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Abstract 

Neural models describe brain activity at different scales, ranging from single cells to whole 

brain networks. Here, we attempt to reconcile models operating at the microscopic 

(compartmental) and mesoscopic (neural mass) scales to analyse data from microelectrode 

recordings of intralaminar neural activity. Although these two classes of models operate at 
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different scales, it is relatively straightforward to create neural mass models of ensemble 

activity that are equipped with priors obtained after fitting data generated by detailed 

microscopic models. This provides generative (forward) models of measured neuronal 

responses that retain construct validity in relation to compartmental models. We illustrate our 

approach using cross spectral responses obtained from V1 during a visual perception 

paradigm that involved optogenetic manipulation of the basal forebrain. We find that the 

resulting neural mass model can distinguish between activity in distinct cortical layers – both 

with and without optogenetic activation – and that cholinergic input appears to enhance 

(disinhibit) superficial layer activity relative to deep layers. This is particularly interesting 

from the perspective of predictive coding, where neuromodulators are thought to boost 

prediction errors that ascend the cortical hierarchy.    

 

 

Introduction 

 

Multi-electrode shanks and multi-unit probes provide a unique window on the  functional 

microarchitecture of cortical and subcortical structures, like V1, temporal cortex, the 

hippocampus or the cerebellum, see e.g. (Olsson et al., 2005; Obien et al., 2014; Kelly et al., 

2007; Ulbert et al., 2001). These recording techniques have found a wide range of 

applications, including brain-machine interfacing (Hiremath et al., 2015) and seizure 

localization (Halgren et al., 2015). They allow for simultaneous recordings from different 

layers within a single brain region and offer insights into the functional architecture, 

physiology and anatomy of cortical microcircuitry. 

Laminar array recordings can be obtained using thin probes with multiple contacts that 

penetrate (almost) vertically the cortical surface. These recordings can be used to reconstruct 

synaptic activity and dendritic currents flowing between different layers. This reconstruction 

entails an (ill posed) inverse problem of mapping responses to laminar-specific neuronal 

sources. This mapping has been addressed using methods like Current Source Density 

(Freeman and Nicholson, 1975; Koo et al., 2015; Mitzdorf and Singer, 1977; Sakamoto et al., 

2015) and more recently Laminar Population Analysis (Einevoll et al., 2007; Ness et al., 

2015). 
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Here, we suggest an alternative approach to estimating layer-specific activity using 

Variational Bayesian deconvolution. We first obtain simulated responses from a 

compartmental model that has been previously shown to faithfully represent the cortical 

microarchitecture – and has been used to model MEG responses during a tactile stimulation 

paradigm (Bush and Sejnowski, 1993; Jones et al., 2007). We then use these simulated data 

to optimise the mean-field (lumped) parameters of a homologous neural mass model. The 

resulting parameters provide prior constraints on neural mass models that can be used for 

subsequent dynamic causal modelling of empirical responses. This approach ensures the 

neural mass model has construct validity, in relation to more detailed (compartmental) 

models of cortical microcircuitry.  

 

The resulting neural mass model can be combined with an observation model that allows one 

to simultaneously fit predicted time series from different subpopulations within the same 

neural circuit. This contrasts with the current use of mean field models to generate (weighted) 

mixtures of responses in different populations, thereby providing a single time series for each 

cortical or subcortical source. The implicit mixing is appropriate for non-invasive 

electromagnetic recordings that cannot resolve the cortical depth of sources; however, for 

laminar data one needs to equip the observation model with spatial parameters that associate 

each population with a particular cortical layer. This leads to the natural question: do the 

neural masses that model superficial and deep pyramidal populations actually occupy 

supragranular and infragranular positions in the cortex? Hitherto, in the dynamic causal 

modelling literature, the designation of a population as superficial (or deep) is based purely 

on their characteristic time constants and connectivity, without any explicit reference to their 

spatial deployment. In this paper, we ask whether functional attributions like superficial and 

deep are justified, when one can actually measure neuronal responses at different cortical 

depths. 

 

Our approach to this question relies upon Bayesian model comparison and assumes that a 

Bayes optimal explanation (model) of data exists for some prior distribution of mean field 

parameters. To ensure the prior constraints properly accommodate spatiotemporal dynamics 

within the cortical microcircuit and its neuronal compartments (e.g. delays due to spread of 

current throughout the dendritic arbours), the priors in this work were obtained by fitting a 
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neural mass model to data generated by a validated compartmental model. In other words, we 

use the mean field homologue and its compartmental variant to find the prior distribution that 

renders both models functionally equivalent: i.e., find a priors that produce the same 

responses. This enables us to model laminar responses using a relatively small number of 

parameters that can be estimated more efficiently, using the mean field homologue of the 

compartmental model. The empirical data used to illustrate this approach were recorded 

during a visual perception paradigm – with optogenetic manipulation – and were analysed 

here by inverting cross spectral density data features using DCM  (Friston et al., 2007; 

Pinotsis et al., 2013, 2012a). 

 

In summary, the key innovation described in this paper is to equip standard neural mass 

models with laminar specific forward models that enable the fitting of laminar recordings. To 

lend the neural mass model construct validity – in relation to more detailed compartmental 

models that accommodate neuronal interactions between layers – we optimised the (prior) 

parameters of a standard neural mass model to reproduce the behaviour of more detailed, 

compartmental models. Effectively, we are repurposing established neural mass models to 

explain the laminar specific recordings. The empirical analyses based upon the ensuing 

model, although purely illustrative, establish a degree of face and construct validity for this 

approach. 

