  (

_1, _2  , implying N (β, 2)  =  3. The figure reveals that for c  ≥  0.015, 
2  3] 

sequential consultation dominates simultaneous consultation. 

 
VI. Conclusion 

 
Our main finding is that when information is elicited from multiple experts 

sequentially (and sequentially rationally), more extensive consultation comes at the 
price of less individually informative consultations. This trade-off lies at the core of 

the three sampler’s curses identified: Access to more experts, a lower cost of con- 

sultation, as well as higher expert trustworthiness, may all hurt R. Further research 

should assess whether our findings survive in more general environments and also 

ought to draw implications for the optimal design of online review mechanisms. 

Incentives of unbiased and biased experts to provide potentially costly reviews also 

ought to be taken into consideration. 

 

Appendix 

 
A. Proof of Lemma 1 

 
Step 1: This proves the if part of the statement contained in point (i) (i.e., suf- 

ficiency). Let R use τn. We first show that if θ satisfies (2), it is incentive compati- 

ble for unbiased senders. There are two cases to consider; either ω < θ∗(β, n) or 

ω ≥ θ∗(β, n). In the first case, an unbiased sender knows that by sending a message 

ω, the final belief of R will be given by ω for sure. This is true as any equilibrium 

message profile containing at least one message ω < θ∗(β, n) induces R to assign 
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probability 1 to ω. An unbiased sender thus has no strict incentive to deviate for   

ω < θ∗(β, n). On the other hand, if ω ≥ θ∗(β, n), sending θ∗(β, n) will lead to 

the final belief θ∗(β, n). Indeed, in equilibrium, R will receive for sure only message 
θ∗(β, n). Recall finally that any message profile to which Bayes’ rule cannot be 

applied gives rise to belief ω = 0. If ω ≥ θ∗(β, n) it is thus clear that an unbiased 

sender has no incentive to send a message ω′ ≠ θ∗(β, n). 
 

Step 2: This proves the only if part of the statement in point (i) (i.e., necessity). 
We now show that if θ does not satisfy (2), it is not incentive compatible for unbiased 
senders. Assume that the threshold θ does not satisfy (2). Recall that B(θ, β, n) is 

strictly larger than θ for θ < θ∗(β, n) and strictly smaller than θ for θ > θ∗(β, n). 
Let θ < θ∗(β, n). It follows that the highest equilibrium message m  = θ is s.t. 

B(θ, β, n) > θ. If ω = θ + ε, for ε positive and sufficiently small, an unbiased 

sender can thus profitably deviate to sending message θ − ε. This is trivial if n = 1. 

If n = 2, there are two possibilities. Either R is the second expert to be consulted 

and the first sender sent θ, in which case the message profile (θ, θ − ε) is an equi- 

librium profile and gives rise to belief θ − ε. Or R is the first to be consulted, so 

that θ − ε will discourage a further consultation and R’s final belief will be θ − ε. 

Let θ > θ∗(β, n). It follows that the highest equilibrium message m  = θ is s.t. 
B(θ, β, n) < θ. If ω ≥ θ, an unbiased sender can thus profitably deviate to  send- 

ing message θ − ε, for strictly ε positive but sufficiently small. If n = 1, this is 

immediate. If n  =  2, the argument is the same as that given above for n  = 2. 

 
Step 3: This proves point (ii). Note simply that if R consults only once for sure, 

then message θ∗(β, 1) triggers the highest possible expected belief among all avail- 
able messages. Recall that any message to which Bayes’ rule cannot be applied 

gives rise to belief ω = 0. 
 

