
Enhancing Legacy Software System
Analysis by Combining Behavioural
and Semantic Information Sources

David Cutting
School of Computing Sciences

University of East Anglia

A thesis submitted for the degree of

Doctor of Philosophy

November 2016

c©This copy of the thesis has been supplied on condition that anyone who consults it

is understood to recognise that its copyright rests with the author and that use of any

information derived there from must be in accordance with current UK Copyright Law.

In addition, any quotation or extract must include full attribution.

To my parents, Peter and Valerie,
who brought me into this world,
and have tirelessly supported me.

Maybe this makes up for it all?
At least in some small part?

Even a teeny bit?

Probably not.

Thanks for the inspiration

Acknowledgements

First I must acknowledge and deeply thank my supervisor, Dr. Joost
Noppen, for not only giving me a chance at this project but tolerat-
ing with good cheer my countless mistakes, poor drafts, and general
laziness. Also my great gratitude goes to my second supervisor, Dr.
Anthony Bagnall, for putting up with me. Any errors contained within
are entirely mine.

For their “support” (usually in the form of abuse) in no particular
order I heap praise upon:

1) The fellow dishonourable members of the illustrious bigtime super
funclub of the UEA: Dani and Sam.

2) My fellow 2.02 lab members: Alex, Andrei, Awat, Bogdan, Claudia,
James, Matt, and Sarah.

3) Those funny funny people who have also survived the Nam (you
weren’t there man) and continue to speak to me: Celia, Erwin, Joanna,
Marika (squeak with joy!), Marjolijn, Matt, and Siew Wee.

4) The other members of the Software Engineering Group: Adam,
Steve, and Sultan.

5) My partner in dubious consultancy practice Zelim.

6) My Brothers in Stavros of the NASRA: Amy, Justin, Lily, Matt,
Mike, and Theo.

Thank you to all the school staff who have helped me, with teaching
and admin as well as research, specifically Dan, Gavin, Geoff, Graeme,
Pam, Rudy, and Wenjia. Special thanks also to Binoop, Heidi, Matt,
and Russ in the support team.

I gratefully acknowledge and thank the Ecole Polytechnique de Mon-
treal for providing open access to their IBDOOS tool.

Portions of the research presented in this thesis were carried out on
the High Performance Computing Cluster supported by the Research
and Specialist Computing Support service at the University of East
Anglia.

“Ford!” he said, “there’s an infinite number of monkeys outside who
want to talk to us about this script for Hamlet they’ve worked out.”

– Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Abstract

Computer software is, by its very nature highly complex and invisible yet subject
to a near-continual pressure to change. Over time the development process has
become more mature and less risky. This is in large part due to the concept
of software traceability; the ability to relate software components back to their
initial requirements and between each other. Such traceability aids tasks such
as maintenance by facilitating the prediction of “ripple effects” that may result,
and aiding comprehension of software structures in general. Many organisations,
however, have large amounts of software for which little or no documentation
exists; the original developers are no longer available and yet this software still
underpins critical functions. Such “legacy software” can therefore represent a high
risk when changes are required.

Consequently, large amounts of effort go into attempting to comprehend and
understand legacy software. The most common way to accomplish this, given
that reading the code directly is hugely time consuming and near-impossible, is
to reverse engineer the code, usually to a form of representative projection such
as a UML class diagram. Although a wide number of tools and approaches exist,
there is no empirical way to compare them or validate new developments. Conse-
quently there was an identified need to define and create the Reverse Engineering
to Design Benchmark (RED-BM). This was then applied to a number of indus-
trial tools. The measured performance of these tools varies from 8.8% to 100%,
demonstrating both the effectiveness of the benchmark and the questionable per-
formance of several tools.

In addition to the structural relationships detectable through static reverse
engineering, other sources of information are available with the potential to reveal
other types of relationships such as semantic links. One such source is the mining
of source code repositories which can be analysed to find components within a
software system that have, historically, commonly been changed together during

the evolution of the system and from the strength of that infer a semantic link. An
approach was implemented to mine such semantic relationships from repositories
and relationships were found beyond those expressed by static reverse engineering.
These included groups of relationships potentially suitable for clustering.

To allow for the general use of multiple information sources to build trace-
ability links between software components a uniform approach was defined and
illustrated. This includes rules and formulas to allow combination of sources.
The uniform approach was implemented in the field of predictive change impact
analysis using reverse engineering and repository mining as information sources.
This implementation, the Java Code Relationship Anlaysis (jcRA) package, was
then evaluated against an industry standard tool, JRipples. Depending on the
target, the combined approach is able to outperform JRipples in detecting po-
tential impacts with the risk of over-matching (a high number of false-positives
and overall class coverage on some targets).

Contents

Abstract v

Contents vii

List of Papers xi

List of Figures xii

List of Tables xv

Listings xvii

Glossary xviii

1 Introduction 1
1.1 Introduction . 2

1.1.1 Fundamental Challenge and Contributions 5
1.2 Thesis Structure . 6

2 Literature Review 9
2.1 Introduction to Literature Review 10
2.2 Software Traceability . 10

2.2.1 Requirements Traceability 12
2.3 Reverse Engineering . 13

2.3.1 Introduction to Reverse Engineering 13
2.3.2 Goals of Software Reverse Engineering 14
2.3.3 Language Abstracted Notations 16

vii

CONTENTS viii

2.3.4 Approaches to Software Reverse Engineering 20
2.3.5 Tools for Software Reverse Engineering 24

2.4 Source Code Repository Mining 28
2.4.1 Types of Repository Mining 30
2.4.2 Source Code Mining for Traceability Recovery 32
2.4.3 Change Coupling for Dependency Analysis 32

2.5 Clustering of Related Objects . 34
2.5.1 Generation of a Normalised Dissimilarity Matrix 34
2.5.2 Multi-Dimensional Scaling (MDS) 37
2.5.3 Clustering Techniques . 38

2.6 Change Impact Analysis . 40
2.6.1 Methods . 40
2.6.2 Predictive Change Impact Analysis and Measurement . . . 43
2.6.3 Combined Information Sources 44

3 Benchmarking Reverse Engineering 46
3.1 Introduction . 47
3.2 The Reverse Engineering to Design Benchmark (RED-BM) 48

3.2.1 Target Artefacts . 49
3.2.2 Reverse Engineering Performance Measures 51
3.2.3 Complexity Categories . 53
3.2.4 Extensibility of the Benchmark 54

3.3 Application of the Benchmark . 57
3.4 Benchmark Toolchain . 63

3.4.1 Java Code Analysis . 64
3.4.2 Exchange of Information in Meta Format 65
3.4.3 XMI Analysis and Comparison 66

3.5 Evaluation of Analysis Results . 68
3.6 Related Work . 72
3.7 Conclusion . 73

4 Augmenting Reverse Engineering Using Repository Mining 74
4.1 Introduction . 75

CONTENTS ix

4.1.1 Problem Statement . 77
4.1.2 Working Hypotheses . 77

4.2 Approach . 78
4.2.1 Concrete Example . 79
4.2.2 Formal Definition . 80
4.2.3 Illustrative Example . 82

4.3 Implementation . 86
4.3.1 Information from Repository Mining 88

4.4 Application to Clustering . 92
4.5 Conclusion . 95

5 A Uniform Approach to Combining Multiple Traceability Infor-
mation Sources 98
5.1 Introduction . 99

5.1.1 Problem Statement . 99
5.1.2 Solution Definition . 100

5.2 Approach . 101
5.2.1 Formal Definition . 102
5.2.2 Filtering . 103
5.2.3 Weighting and Truth . 104
5.2.4 Boolean Conversion . 106
5.2.5 Combination and Simple Example 107
5.2.6 Illustrative Example . 110

5.3 Discussion and Limitations . 111
5.3.1 Level of Granularity . 113
5.3.2 Pre-Matrix Filtering . 114
5.3.3 Maintaining Traceability of Relationships 114

5.4 Conclusion . 115

6 Augmenting Change Impact Analysis with Semantic Relation
Information from Version Management Systems 116
6.1 Introduction . 117

6.1.1 Problem Statement . 117

CONTENTS x

6.1.2 Experiment . 117
6.2 Implementation . 118
6.3 Evaluation . 119

6.3.1 Test Subjects . 120
6.3.2 Validation Against Manual Analysis 121
6.3.3 Wider Validation with JRipples 122
6.3.4 Tuning and Sensitivity Levels 124
6.3.5 Actual Follow-up Changes 126

6.4 Presentation of Change Impact Results 128
6.5 Discussion . 129
6.6 Conclusion . 131

7 Conclusion and Future Work 133
7.1 Conclusion . 134
7.2 Future Work . 138

References 140

List of Papers

Published

Cutting, D. and Noppen, J. (2014). Working with reverse engineering output for
benchmarking and further use. In Proceedings of the 9th International Confer-
ence on Software Engineering Advances. IARIA. [Cutting and Noppen, 2014]

Cutting, D. and Noppen, J. (2015). An extensible benchmark and tooling for
comparing reverse engineering approaches. International Journal in Advances in
Software, 8(1&2):115-124. [Cutting and Noppen, 2015]

In Progress

Cutting, D. and Noppen, J. “Identifying semantic links beyond reverse engineer-
ing by combining repository mining”. Target: IEEE Transactions on Software
Engineering

xi

List of Figures

1.1 Thesis Structure . 7

2.1 AST Example [Misek and Zavoral, 2010] 17
2.2 ASG Example Showing non-tree edges [Raghavan et al., 2004] . . 18
2.3 Simple UML Class Diagram showing inheritance and a relation-

ships. Generated using reverse engineering in Astah Professional . 20
2.4 UML Diagram of the relationships shown in figure 2.3 but with

added detail of properties and members 21
2.5 Possible traceability link recovery method [Antoniol et al., 2002] . 33
2.6 Data from Table 2.7 Projected in One Dimension 37
2.7 Data from Table 2.7 Projected in Two Dimensions 38
2.8 Predictive Change Impact Analysis Process, adapted from Li et al.

[2013] . 44

3.1 Reference Class Diagram Design for ASCII Art Example A 58
3.2 ASCII Art Example A Output for Software Ideas Modeller 59
3.3 ASCII Art Example A Output for ArgoUML 59
3.4 org.jhotdraw.io Output from Astah Professional (reconstructed) . 60
3.5 org.jhotdraw.io Output from Rational Rhapsody (reconstructed) . 60
3.6 org.jhotdraw.io Output from ArgoUML 60
3.7 RED-BM Process with Toolchain Elements Highlighted 64
3.8 jcAnalysis running for Cactus target 66
3.9 xmiClassFinder running for Cactus target using Software Ideas

Modeller XMI output . 68

xii

LIST OF FIGURES xiii

3.10 Overall Class Detection (CD) and Compound Measure (CM) Per-
formance by Tool . 69

3.11 Tool Performance by Complexity Criteria 71

4.1 ASCII Artist Worked Example: Static Analysis with Missing Link
Highlighted . 78

4.2 Overview of the Process Used to Extract Semantic Relationships
Between Classes . 79

4.3 ASCII Artist Illustrative Example: Classes Only 84
4.4 ASCII Artist Illustrative Example: Classes with Static (Reverse

Engineering) Relationships . 84
4.5 ASCII Artist Illustrative Example: Classes with Repository Min-

ing Semantic Relationships (Novel Relationships in Red) and Con-
fidence Values . 86

4.6 ASCII Artist Illustrative Example: Classes with Both Relationship
Sets (Duplication in Green, Repository only in Red) 86

4.7 Annotated Network Analysis Output in R for D-UEA-ST Commit
Data . 89

4.8 Annotated Network Analysis Output in R for XMI Analyser Com-
mit Data . 89

4.9 Annotated MDS Output in R for D-UEA-ST Commit Data 91
4.10 MDS Output in R for XMI Analyser Commit Data 91
4.11 MDS Output in R for Eclipse Commit Data, augmented to show

some architectural components . 92
4.12 K-Means Clustering of D-UEA-ST Co-Commit Data with K=3:

Each point (class) is put into one of 3 clusters but the results are
highly unstable i.e. for exactly the same input parameters the left
and right images were produced owing to the initial randomisation
of K centroids . 94

4.13 K-Means Clustering D-UEA-ST Co-Commit Data with K=6: Each
point (class) is put into one of 6 clusters with results more stable
than K=3 (Figure 4.12) but still showing variation for the same
input parameters . 94

LIST OF FIGURES xiv

4.14 EM Clustering of D-UEA-ST Co-Commit Data with Minimum
Standard Deviation 1x10−4: EM delivers stable consistent cluster-
ing but at a resolution (number of clusters) unsuitable for detailed
analysis (e.g. see the right-hand cluster group) 95

4.15 EM Clustering of Eclipse Co-Commit Data with Minimum Stan-
dard Deviation 1x10−2: Segmentation through clustering occurs,
in a stable fashion, but with similar resolution issues to those seen
in Figure 4.14 . 96

5.1 Process Overview of the Uniform Approach to Combining Multiple
Traceability Information Sources 101

5.2 Example Six Element Class Diagram with No Relational Information102
5.3 ASCII Artist Illustrative Example: Classes with Static (Reverse

Engineering) Relationships . 111
5.4 ASCII Artist Illustrative Example: Classes with Repository Min-

ing Semantic Relationships (Novel Relationships in Red) and Con-
fidence Values . 111

5.5 ASCII Artist Worked Example: Classes with Both Relationship
Sets and Strength Values (Static only in blue, repository only in
red, found in both in green) . 113

6.1 Centralised Distribution . 125
6.2 Low Centred Distribution . 125
6.3 Naive significance filter tuning parameters applied to target sam-

ples. The x axis shows the increasingly significance filter (as it is
higher, relationships with a value lower than it are discarded re-
moving noise). The y axis shows the percentage of class coverage.
The blue series indicates class coverage of the overall target (what
percentage of all the classes in the target are included in the change
set) while the red series shows what proportion of the classes in
the JRipples change set are in the jcRA change set. An ideal is
for the blue series (overall coverage) to be as low as possible and
the red series (JRipples coverage) to be as high as possible for the
same values. 127

List of Tables

2.1 Comparison of Reverse Engineering Tools 28
2.2 Examples of software repository types [Hassan, 2008; Kagdi et al.,

2007a] . 30
2.3 Similarity or Commonalities of Components A, B, C for a given

data source X . 35
2.4 Distance Matrix of Components A, B, C for a given data source X 35
2.5 Dissimilarity Matrix for Components A, B, C for a given data

source X . 36
2.6 Normalised Dissimilarity Matrix for components A, B, C for a

given data source X . 36
2.7 Distance Matrix of Components A, B, C 37

3.1 Software Artefact Targets of the RED-BM [Cutting, 2013] 51
3.2 List of Tools and Versions for Use in Evaluation 62
3.3 Simplified Comparative XMI Output from Tools 67
3.4 Criteria Results by Tool . 70

4.1 Example Commit Log . 79
4.2 Example Commits Incremented to Pairs 80
4.3 Classes contained within ASCII Artist Example 83

5.1 Example 6 Element Relationship Matrix 102
5.2 Data Source Matrix Creation and Combination Process

for Example Sources X and Y . 108

xv

LIST OF TABLES xvi

5.3 ASCII Artist Illustrative Example: Reverse Engineering Matrix
SR of Figure 5.3 (components 1,2, and 18 with no relationships
removed for clarity) . 112

5.4 ASCII Artist Illustrative Example: Repository Mining Matrix SM

of Figure 5.4 (components 1, 2, 3, 4, 7, 9, 10, 11, 13, 15, 17, and
19 with no relationships removed for clarity) 112

5.5 ASCII Artist Illustrative Example: Combined Matrix RRM = SR+

SM of Figure 5.5 (components 1 and 2 with no relationships re-
moved for clarity) . 112

6.1 Target Projects Used for Validation 121
6.2 Manual Analysis Results for jflex-1dd 122
6.3 Validation Results Against Targets 124
6.4 Next 10 (N = 10) changes contents (classes contained in next 10

updated) and of those classes the number identified in impact set
generated by JRipples and jcRA 128

Listings

2.1 Singleton Example . 23
4.1 Process Pseudo-code . 84
4.2 Git Commit Log . 87
5.1 Pseudo-code Matrix Example . 109

xvii

Glossary

jcRA Java Code Relation Analysis (jcRelationAnalysis) is a tool created to anal-
yse and explore the relationship between components within Java code

MOF Meta-Object Format, a meta language to describe objects and their rela-
tions to each other (the basis of XMI)

MDS Multi-Dimensional Scaling, the process of taking data described in one set
of dimensions and projecting it as a best fit into a defined differently-dimensioned
space

OMG Object Management Group, a body to set standards for object-oriented
modeling

OMT Object Modelling Technique, a technique used to turn descriptions and
other elements into software components

SEG The Software Engineering Group at UEA

UEA The University of East Anglia

UML Unified Modelling Language, a set of standards by which processes and
software can be modeled and exchanged

XMI XMI Metadata Interchange, a format by OMG for the exchange of struc-
tural information about software

xviii

xix

XML eXtensible Markup Language, a standard language for the representation
of data

Chapter 1

Introduction

1

CHAPTER 1. INTRODUCTION 2

1.1 Introduction

Computer software is simultaneously highly complex, invisible, and under contin-
ual pressure to change [Brooks, 1987]. Previously the entire development process
was fraught with risk. Developers wrote software with little or no reference back
to the original requirements, and without this link not only was effort wasted
but the majority of software projects failed in large part or completely [Naur and
Randell, 1969]. In a survey of successful projects Naur and Randell [1969] found
a common trait was that the requirements were referred back to during the devel-
opment phase, and that code artefacts were traceable back to the requirements
that necessitated them, thus forming the idea of software traceability.

Software traceability is the ability or potential to track links and relationships
between artefacts within a software system. Such links may be between differ-
ent levels of detail. For example they may be from requirements documentation
through design to source code components and vice-versa, or detail relationships
at the same level between software components such as dependencies [Cleland-
Huang et al., 2012; Gotel and Finkelstein, 1994]. Detailed up-to-date traceability
within software has been shown to aid numerous aspects of software maintenance,
including change impact analysis, bug detection and re-factoring. Clear traceabil-
ity links also aid developers in quickly understanding the conceptual structure of
software and their ability to make changes [Cleland-Huang et al., 2012, 2014;
Mäder and Egyed, 2015; Spanoudakis and Zisman, 2005].

With the growing amount of legacy software within organisations, and a gen-
eral overall increase in size and complexity of such software, problems inherent to
software comprehension are also growing. Early adopters of technology are often
left with large legacy codebases which were not only developed prior to trace-
ability being commonplace, but also for which original developers are no longer
available, and so little detailed knowledge about the software exists within the
organisation. As a result, large software archives exist without traceability links
which is a challenge both in terms of maintenance and system comprehension.

The focus of this thesis therefore is to investigate and improve methods of
traceability with specific regard to existing legacy software systems, be that verti-
cal (forward and backward) traceability between design artefacts and code, or hor-

CHAPTER 1. INTRODUCTION 3

izontal dependency traceability identifying links between software components.
Ultimately, with a legacy system lacking documentation, the source code itself

is the de facto standard of operation. Analysis of the code is the only way in
which insight can be gained as a human simply reading the source code line by
line and attempting to comprehend the overall function is next to impossible
[Counsell et al., 2004; Kumar et al., 2015; Meyer, 2006; Philippow et al., 2005].
This field is referred to as reverse engineering, starting with a working system and
by analysing the components in different ways, reaching an understanding as to
how it operates. The most common output of these processes is the regeneration
of structural design diagrams, commonly Unified Markup Language (UML) class
diagrams. These show structural components and their interrelations [Chikofsky
et al., 1990; Sarkar et al., 2013]. Other forms of reverse engineering exist to
determine specialist cases such as detection of design patterns or “bad smells” 1

within the code [Meyer, 2006; Shi and Olsson, 2006].
Although a maturing field, especially in terms of structural recovery, reverse

engineering of code still has a number of challenges which often relate to the
quality, standards, complexity, and size of the analysed code [Counsell et al.,
2004; Meyer, 2006; Pinzger and Antoniol, 2013; Sarkar et al., 2013; Uchiyama
et al., 2011]. Furthermore, there are a wide number of different approaches and
tools but no empirical way to compare their relative performance and accuracy
in recovering structural design information. Such a gap also means that new
techniques or approaches have no common validation set against which they can
be tested and evaluated.

Consequently this led to the creation of the Reverse Engineering to Design
Benchmark (RED-BM) [Cutting, 2013; Cutting and Noppen, 2015]. RED-BM
contains a number of elements including a target set of software source code along
with the gold standard answers, for what elements and relationships are contained
within. The benchmark was applied against a number of industry-standard re-
verse engineering tools and their performance was measured. Additionally the
output of tested tools was included in the benchmark for comparative use. Per-
formance of reverse engineering tools, both free open-source and commercial, were

1“Bad smells” being common yet undesirable mistakes within a codebase that can be easily
refactored away such as duplicated code [Fowler, 1997]

CHAPTER 1. INTRODUCTION 4

found to be widely varied ranging in accuracy from 8.82% to 100% [Cutting and
Noppen, 2015].

A number of exchange tools were created as part of this process. This allowed,
for example, the programmatic use of reverse engineering output from third-party
tools, opening the potential for combinational or external use of this data [Cutting
and Noppen, 2014].

Another potential source of information about a software system lacking doc-
umentation is through historic evolutionary data i.e. how the source code has
changed over time. It is increasingly common for developers, especially teams of
developers, to use source code repositories to coordinate development. Although
not designed with such analysis is mind, repositories do record the changes made
to source code, often with meta data such as who made the change and when,
along with a textual “comment” about the change [Hassan, 2008]. These reposito-
ries are seen as a rich potential source of information about a software system and
have become an increasing focus in many different fields from research into de-
velopment practice, to bug prediction [Allamanis and Sutton, 2013; Kagdi et al.,
2007b; Ramadani and Wagner, 2016; Williams and Hollingsworth, 2005]. Using
historical information in combination with reverse engineering in different areas
e.g. to allow for “source-code aware mining” and increased accuracy is also pos-
sible [Kagdi and Maletic, 2006; Lehnert, 2011].

One approach to using repository mining to inform dependency (horizontal)
traceability is the concept of co-committal; a high correlation between artefacts
being changed at the same time may infer a semantic relationship between them
[Dit et al., 2014; Kagdi et al., 2007a; Ying et al., 2004]. For example if whenever
A is changed, B has a change recorded at the same time, they may be linked.
Previous work in this area indicates that there are links found using this tech-
nique that are not evident through static analysis [Bieman et al., 2003] and that
these component links may be possible to cluster into architectural structures
[Beyer and Noack, 2005]. Use of co-commit information alongside static reverse
engineering data was instigated as a novel technique for research in the comple-
tion of this thesis. This is also an area in which Dit et al. [2014] were separately
working with a somewhat different focus and different implementation.

As a proof of concept, a framework was created to extract co-commit infor-

CHAPTER 1. INTRODUCTION 5

mation (what components were changed and committed at the same time) from
historical repositories and present this in a format of relationship pairs suitable
for use in a number of analysis techniques including clustering.

When dealing with multiple sources of information, a challenge becomes how
to use these disparate forms in a compatible and comparable form, especially as
part of a repeatable and consistent empirical framework. To facilitate such use, a
formal definition of a generic framework was created, in which different informa-
tion sources can be used together, at their highest common level of granularity,
for analysis. Concepts such as “ground truth” (relationships sets known to be
true), relative weighting, and significance filtering are introduced to model the
real-world uncertainty of some information sources.

With continual pressure of change it is imperative that the impact any al-
terations may have on the wider operation of a software system are understood
[Lehman and Belady, 1985]. Most commonly this is done as a form of depen-
dency traceability. That is understanding which components are closely coupled
or related to each other thus gauging the probability and impact one will have on
another often through static source code reverse engineering [Lehnert, 2011]. An
interesting possibility is that of increasing the accuracy of this form of predictive
change impact analysis (PCIA) through the combination of multiple information
sources. To this end the generic approach is implemented to determine coupling
within a source code using two information sources; static reverse engineering
augmented with semantic links mined from source code repository information.

1.1.1 Fundamental Challenge and Contributions

Is it possible to reconstruct richer traceability structures through the combina-
tional use of multiple sources of information?

In order to answer this a number of contributions are made as follows:

• Reverse engineering is investigated and a benchmark created to allow for the
measurement of performance between tools and approaches, highlighting
weak performance and gaps in output (Chapter 3)

• Tools are created to allow the programmatic use of reverse engineering
output for other purposes (Chapter 3)

CHAPTER 1. INTRODUCTION 6

• Source code repository mining as a potential source of semantic information
about software is investigated with a method to analyse sets of commit data
defined (Chapter 4)

• Networking and clustering techniques are applied to mined repository data
to illustrate clear semantic links beyond reverse engineering (Chapter 4)

• A generalised formal approach for the combinational use of multiple infor-
mation sources for a given software system is defined (Chapter 5)

• The approach is implemented in the domain of predictive change impact
analysis using reverse engineering and repository data in combination as
the jcRelationAnalysis (jcRA) tool, and evaluated and found to outperform
an industry standard tool (Chapter 6)

Ultimately, it is concluded (Chapter 7) that it is indeed possible to reconstruct
richer traceability from multiple sources and apply this successfully to a problem
domain.

1.2 Thesis Structure

The thesis structure is shown in Figure 1.1.
A literature review is contained in Chapter 2 in which all the key topics

relating to the research are investigated; software traceability, reverse engineering,
source code repository mining, clustering, and change impact analysis.

In Chapter 3 a benchmark to evaluate, compare, and validate reverse engi-
neering approaches is introduced. The benchmark is described and metrics are
defined before being applied against industry standard tools.

Chapter 4 contains research into the mining of source code repositories and
their potential use alongside static reverse engineering output to combine seman-
tic relationships and make a more complete picture of component relationships.

In Chapter 5 a generic model is introduced and defined allowing for the gen-
eralised use of multiple information sources in a repeatable empirical way to find
and quantify relationships between components.

CHAPTER 1. INTRODUCTION 7

Figure 1.1: Thesis Structure

CHAPTER 1. INTRODUCTION 8

This general approach is then implemented in Chapter 6 to the problem do-
main of change impact analysis utilising two information sources (static analy-
sis and repository mining) to determine impact sets for a number of real-world
change scenarios. The implementation is in the form of the jcRelationAnalysis
(jcRA) tool. This approach is then evaluated against an industry standard tool
(JRipples). The evaluation finds that the new combined information approach
outperforms JRipples in terms of detecting potential impacts with a risk of over-
matching.

Finally, Chapter 7 reaches the overall conclusions of the research project and
identifies potential future work to take the research further.

Chapter 2

Literature Review

9

CHAPTER 2. LITERATURE REVIEW 10

2.1 Introduction to Literature Review

The literature review in this thesis contains an overview of the key literature
related to the research work conducted on the themes identified in Chapter 1.
Specifically there is a brief overview of traceability and requirements traceability
(Section 2.2), reverse engineering of source code (Section 2.3) and mining of source
code repository data (Section 2.4). Clustering techniques potentially offer the
ability to determine varied relationships and links between software components
as an aid to comprehension and are covered in Section 2.5. The domain of software
change impact analysis is discussed in Section 2.6.