 

In what follows, we first provide a brief review of compartmental modelling of laminar 

specific and non-invasive electromagnetic responses. We then consider mean field 

approximations to compartmental models; with a special focus on homogenous and 

symmetric coupling among cortical mini columns. These mean field approximations allow us 

to fit neural mass models of the sort used in dynamic causal modelling to simulated data 

generated by detailed compartmental models. The subsequent sections of this paper consider 

two issues: first, how to construct a neural mass model that inherits biological plausibility 

from compartmental models. This issue is addressed by fitting a standard neural mass model 

to data generated by compartmental models – and using the resulting posterior parameter 

estimates as priors for subsequent neural mass modelling of empirical data. The second issue 

is how to establish the validity of the resulting neural mass model. Here, we provide some 

provisional analyses of empirical data looking at its ability to correctly identify laminar-

specific neuronal activity – and to detect the cholinergic neuromodulation of superficial 

pyramidal cells. 
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Materials and Methods  

 

Compartmental models and mean field approximations 

 

We first briefly review an established compartmental neural model (Bush and Sejnowski, 

1993). These authors show how a detailed multi-compartmental model can be reduced to a 

simpler model with fewer compartments. This model was later extended to a network model 

of a cortical column in a key paper by (Jones et al., 2007). The resulting network model 

provides detailed descriptions of intracellular (longitudinal) currents within the long apical 

dendrites of synchronized cortical pyramidal cells, see e.g. (Bazhenov et al., 2002; Einevoll, 

2014; Krupa et al., 2008; Lindén et al., 2010; Ramirez-Villegas et al., 2015; Roth and 

Häusser, 2001; Santaniello et al., 2015). In these compartmental models, neuronal 

populations are organised spatially into networks of mini-columns: each mini-column 

consists of principal neurons (PNs) whose somata are placed in supragranular and 

infragranular layers. The resulting pairs of cells are connected with each other and also with 

principal cells in neighbouring mini-columns – and receive inhibitory input from interneurons 

that are shared between mini-columns.  In summary, the  model described in (Jones et al., 

2007) embodies the laminar structure of a cortical column and can characterize the cellular 

and circuit level processes that are measured with multielectrode arrays, MEG or 

electrocorticography. It also provides characterizations of neuronal morphology and how 

neurons are grouped together to form spatially extended networks of mini-columns with well-

behaved intrinsic (inter-and intra-laminar) connectivity.   

 

The network model we consider here was originally used to explain somatosensory evoked 

responses measured with MEG during a tactile stimulation paradigm (Jones et al., 2007). 

When challenged with the appropriate sequence of exogenous input, the model accurately 

reproduces the S1 evoked response to a tap on the hand. Furthermore, the 

compartmentalisation of the PNs allowed the authors to make accurate predictions about the 
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origin of each peak. For instance, it led to the prediction that the evoked response was 

generated by a sequence of feedforward (FF) input from the lemniscal thalamus to the 

granular layer, followed by feedback (FB) drive from higher order cortex and a late thalamic 

input to L4. Importantly, the model accurately describes the intracellular currents that give 

rise to signal polarity. In later studies, the model was extended to 100 pyramidal neurons 

(PNs) per cortical layer, and has been used to investigate the emergence of beta and gamma 

rhythms (Jones et al., 2009; Lee and Jones, 2013).  

 

The current dipole approach used in (Jones et al., 2007) has been shown to be a good 

approximation for analysing MEG or EEG data, see e.g. (Murakami and Okada, 2006) 

although less so for local field potentials (LFPs), see (Lindén et al., 2010). Below we use a 

mean field model to explain invasive data using DCM: see, (Brunel and Wang, 2003; Deco et 

al., 2008; Marreiros et al., 2015; Moran et al., 2015) and (Friston et al., 2015) for a review of 

mean field approaches to this sort of modelling. Mean field or neural mass approaches 

generally assume that dendritic and other microscopic effects do not dominate the LFPs. 

Furthermore, they can only model axonal and dendritic arbours as passive cables and cannot 

capture properties of active media, like back-propagation of action potentials.  These  are 

clearly  simplifying assumptions; indeed, several studies have considered alternative models 

of LFP signals, e.g. (Holcman and Tsodyks, 2006; Mazzoni et al., 2008; Touboul and 

Destexhe, 2010). 

 

In what follows, we construct a variant of the (Jones et al., 2007) model that assumes 

inhibitory and excitatory cells are uniformly distributed in space. Furthermore, we adopt 

symmetry constraints on horizontal connectivity (within each cortical layer) of the sort 

assumed in neural and mean field models. This means that inhibition is homogeneously 

distributed over the cortical surface – as in neural field models – as opposed to inhibitory 

interneurons being shared between mini-columns – as in the original compartmental model. 

In other words, we assume that laminar specific populations are distributed uniformly within 

a local cortical manifold and render the network homogeneous. The assumption of 

homogenous coupling means that compartmental and mean field models can, in principle, 

explain the same responses. In turn, this implies that mean field models of the sort considered 
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below provide sufficient descriptions of neural tissue activity, provided single units oscillate 

synchronously  (Hämäläinen et al., 1993).   

 

In terms of solving the inverse problem, this homogenous coupling assumption means that 

one can substitute a myriad of coupled equations for multiple compartments in multiple mini-

columns by a few integrodifferential equations of the sort used in mean field theory – and 

consider an alternative (but equivalent) parameterization in terms of lumped model 

parameters. Using this mean field reduction on obtains a model which can be fitted to 

empirical data very efficiently. To test the assumption that a mean field model can reproduce 

ERPs obtained from a compartmental model with multiple mini columns, we compared the 

responses of both models to the same input to ensure that they are formally equivalent.  

 

 

DCM for microelectrode data 

 

Compartmental models of the sort discussed above yield precise descriptions of the anatomy, 

morphology and biophysical properties of the underlying neuronal populations. Crucially, 

they produce neuronal dynamics that embody detailed spatiotemporal processes like currents 

flowing along dendrites and axons. For example, we will see below that both the original 

model and its mean field or neural mass variant can explain the M25 and M135 peaks in 

evoked responses obtained during the somatosensory task analysed in (Jones et al., 2007). 

These response components are generated by currents flowing towards the superficial layers, 

i.e., toward the apical dendrites.   

 

In brief, neural mass models that are not equipped with distinct neuronal compartments 

cannot describe these detailed (dendritic or axonal) delays and back propagation. However, 

by fitting data generated by compartmental models using equivalent neural mass models – 

with the same number of populations and connectivity architecture – one can identify a prior 

distribution over model parameters that can reproduce the equivalent dynamics.  This model 

is shown in Figure 1 and comprises two pairs of coupled excitatory and inhibitory 

populations occupying the superficial and deep layers.  
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 Figure 1 The Bush and Sejnowski (neural mass or mean field) model. This figure shows the evolution 

equations that specify a neural mass model of a single cortical microcircuit source.  This model contains four 

populations occupying different cortical layers: the pyramidal cell population of the Jansen and Rit model is 

here split into two subpopulations allowing a separation of the sources of forward and backward connections in 

cortical hierarchies. Firing rates within each sub-population provide inputs to other populations and 

convolution of presynaptic activity produces postsynaptic depolarization. We consider separate time series of 

activity from superficial and deep populations as opposed to usual treatments that use weighted sums of activity 

from all subpopulations. Here red denotes inhibitory populations and connections, while black denotes 

excitatory cells and connections. Note that all recurrent or self connections are inhibitory. 