Step 4: This proves point (iii). Suppose that ω = 0. A biased sender can 

advantageously deviate to a message θ∗(β, 2) − ε, for ε positive but arbitrarily 

small. By doing so, he ensures that R adopts belief θ∗(β, 2) − ε with probabil-   
ity 1. Indeed, either this is R’s first consultation and she will not consult again or 

this is her second consultation and she first encountered a biased expert who sent 

θ∗(β, 2), in which case the message profile (θ∗(β, 2), θ∗(β, 2) − ε) leads to 

belief θ∗(β, 2) − ε. If, instead, the biased sender follows his equilibrium strategy 

and sends the high message θ∗(β, 2), he recognizes that R will adopt either belief 

θ∗(β, 2) or 0, both with strictly positive probability. Clearly, in expectation, he is 

better off sending θ∗(β, 2) − ε, for ε sufficiently small. ∎ 

B. Proof of Lemma 2 

 

Point (i) is proved in the main text. This proves point (ii). Assume that senders 

use the semi-revealing strategy profile θ∗(β, 1). Note that limβ→1 θ
∗(β, 1) = 1. It 

follows immediately that 

1 
1    _1 _1 

lim 
β→1 

vsr (β) =  1 − (1 − ∫
0

 (2  
− ω) dω)  = 12 

.
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sr 
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In contrast, lim v 2 (β) = 0. This holds true because the expected payoff of R, 

conditional on having received m = θ∗(β, 1) in the first consultation and stopping 

consultation, tends to 1 for β tending to 1. Formally, the latter expected payoff is 
given by 

1 − 
(1 − β) 1 θ (β, 1) ∗ 2 

∗ 

_ _ 

1 + (1 − β) θ∗(β, 1) 0 
(θ (β, 1) − ω) dω 

−_1 _1 (θ∗(β, 1) − ω)2 dω. 

1 + (1 − β) 1 − θ∗(β, 1) 
∫θ∗(β, 1) 

The corresponding closed form can be shown to converge to 1 as β tends to 1. 
The fact that this expected payoff tends to 1 immediately implies that the marginal 
value of an extra consultation tends to 0 conditional on a first consultation yielding 

m  = θ∗(β, 1). 
1 2 

It follows that for β large enough, vsr (β) > vsr (β). We may conclude that for β 
large enough, setting c  = v 2 (β) + ε and picking ε sufficiently small, there exists 
an equilibrium featuring a unique consultation and the semi-revealing communica- 

tion strategy profile θ∗(β, 1). Indeed, the marginal value of the first (second) con- 

sultation is higher (lower) than its cost. R can thus commit to consulting once and 

only once. ∎ 
 

C. Proof of Lemma 3 

 

Step 1: Recall that B(tN−1, β, n) is the expected value of the state conditional   

on senders using the N-intervals strategy profile (t1, .., tN−1) and having received   
n times the highest message mN. In order for an unbiased sender to be indifferent 

between mN−1 and mN at ω = tN−1, it must hold true that 

(9)     B(tN−1, β, n) − tN−1 

tN−1 + tN−2 

2 ) ⇔ t − t = 2(B (t , β, n) − t ). 
=  tN−1 − (

_
 N−1 N−2 N−1 N−1 

 

Clearly, in order  for  an  unbiased  sender  to  be  indifferent  between  mi−1  and  
mi  at  every  ti,  for  i  ∈ {1, .., N − 2},  we  furthermore  need  ti − ti−1  = Δ,  for  

i  ∈ {1, .., N − 2},  for  some  constant   Δ > 0.   Given   (9),   it   must   be   that 
Δ  =  2(B (tN−1, β, n) − tN−1). 

Step 2: The ratio    
tN−1 must be an integer for there to exist an integer number of 
Δ 

intervals of size Δ between tN−1 and 0. In order for there to be N − 1 intervals to tN−1 

the left of the threshold tN−1, it must hold true that_  =  N − 1. Using the fact that 

Δ = 2(B (tN−1, β, n) − tN−1) this is equivalent to  requiring 

B(tN−1, β, n) 

( ) tN−1 
= 

2(N − 1) + 1 
.
 

