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Abstract The composite likelihood is amongst the computational methods used for
estimation of the generalized linear mixed model (GLMM) in the context of bivariate
meta-analysis of diagnostic test accuracy studies. Its advantage is that the likelihood
can be derived conveniently under the assumption of independence between the ran-
dom effects, but there has not been a clear analysis of the merit or necessity of this
method. For synthesis of diagnostic test accuracy studies, a copula mixed model has
been proposed in the biostatistics literature. This general model includes the GLMM
as a special case and can also allow for flexible dependence modelling, different from
assuming simple linear correlation structures, normality and tail independence in the
joint tails. A maximum likelihood (ML) method, which is based on evaluating the bi-
dimensional integrals of the likelihood with quadrature methods, has been proposed,
and in fact it eases any computational difficulty that might be caused by the double
integral in the likelihood function. Both methods are thoroughly examined with exten-
sive simulations and illustrated with data of a published meta-analysis. It is shown that
the ML method has no non-convergence issues or computational difficulties and at
the same time allows estimation of the dependence between study-specific sensitivity
and specificity and thus prediction via summary receiver operating curves.
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1 Introduction

Synthesis of diagnostic test accuracy studies is the most common medical application
of multivariate meta-analysis; we refer the interested reader to the surveys by Jackson
et al. (2011); Mavridis and Salanti (2013); Ma et al. (2016). These data have two
important properties. The first is that the estimated sensitivities and specificities are
typically negatively associated across studies, because studies that adopt less stringent
criterion for declaring a test positive invoke higher sensitivities and lower specificities
(Jackson et al. 2011). The second important property of the data is the substantial
between-study heterogeneity in sensitivities and specificities (Chu et al. 2012).

Nikoloulopoulos (2015a), to deal with the aforementioned properties, proposed a
copula mixed model for bivariate meta-analysis of diagnostic test accuracy studies
and made the argument for moving to copula random effects models. This general
model includes the generalized linear mixed model (Chu and Cole 2006; Arends et al.
2008) as a special case and can also operate on the original scale of sensitivity and
specificity.

Chen et al. (2016b, 2017) proposed a composite likelihood (CL) method for esti-
mation of the Sarmanov beta-binomial model (Chu et al. 2012) and the generalized
linear mixed model (hereafter GLMM), respectively. Note in passing that both models
are special cases of a copula mixed model (Nikoloulopoulos 2015a). The composite
likelihood can be derived conveniently under the assumption of independence between
the random effects. The CL method has been recommended by Chen et al. (2016b,
2017) to overcome practical ‘issues’ in the joint likelihood inference such as com-
putational difficulty caused by a double integral in the joint likelihood function, and
restriction to bivariate normality.

However,

(a) The CL method is well established as a surrogate alternative of maximum like-
lihood when the joint likelihood is too difficult to compute (Varin et al. 2011),
which is apparently not the case in the synthesis of diagnostic test accuracy stud-
ies. The general model in Nikoloulopoulos (2015a) includes the GLMM as a
special case, and its numerical evaluation has been implemented in the package
CopulaREMADA (Nikoloulopoulos 2016) within the open source statistical envi-
ronment R (R Core Team 2015). Chen et al. (2016b, 2017) restrict themselves to
SAS PROC NLMIXED which is a general routine for random effect models and
thus gives limited capacity.

(b) The random effects distribution of a copula mixed model can be expressed via
other copulas (other than the bivariate normal) that allow for flexible dependence
modelling, different from assuming simple linear correlation structures, normality
and tail independence.

The contribution of this paper is to examine themerit of theCLmethod in the context
of diagnostic test accuracy studies and compare it to the MLmethod in Nikoloulopou-
los (2015a). The remainder of the paper proceeds as follows. Section 2 summarizes
the copula mixed model for diagnostic test accuracy studies. Section 3 discusses both
maximum and composite likelihood for estimation of the model parameters. Section 4
contains small-sample efficiency calculations to compare the two methods. Section 5

123



On composite likelihood in bivariate meta-analysis… 213

presents applications of the likelihood estimation methods to several data frames with
diagnostic studies. We conclude with some discussion in Sect. 6.

