
Core-shell semiconductor nanocrystals:  effect of composition, size, surface 

coatings on their optical properties, toxicity, and pharmacokinetics 
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ABSTRACT 

Quantum dots are semiconducting nanocrystals that exhibit extraordinary optical properties. 

QD have shown higher photostability compared to standard organic dye type probes. 

Therefore, they have been heavily explored in the biomedical field. This review will discuss 

the different approaches to synthesis, solubilise and functionalise QD. Their main biomedical 

applications in imaging and photodynamic therapy will be highlighted. Finally, QD 

biodistribution profile and in vivo toxicity will be discussed.  
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1. QD history and chemical composition 

In 1973, Leo Esaki, a Japanese physicist won the Nobel Prize in physics for the development 

of semiconductor devices, and for his early concept of ‘‘artificial solids’’ [1]. The 

development of different types of semiconductor systems (quantum wells, quantum wires and 

quantum dots) was tremendously expanded in the 1980s. Semiconductor QD are 1-10 nm 

nanoparticles consisting mainly of a semiconductor core with or without an inorganic 

passivation shell usually made of zinc-sulfide (ZnS). The shell is generally used to protect the 

QD core from oxidation and photolysis [2;3] and minimise the associated-toxicity related to 

the release of Cd+2 ions [4]. 

 

QD were initially prepared in 1982 for use as probes to investigate the surface kinetics [5]. It 

was found that the cadmium-sulfide (CdS) QD fluorescence and quantum yield were 

sensitive to different surface species. Oxidisable species were poor fluorescence quenchers, 

while reducible species were excellent quenchers. Species without an appropriate redox 

capacity did not affect the QD fluorescence properties. Much progress has also been made in 

the synthesis and characterisation of QD [6]. The first highly crystalline and monodispersed 

cadmium-selenide (CdSe) QD published by the Bawendi group, were synthesised in a hot 

coordinating solvent [7]. This was followed by improving the QD photostability by 

passivating their surface with different semiconducting materials [3]. During all these 

developments, organic QD were mainly used in physics to design transistors, solar cells and 

light-emitting diode (LEDs) [8;9]. In 1998, the first synthetic approaches to water soluble QD 

were published [10;11], highlighting the potential use of QD in the biomedical field.  

 

Currently QD are not only composed of CdS or CdSe but of many different semiconducting 

materials derived from the II -VI elemental groups (e.g. zinc-sulfide [ZnS], zinc-selenide 

[ZnSe], and cadmium-telluride [CdTe]); or III-V elemental groups (indium phosphate [InP], 

indium arsenate [InAs], gallium arsenate [GaAs] and gallium nitride [GaN]), or IV-VI 

elemental groups (e.g. lead-selenide [PbSe], lead-sulfide [PbS]) [12-15]. In addition to the 

huge advances in semiconductor synthesis, novel QD such as CdTe/CdSe (core/shell), 

CdSe/ZnTe (core/shell) [16] and cadmium-free QD, Mn doped ZnSe [17;18] have also been 

developed. 
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2. QD fluorescence characteristics 

QD are fluorescent nanoparticles that offer distinct spectrofluorometric advantages over 

traditional fluorescent organic molecules (e.g. fluorescein, Nile red) [10;12]. Traditional 

organic dyes exhibit narrow excitation peaks, where a narrow range of wavelengths can be 

used for excitation. Moreover, they have asymmetric emission spectra with red-tailing. On 

the other hand, QD reveal broad excitation spectra, allowing excitation over a wide range of 

wavelengths. They also exhibit symmetric and narrow emission peaks. Therefore, multiple 

QD with different sizes can be excited using a single wavelength shorter than their emission 

wavelengths. Since the emission spectrum is narrow, fluorescence signals can be separated 

and detected simultaneously, to achieve multiplexing imaging [19-21]. Apart from absorption 

and emission characteristics, inorganic semiconductor QD have shown high quantum yield, 

higher resistance to photobleaching and longer fluorescence lifetime compared to organic 

QD, which makes them suitable for continuous tracking over a prolonged period [22]. The 

most striking property of QD is the massive changes in the QD optical characteristics as a 

function of size [8]. As the QD size increases, the emission shifts towards longer 

wavelengths. Such phenomenon is attributed to the ‘‘quantum confinement’’ effect, which is 

observed with the optical characteristics of semiconductors smaller than 10-20 nm, and from 

which QD were named [8]. 