2.2 Software Traceability

Traceability in general terms is the ability or potential to track the semantics
of links and relationships between components within a system [Asuncion et al.,
2007; Cleland-Huang et al., 2014] or to “relate data that is stored within artefacts
of some kind along with the ability to examine this relationship” [Cleland-Huang
et al., 2012]. With relation to software, traceability most commonly refers to
requirements traceability (Section 2.2.1) in which high-level software requirements
are linked to designs, and ultimately, the implementation of a software system
e.g. linking manifestations of specific requirements through the complete project
life cycle [Asuncion et al., 2007; Edwards and Howell, 1991].

Traceability was initially recognised as an important factor in software en-
gineering at the 1968 NATO conference which sought to address the “software
crisis” which had become apparent, because of the majority of projects failing
to deliver in part or completely. Naur and Randell [1969] analysed successful
projects to find common traits and gave praise for projects in which “the system
that they are designing contains explicit traces of the design process”, e.g. there
were clear links between levels of the system. By the mid-1970s traceability was
listed by Boehm et al. [1976] as a topic of interest in software engineering to ensure
quality. In the 1980s traceability was established as a requirement for a growing
number of national and international standards often being mandated by large
organisations such as the United States Department of Defence [Cleland-Huang

CHAPTER 2. LITERATURE REVIEW 11

et al., 2014; Dorfman and Thayer, 1990]. Through the 1990s and 2000s numerous
research projects and publications investigated problems with traditional [Go-
tel and Finkelstein, 1994; Ramesh and Edwards, 1993] and automated [Laurent
et al., 2007] or model-driven [Galvao and Goknil, 2007] approaches. In the cur-
rent climate traceability is widely used in development projects, although in some
cases the administration of traceability can become overburdening so providing
little if any benefit [Asuncion et al., 2007]. However the general focus and belief
is that traceability can deliver significant benefits when used correctly both in
terms of requirement delivery, software comprehension and maintenance impact
analysis [Cleland-Huang et al., 2012, 2014; Mäder and Egyed, 2015; Spanoudakis
and Zisman, 2005].

Direction of Traceability

Traceability is the potential to map or link relationships between components
[Asuncion et al., 2007] and it has long been recognised that this mapping and
linking can be focused or arranged in different directions [IEEE, 1984]. From the
literature three concepts or “directions” of traceability can be defined [Asuncion
et al., 2007; Cleland-Huang et al., 2012; Gotel and Finkelstein, 1994; IEEE, 1984;
Jirapanthong, 2015]:

Forward traceability is the ability to identify sub-requirements or compo-
nents from higher-level documentation.

Backwards traceability concerns linking more specific requirements or com-
ponents with their higher-level source (or parent).

Dependency traceability is the linking of related and inter-dependent com-
ponents, outside of a requirement tree, where one component depends on func-
tionality within another.

One option to facilitate multiple directions of traceability (at least forward and
backward between requirements and sub-requirements) is the use of a hierarchical
numbering system. For example, where 1 represents a high-level requirement and
1.1, 1.2 etc are sub-requirements of 1 [IEEE, 1984].

CHAPTER 2. LITERATURE REVIEW 12

2.2.1 Requirements Traceability

Requirements traceability can be an important factor to support and assist vari-
ous systems development processes. These can include analysis, change manage-
ment, reuse and testing. It also allows for clearer acceptance by end-users show-
ing clear links between the requirements and what has been delivered [Mäder and
Egyed, 2015; Spanoudakis and Zisman, 2005]. Specifically “requirements trace-
ability refers to the ability to describe and follow the life of a requirement, in
both a forwards and backwards direction, i.e. from its origin through to its de-
velopment and specification to its subsequent deployment and use, and through
all periods of ongoing refinement and iteration in any of these phases” [Gotel
and Finkelstein, 1994]; tracking the semantics of links between requirements and
system components at each level of the system [Harrington and Rondeau, 1993;
Mäder and Egyed, 2015].

Requirements traceability aids development in a number of different ways,
making clear links between requirements and lower-level steps such as designs,
code and testing. At a later stage it can inform change planning and management,
allowing for easier impact analysis, code verification and feature identification -
tracing all these back even to initial requirements [Cleland-Huang et al., 2012;
Mäder and Egyed, 2015].

According to IEEE [1984] software requirements specifications, either user-
generated or formed during a requirements analysis, direct the fundamental de-
liverables and form of the system. They are a common factor of many software
development projects and when used well can be beneficial in a number of ways:

• providing a basis for agreement between developers and users on exactly
what and how the system will perform;

• aid development reducing potential for omissions and re-development;

• act as a guide for costing;

• be used as the basis for testing and verification;

• enable easier transfer between developers or users; and

• serve as a base design for future enhancement.

CHAPTER 2. LITERATURE REVIEW 13

[IEEE, 1984]

Traceability further serves development of these requirements by keeping and
maintaining clear links between requirements and components within the system
[Cleland-Huang et al., 2012]. A well formed software requirement specification
allows for traceability if “the origin of each of its requirements is clear and if it
facilitates the referencing of each requirement in future development or enhance-
ment documentation” [IEEE, 1984].

2.3 Reverse Engineering

2.3.1 Introduction to Reverse Engineering

Reverse engineering is defined as “to disassemble and examine or analyse in detail
(a product or device) to discover the concepts involved in manufacture” [Merriam-
Webster, 2012]. According to Chikofsky et al. [1990] reverse engineering, specifi-
cally of software, involves the analysis of a system with the aim of:

• Identifying system components and relationships.

• Generating a view of the system at a higher level of abstraction or in an
alternative form.

System development can be seen as forward engineering, moving from require-
ments and specification through design and implementation. Reverse engineering,
by definition the opposite, is a move from an implemented system back to designs
[Roscoe, 2011].

It can be sometimes claimed that software reverse engineering is a “disrep-
utable activity”, seeking to pull apart to use or copy others’ solutions, potentially
without permission. However, it is also commonly used by the intellectual prop-
erty owner as an aid to further development or maintenance [Kumar et al., 2015;
Roscoe, 2011].

In an ideal world all systems would be developed in a clear and well docu-
mented manner, facilitating easy understanding of both structure and function.

CHAPTER 2. LITERATURE REVIEW 14

However, developers are often faced with poorly documented and/or legacy sys-
tems which become extremely hard to comprehend by reading source code alone
[Counsell et al., 2004; Kumar et al., 2015; Meyer, 2006; Philippow et al., 2005].

Chikofsky et al. [1990], Roscoe [2011], Mamas and Kontogiannis [2000], Pinzger
and Antoniol [2013], and Rasool and Streitfdert [2011] all agree that reverse en-
gineering can have the following significant legitimate benefits with regard to
poorly documented or legacy systems:

• Maintenance - in order to make even small corrective changes to the sys-
tem, let alone major changes, a good understanding of its overall function,
structure and inter-component reliance is required.

• Interoperability - allowing for the understanding of data flows and formats.
This provides the ability to expand the system to interface with other sys-
tems for example through the transfer of data.

• Security - reverse engineering can be a very effective tool in testing the
level of security of a system, discovering unforeseen security holes and other
potential problems or unexpected behaviour.

• Behaviour Modification - an understanding of system operation is essential
for modification or further expansion of the system.

Of these benefits aiding maintenance can be the most significant given that in
cost terms maintenance is the most expensive stage of the software development
lifecycle [Meyer, 2006].

In Section 2.3.2 the goals and challenges of software reverse engineering are
identified. Approaches to reverse engineering are covered in Section 2.3.4 before
different types of language abstracted notations are detailed in Section 2.3.3.
Available tools for software reverse engineering are detailed in Section 2.3.5 before
being compared with regard to features provided.

2.3.2 Goals of Software Reverse Engineering

The overarching purpose of software reverse engineering is to aid clarity and
promote understanding of a system in order to facilitate maintenance and further

CHAPTER 2. LITERATURE REVIEW 15

development [Chikofsky et al., 1990; Pinzger and Antoniol, 2013]. Specifically
the goal is therefore to identify components along with their relationships to
facilitate the creation of understandable design-level representations of the system
[Chikofsky et al., 1990; Kumar et al., 2015; Pinzger and Antoniol, 2013; Roscoe,
2011].

Chikofsky et al. [1990] defines three levels in which these representations can
be seen:

• Requirements - the overall specification of the goals of the system, the
problem it solves;

• Design - the specification of the overall system to meet the goal(s)/solve
the problem(s) identified in requirements;

• Implementation - the actual code-level functionality.

Reverse engineering techniques may yield a wide variety of information such
as the quantification of algorithms, identification of design patterns used or illus-
tration of general component interactions [Roscoe, 2011]. However it remains the
overall goal to produce design-level information in a level of detail and abstraction
suitable for developers who are non-experts in a system to gain as complete an
understanding as they require [Chikofsky et al., 1990; Philippow et al., 2005]. For
example UML recovery (recreation of UML diagrams illustrating system design
and operation) is a frequent aim in reverse engineering [Roscoe, 2011].

Challenges

There are a number of challenges with regard to reverse engineering from source
code often owing to the inconsistent style and quality of code [Counsell et al.,
2004; Meyer, 2006; Uchiyama et al., 2011] and success (the recreation of holistic
systems designs) may vary widely depending on the methods used, the complexity,
size and quality of the codebase [Counsell et al., 2004; Sarkar et al., 2013].

Commonly major programming languages (such as C++ and Java) have no
support for in-built semantic definitions of structures such as design patterns.
This leaves developers only the option of using code-level comments in natural
language (possibly aided by comments in a set format compatible with javadoc

CHAPTER 2. LITERATURE REVIEW 16

for example), something which is highly variable depending on the developers and
may be entirely inconsistent between different teams [Philippow et al., 2005].

Software systems often contain poor design and component relationships fur-
ther complicating analysis and comprehension of the code with responsibilities
being distributed throughout the system rather than compartmentalised [Meyer,
2006].

Even more formalised development approaches such as design patterns (Sec-
tion 2.3.4), by definition a standardised way of implementing a solution, may
have many different forms of concrete implementation or naming conventions
[Uchiyama et al., 2011].

2.3.3 Language Abstracted Notations

Language abstracted notations such as those detailed in this section are useful
in reverse engineering to represent programmatic function in a manner which is
independent of the original (concrete) code syntax. Code layout becomes irrele-
vant so control-flow and data-flow can be more easily determined (Fischer et al.
[2007]; Section 2.3.1).

Abstract Syntax Tree (AST)

Abstract Syntax Trees (ASTs) have been commonly used in code compilation as
an intermediate data format between a source-code language and a machine/plat-
form specific binary output with programming language constructs represented as
a tree [Fischer et al., 2007; OMG et al., 2011a]. In this way ASTs capture the key
structure of code in tree form without unnecessary syntactic details; ASTs are a
pure representation of function without detail contained in concrete trees such as
language-specific flow controls [Jones, 2003]. ASTs are “a formal representation
of the syntactical structure of the software that is more amenable to formal anal-
ysis techniques than is the concrete or surface syntax of software” [OMG et al.,
2011a].

ASTs are constructed most commonly through source-code parsing but may
also be built from generation or derivation processes from another form [OMG
et al., 2011a].

CHAPTER 2. LITERATURE REVIEW 17

An AST is a finite tree comprised of labelled and directed nodes with internal
nodes representing operators and leaf nodes operands of the operators. Data
structures that make up ASTs provide for a full collection of base compositional
elements that are used by the source-code language [OMG et al., 2011a].

While there are different specific implementations of AST syntax they all
have the same design basis and ethos, representing a hierarchical tree of control
starting from the top and executing in sequence with nodes indicating individual
operations such as assignment and comparison [Fischer et al., 2007]. An example
of an AST can be seen in figure 2.1.

Figure 2.1: AST Example [Misek and Zavoral, 2010]

The Object Management Group (OMG) have been attempting to derive a
more formalised and widely accepted metamodel for ASTs, allowing for wider
standardisation and use in the form of the AST MetaModel (ASTM) [OMG
et al., 2011a].

OMG et al. [2011a] defines metamodels for three specific domains:

• Generic elements which are common in many languages represented by
Generic Abstract Syntax Trees (GAST)

CHAPTER 2. LITERATURE REVIEW 18

• Language specific where individual languages purely are modelled by Lan-
guage Specific Abstract Syntax Trees (SAST)

• Proprietary when elements of languages are modelled in inconsistent for-
mats by Proprietary Abstract Syntax Trees (PAST)

Abstract Semantic Graph (ASG)

An Abstract Semantic Graph (ASG) is an AST containing extra information pro-
viding a richer picture. In addition to the nodes contained within an AST repre-
senting source-code entities, ASGs contain non-tree edges showing relationships.
These relationships connect references to declarations as well as declarations to
types [Mamas and Kontogiannis, 2000; Raghavan et al., 2004]. Figure 2.2 shows
a simple ASG including edge information from Raghavan et al. [2004].

Figure 2.2: ASG Example Showing non-tree edges [Raghavan et al., 2004]

XML Metadata Interchange (XMI)

XML Metadata Interchange (XMI) is part of the Object Management Group
(OMG) Knowledge Discovery Metamodel (KDM). XMI is a XML schema (spe-
cific formal definition of XML structure) and XMI documents are XML-valid
documents conforming to the schema [OMG et al., 2011c].

It provides for model representation of Meta Object Facility (MOF) models
in a standard XML format, commonly using the MOF definitions of Unified

CHAPTER 2. LITERATURE REVIEW 19

Modelling Language (UML - Section 2.3.3) both of which (MOF and UML) are
also OMG standards [OMG et al., 2011b,c].

Provision is contained within the schema to further extend information types
through the in-file definition of complex types as well as the option to specify meta
data including information about the XMI document itself (owner, descriptions,
etc) [OMG et al., 2011c]. In addition to providing for abstract analysis of code
parsed into XMI (the primary use of XMI within reverse engineering) there is also
provision for generation of code from XMI and the interchange of XMI data with
the representative expressed functionality, between tools [OMG et al., 2011c].

Although XMI can store data in different formats it is primarily used to encode
UML data and supports different UML versions. Within the XMI schema every
model class is described by an XML element that represents it [OMG et al.,
2011c]. Below is a simple XMI example representing UML information of a class:

<xmi:XMI

xmlns:uml="http: //www.omg.org/spec/UML /20110701"

xmlns:xmi="http: //www.omg.org/spec/XMI /20110701">

<uml:Class name="C1" xmi:type="uml:Class" xmi:id="_1">

<ownedAttribute

xmi:type="uml:Property" xmi:id="_2" name="a1"

visibility="private"/>

</uml:Class >

</xmi:XMI >

XMI XML listing of class C1 in UML format, from OMG et al. [2011c]

Unified Modelling Language (UML)

The Unified Modelling Language (UML) is an Object Management Group (OMG)
specification for a visual language to document systems. It is designed to be
applicable to all domains and platforms enabling all software artefacts to be
specified, constructed and documented. UML has the ability therefore to support
round-trip engineering with source code being generated by and/or transformed
into UML. This is a feature supported by a number of UML tools or UML-enabled
environments [OMG et al., 2005; Sarkar et al., 2013].

CHAPTER 2. LITERATURE REVIEW 20

OMG et al. [2005] identify good generic design principles which are applied
within UML as follows:

• Modularity - grouping is used, applying the concept of strong cohesion and
loose coupling.

• Layering - package structures separate the language constructs from their
use and an architectural pattern is used to separate concerns over different
layers of abstraction.

• Extensibility - the language can be customised for specific platforms or
domains either through the definition of new members or a new dialect.

• Reuse - through flexibility and granular construction the specification is
suitable for wide reuse.

UML can be used to represent numerous types of diagrams, relationships
and/or interactions within the system including class diagrams, use case diagrams
and sequence diagrams. These diagrams can offer different levels of detail for
example a class diagram can show just the class or include all members and
properties contained within [OMG et al., 2005]. Figures 2.3 and 2.4 show simple
UML class diagrams with an increasing level of detail contained within the same
model.

Figure 2.3: Simple UML Class Diagram showing inheritance and a relationships.
Generated using reverse engineering in Astah Professional

2.3.4 Approaches to Software Reverse Engineering

To analyse system design a tool must analyse source code and extract relevant
information. Commonly information is extracted from source code in a language-

CHAPTER 2. LITERATURE REVIEW 21

Figure 2.4: UML Diagram of the relationships shown in figure 2.3 but with added
detail of properties and members

independent form (the main language abstracted notations are detailed in Section
2.3.3) building a representation of the code for analysis [Arcelli et al., 2005].

Static and Dynamic Analysis

The majority of approaches use “static analysis” where the source code is directly
analysed [Arcelli et al., 2005; Flores and Aguiar, 2005; Labiche et al., 2013; Shi and
Olsson, 2006]. This can provide information into the structure and relationship of
artefacts within the codebase. A complimentary “dynamic analysis” can be used
where data is gathered at runtime allowing the analysis of code behaviour during
execution [Cerulo, 2006; Labiche et al., 2013; Rasool and Streitfdert, 2011]

Types of Analysis Process

Rasool and Streitfdert [2011] identify four main types of reverse engineering anal-
ysis:

• Structural - analysis of the structural relationships between different arte-
facts within the source code.

• Behavioural - uses dynamic analysis of runtime data combined with static
analysis to identify behavioural characteristics within the system.

CHAPTER 2. LITERATURE REVIEW 22

• Semantic - used in addition to structural and behavioural analysis to further
refine understanding based upon information such as naming conventions.
Primarily this aims to provide differentiation (for example of design patterns
where the structure and/or behaviour are very similar - Section 2.3.4).

• Formal specification - used where available and a formal specification/ap-
proach was used during development, in effect a form of semantic analysis
based upon more formalised criteria.

Design Pattern Recognition

Design patterns, as initially identified and defined by Gamma et al. [1995], are
solutions to commonly occurring problems experienced in development. As they
are frequently used - often core - constructs within software the identification and
location of such patterns from source code is a common goal of reverse engineering
[Arcelli et al., 2005; Rasool and Streitfdert, 2011; Shi and Olsson, 2006; Uchiyama
et al., 2011]. Understanding of the design patterns used within a system can
provide a significant step toward the overall goal of gaining a representation of
the holistic function of the system [Counsell et al., 2004].

Identification of design patterns in existing code (“design pattern recovery”)
is commonly attempted by transferring code into an abstract notation (as with
most reverse engineering - Section 2.3.1) before using pattern matching to identify
specific uses of design patterns [Rasool and Streitfdert, 2011; Shi and Olsson,
2006]. These processes can be iterative and themselves use design patterns. One
such example, a tool called SPQR, uses a “Pipes & Filters” pattern to iteratively
filter the source code into abstract notation until it reaches a suitable state for
pattern recognition [Flores and Aguiar, 2005].

Identification of design patterns from source code is non-trivial for a number
of reasons. Design patterns are designed to support forward engineering with-
out pattern classification or identification for reverse engineering [Shi and Olsson,
2006]. Many of the patterns are structurally (and often behaviourally) very sim-
ilar [Rasool and Streitfdert, 2011] and can vary in concrete implementation.

Even a relatively simple pattern such as the Singleton [Gamma et al., 1995]
which is also one of the most widely used [Uchiyama et al., 2011] can vary signif-

CHAPTER 2. LITERATURE REVIEW 23

icantly in implementation as the following Java listing illustrates:

Listing 2.1: Singleton Example

public class SingletonA

{

private static SingletonA instance = null;

protected SingletonA () { }

public static SingletonA getInstance ()

{

if (SingletonA.instance == null)

SingletonA.instance = new SingletonA ();

return SingletonA.instance;

}

}

public class SingletonB

{

private static boolean hasInstance = false;

public SingletonB () throws Exception

{

if (SingletonB.hasInstance)

throw new Exception

("Can␣only␣have␣one␣instance");

else

SingletonB.hasInstance = true;

}

}

// create A

SingletonA a = SingletonA.getInstance ();

// return same instance

SingletonA a2 = SingletonA.getInstance ();

// create B

CHAPTER 2. LITERATURE REVIEW 24

SingletonB b = new SingletonB ();

// create B again (throw exception as already exists)

SingletonB b2 = new SingletonB ();

Listing showing two alternative implementations of the Singleton in Java, adapted
from Gamma et al. [1995] and Uchiyama et al. [2011]

2.3.5 Tools for Software Reverse Engineering

Generally tools for reverse engineering fall into two categories: Those concerned
with the identification of specific idioms such as design patterns (usually research
projects) and those offering a fuller UML environment many with both forward
and reverse engineering. In this section tools from both categories are identified
and their features listed.

Feature Comparison

Table 2.1 shows a comparison between reverse engineering tool features. Many of
these tools are commercial and have no peer-reviewed information available. In
these cases the data below is taken from the manufacturer’s website. When tools
with multiple possible versions offering different levels of features are included
the highest specification is used.

CHAPTER 2. LITERATURE REVIEW 25

Tool Language
(s)

UML Idioms Notes and
XMI

FUJABA [Fu-
jaba, 2012]

Java UML forward
and backward

Design
Patterns,
Idioms,
Anti-
patterns

Meta-Object
Facility (MOF)
support for
interoperability

DeMIMA
[Guéhéneuc
and Antoniol,
2008]

Java None Design
pattern
recognition

None

PINOT
[PINOT, 2012]

Java None Design
pattern
recognition

None

SPOOL
[SPOOL, 2012]

Java
(possible
others
such as
C++ and
Smalltalk)

None Design
pattern
recognition

None

Osprey [Shi and
Olsson, 2006]

Java, C++
and some
support for
C

None Design
pattern
recognition

None

Columbus [Fer-
enc et al., 2002]

C++ None Design
pattern
recognition

None

SPQR [Arcelli
et al., 2005]

Java None Design
pattern
recognition

None

CHAPTER 2. LITERATURE REVIEW 26

DP++ [Philip-
pow et al., 2005]

C++ None Design
pattern
recognition

Aimed at HPC
applications

KT [Philippow
et al., 2005]

Smalltalk None Design
pattern
recognition

None

Agile J Struc-
ture Views [Ag-
ileJ, 2015]

Java Class Diagrams - Eclipse plugin

Altova UModel
[Altova, 2012]

Java, C#,
VB.NET

UML 2.0 - Eclipse/Visual
Studio plugin,
XMI Support

ArgoUML [Ar-
goUML, 2016]

Java (with
plugin
options
available
for other
languages)

Reverse engi-
neering to class
diagrams sup-
ported (plugin
possibilities and
creation tools
for other UML
diagrams)

- -

Astah Pro-
fessional
[ChangeVision,
2016]

Java,
C++, C#

UML 2.x - XMI Support

BOUML [Pages,
2016]

C++,
Java, PHP,
MySQL

UML Projection - XMI Support

CHAPTER 2. LITERATURE REVIEW 27

Enterprise
Architect
[SparxSystems,
2012]

C++,
Java, C#,
VB.Net,
Visual
Basic, Del-
phi, PHP,
Python,
Action-
Script

All UML 2.3.1
Diagrams sup-
ported (unclear
how many are
supported in
reverse engineer-
ing)

- XMI Support

Rational Rhap-
sody (IBM)
[IBM, 2015]

C++, C,
Java, C#,
Ada

UML 2 - XMI Support

MagicDraw
UML [NoMagic,
2012]

Java,
C++,
C#, CL
(MSIL),
CORBA
IDL

UML 2 - XMI Support

Modelio [Mode-
liosoft, 2012]

Java,
C++, C#,
SQL

UML 2 - -

objectiF [Micro-
tool, 2012]

C#, C++,
Java,
VB.NET,
BPEL,
XSD,
WSDL

UML 2 - Eclipse and Vi-
sual Studio plu-
gin

Software Ideas
Modeller [Rod-
ina, 2012]

C#,
VB.NET,
Java,
.NET
Assemblies

UML 2.4 - XMI Support

CHAPTER 2. LITERATURE REVIEW 28

StarUML
[StarUML,
2008]

Java UML Class Dia-
grams

- No longer main-
tained

Umbrello UML
Modeller [Um-
brello, 2012]

C++ No automated
creation but
classes and
relationships
available for
manual use in
UML

- -

Visual Paradigm
for UML [Vi-
sualParadigm,
2012]

Java, C++ UML 2 - XMI Support

Rational Rose
(IBM)

Java,
C++,
Ada, VB

UML 2 - XMI Support

Borland To-
gether

Java,
C++,
CORBA
IDL

UML 1.4+2.0 Design
Pattern
support in
creation
only

XMI Support

Table 2.1: Comparison of Reverse Engineering Tools

2.4 Source Code Repository Mining

Source code repository mining refers to the collection and analysis of data from
within software source code repositories such as git, CVS, or other historic col-
lections. These repositories are used as a central store of source code and other
related artefacts shared between development teams. Changes to these artefacts
are made by developers and then “committed” to the repository. Information

CHAPTER 2. LITERATURE REVIEW 29

available within the repository commonly includes incremental versions of (or
changes to) source code files or other artefacts, such as documentation, along
with meta data surrounding changes committed to the repository such as the
developer, files changed and comments. This data is seen as a rich potential
source of information about software offering the ability to gain comprehension
into areas such as the evolution of a software package, bug fixing, semantic rela-
tionships between artefacts and developer activity either at a given point in time
or mapped over the life of a project [Allamanis and Sutton, 2013; Kagdi et al.,
2007a; Ramadani and Wagner, 2016; Williams and Hollingsworth, 2005].

Although mining is performed most often against source code repositories
themselves, other historic sources of information relating to software development
are included within the field. These sources, identified in Table 2.2, may be mined
on their own or in conjunction with each other. For example matching source
code changes with bug reports [Hassan, 2008; Williams and Hollingsworth, 2005].

Extraction of data from source code repositories can be complex, as although
an increase in open-source projects makes an ever-growing volume of such repos-
itories available to researchers, the repository management software itself is not
designed with this type of data collection in mind. Successful extraction and use
of data does, however, continue to grow as does interest in the possibilities inher-
ent in such large collections. In many ways this is demonstrated by the manner
in which raw data extraction from complex repository formats has now become
commonplace and the primary challenge remains how to analyse and use this
data to form useful information [Hassan, 2008]. Development processes may also
lead to unrelated changes being made as a single transaction which can further
complicate meaningful analysis [Herzig and Zeller, 2013].

CHAPTER 2. LITERATURE REVIEW 30

Source Details
Source Code Repositories All development history of a project including

all changes to files and meta data. May also
include large repositories holding information
about a number of projects e.g. Sourceforge.net

Bug Repositories Track the history of bugs including reporting,
potentially narrative of investigation, and clo-
sure/resolution

Archived Communications Track interpersonal communication about a
project such as mailing lists, chat logs; general
archived communications

Deployment Logs Records of specific deployments for example er-
ror or transaction logs

Table 2.2: Examples of software repository types [Hassan, 2008; Kagdi et al.,
2007a]

2.4.1 Types of Repository Mining

Repository mining has often been used to try and comprehend or analyse software
evolution over time [Kagdi et al., 2007a], as well as in a more applied fashion to
improve bug/error detection [Williams and Hollingsworth, 2005]. Also, of specific
interest to this project, to rebuild or refine traceability links between code and
documentation [Ali et al., 2013; Antoniol et al., 2002; Kagdi et al., 2007b; Marcus
and Maletic, 2003] or between code artefacts [Kagdi et al., 2007a]. Before covering
traceability recovery in terms of requirements (section 2.4.2) and dependencies
(section 2.4.3), other main types of repository mining will be identified.

Understanding and/or Visualising Software Evolution

Comprehension of large software systems can be a major challenge for organisa-
tions and new developers. Many solutions exist to aid in the comprehension of
the static system as it currently is, such as reverse engineering (section 2.3) and
technical documentation when available. One use of source code mining is there-

CHAPTER 2. LITERATURE REVIEW 31

fore to provide more detailed and historic information about system components
including dependencies enabling their life to be traced and details such as the
original change commit messages and notes to be recovered [Hassan, 2008]. In
a wider context, information from multiple projects can be used to gain insight
into the general form of software evolution; how large open-source projects grow
and change, and levels of change over time [Allamanis and Sutton, 2013; Kagdi
et al., 2007a].