2 The copula mixed model

We first introduce the notation used in this paper. The focus is on two-level (within-
study and between-studies) cluster data. The data are (yi j , ni j ), i = 1, ..., N , j =
1, 2, where j is an index for the within-study measurements and i is an index for the
individual studies. The data, for study i , can be summarized in a 2 × 2 table with the
number of true positives (yi1), true negatives (yi2), false negatives (ni1 − yi1), and
false positives (ni2 − yi2).

The within-study model assumes that the number of true positives Yi1 and true
negatives Yi2 are conditionally independent and binomially distributed given X = x,
where X = (X1, X2) denotes the bivariate latent pair of (transformed) sensitivity and
specificity. That is

Yi1|X1 = x1 ∼ Binomial
(
ni1, l

−1(x1)
)
;

Yi2|X2 = x2 ∼ Binomial
(
ni2, l

−1(x2)
)
, (1)

where l(·) is a link function.
The stochastic representation of the between-studies model takes the form

(
F

(
X1; l(π1), δ1

)
, F

(
X2; l(π2), δ2

)) ∼ C(·; θ), (2)

where C(·; θ) is a parametric family of copulas with dependence parameter θ and
F(·; l(π), δ) is the cdf of the univariate distribution of the random effect. The copula
parameter θ is a parameter of the random effects model, and it is separated from
the univariate parameters, the univariate parameters π1 and π2 are the meta-analytic
parameters for the sensitivity and specificity, and δ1 and δ2 express the between-
study variabilities. The models in (1) and (2) together specify a copula mixed model
(Nikoloulopoulos 2015a) with joint likelihood

L(π1, π2, δ1, δ2, θ)

=
N∏
i=1

∫ 1

0

∫ 1

0

2∏
j=1

g
(
yi j ; ni j , l−1(F−1(u j ; l(π j ), δ j )

))
c(u1, u2; θ)du1du2, (3)

where c(u1, u2; θ) = ∂2C(u1, u2; θ)/∂u1∂u2 is the copula density and g
(
y; n, π

) =(n
y

)
π y(1 − π)n−y, y = 0, 1, . . . , n, 0 < π < 1, is the binomial probability mass

function (pmf). The choices of the F
(·; l(π), δ

)
and l are given in Table 1.
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Table 1 The choices of the
F

(·; l(π), δ
)
and l in the copula

mixed model

F
(·; l(π), δ

)
l π δ

N (μ, σ ) logit, probit, cloglog l−1(μ) σ

Beta(π, γ ) identity π γ

3 Estimation methods

3.1 Maximum likelihood method

Estimation of the model parameters (π1, π2, δ1, δ2, θ) can be approached by the stan-
dard maximum likelihood (ML) method, by maximizing the logarithm of the joint
likelihood in (3). For mixed models of the form with joint likelihood as in (3), numeri-
cal evaluation of the joint pmf is easily donewith the following steps (Nikoloulopoulos
2015a):

1. Calculate Gauss–Legendre quadrature points {uq : q = 1, . . . , nq} and weights
{wq : q = 1, . . . , nq} in terms of standard uniform distribution (Stroud and
Secrest 1966). Our comparisons with more quadrature points show that nq = 15
is adequate with good precision to at least at four decimal places (Nikoloulopoulos
2015a, Appendix).

2. Convert from independent uniform random variables {uq1 : q1 = 1, . . . , nq} and
{uq2 : q2 = 1, . . . , nq} to dependent uniform random variables {uq1 : q1 =
1, . . . , nq} and {C−1(uq2 |uq1; θ) : q1 = q2 = 1, . . . , nq} that have distribution
C(·; θ). The inverse of the conditional distribution C(v|u; θ) = ∂C(u, v; θ)/∂u
corresponding to the copula C(·; θ) is used to achieve this.

