Supporting Information

Role of Graphene on Hierarchical Flower-like NiAl Layered Double Hydroxide-Nickel foam-Graphene as Binder-free Electrode for High-rate Hybrid Supercapacitor

Luojiang Zhang ^a, K.N. Hui ^{b,*} K.S. Hui ^{a,**}, Xin Chen ^a, Rui Chen ^c, Haiwon Lee ^c

^a Department of Mechanical Convergence Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea

^b Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau

^c Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea

* Corresponding author. Fax: +853 8822-2426; Tel: +853 8822-4422; <u>bizhui@umac.mo</u> (K.N. Hui)

** Corresponding author. Fax: +82-2-2220-2299; Tel: +82-2-2220-0441; <u>kshui@hanyang.ac.kr</u> (K.S. Hui)

Supporting information Figure S1.

Fig. S1 XRD patterns of LDH-NF (a), GO (b) and LDH-NF/GNS (c)

a b

Supporting information Figure S2.

Fig. S2 SEM images of (a) GO and (b) NF

Supporting information Figure S3.

Fig. S3 (a) CV curves of GNS at various scan rates. (b) Charge-discharge curves of GNS at different current densities. (c) Specific capacitance of GNS at different current densities.

Material Samples	$C_{s}(F g^{-1})$	Current density (A g ⁻¹)	Cycle stability	C _s after cycling test (F g ⁻¹)	Reference electrode	Ref
rGO nanocup/NiAl-	2172.7	1	30 A g ⁻¹ , 5000 cvcles, 98,9%	~1500	SCE	1
LDH	11/4	50	05 1 -1 500			
NiAl-LDH/C	1064 758	2.5 12.5	$25 \text{ A g}^{-1}, 500 \text{ cycles}, 50.5\%$	246.3	SCE	2
GNS/NiAl- LDH	781.5	10 mA cm ⁻²	10 mA cm ⁻² , 200 cycles, 122.6%	693.7	SCE	3
NiAl- LDH/CNT/rGO	1869 713.4	0.0625 6.25	0.625 A g ⁻¹ , 1000 cycles, 96 5%	1200	SCE	4
a-GNS/NiAl- LDH	1730.2 790	0.1 10	5 A g ⁻¹ , 500 cycles, 99.2%	976.2	SCE	5
NiAl-LDH array/GNS	1329 851	3.57 17.86	15.3 A g ⁻¹ , 500 cycles, 91%	823	SCE	6
NiCoAl- LDH/C	1188 850	1 10	6 A g ⁻¹ , 1000 cycles, 100%		SCE	7
NiCoAl-	1035	1	6 A g ⁻¹ , 1000	700		0
LDH/MWCNT	597	10	cycles, 83.2%	~/00	Hg/HgO	8
NiAl-LDH/NF	795 220	0.5 10	2.5 A g ⁻¹ , 1000 cycles, 80%		SCE	9
Al doped	2122.6	1	$1 \text{ A g}^{-1}, 500$	1800	SCE	10
N1(OH)2/NF	1389.4	6 0.5	cycles, 78%			
NiAl-LDH/NF	164	5	cycles, 94%	~460	SCE	11
LDH-NF	817.7 C g ⁻¹	2				
	564.7 C g ⁻¹	20	40 A g ⁻¹ , 4000 cycles, 45.9%	150.3 C g ⁻¹	SCE	this work
	415.4 C g ⁻¹	40				
LDH-NF/GNS	645.6 C g ⁻¹	2				
	357.7 C g ⁻¹	20	40 A g ⁻¹ , 4000 cycles, 54.1%	165.6 C g ⁻¹	SCE	this work
	209.8 C g ⁻¹	40				

Table S1 Comparison of electrochemical performance of the reported NiAl-LDH/carbonmaterials-based electrodes (Cs: specific capacitance)

Positive materials//negative materials	Energy density (Wh kg ⁻¹)	Power density (kW kg ⁻¹)	Voltage range (V)	Ref
NiO//C	13	0.04	0-1.5	12
Co3O4//AC	24.9	0.225	0-1.5	13
NiCoOx-GNS//AC	7.6	5.6	0-1.4	14
NiCo2O4-rGO//AC	23.3	0.32	0-1.3	15
NiCoOx//AC	12	0.095	0-1.2	16
NiCo2O4//AC	15.42	~0.8	0-1.5	17
Ni-Zn-Co oxide/hydroxide//C	16.6	2.9	0-1.5	18
Ni(OH)2//GNS	30	1	0-1.6	19
Ni(OH)2//ZnFe2O4	14	0.209	0-1.6	20
Ni(OH)2@3D Ni//AC	21.8	0.66	0-1.3	21
NiCo LDH-Zn2SnO4//AC	23.7	0.28	0-1.2	22
NiO-NF//AC	19	0.12	0.8-1.5	23
NiCo2O4@MnO2-NF//AC	~28	0.4	0-1.5	24
Co(OH)2-NF//GO	11.9	2.54	0-1.2	25
Ni(OH)2-NF//AC	10.5	0.687	0-1.6	26
Ni(OH)2/GNS/NF//AC	11.11		0.2-1.6	27
NiCoOx-NF//AC	22.66	2.13	0-1.5	28
NiO-NF//MWCNT	27.8	0.7	0-1.4	29
	31.5	0.4		This
LDH-NF/GNS//GNS-NF	19.7	3.2	0-1.6	work
	12	8		WOIN