2(N − 1) 
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Step   3:   For   any   n  ≥ 1,   β ∈ (0, 1),   and   N  ≥ 2,   there   is   a     unique 
tN−1  ∈ (0, θ∗(β, n)) that  satisfies  (10).  First  note  that 2(2 − 1) + 1 3 

= while 
2 N 1) + 1 2(2 − 1) 2 

2(N − 1) 
is decreasing in N and converging to 1 as N tends to infinity. As to the 

behavior of 
B(tN−1, β, n)

, note first that 
tN−1 

B(θ, β, n) 
∂ (_ 
_ 

∂ θ 

(θ
2 − θ2(1 − β)n − 2θ + 2θ(1 − β)n + 1) 

= − 
2 

< 0, ∀θ, β, n. 

2θ2(θ(1 − β)n − θ + 1) 

Furthermore,   given   that   B(0,  β,  n)  =  B(1,  β,  n) = 
B(θ, β, n) 

 
_1,   it   follows   that 

limθ→0
_ = +∞. Finally, recall that by definition, 

B(θ∗(β, n), β, n) 

θ∗(β, n) 
= 1.

 
 

We   may  thus  conclude  that  for  any  n, β,  and  N ≥ 2,  there  is  a  unique 

tN−1 ∈ (0, θ∗(β, n)) that satisfies (10). ∎ 

 

D. Proof of Lemma 4 

 
Step 1: Let ω = 0. Assume a putative equilibrium featuring the unique U-IC N-

intervals strategy profile (t1, ..,tN−1) and φn. The pool from which senders are 
drawn contains a total of M individuals. We wish to compute the distribution that a 
consulted sender assigns to his possible location l in the sampling sequence. Given 

n, the ex ante probability of being the first to be consulted is _1 . The ex ante prob- 
ability  of  being  the  second  picked  is  (

_M − 1 _1 (1 − β).  Summarizing,  the 
M  ) M − 1 

ex ante likelihood of being the k th sender consulted is _1 (1 − β)k−1. The probabil- 

ity of being the kth sender consulted conditional on being consulted is thus 
 

_1    1 − β)k−1
 k−1 

P(l  = k | ω = 0) = M 
( 

i=n _1 
 

i−1 
β(1 − β) 

1 − (1 − β)n . 
∑i=1 

M  
(1 − β) 

 

The denominator in the middle expression denotes the total probability of being 

consulted (either first or second, etc.). We now want to examine the incentives of a 

biased sender. Assume that you are the kth expert consulted and ω = 0. Sending 

mN−1 triggers for sure belief μ(mN−1) given by 
 

μ(mN−1) = 
tN−1 + tN−2 

2 

4tN−1 − 2B(tN−1, β, n) 
=  ( 2 ), 

= 



 

 

_ 

n 

 

 

 

while mN triggers either belief μ(m1) given by 

μ(m1) = 
t1 + t0 

2 
= 

2(B(tN−1, β, n) − tN−1) 

2 
, 

if R meets an unbiased sender at any point in the future, or μ(mN)  =  B(tN−1, β, n) 
if R meets no unbiased sender at any point until she stops consulting. Given that 

you are the kth expert consulted and that you send mN, the likelihood that R meets 

no unbiased sender at any point until she stops consulting is (1 − β)n−k. So the 
expected belief triggered by sending mN is given by 

(1 − β)n−k μ (mN) + (1 − (1 − β)n−k) μ (m1). 

Let E(μ | mi, ω) denote the expected belief of R, as computed by an expert not 
knowing his position in the consultation sequence, if he sends message mi and the 

state is ω. Clearly, 

E(μ | mN, 0) 
 

n 

= ∑ P (l = k | ω = 0)((1 − β)n−k μ(mN) + (1 − (1 − β)n−k)μ(m1)). 
k=1 

 

Note that 
 

P(l  = k | ω = 0)(1 − β)n−k  =  
β(1 − β)

 n−1 
_ 

1 − (1 − β)n
 

 

so that 
 

∑ P(l  = k | ω = 0)(1 − β)n−k  =  
nβ(1 − β)

 n−1 . 
 

k=1 

_ 

1 − (1 − β)n
 

 

We may thus write 

 

E(μ | mN, 0) = nβ(1 − β)n−1
 _ μ(mN) + 

nβ(1 − β)n−1
 

1 −_ μ(m1). 