  

 

 

In the second part of our analysis, we consider the dynamic causal modelling of oscillatory 

responses using a neural mass model that inherits (prior) constraints from more detailed 

compartmental models. We analyse empirical recordings obtained from different cortical 

layers of the visual cortex using depth electrodes, during optogenetic stimulation of the basal 
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forebrain. Our analysis focuses on the quantitative analysis of intrinsic (inter-and intra-

laminar) connectivity and the effect of (putative) cholinergic stimulation. We restrict 

ourselves to describing and validating the neural mass model in this paper. This paper 

demonstrates that a neural mass model can be used to explain lamina-specific spectra 

observed during baseline and optogenetic manipulation. In a subsequent paper, we will use 

Bayesian model comparison to make inferences about the synaptic connections affected by 

cholinergic stimulation – and the resulting changes in cross spectral density. 

 

In summary, we use the DCM in Figure 1 to explain two different datasets: first, simulated 

data obtained from the Jones et al. model that has been shown to faithfully explain 

somatosensory evoked responses obtained with MEG during a tactile simulation paradigm. 

Second, LFP data obtained from V1 during optogenetic stimulation of the basal forebrain. 

The first dataset is used to establish that the DCM model can explain the same data as the 

model by Jones et al. The second dataset is used to test whether this DCM can also predict 

responses recorded from different cortical layers and the increase in prediction error activity 

due to cholinergic effects as suggested by the theory of predictive coding. 

 

 

 

Local Field Potential data 

 

We reanalysed data collected during a previously reported study; for more details see  (Pinto 

et al., 2013). Briefly, 32 channel LFP data were acquired at a sampling rate of 581 Hz from 

Neuronexus A1x32-Poly2-5mm-50s-177 silicon probes implanted into V1 in 14 awake mice. 

Probe microelectrodes were arranged in two columns of 16. Spacing within columns was 50 

μm, with a 25 μm between columns, giving a total length of 775 μm, sufficient to span the 

entire cortical thickness (approximately 800 μm in mice).  

 

Data were acquired while the mice ran on a spherical treadmill and viewed a 7” LCD screen. 

The grating was static for 1s, and then drifting for 4s, giving a total trial length of 5s. 
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Gratings could be moving either sideways or upwards, and were presented at three contrast 

levels (20, 40, and 100%). 8 blocks of trials were presented. During four blocks, cholinergic 

neurons in the basal forebrain were optogenetically activated with five-second square laser 

pulses that accompanied the stimuli. LFP data were referenced to create 16 bipolar channels, 

and notch filtered at 60, 120 and 180 Hz to remove line noise. The cross spectral density was 

calculated separately for each trial, for the 4 second period between the onset of stimulus 

motion and stimulus offset, and averaged across trials. 

 

Compartmental modelling 

 

To construct a  homogenous or symmetric compartmental model, we adapted NEURON code 

for the (Jones et al., 2007) model from the link below
3
. Jones et al., (2007) modelled primary 

somatosensory cortex (S1) using reduced compartmental PNs, which allowed for an accurate 

description of dendritic currents (Bush & Sejnowski, 1993), and single compartment 

inhibitory interneurons (INs). These authors focused on simulating an evoked response to 

tactile stimulation of the hand, and computing the resulting current dipole (CD) signal – in 

order to characterise the local cortical dynamics that give rise to the MEG signal recorded 

over S1 during tactile stimulation. The model comprised 10 PNs in layers 2/3, 10 PNs in 

layer 5, and 3 INs in both layers. The synaptic architecture followed general tenets of cortical 

micro-circuitry (Douglas and Martin, 2004; Felleman and Van Essen, 1991), where FF 

connections target the granular layer and FB connections target agranular layers. 

 

To determine whether the symmetric and original compartmental model generated the same 

responses, we increased the number of inhibitory units from three to 10 per layer, so that their 

number equalled the number of the principal cells within each mini-column. To ensure that 

relative differences in interneuron densities were accommodated, we multiplied the 

maximum conductance values of the corresponding connections by a factor of 0.3. Modelling 

of single neuron morphology and physiology followed (Bush and Sejnowski, 1993), using the 

same parameters as in (Jones et al., 2007). Following these earlier studies, input was provided 

by stochastic spike generators.  

                                                 
3 https://senselab.med.yale.edu/ModelDB/showmodel.cshtml?model=113732 
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Single neuron morphology and physiology 
 

 

Neocortical pyramidal neurons were modelled using reduced compartmental models with 

Hodgkin-Huxley type currents (Bush & Sejnowski, 1993; Jones et al., 2009; Jones et al., 

2007; Lee & Jones, 2013) 

 

( )m l l

l

I g V E            (1) 

 

where 
lg is the maximal conductance for channel l,V is the membrane potential and 

lE  is the 

reversal potential. The superficial and deep PNs consisted of 8 or 9 compartments 

respectively, with compartment sizes and resistances as reported in Jones et al. (2007).  PNs 

in both layers contained a fast sodium current (INa), an adapting potassium current (IM), a 

delayed rectifier current (IKdr) and a leak current (IL). In the L5 PNs a calcium-dependent 

potassium current (IKCa) and a calcium decay current (ICa) with a decay time constant of 20 

ms were present. The INs comprised a single compartment and contained only fast sodium 

(INa) and potassium (IKdr) currents. The reversal potentials and conductance for each current 

were identical to (Jones et al., 2007). 