 

3. Solubilisation and ligand conjugation 

QD can either be prepared by water-based synthetic methods [23;24] or in non-polar organic 

solvents [7;25]. The latter approach produces monodispersed QD with a range of emission 

colour ranging from ultraviolet to infrared, compared to QD prepared immediately in aqueous 

solution [26-28]. However, QD synthesised in organic solvents contain organic shells that 

compromise their water solubility and consequently their compatibility with the biological 

milieu. Many strategies are being developed to overcome this limitation. Several hydrophilic 

ligands have been utilised to exchange the hydrophobic trioctylphosphine oxide (TOPO) coat 

on the QD surface with hydrophilic moieties (Figure 1, left).  including; (i) thiol-containing 

molecules, such as mercaptoacetic acid (MAA), dihydrolipoic acid (DHLA) [29] and 

mercaptopropyltris (methoxy) silane (MPS) [30], (ii) peptides [31],  (iii) dendron [32;33] and 

(iv) oligomeric phosphine [34]. In spite of maintaining small sizes, this method tends to cause 

QD aggregation and decreases the fluorescence efficiency [35-40]. Also, as a labile ligand 

detaches from QD surface, QD-induced toxicity will increase correspondingly due to 

exposure to the QD core [41;42]. 
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Figure 1 

 

The other alternative approach is driven by hydrophobic interactions between the organic QD 

surface and the hydrophobic domain of amphiphilic molecules (Figure 1, right). Embedding 

or encapsulating organic QD into phospholipid micelles [22;43], and amphiphilic diblock or 

triblock copolymers [39;44] was found to increase QD diameter significantly, but more 

importantly to preserve QD photostability, colloidal stability and enable QD application to 

physiological conditions without the release of the toxic Cd+2 ions [44].  

 

Bioactive ligands have been attached to QD surfaces to enable QD specific binding and 

targeting or to design multimodal probes. Several approaches have been investigated 

including non-covalent, electrostatic adsorption onto the QD surface [29], covalent 

attachment [45] and streptavidin-biotin linking [46]. So far, QD surface has been decorated 

with different ligands such as proteins [47], antibodies [44;48;49], peptides [50-52], 

endosome-disruptive polymers [53], aptamers [54], DNA  [22;55-57], cell penetrating 

peptides [58-63], radionuclides [64;65] and magnetic resonance imaging (MRI) agents [66].  

 

4. Biomedical applications 

 QD are being explored as potential imaging agents primarily in fluorescence-based 

diagnostic applications [22;45;67]. Unlike organic fluorophores, QD have distinctive broad 

excitation spectra and narrow emission peak, which can be easily used for multiplexing 

imaging [19-21]. In addition, QD have outstanding fluorescence properties that resist 

photobleaching over time, which is suitable to label cells in vitro [14;21;22;68] and organs in 

vivo  [e.g. RES [67;69], blood vessels [50;70], lymph nodes [71-74] and solid tumours 

[44;52;75;76]]. Recently, DNA conjugated to the QD surface has been described as a 

promising tool in fluorescent in situ hybridisation (FISH) where gene abnormalities in cells 

could be identified [22;55-57;77]. 

 

More interestingly, multimodal imaging probes can be engineered by combining QD with 

magnetic [66] or paramagnetic [78] agents, as well as radioactive isotopes [64;65;79]. This 

significantly improves the sensitivity and the resolution of the imaging procedures in vivo 

[80]. Contrary to diagnostic agents for MRI and positron emission tomography (PET), QD 

can provide visual guidance during surgery or diagnosis. In addition, these electron-dense QD 
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can be easily visualised in the target tissue at a microscopic level under the fluorescence and 

transmission electron microscopes [14;81]. Moreover, quenching QD fluorescence by 

conjugating fluorescence quenchers such as gold nanoparticles or nitroxide [82;83] to the QD 

surface can provide information about the QD environment, where cleavage of the quencher 

at the target tissue (e.g. low pH, enzymes) restores QD fluorescence [68]. 

 

Another approach to construct multifunctional devices has been described by combining the 

QD optical characteristics with therapeutic agents. Samia et al. and others have reported the 

promising potential of QD in photodynamic therapy (PDT) since QD energy can activate 

surface-conjugated photosensitisers (PS) [84-90]. In addition, the optical characteristics of 

QD can be easily manipulated to match the PS excitation wavelength by changing the QD 

size and composition. All above applications will be discussed below in more details. 

 

Imaging agent: Long-term cell tracking can be very important in studies such as cell lineage 

and differentiation (e.g. embryogenesis, stem cells, transplanted cells) [19;22], also, in 

metastatic cancer [20;21;91]. Fluorescent cell labelling is a promising tool to track cells [45], 

many approaches have been developed to label cells either by microinjection with organ 

fluorophores or by transfecting the cells with reported genes that code for fluorescent proteins 

like GFP [92]. Conventional fluorophores have broad emission spectra which make it 

difficult to distinguish different probes administered concurrently. Unlike organic 

fluorophores, QD have distinctive broad excitation spectra and narrow emission peak, which 

can be easily used for multiplexing imaging [19-21], also, QD have outstanding fluorescence 

properties that resist photobleaching over time, they are good candidate to label and track 

cells in vitro [14;21;22;68] and in living animal [20;21;91]. 