3. Numerically evaluate the joint pmf

∫ 1

0

∫ 1

0

2∏
j=1

g
(
yi j ; ni j , l−1(F−1(u j ; l(π j ), δ j )

))
c(u1, u2; θ)du1du2

in a double sum:

nq∑
q1=1

nq∑
q2=1

wq1wq2g
(
y1; n1, l−1(F−1(uq1; l(π1), γ1)

))

× g
(
y2; n2, l−1(F−1(C−1(uq2 |uq1; θ); l(π2), γ2)

))
.

The inverse conditional copula cdfs C−1(v|u; θ) are given in Table 2 for the suffi-
cient list of parametric families of copulas formeta-analysis of diagnostic test accuracy
studies in Nikoloulopoulos (2015a, b). Since the copula parameter θ of each family
has different range, in the sequel we re-parametrize them via their Kendalls τ ; that is
comparable across families.
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Table 2 Parametric families of bivariate copulas and their Kendall’s τ as a strictly increasing function of
the copula parameter θ

Copula C−1(v|u; θ) τ

BVN 	
(√

1 − θ2	−1(v) + θ	−1(u)
)

2
π
arcsin(θ), −1 ≤ θ ≤ 1

Frank − 1
θ
log

[
1 − 1−e−θ

(v−1−1)e−θu+1

] 1 − 4θ−1 − 4θ−2
∫ 0
θ

t
et−1 dt , θ < 0

1 − 4θ−1 + 4θ−2
∫ θ

0
t

et−1 dt , θ > 0

Clayton
{
(v−θ/(1+θ) − 1)u−θ + 1

}−1/θ
θ/(θ + 2), θ > 0

Clayton by 90◦
{
(v−θ/(1+θ) − 1)(1 − u)−θ + 1

}−1/θ −θ/(θ + 2), θ > 0

Clayton by 180◦ 1 −
[{

(1 − v)−θ/(1+θ) − 1
}
(1 − u)−θ + 1

]−1/θ
θ/(θ + 2), θ > 0

Clayton by 270◦ 1 −
[{

(1 − v)−θ/(1+θ) − 1
}
u−θ + 1

]−1/θ −θ/(θ + 2), θ > 0

3.2 Composite likelihood method

The composite likelihood method assumes independence between the random effects.
Hence, it is identical for any copula mixed model, since all the parametric families
of copulas in Table 2 contain the independence copula as a special case. This sub-
section summarizes the composite likelihood estimating equations and the asymptotic
covariance matrix for the estimator that solves them in the context of diagnostic test
accuracy studies.

3.2.1 Composite likelihood estimator

Chen et al. (2016b, 2017) proposed the composite likelihood method for estimation
of the copula mixed model with beta and normal margins, respectively. Composite
likelihood is a surrogate likelihood which leads asymptotically to unbiased estimating
equations obtained by the derivatives of the composite log-likelihoods. Estimation of
the model parameters can be approached by solving the marginal estimating equations
or equivalently by maximizing the sum of composite (univariate) likelihoods.

By using composite likelihood the authors are assuming between-study indepen-
dence in sensitivities and specificities and thus the joint likelihood in (3) reduces to:

L(π1, π2, δ1, δ2) =
N∏
i=1

∫ 1

0

∫ 1

0

2∏
j=1

g
(
yi j ; ni j , l−1(F−1(u j ; l(π j ), δ j )

))
du1du2

= L1(π1, δ1)L(π2, δ2), (4)

where L j (π j , δ j ) = ∏N
i=1

∫ 1
0 g

(
yi j ; ni j , l−1

(
F−1(u j ; l(π j ), δ j )

))
du j , since under

the independence assumption the copula density c(·) is equal to 1. Note that the joint
likelihood reduces to the product of two univariate likelihoods and the evaluation of
univariate integrals; thus, the computational effort (if any) is subsided. Essentially, for
beta margins the univariate likelihoods L j , j = 1, 2 result in a closed form since
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∫ 1

0
g
(
y; n, F−1(u;π, γ1

))
du =

∫ 1

0
g(y; n, x) dF(x;π, γ ) = h(y; n, π, γ ),

where

h(y; n, π, γ ) =
(
n

y

) B
(
y + π/γ − π, n − y + (1 − π)(1 − γ )/γ

)

