
1 
 

 

Detection of mSiglec-E, in solution and expressed on the surface of 

Chinese hamster ovary cells, using sialic acid functionalised gold 

nanoparticles† 

 

 

Claire L. Schofield,a María J. Marín,a Martin Rejzek,b Paul R. Crocker,c Robert A. 

Fieldb* and David A. Russella* 

 

aSchool of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, 

UK. E-mail: d.russell@uea.ac.uk 

bDepartment of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, 

NR4 7UH, UK. E-mail: rob.field@jic.ac.uk 

cDivision of Cell Signalling and Immunology, Wellcome Trust Biocentre, College of Life 

Sciences, University of Dundee, Dundee, DD1 5EH, UK 

 

 
†Electronic Supplementary Information (ESI) available. See DOI: XXX 

 

 

 

mailto:d.russell@uea.ac.uk


2 
 

Abstract 

Sialic acids are widespread in biology, fulfilling a wide range of functions. Their cognate 

lectin receptors - Siglecs - are equally diverse and widely distributed, with different Siglecs 

found within distinct populations of cells in the haemopoietic, immune and nervous 

systems. A convenient way to assay ligand recognition of soluble Siglecs would be useful, as 

would methods for the concomitant assessment of Siglec distribution on cell surfaces. Here 

we report the use of gold nanoparticles functionalised with a sialic acid ligand diluted with a 

polyethylene glycol (PEG) ligand for the plasmonic detection of a soluble form of murine 

Siglec-E (mSiglec-E-Fc fusion protein) and, importantly, for the specific detection of the 

same siglec expressed on the surface of mammalian cells. These sialic acid functionalised 

nanoparticles are shown to overcome problems such as cellular cis interactions and low 

Siglec-ligand affinity. The gold nanoparticles were functionalised with various ratios of sialic 

acid:PEG ligands and the optimum ratio for the detection of murine Siglec-E was established 

based on the plasmonic detection of the soluble pre-complexed recombinant form of 

murine Siglec-E (mSiglec-E-Fc fusion protein). The optimum ratio for the detection of the 

fusion protein was found to be sialic acid:PEG ligands in a 50:50 ratio (glyconanoparticles 1). 

The optimised glyconanoparticles 1 were used to recognise and bind to the murine Siglec-E 

expressed on the surface of transfected Chinese hamster ovary cells as determined by 

transmission electron microscopy.  
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Introduction  

Siglecs are a family of sialic acid-binding immunoglobulin-like lectins that are found on many 

immune system cell types where they regulate the functions and interactions of such cells.1-

4 Siglecs are type-I cell surface transmembrane receptors that are formed by 2-17 

extracellular immunoglobulin-like domains,4 including varying numbers of C2-set domains 

(from 16 in Siglec-1 to 1 in Siglec-3) and an amino-terminal V-set that contains a conserved 

arginine residue that mediates the carbohydrate binding activity.5 Human Siglecs (hSiglecs) 

and murine Siglecs (mSiglecs) can be divided into two sub-groups based on sequence 

similarity and evolutionary conservation.6 The first group consists of sialoadhesin (Siglec-1), 

CD22 (Siglec-2), myelin-associated glycoprotein (Siglec-4) and Siglec-15. The second 

subgroup, known as the CD33-related Siglecs, consists of CD33 (Siglec-3) plus Siglecs-5–11 

and 14 in humans and Siglec-E–H in mice; which are found mainly on mature cells of the 

immune system, such as natural killer (NK) cells, mast cells, neutrophils, eosinophils and 

macrophages. CD33-related Siglecs are involved in the inhibition of proliferation and in the 

induction of apoptosis,7, 8 inhibit the killing function of NK cells against tumours expressing 

sialylated glycans,9 and are highly expressed in acute myeloid leukaemia and human blood 

leukocytes.10, 11 In mouse, neutrophils and tissues rich in leukocytes express high levels of 

mSiglec-E. mSiglec-E is structurally similar to both hSiglec-7 and -9, with all three siglecs 

containing an amino-termina V-set and two C2-set immunoglobulin domains in the 

extracellular membrane and an immunoreceptor tyrosine-based inhibitory (ITIM) motif and 

an ITIM-like domain in the cytoplasmic tail (Fig. S1).3 Thus, mSiglec-E is expressed in most of 