 

 

 

 

 

Local synaptic connections 
 

 

Superficial and deep layers contained 10 PNs and 10 INs, and the location of synaptic inputs 

followed Jones et al. (2007). The synaptic dynamics of each connection were determined by 

their rise (τ1) and decay (τ2) time constants and reversal potential E. the synaptic current 
sI  is 

given by the following equations: 
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where f is a normalising factor and 
sg is the synaptic conductance. Excitatory connections are 

mediated by AMPA (τ1 =0.5ms, τ2=5ms, E = 0 mV) and NMDA (τ1 = 1ms, τ2 = 20ms, E = 0 

mV) receptors. Inhibitory connections are mediated by GABAA (τ1 = 0.5 ms, τ2 = 5 ms, E = -

80 mV) and GABAB (τ1 = 1, τ2 = 20, E =- 80 mV) receptors. The weights of the synaptic 

connections w  follow a Gaussian profile and an inverse Gaussian delay profile such that 

connections are stronger and faster for nearby cells, that is for connections between neurons 

at positions i and j the strengths and delay constants are given by  
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2 2
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/
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          (3) 

 

 

All local synaptic connection parameter and constants are listed in Table 1. 

 

 

 

(Insert Table 1 here). 

 

 

 

 

 

 

 

 

Exogenous inputs  
 

 

The inputs innervating the network were separated into feedforward (FF) and feedback (FB), 

based on the canonical microcircuit (Douglas & Martin, 2004; Felleman & Van Essen, 1991). 

FF connections were modelled as granular layer (L4) input, originating in the thalamus (Jones 

et al., 2009; Jones et al., 2007). The FF drive comprised a connection to the basal and oblique 

dendrites of L2 PNs (as well as the L2 INs), and a delayed connection to the basal and 
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oblique dendrites of L5 PNs and to the L5 INs. FB drive modelled input from higher-order 

cortex, and contacted the apical tufts of the PNs in both layers, as well as the L2 INs.  

 

We consider inputs of two sorts: first, inputs generating evoked responses and second, 

ongoing subthreshold inputs that generate alpha activity. This involved expanding the model 

of (Jones et al., 2007) to produce oscillatory activity: following (Jones et al., 2009), 10 Hz 

thalamic (forward) inputs were obtained by simulating groups of 10 bursts (each consisting of 

2 spikes separated by a 10 ms interval) with 100 ms intervals between the burst groups 

(Andersen and Andersson, 1968; Contreras and Steriade, 1995). Model output included 

current dipole sources that report the electrical activity of superficial and deep layers.   

 

Input timings were chosen as reported in (Jones et al., 2009; Jones et al., 2007), and 

consistent with laminar recording data (Cauller and Kulics, 1991; Kandel and Buzsáki, 1997). 

These followed a Gaussian distribution across trials and consisted of an early FF drive around 

25 ms (σ=2.5), followed by a FB input around 70 ms (σ=6) and a later wave of FF input 

(LFF) around 135 ms (σ=7). Each input comprised a single presynaptic spike, with 

suprathreshold synaptic weights as listed in Table 2. Note that contrary to Jones et al. (2007), 

the synaptic weights and delays of exogenous inputs were homogenously distributed over all 

cells. Noise or random fluctuations were modelled with a stochastic current between -0.3 and 

0.3 nA to each compartment.  

 

 

(Insert Table 2 here). 

 

 

 

Earlier extensions of the (Jones et al., 2007) model have demonstrated rhythmogenesis and 

oscillations in the alpha, beta (Jones et al., 2009) and gamma (Lee & Jones, 2013) bands. We 

focused on reproducing alpha band activity with a symmetric model as follows. The model 

was driven with ongoing rhythmic FF drive, where each burst consisted of 2 spikes with an 

inter-spike interval of 10 ms, which is consistent with recording data (Hughes and Crunelli, 

2005), and an inter-burst interval of (on average) 100 ms. The arrival time of each burst 

followed a Gaussian distribution with a standard deviation of 20 ms. In addition, FB with the 

same temporal statistics, but a 5 ms delay compared to the FF input, was added. The 
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conductance was the same for FF and FB inputs: 0.4 picosiemens (pS) for input to PNs and 

0.8 pS to INs. These parameters were chosen to ensure that all oscillations remained below 

the firing threshold.  

 

 

Neural modelling and Bayesian Inversion 

 

In addition to the symmetric compartmental model above, we constructed a neural mass 

variant of the (Jones et al., 2007) model for subsequent Dynamic Causal Modelling. Laminar-

specific recordings call for a novel parameterisation of the observation model or lead field 

that changes with depth. In this setting, laminar LFP responses 
iy  – of the sort measured with 

multi-electrode shanks – are generated by contributions from excitatory and inhibitory 

populations that occupy one or more cortical layers, see also (Pinotsis et al., 2012b, 2014) 

 

2

14 4 11 1

23 3 22 2

32 2 31 1 33 3 34 4

41 1 44 4

( , ) ( ) ( ), 1,..., 4

2 ( , , )

( ) ( ) 1

( ) ( ) 2
( , , )

( ) ( ) ( ) ( ) 3

( ) ( ) 4

i m m

m

m m m m m m m m

m m

y t L v t m

v v v f v U

a v a v U m

a v a v m
f v U

a v a v a v a v m

a v a v m

 

   

 

 


   

 

 

   

    


   
 

        
     



  (4)                                        

 

Here, ( )mL   is a lead field describing the spatial sensitivity (tangential to the cortical 

penetration) of a microelectrode contact in layer m, ( , )   are lead field and neural mass 

parameters respectively, ( )mv t  is the depolarization of the population in layer m, s a 

sigmoid operator transforming it into firing rate. 
m  is the matrix of rate constants associated 

with postsynaptic processing and U stands for the inputs to local cortical circuit, see Table 3 

for a list of biophysical parameters and their prior expectations.  
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(Insert Table 3 here) 

 

 

For the neural mass models used below, we assumed that there was a one-to-one mapping 

between the recordings from an electrode in layer i and the depolarisation of the 

corresponding population. In other words, ( ) :i jL i j     and zero otherwise. In other 

words, the indices in Equation 4 play the same role; i m . This allows one to characterize 

activity from different neuronal populations in terms of cross-spectral density responses 

between the contacts of multi-unit probes occupying different layers:  
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

FT

    (5) 

 

where 
ug  is the spectral density of endogenous neuronal input (parameterised as scale free 

noise as described in Bastos et al., 2014) and 
iT  is the transfer function associated with the 

neural source; i.e., the Fourier Transform of impulse response function. This is known as the 

first order Volterra kernel 
iK . Here, ( , ) ( ( , ))i iY y t   FT  is a Fourier transform of the 

equivalent time-series. Similarly to the neural mass model (4), compartmental models can 

describe activity from cortical columns consisting of excitatory and inhibitory populations. 