Developer or Team Analysis

Repositories contain meta data concerning who committed changes to what arte-
facts and when. Not only can this data be used for simple analysis such as the
number of active developers or the change in activity patterns over time but, es-
pecially in combination with other types of repository such as mailing lists or bug
reports, enable the profiling of activity on one or more projects [Hassan, 2008;
Williams and Hollingsworth, 2005].

Bug Prediction

The ability to predict and so prevent or mitigate bugs is in many ways one of
the holy grails of software engineering. If such knowledge was available project
resources could be more finely targeted and testing focused [Hassan, 2008]. In
terms of such analysis Graves et al. [2000] found a direct relationship between the
number of changes or previous bugs in software with the number of bugs occurring
in the future with more recent changes or bugs being more significant than historic
ones. Use of such metrics as a more effective predictor of bugs compared with
traditional complexity measures has also been demonstrated using the codebase
from the Eclipse project [Moser et al., 2008].

Enabling and Encouraging Reuse

Large projects naturally contain large amounts of code. In many cases this is
poorly documented or there is a lack of awareness as to the precise content or
purpose. This confusing picture does little to encourage reuse with poor visibility

CHAPTER 2. LITERATURE REVIEW 32

of existing APIs or frameworks. Mining of repository data could allow for loca-
tion of such “lost” artefacts for example by identifying previous components in
which they have been used and providing the developers with this code and any
contemporaneous comments or documentation [Hassan, 2008].

2.4.2 Source Code Mining for Traceability Recovery

Recovery of requirements traceability has become an increasing focus of research
efforts. These are often centred on rebuilding links between higher and lower level
documents within a software system e.g. from documentation to source code.
These approaches typically use Information Retrieval (IR) techniques, such as
textual comparison, which attempts to find similarities between artefacts at dif-
ferent levels. Performance has been mixed and often generally quite low in terms
of balancing both recall (recovered over expected links) and precision (correctly
identified links) [Ali et al., 2013; Antoniol et al., 2002]. A typical process for
text-based IR processing of source and documentation is shown in figure 2.5.

One possibility for increasing the performance of traceability recovery is by
incorporating information contained within repositories. Benefits from this can
be realised in a number of ways: a historic analysis of a previous time when
documentation and source code were closely linked with good traceability can be
performed with artefacts then traced forward through their evolution. Documen-
tation which was regularly changed at the same time as specific source artefacts
may also indicate relationships [Ali et al., 2013; Kagdi et al., 2007b].

Ali et al. [2013] present such an approach building on their previous work [Ali
et al., 2011] that combines repository information with traditional IR traceability
recovery techniques giving an average increase of 22.7% precision and 7.66% recall.

2.4.3 Change Coupling for Dependency Analysis

In addition to using repository data to augment IR processes for requirement
traceability recovery, it is also a potential source of information relating to depen-
dencies and relationships between source code artefacts such as classes. As with
documentation and source, a high correlation in change coupling (co-committal;
artefacts being changed at the same time as part of the same commits) may indi-

CHAPTER 2. LITERATURE REVIEW 33

Figure 2.5: Possible traceability link recovery method [Antoniol et al., 2002]

CHAPTER 2. LITERATURE REVIEW 34

cate a relationship [Kagdi et al., 2007a; Ramadani and Wagner, 2016; Ying et al.,
2004].

Work by Bieman et al. [2003] on software visualisation showed that there
were apparent links between source code artefacts shown by change coupling
that did not appear through static analysis (reverse engineering). Beyer and
Noack [2005] introduced a clustering model for co-changes demonstrating that
areas of commonality can be found and clustered but in most cases some artefacts
cannot be sufficiently grouped, however the possibility of incorporating additional
information from the changes (such as size of change) as well as other information
sources holds the prospect of increased accuracy.

2.5 Clustering of Related Objects

A rich potential source of information with relation to structural components or
other artefacts within software is their similarity (or dissimilarity) in terms of a
number of different data sources. Data sources can include reverse engineering
(class structural relationships) or source code repositories (co-commit semantics)
as used by [Beyer and Noack, 2005]. Once initial data has been generated from
a given source not only is it possible to determine specific similarities but to
cluster components into groups which can be used for analysis, further grouping
(sub-clusters) or comparison between data sources. Clustering has been used in
the domain of software analysis including clustering of reverse-engineered data
[Anquetil and Lethbridge, 1999], and although not using the direct clustering
techniques here, methods used for design pattern detection (Section 2.3.4) may
use forms of specialised grouping akin to clustering.

2.5.1 Generation of a Normalised Dissimilarity Matrix

To facilitate comparison between different data sources showing relationships be-
tween components (multi-variate analysis) it is necessary to convert the data to
a standard form, a normalised dissimilarity matrix [Rogers and Girolami, 2011].
The steps followed from Rogers and Girolami [2011] and Du [2010] to achieve this
are as follows.

CHAPTER 2. LITERATURE REVIEW 35

The first step is to identify commonalities between components and generate a
matrix similar to that shown in Table 2.3 for commonalities between components
A, B, and C for data source (variable) X. This is a similarity matrix, it indicates
how many points of similarity exist between A, B, and C.

A B C

A - - -
B 2 - -
C 3 4 -

Table 2.3: Similarity or Commonalities of Components A, B, C for a given data
source X

A similarity matrix can be converted to a distance matrix by subtracting each
similarity value from the maximum similarity.

∀Xi ∈ X : X ′i = Xmax −Xi (2.1)

In the case of the example data shown in Table 2.3 the resultant distance
matrix would be as shown in table 2.4.

A B C

A - - -
B 2 - -
C 1 0 -

Table 2.4: Distance Matrix of Components A, B, C for a given data source X

More commonly used is a dissimilarity matrix where the dissimilarity is the
square root of the distance as calculated by equation 2.2, with example results in
table 2.5.

∀Xi ∈ X : X ′i =
√
Xmax −Xi (2.2)

CHAPTER 2. LITERATURE REVIEW 36

A B C

A - - -
B 1.414 - -
C 1 0 -

Table 2.5: Dissimilarity Matrix for Components A, B, C for a given data source
X

To normalise ranges, ensuring consistent impact when using multi-variate in-
put (multiple data sources for comparison where sources have different absolute
numbers of similarities), it is also required to further subtract the mean and di-
vide by the standard deviation. As negative dissimilarities are non-nonsensical
and should be zero, a function Pos is defined in equation 2.3 to turn negative
values into zero. This process shown in equation 2.4 with example output in table
2.6.

Pos(d) = d, if d > 0

Pos(d) = 0, otherwise
(2.3)

∀X ′i ∈ X ′ : X ′′i =
Pos(X ′i − X̄ ′)

X ′sd
(2.4)

A B C

A - - -
B 0.838 - -
C 0.269 0 -

Table 2.6: Normalised Dissimilarity Matrix for components A, B, C for a given
data source X

CHAPTER 2. LITERATURE REVIEW 37

Figure 2.6: Data from Table 2.7 Projected in One Dimension

2.5.2 Multi-Dimensional Scaling (MDS)

Multi-Dimensional scaling is a technique used to add additional dimensions to
multivariate data to a facilitate more accurate representation within a spatial
model for analysis or visualisation [Pilch, 2009].

For example consider the distance data represented in Table 2.4. The distances
between components are as follows: A⇒ B = 1, A⇒ C = 1.5 and B ⇒ C = 1.
In a singular dimension these distances cannot be completely resolved as B and
C must be one unit apart (B ⇒ C = 1) but at the same time B and C are
different distances from A. To resolve this some alteration of the data would be
required perhaps averaging distances between points to find a “best fit”.

A B C

A - - -
B 1 - -
C 1.5 1 -

Table 2.7: Distance Matrix of Components A, B, C

The attempted projection of this data on a single dimension can be seen in
Figure 2.6.

To alleviate this problem additional dimensions could be added. If the above
example was scaled to two dimensions it would be possible to satisfy the distance
requirements completely. The position of the points in two-dimensional space
would be calculated where the Euclidean distance (or similar distance measure)
was closest to the absolute distance between the data points. Such a projection

CHAPTER 2. LITERATURE REVIEW 38

Figure 2.7: Data from Table 2.7 Projected in Two Dimensions

is shown in Figure 2.7. The higher the number of dimensions the easier it is to
satisfy distance requirements and keep the integrity of the data however higher
dimensions become harder to project and display [Pilch, 2009].

A⇒ B ≈
√

(Ax −Bx)2 + (Ay −By)2 (2.5)

2.5.3 Clustering Techniques

There are a significant number of highly varied techniques to approach cluster-
ing of related data items including randomised initialisation of a set number of
clusters to highly complex models [Du, 2010; Rogers and Girolami, 2011]. As
clustering was not explored in great detail within the project only two methods
are formally reviewed with other candidates identified.

K-Means Clustering

K-Means clustering is a process by which data is partitioned into K partitions
where each partition is regarded as a cluster. Each data point is within one
partition and hence one cluster. The basic process is iterative by nature and
begins by randomly selecting K points as centres (centroids) of prototype or
prospective partitions. Data points are then assigned to the nearest centroid

CHAPTER 2. LITERATURE REVIEW 39

usually based on simple Euclidean distance. Centroids are then relocated to the
mean centre of their respective data points and the process is repeated with data
points reassigned to their nearest centroid. Once the assignments stabilise (no
further changes to data point assignment occur), the partitions are finalised [Du,
2010].

Because of the randomised nature of the initial points the partitioning can be
very imprecise and although iterations will naturally lead to partitions becoming
more refined the output can be highly varied and more suited to certain types
and distributions of data [Du, 2010; Rogers and Girolami, 2011].

Variations on K-Means exist including K-Mode (the mode rather than the
mean of partitioned data is used for positioning of the centroid) and K-medoid
(where actual data points are used as centroids e.g. the data point nearest to the
mean centre of a partition is used) [Du, 2010]. Methods are also in use to improve
both the refinement and consistency of output by using informed as opposed to
random starting positions for centroids [Rogers and Girolami, 2011], something
which is implemented in Weka models [Du, 2010].

Expectation-Maximisation Clustering

Expectation-Maximisation (EM) clustering is an approach that uses statistical
probability calculations to try and find then apply the best model to fit the pre-
sented data. Unlike K-Means there is no requirement to pre-specify the number
of clusters, though this is possible. Rather, sensitivity values are set which inform
the process. Estimates of model parameters are initially randomly selected and
then repeatedly tested and refined until the required quality is met [Du, 2010].

Alternative Methods

From Anquetil and Lethbridge [1999] a number of other potentially applicable
hierarchical clustering techniques are identified:

• Single linkage aka closest neighbour.

• Complete linkage (furthest neighbour).

CHAPTER 2. LITERATURE REVIEW 40

• Weighted average linkage - using the mean of relations between clusters to
form a hierarchy.

• Unweighted average linkage - the size of the cluster is also considered and
the entities are not weighed.

2.6 Change Impact Analysis

Software is inherently under continual pressure to change, and this is especially
true for the most successful or widely used software [Brooks, 1987; Lehman and
Belady, 1985]. With such high rates of change it is important to be able to
understand the impact individual changes may have on the software system as a
whole. Bohner and Arnold [1996] define software change impact analysis as the
ability to identify possible effects resulting from a change to a software system,
e.g. the unanticipated and undesired impact on other components relating from
the change which can lead to an error state.

2.6.1 Methods

The majority of software change impact approaches, and those of particular in-
terest to this thesis, involve the analysis of the source code in one form of another
and fall into two distinct categories; static and dynamic analysis [Lehnert, 2011;
Li et al., 2013]. This is the same as with the more generalised reverse engineering
detailed in Section 2.3.4, with some work on the combination of both types or in-
corporation of other data. Generally, change impact analysis is a very specialised
form of reverse engineering and analysis, with the goal of predicting impact rather
than purely aiding general comprehension [Queille et al., 1994].

In his review of software change impact analysis Lehnert [2011] groups the
methods used by techniques included in the review based on their similarity. The
following definition of methods is based upon this grouping:

CHAPTER 2. LITERATURE REVIEW 41

Call Graphs

Generating a call hierarchy throughout the software to build graphs representing
which components call others, to allow the identification of the potential prop-
agation of change. This most often operates at the method or function level of
granularity and may have to include a number of test cases for specific operation
to facilitate tracing.

Dependency Analysis

Components can depend on each other in a number of ways such as control, data
storage or object relationships (generalisation etc). Such dependencies are espe-
cially prevalent in object-orientated systems where more traditional analysis will
generate a huge number and range of dependencies, many of which are of minor
importance. A number of approaches therefore exist to gauge the significance of
these relationships based upon factors such as their type and frequency.

Program Slicing

Slicing is based around static dependency analysis and identifying then removing
instructions which are not relevant to the analysis criteria such as those that do
not affect the state of a variable or component being analysed. The ultimate
aim being to decompose the software system into just those specific statements
or elements that do have a potential effect on the target of change to the point
where the remaining system can then be analysed or visualised easily.

Execution Traces

A dynamic method uses that runtime analysis to determine the path of execution
from component to component (i.e. from method to method) and recording these.
Specific approaches vary from modification of source code to enable specific en-
trance and exit logging of components, to analysing the stack through general
debugging or memory inspection. As with all dynamic-only methods only the ac-
tual traces can be used, so rare or untested states are not detected in the analysis,
and a large set of test cases may be required.

CHAPTER 2. LITERATURE REVIEW 42

Explicit Rules

In a strictly controlled and enforced system domain built following explicit rules,
expert knowledge of this domain can be used to determine the effect a component
will have on other components. Such a method relies on consistency throughout
the system and that all development has taken place only in precise accordance
with the governing rules without even minor variations.

Information Retrieval (IR)

This method revolves around using natural language processing of some form,
either on code or other artefacts, to build a set of relationships upon which change
impact analysis can be performed. In general terms these methods operate as with
most IR approaches by identifying “meaningful words” from the source material
and then building models to relate their use within the analysed system using
techniques such as ranking.

Probabilistic Models

The application of mathematical models of probability such as Markow chains or
Bayesian Belief Networks (BBN). Such a method tries to resolve the “likelihood”
(probability) of a component being impacted by a given change. Using source data
generated by another method such as call graphs or history mining, numerous
techniques are used to weight and rank the input data to calculate probabilities.

History Mining

This method uses analysis of historical changes within a software system (most
commonly through repository mining, Section 2.4) to determine impact coupling
between components. The specific approaches used to the data vary widely and
include analysing individual changes (snapshots of the software before and after),
or simply recording “real world” changes if the information is available e.g. “com-
ponent A was changed before and impacted B and C that time”. Because of the
large volume of raw data usually contained within history, ranking and weighting
is often used to determine which detected relationships have a greater strength.

CHAPTER 2. LITERATURE REVIEW 43

A large range of granularity from the class to statement level is found in different
methods.

Combined Technologies

Significant advantages are potentially found through the combination of differ-
ent methods and information sources. For example, combining static analysis
of call graphs with history mining methods could provide a more accurate and
validated impact analysis, to leverage both the detailed analysis of actual source
code with the less detailed but factually accurate mined change history. Note;
this is explored in more detail in Section 2.6.3.

Other Technologies

Lehnert [2011] does mention a further “unclassifiable” approach which is intended
to provide predictive impact analysis and involves a simile to slicing in order to
focus on key code by repeatedly analysing the code and “brushing away” code not
related to the data fields in question.

2.6.2 Predictive Change Impact Analysis and Measurement

Predictive change impact analysis (PCIA) is concerned with identifying the po-
tential or likely impacts that a change has on other elements within software.
This is distinct from identifying which components should be changed to accom-
plish a specific outcome or indeed directly analysing previous changes purely to
analyse what their impact was [Kagdi and Maletic, 2006; Lehnert, 2011].

Li et al. [2013] define a general process for predictive change impact analysis,
shown in Figure 2.8. First the intended change and software are analysed to
identify which components will actually be changed, which forms the change set.
Using a method of analysis (Section 2.6.1), an estimate is made of what other
components are likely to be impacted by the change, the estimated impact set
(EIS). The EIS can contain more than a simple set of components and may
include confidence (probability) values or other meta information.

The change is now performed on the system, and any components found to
have been actually affected by the change are put into an actual impact set (AIS).

CHAPTER 2. LITERATURE REVIEW 44

Figure 2.8: Predictive Change Impact Analysis Process, adapted from Li et al.
[2013]

With the expected (EIS) and actual (AIS) extent of the changes known it is
possible to generate a false positive impact set (FPIS) with impacts that were
expected but not found, and a false negative impact set (FNIS) of those actually
impacted but not expected. The accuracy performance of the approach can also
be measured using standard information retrieval metrics.

Li et al. [2013] presents this standard method as being iterable in nature, where
the output can be fed back into the system to further improve performance but
many approaches are one-pass and standalone e.g. analyse the status now and
use that as the basis for the EIS.

2.6.3 Combined Information Sources

One area of more recent attention is that of using sources of information in
combination to provide a better, more accurate, change impact model. There
are a number of approaches which combine some form of static with dynamic
analysis such as Huang and Song [2007, 2008]. Another method is to include other

CHAPTER 2. LITERATURE REVIEW 45

artefacts of the software development process, usually architecture diagrams or
other design documentation, to aid in tuning the code analysis elements. This
type of combination is used in approaches by Bohner [2002], Briand et al. [2002],
and Khan and Lock [2009].

Use of historical information about the software, in combination with more
traditional source code analysis, is another area that offers possibilities for sig-
nificant improvement on traditional impact analysis [Lehnert, 2011]. Work by
Kagdi and Maletic [2006] and Kagdi and Maletic [2007]; Kagdi et al. [2007b] ties
the recovery of traceability information from mining of source code repositories
into the sphere of impact analysis, when used in combination with code analy-
sis, creating a change impact prediction model of “source-code aware mining” to
increase accuracy. The historic analysis element contained in Kagdi and Maletic
[2006] identifies “change coupling” by looking at previous change requests in the
context of these being “successful” or not and using these patterns further.

More recent work by Dit et al. [2014] uses the concept of historical coupling
through co-changes; the concept that if historically a component is frequently
changed at the same time as another component, outside of any other information
about the change, it is inferred that the components are related. Applying this to
the field of change impact, Dit et al. [2014] mine SVN repositories and reconstruct
each interim version, performing an analysis at the method level of granularity and
combine this with source code analysis. The results show “significantly better”
results than obtained by a single approach such as that employed by the industry
standard JRipples (JRipples results from Buckner et al. [2005]).

Chapter 3

Benchmarking Reverse Engineering

46

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 47

3.1 Introduction

Reverse engineering of systems, through static analysis of source code, is the most
common way to comprehend existing software without other documentation. In
this context reverse engineering is the process of taking source code and running
an analysis to detect certain information often including structural elements (such
as classes in an object-oriented language) and relationships between them. It is
therefore a very suitable approach to first take when considering forensic trace-
ability. The general motivations and aims of reverse engineering are detailed in
Sections 2.3.1 and 2.3.2 but mainly revolve around aiding comprehensibility or
detecting specific properties of software code. The contributions described in this
Chapter are published in [Cutting and Noppen, 2015] and [Cutting and Noppen,
2014].

With ever growing numbers of valuable but poorly documented legacy code-
bases within organisations, reverse engineering has become increasingly important
and its use widespread in situations where the only reference material available is
the source code itself. In response, there are a wide number of reverse engineering
techniques, which offer a variety in both their focus and the precise techniques
they use to perform the analysis.

The most common techniques are based around extracting general struc-
tural information, often generating diagrams such as Unified Modelling Language
(UML) projections, while more specialised approaches aim to detect specific el-
ements such as design patterns or particular code arrangements (Section 2.3.4).
Variations exist in the precise methods used to extract information with the ma-
jority of techniques using static analysis of source code while some techniques
use dynamic analysis with examination of states performed at runtime [Arcelli
et al., 2005; Kumar et al., 2015; Labiche et al., 2013; Rasool and Streitfdert,
2011; Roscoe, 2011]. A list and comparison of major reverse engineering tools is
contained in Section 2.3.5, specifically Table 2.1.

Although a wide number of approaches and tools exist with various different
focuses their efficacy or fidelity has not been evaluated in a reproducible manner.
Further, it is difficult to compare their effectiveness against each other as no
standard set of targets exist to support this goal over multiple approaches; a

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 48

problem also found in the verification and validation of new tools and techniques
[Sim et al., 2003]. Any performance evaluations which do exist are specific to
an approach or technique such as those defined by Arcelli et al. [2005]; Bellay
and Gall [1997]; Bellon et al. [2007]; Meyer [2006]; Rasool and Streitfdert [2011].
It is therefore currently not possible to gain a comparative understanding of
performance for a range of tasks or to validate new techniques or approaches. To
address this gap and determine the suitability of reverse engineering for recovery
and reconstruction of design information this chapter introduces a benchmark of
such targets, the Reverse Engineering to Design Benchmark (RED-BM) [Cutting,
2013], that can be used to compare and validate existing and new tools for reverse
engineering.

To determine performance a benchmarking approach was defined (Section 3.2)
before being applied against a number of real-world targets (Section 3.3), and the
results evaluated (Section 3.5).

3.2 The Reverse Engineering to Design Bench-

mark (RED-BM)

RED-BM [Cutting, 2013] facilitates the analysis of reverse engineering approaches
based on their ability to reconstruct accurate class diagrams of legacy software
systems. This is accomplished by offering the source code of projects of differing
size and complexity as well as a number of reference UML class diagrams that
serve as the gold standard to compare the output of reverse engineering against.
In addition the benchmark provides a set of performance metrics that facilitate
the comparison of reverse engineering results, for example class detection, to
reference models including a gold standard and a number of meta-tools to aid in
the analysis of tool outputs.

The benchmark allows ranking of reverse engineering approaches by means of
an overall performance measure that combines the performance of an approach
with respect to a number of criteria, such as successful class or relationship de-
tection. This overall measure is designed to be extensible through the addition
of further individual measures to facilitate specific domains and problems. In ad-

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 49

dition the benchmark provides analysis results and a ranking for a set of popular
reverse engineering tools which can be used as a yardstick for new approaches.
Full details, models, targets, results as well as a full description of the mea-
surement processes used can be found in Cutting [2013]. Although based on Java
source code, the concepts and measurements are applicable to any object-oriented
language and the benchmark could be extended to include other languages.

3.2.1 Target Artefacts

The benchmark consists of a number of target software artefacts that origi-
nate from software packages of varying size and complexity. The benchmark
artefact targets represent a range of complexity and architectural styles from
standard Java source with simple through high complexity targets using differ-
ent paradigms such as design patterns and presentation techniques. Candidate
projects were chosen for consideration on the basis that they could represent this
range and also that the source code was freely available and re-distributable un-
der open source licencing. This enables a graduated validation of tools as well as
a progressive complexity for any new tools to test and assess their capabilities.
Also, included within RED-BM are a set of gold standards for class and rela-
tionship detection against which tool output is measured. These standards were
created by manual analysis supported by tools as described in Section 3.4.

The range of artefacts is shown in Table 3.1 where large projects (e.g. JHot-
Draw) are broken down into constituent components. The projects were broken
into smaller parts allowing a single source to form multiple targets so that a
common style and format could be used in a variety of target sizes. Further the
real-world application of reverse engineering is seldom to gain understanding of an
entire large project but rather a specific insight into a component or sub-package
within. Breaking the projects down in such a manner allows for the benchmarking
then to be conducted in a process analogous to a real world analysis. In addition
the table contains statistics on the number of classes, sub-classes, interfaces and
lines of code for each of the artefacts.

The source code used was downloaded as source code or cloned from the
repository and so does not represent a specific release. The code used represents

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 50

the current available stable source on the 11th of December 2012, and that source
is bundled within [Cutting, 2013].

Artefacts were chosen for inclusion on the basis that they provided a range of
complexity in terms of lines of code and class counts, used a number of different
frameworks with diverse code structure, offered some pre-existing class diagrams
and were freely available for distribution (under an open source licence). Two
artefacts (ASCII Art Examples A and B) were created by the author specifically
for inclusion as a baseline offering a very simple starting point with full UML
design and use of design patterns.

Cactus, although depreciated by the Apache Foundation, has a number of
existing UML diagrams and makes use of a wide number of Java frameworks.
Eclipse was included primarily owing to a very large codebase which contains
a varied use of techniques. The large codebase of Eclipse also provides for the
creation of additional targets without incorporating new projects. JHotDraw has
good UML documentation available both from the project itself and some third-
party academic projects which sought to deconstruct it manually to UML. As with
Eclipse, Libre Office provides a large set of code covering different frameworks
and providing for more targets if required.

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 51

Table 3.1. Software Artefact Targets of the RED-BM [Cutting, 2013]

Software
Target Artefact Main

Classes
Sub
Classes

Inter-
faces

Lines
of Code
(SLOC)

ASCII Art Example A
Example A 7 0 0 119
ASCII Art Example B
Example B 10 0 0 124
Eclipse
org.eclipse.core.
commands

48 1 29 3403

org.eclipse.ui.ide 33 2 6 3949
Jakarta Cactus
org.apache.cactus 85 6 18 4563
JHotDraw
org.jhotdraw.app 60 6 6 5119
org.jhotdraw.color 30 7 4 3267
org.jhotdraw.draw 174 51 27 19830
org.jhotdraw.geom 12 8 0 2802
org.jhotdraw.gui 81 29 8 8758
org.jhotdraw.io 3 2 0 1250
org.jhotdraw.xml 10 0 4 1155
Libre Office
complex.writer 11 33 0 4251
org.openoffice.java.
accessibility.logging

3 0 0 287

org.openoffice.java.
accessibility

44 63 1 5749

All bundled code
(sw + accessibility)

241 173 33 39896

3.2.2 Reverse Engineering Performance Measures

RED-BM enables the systematic comparison and ranking of reverse engineering
approaches based on a set of performance measures or metrics. These measures
quantify the performance of reverse engineering approaches and are based on

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 52

accepted quality measures for reverse engineering such as successful detection
of classes and packages [Koschke, 2003][Roman and Cox, 1993]. These measures
provide a basic foundation for measurement to be built on and represent the most
common requirement in reverse engineering for detection of structural elements.
Further, as seen in Section 3.5, these measures by themselves are already capable
of differentiating between different ranges of tool performance. The performance
of tools with respect to a particular measure is expressed as the fraction of the
relevant data that has been successfully captured. Individual measures are then
used in conjunction with each other to form a weighted compound measure of
overall performance. In RED-BM three base measures are defined to assess the
performance of reverse engineering tools and approaches, which are recall metrics
with no consideration of precision at this stage:

• Cl: The fraction of classes successfully detected

• Sub: The fraction of sub-packages successfully detected

• Rel: The fraction of relationships successfully detected

Each of these measures are functions that take the actual content of a system
to be reverse engineered s (the perfect reverse engineering result) and a result
r that is produced by a reverse engineering approach when applied to s. The
formal definition of theses three base measures are as follows:

Cl(s,r) =
C(r)

C(s)
, Sub(s,r) =

S(r)

S(s)
, Rel(s,r) =

R(r)

R(s)
(3.1)

where
C(x) is the number of correct classes in x
S(x) is the number of correct (sub-)packages in x
R(x) is the number of correct relations in x
The overall performance P of a reverse engineering approach for the bench-

mark is a combination of these performance measures. The results of the measures
are combined by means of a weighted sum which allows users of the benchmark
to adjust the relative importance of, e.g., class or relation identification. The

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 53

overall performance of a reverse engineering approach that produces a reverse
engineering result r for a system s is defined as follows:

P(s,r) =
wCLCL(s, r) + wSubSub(s, r) + wRelRel

wCL + wSub + wRel

(3.2)

where
wCL + wSub + wRel = n ∈ IR+

In this function, wCL, wSub and wRel are weightings that can be used to ex-
press the importance of the performance in detecting classes, (sub-)packages and
relations respectively.