the cell types that express either hSiglec-7 or hSiglec-9.12 However, although these human 

and mice Siglecs are structurally similar, they differ in some of the amino acid residues 

present in each of the structural components13 (the sequence similarity between hSiglec-7 

and -9 and mSiglec-E is 52% and 53%, respectively).14 The peptide variability between these 

three Siglecs is responsible for their differences in sialic acid binding specificities.13 To date, 

there is insufficient information to fully understand the biological roles that hSiglecs play in 

vivo. The development of murine-based animal models and the study of the structurally 

equivalent hSiglecs in mice have provided some insights.15  
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CD33-related Siglecs have been exploited as targets for different treatment strategies.16 For 

example, CD33 and CD22 are markers of myeloid leukemia and B-cell malignancies and have 

been used as targets of antibody-drug conjugate-based treatments.17 An immunoconjugate 

of anti-CD33-antibody with the antibiotic calicheamicin was commercialised for the 

treatment of acute myeloid leukaemia (Mylotarg®).18 hSiglec-7, overexpressed on a variety 

of cancer cells,19 has been used as a target for the drug delivery of antibody-functionalised 

poly(lactide-co-glycolide) nanoparticles.20 Recently, the use of liposomal nanoparticles 

functionalised with glycan ligands that bind specifically to a Siglec of interest such as hCD33 

and hCD22,21 sialoadhesin/Siglec-1,22 Siglec-923 and Siglec-724 has been extensively reported 

by Paulson and co-workers. These studies use fluorescence-based techniques to elucidate 

the behaviour of the nanoparticles within the cells. However, such techniques do not allow 

single particle detection and cannot provide information regarding localisation at the 

structural level that could be achieved with electron microscopy. Recently, artificial virus-

like glycosphingolipid-functionalised nanoparticles incorporating 80 nm gold nanoparticles 

were used, in combination with scanning electron microscopy, to understand the behaviour 

of human immunodeficiency virus-1 when bound to Siglec-1 receptors expressed on HeLa 

cells.25  

 

Gold nanoparticles (AuNPs) allow for the use of electron microscopy techniques to obtain 

high resolution images, and are ideal for the development of plasmonic bioassays since the 

colour of a solution of nanoparticles depends on the localised surface plasmon fields which 

are, in turn, dependent on the distance between particles.26 AuNPs have been 

functionalised with carbohydrate derivatives (glyconanoparticles) and used for the 

plasmonic detection of analytes of biological interest.27 AuNPs (ca. 15 nm) exhibit a surface 

plasmon absorption band centred at 520 nm and, consequently, are red in colour. When the 

particles aggregate due to the presence of the target analyte, the surface plasmon 

absorption band red-shifts producing a colour change in the solution. With this change of 

colour, glyconanoparticles have been used for the detection of biological targets such as 

concanavalin A (ConA),28, 29 cholera toxin30 and Ricinus communis Agglutinin 120 (RCA120).31 

Sialic acid functionalised gold nanoparticles have been used for the inhibition and detection 

of influenza virus32, 33 and more recently for the detection and discrimination between 

human and avian influenza viruses.34 Silver nanoparticles functionalised with both sialic acid 
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and galactose derivatives have been used in combination with extinction and surface 

enhanced Raman (SER) spectroscopies for the detection of cholera toxin.35 

 

A further advantage that the glyconanoparticles possess for the detection of Siglecs 

expressed on the surface of cells is their potential to overcome problems that other 

detection methods encounter including the presence of cis interactions and the low Siglec-

ligand affinity. When interactions between Siglec and sialic acid are described, the initial 

assumption is that the Siglec of one cell binds glycans terminating in sialic acid that are on a 

second cell (in trans) and therefore, an intercellular adhesion takes place.36-38 However, 

since the concentration of sialic acid terminated glycans on the surface of a cell is high, 

Siglecs can also bind those sialic acids of glycans expressed on the same cell (in cis).36-38 The 

binding sites of the Siglecs are then ‘masked’ by the sialic acid in cis, which can be reduced if 

an external ligand with higher affinity towards the Siglec is present. However, Siglec-ligand 

interactions are usually weak. These problems can be overcome using multivalent ligand-

based probes36 such as glyconanoparticles where a large number of carbohydrate-based 

ligands can be attached onto the surface of AuNPs. 