However, they consider this activity in more detail as generated by an ensemble of smaller 

structures called mini-columns.   Below we will consider ten such mini-columns. In this 

setting, activity predicted from the compartmental model of (Jones et al., 2007) is a simple 

superposition of  minicolumn activities 
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where the index 'q q  runs over a subset of compartments q that defines each mini-column 

and 1,...,10j   runs over the mini-columns. In our case, each mini-column comprises the 

compartments of 1 superficial PN, 1 deep PN and superficial and deep interneurons, and  

( , , , )k k kjQ J L a   stands for the exogenous input – that depends on activity in proximate 

compartments that is indexed by { }, 'k q k q  . The argument in the factor Q in Equation 6.2 

above simply means that this input depends upon the current density in the adjacent mini-

columns, their lead fields, anatomical parameters  and the strength of their connections
kja . 

 

Below, we assume that 
kja are the same between any mini-column pair and that all mini-

columns have the same structural characteristics. Intuitively, this could be thought as 

establishing an identity mapping between the activity of any pair of mini-columns j and j’, 

that defines an invariant subspace
'j jy y  in the full phase space of the network; see also 

Figure 2. The rigorous proof of existence of such a subspace is a hard problem that goes 

beyond the scope of the current paper; see e.g. (Breakspear and Terry, 2002; Fujisaka and 

Yamada, 1983; Pecora and Carroll, 1990) for a discussion of this active area of research 

(Afraimovich et al., 2001; Breakspear et al., 2003).  

 

In the first step of our analysis below, we first ensured that the symmetric version of the 

compartmental model produced the same responses as the original compartmental model 

used by (Jones et al., 2007). We then derived the homologous (neural mass) model by 

inverting the model in Figure 1 to obtain (neural mass) parameters that best explain 

compartmental model responses in the Fourier domain. This exploits stationarity and 

ergodicity assumptions that allow us to quantify brain responses in terms of spectral densities. 

In the final step, we use these parameters as prior expectations for dynamic causal modelling 

of empirical data, using the neural mass or mean field model; see Figure 2. This allowed us to 

establish the face validity of our model using responses recorded with laminar probes 

originating from different cortical layers; with and without experimental manipulation 

(optogenetics) – and investigate whether the model parameters show the expected 

experimental effects.  A schematic summarising these steps is provided in Figure 2. 
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Figure 2 Schematic of the validation steps. A. We first establish the functional equivalence between the model 

of Jones et al. 2007 and its symmetric variant. Here horizontal arrows of different widths in the left panel 

denote asymmetric connectivities and delays between mini-columns depicted as rectangles containing 

Superficial and Deep Pyramidal cells (SP and DP) and Inhibitory Interneurons (II). In the right panel a 

symmetrisation of the model reveals a setup similar to one considered in mean field (neural mass) models   B. 

We then demonstrate the construct validity of the corresponding mass model in relation to mean field model 

above. This is achieved by fitting the model to synthetic data obtained from its compartmental homologue. C. 

Finally, we show how this model can distinguish between superficial and deep responses obtained with laminar 

probes and consider the concomitant changes in model parameters with and without optogenetic manipulation. 

We exploit Bayesian model selection and compute the relative log-evidence for plausible (left) and implausible 

(right) experimental setups, where the probes of laminar sensors are considered in right and reversed locations, 

see  the Results section.  

 

 

The inversion of mean field models above uses the standard DCM approach, where inference 

on parameters and models is based on optimizing a free energy bound on the model log-
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evidence. Under Gaussian assumptions about the variational density ( ) ( , )q C   and 

observation noise ( ) ( , ( , ))I    , the free energy has a very simple form: 
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 
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(7)

 

 

 

 

Here,  ( , ) ( , )Y Ng g     are the predictions of the data features ( )Y g and ( )     are 

prediction errors on the parameters, in relation to their prior density ( | ) ( , )p m    and 

is the Gibb’s energy of the system.  

 

The free energy bound is optimized with respect to a variational density ( )q    on the 

unknown model parameters.  By construction, the free energy bound ensures that when the 

variational density maximizes free energy, it approximates the true posterior density over 

parameters, ( ) ( | ( ) , )Y iq p g m   . At the same time, the free energy itself 

( ( ) , ) ln ( ( ) | )Y i Y ig q p g m    approximates the log-evidence (marginal likelihood) of the 

data. In our final analysis below, we use the (relative) log-evidence to test whether our model 

can recover the sources of laminar recordings (originating from superficial and deep 

pyramidal cells). In Bayesian statistics, the relative log-evidence 
FRB  plays a similar role to 

p-values in classical statistics. We competed 
FRB  by fitting data to the neural mass model 

using: (i) the actual experimental setup (plausible spatial arrangement, m F ) and (ii) after 

reversing the mapping between superficial (deep) signals and deep (superficial) electrodes 

(implausible spatial arrangement, m R ). See also Figure 2. The relative log-evidence is 

evaluated using the following expression (Kass and Raftery, 1995) 

 

( ( ) | )
ln

( ( ) | )

Y i
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Y i

p g m F
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p g m R
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
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         (8) 
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where ( ( ) | )Y ip g m is the evidence for the setup m. A relative log-evidence BFR > 3 is taken 

as strong evidence for the forward (plausible) setup F over the implausible (reverse) setup.  

 

 

Results 

 

In the first part of analyses we repeated the analysis of (Jones et al., 2007) and modelled 

somatosensory evoked responses during a tactile stimulation paradigm. For these analyses we 

used two models: the model of (Jones et al., 2007) and a modified (simplified) version, which 

we call the symmetric model, see below. Our goal was to establish the equivalence between 

the original and simplified variants. This equivalence was established quantitatively by 

simulating responses of both models to the same input and ensuring that they generate the 

same evoked responses.  