3.2.3 Complexity Categories

To further refine the evaluation of the reverse engineering capabilities of ap-
proaches the artefacts of the benchmark are divided into three categories of in-
creasing complexity; C1, C2 and C3. These categories allow for a more granular
analysis of tool performance at different levels of complexity. For example, a tool
can be initially validated against the lowest complexity in an efficient manner
only being validated against higher complexity artefacts at a later stage. The
complexity classes have the following boundaries:

• C1: 0 ≤ number of classes ≤ 25

• C2: 26 ≤ number of classes ≤ 200

• C3: 201 ≤ number of classes

The complexity categories are based on the number of classes contained in
the target artefact. As source code grows in size both in the single lines of code
and the number of classes, it becomes inherently more complex and so more
difficult to analyse [Bellay and Gall, 1997; Fenton and Pfleeger, 1998]. While a
higher number of classes does not necessarily equate to a system that is harder
to reverse engineer, this metric was chosen as it provides a quantitative measure
without subjective judgement.

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 54

The bounds for these categories were initially chosen as seemingly reason-
able placeholders to start with. When they were applied within the experiment
however results demonstrated a noticeable drop-off in detection rates observed in
the tools with these bounds as can be seen in Section 3.5. For this reason they
have been kept at their initial levels for this analysis. However, any user of the
benchmark can introduce additional categories and relate additional performance
measures to these categories to accommodate for large scale industrial software
or more specific attributes such as design patterns. The extensibility aspect of
this work is explained in more detail in Section 3.2.4.

3.2.4 Extensibility of the Benchmark

Extensibility of Measurements

RED-BM’s included performance measures provide a foundation to evaluate and
compare current standards of reverse engineering. To accommodate the continual
advancements in this field the performance measure aspect of the benchmark is
extensible. Any user of the benchmark can introduce new performance measures,
such as the fraction of successfully detected design patterns in a given code base.
Once a gold standard has been determined for a specific detection within the
artefacts it can be tested against tool output (as explained in Section 3.2.3 for
the initial criteria). With these new measures the performance of approaches can
be defined for specific reverse engineering areas. To facilitate uniform comparison
of performance a performance measure is defined as a function M that for a given
system contents s and a reverse engineering output r returns a result that maps to
the domain [0..1], where 0 means the worst and 1 the best possible performance.

In addition to providing means for creating new performance measures, the
possibility to create new compound performance measures (i.e., measures that are
compiled from a set of individual performance measures) is provided. Formally, a
compound measure is defined as a function C that maps a system s and its reverse
engineering result r through a number [1..n] of performance measure functions M
to the domain [0..1], where 0 means the worst and 1 the best possible performance:

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 55

C(s,r) =

n∑
i=1

wiMi(s, r)

n∑
i=1

wi

(3.3)

For example an input function M could be the detection measure defined in
equation 3.2.

In this expression wi is the weighting that determines the importance of the
individual performance measure i. Note that the performance measures intro-
duced in Section 3.2.2 conform to this definition and, therefore, can be seen as
an example of the extensibility of the benchmark.

To further illustrate how researchers and practitioners can use this mecha-
nism to specialise the application of RED-BM a performance measure is created
that acknowledges the capability of an approach to detect design patterns dur-
ing reverse engineering. This is an active research field for which according to a
literature survey and expert discussion a specialised benchmark is not available.

According to literature the detection of creational and structural design pat-
terns is easier than behavioural design patterns [Philippow et al., 2005] and so
creational and structural design patterns are grouped together. Therefore, two
new performance measures are introduced Db for the successful identification of
creational and structural design patterns(Dcs) and behavioural design patterns
(Db) for a system s and reverse engineering result r which are recall metrics:

Dcs(p, s) =
Pc(r) + Ps(r)

Pc(s) + Ps(s)
, Db(p, s) =

Pb(r)

Pb(s)
(3.4)

where

Pc(x) is the number of creational design patterns in x
Ps(x) is the number of structural design patterns in x
Pb(x) is the number of behavioural design patterns in x
In addition to these performance measures additional measures are introduced

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 56

that demonstrate how to consider negative influences on performance. In this
case, precision is also considered through false positives (i.e. falsely identified)
creational and structural design patterns (Ecs) and behavioural design patterns
(Eb) a reverse engineering approach produces as part of the overall result:

Ecs(p, r) = 1− Fc(r) + Fs(r)

Pc(r) + Ps(r) + Fc(r) + Fs(r)
(3.5)

Eb(p, r) = 1− Fb(r)

Pb(r) + Fb(r)
(3.6)

where

Fc(x) is the number of false positives creational design patterns in x
Fs(x) is the number of false positives structural design patterns in x
Fb(x) is the number of false positives behavioural design patterns in x

Using these measures it is also possible to introduce precision measurement
first by deriving the false discovery rate (FDR for system s and result r):

FDR(s, r) =
Fc(r) + Fs(r) + Fb(r)

Pc(s) + Ps(r) + Pb(r)
(3.7)

And from this calculate the precision value PRE:

PRE(s, r) = 1− FDR(s, r) (3.8)

These individual performance measures for design patterns can now be com-
bined into a single compound performance measure DPR for design pattern recog-
nition in system p with reverse engineering result r that includes weightings for

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 57

each individual component:

DPR(p,r) =
wDcsDcs + wDb

Db + wFcsFcs + wFb
Fb

wDcs + wDb
+ wFcs + wFb

(3.9)

where
wDcs + wDb

+ wFcs + wFb
= n ∈ IR+

Extensibility in Data Exchange

Another prominent aspect that needs to be addressed for a reusable and extensible
benchmark is the gap that exists between input and output formats of various
reverse engineering tools. Indeed, to make further use of reverse engineering
output, for example, between tools or for re-projection of UML there is an Object
Management Group (OMG) standard, the XML Metadata Interchange (XMI)
format [OMG et al., 2011c]. XMI is a highly customisable and extensible format
with many different interpretations. Therefore, in practice, tools have a wide
variation in their XMI output and exchange between reverse engineering tools,
useful for interactive projection between tools without repetition of the reverse
engineering process, is usually impossible [Jiang and Systä, 2003]. This variance
in XMI format also hinders use of XMI data for further analysis outside of a
reverse engineering tool as individual tools are required for each XMI variation.

During the creation of the reverse engineering benchmark, two tools were
developed, which could analyse Java source code identifying contained classes,
and then check for the presence of these classes within XMI output. Detail on
this tooling and the capability of the tools beyond the benchmark is contained in
Section 3.4.

3.3 Application of the Benchmark

To analyse the effectiveness of this benchmark, a range of commercial and open
source reverse engineering tools were applied (shown in Table 3.2) to each tar-
get artefact. Each of the tools is used to analyse target source code, generate

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 58

UML class diagram projections (if the tool supports such projections) and export
standardised XMI data files. Although the source code target artefacts used for
testing are broken down into the package level for analysis, the reverse engineering
process is run on the full project source code to facilitate package identification.
The output produced by each of the tools is subsequently analysed and com-
pared to the generated gold standard using a benchmark toolchain specifically
created for comparison of class detection rates (see Section 3.4). Finally, a man-
ual consistency check is performed between the standard tool output and XMI
produced to identify and correct any inconsistencies where a tool had detected
an element but not represented it within the generated XMI. For this analysis
weightings were used as stated, where all types of elements are of equal weight
(wCl = wSub = wRel = 1), and categories of increased complexity have higher
weight in the compound measure (wC1 = 1, wC2 = 1.5, wC3 = 2). These weight-
ings were used to model the belief that larger more complex code is harder to
reverse engineer and hence worth a higher score. They are fully configurable by
any user of the benchmark however so only used with these values for demon-
strating the benchmark.

Figure 3.1. Reference Class Diagram Design for ASCII Art Example A

When analysing the results a wide range of variety can be observed even for
simple targets such as Example A, one of the simplest targets with just 7 classes,
as depicted in Figure 3.1. Please note that although Example A only contains
generalisation and composition relationships other target artefacts contained as-
sociations and these were included in the measurement. It can be seen in Figure
3.2 that Software Ideas Modeller failed to identify and display any relationship

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 59

between classes. Other tools such as ArgoUML [ArgoUML, 2016] (Figure 3.3)
were very successful in reconstructing an accurate class diagram when compared
to the original reference documentation.

Figure 3.2. ASCII Art Example A Output for Software Ideas Modeller

Figure 3.3. ASCII Art Example A Output for ArgoUML

Another aspect in which differences are obvious relates to tool presentation,
particularly when the target artefact is a Java package comprising of sub-packages

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 60

Figure 3.4. org.jhotdraw.io Output from Astah Professional (reconstructed)

Figure 3.5. org.jhotdraw.io Output from Rational Rhapsody (reconstructed)

Figure 3.6. org.jhotdraw.io Output from ArgoUML

nested to multiple levels. Some of the different ways tools visualise this, even for
a single nesting level, is shown by the org.jhotdraw.io target. Tool output varies
from a simple display of classes and packages at the top level (ArgoUML, Fig-
ure 3.6), a partial decomposition of top-level sub-packages showing contained
constituent items (Rational Rhapsody, Figure 3.5), to a full deconstruction show-
ing all constituent parts and relationships but without indication of sub-package
containment (Astah Professional, Figure 3.4).

In stark contrast to tools which performed well (e.g., Rational Rhapsody and

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 61

ArgoUML) a number of tools failed to complete reverse engineering runs of bench-
mark artefacts and even crashed repeatedly during this procedure. The result of
which is that they are classified as detecting 0 classes for those target artefacts.
While some tools failed to output valid or complete XMI data, a hindrance to
their usability and ease of analysis, this has not affected their performance eval-
uation as their performance could be based on direct manual analysis of their
UML projection.

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 62

Table 3.2. List of Tools and Versions for Use in Evaluation

Tool Name
(Name Used)

Version Used (OS)
Licence

ArgoUML 0.34 (Linux)
Freeware

Change Vision Astah Professional
(Astah Professional)

6.6.4 (Linux)
Commercial

BOUML 6.3 (Linux)
Commercial

Sparx Systems Enterprise Architect
(Enterprise Architect)

10.0 (Windows)
Commercial

IBM Rational Rhapsody Developer for Java
(Rational Rhapsody)

8.0 (Windows)
Commercial

NoMagic Magicdraw UML
(MagicDraw UML)

14.0.4 Beta (Windows)
Commercial

Modeliosoft Modelio
(Modelio)

2.2.1 (Windows)
Commercial

Software Ideas Modeller 6.01.4845.43166
(Windows)
Commercial

StarUML 5.0.2.1570 (Windows)
Freeware

Umbrello UML Modeller
(Umbrello)

2.3.4 (Linux)
Freeware

Visual Paradigm for UML Professional
(Visual Paradigm)

10.1 (Windows)
Commercial

IBM Rational Rose Professional J Edition
(Rational Rose)

7.0.0.0 (Windows)
Commercial

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 63

3.4 Benchmark Toolchain

As identified previously, one of the main challenges for reverse engineering ap-
proaches is to correctly identify classes in source code. This makes the fraction
of correctly recognised classes a frequently used metric to assess reverse engineer-
ing performance. However, establishing performance for reverse engineering ap-
proaches based on this metric requires the analysis of a significant amount of data
as potentially large code bases need to be cross-validated against tool-produced
results.

It is possible to generate the required data through manual processing with
a manual analysis of the source code and reverse engineering tool output. This
solution rapidly becomes cumbersome and error prone as code becomes inher-
ently more complex and difficult to analyse as size increases [Bellay and Gall,
1997; Fenton and Pfleeger, 1998]. To alleviate this problem many tools exist that
provide metrics for, in particular, Java code including a count of the number of
classes. It would be a trivial exercise to simply count the number of classes pro-
duced in reverse engineering output either within the tool itself or through simple
analysis of XMI (a standard for the interchange of reverse engineering information
produced by the majority of tools) [OMG et al., 2011c] or UML/XML output.
However some tools include utility and other third-party classes in their output
and therefore it is not sufficient to simply count classes in code and compare
against a separate count from tool output. To measure tool performance accu-
rately it is necessary to verify that the classes detected by the tool are actually
present within the source code.

These constraints make systematic analysis and comparison of reverse engi-
neering approaches particularly hard to perform and repeat in an effective man-
ner. During the creation of RED-BM measures were incorporated to differentiate
the performance of tools, with class detection a key measure (Section 3.2.2).

Specifically RED-BM includes a measure which defines class detection per-
formance as the proportion of classes found by a reverse engineering tool. More
precisely this performance measure determines the fraction of performance by
dividing the number of correctly identified classes by the total number of classes
that should have been identified i.e. recall. It is clear that for this measure the

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 64

number of classes within the source code and the number of these classes identi-
fied in the tool output need to be determined. This is a problem identified earlier
as typical for the assessment of reverse engineering approaches. It became clear
that this data could not be produced manually as RED-BM consists of 16 target
artefacts each containing between 5 and 447 classes. These are then processed by
12 reverse engineering tools resulting in a large amount of potential manual anal-
ysis. Not only would this have limited the accuracy of the benchmark results, it
would also have prevented others from repeating benchmark analysis and produce
additional results.

As a result a support tool suite was developed as part of the RED-BM tools
to facilitate analysis of both source code and tool output in a largely automated
fashion. One tool (jcAnalysis) analyses Java source code and detects classes,
outputting this class list in a simplified XML meta format (DMI). A reverse
engineering tool is used to process the same source code, the output from which
is produced as XMI or UML/XML. A second tool (xmiClassFinder) is then used
to analyse both the XMI and DMI output. This highlights any classes found to
be missing through comparison and producing a ratio for classes found by the
reverse engineering tool. The workflow is illustrated in Figure 3.7 where square
boxes illustrate processes (RED-BM tool processes are highlighted) and the waved
boxes represent documents or artefacts. The process followed and the tools are
introduced in more detail within the following sections.

Figure 3.7. RED-BM Process with Toolchain Elements Highlighted

3.4.1 Java Code Analysis

In order to make a meaningful comparison with reverse engineering tool output it
is necessary to first analyse Java code to generate a list of classes contained and

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 65

output that list in a suitable format for automated analysis. This is accomplished
through the jcAnalysis tool.

Although numerous tools are available to generate Java source metrics includ-
ing class counts and lists of components, none of these are able to output class
lists in a format suitable for comparison. Consequently, development of a new
tool was required which was then cross-validated with existing tools both in terms
of class count and also direct manual comparison of output.

jcAnalysis is a regular expression based recursive analyser to find classes and
interfaces meeting a specific set of criteria. From the top level of a given directory
it will find all .java files, optionally recursing to include sub-directories. Options
can be given to specify the package to be analysed and whether sub-packages of
the target package should be included. Example output from jcAnalysis is shown
in Figure 3.8.

Java files found within the search will be analysed and their package along
with constituent classes, sub-classes, and interfaces retrieved through regular ex-
pressions. Classes found to match the package criteria will then be included in a
list and displayed on the screen.

Once analysis is completed jcAnalysis can then optionally output the class
list in an XML format (described in section 3.4.2) for later use.

3.4.2 Exchange of Information in Meta Format

To allow for exchange between the tools at different stages of the workflow a
standard format is required to contain class information. This information is
generated by analysis of source code and then used in a comparison with reverse
engineering tool output. For this purpose the DMI (Dave’s Metadata Interchange)
format is defined.

The DMI specification in the version used by jcAnalysis and xmiClassFinder
(version 0.01) is a highly simplified XML schema to represent classes in a format
conducive for further analysis. Classes or interfaces are listed in individual ele-
ments including their type (class or interface in version 0.01), simple name and
fully-qualified (package.subPackage.class) form.

An example listing of a DMI 0.01 file is as follows:

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 66

Figure 3.8. jcAnalysis running for Cactus target

<dmi version="0.01">

<item type="class" name="someClass"

package="somePackage"

fullname="somePackage.someClass" />

<item type="class" name="otherClass"

package="somePackage"

fullname="somePackage.otherClass" />

<item type="class" name="aClass"

package="somePackage.subPackage"

fullname="somePackage.subPackage.aClass"

/>

</dmi>

3.4.3 XMI Analysis and Comparison

Once Java code has been analysed to identify constituent classes (section 3.4.1),
to produce a performance measure these constituent classes must be compared

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 67

Table 3.3. Simplified Comparative XMI Output from Tools

ArgoUML Enterprise Architect Astah Professional

<UML:Class <packagedElement <UML:Class
xmi.id = “. . . ” xmi:id = “. . . ” xmi.id = “. . . ”
name = “Circle” name = “Circle” name = “Circle”
visibility = “package” visibility = “package” version = “0”
. . . > . . . > . . . >

<UML:GeneralizableElement.
generalization>

<ownedOperation <UML:ModelElement.
namespace>

<UML:Generalization xmi.id = “. . . ” <UML:Namespace
xmi.idref = “. . . ” /> name = “Circle” xmi.idred = “. . . ”

</UML:GeneralizableElement.
generalization>

visibility = “public” . . . > </UML:Namespace

.
<UML:Classifier.feature <generalization <UML:ModelElement.visibility
<UML:Operation xmi:type =

“uml:Generalization”
xmi.value = “package” />

xmi.id = “. . . ” xmi:id = “. . . ” . . .
name = “Circle” general = “. . . ” > <UML:GeneralizableElement.

generalization>
visibility = “public” . . . > </packagedElement> xmi.idref = “. . . ” />

</UML:Class> xmi.idref = “. . . ” />
</UML:GeneralizableElement.
generalization>

against output from reverse engineering tools. For this purpose the xmiClass-
Finder tool was created to perform such a comparison.

xmiClassFinder is an XML analyser capable of identifying classes within XMI
and UML/XML output from reverse engineering tools. It can also compare this
output with a DMI file highlighting any missing classes (those present in the
source code represented in the DMI but not present in the XMI), calculating a
percentage for classes found divided by those present. An example output of this
process is shown in Figure 3.9.

Widely differing XMI formats from tools means xmiClassFinder operates a
multi-pass approach, starting with the most common format and on failure trying
other formats in turn. Classes highlighted as unfound within the XMI can then
be manually checked either in the XMI or directly in the reverse engineering tool.
The diversity in range of XMI output can be seen in Table 3.3.

Although xmiClassFinder concentrates purely on the class information it
forms a starting point from which a fully-featured XMI analyser has been de-
veloped, capable of the identification of all relevant structural elements of XMI

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 68

Figure 3.9. xmiClassFinder running for Cactus target using Software Ideas Modeller XMI
output

output including detected relationships as well as classes. This not only provides
for more detailed automated measurements of reverse engineering performance
but also the direct comparison of output. Direct comparison of output could also
theoretically allow the output from multiple tools of lower performance to be used
in combination, providing better coverage.

3.5 Evaluation of Analysis Results

For the analysis of the results produced by the reverse engineering tools, a stan-
dard class detection performance measure is used for all targets (CD, based on
equation 3.1). This measure produces an average performance value for each of
the individual performance measures, both class and relationship detection rates,
with equal weighting. Such a measure provides an overall indication of perfor-
mance, with individual measurements and complexity levels providing further
insight.

To further refine the evaluation of the reverse engineering capabilities of ap-

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 69

Figure 3.10. Overall Class Detection (CD) and Compound Measure (CM) Performance by
Tool

proaches, the artefacts of the benchmark are divided into three categories of
increasing complexity; C1, C2 and C3, as described in Section 3.2.3, with the
boundaries as follows:

• C1: 0 ≤ number of classes ≤ 25

• C2: 26 ≤ number of classes ≤ 200

• C3: 201 ≤ number of classes

Finally, compound measure CM is used based on equation 3.3, which con-
tains the three complexity measures with weighting as follows: wC1 = 1, wC2 =

1.5, wC3 = 2; giving a higher weighting to target artefacts that contain more lines
of code.

Using these performance measures a wide range of results between the tools
used for analysis can be seen (Table 3.4). Some tools offer extremely poor perfor-
mance, such as Rational Rose and Umbrello, either as they crashed or reported
errors during reverse engineering or UML projection failing to detect or display
classes and relationships entirely for some targets or just failed in detection. To
avoid accidental bias or failure through incorrect operation of the applications
great care was taken to follow instructions and where doubts about settings ex-
isted repeat the experiment with all possible configurations before recording the

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 70

Table 3.4. Criteria Results by Tool

Criterion >
∨ Tool

CD
%

C1
%

C2
%

C3
%

CM
%

Rank

ArgoUML 100 98.15 75 100 88.27 1
Astah Professional 100 97.62 100 100 99.47 2
BOUML 100 92.59 75 100 86.42 3
Enterprise Architect 100 66.67 62.22 100 80.00 4
Rational Rhapsody 100 100 100 100 100.00 5
MagicDraw UML 100 98.15 100 100 99.38 6
Modelio 47.33 95.92 29.66 12.02 36.54 7
Software Ideas Modeller 86.41 62.15 41.48 46.04 48.10 8
StarUML 47.11 47.22 23.47 31.16 32.17 9
Umbrello 9.2 35.79 5.95 0 9.94 10
Visual Paradigm 12.42 38.18 51.68 16.67 33.12 11
Rational Rose 8.69 38.05 1.09 0 8.82 12

best output. A specific immediately obvious result was the poor performance of
Rational Rose especially when considering the very high performance of Rational
Rhapsody (both now IBM products from the same original software house). A
concern was that the software was not being correctly operated and so the ex-
periments were repeated a number of times with Rational Rose validated against
documentation and the result was the same or worse.

As a general trend, the percentage of classes detected on average declined as
the size of the project source code increased. As the number of classes detected
varied significantly in different tools (Figure 3.10) so did the amount of detected
relationships. To a degree this can be expected as if a tool fails to find classes
it would also fail to find relationships between these missing classes. In this
figure the difference between the standard class detection measure CD and the
compound measure CM becomes clear as, for example, ArgoUML was very strong
in class detection but performed at a slightly lower level on relation detection,
which is explicitly considered in the compound measure. It is also interesting to
note that Visual Paradigm offered better performance for the compound measure
as opposed to class detection highlighting its superior ability to deal with relations
and packages as compared to class detection.

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 71

Overall the benchmark identified IBM Rational Rhapsody as the best per-
former as it achieved the maximum score for the compound measure (100%) with
two other tools, Astah Professional and MagicDraw UML coming in a close second
scoring in excess of 99%. As the poorest performers this work highlighted Um-
brello, Visual Paradigm and notably IBM Rational Rose which scored the lowest
with a compound measure of just 8.82% having only detected 8.69% of classes.
A detailed breakdown of the performance of the tools for individual targets is
provided with the benchmark [Cutting, 2013].

This range of performance scores clearly shows a very marked differentiation
between tools. At the top end some six tools score 80% or above in the compound
measure, with three over 90%. In most a clear drop-off in detection rates are seen
in the complexity measures as the size and complexity of the targets increase with
an average measure score of 73.47%, 58.70% and 54.66% through the complexity
categories C1, C2 and C3, respectively (Table 3.4 and Figure 3.11).

Figure 3.11. Tool Performance by Complexity Criteria

There is a noticeable distribution of tool performance for the compound mea-
sure; five score under 40%, six score in excess of 80% and only one lies in the
middle (48.1%).

It is interesting to note that of the top four performing tools three are com-
mercial with ArgoUML, a freeware tool, scoring 88.27%. This makes ArgoUML
a significantly better performer than well-known commercial solutions such Soft-

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 72

ware Ideas Modeller and Rational Rose. For complete results, targets and refer-
ence documentation for this analysis please visit the benchmark website [Cutting,
2013].

Although outside the scope of this analysis, in general, it was also found that
the workflow processes of some tools were much more straightforward than others.
For example, Change Vision Astah Professional and IBM Rational Rhapsody
provided for straightforward generation of diagrams with configurable detail (such
as optional inclusion of members and properties within class diagrams) either
during or immediately after reverse engineering. On the other hand, tools such
as BOUML and IBM Rational Rose required considerable manual effort in the
generation of class diagrams with the need for individual classes to be placed in
the diagram although relationships between classes were automatically generated.
For a number of tools the lack of usability was further aggravated as their reverse
engineering process repeatedly crashed or returned numerous errors on perfectly
valid and compilable source code.

3.6 Related Work

The use of benchmarks as a means to provide a standardised base for empirical
comparison is not new and the technique is used widely in general science and
in computer science specifically. Recent examples where benchmarks have been
successfully used to provide meaningful and repeatable standards include com-
parison of function call overheads between programming languages [Gaul, 2012],
mathematical 3D performance between Java and C++ [Gherardi et al., 2012], and
embedded file systems [Olivier et al., 2012]. The Reverse Engineering to Design
Benchmark (RED-BM) provides the ability for such meaningful and repeatable
standard comparisons in the area of reverse engineering.

Previous work reviewing reverse engineering tools has primarily focused on
research tools many with the specific goal of identification of design patterns [Ar-
celli et al., 2005; Pettersson et al., 2010; Philippow et al., 2005; Roscoe, 2011;
Uchiyama et al., 2011], clone detection [Bellon et al., 2007] or a particular scien-
tific aspect of reverse engineering, such as pattern-based recognition of software
constructs [Meyer, 2006]. A previous benchmarking approach for software reverse

CHAPTER 3. BENCHMARKING REVERSE ENGINEERING 73

engineering focused on pattern detection with arbitrary subjective judgements of
performance provided by users [Fulop et al., 2008]. The need for benchmarks
within the domain of reverse engineering to help mature the discipline is also
accepted [Sim et al., 2003].

3.7 Conclusion

Having identified reverse engineering as the most common approach to auto-
mated recovery of design information, it was clear there was no empirical eval-
uation which could gauge nor benchmark performance of the myriad of avail-
able approaches. This led to the creation of the Reverse Engineering to Design
Benchmark (RED-BM). This is a set of measures which can be applied to re-
verse engineering, along with a number of targets and gold standard output for
comparison.

To analyse the effectiveness of RED-BM it was applied to a range of reverse en-
gineering tools, ranging from open source to comprehensive industrial tool suites.
This demonstrated that RED-BM offers complexity and depth as it identified
clear differences between tool performance. In particular, using the compound
measure (CM), RED-BM was capable of distinguishing and ranking tools from
very low (8.82%) to perfect (100%) performance.

The results, therefore, show that even for information expected to be detected
and returned by static analysis, there is a large variation in tool performance and
presentation. Such output can not be completely trusted from the majority of
tools and, even when all the expected structural elements and relationships are
found, their presentation to the user for decision making is inconsistent. Ulti-
mately even the best reverse engineering tools simply show static relationships,
and say nothing about wider possible relationships such as semantic or runtime
interactions.

It is therefore clear that though reverse engineering shows some of the rela-
tionships, a broader and more inclusive approach is required. One which can
make use of single (or multiple) reverse engineering output, but in a more generic
and usable fashion.