Table S2 Comparison of the maximum energy density and the corresponding power density and

 voltage range of the reported nickel or cobalt oxide/hydroxide based hybrid supercapacitors

- Yan, L.; Li, R.; Li, Z.; Liu, J.; Fang, Y.; Wang, G.;Gu, Z. Three-dimensional activated reduced graphene oxide nanocup/nickel aluminum layered double hydroxides composite with super high electrochemical and capacitance performances. *Electrochim. Acta* 2013, 95, 146-154.
- Wei, J.; Wang, J.; Song, Y.; Li, Z.; Gao, Z.; Mann, T.;Zhang, M. Synthesis of self-assembled layered double hydroxides/carbon composites by in situ solvothermal method and their application in capacitors. *J. Solid State Chem.* 2012, *196*, 175-181.
- Gao, Z.; Wang, J.; Li, Z.; Yang, W.; Wang, B.; Hou, M.; He, Y.; Liu, Q.; Mann, T.; Yang, P.; Zhang, M.;Liu, L. Graphene Nanosheet/Ni2+/Al3+ Layered Double-Hydroxide Composite as a Novel Electrode for a Supercapacitor. *Chem. Mater.* 2011, *23*, 3509-3516.
- Yang, W. L.; Gao, Z.; Wang, J.; Ma, J.; Zhang, M. L.;Liu, L. H. Solvothermal One-Step Synthesis of Ni-Al Layered Double Hydroxide/Carbon Nanotube/Reduced Graphene Oxide Sheet Ternary Nanocomposite with Ultrahigh Capacitance for Supercapacitors. *ACS Appl. Mater. Interfaces* 2013, *5*, 5443-5454.
- Niu Yulian; Li Ruiyi; Li Zaijun; Fang Yinjun; Liu Junkang High-performance supercapacitors materials prepared via in situ growth of NiAl-layered double hydroxide nanoflakes on well-activated graphene nanosheets. *Electrochim. Acta* 2013, *94*, 360-366.
- Xu, J.; Gai, S. L.; He, F.; Niu, N.; Gao, P.; Chen, Y. J.; Yang, P. P. A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: fabrication and high supercapacitor performance. *J. Mater. Chem. A* 2014, *2*, 1022-1031.
- Yu, C.; Yang, J.; Zhao, C. T.; Fan, X. M.; Wang, G.;Qiu, J. S. Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: understanding the role of nano-structured carbon. *Nanoscale* 2014, *6*, 3097-3104.
- Yang, J.; Yu, C.; Fan, X. M.; Ling, Z.; Qiu, J. S.;Gogotsi, Y. Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. *J. Mater. Chem. A* 2013, *1*, 1963-1968.