1 − (1 − β)n ( 1 − (1 − β)n) 
 

Finally, the expected belief triggered by message mN−1 is simply 

 

E(μ | mN−1, 0) = μ (mN−1) = ( 
4tN−1 − 2B(tN−1, β, n) 

2 ). 

 

Indeed, sending mN−1 leads R to immediately stop consulting. 
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Step 2: Assume that R uses the strategy φn. The U-IC N-intervals strategy profile 

(t1, .., tN−1) is thus B-IC, given ω = 0, if and only if 

nβ(1 − β)n−1
 

1 − (1 − β)n) ( 

nβ(1 − β)n−1
 

2(B(tN−1, β, n) − tN−1) 

2 ) 

+ 
(1 − (1 − β)n) 

B(tN−1, β, n) 
 

4tN−1 − 2B(tN−1, β, n) 

≥  ( 2 ), 
 

which, after reorganizing, reduces to 
 

B(tN−1, β, n) _3 nβ(1 − β) n−1 

(11)  _  ≥ − 1_   . 

tN−1 (2 2  1 − (1 − β)n) 
 

Step 3: Assume that ω ∈ (0, t1). Then clearly, the expected payoff to a biased 

sender of sending mN is the same as in the case of ω = 0. Indeed, if R encounters 

an unbiased sender she receives m1. On the other hand, the payoff attached to mN−1 

is the same as in the case of ω =    0. It follows that the U-IC N-intervals strategy 
profile (t1, .., tN−1) is B-IC, given ω ∈ (0, t1), if and only if (11) holds. 

Assume instead that ω ∈ (ti, ti+1) for i  ∈   {1, .., N − 2}. Then the payoff to a 

biased sender of sending mN is larger than in the case of ω = 0. Indeed, if R encoun- 

ters an unbiased sender she receives m which triggers action 
ti + ti+1  > 

t1
 

other hand, the payoff attached to mN−1 is the same as in the case of ω = 0. It fol- 

lows that if the U-IC N-intervals strategy profile (t1, .., tN−1) is B-IC, given ω = 0, 

then it is B-IC, given ω ∈ (ti, ti+1), for i  ∈ {1, .., N − 2}. 
We may conclude that the U-IC N-intervals strategy profile (t1, .., tN−1) is B-IC if 

and only if (11) holds. ∎ 
 

E. Proof of Proposition 1 

 
If only one sender is available, R can obtain Vsr (β, 1), which is a continuous and 

monotonously increasing function of β tending to one for β tending to one. On the 

other hand, for any β ∈ (0, 1) and finite N, Vp(β, N, 2) is a continuous and increas- 

ing function of β and lim      V (β, N, 2)  <  1. Finally, we know that        , 2)  = 2 

for β ≥ _2. ∎  

F. Proof of Proposition 2 
 

Step 1: We first consider the semi-revealing scenario. We know from Lemma 2 

that setting c = vsr (β) + ε, for β sufficiently large and ε sufficiently small there 
exists an equilibrium featuring a unique consultation and the semi-revealing com- 

munication strategy profile θ∗(β, 1). Indeed, the marginal value of the first (second) 
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sr sr 

sr p 

sr 

β→1  sr 
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2 { r }r=1 

N N N 

N 
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consultation is higher (lower) than its cost. R can thus commit to consulting once 

and only once. Second, for any c < v 2 (β) (and thus for c = 0), there exists no 
equilibrium featuring such a communication strategy because R deviates to consult- 

ing again after a first consultation yielding the high message m  = θ∗(β, 1). 

Step 2: We now consider the partitional scenario. For β ≥ _2,  
_ , 2)  = 2. 

3   
N (β 

Thus, if there exists an equilibrium featuring a partitional communication strat-  

egy and multiple consultations, this involves two intervals. For c  =  0, assuming  
a two-intervals communication strategy profile, the sequential consultation strategy 

φ2 is furthermore trivially incentive compatible. 