Chapter 4

Augmenting Reverse Engineering
Using Repository Mining

74

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 75

4.1 Introduction

As demonstrated through benchmarking in Chapter 3 reverse engineering tech-
niques can be imprecise, vary widely in output format, and in some cases miss
even basic information such as generalisation relationships.

Generally however reverse engineering tools are reasonably good at detecting
structural elements and relationships but not all relations in software systems
are purely structural, as components can for example support the same function
without having explicit links to each other. These relations cannot be detected
by source code analysis alone. Such semantic links represent more subtle relation-
ships within the software. There is some work within specialist reverse engineer-
ing tools to examine some semantic relationships (Section 2.3.4), but these are
mainly focussed on textual analysis of element names only. As a result in general
reverse engineering tools no account is taken of semantic relationships even when
structural recall is perfect meaning important links may be missed.

This means that decisions dependent on a clear understanding of software
structure are often made with imperfect and/or un-validated information. Con-
sequently change decisions based purely on the information identified by these
tools can therefore introduce significant risk.

One approach to address this issue is through the incorporation of additional
sources of information beyond the static analysis performed by reverse engineering
tools alone. Examples of other information sources include dynamic run-time
analysis methods such as call tracing or stack analysis. Incorporating information
from other sources could have a number of potential benefits such as enriching
the picture (providing more detailed insight), validating one source with another,
or identifying other forms or types of relationships unavailable from one source
or another. A generic approach which allows for the uniform combination of
different information sources is outlined in Chapter 5.

In this chapter a method is proposed that considers behavioural informa-
tion stored in software repositories to address the issue of imperfect information.
Mining of source code repositories, the meta data of which holds evolutionary in-
formation of a software project, is a wide field and is being exploited in a number
of different domains (as seen in Section 2.4). This data is seen as a rich potential

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 76

source of information about software offering the ability to gain understanding
of those areas such as the evolution of a software package, bug fixing, semantic
relationships between artefacts and developer activity either at a given point in
time or mapped over the life of a project [Allamanis and Sutton, 2013; Kagdi
et al., 2007a; Williams and Hollingsworth, 2005]. The specific focus of source
code mining for this research is to find, and ideally quantify, semantic relation-
ships between components within software in a presentation form similar enough
to reverse engineering to allow combinational use.

Source code repositories are used by development teams as a central store
of development artefacts such as source code or documentation files. The cen-
tral store allows teams to collaborate together on a centrally held version of the
software, each “committing” their individual changes to this central store. Every
committal of changes can be stored incrementally with all previous versions avail-
able and certain meta data such as files changed, author and date is captured for
each commit.

Extraction of useful data from source code repositories can be complex. Al-
though an increase in open source projects makes an ever-growing volume of such
repositories available to researchers, the repository management software itself
is not normally designed with this type of data collection in mind. Successful
extraction and use of data however continues to grow as does interest in the pos-
sibilities inherent in such large collections. In many ways this is demonstrated by
the way in which raw data extraction from complex repository formats has now
become commonplace and the primary challenge remains how to analyse and use
this data to form useful information [Hassan, 2008].

Work by Bieman et al. [2003] on software visualisation showed that there
were apparent links between source code artefacts shown by change coupling
that did not appear through static analysis (reverse engineering) alone. Beyer
and Noack [2005] introduced a clustering model for co-changes demonstrating
that areas of commonality can be found and clustered but in most cases some
artefacts cannot be sufficiently grouped. However the possibility of incorporating
additional information from the changes (such as size of change) as well as other
information sources holds the prospect of increased accuracy.

For the purposes of this research the aim is to use repository data analy-

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 77

sis to detect relationships between source code artefacts such as classes. Such
relationships may be representative of a direct link in code, a dependency for
example, or a looser form. The method used to detect such relationships is built
around the concept of change coupling, e.g. what artefacts are more commonly
changed together. For example a high correlation in change coupling (also called
co-committal; artefacts changed at the same time as part of the same commit)
may indicate a relationship between these artefacts [Kagdi et al., 2007a]: if A and
B are commonly changed at the same time some form of semantic relationship
between them can be inferred.

Either of these two sources, reverse engineering or repository mining, on their
own can yield useful information about relationship structures within software,
but this information can be imprecise or overwhelming in volume [Grossman et al.,
2005]. Furthermore there is expected to be significant overlap, e.g., in the major-
ity of cases, relationships between elements found by one method would also be
detected by the other offering potential for cross-validation between information
sources.

4.1.1 Problem Statement

Static analysis is imperfect as even when there is full recall of structural elements
other important semantic relationships will not be detected. Such relationships
may be found within the information contained by a source code repository. The
problem is therefore to determine if it is possible to determine such semantic
links and then use this in combination with reverse engineering output to build
a more complete insight into a software system. Consider an example system
where Figure 4.1 shows the output from static reverse engineering but no link
has been found between the PrintMethod and PrintException classes through
this technique, even though such a link does exist. Note the same system is used
extensively in the worked example presented in Section 4.2.3.

4.1.2 Working Hypotheses

Meaningful semantic relationships between software components can be identi-
fied based on the frequency with which they have been changed together at the

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 78

Figure 4.1. ASCII Artist Worked Example: Static Analysis with Missing Link Highlighted

same time by developers, e.g. the correlation of co-commits. The stronger the
correlation the stronger the inferred relationship.

4.2 Approach

The approach to gain potentially useful information from repository data is built
around the concept of co-commits, as detailed in the Introduction (Section 4.1).
Although this is not a new concept in itself (see Section 2.4), defining a formal
and repeatable approach to the consistent use of mined repository data is novel,
and forms the basis of one aspect of the uniform multi-source approach defined
in Chapter 5.

The process overview with the major steps is shown in Figure 4.2. First the
raw repository data (step 1) is mined to gain a time series of commits within
a given window of time (the period under analysis) (step 2). Each is a set of
alterations made to the system, within the window, along with their constituent
changes (step 3). An analysis phase is then used in which, for each commit in
turn, every constituent class and pair of classes is identified (step 4) before a
counter for that pair is incremented (step 5). For example a commit containing
three components (A,B,C) would increment the relationship counters between
each of these pairs (A−B,A− C,B − C).

The result of this stage is a similarity table (step 6) showing, for each related

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 79

Figure 4.2. Overview of the Process Used to Extract Semantic Relationships Between Classes

component, the frequency of co-commits (the frequency at which they have been
changed as part of the same update). In this form reverse engineering data can
also be presented, as a similarity table containing relationships, and so the two
sources can be used directly together.

4.2.1 Concrete Example

Consider a more concrete example of a software system following the process
detailed in Section 4.2 and illustrated in Figure 4.2. The example has the following
commit log (step 1) in time series order T shown in Table 4.1.

Table 4.1. Example Commit Log

T Components in Commit
1 A, D
2 A, B, C
3 A, B
4 A, C
5 C, D

The period (window) under analysis (for which data should be gathered - step
2) is from time index 2 to 4 inclusive (2 ≤ T ≥ 4) which results in three commit

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 80

sets [A,B,C], [A,B], and [A,C] (step 3). For each of these each individual pair is
identified (i.e. [A,B,C] = A<>B, A<>C, B<>C - step 4) and the value held for
the similarity between these elements incremented by one (step 5). These steps
and the corresponding running totals are shown in Table 4.2. The end state is
the final pair totals (step 6).

Table 4.2. Example Commits Incremented to Pairs

T Components Pairs/Increment Totals
Begin A<>B=0, A<>C=0,

B<>C=0
2 A, B, C A<>B, A<>C,

B<>C
A<>B=1, A<>C=1,
B<>C=1

3 A, B A<>B A<>B=2, A<>C=1,
B<>C=1

4 A, C A<>C A<>B=2, A<>C=2,
B<>C=1

End A<>B=2, A<>C=2,
B<>C=1

4.2.2 Formal Definition

A commit Cx is defined as the xth addition to a version management system of
an unordered set whose elements correspond to classes c that have been modified
since the previous commit:

Cx : {c1, c2, ...} (4.1)

Consequently a version management system V is defined as a completely
ordered set of commits.

V : {C1, ..., Cn} (4.2)

A commit window VW (x, y) of a version management system V is defined as

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 81

the continuous subset of commits from Cx to Cy contained in V :

VW (x, y) : {Cx, Cx+1, ...Cy−1, Cy | Ci ∈ V, x ≤ i ≤ y} (4.3)

A class set SV of a version management system V (or commit window W) is
a set of all the unique classes contained within all the constituent commits:

SV : {c1, ...cn} ∈ {C1, ...Cn} ∈ V (4.4)

Co-Committed Class Elements

A class cx is defined as to be included within (part of) a commit Cz if it is in the
set of classes described by Cz using function Po (part of):

Po(cx, Cz) = 1, if cx ∈ Cz

Po(cx, Cz) = 0, otherwise
(4.5)

Two classes cx and cy are said to be committed simultaneously (co-committed)
with respect to a commit Cz if both cx and cy are part of Cz using function Co

(co-committed):

Co(Cz, cx, cy) = 1, if cx ∈ Cz ∧ cy ∈ Cz

Co(Cz, cx, cy) = 0, otherwise
(4.6)

The overall value of the relationship between two classes cx and cy is defined
as the sum of their shared co-commits as function Re (relationship):

Re(cx, cy) =
∑

Cz ∈ V

Co(Cz, cx, cy) (4.7)

Confidence Values

When two classes cx and cy are co-committed they are defined as having a co-
commit or semantic relationship. This semantic relationship models that the

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 82

classes cx and cy are part of the same semantic concept such as a component or
an architectural concept (UI).

As Version Management Systems provide an imperfect source of information
on semantic relations, not every commit will contain a clear co-commit of a given
class pair. The confidence in a semantic relation existing between two classes
is quantified based on the frequency with which they are co-committed in the
repository. The confidence in a semantic relationship is expressed as a number on
the domain [0..1] where 0 means “no confidence they are part of the same semantic
concept” and 1 means “certain they are part of the same semantic concept”. To
calculate the confidence of the semantic relationship between two classes ca and
cb in window W of repository V the function SVW

is defined that calculates the
number of co-commits for a pair of classes ca and cb (this is the same fundamental
calculation as equation 4.7 but for a given window W).

SVW
(ca, cb) =

∑
Cx ∈ VW

Co(Cx, ca, cb) (4.8)

and define AVW
to be the set of all classes in window VW .

AVW
=

⋃
VW (4.9)

Let the function M that determines the maximum co-commmit value for any
pair of classes in a window VW be

M(VW) = max{SVW
(ca, cb) | (ca, cb) ∈ AVW

× AVW
} (4.10)

Finally, the function RVW
that determines the confidence of the semantic

relation between classes ca and cb in window VW is defined as

RVW
(ca, cb) =

SVW
(ca, cb)

M(VW)
(4.11)

4.2.3 Illustrative Example

To illustrate this approach an example will be used, making references to the steps
shown in the process outline Figure 4.2, and the equations provided in Section

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 83

4.2.2. Taking a Java project called ASCII Artist as an example, the constituent
classes are detailed in Table 4.3 and shown, without relationships, in Figure 4.3.

Table 4.3. Classes contained within ASCII Artist Example

Class Description
ASCIIArtist Main class
Information Project information (version, copyright, etc)
Grid Two-dimensional Grid for drawing and projection
GridDraw Interface for classes able to draw onto a Grid
Shape Abstract base class for shapes
Triangle, Circle, Star,
Square

Shape classes for the respective shape

TriangleFactory, Cir-
cleFactory, StarFac-
tory, SquareFactory

Factory classes to create instances of the respective
shape classes

PrintMethod Abstract base class for printing (output) methods
CSVPrint, FilePrint,
ScreenPrint

Printing methods

PrintException Exception class for printing/output error
ShapeFactory Abstract base class for shape factories

Using standard static reverse engineering techniques (Astah Professional ChangeVi-
sion [2016]) relationships can be recovered from source code including inheri-
tance/generalisation and composition, as shown in Figure 4.4. For example the
derived shapes can be seen from the Shape class and that Shape has a constituent
Grid and applies the GridDraw interface. In total 18 relationships are found, in
four cases there are two types of relationships (inheritance and composition) be-
tween the same classes.

The following step is to detect semantic repository relationships. Starting
with the raw commit log (Figure 4.2 step 1; equation 4.2) for a given window
generating a set of commits (steps 2 and 3; equations 4.3 and 4.4). These are
then used to identify contained pair classes (step 4; equation 4.6), which are

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 84

Figure 4.3. ASCII Artist Illustrative Example: Classes Only

Figure 4.4. ASCII Artist Illustrative Example: Classes with Static (Reverse Engineering)
Relationships

added together (step 5) to build a set of numerical relationships (step 6; equation
4.7). An example of these steps with figures can be seen in Section 4.2.1 and the
process is outline in pseudo-code in Listing 4.1.

After this process one may, for example, find the results shown in Figure 4.5,
a set of five relationships of which two are novel (not contained in the reverse
engineering; highlighted in red). Because the source of data (number of co-
committals) provides a relative value for each relationship, a significance value
between 0 and 1 can be assigned to each relationship in turn (equations 4.8, 4.9,
and 4.11).

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 85

Listing 4.1. Process Pseudo-code

I n i t i a l i s e p a i r s to zero
I n i t i a l i s e maximum to zero

Open Commit_Log CL

For each commit C in CL
I f C. Time i s with in Window . Star t . Time and Window .End . Time

For each component X in C
For each component Y in C

I f X i s not Y
I f pa i r (X,Y) e x i s t s

Increment pa i r (X,Y) by 1
else

Create pa i r (X,Y) equal to 1
end i f
I f pa i r (X,Y) value i s g r e a t e r than maximum

Set maximum to pa i r (X,Y) value
end i f

end i f
endfor

endfor
end i f

endfor

Close Commit_Log CL

For each pa i r P
Divide P by maximum value

endfor

Having detected classes and relationships from each methods independently,
they can be brought together and combined. As the relationships found from
static reverse engineering are definite, existing solidly in the code, it can be as-
sumed they are definitely correct e.g. have a significance value of 1. That is they
are the ground truth. Relationships contained in the mining data, after filtering
for significance above a threshold, are then combined with the static reverse en-
gineering set. The resultant class and relationships example is shown in Figure
4.6, with the co-detected (found in both methods) relationships in green, reverse
engineering only in black, and those found only in source code mining in red.

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 86

Figure 4.5. ASCII Artist Illustrative Example: Classes with Repository Mining Semantic
Relationships (Novel Relationships in Red) and Confidence Values

Figure 4.6. ASCII Artist Illustrative Example: Classes with Both Relationship Sets
(Duplication in Green, Repository only in Red)

4.3 Implementation

To implement the approach three main components were required; programmatic
access to reverse engineering output, co-commital data from a source code repos-
itory, and an analysis engine to work with both these inputs.

Access to reverse engineering output is provided through the use of a generic
XMI parsing component. This component facilitates the loading of different forms

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 87

of XMI into a consistent abstracted memory model based on the benchmarking
work (Chapter 3 and Cutting and Noppen [2014]). This can then be converted
into a set containing relationship links for all the contained classes.

The committal information from repository logs is gathered through a mining
component. The initial raw data gathering function of which was inspired by and
based on re-engineering of the IBDOOS tool, generously provided by the Ecole
Polytechnique de Montreal [Ali et al., 2013].

Repository data is very noisy and so the mining component includes a number
of configurable pre-filters to identify which commits should, or should not, be
included in the data. For example commits which include a very high proportion
of the overall class count are likely to be trivial changes, such as notices, or affect
such a large number of files as to be meaningless. Filters based on structure
and packages are supported to remove non-code artefacts from the data. Logic
is also used to rename files into classes, creating a format comparable in content
to that from the reverse engineering output, allowing comparison and analysis.
An example of the type of information for a commit captured by one popular
repository manager (git) that can be recovered is as shown in Listing 4.2.

Listing 4.2. Git Commit Log

commit 95 fcedd248107ab5de29ec28d4477b6e0cba8ce9

Author: davidcutting <David.Cutting@uea.ac.uk>

AuthorDate: Mon Aug 12 16:57:28 2013 +0100

Commit: davidcutting <David.Cutting@uea.ac.uk>

CommitDate: Mon Aug 12 16:57:28 2013 +0100

Association support for XMI (rhapsody tested)

M src/org/purplepixie/xmi/ModelRelationship.java

M src/org/purplepixie/xmi/XMIFile.java

M src/org/purplepixie/xmi/XMIParserGenericSAX.java

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 88

4.3.1 Information from Repository Mining

Having implemented software to mine relationships from source code reposito-
ries, before moving into combinational analysis with reverse engineering, it was
important to check that additional semantic links were indeed contained. This
was accomplished in two ways. Firstly manual checking of relationships recovered
and secondly projection by network analysis which allowed the visualisation of
larger projects in an efficient and easily understood manner.

The manual analysis consisted of checking through detected relationships and
making a judgement on the efficacy of the relationships. Owing to the size of the
projects analysed this could only be done on a small basis of random sampling.
The sampling did, however, show apparently sensible and valid relationships.

Network analysis is a system whereby an attempt is made to build a visual
representation of a relationship network between nodes. This uses a similarity
matrix based upon how similar or related nodes are; the number of interactions
or commonalities they share. This was performed, using third-party tools in R,
against the repository information mined for two projects. Figure 4.7 shows an
annotated (highlighted and named for clarity) network analysis of the D-UEA-
ST project showing closely grouped components. These, on further analysis,
represent discrete sections of the software, either built by different developers or
part of a common function. In addition some interface structures occur at the
bottom right, showing a form of abstraction with interfaces and their concrete
implementations.

An annotated network analysis of the XMI Analyser software (Figure 4.8)
shows not only levels of interface from the central main class (GUI, controllers
and data classes). The duplication left to right is the result of a refactoring and
renaming which, from a repository perspective, resulted in the appearance of two
distinct sets of files and an interesting illustration of repository data. The right-
hand side of the image contained the original classes. The packages had then
been changed to bring the project into a common namespace with other tools
resulting in the apparent twin sets. At the same time as the rename, refactoring
was completed to increase software quality; reducing coupling and an increased
use of abstraction and layers. This can be seen in the left-hand side set of Figure

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 89

Figure 4.7. Annotated Network Analysis Output in R for D-UEA-ST Commit Data

4.8 compared to the right, with three distinct layers and lines of communication.

Figure 4.8. Annotated Network Analysis Output in R for XMI Analyser Commit Data

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 90

Owing to the computational complexity of building network diagrams it was
infeasible to attempt this on larger projects. Consequently a simpler visualisation
method was also used. Multi-dimensional scaling (MDS) was performed in R
on the same similarity matrices (Section 2.5.1) to produce a two-dimensional
representation of constituent classes. Two dimensions were chosen for output as
they could be easily represented as an image without complexity and were in the
same dimensions as the existing network diagrams. This was initially performed
on the same projects, D-UEA-ST (Figure 4.9) and XMI Analyser (Figure 4.10),
for comparison.

Each component (class) is represented by a mark (circle) on the figure, and
the closer components are to each other the more strongly they are related. It
appears some relationships continue to be visible with closely-located elements
(possibly suitable for clustering - see Section 4.4), but this is not presented as
clearly as with the network analysis because no relationship links are shown and
many of the markers overlay with each other. For clarity some grouped elements
are annotated in Figure 4.9 (much as in Figure 4.7) where the core class set and
the OMT sub-module classes can be clearly identified as discrete closely grouped
classes.

The MDS projection of XMI Analyser (Figure 4.10) shows some close location
of classes, but mainly overdrawn on top of each other and so not as clearly
decomposable as D-UEA-ST.

Because MDS is much less computationally expensive than network diagrams,
large projects could also be analysed, such as the Eclipse project shown in Fig-
ure 4.11, containing over 16,000 classes. Owing to the sheer scale of Eclipse
no attempt has yet been made to segment and analyse this projection. Again
some semantic constructs are clearly visible through the close positioning and
arrangement of components, certainly a core corpus and some discrete offshoot
elements.

The groupings of components, shown in both the network diagram and MDS,
especially showing the package rename so clearly, combined with the manual anal-
ysis, shows there is clear and useful information contained within the repository
data. This data therefore, represented as sets of relationship strengths, does have
the potential to be used in combination with other information and give fuller

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 91

Figure 4.9. Annotated MDS Output in R for D-UEA-ST Commit Data

Figure 4.10. MDS Output in R for XMI Analyser Commit Data

insight or validation.

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 92

Figure 4.11. MDS Output in R for Eclipse Commit Data, augmented to show some
architectural components

4.4 Application to Clustering

One potential application of recovered rich relationship information is the cluster-
ing of related elements or components within software. At the simplest level this
will enable related components to be easily distinguished but also has the possi-
bility of establishing additional information such as parts of architectural styles
or semantic constructs (e.g. model-view-controller). To explore this possibility a
series of experiments were conducted to apply the relationship data to clustering.

Having shown, using R, that relationships do seem to be present in the commit
data (Section 4.3.1) and that multi-dimensional scaling (MDS) can be used to aid
visualisation, MDS was then implemented in Java. Using data scaled to two di-
mensions with MDS offers benefits beyond n-dimensional data, primarily in terms
of visualisation and comprehensible output which can be validated. Implementa-
tion in Java rather than pipelining into R is desirable to reduce requirements and
dependencies of any resulting analysis application as well as providing this pro-
cessed data internally for further use without reading it back in. A Java library
is available for MDS processing [Pilch, 2009] and this was integrated within the
experiment application. To validate output from the Java MDS it was compared

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 93

to the R output previously created and found to match.
With the data from the relationship detection leading to a two-dimensional

MDS projection, the ability to perform clustering was added to the codebase.
Clustering based upon repository patterns has previously been shown to be both
possible and useful in showing relationships beyond static reverse engineering
[Beyer and Noack, 2005; Bieman et al., 2003].

Initially K-Means (an approach with a defined number of randomly positioned
centroids for K clusters) was implemented as an initial proof-of-concept to check
the MDS projections and also to see how applicable this clustering technique
would be to software similarity data. As identified in the literature, K-Means can
be highly variable in output and not always suited to all data types. Although the
software did prove capable of clustering as expected, a high level of uncertainty
was seen in the output clusters. This was prevalent at relatively low levels of
K, such as in Figure 4.12 where K=3, but clusters failed to stabilise at higher
values of K either, as seen in Figure 4.13 for K=6. As a clear visualisation for
each incrementing value of K a series of 100 runs was performed and put into a
15 frame-per-second video to allow easy time-based visualisation of stability (an
example of these video projections can be found in Cutting [2016]). Not only was
K-Means found to be unstable but even at K=6, the groupings of components into
clusters were rarely accurate compared with, for example, the manual analysis
shown in Figure 4.9.

As K-Means was found to be inconsistent, rather than expending effort trying
to improve this technique, such as by smart centroid identification or averaging
cluster runs, an alternative technique of the Expectation Maximisation/Gaussian
Mixture Model (EM/GMM) was implemented. To implement the EM/GMM
clustering approach WEKA was integrated into the experiment and it’s EM
methods were used. The WEKA/EM strategy class converted the supplied two-
dimensional data into a form suitable for WEKA, ran the EM algorithm with
set parameters, and returned the cluster assignments. The WEKA/EM process
returned more stable clusters (and without a need to pre-specify the number to
be found) but needs more investigation as to the most appropriate settings (see
Section 7.2) as some inconsistencies and unexpected output can be seen. The
stability relative to K-Means can be seen in Figure 4.14 and a much larger sam-

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 94

(a) K-Means with K=3 (A) (b) K-Means with K=3 (B)

Figure 4.12. K-Means Clustering of D-UEA-ST Co-Commit Data with K=3: Each point
(class) is put into one of 3 clusters but the results are highly unstable i.e. for exactly the same
input parameters the left and right images were produced owing to the initial randomisation

of K centroids

(a) K-Means with K=6 (A) (b) K-Means with K=6 (B)

Figure 4.13. K-Means Clustering D-UEA-ST Co-Commit Data with K=6: Each point (class)
is put into one of 6 clusters with results more stable than K=3 (Figure 4.12) but still showing

variation for the same input parameters

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 95

(a) EM Clustering (A) (b) EM Clustering (B)

Figure 4.14. EM Clustering of D-UEA-ST Co-Commit Data with Minimum Standard
Deviation 1x10−4: EM delivers stable consistent clustering but at a resolution (number of

clusters) unsuitable for detailed analysis (e.g. see the right-hand cluster group)

ple (Eclipse) can be seen in Figure 4.15 highlighting an inconsistency issue with
the central data point being included in a cluster along with other closely-related
components.

4.5 Conclusion

Having demonstrated that reverse engineering alone can be imprecise, the pos-
sibility of mining source code repositories for useful additional information was
investigated. The first step was to test the hypothesis that through the measure-
ment of co-commits (components being changed at the same time), relationships
between components could be established. This experiment showed that not only
could co-committal data be successfully mined from repository meta data but
that it also contained links and delineated groups of components (Section 4.3.1).

As an experimental proof-of-concept a theoretical worked example demon-
strated how relationships could be detected and recovered from both static re-
verse engineering and repository mining (Section 4.2.3). This example introduced
confidence values, numerical representations of the apparent strength of a rela-
tionship in relation to others, from repository data and the concept of treating

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 96

Figure 4.15. EM Clustering of Eclipse Co-Commit Data with Minimum Standard Deviation
1x10−2: Segmentation through clustering occurs, in a stable fashion, but with similar

resolution issues to those seen in Figure 4.14

reverse engineering input as a ground truth. The two sources of information were
then brought together to validate certain relationships and demonstrate others’
are only provided by a single source.

This framework and worked example experiment forms a basis within which
real world information from different information sources, on the same software
target, can be brought together and used in conjunction, and demonstrates that
this can be done consistently and effectively.

As an example application of these information sources clustering was ex-
amined in Section 4.4, using both K-Means and EM/GMM. Though limitations
were found when applying these traditional methods, the overall conclusion can
be that useful information could be generated and closely related components
clustered together. Further work to consider different and more applicable forms

CHAPTER 4. AUGMENTING R/E USING REPOSITORY MINING 97

of clustering, perhaps fuzzy approaches in which nodes can belong to 0, 1 or more
than 1 clusters, could be more successful. The application of such clustering to
the software domain would be a major undertaking in itself and so not part of
this chapter. This work has however found that clustering showed potential for
the grouping of related components but the results were inconclusive with the
techniques available.

Chapter 5

A Uniform Approach to Combining
Multiple Traceability Information
Sources

98

CHAPTER 5. A UNIFORM APPROACH 99

5.1 Introduction

In order to comprehend software structure and form, reverse engineering is often
used to analyse code and generate output such as Unified Modelling Language
(UML) diagrams [Arcelli et al., 2005; Rasool and Streitfdert, 2011; Roscoe, 2011].
When benchmarking reverse engineering in Chapter 3, it was found that reverse
engineering output can be imprecise and even when complete may only find struc-
tural components [Cutting and Noppen, 2014, 2015]. It is also the case that the
large diagrams which can often result may be overly complex or cumbersome to
use [Fowler and Highsmith, 2001; Grossman et al., 2005]. However, there are
also a number of alternative potential sources of understanding beyond reverse
engineering.

One example of an alternative source of insight is through the mining of source
code repositories, analysing the meta data logging the evolutionary changes of
source code [Kagdi et al., 2007b], as demonstrated in Chapter 4. Other possible
sources include dynamic runtime analysis such as call tracing or stack analysis,
expert opinion on related matters, other forms of static analysis such as coupling
detection, and natural language processing of documentation or comments. The
appropriateness and insight of each of these methods would naturally vary de-
pending on the source project; perhaps with better documentation, structured in
a more logical way for static analysis or with a higher granularity in the source
code repository. Varied combinational use as applicable, and using weightings for
importance of different sources, is therefore an essential part of the wider use of
multiple information sources.