B
(
π/γ − π, (1 − π)(1 − γ )/γ

) ,

y = 0, 1, . . . , n, 0 < π, γ < 1,

is the pmf of a Beta-Binomial(n, π, γ ) distribution.
Composite likelihood estimates can be obtained bymaximizing the logarithm of the

joint likelihood in (4) over the univariate parameters. The efficiency of the composite
likelihood estimates has been studied and shown in a series of papers (Varin 2008;Varin
et al. 2011). However, CL ignores the dependence at the estimation of the univariate
marginal parameters; thus, it is expected to be worse as the dependence increases.

3.2.2 Asymptotic covariance matrix–inverse Godambe

Let α = (π, δ). The asymptotic covariance matrix for the CL estimator (α1,α2), also
known as the inverse Godambe information matrix (Godambe 1991), is

V =
(

I−1
11 I−1

11 I12 I
−1
22

(I−1
11 I12 I

−1
22 )� I−1

22

)
, (5)

where I j j =E
[−∂2 log L j (α j )/∂α2

j

]
, j = 1, 2 and I12=E

[
∂ log L1(α1)

∂α1

∂ log L2(α2)
∂α2

�]
.

For more information, including the observed inverse Godambe information matrix,
we refer the reader to Chen et al. (2016b, 2017).

4 Small- and moderate-sample efficiency–misspecification of the
univariate distribution of the random effect

In this section an extensive simulation study with two different scenarios is conducted
(a) to assess the performance of the CL and ML methods, and (b) to investigate in
detail the effect of the misspecification of the parametric margin of the random effects
distribution. The CL method assumes the independence copula, and its focus is on
marginal parameters and apparently not the choice of the copula. Hence, in the simu-
lations we only investigate the effect of the misspecification of the parametric margin
of the random effects distribution. We refer the interested reader to Nikoloulopoulos
(2015a) for a study on the misspecification of the parametric family of copulas of the
random effects distribution.

We use the simulation process in Nikoloulopoulos (2015a) and set the univariate
parameters and disease prevalence to mimic the telomerase data in Sect. 5. The details
are given below:
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Table 3 Times of non-convergence out of 104 simulations for the CL and ML methods under different
marginal choices in both simulated scenarios

True margin N τ ML-normal ML-beta CL-normal CL-beta

normal 10 −0.5 45 17 995 0

−0.8 14 7 1025 0

20 −0.5 3 0 1118 0

−0.8 1 0 1136 0

beta 10 −0.5 50 27 1384 0

−0.8 24 8 1495 0

20 −0.5 0 0 1575 0

−0.8 0 0 1576 0

1. Simulate the study size n froma shifted gammadistribution, i.e. n ∼ sGamma(α =
1.2, β = 0.01, lag = 30) and round off to the nearest integer.

2. Simulate (u1, u2) from a parametric family of copulas C(; τ); τ is converted to
the[3.] dependence parameter θ via the relations in Table 2.

4. Convert to beta or normal realizations via x j = l−1
(
F−1
j

(
u j , l(π j ), δ j

))
for

j = 1, 2.
5. Draw the number of diseased n1 from a B(n, 0.534) distribution.
6. Set n2 = n − n1 and generate y j from a B(n j , x j ) for j = 1, 2.

In the first scenario the simulated data are generated from the BVN copula mixed
model with normal margins, logit link (the resulting model is the same with the
GLMM) and true marginal parameters (π1, π2, σ1, σ2) = (0.79, 0.91, 0.43, 1.83),
while in the second scenario the simulated data are generated from the BVN cop-
ula mixed model with beta margins and true marginal parameters (π1, π2, γ1, γ2) =
(0.76, 0.81, 0.03, 0.28). The number of studies is set to N = 10 and N = 20 to rep-
resent a relatively small and moderate meta-analysis, and the Kendall’s τ association
between study-specific sensitivity and specificity is set to τ = −0.5 and τ = −0.8 to
represent moderate and strong negative dependence.