Step 3: For c = v 2 (β) + ε, R can thus obtain expected utility V  (β, 1) − 2 (β) − ε, while for c′ = 0, she obtains expected utility V (β, 2, 2). Note  that 
vsr p 

 

(12) Vsr (β, 1) − v 2 (β) − ε > V (β, 2, 2) ⇔ 

Vsr (β, 1) − Vp(β, 2, 2) > v 2 (β) + ε. 

_1 

Now, note that limβ→1 t1(β, 2, 2) =  
2
, implying in turn that limβ→1 Vp(β, 2,    2) 

< 1.  Also,  limβ→1 Vsr(β, 1) = 1  given   that   limβ→1 θ
∗(β, 1) = 1.   Finally,   

lim v 2 (β) = 0. It follows that given β large enough, inequality (12) holds for ε 
small enough. ∎ 

 

G. Proof of Proposition 3 
 

Step 1: Assuming that R follows the sequential consultation strategy φ2, there 

exists an incentive compatible N-intervals strategy profile if and only if β  ≤  _2 . When 
shifting the value of β from _2  − ε to _2  + ε, for ε small enough, the finest incentive 

N N 

compatible partitional communication thus changes from N to N − 1. Note also that 
given β ∈ (0, 1) and N  ≥ 2, φ  is incentive compatible, given   t (β, N, 2)    

N−1,
 

if c is small enough. 

 
Step 2: We know the  following  from  Lemma  6.  First,  for  any  N  ≥  2,  

Vp(β, N, 2)  is  continuous  and  increasing  in  β.  Second,  for  any  N  ≥  2  and  

β ∈ (0, 1), Vp(β, N, 2) ≥ Vp(β, N − 1, 2). Given the discreteness of the intervals 

number N, Vp(β, N, 2) increases in discontinuous jumps as N increases.    Consider 
now the inequality 

 

Vp(
_2 _2 _2 

N  
− ε, N, 2) − [1 − (N  

− ε) + tN−1(N  
− ε, 2, N)] c 

 

>  Vp(
_2 + ε, N − 1, 2) − [1 − (

_2 + ε) + tN−2(
_2 + ε, 2, N − 1)] c. 

The left-hand side corresponds to the net expected payoff of R given β = 
N−1 

_2  − ε, 
the  N-intervals  profile  {tr(β, N, 2)}r=1   and  the  consultation  strategy  φ2.  The 

right-hand  side  corresponds  to  the  net  expected  payoff  of  R  given  β  =  _2  + ε, 



 

 

r }r=1 , 2 
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sr 

sr 

β→1  sr 

sr 

 

 
 

 

 

the (N − 1)-intervals profile {t (β, N − 1, 2) 
N−2 

and φ . Clearly, for ε and c  

small enough, the above is satisfied. In the limit, for c and ε arbitrarily small, the 
inequality is satisfied because 

 

Vp(
_2 _2 

N 
, N, 2)  >  Vp(N 

, N − 1, 2), 

which is true given that Vp(β, N, 2) is increasing in N. ∎ 

H. Proof of Proposition 4 

 
We first prove point (i). If only one sender is available, R can obtain Vsr (β, 1), 

which is a continuous and monotonously increasing function of β tending to one for 

β tending to one. Recall also that for any β and finite N, 
 

lim 
n→∞ 

Vp(β, N, n)  =  1 +_1 − 3N
 

6N 2 

_ 

< 1. 