Whatever the sources of information chosen they must be compatible and
comparable in order to be used successfully together in a common format. Failure
to accomplish this would lead to two or more information sources suitable for
independent use only.

5.1.1 Problem Statement

Is it possible to define an information framework to consider any information
source in a uniform manner, to allow the comparative and combinational use.

CHAPTER 5. A UNIFORM APPROACH 100

5.1.2 Solution Definition

To allow combinational use the approach is to identify the lowest common de-
nominator between information sources, a format that all information sources
can be decomposed to and which still holds useful information.

The lowest common denominator is defined as: the lowest level of detail (high-
est level of granularity) which the information sources hold in common. For ex-
ample source X has lowest level data at the class level whereas source Y has the
statement level. The lowest common denominator in this case would be the class
level (statements are more detailed than and can be decomposed upwards into
classes).

In software terms this would be a model of component interaction. The ques-
tion being: for a given level of granularity, which can be generated by all infor-
mation sources, what is the count and significance of interactions found between
components?

The granularity level represents the form of the components used, which may
be files, classes, methods, or even variables or statements, whatever can be repre-
sented by all information sources. To offer an analogy in communication analysis;
records might be held of phone calls and email exchanges which can be combined
to build up a network analysis of interactions. The level of granularity in this
example could be the individual, if both sources of information were personal
enough, or could be the household as the landline phone records do not distin-
guish individuals. Only the highest common level of granularity could be used.

Although the approach presented is entirely generic, so open to any level of
granularity, the implementation is based around the class level so all the compo-
nents are classes constituent to a project.

In general the solution, as shown in Figure 5.1, is to take a series of different
information sources pre-processed to be comparable, apply sets of filters and
weighting before combining them. A separate set of “ground truth” relationships
are also maintained and then merged into the output.

CHAPTER 5. A UNIFORM APPROACH 101

Figure 5.1. Process Overview of the Uniform Approach to Combining Multiple Traceability
Information Sources

5.2 Approach

The approach to the combination of data sources is based around the concept of
component interactions. For any given data source a set of interactions between
each component in the target system can be obtained, a set S. Each intersection
between components is represented by a value and possibly some additional in-
formation, forming a relationship matrix. In its simplest form each intersection
is an integer value, initialised at 0, which is incremented every time an interac-
tion between the two components is found. This is a uniform matrix that can
be generated for any given information source, containing all the intersections
of constituent components. An example of a 6-element relationship matrix is in
Table 5.1, which would represent the example class diagram shown in Figure 5.2
where there is not yet any relational information at all between the classes. In-
tersections on the diagonal (between a component and itself) are excluded from
the data as they are meaningless (a component is clearly related to itself in the
strongest possible fashion). The matrices are completely symmetrical containing
two intersections for each pair. For clarity only one half of the matrix is completed
in the examples the other half mirroring the data.

Each information source will have its own relationship matrix of component

CHAPTER 5. A UNIFORM APPROACH 102

A B C D E F
A -
B 0 -
C 0 0 -
D 0 0 0 -
E 0 0 0 0 -
F 0 0 0 0 0 -

Table 5.1. Example 6 Element Relationship Matrix

Figure 5.2. Example Six Element Class Diagram with No Relational Information

interactions, for example for two sources X and Y, matrices SX and SY would be
formed.

5.2.1 Formal Definition

Let the software system under study S consist of a number of components {c1, c2, ..., cn}
between which the intent is to establish semantic relationships and their confi-
dence value.

Let SC be the Cartesian product of S with itself, i.e. SC contains all the pairs
of components.

SC = S × S = {(c1, c1), (c1, c2), ...} (5.1)

RX is defined as a similarity function for system S, information source X and
pair of components (cx, cy) ∈ SC . RX calculates the confidence of the relationship
(similarity) between cx and cy.

RX : (cx, cy)→ [0..1] (5.2)

under the following conditions:

• the output of the function is expressed as a number on the domain [0..1]

where 0 means “no confidence they are part of the same semantic concept”

CHAPTER 5. A UNIFORM APPROACH 103

and 1 means “certain they are part of the same semantic concept”

• RX must be commutative (i.e. RX(cx, cy) = RX(cy, cx))

A unique definition of RX needs to be defined for each information source
describing S. Note that RV (Section 4.2.2) is an example instance of RX for
version management systems as information sources and fulfils the conditions
listed above.

AC is defined as a function outline for the aggregate confidence value of se-
mantic relationship between two components cx and cy given a set of relationship
functions RX .

AC : (cx, cy, RX)→ [0..1] (5.3)

under the following conditions:

• the output of the function is expressed as a number on the domain [0..1]

where 0 means “no confidence they are part of the same semantic concept”
and 1 means “certain they are part of the same semantic concept”

• AC must be commutative

• AC must be associative

This function needs to be explicitly defined for a set of information sources
and conform to the definitions given above. A suitable example definition for this
function can be the use of the max operator to aggregate confidence values of
semantic relationships. The example function below attaches the highest confi-
dence value that can be found in R to the semantic relationship between cx and
cy.

ACmax(cx, cy, R) = max{r(cx, cy)|r ∈ R} (5.4)

5.2.2 Filtering

Without pre-judging the information sources chosen it is clear that some sources
may be more or less sparse, or more or less noisy than others. It is important

CHAPTER 5. A UNIFORM APPROACH 104

therefore to build into the generic approach some consideration for filtering. Fil-
tering can happen pre- or post-matrix.

Pre-matrix filtering is the decision about what interactions to include within
the matrix. For example an information source may contain numerous types of
interactions of widely varying significance; certain of these may be excluded as be-
ing insignificant and therefore the intersections are not incremented. This filtering
happens within the realm of the information source data collection and happens
before the resultant products are provided as a similarity function (equation 5.2).

Post-matrix filtering is setting parameters by which intersections are removed
or deemed insignificant so not taken forward into the analysis. This can be accom-
plished, for example, by the application of a naive significance filter; any values
below a threshold are set to 0 and so discarded. More complex filtering based
on the distribution of values throughout the matrix, or external considerations,
is also possible.

Therefore a general filter function F can be defined that for all the pairs of
components cx, cy removes (sets to 0) those pairs which do not meet a significance
value n:

F ((cx, cy), n) = RX(cx, cy), if RX(cx, cy) >= n

F ((cx, cy), n) = 0, otherwise
(5.5)

5.2.3 Weighting and Truth

All information sources are not created equally. Some will naturally be more sig-
nificant, more reliable, or have a higher fidelity to the actual nature of component
relationships. Some may also be classed as completely reliable e.g. they can be
taken as a positive ground truth; if they show a relationship between components
that relationship is said to definitely exist in the strongest possible sense.

Consider for example a static code analysis (static reverse engineering) which
identifies an inheritance (generalisation) relationship between two component
classes. That this relationship exists is clear and the strength of that relationship,
one class being derived from the other, is also clear and very strong. Compared
to some identification of a relationship from another information source, such as
call traces or semantic analysis of the repository, it is not only a much stronger

CHAPTER 5. A UNIFORM APPROACH 105

but a definite relationship. In this case the static relationship could be considered
a ground truth and other relationships indicative at best.

To allow for this disparity in information sources the approach allows for
both weighting values when combining matrices (one information source is of a
greater weight and therefore higher importance) and the inclusion of additional
information such as ground truth flags for intersections (for which there is said to
definitely be a relationship regardless of resultant value following amalgamation
of matrices).

To record such ground truth another instance of the Cartesian product of S
with itself (SC , equation 5.1) is used, thereby containing all the pairs of com-
ponents with values representing 1 for ground truth relationship and 0 where no
such relationship is said to exist.

ST = S × S (5.6)

A truth function T is defined that for a given pair of components (cx, cy)
and information source X indicates if a ground truth relationship exists. In an
information source designated as a ground truth any relationship value above zero
would be regarded as true:

T ((cx, cy), X) = 1, if RX(cx, cy) > 0

T ((cx, cy), X) = 0, otherwise
(5.7)

under the following conditions:

• Information source X is a ground truth source

Combining Weighted Sources

To combine different information sources into a single set (the combined rela-
tionship strength over all sources), the function TO is defined that for pairs of
components (cx, cy) aggregates the information source relationships for each in-
formation source X in accordance with weighting value w relative for each source,

CHAPTER 5. A UNIFORM APPROACH 106

within the domain [0..1].

TO(cx, cy) =

n∑
i=1

wiRXi
(cx, cy)

n∑
i=1

wi

(5.8)

In order to combine the truth data a further two functions are defined which
together combine the sets of truth relationships for each information source. First
the function TC which sets the value to be carried forward.

TC((cx, cy), X) = 1, if T ((cx, cy), X) > 0

TC((cx, cy), X) = 0, otherwise
(5.9)

And then the function TR which combines the sources

TR(cx, cy) =
n∑

i=1

TC((cx, cy), Xi) (5.10)

5.2.4 Boolean Conversion

For some purposes a discrete level of relationship strength is not required, merely
that if the relationship exists (has passed the various filtering and combination
threshold) it is recorded as present or not. This is represented in a Cartesian
product of the classes but containing just 1 if a relationship is present or 0 if a
relationship is not.

Functionally in this definition the function is the same as that shown in equa-
tion 5.7, but the purposes of the two are different and may be rewritten inde-
pendently and so are kept as separate functions. Equation 5.7 is intended to
generate a new matrix set containing boolean values for a data source we know to
be true i.e. the ground truth. The resultant matrix can then be used to preserve
relationships represented through later filtering stages. The standard Boolean
conversion however is applied to any matrix and converts any non-zero values to
1. Let the function B to produce a Boolean result 1/0 for a pair of components
(cx, cy). This can be used with any suitable source (such as an information source

CHAPTER 5. A UNIFORM APPROACH 107

RX , but here is used with a combined total Tr).

B(cx, cy) = 1, if Tr(cx, cy) > 0

B(cx, cy) = 0, otherwise
(5.11)

5.2.5 Combination and Simple Example

Once the matrices for each information source have been generated and filtered,
they can be used together through the formulae defined in Sections 5.2.1 to 5.2.4.
The combinational function To (equation 5.8), with associated weighting values
w, allows the formation of a combinational set. For two information sources A and
B the relationship matrices would be SA and SB. An example of this process is
shown in Table 5.2. Pseudo-code outlining the processes following to manipulate
the data in Table 5.2 is contained in Listing 5.1.

CHAPTER 5. A UNIFORM APPROACH 108

A B C D E F
A -
B 1 -
C 1 0 -
D 0 0 0 -
E 0 0 0 2 -
F 0 0 0 1 0 -

(a) X Relationship Matrix
(SX)

A B C D E F
A -
B 0.5 -
C 0.5 0 -
D 0 0 0 -
E 0 0 0 1 -
F 0 0 0 0.5 0 -

(b) Normalised X Matrix (from
RX)

A B C D E F
A -
B 4 -
C 6 0 -
D 0 1 0 -
E 0 1 0 10 -
F 0 4 0 0 0 -

(c) Y Relationship Matrix
(SY)

A B C D E F
A -
B 0.4 -
C 0.6 0 -
D 0 0.1 0 -
E 0 0.1 0 1.0 -
F 0 0.4 0 0 0 -

(d) Normalised Y Relationship
Matrix (from RY)

A B C D E F
A -
B 0.4 -
C 0.6 0 -
D 0 0 0 -
E 0 0 0 1.0 -
F 0 0.4 0 0 0 -

(e) Normalised Y Relationship
Matrix (SY), with Significance

Filter Applied;
RY = F (RY , 0.2)

A B C D E F
A -
B 0.9 -
C 1.1 0 -
D 0 0 0 -
E 0 0 0 2.0 -
F 0 0.4 0 0.5 0 -

(f) Combined Matrix;
To = {SX , SY }

A B C D E F
A -
B 1 -
C 1 0 -
D 0 0 0 -
E 0 0 0 1 -
F 0 0 0 1 0 -

(g) Boolean X Matrix B(SX)

A B C D E F
A -
B 1 -
C 1 0 -
D 0 0 0 -
E 0 0 0 1 -
F 0 1 0 0 0 -

(h) Boolean Y Matrix B(SY)

A B C D E F
A -
B 0 -
C 0 0 -
D 0 0 0 -
E 0 0 0 0 -
F 0 1 0 0 0 -

(i) B Source Only
Relationships Matrix

SUY = |B(SY)−B(SX)|

Table 5.2. Data Source Matrix Creation and Combination Process
for Example Sources X and Y

CHAPTER 5. A UNIFORM APPROACH 109

Listing 5.1. Pseudo-code Matrix Example

// Panel a
Load matrix X

// Panel b
For each i in X

i = i d iv ided by maximum value in X
endfor

// Panel c
Load matrix Y

// Panel d
For each i in Y

i = i d iv ided by maximum value in Y
endfor

// Panel e
For each i in Y

i f i va lue i s l e s s than 0 .2
i va lue s e t to 0

end i f
endfor

// Panel f
New matrix Z i n i t i a l i s e d as 0
For each i in X

Z i va lue incremented by X i value
endfor
For each i in Y

Z i va lue incremented by Y i value
endfor

// Panel g
For each i in X

I f i va lue g r e a t e r than 0
i va lue s e t to 1

end i f
endfor

// Panel h
For each i in Y

I f i va lue g r e a t e r than 0
i va lue s e t to 1

end i f
endfor

// Panel i
New matrix W i n i t i a l i s e d as copy o f Y

CHAPTER 5. A UNIFORM APPROACH 110

For each i in Z
I f i va lue g r e a t e r than 0
W i value s e t to 0

end i f
endfor

In this example two information sources A and B are provided as matrices
before being normalised to the range 0..1. A naive significance filter (F) is applied
to SB before the two sources are combined.

In this instance the combination of matrices is made with equal weighting
(wi = 1) and so the values are just added together for each intersection (and the
combined matrix can be re-normalised as required).

Generally it is foreseen that there would be significant overlap between in-
formation sources, e.g. the majority of detected relationships would be found in
multiple sources. To demonstrate the efficacy and value of a single source, it is im-
portant to be able to identify relationships found from it alone. To demonstrate
this the two example matrices SA and SB are converted into boolean matrices
with function B for simplicity, where each intersection is represented by 0 for no
relationship and 1 for some form of relationship. By subtracting one from the
other, just the relationships contained in a single form can be found, in this case
those found by information source B represented as SUB = |B(SB)−B(SA)|.

5.2.6 Illustrative Example

Returning to the illustrative example in Chapter 4 (Section 4.2.3) used to demon-
strate incorporation of reverse engineering data, a set of matrices can be gener-
ated.

From the reverse engineering data, extracted from XMI, the matrix SR is
formed as shown in Table 5.3. Similarly the matrix SM is formed from the
semantic relationships found through repository metadata mining, shown in Table
5.4.

CHAPTER 5. A UNIFORM APPROACH 111

Figure 5.3. ASCII Artist Illustrative Example: Classes with Static (Reverse Engineering)
Relationships

Figure 5.4. ASCII Artist Illustrative Example: Classes with Repository Mining Semantic
Relationships (Novel Relationships in Red) and Confidence Values

The two matrices SM and SR can be combined through the + operator to
include all relationships found, where RMR = SM + SR, as shown in Table 5.5.

5.3 Discussion and Limitations

To make regular and replicable use of multiple information sources in a compara-
ble form it is clear that a standard framework is required. This has been defined,

CHAPTER 5. A UNIFORM APPROACH 112

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19
3 Grid -

4 GridDraw -
5 Shape 1 1 -

6 Triangle 1 -
7 Circle 1 -
8 Star 1 -

9 Square 1 -
10 TriangleFactory -
11 CircleFactory -
12 StarFactory -

13 SquareFactory -
14 PrintMethod 1 -

15 CSVPrint 1 -
16 FilePrint 1 -

17 ScreenPrint 1 -
19 ShapeFactory 2 2 2 2 -

Table 5.3. ASCII Artist Illustrative Example: Reverse Engineering Matrix SR of Figure 5.3
(components 1,2, and 18 with no relationships removed for clarity)

5 6 8 12 14 16 18
5 Shape -

6 Triangle 0.6 -
8 Star 0.5 -

12 StarFactory 1 -
14 PrintMethod -

16 FilePrint 0.9 -
18 PrintException 0.9 -

Table 5.4. ASCII Artist Illustrative Example: Repository Mining Matrix SM of Figure 5.4
(components 1, 2, 3, 4, 7, 9, 10, 11, 13, 15, 17, and 19 with no relationships removed for

clarity)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
3 Grid -

4 GridDraw -
5 Shape 1 1 -

6 Triangle 1.6 -
7 Circle 1 -
8 Star 1.5 -

9 Square 1 -
10 TriangleFactory -
11 CircleFactory -
12 StarFactory 1 -

13 SquareFactory -
14 PrintMethod 1 -

15 CSVPrint 1 -
16 FilePrint 1.8 -

17 ScreenPrint 1 -
18 PrintException 0.9 -
19 ShapeFactory 2 2 2 2 -

Table 5.5. ASCII Artist Illustrative Example: Combined Matrix RRM = SR + SM of Figure
5.5 (components 1 and 2 with no relationships removed for clarity)

CHAPTER 5. A UNIFORM APPROACH 113

Figure 5.5. ASCII Artist Worked Example: Classes with Both Relationship Sets and Strength
Values (Static only in blue, repository only in red, found in both in green)

with examples, in this chapter. Although clearly suitable to meet the basis of
the problem statement, which is worded in a general manner, there exist some
limitations to the approach. These are discussed below.

5.3.1 Level of Granularity

For comparison all the information sources must provide data at a common level of
granularity, referred to as the lowest common denominator e.g. the most specific
level of granularity shared by all sources. For example, a source with information
at the method level cannot be directly used with a source at the class level; it
must be converted to a higher comparable level. In this example, methods being
contained within classes, relationships can be easily converted from the method
to the class level (A::x – B::y becomes a A – B relationship).

This necessitates both a loss of precision and also a loss of specific accuracy;
it may be the case that the level of granularity becomes so high that the entire
process becomes unwieldy or less useful. For example if a source operates at the
architectural level, all other sources are limited to this level.

One possible solution to this would be to “devolve” high sources to the desired
level of granularity, using weighted means or another conversion, e.g. a relation-
ship between elements A – B would “devolve” into a less weighted relationship

CHAPTER 5. A UNIFORM APPROACH 114

evenly spread between A::x – B::y and A::z – B::w.

5.3.2 Pre-Matrix Filtering

The filters included in the approach are limited to those applied to the generalised
data once presented as sets of relationships (e.g. a significance filter). Different
information sources would themselves require significant processing to be brought
(a) into the set form for comparison and (b) to potentially filter out “noise” at
the raw data level.

For example, when considering converting a source code repository history into
a set of relationships; the starting point is a list of commits and their constituent
changed elements. These are then processed and relationships are strengthened
when both constituent parts of the pair are contained within a commit. However
not all commits would want to be included within the analysis, e.g. those in which
a large proportion of overall classes are updated as to be meaningless, or those
to outdated historic files or structures which have since been removed from the
project. Likewise, how would renaming of files be dealt with? Are relationships
with the previously named file ignored or “merged” into the relationships with
the current names?

Such source-specific filtering and processing is outside the terms of the generic
approach detailed in the chapter. For full repeatability some generalised forms
of pre-processing could be defined, certainly for common types or sources of re-
lationship information.

5.3.3 Maintaining Traceability of Relationships

In the generic approach data sources are used in weighted combination e.g. a
relative strength or importance is applied to each source and then are combined.
Further the use of ground truth means that relationships determined to be defini-
tively true are kept protected even if other sources are combined which do not
show such a relationship and would naturally weaken its strength.

Using the pure form of the approach however means that the source of the re-
lationship and strength are lost. After a series of combinations there is no record

CHAPTER 5. A UNIFORM APPROACH 115

at the final stage of where each came from. The original data sets from the indi-
vidual sources could, of course, be referred back to. However, in an ideal scenario
a “traceability matrix” would be maintained alongside the “relationship matrix”
and “ground truth matrix”, containing a narrative history of each relationship set.
This would allow for the generation of “rationale reports” detailing exactly why
the approach determined such a relationship exists. This in turn could be used
with expert knowledge to determine the credence to put into such a relationship,
perhaps with reference to a specific use.

5.4 Conclusion

In this chapter a generic model for the comparison and combination of disparate
data sources through the use of lowest common denominator relationship matrices
has been introduced. Once, after appropriate filtering, a matrix is created from a
given data source it can be used in isolation or in combination with other matrices
targeting the same subject (with the same set of intersections).

Owing to the heterogeneous nature of these disparate sources, post-matrix
filters and weightings can be applied, as well as a ground truth nominated. The
matrices can then be mathematically combined or subtracted to provide a full set
of found relationships or only those uniquely found in a single source respectively.

After the creation of a richer combined information matrix for target soft-
ware, this data can be potentially used in a variety of ways. As a simple set of
relationships it allows easier understanding of couplings or dependencies within
a code corpus, for general or specific use. The clearest specific potential use is
for change impact analysis, identifying which components are closely linked and
therefore likely to be impacted by changes made. Subtraction of data sources
leaving only relationships found in a single source can also be used as a valida-
tion of the technique; highlighting relationships found only in one, perhaps less
common, source.

Chapter 6

Augmenting Change Impact
Analysis with Semantic Relation
Information from Version
Management Systems

116

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 117

6.1 Introduction

Having established that co-commit information from repositories seems to hold
useful relationship information beyond static analysis (Chapter 4), and defined a
generic framework for the use of multiple information sources to determine com-
ponent relationships (Chapter 5), it is now desirable to implement and evaluate
this novel approach. One problem domain in which such dependency traceability
is clearly beneficial is that of predictive change impact analysis (Section 2.6), so
in this chapter the approach is implemented in this domain.

Predictive Change Impact Analysis (PCIA) is the ability to determine, for a
given change to a system, the probable and/or likely impacts (ripple effects) to or
within other components of the system. Commonly engineers know what needs
updating to make a change, the challenge is without deep understanding as to
how the components are interrelated, to predict the effect that change will have.
PCIA is never perfect but acts as a starting point for engineers to know which
elements they need to consider that may be impacted and, as importantly, which
ones are suitably isolated.

To apply the combinational approach to this domain the process outlined in
Section 5.2 and shown in Figure 5.1 will be applied. This implementation will
use static reverse engineering output and semantic source code repository links as
the two information sources. The approach will be implemented and the strength
of relationships found between components used to determine coupling hence the
likely impact of a change of one having an effect on the other.

6.1.1 Problem Statement

Can semantic relationships, mined from a source code repository, be used in
combination with static reverse engineering to augment, e.g. perform in a better
or more accurate manner, predictive change impact analysis?

6.1.2 Experiment

In order to investigate the problem statement an experiment was designed. This
involved the implementation of a tool compatible with the generic approach out-

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 118

lined in Chapter 5 (Section 6.2). To evaluate performance of the augmented data
(Section 6.3) a series of real-world test subjects were identified (Section 6.3.1)
and performance was validated and evaluated against manual analysis (Section
6.3.2), an industry standard tool JRipples (Section 6.3.3), and the actual follow-
up changes made to the project (Section 6.3.5).

A discussion (Section 6.5) and conclusion (Section 6.6) finds that the approach
of combining data does work and certainly does identify a greater set of potentially
impacted components than JRipples. An apparent problem however is that, in
some circumstances, the new approach appears to widely “over-match” leading to
a large number of false positives and a unacceptably high coverage of all contained
classes within the impact set. Some potential ideas for future work to address
these issues and increase precision while maintaining high recall are identified.

6.2 Implementation

Although reverse engineering can be imperfect, some tools are capable of a com-
plete detection of structural elements and straightforward relationships within
source code (Chapter 3). These elements include constituent classes and inter-
faces, in addition to generalisation, composition, aggregation and, in some cases,
association relationships.

In simple terms these reverse engineered relationships can be represented as a
set of intersections SR as detailed in Section 5. For each structural element there
is a recorded intersection for every other element with which it has a relationship
of some type or other, and an integer value representing the number of shared
relationships. SR is then normalised to contain intersection values in the range
[0..1]. Relationships contained in SR have all been generated directly from the
source code and can therefore be considered to be accurate; SR is a set of ground
truth relationships (every relationship in SR is recorded in the truth matrix TR,
see Section 5.2.3, specifically equation 5.7).

Similarly a set of relationships SM can be gained from mining a source code
repository, and identifying times that files (hence, in Java, classes) are committed
together. A series of pre-filters is applied to determine which commits are included
in the set. For example, only those that have more than one file and less than a

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 119

upper threshold at which too many files are committed for it to be meaningful. SM

will then contain intersections of all files with discrete integer values representing
the number of commits they share. Following normalisation a defined significance
threshold is applied to the set SM leaving only relationships deemed as above the
given significance threshold, and the file classes identified (e.g. for significance x,
SM = F (SM , x), see Section 5.2.2).

These sets can then be combined or compared in a number of ways. To gain
a picture of the overall set of relationships, the sets can be combined together,
containing all the relationships found in either, or both, approaches. In this way
a new result set RRM is generated using the combinational formula from Section
5.2.3 so that, with equal weights (wi = 1) for SR and SM , where n = 2 and
S1 = SR, S2 = SM :

RRM =

n∑
i=1

wiSi

n∑
i=1

wi

=
1× SR + 1× SM

1 + 1
=

SR + SM

2
(6.1)

As previously stated it is expected there will be significant overlap between
these two sets, many of the relationships will be found both through reverse
engineering and semantic mining. It is possible to demonstrate the effectiveness
of repository mining by subtracting relationships found in SR, the ground truth
relationships, from SM to build a result set RUM (RUM = SM − SR). In this way
RUM only contains relationships deemed to be semantically significant but not
identified purely by reverse engineering.

6.3 Evaluation

In order to evaluate the augmentation technique using real-world code examples
three different approaches were used. These were:

1. Comparison with an industry standard.

2. Analysis of actual follow-up changes.

3. Manual analysis.

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 120

Evaluation was performed against a set of real-world test subjects (eight sub-
jects from four different projects) with available Java source code repositories.
The full set of targets and analysis including necessary binaries to run the ex-
periment can be found and freely downloaded at [Cutting, 2015a]. Having been
identified as possible candidates, test subjects were analysed to find a specific
change suitable for analysis (Section 6.3.1) and include the software as a test
subject.

An analysis of the relationships contained within test subjects was then per-
formed using two information sources (static reverse engineering and repository
mining) in accordance with the processes detailed in Chapter 5. Strong relation-
ships were deemed to be an indication of change impact between classes and these
findings were then compared against an industry standard change impact tool.

To identify industry standard tools, to be used in evaluation, literature was
analysed [Lehnert, 2011; Li et al., 2013] to build a list of comparable change
impact analysis tools, operating on Java at the class level of granularity. This
search identified tools such as JFlex [Hoffman, 2003] and JRipples [Buckner et al.,
2005]. Of these JRipples was consistently still in use and available for analysis
and thus was selected as the basis of comparison.

6.3.1 Test Subjects

Test subjects (targets T) were chosen on the basis of being medium to large Java
codebases with available public source code repositories. Once a specific project
was chosen as a candidate for inclusion, the current repository was cloned (Tx).
To make the experiment as realistic as possible, a real change on a class would
need to be identified. A manual check of the commit logs identified a number
of potential points during development at which a specific change on a clearly
identified class was committed (point y). A list of the targets used for testing is
contained in Table 6.1.