 

In this paper we describe, to the best of our knowledge, the first glyconanoparticles that 

enable the plasmonic detection of Siglecs in solution and, importantly, using the same 

glyconanoparticle based platform for the detection of Siglecs expressed on the surface of 

transfected Chinese hamster ovary (CHO) cells using transmission electron microscopy 

(TEM). AuNPs (ca. 15 nm) were functionalised with a S-linked sialic acid derivative ligand 

(sialic acid ligand 1) and a thiolated polyethylene glycol derivative ligand (PEG ligand 2) 

yielding glyconanoparticles (Fig. 1). Different ratios of the sialic acid ligand 1 and PEG ligand 

2 were studied and the optimum ratio was determined following the plasmonic detection of 

mSiglec-E-Fc cross-linked with an anti-Fc-IgG-antibody (mSiglec-E-Fc/antibody-complex) in 

solution (Fig. 2a). The optimum ratio for the plasmonic detection of the pre-complexed 

mSiglec-E-Fc was found to be 50:50 (glyconanoparticles 1). This solution based plasmonic 

assay enabled the study of selectivity and specificity of the designed platforms in an easy 

and rapid manner. The optimised glyconanoparticles 1 were subsequently used for the 

detection of mSiglec-E expressed on the surface of transfected CHO cells. The sialic acid 
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ligand on the glyconanoparticles recognised and interacted with the mSiglec-E expressed on 

the cell surface (Fig. 2b) which was then visualised using TEM.  

 

 

Au

 

Fig. 1. Schematic representation of the sialic acid ligand 1 (black):PEG ligand 2 (blue) 

functionalised gold nanoparticles. 



7 
 

 

Gold nanoparticles 
functionalised with 
sialic acid ligand 1

mSiglec-E cross-
linked with anti-Fc-

IgG antibody

mSiglec-E

a

b

Gold nanoparticles 
functionalised with 
sialic acid ligand 1

CHO cell expressing 
mSiglec-E

mSiglec-E

 

Fig. 2. Schematic representation of the binding of the sialic acid ligand 1 on the 

glyconanoparticles to: a) the mSiglec-E cross-linked with an anti-Fc-IgG antibody inducing 

the aggregation of the glyconanoparticles; and b) the mSiglec-E expressed on the surface of 

transfected CHO cells. Nanoparticles and cells not to scale.  

 

 

Experimental 

Synthesis of the sialic acid ligand 1 

Sialic acid ligand 1 was synthesised using a previously reported protocol34 as detailed in 

Scheme 1 and in the Electronic Supplementary Information.  
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Scheme 1 Synthesis of the sialic acid ligand 1 and PEG ligand 2. a) (Boc)2O, DCM, from 0 oC 

to r.t.; b) iodoacetic anhydride, Et2O, r.t.; c) 1. NaOMe/MeOH, -40 oC and 2. Amberlite IR-

120 (H+), -40 oC; d) 5, DIPEA, DCM; e) NaOMe/MeOH, r.t.; f) 1 M NaOH, r.t.; g) TFA, DCM, 

r.t.; h) γ-thiobutyrolactone, aq. NaHCO3/EtOH, DTT, 50 oC; i) K2CO3, DMF:H2O (1:1), 80 oC; j) 

TFA, DCM; and k) γ-thiobutyrolactone, 0.5 M NaHCO3, EtOH, DTT, 50 oC. 

 

 

Synthesis of the PEG ligand 2 

PEG ligand 2 was synthesised following the protocol summarised in Scheme 1 which 

includes the following steps: 

Synthesis of N-Boc-2,2’-(ethylenedioxy)bis(ethylamine) (3) 

Compound 3 was synthesised from the corresponding diamine following a published 

procedure.39 

Synthesis of t-butyl 2-(2-(2-(2-iodoacetamido)ethoxy)ethoxy)ethylcarbamate (4) 

Iodoacetic anhydride (555 mg, 1.57 mmol) was dissolved in absolute diethylether (Et2O, 

10 mL) and the solution was added to a stirred solution of compound 3 (299.6 mg, 

1.21 mmol) in absolute diethylether (10 mL) under N2 and with the exclusion of light. The 

mixture was allowed to stir for 60 min at r.t. and the formation of product was followed by 
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TLC (Rf=0.67, ethyl acetate/methanol 20:1). The volatiles were evaporated in vacuo and the 

residue was subjected to column chromatography on silica gel (using first ethyl acetate 

followed by ethyl acetate/methanol 20:1) to give pure 4 (353.5 mg, 70%) as a pale yellow 

oil. The characterisation of compound 4 is given in the Electronic Supplementary 

Information. 