As stated in Chen et al. (2016b, 2017) one advantage of the CL method is that the
problem of non-convergence is avoided, so we also report on the non-convergence
of different methods in Table 3. To summarize the simulated data, we report the
resultant biases, root mean square errors (RMSE), and standard deviations (SD), along
with average theoretical variances for the ML and CL estimates of the univariate
parameters under different marginal choices based on iterations in which all four
competing approaches converged in Tables 4 and 5. Following Chen et al. (2016b) we
also summarize the diagnostic odds ratio, that is dOR = π1

(1−π1)
/ π2

(1−π2)
. Clearly, this

is a function of the univariate parameters; its value ranges from zero to infinity, with
a higher value indicating better discriminatory power.

Conclusions from the values in the tables are as follows:

• The CL method is nearly as efficient as the ‘gold standard’ ML method.
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• The meta-analytic ML and CL estimates and SDs are not robust to the margin
misspecification.

• The ML method has negligible non-convergence issues.
• The CL method in Chen et al. (2017) has a non-convergence rate between 10% to
16%. Note in passing that the convergence problem is not because of the method
itself, but the current implementation in Chen et al. (2016a) which incorporates a
general R routine for univariate random effect models.

• The CL method in Chen et al. (2016b) has no non-convergence issues at all as
expected since the log L has a closed form.

The simulation results indicate that for both methods the effect of misspecifying
the marginal choice can be seen as substantial for both the univariate parameters
and the parameters that are functions of them, such as the dOR. This is in line with
Nikoloulopoulos (2015a, b) for theMLmethod. Herewe also show that the CLmethod
is not robust to the misspecification of the margin. This agrees with the conclusions of
Xu and Reid (2011) and Ogden (2016) who argue that if the marginal distribution of
the random effects is misspecified, then the CL estimator no longer retains robustness.
This has not been revealed before, since Chen et al. (2017) (Chen et al. 2016b) focused
solely on a normal (beta) margin and did not study the effect of misspecification of
the marginal random effect distribution. The focus in the CL method is on marginal
parameters and their functions (e.g. dOR). Since these are univariate inferences, all
that matters, as regard as to the bias, is the univariate model.

5 Tumour markers for bladder cancer

In this section we illustrate the methods with data of the published meta-analyses
in Glas et al. (2003); also analysed in Chen et al. (2016b). This meta-analyses deal
with the most common urological cancer, that is bladder cancer. Several diagnostic
markers are assessed including the cytology (N = 26)which is the classicalmarker for
detecting bladder cancer since 1945 and is not expensive compared with the reference
standard (that is cystoscopy procedure), but lacks the diagnostic sensitivity. The other
markers under investigation to give a better sensitivity are NMP22 (N = 14), BTA
(N = 6), BTASTAT(N = 8), telomerase (N = 10), and BTATRAK (N = 5).

For all the meta-analyses, we fit the copula mixed model for all different choices of
parametric families of copulas and margins. Sufficient choices of copulas are BVN,
Frank, Clayton, and the rotated versions of the latter (Table 2). These families have
different strengths of tail behaviour; for more details see Nikoloulopoulos (2015a, b).
We use the log-likelihood at estimates as a rough diagnostic measure for goodness
of fit between the models and summarize the choice of the copula and margin with
the largest log-likelihood, along with the GLMM (BVN copula mixed model with
normal margins) as a benchmark. We also estimate the model parameters with the CL
method under the assumption of both normal (CL-norm) and beta (CL-beta) margins.
In Table 6 we report the resulting maximized ML and CL log-likelihoods, estimates,
and standard errors.
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NMP22

The log-likelihoods show that a copula mixed model with rotated by 270◦ Clayton
copula and beta margins provides the best fit and the estimates of sensitivity π1 and
specificity π2 are smaller under this assumption. The CL method performs well since
the estimated τ is weak and not significantly different from zero.

BTA

The log-likelihoods show that a copulamixedmodelwith rotated by 180◦ Clayton cop-
ula and normal margins provides the best fit. Chen et al. (2016b) previously restricted
to beta margins; thus, the sensitivity π1 and dOR were overestimated (CL-beta).