The changed class then became the impact subject (S) for the experiment.
The source tree was copied and then “reset” (git hard reset) to the commit at
the point that file was changed (TxCy). In this way the source tree, and available
change log/commit log information, was then representing the exact point at

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 121

Target Project
Short Name Class Count

Apache Cayenne
cayenne-55a 2601
cayenne-55e 2774

Google Guice
guice-1dd 407
guice-1f9 422

Hearthsim Game Simulator
hearthsim-118 557
hearthsim-787 582

JFlex Java Lexical Analyser
jflex-bdd 94
jflex-de1 85

Table 6.1. Target Projects Used for Validation

which the change was made. Reverse engineering (using IBM Rational Rhapsody)
was then performed on the source in its target state and the resultant XMI
structural definition saved along with the change logs to point y.

6.3.2 Validation Against Manual Analysis

All of the previous validation techniques set out in this Section have relied on
automated analysis and comparison using a set of test subjects and comparing,
in different ways, against an industry standard or subsequent actual changes.
Although very useful much of this does assume the accuracy of the industry
standard tool and says little about the remaining positives, e.g. those impacts
identified by jcRA but not by JRipples. These impacts could be false positives
but could also be correct impacts not found by JRipples.

To attempt to resolve this question a manual analysis on one target (jflex-1dd)
was performed in which other coupled classes were identified. As the relationship
detection for both jcRA and JRipples are bi-directional classes which made use of,
or were highly used by, the target, were included. Note that as with all the data
in this section the full results of the manual analysis are available for download
at Cutting [2015a].

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 122

Description Manual
Analysis

JRipples jcRA

Class Count 25 17 51
Contained in
Manual Analysis
(Positive Positives)

- 17 25

Not in Manual
Analysis
(False Positives)

- 0 26

Precision - 1.00 0.51
Recall - 0.68 1.00

Table 6.2. Manual Analysis Results for jflex-1dd

Once the manual analysis had identified those classes correctly believed to
be related to the target, standard information retrieval metrics could be used to
calculate precision and recall. These results are contained in Table 6.2.

6.3.3 Wider Validation with JRipples

To compare and contrast the output from JRipples it was first necessary to gen-
erate a change impact set. For each target and change set (every TxCy) the Java
code was imported into JRipples, and an Impact Analysis set (I) generated with
the subject class S set as changed. This simulated the real-world application of
JRipples as a change impact tool, where the class to be changed (S) was known,
and the user wishes to see the other classes JRipples believes may be impacted
by the change to S (the impact set).

The resultant change impact set (I) is a set of classes JRipples identifies as
being potentially or likely to be impacted by a change to class S for codebase
TxCy. This set is represented as: Ir(S, TxCy).

To generate the impact from the implemented tool the process was repeated
in a similar fashion using the jcRelationAnalysis tool with the same change target
S and source state TxCy. This then generated a change impact set represented
as: Ij(S, TxCy).

To gauge relative performance with JRipples it was then necessary to calculate
what proportion of impacted classes identified by each approach are identified by

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 123

the other (what the overlap is from JRipples to jcRelationAnalysis and vice-
versa).

The proportion of classes identified by JRipples contained in the jcRelation-
Analysis set is represented as: Ir(S, TxCy) ∩ Ij(S, TxCy)

The proportion of classes identified by jcRelationAnalysis contained in the
JRipples set is represented as: Ij(S, TxCy) ∩ Ir(S, TxCy)

A further consideration for each is the coverage of the change impact set within
the total codebase, i.e. what proportion of the total classes contained (CC) are
within the impact set. Such a calculation is required as a high coverage in terms
of overall classes may indicate lower precision even if recall is good, and hence
“noise” in the presented data. At higher coverages the output becomes unusable
as such a large proportion of classes are identified as potentially impacted. At the
extreme it is clear that if 100% of classes are identified as potentially impacted,
all the true positives are contained within this set, but the size is so large as to
make it unmanageable and meaningless.

The proportion of classes identified by JRipples of the total class count is
represented as: Ir(S, TxCy) ∩ CC(TxCy)

Likewise, the proportion of classes identified by jcRelationAnalysis of the total
class count is represented as: Ij(S, TxCy) ∩ CC(TxCy)

The results of these experiments and comparisons, shown in Table 6.3, demon-
strate a range of performance depending on target. In all cases the majority of
the classes identified as potentially impacted by JRipples were also identified by
jcRelationAnalysis with the coverage given as Ij(S, TxCy) ∩ Ir(S, TxCy) ranging
from 66.67% to 100%. For half of the targets 100% coverage was found, and in a
further quarter coverage was above 94%.

One evident difference between JRipples and jcRelationAnalysis was in total
class coverage, the proportion of the total class count CC(TxCy) identified as
potentially impacted by an approach. JRipples consistently showed a much lower
coverage whereas jcRelationAnalysis had not only a higher coverage in all cases
but in some was so high as to be impractical (in excess of 90%) although this was
very target-dependent. At this early stage only naive tuning has been performed
and further analysis of tuning results holds the possibility of decreasing coverage
and perhaps increasing detection rates (Section 6.3.4).

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 124

Target Class Count
CC(TxCy)

JRipples
Coverage
Ir(S, TxCy) ∩
CC(TxCy)

jcRA
Coverage
Ij(S, TxCy) ∩
CC(TxCy)

jcRA found of
JRipples
Ij(S, TxCy) ∩
Ir(S, TxCy)

cayenne-55a 2601 89
3.42%

231
8.88%

75
84.27%

cayenne-55e 2774 12
0.43%

28
1.01%

8
66.67%

guice-1dd 407 6
1.47%

67
16.46%

6
100%

guice-1f9 422 1
0.24%

52
12.32%

1
100%

hearthsim-
118

557 86
15.44%

513
92.10%

84
97.67%

hearthsim-
787

582 99
17.01%

419
71.99%

94
94.95%

jflex-bdd 94 4
4.26%

16
17.02%

4
100%

jflex-de1 85 18
21.18%

52
61.18%

18
100%

Table 6.3. Validation Results Against Targets

The differences between targets is very marked and so it is also likely that the
current jcRelationAnalysis approach is sensitised to certain development practices
or coding styles; be that the way in which the codebase evolution has been man-
aged or how interrelated elements are. Beyond tuning it is also possible a pattern
could be defined as to what elements affect jcRelationAnalysis performance, and
this could be used to ascertain potential use before application.

6.3.4 Tuning and Sensitivity Levels

Although filters were applied to the data, such as exclusion of commits including
over a set threshold of classes, at most stages of the process there is scope for
further tuning or adjustment of input parameters. For example both data sources
are normalised in the same linear fashion with the value 1 representing the high-
est level found (equation 4.11) and every value then mapped between 0 and 1
as a proportion of its scale to the highest value. Actually, distributions vary sig-

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 125

nificantly and there are a number of alternative approaches to the normalisation
that could be taken. Such alternatives would include techniques based around
deviation from the mean, setting of outlier bounds, or similar processes.

Although it may be expected for example that the distribution would be
Gaussian in nature, similar to that shown in Figure 6.1, the real world examples
are very sparse and with much lower general values as shown in Figure 6.2. From
this it can be seen some specialist tuning in the creation and filtering of the
normalisation parameters may be required. Such extensive modification provides
for potential rich future work investigating the most appropriate mechanisms to
use (see Section 7.2).

Figure 6.1. Centralised Distribution

Figure 6.2. Low Centred Distribution

For this series of experiments the only tuning input used is a naive significance
filter (F ; Section 5.2.2, equation 5.5) applied to the normalised committal data.
This sets a value above which the interaction is viewed as significant enough for
inclusion, and below which would be ignored.

To visualise tuning performance and compare its effectiveness a series of runs
were performed with varying values of significance filter and plotted as cover-
age of JRipples impacts found Ij(S, TxCy) ∩ Ir(S, TxCy) and total class contents
Ij(S, TxCy) ∩ CC(TxCy). The intention being to find a value at which the low-
est overall class coverage (Ij(S, TxCy) ∩ CC(TxCy)) yields the highest JRipples

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 126

coverage (Ij(S, TxCy)∩ Ir(S, TxCy)); the highest recall with the highest precision.
The results for some of the targets can be seen in Figure 6.3. The “stepped”
values shown are possibly a result of linear normalisation causing loss of precision
leading to very tightly grouped values.

As can be seen there is a reduction in the proportion of JRipples impact classes
found as the significance filter is increased. The exact relationship varies widely
depending on the target in question, with some apparently offering potential to
reduce overall coverage while keeping JRipples coverage high (Figure 6.3a) and
others with little or no potential (Figure 6.3d). Where potential benefit was seen
the experiment was repeated using that significance filter value and those results
used.

6.3.5 Actual Follow-up Changes

To further validate the approach an investigation was performed into the actual
(real world) follow-on changes made. This process involved building a set of the
classes included in the nextN commits after TxCy on the basis they as all commits
chosen as y were single-class changes may indicate an impact of the change.

A straightforward analysis could then determine the number of classes con-
tained in the next N commits and the number of those found by the JRipples
and jcRA approaches. Of course such a simplistic analysis is somewhat limited
and assumes there are further impacted changes within the next N commits.
Other activity, for example a parallel development effort on an unrelated subject,
may severely affect the efficacy of this validation. It is clear that further work
and better analysis is needed before this validation can be fully meaningful and
accurate but include it here as an indication of the efficacy of the approach.

The results for N = 10, shown in Table 6.4, show that jcRA always includes
a higher proportion of the next 10 changes in its impact set. In some ways this
is unsurprising as in every case the total class coverage of jcRA was higher than
JRipples. In several cases however the difference in recovered proportion was
higher than the increase in overall coverage.

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 127

(a) (b)

(c) (d)

Figure 6.3. Naive significance filter tuning parameters applied to target samples. The x axis
shows the increasingly significance filter (as it is higher, relationships with a value lower than
it are discarded removing noise). The y axis shows the percentage of class coverage. The blue
series indicates class coverage of the overall target (what percentage of all the classes in the

target are included in the change set) while the red series shows what proportion of the classes
in the JRipples change set are in the jcRA change set. An ideal is for the blue series (overall
coverage) to be as low as possible and the red series (JRipples coverage) to be as high as

possible for the same values.

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 128

Target Next 10
Change Count

JRipples jcRA

cayenne-55a 36 6 8
cayenne-55e 50 4 7
guice-1dd 10 1 8
guice-1f9 36 1 26
hearthsim-
118

102 42 93

hearthsim-
787

143 84 123

jflex-bdd 73 2 13
jflex-de1 57 17 51

Table 6.4. Next 10 (N = 10) changes contents (classes contained in next 10 updated) and of
those classes the number identified in impact set generated by JRipples and jcRA

6.4 Presentation of Change Impact Results

As previously explained, presentation of a raw relationship matrix (as a huge ta-
ble) is far from ideal, being largely incomprehensible and more complex than even
large structural diagrams. The intention of the insight process is to aid developers
in comprehension, not overload them further. The tooling (jcRelationAnalysis)
therefore contains a number of provided report types (and is highly extensible for
more types to be defined as needed), which are available to the developers.

The most prescient of these are the dependency/change impact trees. These
trees are sets of data ordered by a subject class showing which other classes are
determined to have a relationship with the subject, and therefore are potentially
impacted by changes to the subject. Inbuilt reporting can both generate a general
set showing all links for all constituent classes, exported in plain-text or interac-
tive HTML, as well as a targeted change impact tree for a given class. This is
implemented through the targeted impact tree (report name AnalysisChangeIm-
pactTree) with a configured subject class and a depth. Dependencies directly
linked to the target are at depth one (first order dependencies) and the report
will continue, if so configured, to then look in turn for dependencies of these not
previously included in the report, to the configured depth.

Such a report format allows a developer to assess the impact of a change within

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 129

a specific class, a much more appropriate real-world use case than understanding
all relationships at once [Wloka, 2006]. Such a model is similarly used in various
change impact approaches including that compared in Section 6.3.

6.5 Discussion

Following the evaluation of the approach in Section 6.3 it seems that the imple-
mented tool jcRelationAnalysis (jcRA) is able to produce relevant impact sets for
a given target, using the two sources of information and the combinational matrix
model. When compared to an industry standard tool, JRipples, in the majority of
cases jcRA could find nearly all of the impacts identified by JRipples. The overall
coverage however, the proportion of total classes contained which are included in
the potential impact set (the overall coverage), was higher in jcRA, often signif-
icantly so. In some cases the overall coverage was itself so high as to make the
results from jcRA meaningless, though this was highly target-dependent.

In addition to the automated analysis a manual code analysis for a sample
target was performed and used for comparison between JRipples and jcRA. As
perhaps could be expected given the larger overall coverage, jcRA’s precision
suffers in comparison to JRipples, but there are cases in which classes which are
identified in the manual analysis are not found by JRipples but are by jcRA.
This leads to a situation in which each tool outperforms the other in one metric,
JRipples with a higher precision and jcRA with a higher recall.

It is clear from the results jcRA does generate relevant impact sets (when
compared with JRipples based on manual analysis of the code in Section 6.3.2)
but with a larger general coverage of the codebase. Generally it could be the case
that, excepting overly large general coverage to the point of confusion, erring
towards inclusion e.g. including all impacts at the cost of some false positives,
would be a better outcome than excluding impacted classes but this would require
further research. In this case false positives refer to classes not subject to change
which are erroneously included in the change impact set. With no consideration
for classes not changed there are no false positives possible. As previously stated
however a variety of tuning possibilities exist within jcRA, with the possibility
of additional sources of data to clarify the results further. It is therefore possible

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 130

that the precision issue could be addressed without lack of recall. Alternatively a
decision could be made early in the analysis as to the overall sensitivity values, as
to which side to err on, to include or not to include. This informed user decision
would then be used to set the necessary parameters and adjust overall sensitivity.

A significant amount of work can still be performed in terms of tuning the
approach and also incorporation of additional sources of information, either just
in addition or as filters.

At many points during the analysis process there is the opportunity for config-
urable tuning parameters such as sensitivity levels, cut-offs, weightings, or other
methods of normalisation to be applied. Built in a highly extensible manner
jcRA further offers the option of different methods of analysis and processing to
be included. At this stage, wanting only to validate the concept and efficacy of
multiple sources used in this fashion, little of this has been considered save some
naive significance filtering. Such a high degree of flexibility and customisation,
especially in light of the very target-dependent performance, may also involve
adding a stage to the process in which the target is analysed and the “best”
parameters for tuning automatically generated.

The flexible and entirely generic nature of the matrix comparison model used
in the approach is not just highly customisable and tunable through weighting but
easily extended to include further sources of information. Any data source which
can be translated into a quantifiable relationship between elements (classes) in a
software base can be generated as a matrix model within jcRA. Once the matrix
is generated it can be manipulated directly, filtered, modified, and normalised.
Further, the matrix can be used in combination with other matrices from different
data sources in a variety of ways such as addition, weighted multiplication, or
subtraction for unique relationships. A simple combination allows relationships to
be summarised together, as used for the two sources in this chapter. Additionally
support is available to use matrices as a weight, a filter, or to subtract rather
than add, removing relationships identified as unnecessary.

There is, therefore, significant opportunity for future work in a variety of ways
to refine or extend the approach further (see Section 7.2). The ultimate aim is to
release the entire toolset and source code to the community, raising the possibility
of third-party collaboration. Currently the binary release is available with the

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 131

dataset from these experiments [Cutting, 2015a] and the user documentation is
also freely available [Cutting, 2015b].

6.6 Conclusion

In this Chapter the implementation of a change impact analysis use of the ap-
proach is presented through the jcRelationAnalysis (jcRA) tool. To validate this
approach and tool it was applied to a number of targets, generating change impact
sets, and then these were compared against an industry standard tool, JRipples,
in a number of automated and manual tests. The results show that the approach
is capable of generating relevant change impact sets and appears to have a higher
recall than JRipples but with a lower precision. A number of avenues of future
work have been identified which may be able to improve the efficacy of the tool
using current data sources, or indeed add more data sources.

Traditional reverse engineering, based on static code analysis, is still the stan-
dard method to analyse code bases for developer insight [Roscoe, 2011] although
there are problems with the consistency and standard of the output [Cutting and
Noppen, 2014, 2015].

The mining of software repositories for meta information is an exciting and
still growing area [Allamanis and Sutton, 2013; Kagdi et al., 2007a,b; Williams
and Hollingsworth, 2005] offering rich potential insight. The challenge remains
how to best analyse and use this information to generate useful insights [Hassan,
2008].

Use of such data sources in combination is by no means new and a growing
area of focus with studies such as Bieman et al. [2003] indicating that relationships
found through repository mining can exceed those found by static analysis alone.

The most recent comparable approach to the one presented is a tool called
ImpactMiner [Dit et al., 2014], which uses a Subversion (SVN) repository com-
bined with static analysis, to produce change impact analysis. ImpactMiner is
available as a dropin for Eclipse and includes a well featured user interface. The
precise approach taken is less generic than jcRA, requiring use within the Eclipse
platform and analysis of code within an Eclipse project. ImpactMiner operates
as a lower level than the jcRA approach, operating at the method rather than

CHAPTER 6. AUGMENTING CHANGE IMPACT ANALYSIS 132

class level. Some other shortcomings in ImpactMiner such as the iterative nature
(it runs an analysis for every variant of the software contained in the repository)
and limitation to SVN have been identified by the ImpactMiner team as areas
for improvement and likely to be addressed [Dit et al., 2014].

In conclusion, it can be seen that the approach presented offers a number of
potential benefits and has been demonstrated to perform well on different targets
when creating change impact sets. Unlike either the industry standard, JRipples,
or the more recent ImpactMiner, the implementation of the approach (jcRelatio-
nAnalysis) runs outside of Eclipse as a standalone, configurable, extensible, and
scriptable tool. This makes it suitable for more detailed programmatic or iterative
use, with the input and output changed and used as required. A range of future
work tuning the framework and extending functionality is also possible, and by
using a generic matrix approach, further data sources can be easily integrated.

In reference to the problem statement (Section 6.1.1) it has clearly been
demonstrated that it is possible to use multiple, weighted, sources of information
together to find relationships other than those expressed in static reverse engi-
neering alone. Further, it is possible to apply these relationships to the domain
of predictive change impact analysis and offer better performance than current
tools.

Chapter 7

Conclusion and Future Work

133

CHAPTER 7. CONCLUSION AND FUTURE WORK 134

7.1 Conclusion

The fundamental challenge set out in Section 1.1.1 was “is it possible to recon-
struct richer traceability structures through the combinational use of multiple
sources of information?”.

To that end, in this thesis a number of research topics have been introduced
with the goal of enhancing legacy software system analysis by combining be-
havioural and semantic information sources. Initially, in Chapter 2, the current
problem with legacy software and the solutions to comprehend poorly documented
existing systems through traceability and reverse engineering techniques were in-
vestigated.

Source code reverse engineering to recreate design artefacts such as UML
projections were found to be the most commonly used processes with a wide
variety of tools and approaches to accomplish the task. Lacking, however, was any
benchmark against which these varied tools could be compared against each other
and a set standard, and/or which could further provide validation for any new
tools or approaches. To accomplish this, in Chapter 3, the creation of the Reverse
Engineering to Design Benchmark (RED-BM) was described. RED-BM consisted
of a number of real-world software projects to be used as targets, along with a
gold standard output (what structural and relationship elements are contained,
and should be detected, within the source) and a number of defined metrics. This
benchmark was then applied to a range of industry standard tools to judge their
performance.

Performance was varied and the main metric (the compound measure which
took into account both structural elements and relationships across all sizes of
provided targets) recorded results ranging from 8.82% to 100% os structural el-
ements successfully recovered. This shows that many of the tools provided for
reverse engineering are imprecise and also demonstrates the effectiveness of the
benchmark at being able to distinguish a wide range of performance.

In the process of creating the benchmark a number of tools were created to au-
tomate the process of collecting and measuring software and reverse engineering
output as much as possible and to aid replication or repetition by third-parties.
Part of this was to facilitate the programmatic use of output by reverse engineer-

CHAPTER 7. CONCLUSION AND FUTURE WORK 135

ing tools. There exists a standard (XMI) which supposedly allows interoperability
but in practice the implementations between tools are so varied they are neither
compatible nor standard. A generic parsing component was therefore created
capable of understanding all the common XMI dialects and also UML expressed
in XML. This was then reused in a variety of further tools and approaches in the
rest of the research.

Even when it works well, static reverse engineering alone is only able to recover
clear structural relationships contained within the code. More information can
be found through analysis of the historical data contained within source code
repositories which record the evolutionary history with which artefacts have been
changed throughout the life of the project. A specific concept with relation to
dependency traceability, identifying semantic relationships, is that of co-commits;
artefacts that are often changed together may have an inferred relationship.

The possibility of using such relationships was investigated in Chapter 4,
where an approach and method to mine them was defined and implemented.
Analysis of the recovered semantic relationships found within the repositories
using a number of techniques, such as network diagrams and clustering, found
that clear relationship groupings and logical sectioning did exist. An analysis of
these groups found that logical artefact collections were present and visible within
the recovered data. Although more work is required to stabilise or find more
applicable forms of grouping/clustering, the purpose of demonstrating strong
sets of semantic relationships, in addition to the static relationships recovered by
reverse engineering, was fulfilled.

Having shown the variation in information contained from different sources
and that sources differed in terms of the relationships contained, it was clear
that combining multiple diverse sources could offer richer traceability informa-
tion. Therefore, with multiple information sources being used, and the possibil-
ity of more sources being included, it was desirable to define a generic approach
through which disparate sources could be used in combination. This was carried
out in Chapter 5. Using a number of examples to illustrate and theoretically
test the model, a set of formal functions and equations were created to allow
repeatable and consistent application of the method to different sources. Any
data source which could, at the lowest common level of granularity, be expressed

CHAPTER 7. CONCLUSION AND FUTURE WORK 136

as an n× n matrix of component intersections with relationship values could be
included. Support was added for the concept of ground truth, e.g. relationships
sets which are known to be true regardless of other data, for example where
strong static relationships are recovered. Manipulation, filtering, and combina-
tion operations were defined including weighted combinations in which different
information sources could be given relative weights, or importance, before being
combined into a summary matrix.

To demonstrate the efficacy of the generic approach, in Chapter 6 it was imple-
mented in the domain of change impact analysis, using static reverse engineering
and source code semantic relationships as the two sources. This implementation
was in the form of the jcRelationAnalysis (jcRA) tool. The tool was applied
against a number of real-world software projects, reverted to a historical point
where a real change was about to take place, and this change was theorised to
build a projected impact set. To evaluate the approach an industry standard
tool, JRipples, which uses source code analysis alone was also asked to gener-
ate an impact set for the same state and change. While this research was being
carried out a similar approach was implemented by another research team (Im-
pactMiner), though when analysed this was found to operate at a very different
level of granularity. Further, ImpactMiner requires a significant processing over-
head, reconstructing every intermediate step of a system, which the implemented
approach does not and in fact runs quickly on standard destkop hardware.

Evaluation showed that the new method, applied to change impact, outper-
formed JRipples in terms of recall, but had a lower precision which in some cases
over-matched to the extent that the coverage was so large as to be un-practical.
An investigation into simple tuning based on naive significance filters proved
some benefit but it is clear there is still work to be done on this specific imple-
mentation. The implementation as a proof of the generic method’s feasibility and
scope however was a complete success with all the constituent components and
processes being implemented successfully.

In summary, following a review of current practice, a series of problems were
identified and framed. Ultimately, a generic framework for the comparative use
of multiple information sources in an empirical and repeatable way was defined.
This framework was then implemented within the change impact analysis domain

CHAPTER 7. CONCLUSION AND FUTURE WORK 137

and generated useful and practical results which in many cases outperformed an
industry standard method. This work proved that is it indeed possible to recon-
struct richer, more informed, traceability structures through the combinational
use of multiple sources of information.

CHAPTER 7. CONCLUSION AND FUTURE WORK 138

7.2 Future Work

“There will always be more questions. Every answer leads to more
questions. The only way to survive is to let some of them go.”
– David Levithan, Every Day

To aid readability the individual areas for future work are split into their
thematic (chapter) areas.

Reverse Engineering Benchmark - Chapter 3

Other Languages: Expand the RED-BM target set to include other object-
oriented languages, specifically C++ and repeat looking for language variation
on tools that support multiple versions.
Additional Metrics: Define additional metrics with required supporting gold
standards and output, specifically looking at design pattern and “code smell”
detection.
Wider Range of Targets: Include a wider range of targets covering a number
of different architectural paradigms (the current set include a range, but provide
a specific grouping of targets for a number of paradigms). Also include more
targets at different code sizes, larger and smaller than the current set as well as
more within the set range.

Source Code Repository Mining - Chapter 4

Refactoring Detection: Currently each artefact is seen as a single discrete
entity for the analysis but often refactoring occurs through, for example, renaming
of packages which then renames the files (changes their absolute path). With the
current approach these two files are included in the data as two entries so, when
used in combination with the current picture (reverse engineered) the “old version”
relationships are lost.

It should be possible to detect these changes, and similar depending on the
exact repository software used and migrate the relationship data to the “new
version” of the artefact.

CHAPTER 7. CONCLUSION AND FUTURE WORK 139

Generic Approach to Combination - Chapter 5

Granularity Level: Allow for the inclusion of data sources at a higher level of
granularity without raising the overall level, for example “decompose” such sources
to a mean relationship shared with their constituent sub-components (e.g. class
relationships “decompose” to relationships between their constituent methods).
Traceability: Add a specific support within the framework for a third set of
data carried through which records a narrative of where the relationships came
from, and any other relevant meta data, allowing end-to-end traceability for the
presented relationships (e.g. a presented rationale for the decisions made within
the approach).

Predictive Change Impact Analysis Implementation - Chapter 6

Further Information Sources: Combine further information sources, poten-
tially a technical source such as call-tracing through dynamic code analysis and
a documentary source such as existing documentation parsed through object-
modelling technique or code comment analysis.
Greater Range of Tuning Types and Filters: Current filters are naive signif-
icance filters and operate in a very straightforward way. Given the widely varied
form of the data and the often sparse nature of the matrices, a very good poten-
tial improvement avenue would be through building and testing more complex
data-aware filters. This could include the option to run an analysis with different
types and parameters of filters to find a “best fit” for the particular target and
information sources provided.