We now prove point (ii). Recall that N (β, 2) =  3 if β  ∈  (
_1, _2 . On the other hand, 

_ 2  3] 

N (β, n) =  2 given any (β, n) s.t. β  ≥  _1 and n  ≥  3. Finally, it is easily shown that 
for β  ∈  (

_1, _2  , Vp(β, 3, 2)  >  limn V (β, 2, n). ∎ 
2  3] →∞   p 

 

I. Proof of Proposition 5 

 
Step 1: We first consider the semi-revealing scenario. We build on a generaliza- 

tion of Lemma 2 to the case of more than two experts. Assume that all M senders 

use θ∗(β, 1). As in point (i) of Lemma 2, for c sufficiently low a unique  consulta- 
tion is not incentive compatible because consulting again after the high message   

m  = θ∗(β, 1) is informative. The equivalent of point (ii) reads as follows: Given  

c = ṽ2 (β, M) + ε, for β large enough and ε sufficiently small a unique consul- 
tation by R is incentive compatible. The proof of this is as follows. First, given       

c = v ̃2 (β, M) + ε, there is by definition no sequentially rational consultation 

strategy φn ∈ {φ2, .., φM}, so that R does not deviate to a second consultation after 

a first consultation yielding message m  = θ∗(β, 1). Second, note that lim    v 1(β) 
= _1 2 

12
.  Third,  for  any  finite  M,  limβ→1 ṽsr (β, M) = 0.  This  holds  true because 

the  expected  payoff  of  R  conditional  on  stopping  consultation  after  receiving 

m  = θ∗(β, 1) in the first consultation tends to one for β tending to one. We    may 
1 2 

now conclude. Given β large enough, it thus holds true that vsr (β) > ṽsr (β, M) and 
1 2 

it follows that one can find an ε small enough such that vsr (β) ≥  ṽsr (β, M) +  ε 

≥  v ̃2 (β, M). 

Step 2: We  now consider the case of partitional communication strategies.   For 
n  ≥  2 and β ≥ 

_2, 
_ , n)  =  2. Thus, if there exists an equilibrium featuring  a 

3   
N (β 

partitional communication strategy and multiple consultations, this involves two 

intervals. For c = 0, assuming a two-intervals strategy profile, the sequential con- 

sultation strategy φM is furthermore trivially incentive compatible. 
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Step  3:  For  c  = ṽ2 (β, M) + ε,  R  thus  obtains  expected  utility  V  (β, 1) − 2 (β, M) − ε while for c  =  0, she obtains expected utility V (β, 2, M). Note that 
v ̃sr p 

(13) Vsr (β, 1) − ṽ2 (β, M) − ε  >  V (β, 2, M) ⇔ 

Vsr (β, 1) − Vp(β, 2, M)  >  v ̃2 (β, M) + ε. 

 
Recall that limβ→1 Vsr (β,  1) = 1. Furthermore, for any finite M, 

limβ→1 Vp(β, 2, M)  <  1 and also 
 

lim lim Vp(β, 2, M)  < 1. 
M→∞ β→1 

 

Finally, for any finite M, lim v ̃2 (β, M) =  0. It follows that for β large enough, 

the inequality (13) holds for ε small enough. ∎ 
 

J. Proof of Proposition 6 
 

Step 1: Assuming that R follows the consultation strategy φn, the N-intervals 
N−1 

communication strategy {t (β, N, n) is incentive compatible for senders if and 
_ _ 

only if β  ≤  β(N, n). The function β(N, n) is furthermore decreasing in N.   Given 
_ _ 

φn, when shifting the value of β from β(N, n) − ε to β(N, n) + ε, for ε small 
enough, the finest incentive compatible partitional communication changes from   

N intervals to N − 1 intervals. Note also that given β ∈ (0, 1) and N ≥ 2, φn is 

incentive compatible given {t (β, N, n)  
N−1 

if c is small enough. 

Step 2: Recall the following two facts. For a given N ≥ 2 and n ≥ 1, Vp(β, N, n) 

is continuous and increasing in β. For any N ≥ 2 and β ∈ (0, 1), Vp(β, N, n) 
increases in N in discontinuous jumps. Consider the inequality 

_ _ _ 

Vp(β(N, n) − ε, N, n) − [1 − (β(N, n) − ε) + tN−2(β(N, n) − ε, N, n)] c 
_ 

>  Vp(β(N, n) + ε, N − 1, n) 
_ _ 

− [1 − (β(N, n) + ε) + tN−2(β(N, n) + ε, N − 1, n)] c, 

where each side corresponds to the expected payoff of R given the assumed value 

of β, the finest feasible partitional strategy and implied expected consultation cost. 