For in vivo applications, in 2002 Dubertret and his colleagues, firstly introduced the 

outstanding fluorescence properties of biocompatible PEG-coated QD injected into Xenopus 

embryo [22]. QD have been used also as tool to study embryogenesis in zebrafish embryo  

and angiogenesis in chick CAM model [81]. In addition, QD have been used for imaging 

larger animals such as mice and pigs [93]. QD have been explored as an imaging agent for 

the lymph nodes [71-74], reticuloendothelial systems (RES) [67;69;94]. Moreover, 

decorating the QD surface with hydrophilic polymers could escape the RES and can be 

targeted to other organs, such as tumour and angiogenic blood vessels [44;50;52;70;76].  
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Several groups could target QD to tumours in living animals. This could be achieved by 

passive and active targeting as well as direct intratumuoral injection. For passive targeting, 

the nanoparticles should have nanometer size (≤ 100nm) and exhibit long blood circulation to 

accumulate preferentially in the tumour which is in agreement with QD characteristics [44]. 

Moreover,  Gao and his colleagues targeted tricoplymer-coated QD to solid prostate tumour 

model in living mice [44], Akerman et al. and Cai et al. actively targeted peptide-coated QD 

to the tumour vasculatures and lymphatic vessels [50;52]. QD also have been targeted to 

hepatoma xenograft in nude mice [76]. Balluo et al . could  label M21 humanmelanoma and 

MH-15 mouse teratocacinoma solid  xenograft and sentinel lymph nodes in living mice by 

direct intratumoural injection [95].         

Organic fluorophores have been widely used for optical imaging, despite rapid 

photobleaching, the excitation wavelength is mainly in the visible light region, where light 

absorption by the tissue is still problematic for imaging thick sections and whole living 

animals. Two-photon excitation microscopy has been used heavily in tumour detection 

studies as it exhibits lower sample scattering and stronger sample penetration than one-

photon excitation [20;21;70;75] where thick sections can be visualised with high resolution. 

QD are a promising tool for optical imaging as they are good labels for multiphoton 

microscopy [75]. Larson et al. could successfully image the blood vessels in living mice into 

the after QD intravenous administration using multiphoton excitation microscopy, showing 

that higher contrast and imaging depth can be obtained at a lower excitation power compared 

to conventional organic dyes [70]. More interestingly, Voura et al. could track QD-labelled 

B16 melanoma metastatic cell extravasation in the lung after systemic administration in 

C57Bl6 mice using the same technique [21]. 

 Near infrared (NIR) QD are a new class of QD used as imaging agents. They have shown 

better deep tissue imaging as minimum tissue light absorption occurs in this region [81]. In 

the last few years, Frangioni group has studied NIR QD extensively as imaging agent for 

sentinel lymph nodes (SLN) mapping in small animals and large animals. Kim et al. were the 

first to observe the rapid QD accumulation in the axillary lymph nodes after intradermal 

injection [93]. So far, successive researches have been carried out to mapped SLN of the 

pleural space [71], oesophagus [72], lung [73] and gastrointestinal tract [74]. Interestingly,  

similar results were obtained by Ballou and his colleagues following intraumoural injection 

of QD with different surface charges [95].  NIR QD were found superior to vital blue dye and 

99mTc colloids [71] since 15-20nm QD were uptaken within 5 minutes by SLN post injection, 
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and with detectable fluorescence signals up to few centimetres due to low tissue background 

in the NIR region, also, they are more selective to the first draining lymph node compared to 

other diagnostics that migrate to distant nodes [71;93]. Therefore, QD can be a promising tool 

for real-time intraoperative optical imaging which helps in correctly locating the sentinel 

lymph nodes or small metastatic solid tumour, to remove any tissue affiliated with the tumour 

[96]. The latter demonstration suggests that NIR imaging of QD can significantly improve 

tumour removal surgery and reduce the tumour recurrence in human. 

Self-illuminating QD for in vivo imaging have been successfully described [97]. This new 

class of QD, based on bioluminescence resonance energy transfer (BRET), where the 

fluorescence emission of luciferase-QD conjugate occurs only in the presence of luciferase 

substrate (coelenterazine). Compared to existing QD, self-illuminating QD showed higher 

sensitivity in both superficial and deep tissue in living animals since tissue autofluorescence 

is minimal in the absence of external excitation source. 