Synthesis of N-(2-(2-(2-(2-hydroxyacetamido)ethoxy)ethoxy)ethyl)-4-mercaptobutanamide 

(2) 

4 (50 mg, 120 μmol) and K2CO3 (83 mg, 600 μmol) were heated to 80 oC in a mixture of 

dimethylformamide (DMF, 0.5 mL) and water (0.5 mL). After 6 h, when TLC showed 

complete conversion (hydroxyacetamide 7; Rf=0.42, chloroform/methanol 10:1), the 

volatiles were evaporated in vacuo. Acetic acid (50%, 234 μL) was added and the volatiles 

were evaporated in vacuo. The crude t-butyl 2-(2-(2-(2-

hydroxyacetamido)ethoxy)ethoxy)ethylcarbamate (7) was dissolved in dichloromethane 

(DCM, 1 mL) and trifluoroacetic acid (TFA, 1 mL) was added. The mixture was stirred at r.t. 

for 3 h and then the volatiles were evaporated. The residue was dissolved in a mixture of 

sodium bicarbonate (NaHCO3, 0.5 M, 2.76 mL) and ethanol (EtOH, 2.20 mL) and 

dithiothreitol (DTT, 46.3 mg, 300.3 μmol) and γ-thiobutyrolactone (52 μL, 600.5 μmol) were 

added. The mixture was stirred overnight at 50 oC under N2. Using 0.5 M HCl the pH of the 

mixture was adjusted to 6.0. Volatiles were evaporated in vacuo and the wet residue was 

freeze-dried. The solid was taken into methanol (MeOH, 5 mL) and solids were filtered off. 

The residue was subjected to column chromatography on silica gel (6 g, 

chloroform/methanol, stepwise gradient 30:1, 20:1, 10:1, 5:1) to give pure PEG ligand 2 

(35.3 mg, 95% over 3 steps). The characterisation of compound 2 is given in the Electronic 

Supplementary Information. 

 

Synthesis of gold nanoparticles and functionalisation with sialic acid ligand 1 and PEG 

ligand 2 – glyconanoparticles 

Water soluble citrate-reduced gold nanoparticles were prepared via the citrate reduction of 

hydrogen tetrachloroaurate (HAuCl4) following the method reported by Enüstün and 

Turkevich.40 Briefly, aqueous solutions of HAuCl4·3H2O (12.5 mg, 32 μmol, in 100 mL) and 

sodium citrate tribasic dihydrate (50 mg, 168 μmol, in 50 mL) were prepared and heated to 
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60 °C. The sodium citrate solution was rapidly added to the gold solution while stirring 

vigorously. The temperature was increased to 85 °C and the solution was stirred for 2 h. A 

clear red gold nanoparticle solution was obtained that was cooled to room temperature and 

filtered through a Miller GP syringe driven filter unit (0.22 μm). The concentration of the 

citrate stabilised gold nanoparticles solution was approximately 3 nM. 

 

Varying molar ratios of sialic acid ligand 1 and PEG ligand 2 (100:0, 50:50, 25:75, 5:95 and 

0:100) were separately added to aliquots of the freshly prepared 3 nM AuNPs (17 mL) and 

stirred for 48 h at r.t. to ensure self-assembly of the ligands onto the gold surface. The total 

concentration of thiol ligands in the solution was ca. 3 nmol/mL. The samples were 

centrifuged for 25 min at 23,710xg to remove the excess ligands. The nanoparticles were 

resuspended in Tris-buffer (10 mM, pH 7.6). The centrifugation process was repeated a total 

of three times. 