Clearly, for ε and c small enough, the above is satisfied. Indeed, for c and ε arbi- 
trarily small, the inequality is satisfied because 

_ _ 

Vp(β(N, n), N, n) >  Vp(β(N, n), N − 1,   n), 

which is always true as Vp(β, N, n) increases in N. ∎ 



 

 

 

 

 

 
 

REFERENCES 
 

Avery, Christopher, and Margaret Meyer. 2012. “Reputational Incentives for Biased Evaluators.” 
http://www.nuffield.ox.ac.uk/teaching/Economics/Incentive/amfrank.pdf. 

Battaglini, Marco. 2002. “Multiple Referrals and Multidimensional Cheap Talk.”  Econometrica    70 

(4): 1379–1401. 
Battaglini, Marco. 2004. “Policy advice with imperfectly informed experts.” B. E. Journal of Theoret- 

ical Economics 4 (1). 
Blackwell, D. 1951. Comparison of experiments.” In Proceedings of the Second Berkeley Symposium 

on Mathematical Statistics and Probability, edited by J. Neeman, 93–102. Los Angeles. University 
of California Press. 

Crawford, Vincent P., and Joel Sobel. 1982. “Strategic Information Transmission.” Econometrica  50 

(6): 1431–51. 
Ely, Jeffrey C., and Juuso Välimäki. 2003. “Bad Reputation.” Quarterly Journal of Economics 118 

(3): 785–814. 
Farrell, Joseph. 1993. “Meaning and Credibility in Cheap-Talk Games.” Games and Economic Behav- 

ior 5 (4): 514–31. 
Gerardi, Dino, Richard McLean, and Andrew Postlewaite. 2009. “Aggregation of expert   opinions.” 

Games and Economic Behavior 65 (2): 339–71. 
Kawamura, Kohei. 2013. “Eliciting information from a large population.” Journal of Public Econom- 

ics 103 (1): 44–54. 
Krishna, Vijay, and John Morgan. 2001. “A Model of Expertise.” Quarterly Journal of Economics 116 

(2): 747–75. 
Li, Ming. 2010. “Advice from Multiple Experts: A Comparison of Simultaneous, Sequential, and Hier- 

archical Communication.” B. E. Journal of Theoretical Economics 10 (1). 
Matthews, Steven A., Masahiro Okuno-Fujiwara, and Andrew Postlewaite. 1991. “Refining cheap talk 

equilibria.” Journal of Economic Theory 55 (2): 247–73. 
Morgan, John, and Phillip C. Stocken. 2003. “An Analysis of Stock Recommendations.” RAND Jour- 

nal of Economics 34 (1): 183–203. 
Morgan, John, and Phillip C. Stocken. 2008. “Information Aggregation in Polls.” American Economic 

Review 98 (3): 864–96. 
Morris, Stephen. 2001. “Political Correctness.” Journal of Political Economy 109 (2): 231–65. 
Ottaviani, Gianmarco, and Peter Norman Sørensen. 2001. “Information aggregation in debate: Who 

should speak first?” Journal of Public Economics 81 (3): 393–421. 
Sarvary, Miklos. 2002. “Temporal Differentiation and the Market for Second Opinions.” Journal of 

Marketing Research 39 (1): 129–36. 
Sarvary, Miklos, and Philip M. Parker. 1997. “Marketing Information: A Competitive Analysis.” Mar- 

keting Science 16 (1): 24–38. 
Sobel, Joel. 1985. “A Theory of Credibility.” Review of Economic Studies 52 (4): 557–73. 
Wolinsky, Asher. 2002. “Eliciting information from multiple experts.” Games and Economic Behavior 

41 (1): 141–60. 

http://www.nuffield.ox.ac.uk/teaching/Economics/Incentive/amfrank.pdf