Dual-modality contrast agent: Combining the optical imaging with existing magnetic 

resonance imaging (MRI) diagnostic agents can significantly improve the sensitivity and the 

resolution for in vivo imaging [80]. Nanocomposite made up of iron oxide nanoparticle and 

CdSe/ZnS QD have shown dual magneto-optical properties that can be detected by both MRI 

and fluorescence microscopy [66;98]. Mulder and his colleagues reported conjugation of 

gadolinium to PEG- QD surface which improved the microscopic resolution of MRI [66;99]. 

For multimodal detection, the surface of these nanoparticles was functionalised with different 

bioactive molecules such as RGD peptide to actively target the blood vessels or with Annexin 

A5 protein to detect apoptotic cells in vivo at both microscopic and macroscopic levels. 

Interestingly, QD- iron oxide nanoparticle distribution inside the body was evaluated by MRI. 

Moreover, quenching QD fluorescence by conjugating fluorescent quencher, such as gold 

nanoparticles or nitroxide [82;83] to the QD surface can be useful in providing information 

about their environment, where cleavage of the surface ligands at the target tissue (e.g. low 

pH, enzymes) will restore QD fluorescence.  

Morgan et al. reported a novel CdMnTe/Hg QD having dual electron paramagnetic resonance 

(EPR) and fluorescence imaging properties as Mn+2 has strong EPR signals [78]. These QD 

were successfully used as fluorescent and angiogenic (blood vessels and heart) contrast agent 

in living mice after systemic administration. Michalet et al. described previously 64Cu 

radioactive- QD hybrids where QD targeting and biodistribution can be easily tracked by 
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fluorescence imaging and can be quantified in living mice using micro-positron emission 

tomography (microPET) [67]. Since QD are electron dense they can also be easily visualised 

in the target tissue using transition electron microscopy. 

Photodynamic therapy: QD have a wide surface area where different diagnostics and 

therapeutics such as photosensitiser (PS) can be conjugated to the surface. Samia et al. and 

others have reported using QD in photodynamic therapy (PDT) [84;85;88], since their energy 

can be transferred to the PS. QD have tunable emission spectra which is ranging from UV to 

near infra-red which exhibits better tissue penetration, in contrast to visible emission for most 

conventional  PS (e.g. Photofrin). Moreover, QD optical characteristics can be manipulated 

to match the PS excitation wavelength by changing the QD size and composition. 

Samia and her colleagues reported for the first time, the excitation of poorly soluble 

phthalocyanine PS conjugated to QD surface by fluorescence resonance energy transfer 

(FRET). Thereafter, Tsay et al. successfully conjugated Rose Bengal and Chlorin e6 to 

peptide- coated QD [100]. These conjugates were hydrophilic in contrast to previous studies 

[84;85]. Furthermore, QD-Dopamine conjugates were found to reduce the cell viability of the 

cancer cells upon exposure to UV source, as singlet oxygen species were generated [89].      

Bakalova et al. observed that anti-CD antibodies functionalised QD incubated with leukaemia 

cells and conventional PS (trifluoperazine and sulfonated aluminium phthalocyanine) 

sensitised the tumour cells after UV radiations and potentiated the cytotoxicity of PS [90]. 

Bakalova and his colleagues suggested different mechanisms for QD as PS that collectively 

will induce tumour cell apoptosis and death [86]. Despite low QD ability for singlet oxygen 

formation compared to classical PS [84], the high photostability can allow repetitive 

exposures for the cancer cells to the excitation source to improve the QD cytotoxicity. 

 

5. QD biodistribution and pharmacokinetics in vivo 

The effect of surface coating on QD blood circulation and organ biodistribution was first 

studied by Ballou et al. [69]. Polyacrylic acid-coated QD (PAA-QD) conjugated to low 

molecular weight PEG (750 Da) and intravenously injected into nude mice exhibited short 

blood circulation half-life (t1/2 < 12 min) with predominant uptake by the liver, spleen, lymph 

nodes, and bone marrow. Decorating the same QD with PEG5000 significantly increased the 

blood t1/2 to 3 hrs with less liver, spleen and lymph node uptake [69]. Similar studies by other 

groups showed that 15-20 nm QD coated with PEG5000 exhibited long t1/2 of 5-8 hrs 
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[44;52;101;102]. In all these reports, the QD biodistribution was qualitatively determined 

based either on QD fluorescence in tissue sections using fluorescence and confocal 

microscopy or whole body fluorescence imaging of living animals. Fischer et al. described 

the first quantitative biodistribution study of QD by detecting the Cd atoms in the blood and 

organs of rats injected intravenously with QD [94]. Table 1 summarises the in vivo studies 

performed with QD, several of which have been published using radiolabelled QD 

[65;79;103]. 