 

Both models were integrated 100 times and a simulated evoked response was obtained by 

averaging over trials as in (Jones et al., 2007). Figure 3 (top row) shows the evoked response 

of the original model (left) and the symmetric model (right). The correlation coefficient 

between the two time series was r = 0.9343, p<0.001, suggesting that the symmetric model 

was able to reproduce the evoked response to tactile stimulation as in (Jones et al., 2007). 

Crucially, the M25, M35, M50, M70, M100 and M135 peaks observed experimentally were 

all present in the simulated signal. Note that the response magnitude of the models has been 

multiplied by a scaling factor of 3000 to match the magnitude of the MEG response.  
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Figure 3   (Top) Simulated evoked responses of (left) the model used in Jones et al. (2007); (right) its 

symmetric variant. (Bottom) Contributions to the net dipole per layer for the same models; see Jones et al. 2007 

for the corresponding results for the original model. 

 

Figure 3 (bottom row) shows the contributions to the net current dipole (CD) from each 

cortical layer. L5 PNs contribute more to the net CD than the L2 PNs, because of their longer 

apical dendrites. Furthermore, specific peaks in the net evoked response can be assigned to 

activity in specific cell types. For instance, the M25 peak seems to be primarily induced by 

activity in the L2 cells, while the large M70 peak can be attributed to activity in L5.  

 

A more detailed picture emerges by studying the responses of specific dendritic 

compartments. Figure 4 (top row) shows the contributions of apical and basal compartments 

to the CD of L2 and L5 PNs. The somatic potentials of both cells are plotted in the bottom 

row to illustrate the relationship between spikes and current flow. This is useful for 
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characterising the origin of the peaks in the evoked response from the symmetric model and 

is very similar to the corresponding results that were obtained using the original model; see 

Jones et al., 2007. 

 

 

Figure 4 Activity of both PNs in the symmetric model. The top row shows the current dipoles of L2 and L5 

neurons. The bottom row shows voltage responses; see Jones et al. 2007 for the corresponding results under the 

original (compartmental) model. 

 

The above analysis establishes the functional equivalence of the symmetric model (used 

below to simulate oscillatory responses) and the original Jones et al. model.  

 

In the second part of our analyses, we asked whether the symmetric model can produce alpha 

activity. This investigation was motivated by the original (Jones et al., 2007) model which 

had been shown to  produce alpha oscillations when  a 10 Hz thalamic input was added to 

baseline noise (Jones et al., 2009). We reproduced the  results of (Jones et al., 2009) using the 

symmetric model and obtained the simulated responses shown in the left panel of Figure 5 

(dashed lines). These responses were elicited by perturbing the local circuitry with ongoing 
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rhythmic FF drive, where each burst consisted of 2 spikes with an inter-spike interval of 10 

ms – and an inter-burst interval of (on average) 100 ms. We then focused on responses to 

thalamic input to the superficial and deep pyramidal cells. Figure 5 shows the power spectra 

for both populations . These are the spectra generated by current flowing up and down the 

apical dendrites of the PNs. 

 

Finally, we used the data from V1 during optogenetic stimulation of the basal forebrain 

(reported in the right panel of Figure 5) to invert the neural mass model of Figure 1 that is 

driven by endogenous noise. The resulting model fits are shown as solid lines in Figure 5 (left 

panels). Interestingly, the 10 Hz peak evident in the simulated data is also captured in the 

predicted spectral responses. This reflects the fact that thalamic input to the neural mass 

model contains a specific 10 Hz peak. Following (Jones et al., 2009) we included a 

parameterised endogenous input to accommodate both the thalamic 10 Hz drive and baseline 

noise. In summary, we used responses generated by detailed dendritic morphologies to 

estimate the parameters of a mean field model, so that it could reproduce these spectral 

responses (cf. Table 3). We now consider the analysis of empirical data, using this mean field 

(neural mass) model. 

 

 

Figure 5 Left panel: Cross spectral density data from superficial and deep populations of the 

compartmental (Jones et al., 2007) model and model fits using its neural mass homologue. Model predictions 

are shown with solid lines and simulated data with dashed lines. Note the peaked responses at 10Hz that are 

reminiscent of spiking burst input  that are also captured by the mean field model responses. Right panel: 

Exemplar spectral responses and model fits obtained during the visual perception paradigm of (Pinto et al. 

2013) from pairs of superficial and deep contacts across the thin laminar probe. These used bipolar data from 
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V1 during optogenetic stimulation of the basal forebrain. Solid and dashed lines represent model fits and data. 

Red and green curves correspond to the real and imaginary parts of the cross spectral density respectively. 

 

Dynamic causal modelling of empirical data 

 

In the final part of our analyses, we focused on real LFP data from (Pinto et al., 2013). These 

included power spectra obtained from the primary visual cortex during optogenetic 

stimulation of the basal forebrain. This allowed us to test two predictions from the DCM 

model of Figure 1: whether it produces responses recorded from different cortical layers – 

and the increase in the excitability or gain of superficial pyramidal cells, due to cholinergic 

effects, as suggested by predictive coding. 

 

A crucial (empirical) validation of the neural mass model rests on showing that the distinction 

between superficial and deep populations – based on their physiology and connectivity but 

not their spatial deployment – is valid in light of spatially resolved laminar data. Therefore, 

we compared a forward (F) model, in which superficial/deep populations are correctly 

assigned to supragranular/infragranular measurements, with a reverse (R) model, in which the 

assignment of modelled populations to their corresponding measurements has been switched. 

 

Additionally, the optogenetic manipulation allowed us to address the face validity of the 

model using the natural (Laser OFF) and stimulated conditions (Laser ON); this allowed us to 

ask whether the model parameters change between conditions as we expected them to. In 

particular, cholinergic input to the cortex is known to disynaptically disinhibit layer 2/3 

pyramidal cells through activation of layer 1 and vasoactive intestinal peptide-expressing 

inhibitory interneurons (Alitto and Dan, 2012; Fu et al., 2014; Lee et al., 2013; Letzkus et al., 

2011; Pi et al., 2013). These are key tests for the validity of the neural mass model:  whether 

it successfully distinguishes between the activities of superficial and deep pyramidal cells, 

and whether changes in connectivity model estimates capture the effects of cholinergic 

manipulation. 