 

Cross-linking of mSiglec-E and hSiglec-7 with goat anti-human (Fc specific) antibody 

(mSiglec-E-Fc/antibody-complex and hSiglec-7-Fc/antibody-complex, respectively) 

The Fc fusion proteins mSiglec-E and hSiglec-7 were cross-linked with an anti-Fc antibody, 

goat anti-human-Fc-IgG antibody, prior to use following a previously reported protocol.41 

Briefly, a 50 µL mixture of the Fc fusion protein (2 mg/mL) and goat anti-human-Fc-IgG 

antibody (2 mg/mL) was incubated for 1 h at room temperature. The resulting complex was 

diluted in phosphate buffer saline (1.6 mL) prior to use. The complexes obtained were 

denoted as: mSiglec-E-Fc/antibody-complex for the mSiglec-E-Fc cross-linked with the 

antibody and hSiglec-7-Fc/antibody-complex for the hSiglec-7-Fc cross-linked with the 

antibody. 

 

Plasmonic detection of mSiglec-E-Fc/antibody-complex using the varying ratio sialic acid 

ligand 1:PEG ligand 2 functionalised gold nanoparticles 

Increasing amounts of mSiglec-E-Fc/antibody-complex (from 0 to 4.7 μg) were added to a 

sample of the sialic acid ligand 1:PEG ligand 2 functionalised AuNPs of varying ratios 

(concentration of nanoparticles = ca. 2 nM). The UV-Vis extinction spectrum of each 

glyconanoparticle solution was measured before and after addition of the corresponding 

amount of mSiglec-E-Fc/antibody-complex.  
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Control experiments 

Plasmonic detection of anti-Fc antibody 

Glyconanoparticles 1 (ca. 2 nM) were reacted with goat anti-human-Fc-IgG antibody (from 0 

to 6.25 µg). The UV-Vis extinction spectrum of the solution was measured before and after 

addition of increasing amounts of antibody. 

Plasmonic detection of mSiglec-E using gold nanoparticles functionalised only with PEG 

ligand 2 

mSiglec-E-Fc/antibody-complex (2.35 µg) was added to a sample of PEG ligand 2 

functionalised gold nanoparticles (ca. 2 nM). The UV-Vis extinction spectrum of the solution 

was measured before and after addition of the mSiglec-E-Fc/antibody-complex. 

Plasmonic detection of hSiglec-7-Fc/antibody-complex 

hSiglec-7-Fc/antibody-complex (2.35 µg) was added to a sample of glyconanoparticles 1 (ca. 

2 nM). The UV-Vis extinction spectrum of the solution was measured before and after 

addition of the hSiglec-7-Fc/antibody-complex. 

 

Cellular experiments using CHO cells expressing mSiglec-E and wild-type CHO 

CHO cells were transfected to express mSiglec-E as described previously.42 Both wild-type 

CHO cells and CHO cells expressing mSiglec-E were cultured in HAMS F12 medium 

supplemented with 10% foetal calf serum, penicillin (100 U/mL) and streptomycin 

(100 µg/mL). 

 

To perform the cellular experiments, glyconanoparticles 1 (ca. 2 nM) were mixed with 

106 cells, either CHO cells expressing mSiglec-E or with wild-type CHO cells, for 10 min at r.t. 

 

Transmission electron microscopy imaging 

TEM imaging of glyconanoparticles in the absence and presence of mSiglec-E-Fc/antibody-

complex 

A sample of the glyconanoparticles (ca. 10 μL), before and after being reacted with mSiglec-

E-Fc/antibody-complex (2.35 μg) for 2 h, was deposited on a holey carbon film 300 mesh 
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copper grids from Agar Scientific (UK) and imaged using a Jeol 200EX transmission electron 

microscope.  

TEM imaging of cells 

All of the cellular samples studied in this work, CHO cells expressing mSiglec-E incubated 

and non-incubated with glyconanoparticles 1 and wild-type CHO cells incubated with 

glyconanoparticles 1, were treated prior to TEM imaging using a similar protocol. The cell 

suspension in a screw cap Eppendorf tube was fixed in 5% (v/v) glutaraldehyde and left at 

4 °C for 30-60 min. The sample was vortexed and then spun in a bench-top centrifuge at 

10,000 rpm for 10 min. The pellet was washed in phosphate buffer (pH 7.2, ca. 1 mL) and 

then resuspended. Following a second centrifugation at 10,000 rpm for 10 min, the pellet 

was dehydrated through a graded ethanol series of 30, 50, 70, 90, 98 and 100% (aq.) 

ethanol (1 mL), ca. 15 min in each solution. From 100 % ethanol, 0.5 mL of the solution was 

replaced by LR White resin medium grade (Agar Scientific, 0.5 mL). The mixture was left to 

rest for 1 h at room temperature. The solution was then removed and replaced with 100% 

resin. The sample was vortexed to resuspend the pellet (cells) and left overnight (between 

12 and 18 h) at room temperature. The sample was centrifuged at 10,000 rpm for 10 min 

and the resin was removed. The Eppendorf tube was filled to the brim with resin that sets 

under anaerobic conditions and the sample was polymerised overnight in an oven at 60 °C. 