 

QD have also been explored for tumour imaging by applying a surface coating that 

maintained QD small size and extended their blood circulation. QD were able to accumulate 

in tumour sites following systemic administration; though this accumulation was increased by 

attaching targeting ligands to the QD surface [44;50]. Akerman et al. previously showed that 

F3 peptide-coated QD and LyP-1 peptide-coated QD specifically bound to the blood and the 

lymphatic vasculatures of MDA-MB-435 human breast carcinoma xenograft following 

intravenous administration [52]. Gao et al. targeted C4-2  human prostate cancer xenograft 

using prostate-specific membrane antigen-QD (PSMA-QD) [44]. Similarly, Cai et al. imaged 

the tumour vasculature of U87MG human glioblastoma xenografts implanted subcutaneously 

in mice using RGD-QD [50]. In order to quantify the targeting efficiency of QD, tumour 

accumulation was evaluated using a dual-function PET/near infrared (NIR) fluorescence 

probe obtained by conjugating 64Cu isotope to NIR QD. Tumour accumulation of the RGD-

QD was 4% of injected dose per gram tissue (ID/g) compared to less than 1% ID/g with non-

targeted QD [64]. Diagaradjane et al. demonstrated three different phases of tumour 

accumulation for epidermal growth factor-QD (EGF-QD) using a colorectal HCT116 

xenograft model, which highly expresses EGF receptor (EGFR) [51]. Immediately after 

systemic administration, both EGF-QD and non-targeted QD (3 min post injection) influxed 

to the tumour. This phase was followed by the clearance phase, where the two types of QD 

were cleared from the tumour interstitium between 3-60 min post-injection. Next, a steady 

increase in EGF-QD fluorescence in the tumour was observed between 1-6 hrs, reflecting 

receptor-specific binding and internalisation. In contrast, QD without the EGF peptide did not 

accumulate in the tumour tissue during this period. These observations suggest that the 

increase in tumour fluorescence over time was due to EGFR-specific binding and 

internalisation of the EGF-QD.  
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There has been a growing concern regarding QD elimination from the body, since QD 

accumulation can potentiate increased toxicity. Ballou et al. previously reported retention of 

QD in the liver, lymph nodes, and bone marrow in mice up to several months [69]. In the 

same study, relocalisation of QD from the liver to the intestine content was described based 

on fluorescence imaging of dead animals, suggesting QD faecal excretion. Contrary to this 

report, others showed slow degradation of inorganic QD in mice and rats with no urine or 

faecal elimination up to 28 days post-injection [94;104].  Frangioni and colleagues correlated 

the QD size with their degree of elimination [103;105]. QD with an average diameter of 5-6 

nm, which is below the renal filtration threshold, were excreted via urine 4 hrs post-injection. 

QD of larger diameters undesirably remained in the liver, which may increase the potential 

toxicity of these nanoparticles on the long-term.  

 

The fate of QD following the different route of administrations has also been studied. 

Polymer-coated QD with an average diameter of 15-20 nm were found to migrate rapidly to 

the sentinel lymph nodes (SLN) after subcutaneous, intradermal or intraparenchymal 

injection in living animals [71-74;93]. QD migration to the lymph nodes occurred within 1-5 

min post-injection and was found selective to the first lymph node. Similar behaviour was 

observed after injecting QD of different size and surface charge properties in M21 human 

melanoma and MH-15 mouse teratocarcinoma xenograft models implanted subcutaneously in 

nude mice [95]. This observation can be advantageous in the diagnosis of cancer metastasis 

by identifying SLN residing nodules. Overall, it can be seen that QD can reside in different 

organs in living animals depending on QD characteristics (size, surface charge, and coating) 

and the route of administration. Furthermore, these studies have shown that QD can 

accumulate in the body for extensive periods of time which requires further investigation to 

identify the long-term toxicity of QD before embarking on any clinical use of QD. 
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QD  

characteristic 
 

 
QD  

colour 
 

 
QD 

 dose 
 

 
Animal/ Route of 
administration 

 

 
Aim of the study 

 

 
Methods of detection 

 

 
Main findings 

 

 
Reference 

 
 

Biodistribution 
 

       

 
PEG750, PEG3400,PEG5000-PAA-

CdSe/ZnS QD 
 

 
red 

 
360 pmol 

 

 
athymic nude mice 

( i.v) 

 
Evaluate the effect of surface 
coating on QD biodistribution 

 
Fluorescence imaging of  

living animal 

 
PEG5000 increased QD blood circulation 

and reduced liver and spleen uptake 

 

[69] 

LM-QD, BSA-QD 
 

 
red 

 
5 nmol 

 
Sprague-Dawley rats 

( i.v) 
 

 
Quantify QD tissue distribution 

 
ICP-AES 

 
- QD blood half-life was 39-59 min. 