  

To address these questions, we inverted the neural mass model using the empirical LFP 

responses acquired from different depths (with and without optogenetic stimulation). For this 

analysis, we selected LFP channels 2 and 15 (second channels from the top and bottom of the 
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array) from supragranular and infragranular layers respectively. The results of this inversion 

are shown in the right panels Figure 5. To demonstrate that the model can successfully 

reproduce distinct deep vs. superficial activities, we used Bayesian model comparison. This 

allowed us to assess the quality of plausible and implausible spatial arrangements of the deep 

and superficial pyramidal cells and evaluate relative log-evidences as described above: 

equation (8). 

 

Table 4 shows the results of Bayesian model comparison in terms of relative log-evidence, 

evaluated independently under both conditions (with and without optogenetic activation of 

the basal forebrain) when we swapped superficial and deep recordings around; i.e., fit the 

model with a plausible (forward) and implausible (reverse) laminar assignment of superficial 

and deep neuronal populations.  

 

(Insert Table 4 here) 

 

As noted above, a relative log-evidence (i.e., log Bayes factor) of three or more is taken as 

strong evidence for one model over another (Kass and Raftery, 1995). Bayesian model 

comparison suggests that the neural mass model distinguishes between responses originating 

from different layers, with substantially greater evidence for the plausible assignment of 

superficial pyramidal cells to supragranular layers. This was true with and without 

optogenetic manipulation. To ensure this result generalised over electrode pairs, we repeated 

the analysis for different deep and superficial channels and obtained the same result for every 

combination tested (results not reported). Finally, a quantitative comparison of the parameter 

estimates on and off stimulation suggested that cholinergic input enhances superficial relative 

to deep layer sensitivity.  
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Figure 6 Left panel: Cross spectral density data responses and model fits obtained during the visual 

perception paradigm of (Pinto et al. 2013) from pairs of superficial and deep contacts across the thin laminar 

probe for Laser ON and Laser OFF conditions. This figure follows the format of the Right Panel of Figure 5. 

Green and yellow curves correspond to imaginary parts of the cross spectral density for Laser OFF and Laser 

ON conditions respectively  Right panel: Conditional parameter estimates and their trial specific changes: 

maximum a posteriori estimates of changes in coupling obtained after inverting data acquired with and without 

cholinergic stimulation are shown by the connections in question (using the same format as the insert in Figure 

1). Note the disinhibition of the superficial pyramidal cell population due to a decrease of inhibitory 

connectivity and the increase of the corresponding inhibitory influence on deep pyramidal cell populations. Of 

the ten intrinsic connections (see figure 1) we model condition specific changes in three (solid lines). The 

remaining connections were assumed to have the same values under both conditions, with prior expectations 

based upon the analysis of the compartmental model (dotted lines). 

 

 

In the preceding analyses, we inverted both conditions separately (ON and OFF optogenetic 

stimulation) and compared models with a correct and incorrect laminar architecture. Our aim 

was to see if the model with the correct laminar disposition was selected by a Bayesian model 

comparison. In the final analysis, we illustrate the application of the neural mass model to 

answer questions about condition specific effects. In this instance, we model both conditions 

with the same (average) connectivity and test hypotheses about the condition specific effects 
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by allowing them to operate on a subset of connections. This enables us to identify the 

precise changes in connectivity seen anecdotally in the condition specific versions. 

In brief, the influence from superficial inhibitory populations on deep pyramidal cells 

increased by 113%, while the excitatory activity from superficial pyramidal cells increased 

by 400% during cholinergic stimulation. This was accompanied by a disinhibition of 

superficial pyramidal cells (decrease in self inhibition) by 32%. These self connections stand 

in for recurrent connections via inhibitory interneurons (e.g., parvalbumin positive Basket 

cells). 

 

This is consistent with the emerging picture about the effects of cholinergic input and the 

experimentally observed  facilitation of superficial-layer activity that could also be due to 

increased direct drive from layer 4 neurons (Douglas and Martin, 2004; Pluta et al., 2015), 

since feedforward thalamic input is enhanced by acetylcholine (Disney et al., 2007; 

Metherate and Ashe, 1993). These provisional results suggest that the segregation of 

ascending and descending streams of information might become less pronounced during 

optogenetic manipulation of cholinergic neurons, as a result of gain modulation of superficial 

principal cells through polysynaptic connections: in future work, we will investigate this 

hypothesis further using Bayesian model comparison: see also (Moran et al., 2013).  

 

 

 

 

Discussion 

 

We have introduced a neural mass model that can explain data obtained with thin laminar 

probes penetrating the cortex and sampling different cortical layers. We have tried to 

establish the construct validity of this neural mass model – in relation to more detailed 

compartmental models – by showing that the response profiles are formally equivalent in 

terms of evoked responses. We then addressed the face validity of the ensuing DCM by 

showing that it could identify the correct assignment of superficial pyramidal cells to 
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supragranular layers and deep pyramidal cells to infragranular layers; irrespective of whether 

cholinergic (optogenetic) stimulation was present or absent.  

 

We used data obtained during optogenetic activation of the basal forebrain in a visual 

perception paradigm to provide proof of principle that laminar specific recordings can be 

inverted using neural mass models – and that models of microscopic (invasive) data can 

inform hypotheses about interactions at a mesoscopic scale. A quantitative comparison of the 

parameter estimates suggests that cholinergic input enhances superficial activity, effectively 

boosting information ascending the cortical hierarchy. We hope to use the model introduced 

in this (technical) paper to pursue the (microscopic) functional anatomy of cholinergic 

modulation, using Bayesian model comparison in future work.  

 

This model has been implemented as part of the DCM toolbox in the SPM freeware. The 

approach presented here can be used to address questions regarding laminar cortical 

microcircuitry that have so far remained inaccessible. In particular, we this model can be used 

to test (i) hypotheses about the function and structure of different neuronal populations at 

various depths of canonical microcircuits; (ii) functional architectures following from the 

predictive coding hypothesis. In the following, we consider these avenues for future research: 

 

First, the neural mass model above may help us to better understand cortical anatomy and 

information processing:  it enables one to test hypotheses about the function and structure of 

different neuronal populations in various cortical layers; e.g., evaluate differences in neural 

densities and cortical lamination (Balaram and Kaas, 2014; Slomianka et al., 2011). This can 

be achieved by considering differences in the connectivity parameters for the deep and 

superficial populations (parameters ija  in Table 3). By extending the model to a neural field 

similarly to (Pinotsis et al., 2012) one can also  characterize the topography of connections in 

cortical hierarchies (Gattass et al., 2005).  