BTASTAT

The log-likelihoods show that a BVN copula mixed model with beta margins pro-
vides the best fit and the estimates of specificity π2 and dOR are smaller and larger,
respectively, under this assumption.

Telomerase

Nikoloulopoulos (2015a) has previously analysed these data to illustrate the copula
mixed model when there exists negative perfect dependence, and thus there is only
one copula: the countermonotonic copula. This is a limiting case for all the parametric
families of copulas, when the dependence parameter is fixed to the left boundary of its
parameter space. Both models agree on the estimated sensitivity π̂1, but the estimate
of specificity π̂2 is larger under the standard GLMM. The log-likelihood is−50.37 for
normal margins and −51.14 for beta margins, and thus a normal margin seems to be
a better fit for the data. In this example the CL method overestimates the dOR, since
it ignores the perfect negative dependence at the estimation of the parameters.

BTATRAK

The log-likelihoods show that a copula mixed model with rotated by 270◦ Clayton
copula and beta margins provides the best fit. Note that the CL-norm estimate of
the between-study variance σ 2

1 was approximately zero; thus, for this case the stan-
dard errors are unreliable as the between-study variance parameter estimate is on the
boundary of the parameter space.

Cytology

The log-likelihoods show that a copula mixed model with rotated by 90◦ Clayton
copula and beta margins provides the best fit. All models agree on the estimated sensi-
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224 A. K. Nikoloulopoulos

tivity π̂1, but the estimated specificity π2 and dOR are smaller when beta margins are
assumed. The CLmethod performs well on the estimation of the univariate parameters
and their functions since the estimated τ is weak and not significantly different from
zero.

6 Discussion

In this paper we have challenged claims made in Chen et al. (2016b, 2017) about
the advantages of using a composite likelihood in meta-analysis of diagnostic test
accuracy studies, in terms of convergence and robustness to model misspecification.
The usual reason for using a composite likelihood does not apply here, because the
full likelihood is straightforward to compute. We have demonstrated that the copula
mixed model in Nikoloulopoulos (2015a) does not suffer for computational problems
or convergence issues. Nikoloulopoulos (2015a) proposed a numerically stable ML
estimation technique based on Gauss–Legendre quadrature; the crucial step is to con-
vert from independent to dependent quadrature points. Furthermore, it has been shown
the secondary motivation of robustness of the CLmethod is not retained in this context
if the marginal distributions are misspecified. Hence, it is a digression to use the CL
methods in Chen et al. (2016b, 2017) for estimation in meta-analysis of diagnostic
test accuracy studies as apparently there is neither computationally difficulty in the
calculation of the bivariate log-likelihood nor robustness in the misspecification of
the marginal distribution of the random effects. These conclusions hold to any context
where clinical trials or observational studies report more than a single binary outcome.

Furthermore, in Chen et al. (2016b, 2017) the main inference is univariate such as
the overall sensitivity or specificity or their functions as a single measure of diagnostic
accuracy, e.g. the diagnostic odds ratio (dOR). The dOR for many cases is not useful
since it cannot distinguish the ability to detect individuals with disease from the ability
to identify healthy individuals (Chen et al. 2017). Whenever the balance between false
negative and false positive rates is of immediate importance, both the prevalence and
the conditional error rates of the test have to be taken into consideration to make a
balanced decision; hence, the dOR is less useful, as it does not distinguish between
the two types of diagnostic mistake (Glas et al. 2003a).

In fact, if the interest is only to overall sensitivity, and specificity, then the overall
test accuracy across studies will not be clearly defined. Different studies use different
thresholds for a positive test result; thus, the overall sensitivity and specificity do
not make sense. Instead, some form of the summary receiver operating characteristic
(SROC) curve makes much more sense and will help decision makers to assess the
actual diagnostic accuracy of a diagnostic test. In an era of evidence-based medicine,
decision makers need high-quality procedures such as the SROC curves to support
decisions about whether or not to use a diagnostic test in a specific clinical situation
and, if so, which test.