- liver uptake 40-90%ID after 90 min 
 

 

[94] 

 
PEG5000 -CdTe/ ZnS  QD 

 
NIR 

 
40  pmol 

 
Mice 
( i.v) 

 
Assess QD fate in mice 
following i.v. injection 

 
 

 
ICP-MS 

 
QD were retained in liver & spleen with no 

urine or faecal excretion up to 28 days  
 

 

[104] 

Cysteine-coated CdSe/ZnS QD, 
99mTc-labelled  cysteine- QD 
 
 

Green-
red 

rats: 3 nmol 
mice: 300 pmol 

 

Sprague-Dawley rats 
CD-1 mice ( i.v) 

 

Evaluate QD elimination from 
the body 

Gamma counting 
 

QD with a final diameter  < 5.5 nm were  
excreted rapidly in the urine 

[103] 

MAA-coated Cd 125mTe/ZnS 
QD+mAb 201B 

 

Not 
specified 

5 g QD Balb/ c mice 
( i.v) 

Quantify in vivo  targeting 
efficiency of QD-antibody 

 

Micro SPECT/ CT,  gamma 
counting 

 

QD-antibody revealed high lung targeting 
 

[79] 

 

64Cu-DOTA PEG2000 -QD Green & 
NIR 

25 pmol Nude mice 
( i.v) 

Evaluate the biodistribution of 
commercially available QD 

Micro PET, gamma counting Rapid liver and spleen uptake regardless 
of the size or presence of surface PEG2000 

[65] 

Tumour targeting & imaging 
 

 
F3 Peptide- or , LyP-1 Peptide -

PEG5000 CdSe/ZnS QD 

 

 
Green & 

red 

 

100-200 g 
 

 
Balb/c nu/nu mice 

( i.v) 

 
Explore the feasibility of in vivo 

targeting using QD 

 
Confocal & epifluorescence 

microscopy 

 
Peptide-coated QD  specifically bound to 

the MDA-MB-435 human breast carcinoma 
vasculatures 

 

 

[52] 

PSMA-PEG5000-CdSe/ZnS QD 
 

red 0.4 nmol, 6 nmol 
 

Balb/c nude mice 
( i.v) 

Combine QD tumour targeting 
and imaging in living animals 

Fluorescence imaging of  
living animal, 

epifluorescence microscopy 

PSMA-QD showed faster and efficient 
accumulation in human prostate cancer 
(C4-2) xenograft than non-targeted QD 

 

[44] 

 

Table 1: In vivo studies of f-QD. 
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PAA: polyacrylic acid; QD-LM: QD coated with mercaptoundecanoic acid crosslinked with lysine; QD-BSA: QD-LM conjugated to bovine serum albumin; ICP-AES: inductively coupled plasma atomic emission spectroscopy; ICP-MS: inductively 

coupled plasma mass spectroscopy; 99mTc: Technetium-99m; 125mTe: Tellurium -125m; MAA: mercaptoacetic acid; mAb 201B: mouse lung thrombomodulin antibody; SPECT: single photon emission computed tomography;  CT: computerised 

tomography; PET positron emission tomography;  F3: peptide preferentially binds to blood vessels and tumour cells; Lyp-1: peptide recognises lymphatic vessels and tumour cells; PSMA: prostate-specific membrane antigen; RGD: arginine-

glycine-aspartic acid; EGF: epidermal growth factor; mPEG: methoxy polyethylene glycol; i.t: intratumoural; i.d: intradermal; i.c: intracutaneous; s.c: subcutaneous; i.p: intraparenchymal; GIT: gastrointestinal tract. 

 
 

RGD-PEG2000 -CdTe QD 
 
 
 

 
 

NIR 

 
 

200 pmol 

 
 

Athymic nude mice 
( i.v) 

 
 

Non-invasive imaging of 
tumour vasculature in living 

animals using  peptide-coated 
QD 

 
 

Fluorescence imaging of  
living animal 

 
 

Only RGD-QD accumulated in the U87MG 
human glioblastoma xenograft 6 hrs post-

injection 
 

 

 

[50] 

 
 

RGD-PEG2000-CdTe QD, 
64Cu-DOTA- RGD-PEG2000-

QD 

 
 

NIR 

 
 

20 pmol 
 

 
 

Athymic nude mice 
( i.v) 

 
 

Quantify the tumour-targeting 
efficiency of QD 

 
 
 

 
 

Small-animal PET, ex vivo 
NIR fluorescence imaging 

 

 
 

RGD peptide increased QD tumour 
accumulation from <1% ID /g to 4% ID/g 

 

 

[64] 

EGF- NH2 -CdTe QD 
 
 
 

NIR 10 pmol 
 

Swiss nu/nu mice In vivo imaging of epidermal 
growth factor (EGF) receptor 
(EGFR) overexpressed on 

tumours 

In vivo and ex vivo NIR 
fluorescence imaging 

 