 

Second,  our model can be used to evaluate the evidence for – and test functional 

architectures following from the predictive coding hypothesis (Friston and Kiebel, 2009; 

Friston et al., 2015; Rao and Ballard, 1999). In particular, one can address open questions 
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regarding a direct assignment of prediction error activity to a specific cortical layer. Also, in 

the particular context of optogenetic activation studies, as in the study by (Pinto et al., 2013) 

considered here, a detailed analysis of model parameters could also allow us to understand 

cortical circuit-level mechanisms of cholinergic modulation. 

 

The key components of predictive coding – predictions, prediction errors, and precision – are 

often empirically studied in paradigms manipulating sensory expectation (Auksztulewicz and 

Friston, 2015) or attention (Feldman and Friston, 2010). Laminar characteristics of mismatch 

responses (Moran et al., 2013) and attentional effects (Auksztulewicz and Friston, 2015; 

Brown and Friston, 2012) have so far been inferred using DCM and non-invasively recorded 

data. These studies have been supported by direct laminar recordings during attention tasks 

that yielded results consistent with the dissociation between superficial and deep layers; see 

e.g. (Buffalo et al., 2011). However, studies that exploit laminar recordings to consider 

different paradigms like mismatch responses are less conclusive (Fishman and 

Steinschneider, 2012; Natan et al., 2015), with similar evoked responses to sensory deviants 

in both supragranular and infragranular layers.  

 

Using our model for the analysis of data from the sorts of studies referred to above, one can 

address questions about predictions, predictions errors and precision from a novel 

perspective: instead of analysing non-invasive or spatially unresolved data, the model can be 

used to exploit responses acquired at different cortical depths and study laminar-specific 

effects of cortical excitability that are crucial for understanding the balance between 

ascending and descending streams of information in the cortex (Bastos et al., 2015; Friston, 

2010; Rao and Ballard, 1999). In summary, the new model presented may offer insights 

regarding the effects of expectation, attention and cholinergic neuromodulation.  

  

Successfully addressing the questions described above rests upon validating models of the 

sort presented here. This rests upon technological advances in the construction of laminar 

probes and microelectrodes and developments in compartmental modelling.  Modelling data 

recorded from penetrating microelectrodes promises a more direct window into the function 

of cortical microcircuits than that derived from recordings at the cortical surface (Bastos et 

al., 2015). Furthermore, building detailed compartmental and mean field models that capture 

important cortical computations and network biophysics is crucial for the success of the 
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approach presented above. Starting with a new compartmental model one would then 

construct its mean field homologue and then validate it using the Bayesian procedure 

summarised in Figure 2. This is the procedure we have applied for the case of the Jones et al 

model.   

 

More generally, a fuller understanding of cortical function is likely to depend upon successful 

characterization of the roles played by neurons in different cortical layers, and dynamic 

causal modelling may have the potential to further this aim. In future work, we will address 

these questions and test whether the laminar topography of current source density can be 

explained by interactions of superficial and deep PNs, by modelling spatially distributed lead 

fields, distinct spectral profiles and causal influences on network dynamics. 
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Tables 

Table 1 Synaptic connection parameters and strengths for the symmetric model 

 

Max conductance (μS) Weight space constant Min. Delay (ms) Delay space constant 

L2/3 PN to L2/3 PN 0.001/0.0005 3 1 3 

L2/3 PN to L2/3 IN 0.003 3 1 3 

L2/3 PN to L5 PN 0.00025 3 3 3 

L2/3 PN to L5 IN 0.000075 3 3 3 

L2/3 IN to L2/3 PN 0.015/0.015 5 1 5 

L2/3 IN to L5 PN 0.0003 5 1 5 

L2/3 IN to L2/3 IN 0.0006 2 1 2 

L5 PN to L5 PN 0.005/0.0005 3 1 3 

L5 PN to L5 IN 0.0003 3 1 3 

L5 IN to L5 PN 0.0075/0.0075 7 1 7 

L5 IN to L5 IN 0.0006 2 1 2 

 

 
Table 2 Suprathreshold synaptic weights for exogenous input  

 

Maximal conductance (μS) 

FF to L2/3 PN 0.002 

FF to L2/3 IN 0.0012 

FF to L5 PN 0.001 

FF to L5 IN 0.0006 

FB to L2/3 PN 0.004/0.004 

FB to L2/3 IN 0.0006/0.0006 

FB to L5 PN 0.004/0.004 

LFF to L2/3 PN 0.08 

LFF to L2/3 IN 0.024 

LFF to L5 PN 0.04 

LFF to L5 IN 0.012 

 

 
Table 3 Prior expectations of parameters in the neural mass model of Figure 1.  

Parameter Physiological interpretation Prior mean 

1 2 3 4, , ,   
 

Postsynaptic rate constants 1/2, 1/36, 1/16, 1/28 (ms
-1

) 

11 14 12, ,    

22 21 23 33, , ,     

41 32 44, ,    

 

Amplitude of intrinsic connectivity kernels 

(x 200) 

4,4,8 

4,4,2,4 (a.u) 

4,8,8 
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,r   Parameters of the postsynaptic firing rate function 0.6, 0(mV) 

 

 

Table 4 Log-evidence of neural models This table reports the relative Log-evidence for the forward (plausible) 

and reverse (implausible) model, using empirical data recorded during the Laser On (optogenetics stimulation) 

and Laser Off (no cholinergic stimulation) conditions. 

Condition Laser ON Laser OFF 

Forward Log-evidence 

log ( ( ) | )Y ip g m F   

 

1498 

 

2334 

Reverse Log-evidence 

log ( ( ) | )Y ip g m R   

 

1394 

 

2201 

 

 

 

 

 

 

Highlights 

 Biophysical mean field model fitted to data from different cortical layers 

 Neural mass model combined with a laminar-specific forward model 

 Fitted V1 data with and without optogenetic activation of the basal forebrain 

 Test of Predictive Coding based on the role of neuromodulation 

 Increase in prediction error activity due to cholinergic effects 

 

 

 

 

 

 

 