An SROC curve is deduced for the copulamixedmodel in Nikoloulopoulos (2015a)
through a median regression curve of X1 on X2. For the copula mixed model, the
model parameters (including dependence parameters), the choice of the copula, and
the choice of the margin affect the shape of the SROC curve (Nikoloulopoulos 2015a).
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Fig. 1 Contour plots (predictive region) and quantile regression curves from the best fitted copula mixed
model for the bladder cancer data. Red and green lines represent the quantile regression curves x1 :=
x̃1(x2, q) and x2 := x̃2(x1, q), respectively; for q = 0.5 solid lines and for q ∈ {0.01, 0.99} dotted
lines (confidence region). In case of BTATRAK and telomerase the predictive and confidence region are
meaningless since the Kendall’s τ association is close to −1. In this case all the quantile regression curves
almost coincide, and hence, we depict only the median regression curve for each model. In case of BTA
the axes are in logit scale since we also plot the estimated contour plot of the random effects distribution as
predictive region; this has been estimated for the logit pair of (Sensitivity, Specificity) (colour figure online)

However, there is no priori reason to regress X1 on X2 instead of the other way around,
so Nikoloulopoulos (2015a) also provides a median regression curve of X2 on X1.
Apparently, while there is a unique definition of the ROC curve within a study with
fixed accuracy, there is no unique definition of SROC curve across multiple studies
with different accuracies (Rücker and Schumacher 2010). AsArends et al. (2008) have
pointed out, none of the SROCcurves proposed in the literature can be interpreted as an
average ROC. Rücker and Schumacher (2009) stated that instead of summarizing data
using an SROC, it might be preferable to give confidence regions. Hence, in addition
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to using just median regression curves, Nikoloulopoulos (2015a) proposed quantile
regression curves with a focus on high (q = 0.99) and low quantiles (q = 0.01), which
are strongly associated with the upper and lower tail dependence imposed from each
parametric family of copulas. These can been seen as confidence regions of themedian
regression SROC curve. Amongst the parametric families of copulas in Table 2 the
tail dependence varies and is a property to consider when choosing amongst different
families of copulas as it affects the shape of SROC curves (Nikoloulopoulos 2015a).
Finally, Nikoloulopoulos (2015a) to reserve the nature of a bivariate response instead
of a univariate response along with a covariate, proposed to plot the estimated contour
of the random effects distribution. The contour plot can be seen as the predictive region
of the estimated pair of sensitivity and specificity. The prediction region of the copula
mixed model does not depend on the assumption of bivariate normality of the random
effects and has non-elliptical shape.

Figure 1 demonstrates these curves and summary operating points (a pair of average
sensitivity and specificity)with a confidence and a predictive region from the best fitted
copula mixed model for all the meta-analyses in Sect. 5. Both CL methods in Chen
et al. (2016b, 2017) cannot be used to produce the SROC curves, since the dependence
parameters affect the shape of the SROC curve and these are set to independence by
definition. Note in passing that the CL method in Chen et al. (2017) can provide a
confidence region, but this is restricted to the elliptical shape.

Nevertheless, the additional feature of having to estimate the association amongst
the random effects inML estimation has been found to require larger sample sizes than
in CL estimationwhere this parameter is set to independence. The application example
includes cases with an adequate number of individual studies. For meta-analyses with
fewer studies the CL methods in Chen et al. (2016b, 2017) can be recommended if
a bivariate copula mixed model is near non-identifiable (or has a flat log-likelihood)
and the estimation of an average operating point (summary sensitivity and specificity)
is of interest instead of a SROC curve.

Software

The R package CopulaREMADA (Nikoloulopoulos 2016) has been used to produce
the ML estimates (along with their SE) of the parameters from the copula mixed
models and plot the SROC curves and summary operating points (a pair of average
sensitivity and specificity) with a confidence and a predictive region. The R package
xmeta (Chen et al. 2016a) has been used to produce the CL estimates (along with
their SE) of the parameters from both methods in Chen et al. (2016b, 2017).
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