-Identified the phases of QD accumulation 
in colorectal HCT116 tumour 

- Only EGF-QD accumulated in the 
tumour 1-6 hrs post-injection 

 

[51] 

 
 

mPEG-CdSe/ZnS QD 
COOH- PEG QD 
NH2 –PEG QD 

 

Red & NIR 25-100 pmol Athymic nude mice 
( i.t) 

Evaluate the behaviour of QD  
injected directly into solid 

tumours 
 

Fluorescence imaging of  
living animal, necropsy 

 

All QD injected into tumour models 
migrated rapidly  to SLN 

 

[95] 

Lymph node mapping 

 
Oligomeric phosphine- coated 

CdTe QD 

 
NIR 

 
400 pmol 
10 pmol 

 
Yorkshire pigs 

SKH1 mice (i.d) 
 

 
Explore the feasibility of using  
QD in lymph node mapping 

 

 
NIR fluorescence imaging 

 
QD Localisation in SLN occurred within 3-4 

min post-injection 
 
 

 

[93] 

COOH-polymer CdTe/ZnS 
QD 

NIR 
 

8-16 pmol Athymic  mice 
( i.c, s.c.) 

Map lymphatic drainage from 
two different basins into same 

lymph node 

NIR fluorescence imaging 
 

Non-invasive and simultaneous 
visualisation of two separate lymphatic 

flows into the axillary lymph node 
 
 

[106] 

Oligomeric phosphine- coated 
CdTe QD 

NIR 200- 400 pmol 
 
 

Yorkshire pigs 
( i.p) 

 

Identify SLN following direct 
injection in the organ 

Intraoperative NIR 
fluorescence imaging 

Mapping the SLN of the lung, oesophagus, 
pleural space and GIT 

 
 

[71-74] 



 14 

 

6. QD toxicity  

QD have been applied to molecular biology due to their brighter fluorescence and higher 

photostability, however potential concerns about the QD toxicity have risen, caused by the 

well-known toxicity of cadmium and selenium, the physicochemical properties of the surface 

coat, and QD small size that provides large surface area that would interact with different 

biological molecules [100;107-109]. Potential routes for QD exposure are environmental, 

workshops, therapeutics, and diagnostics. Few studies reported that QD nanoparticles could 

be inhaled and deposited in the respiratory passages depending on their sizes [107;110]. Also, 

it has been shown that QD are capable of penetrating the skin barrier [111-113] and can cause 

inflammation and irritation in epidermal keratinocytes in vitro after long-term exposure 

(48hours) [114]. These preliminary studies suggest extra care to be taken, as systemic QD 

toxicity can happen via inhalation and direct skin contact, especially during the QD 

production step.  

 

QD toxicity in vitro: The toxicity of QD is mainly derived from their intrinsic core 

composition such as CdSe and CdTe. Cd+2 ions have been shown to be toxic upon their 

release from the QD core due to photolysis and/or oxidation [4]. Other mechanisms 

contributing to QD-induced cytotoxicity (Figure 2) have also been identified including the 

formation of reactive oxygen species (ROS) tha§t induce cell damage [41]; the interaction of 

QD nanoparticles with the individual cell components (e.g DNA or proteins) or with the cell 

membrane  [115]. QD-induced cell dysfunction is accompanied by apoptotic and necrotic 

biochemical changes including: morphological alteration in the plasma membrane; 

mitochondria and nucleus damage [41]; lysosome enlargement [116]; reduction in 

cytochrome C concentration [41;116;117]; loss of mitochondrial membrane potential [117]; 

and upregulation of peroxidised lipids [118].  

 

The correlation between cytotoxicity and free Cd2+ ions has been established [4;115;119] 

with the occurrence of significant cell death in the range of 100 M to 400 M Cd2+ ions [4]. 

The blue-shift in QD fluorescence spectrum was observed as a sign of QD size reduction and 

Cd2+ release [4;120]. In addition, QD-induced cytotoxicity dramatically increased in the case 

of QD exposure to oxygen or ultraviolet (UV) light [4;41]. The concept of QD phototoxicity 

has been exploited in photodynamic therapy as previously mentioned [84;86;88-90]. Several 
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attempts to reduce QD toxicity have also been described. For instance, ZnS coating protects 

the QD core from oxidation, which minimises Cd+2 leakage and reduces the QD-induced 

cytotoxicity [109;116;119]. In addition, the use of antioxidants, such as N-acetylcysteine 

(NAC) has been shown to be effective in reducing QD cytotoxicity. 