References

AgileJ (2015). AgileJ structure views. http://www.agilej.com/. [Online; ac-
cessed December 2015]. 26

Ali, N., Gueheneuc, Y., and Antoniol, G. (2011). Trust-based requirements trace-
ability. In 2011 IEEE 19th International Conference on Program Comprehen-
sion (ICPC), pages 111–120. 32

Ali, N., Gueheneuc, Y.-G., and Antoniol, G. (2013). Trustrace: Mining software
repositories to improve the accuracy of requirement traceability links. IEEE
Transactions on Software Engineering, 39(5):725–741. 30, 32, 87

Allamanis, M. and Sutton, C. (2013). Mining source code repositories at massive
scale using language modeling. In Proceedings of the 10th Working Conference
on Mining Software Repositories, MSR ’13, page 207–216, Piscataway, NJ,
USA. IEEE Press. 4, 29, 31, 76, 131

Altova (2012). Altova umodel. http://www.altova.com/umodel.html. [Online;
accessed December 2012]. 26

Anquetil, N. and Lethbridge, T. C. (1999). Experiments with clustering as a
software remodularization method. In Reverse Engineering, 1999. Proceedings.
Sixth Working Conference on, pages 235–255. IEEE. 34, 39

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E. (2002).
Recovering traceability links between code and documentation. IEEE Trans-
actions on Software Engineering, 28(10):970–983. xii, 30, 32, 33

Arcelli, F., Masiero, S., Raibulet, C., and Tisato, F. (2005). A comparison of
reverse engineering tools based on design pattern decomposition. In Software

140

http://www.agilej.com/
http://www.altova.com/umodel.html

REFERENCES 141

Engineering Conference, 2005. Proceedings. 2005 Australian, pages 262–269.
IEEE. 21, 22, 25, 47, 48, 72, 99

ArgoUML (2016). Argouml. http://argouml.tigris.org/. [Online; accessed
February 2016]. 26, 59

Asuncion, H., François, F., and Taylor, R. (2007). An end-to-end industrial
software traceability tool. In Foundations of Software Engineering: Proceedings
of the 6 th joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software engineering,
volume 3, pages 115–124. 10, 11

Bellay, B. and Gall, H. (1997). A comparison of four reverse engineering tools.
In Reverse Engineering, 1997. Proceedings of the Fourth Working Conference
on, pages 2–11. IEEE. 48, 53, 63

Bellon, S., Koschke, R., Antoniol, G., Krinke, J., and Merlo, E. (2007). Com-
parison and evaluation of clone detection tools. Software Engineering, IEEE
Transactions on, 33(9):577–591. 48, 72

Beyer, D. and Noack, A. (2005). Clustering software artifacts based on frequent
common changes. In 13th International Workshop on Program Comprehension,
2005. IWPC 2005. Proceedings, pages 259–268. 4, 34, 76, 93

Bieman, J. M., Andrews, A. A., and Yang, H. J. (2003). Understanding change-
proneness in OO software through visualization. In Program Comprehension,
2003. 11th IEEE International Workshop on, pages 44–53. IEEE. 4, 34, 76, 93,
131

Boehm, B. W., Brown, J. R., and Lipow, M. (1976). Quantitative evaluation of
software quality. In Proceedings of the 2nd international conference on Software
engineering, pages 592–605. IEEE Computer Society Press. 10

Bohner, S. and Arnold, R. (1996). Software Change Impact Analysis. Wiley-IEEE
Computer Society, 1 edition. 40

http://argouml.tigris.org/

REFERENCES 142

Bohner, S. A. (2002). Extending software change impact analysis into COTS com-
ponents. In Software Engineering Workshop, 2002. Proceedings. 27th Annual
NASA Goddard/IEEE, pages 175–182. IEEE. 45

Briand, L. C., Labiche, Y., and Soccar, G. (2002). Automating impact analysis
and regression test selection based on UML designs. In Software Maintenance,
2002. Proceedings. International Conference on, pages 252–261. IEEE. 45

Brooks, F. (1987). No silver bullet: Essence and accidents of software engineering.
IEEE Computer, 20(4):10–19. 2, 40

Buckner, J., Buchta, J., Petrenko, M., and Rajlich, V. (2005). Jripples: A tool
for program comprehension during incremental change. In IWPC, volume 5,
pages 149–152. 45, 120

Cerulo, L. (2006). On the use of process trails to understand software develop-
ment. In Reverse Engineering, 2006. WCRE’06. 13th Working Conference on,
pages 303–304. IEEE. 21

ChangeVision (2016). Astah professional. http://astah.net/editions/

professional. [Online; accessed February 2016]. 26, 83

Chikofsky, E., Cross, J., et al. (1990). Reverse engineering and design recovery:
A taxonomy. Software, IEEE, 7(1):13–17. 3, 13, 14, 15

Cleland-Huang, J., Gotel, O., and Zisman, A. (2012). Software and Systems
Traceability. Springer. 2, 10, 11, 12, 13

Cleland-Huang, J., Gotel, O. C., Huffman Hayes, J., Mäder, P., and Zisman, A.
(2014). Software traceability: trends and future directions. In Proceedings of
the Conference on the Future of Software Engineering, pages 55–69. ACM. 2,
10, 11

Counsell, S., Newson, P., and Mendes, E. (2004). Design level hypothesis testing
through reverse engineering of object-oriented software. International Journal
of Software Engineering and Knowledge Engineering, 14(02):207–220. 3, 14,
15, 22

http://astah.net/editions/professional
http://astah.net/editions/professional

REFERENCES 143

Cutting, D. (2013). Reverse engineering to design benchmark. http://

www.uea.ac.uk/computing/machine-learning/traceability-forensics/

reverse-engineering. [Online; accessed May 2013]. xv, 3, 48, 49, 50, 51, 71,
72

Cutting, D. (2015a). jcRelationAnalysis Data Set. http://go.purplepixie.

org/jcra-data-set. [Online; accessed December 2015]. 120, 121, 131

Cutting, D. (2015b). jcRelationAnalysis Documentation. http://go.

purplepixie.org/jcra-documentation. [Online; accessed December 2015].
131

Cutting, D. (2016). MDS and K-means video example. http://www.

purplepixie.org/davestuff/MDS-Cluster-Video-DC.zip. [Online; ac-
cessed October 2016]. 93

Cutting, D. and Noppen, J. (2014). Working with reverse engineering output for
benchmarking and further use. In Procedings of the 9th International Confer-
ence on Software Engineering Advances. IARIA. xi, 4, 47, 87, 99, 131

Cutting, D. and Noppen, J. (2015). An extensible benchmark and tooling for
comparing reverse engineering approaches. International Journal in Advances
in Software, 8(1&2):115–124. xi, 3, 4, 47, 99, 131

Dit, B., Wagner, M., Wen, S., Wang, W., Linares-Vásquez, M., Poshyvanyk,
D., and Kagdi, H. (2014). Impactminer: a tool for change impact analysis.
In Companion Proceedings of the 36th International Conference on Software
Engineering, pages 540–543. ACM. 4, 45, 131, 132

Dorfman, M. and Thayer, R. H. (1990). Standards, guidelines and examples
on system and software requirements engineering. IEEE Computer Society
Press Tutorial, Los Alamitos: IEEE Computer Society Press, 1990, edited by
Dorfman, Merlin; Thayer, Richard H., 1. 11

Du, H. (2010). Data Mining Techniques and Applications: An Introduction.
Course Technology Cengage Learning. 34, 38, 39

http://www.uea.ac.uk/computing/machine-learning/traceability-forensics/reverse-engineering
http://www.uea.ac.uk/computing/machine-learning/traceability-forensics/reverse-engineering
http://www.uea.ac.uk/computing/machine-learning/traceability-forensics/reverse-engineering
http://go.purplepixie.org/jcra-data-set
http://go.purplepixie.org/jcra-data-set
http://go.purplepixie.org/jcra-documentation
http://go.purplepixie.org/jcra-documentation
http://www.purplepixie.org/davestuff/MDS-Cluster-Video-DC.zip
http://www.purplepixie.org/davestuff/MDS-Cluster-Video-DC.zip

REFERENCES 144

Edwards, M. and Howell, S. L. (1991). A methodology for systems requirements
specification and traceability for large real time complex systems. Technical
report, DTIC Document. 10

Fenton, N. E. and Pfleeger, S. L. (1998). Software metrics: a rigorous and prac-
tical approach. PWS Publishing Co. 53, 63

Ferenc, R., Beszedes, A., Tarkiainen, M., and Gyimothy, T. (2002). Columbus -
reverse engineering tool and schema for C++. In Software Maintenance, 2002.
Proceedings. International Conference on, pages 172 – 181. 25

Fischer, G., Lusiardi, J., and von Gudenberg, J. (2007). Abstract syntax trees-
and their role in model driven software development. In Software Engineering
Advances, 2007. ICSEA 2007. International Conference on, pages 38–38. IEEE.
16, 17

Flores, N. and Aguiar, A. (2005). Reverse engineering of framework design using
a meta-patterns-based approach. Software Stability: Timeless Architectures
and System of Patterns, page 10. 21, 22

Fowler, M. (1997). Refactoring: Improving the design of existing code. In 11th
European Conference. Jyväskylä, Finland. 3

Fowler, M. and Highsmith, J. (2001). The agile manifesto. Software Development,
9(8):28–35. 99

Fujaba (2012). Fujaba tool suite. http://www.fujaba.de. [Online; accessed
December 2012]. 25

Fulop, L., Hegedus, P., Ferenc, R., and Gyimóthy, T. (2008). Towards a bench-
mark for evaluating reverse engineering tools. In Reverse Engineering, 2008.
WCRE’08. 15th Working Conference on, pages 335–336. IEEE. 73

Galvao, I. and Goknil, A. (2007). Survey of traceability approaches in model-
driven engineering. In Enterprise Distributed Object Computing Conference,
2007. EDOC 2007. 11th IEEE International, pages 313–313. IEEE. 11

http://www.fujaba.de

REFERENCES 145

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design patterns:
elements of reusable object-oriented software. Addison-Wesley Professional. 22,
24

Gaul, A. (2012). Function call overhead benchmarks with MATLAB, Octave,
Python, Cython and C. arXiv preprint arXiv:1202.2736. 72

Gherardi, L., Brugali, D., and Comotti, D. (2012). A Java vs. C++ performance
evaluation: a 3D modeling benchmark. Simulation, Modeling, and Program-
ming for Autonomous Robots, pages 161–172. 72

Gotel, O. and Finkelstein, C. (1994). An analysis of the requirements trace-
ability problem. In Requirements Engineering, 1994., Proceedings of the First
International Conference on, pages 94–101. IEEE. 2, 11, 12

Graves, T. L., Karr, A. F., Marron, J. S., and Siy, H. (2000). Predicting fault inci-
dence using software change history. Software Engineering, IEEE Transactions
on, 26(7):653–661. 31

Grossman, M., Aronson, J. E., and McCarthy, R. V. (2005). Does UML make
the grade? insights from the software development community. Information
and Software Technology, 47(6):383–397. 77, 99

Guéhéneuc, Y.-G. and Antoniol, G. (2008). Demima: A multilayered approach
for design pattern identification. IEEE Trans. Softw. Eng., 34(5):667–684. 25

Harrington, G. and Rondeau, K. (1993). An investigation of requirements trace-
ability to support systems development. Technical report, DTIC Document.
12

Hassan, A. E. (2008). The road ahead for mining software repositories. In Fron-
tiers of Software Maintenance, 2008. FoSM 2008., page 48–57. xv, 4, 29, 30,
31, 32, 76, 131

Herzig, K. and Zeller, A. (2013). The impact of tangled code changes. In Mining
Software Repositories (MSR), 2013 10th IEEE Working Conference on, pages
121–130. IEEE. 29

REFERENCES 146

Hoffman, M. A. (2003). Automated impact analysis of object-oriented software
systems. In Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 72–
73. ACM. 120

Huang, L. and Song, Y.-T. (2007). Precise dynamic impact analysis with depen-
dency analysis for object-oriented programs. In Software Engineering Research,
Management & Applications, 2007. SERA 2007. 5th ACIS International Con-
ference on, pages 374–384. IEEE. 44

Huang, L. and Song, Y.-T. (2008). A dynamic impact analysis approach for
object-oriented programs. In Advanced Software Engineering and Its Applica-
tions, 2008. ASEA 2008, pages 217–220. IEEE. 44

IBM (2015). Rational rhapsody. http://www-142.ibm.com/software/

products/us/en/ratirhapfami/. [Online; accessed December 2015]. 27

IEEE (1984). IEEE guide to software requirements specifications. IEEE Std
830-1984. 11, 12, 13

Jiang, J. and Systä, T. (2003). Exploring differences in exchange formats-tool
support and case studies. In Software Maintenance and Reengineering, 2003.
Proceedings. Seventh European Conference on, pages 389–398. IEEE. 57

Jirapanthong, W. (2015). Requirements traceability on web applications. In
2015 7th International Conference on Information Technology and Electrical
Engineering (ICITEE), pages 18–23. IEEE. 11

Jones, J. (2003). Abstract syntax tree implementation idioms. Pattern Languages
of Program Design. 16

Kagdi, H., Collard, M. L., and Maletic, J. I. (2007a). A survey and taxonomy
of approaches for mining software repositories in the context of software evolu-
tion. Journal of Software Maintenance and Evolution: Research and Practice,
19(2):77–131. xv, 4, 29, 30, 31, 34, 76, 77, 131

http://www-142.ibm.com/software/products/us/en/ratirhapfami/
http://www-142.ibm.com/software/products/us/en/ratirhapfami/

REFERENCES 147

Kagdi, H. and Maletic, J. I. (2006). Software-change prediction: Estimated+ ac-
tual. In Software Evolvability, 2006. SE’06. Second International IEEE Work-
shop on, pages 38–43. IEEE. 4, 43, 45

Kagdi, H. and Maletic, J. I. (2007). Software repositories: A source for traceability
links. In Proceedings of 4th ACM International Workshop on Traceability in
Emerging Forms of Software Engineering (GCT/TEFSE’07), Lexington, KY,
USA, page 32–39. 45

Kagdi, H., Maletic, J. I., and Sharif, B. (2007b). Mining software repositories
for traceability links. In Program Comprehension, 2007. ICPC’07. 15th IEEE
International Conference on, page 145–154. 4, 30, 32, 45, 99, 131

Khan, S. S. and Lock, S. (2009). Concern tracing and change impact analy-
sis: An exploratory study. In Aspect-Oriented Requirements Engineering and
Architecture Design, 2009. EA’09. ICSE Workshop on, pages 44–48. IEEE. 45

Koschke, R. (2003). Software visualization in software maintenance, reverse en-
gineering, and re-engineering: a research survey. Journal of Software Mainte-
nance and Evolution: Research and Practice, 15(2):87–109. 52

Kumar, K., Kaur, P., and GNDU, A. (2015). A generalized process of reverse en-
gineering in software protection & security. International Journal of Computer
Science and Mobile Computing, 4(5):534–544. 3, 13, 14, 15, 47

Labiche, Y., Kolbah, B., and Mehrfard, H. (2013). Combining static and dy-
namic analyses to reverse-engineer scenario diagrams. In Software Maintenance
(ICSM), 2013 29th IEEE International Conference on, pages 130–139. IEEE.
21, 47

Laurent, P., Cleland-Huang, J., and Duan, C. (2007). Towards automated re-
quirements triage. In Requirements Engineering Conference, 2007. RE’07. 15th
IEEE International, pages 131–140. IEEE. 11

Lehman, M. M. and Belady, L. A. (1985). Program evolution: processes of soft-
ware change. Academic Press Professional, Inc. 5, 40

REFERENCES 148

Lehnert, S. (2011). A review of software change impact analysis. Ilmenau Uni-
versity of Technology, Tech. Rep. 4, 5, 40, 43, 45, 120

Li, B., Sun, X., Leung, H., and Zhang, S. (2013). A survey of code-based
change impact analysis techniques. Software Testing, Verification and Reli-
ability, 23(8):613–646. xii, 40, 43, 44, 120

Mäder, P. and Egyed, A. (2015). Do developers benefit from requirements trace-
ability when evolving and maintaining a software system? Empirical Software
Engineering, 20(2):413–441. 2, 11, 12

Mamas, E. and Kontogiannis, K. (2000). Towards portable source code repre-
sentations using XML. In Reverse Engineering, 2000. Proceedings. Seventh
Working Conference on, pages 172–182. IEEE. 14, 18

Marcus, A. and Maletic, J. (2003). Recovering documentation-to-source-code
traceability links using latent semantic indexing. In 25th International Confer-
ence on Software Engineering, 2003. Proceedings, pages 125–135. 30

Merriam-Webster (2012). Merriam-webster dictionary. http://www.

merriam-webster.com/dictionary/reverse%20engineering. [Online; ac-
cessed December 2012]. 13

Meyer, M. (2006). Pattern-based reengineering of software systems. In Reverse
Engineering, 2006. WCRE’06. 13th Working Conference on, pages 305–306.
IEEE. 3, 14, 15, 16, 48, 72

Microtool (2012). objectif. http://www.microtool.de/objectif/en/. [Online;
accessed December 2012]. 27

Misek, J. and Zavoral, F. (2010). Mapping of dynamic language constructs into
static abstract syntax trees. In Computer and Information Science (ICIS),
2010 IEEE/ACIS 9th International Conference on, pages 625 –630. xii, 17

Modeliosoft (2012). Modelio. http://www.modeliosoft.com. [Online; accessed
December 2012]. 27

http://www.merriam-webster.com/dictionary/reverse%20engineering
http://www.merriam-webster.com/dictionary/reverse%20engineering
http://www.microtool.de/objectif/en/
http://www.modeliosoft.com

REFERENCES 149

Moser, R., Pedrycz, W., and Succi, G. (2008). A comparative analysis of the
efficiency of change metrics and static code attributes for defect prediction. In
Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International Confer-
ence on, pages 181–190. IEEE. 31

Naur, P. and Randell, B. (1969). Software Engineering: Report of a conference
sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct.
1968, Brussels, Scientific Affairs Division, NATO. Report of a conference spon-
sored by the NATO Science Committee. 2, 10

NoMagic (2012). Magicdraw uml. http://www.nomagic.com/products/

magicdraw/magicdraw-enterprise.html. [Online; accessed December 2012].
27

Olivier, P., Boukhobza, J., and Senn, E. (2012). On benchmarking embedded
Linux flash file systems. arXiv preprint arXiv:1208.6391. 72

OMG et al. (2005). Unified modelling language: Infrastructure. http://www.

omg.org/spec/UML/2.0/. [Online; accessed December 2012]. 19, 20

OMG et al. (2011a). Architecture-driven Moderization: Abstract Syntax Tree
Metamodel (ASTM). http://www.omg.org/spec/ASTM. [Online; accessed De-
cember 2012]. 16, 17

OMG et al. (2011b). OMG Meta Object Facility (MOF) Core Specification.
http://www.omg.org/spec/MOF/2.4.1. [Online; accessed December 2012]. 19

OMG et al. (2011c). OMG MOF 2 XMI Mapping Specification. http://www.

omg.org/spec/XMI/2.4.1. [Online; accessed December 2012]. 18, 19, 57, 63

Pages, B. (2016). BOUML. http://www.bouml.fr. [Online; accessed May 2016].
26

Pettersson, N., Lowe, W., and Nivre, J. (2010). Evaluation of accuracy in design
pattern occurrence detection. Software Engineering, IEEE Transactions on,
36(4):575–590. 72

http://www.nomagic.com/products/magicdraw/magicdraw-enterprise.html
http://www.nomagic.com/products/magicdraw/magicdraw-enterprise.html
http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/ASTM
http://www.omg.org/spec/MOF/2.4.1
http://www.omg.org/spec/XMI/2.4.1
http://www.omg.org/spec/XMI/2.4.1
http://www.bouml.fr

REFERENCES 150

Philippow, I., Streitferdt, D., Riebisch, M., and Naumann, S. (2005). An approach
for reverse engineering of design patterns. Software and Systems Modeling,
4(1):55–70. 3, 14, 15, 16, 26, 55, 72

Pilch, C. (2009). Applications of Multidimensional Scaling to Graph Drawing.
PhD thesis, University of Konstanz, Konstanz, Germany. 37, 38, 92

PINOT (2012). Pattern inference and recovery tool (pinot). http://www.cs.

ucdavies.edu/~shini/research/pinot. [Online; accessed December 2012].
25

Pinzger, M. and Antoniol, G. (2013). Guest editorial: reverse engineering. Em-
pirical Software Engineering, 18(5):857. 3, 14, 15

Queille, J.-p., Voidrot, J.-F., Wilde, N., and Munro, M. (1994). The impact
analysis task in software maintenance: a model and a case study. In Software
Maintenance, 1994. Proceedings., International Conference on, pages 234–242.
IEEE. 40

Raghavan, S., Rohana, R., Leon, D., Podgurski, A., and Augustine, V. (2004).
Dex: A semantic-graph differencing tool for studying changes in large code
bases. In Software Maintenance, 2004. Proceedings. 20th IEEE International
Conference on, pages 188–197. IEEE. xii, 18

Ramadani, J. and Wagner, S. (2016). Are suggestions of coupled file changes
interesting? 4, 29, 34

Ramesh, B. and Edwards, M. (1993). Issues in the development of a requirements
traceability model. In Requirements Engineering, 1993., Proceedings of IEEE
International Symposium on, pages 256–259. IEEE. 11

Rasool, G. and Streitfdert, D. (2011). A survey on design pattern recovery tech-
niques. International Journal of Computing Science Issues, 8. 14, 21, 22, 47,
48, 99

Rodina, D. (2012). Software ideas modeller. http://www.softwareideas.net.
[Online; accessed December 2012]. 27

http://www.cs.ucdavies.edu/~shini/research/pinot
http://www.cs.ucdavies.edu/~shini/research/pinot
http://www.softwareideas.net

REFERENCES 151

Rogers, S. and Girolami, M. (2011). A first course in machine learning. CRC
Press. 34, 38, 39

Roman, G.-C. and Cox, K. C. (1993). A taxonomy of program visualization
systems. Computer, 26(12):11–24. 52

Roscoe, J. (2011). Looking forwards to going backwards: An assessment of current
reverse engineering. Current Issues in Software Engineering. 13, 14, 15, 47, 72,
99, 131

Sarkar, M. K., Chatterjee, T., and Mukherjee, D. (2013). Reverse engineering:
An analysis of static behaviors of object oriented programs by extracting UML
class diagram. International Journal of Advanced Computer Research, 3(3):135.
3, 15, 19

Shi, N. and Olsson, R. (2006). Reverse engineering of design patterns from
Java source code. In Automated Software Engineering, 2006. ASE’06. 21st
IEEE/ACM International Conference on, pages 123–134. IEEE. 3, 21, 22, 25

Sim, S. E., Easterbrook, S., and Holt, R. C. (2003). Using benchmarking to
advance research: A challenge to software engineering. In Proceedings of the
25th International Conference on Software Engineering, pages 74–83. IEEE
Computer Society. 48, 73

Spanoudakis, G. and Zisman, A. (2005). Software traceability: a roadmap. Hand-
book of Software Engineering and Knowledge Engineering, 3:395–428. 2, 11, 12

SparxSystems (2012). Enterprise architect. http://www.sparxsystems.com/

products/ea/index.html. [Online; accessed December 2012]. 27

SPOOL (2012). SPOOL. http://www.iro.montreal.ca/~keller/Spool/main.
html. [Online; accessed December 2012]. 25

StarUML (2008). StarUML. http://staruml.sourceforge.net/en/. [Online;
accessed December 2012]. 28

Uchiyama, S., Washizaki, H., Fukazawa, Y., and Kubo, A. (2011). Design pattern
detection using software metrics and machine learning. In First International

http://www.sparxsystems.com/products/ea/index.html
http://www.sparxsystems.com/products/ea/index.html
http://www.iro.montreal.ca/~keller/Spool/main.html
http://www.iro.montreal.ca/~keller/Spool/main.html
http://staruml.sourceforge.net/en/

REFERENCES 152

Workshop on Model-Driven Software Migration (MDSM 2011), page 38. 3, 15,
16, 22, 24, 72

Umbrello (2012). Umbrello UML modeller. http://uml.sourceforge.net. [On-
line; accessed December 2012]. 28

VisualParadigm (2012). Visual paradigm for UML. http://www.

visual-paradigm.com/product/vpuml/. [Online; accessed December 2012].
28

Williams, C. and Hollingsworth, J. (2005). Automatic mining of source code
repositories to improve bug finding techniques. IEEE Transactions on Software
Engineering, 31(6):466–480. 4, 29, 30, 31, 76, 131

Wloka, J. (2006). Towards tool-supported update of pointcuts in AO refactoring.
In Proceedings of the Workshop on Linking Aspect Technology and Evolution
Revisited at AOSD 2006. 129

Ying, A., Murphy, G., Ng, R., and Chu-Carroll, M. (2004). Predicting source code
changes by mining change history. IEEE Transactions on Software Engineering,
30(9):574–586. 4, 34

http://uml.sourceforge.net
http://www.visual-paradigm.com/product/vpuml/
http://www.visual-paradigm.com/product/vpuml/

	Abstract
	Contents
	List of Papers
	List of Figures
	List of Tables
	Listings
	Glossary
	1 Introduction
	1.1 Introduction
	1.1.1 Fundamental Challenge and Contributions

	1.2 Thesis Structure

	2 Literature Review
	2.1 Introduction to Literature Review
	2.2 Software Traceability
	2.2.1 Requirements Traceability

	2.3 Reverse Engineering
	2.3.1 Introduction to Reverse Engineering
	2.3.2 Goals of Software Reverse Engineering
	2.3.3 Language Abstracted Notations
	2.3.4 Approaches to Software Reverse Engineering
	2.3.5 Tools for Software Reverse Engineering

	2.4 Source Code Repository Mining
	2.4.1 Types of Repository Mining
	2.4.2 Source Code Mining for Traceability Recovery
	2.4.3 Change Coupling for Dependency Analysis

	2.5 Clustering of Related Objects
	2.5.1 Generation of a Normalised Dissimilarity Matrix
	2.5.2 Multi-Dimensional Scaling (MDS)
	2.5.3 Clustering Techniques

	2.6 Change Impact Analysis
	2.6.1 Methods
	2.6.2 Predictive Change Impact Analysis and Measurement
	2.6.3 Combined Information Sources

	3 Benchmarking Reverse Engineering
	3.1 Introduction
	3.2 The Reverse Engineering to Design Benchmark (RED-BM)
	3.2.1 Target Artefacts
	3.2.2 Reverse Engineering Performance Measures
	3.2.3 Complexity Categories
	3.2.4 Extensibility of the Benchmark

	3.3 Application of the Benchmark
	3.4 Benchmark Toolchain
	3.4.1 Java Code Analysis
	3.4.2 Exchange of Information in Meta Format
	3.4.3 XMI Analysis and Comparison

	3.5 Evaluation of Analysis Results
	3.6 Related Work
	3.7 Conclusion

	4 Augmenting Reverse Engineering Using Repository Mining
	4.1 Introduction
	4.1.1 Problem Statement
	4.1.2 Working Hypotheses

	4.2 Approach
	4.2.1 Concrete Example
	4.2.2 Formal Definition
	4.2.3 Illustrative Example

	4.3 Implementation
	4.3.1 Information from Repository Mining

	4.4 Application to Clustering
	4.5 Conclusion

	5 A Uniform Approach to Combining Multiple Traceability Information Sources
	5.1 Introduction
	5.1.1 Problem Statement
	5.1.2 Solution Definition

	5.2 Approach
	5.2.1 Formal Definition
	5.2.2 Filtering
	5.2.3 Weighting and Truth
	5.2.4 Boolean Conversion
	5.2.5 Combination and Simple Example
	5.2.6 Illustrative Example

	5.3 Discussion and Limitations
	5.3.1 Level of Granularity
	5.3.2 Pre-Matrix Filtering
	5.3.3 Maintaining Traceability of Relationships

	5.4 Conclusion

	6 Augmenting Change Impact Analysis with Semantic Relation Information from Version Management Systems
	6.1 Introduction
	6.1.1 Problem Statement
	6.1.2 Experiment

	6.2 Implementation
	6.3 Evaluation
	6.3.1 Test Subjects
	6.3.2 Validation Against Manual Analysis
	6.3.3 Wider Validation with JRipples
	6.3.4 Tuning and Sensitivity Levels
	6.3.5 Actual Follow-up Changes

	6.4 Presentation of Change Impact Results
	6.5 Discussion
	6.6 Conclusion

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	References