- 9. Wang, B.; Liu, Q.; Qian, Z. Y.; Zhang, X. F.; Wang, J.; Li, Z. S.; Yan, H. J.; Gao, Z.; Zhao, F. B.;Liu, L.
 H. Two steps in situ structure fabrication of Ni-Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors. *J. Power Sources* 2014, 246, 747-753.
- 10.Huang, J. C.; Lei, T.; Wei, X. P.; Liu, X. W.; Liu, T.; Cao, D. X.; Yin, J. L.; Wang, G. L. Effect of Aldoped beta-Ni(OH)(2) nanosheets on electrochemical behaviors for high performance supercapacitor application. *J. Power Sources* **2013**, *232*, 370-375.
- 11.Wang, J.; Song, Y.; Li, Z.; Liu, Q.; Zhou, J.; Jing, X.; Zhang, M.; Jiang, Z. In Situ Ni/Al Layered Double Hydroxide and Its Electrochemical Capacitance Performance. *Energy Fuels* **2010**, *24*, 6463-6467.
- 12. Wang, D. W.; Li, F.; Cheng, H. M. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. *J. Power Sources* **2008**, *185*, 1563-1568.
- 13.Zhang, C. M.; Xie, L. J.; Song, W.; Wang, J. L.; Sun, G. H.;Li, K. X. Electrochemical performance of asymmetric supercapacitor based on Co3O4/AC materials. J. Electroanal. Chem. 2013, 706, 1-6.
- Wang, H. L.; Holt, C. M. B.; Li, Z.; Tan, X. H.; Amirkhiz, B. S.; Xu, Z. W.; Olsen, B. C.; Stephenson, T.;Mitlin, D. Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. *Nano Research* 2012, *5*, 605-617.
- 15.Wang, X.; Liu, W. S.; Lu, X. H.;Lee, P. S. Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide-reduced graphite oxide composite material and its application for asymmetric supercapacitor device. J. Mater. Chem. 2012, 22, 23114-23119.
- 16.Tang, C. H.; Tang, Z.;Gong, H. Hierarchically Porous Ni-Co Oxide for High Reversibility Asymmetric Full-Cell Supercapacitors. J. Electrochem. Soc. 2012, 159, A651-A656.
- 17.Lu, X. F.; Wu, D. J.; Li, R. Z.; Li, Q.; Ye, S. H.; Tong, Y. X.;Li, G. R. Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors. *J. Mater. Chem. A* 2014, *2*, 4706-4713.
- Wang, H. L.; Gao, Q. M.;Hu, J. Asymmetric capacitor based on superior porous Ni-Zn-Co oxide/hydroxide and carbon electrodes. *J. Power Sources* 2010, 195, 3017-3024.

- 19.Hu, C. C.; Chen, J. C.; Chang, K. H. Cathodic deposition of Ni(OH)(2) and Co(OH)(2) for asymmetric supercapacitors: Importance of the electrochemical reversibility of redox couples. *J. Power Sources* 2013, 221, 128-133.
- 20.Shanmugavani, A.;Selvan, R. K. Synthesis of ZnFe2O4 nanoparticles and their asymmetric configuration with Ni(OH)(2) for a pseudocapacitor. *RSC Adv.* **2014**, *4*, 27022-27029.
- 21.Su, Y. Z.; Xiao, K.; Li, N.; Liu, Z. Q.;Qiao, S. Z. Amorphous Ni(OH)(2) @ three-dimensional Ni coreshell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. *J. Mater. Chem. A* 2014, *2*, 13845-13853.
- 22.Wang, X.; Sumboja, A.; Lin, M. F.; Yan, J.;Lee, P. S. Enhancing electrochemical reaction sites in nickelcobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. *Nanoscale* **2012**, *4*, 7266-7272.
- 23. Inoue, H.; Namba, Y.; Higuchi, E. Preparation and characterization of Ni-based positive electrodes for use in aqueous electrochemical capacitors. *J. Power Sources* **2010**, *195*, 6239-6244.
- 24.Xu, K. B.; Li, W. Y.; Liu, Q.; Li, B.; Liu, X. J.; An, L.; Chen, Z. G.; Zou, R. J.;Hu, J. Q. Hierarchical mesoporous NiCo2O4@MnO2 core-shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 4795-4802.
- 25.Salunkhe, R. R.; Bastakoti, B. P.; Hsu, C. T.; Suzuki, N.; Kim, J. H.; Dou, S. X.; Hu, C. C.; Yamauchi,
 Y. Direct Growth of Cobalt Hydroxide Rods on Nickel Foam and Its Application for Energy Storage. *Chemistry-a European Journal* 2014, 20, 3084-3088.
- 26.Huang, J. C.; Xu, P. P.; Cao, D. X.; Zhou, X. B.; Yang, S. N.; Li, Y. J.; Wang, G. L. Asymmetric supercapacitors based on beta-Ni(OH)(2) nanosheets and activated carbon with high energy density. J. *Power Sources* 2014, 246, 371-376.
- 27.Wang, X.; Liu, J. Y.; Wang, Y. Y.; Zhao, C. M.;Zheng, W. T. Ni(OH)(2) nanoflakes electrodeposited on Ni foam-supported vertically oriented graphene nanosheets for application in asymmetric supercapacitors. *Mater Res Bull* **2014**, *52*, 89-95.

- 28.Wang, Y. M.; Zhang, X.; Guo, C. Y.; Zhao, Y. Q.; Xu, C. L.;Li, H. L. Controllable synthesis of 3D NixCo1-x oxides with different morphologies for high-capacity supercapacitors. *J. Mater. Chem. A* 2013, *1*, 13290-13300.
- 29.Wang, H. W.; Yi, H.; Chen, X.; Wang, X. F. Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties. *Electrochim. Acta* **2013**, *105*, 353-361.