 

In general, most cytotoxicity studies used QD solubilised by direct exchange of the organic 

coat (TOPO) with hydrophilic ligands, such as mercaptopropionic acid (MPA-QD) 

[41;42;109;121], mercaptoacetic acid (MAA-QD) [4], mercaptoundecanoic acid (MUA-QD) 

[42], cysteamine (QD-NH2) [109;116] and thioglycerol (QD-OH) [109]. However, ligand 

detachment from the QD surface may occur due to the weak interaction between the QD 

surface and the ligands [38;122], especially under unfavourable conditions like those in the 

endosomal compartment [10]. Several studies have indicated that cell incubation with QD 

solubilised by surface ligand exchange was mostly associated with severe cell death with 

increasing QD concentrations, similar to that induced by Cd2+ ions [4;41;115;116;121], 

which indiciets the need for  more stable QD.  

  

Hoshino et al. reported that no evidence of Cd2+ induced cytotoxicity was identified once 

ZnS coating was used [109]. Kirchner et al. showed that PEG coating greatly improved 

CdSe/ZnS QD toxicity profiles [115]. PEG-silica coated QD, which were fabricated by 

embedding the CdSe/ZnS QD in a shell of cross-linked silica molecules and then conjugated 

with PEG were shown to be non-toxic up to 30 M in Cd+2 surface concentration [119]. 

Similar to this, Pellegrino et al. demonstrated that silica-coated QD (silanised) were highly 

resistant to chemical and metabolic degradation [123]. Furthermore, conjugating peptides to 

silanised CdSe/ZnS QD showed low cytotoxicity even once translocated to the cell nucleus 

[124]. Zhang et al. investigated the genotoxicity of PEG-silica coated QD in human skin 

fibroblast (HSF-42) cells exposed to QD dose between 8 nM and 80 nM, verifying that PEG-

silica coated QD were non-toxic even at the gene level [125]. Overall, the cytotoxicity studies 

carried out so far have shown that the key determinants of QD toxicity are the composition 

and functionalisation. However, other factors including cell type [42], QD size [121], and QD 

exposure to oxygen and UV light [4] were also found to influence QD cytotoxicity.                                                                                                                                                                                                       

 

 QD toxicity in vivo: The concern about the potential toxicity of QD in vivo is growing due 

to the well-established toxicological profile of cadmium, the physicochemical characteristics 
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of certain QD surface coatings, and the size of QD. In general, the small size of nanoparticles 

provides a large surface for interaction with different biological molecules [107;109]. 

Moreover, nanoparticles of few nanometers in size can enter vital organs such as heart, lung, 

and brain following intravenous administration.  Therefore, studies that will help determine 

the QD toxicity in vivo are highly required.  

 

Information about QD toxicity were initially obtained by alternative models of more complex 

organisms. Xenopus embryos [22] and zebrafish embryos [19] are some of the most sensitive 

models in which QD toxicity has been tested. Zebrafish embryos and Xenopus embryos 

microinjected with 1108 QD/cell and 2109QD/cell, respectively, did not exhibit any sign of 

toxicity. However, both Zebrafish and Xenopus embryos exhibited abnormalities as the doses 

were increased to 2108 QD/cell and 5109QD/cell, respectively. This is thought to be due to 

either the intrinsic toxicity of QD or the osmotic equilibrium changes [22].  

 

Several groups have injected QD in animals for targeting and imaging purposes. However, 

very few studies reported QD toxicity in living animals. QD injected systemically (via tail 

vein or jugular vein) in mice and rats (pmol-nmol range), showed no apparent toxicity several 

months post-injection [20;94;95]. Other studies have shown that 200-400 pmol of near- 

infrared (NIR) QD were injected locally to map the sentinel lymph nodes (SLN) into 

Yorkshire pigs, no changes in the heart rate, blood pressure, and oxygen level were observed 

during the experimental procedure and after several hours [71-74;93]. The low toxicity 

observed in these latter studies was expected since the QD were injected locally and in most 

cases the injected site (tumour and SLN) was removed by the end of the surgical procedure.  

 

 

 

5. CONCLUSION 

Semiconductor nanocrystals are tiny light-emitting nanoparticles with a mean diameter of 1 

to 20 nm. They are generally composed of a semiconductor core covered with a shell of a 

second semiconductor material, mainly ZnS. QDs offer many advantages in comparison to 

conventional organic dyes such as bright photoluminescence, narrow symmetric emission, 

broad excitation spectrum, and high photostability. The diversity of QD composition, size 

and surface functionalisation results in their versatile applications. They can be made very 
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effective for cellular and in vivo imaging by coupling with targeting ligands such as, proteins, 

peptides or antibodies. The photogeneration of free radicals by QDs is experimentally used in 

photodynamic therapy. Interestingly, the in vivo behaviour is be easily manipulated by 

modulating the particle size and surface coating, which impact QD blood circulation, organ 

distribution, excretion and toxicity.  
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