The polymerised (hardened) resin was sectioned on an LKB Nova ultramicrotome. Using 

glass knives, sections at 70-100 nm were taken of the pellet and placed on a copper 100 

mesh grid coated with a Parlodion film. For stained samples, the sections were stained with 

uranyl acetate (1% aq.) and 2% lead citrate for 10 min. The samples were viewed using a 

Jeol 200EX transmission electron microscope operated at 80 kV. 

 

 

Results and discussion 

Synthesis and characterisation of sialic acid ligand 1 and PEG ligand 2  

The synthesis of the sialic acid ligand 1 and the PEG ligand 2 was achieved as shown in 

Scheme 1. The PEG ligand 2 and part of the aliphatic side chain of the sialic acid ligand 1 

were synthesised starting from N-Boc-2,2’-(ethylenedioxy)bis(ethylamine) (3) prepared from 

the corresponding diamine following a published procedure.39 3 was reacted with iodoacetic 
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anhydride to give the corresponding iodoacetamide 4 in 70% yield. Compound 4 was 

subjected to a base catalysed hydrolysis of the iodide in wet dimethylformamide43 to give 

the corresponding hydroxyacetamide 7. Boc deprotection in compound 7 was undertaken 

followed by conversion of the resulting free amine to 4-thiobutyroamide 2 using γ-

thiobutyrolactone in a mixture of 0.5 M NaHCO3 buffer (pH ca. 9.0) and ethanol under 

reducing conditions provided by the presence of dithiothreitol44 to give the PEG ligand 2 in 

95% yield over 3 steps. For the synthesis of the sialic acid ligand 1, compound 4 was first 

alkylated with an α-configured sialic acid thioacetate followed by a deprotection and 

reaction of the free amine with γ-thiobutyrolactone. Acidification of the formed sodium salt 

of the ligand afforded the desired sialic acid ligand 1. 

 

Synthesis of the glyconanoparticles 

The synthesis of water soluble AuNPs (ca. 15 nm) was achieved using citrate as both the 

reducing agent and the stabiliser of the gold core.40 The suspension of the citrate AuNPs was 

red in colour as a consequence of the surface plasmon absorption band centred at ca. 

520 nm. Citrate-reduced AuNPs were functionalised with varying ratios of the sialic acid 

ligand 1:PEG ligand 2 (100:0, 50:50, 25:75 and 5:95) to establish whether the binding of the 

mSiglec-E to the sialic acid ligand 1 on the glyconanoparticles was ligand density dependent. 

All of the synthesised glyconanoparticles yielded a deep red aqueous suspension that had 

an average size of ca. 15 nm (a histogram showing the size distribution of the 

glyconanoparticles 1 can be seen in Fig. S2, with an average size of 14.9 ± 1.7 nm). 

 

Plasmonic detection of Siglecs in solution using the glyconanoparticles 

Siglecs are naturally expressed on the surface of cells where they can occur in clusters via 

lateral diffusion.3 To mimic the cell surface configuration of these proteins, a multivalent 

presentation of the Siglecs is required. Surface plasmon resonance analysis has previously 

shown that, without cross-linking with an antibody, monomeric hSiglec-7-Fc exhibits only a 

weak binding to sialic acid derivatives.41 Multivalent formats for the study of selective 

recognition by Siglecs have been also achieved following pre-complexation of mSiglecs-Fc 

and hSiglecs-Fc with the corresponding antibodies.45-47 The need of the formation of a pre-

complex Siglec-Fc-antibody to observe binding between Siglecs and recognition ligands was 

also reported, despite the bivalency of the tested Siglec-Fc, when polyacrylamide probe 
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beads with pendant carbohydrate ligands were used for the recognition of Siglecs.36 In the 

research presented here, the multivalent presentation of the Siglecs was achieved by cross-

linking the different dimeric Siglec-Fc chimaeric proteins with an anti-Fc-IgG antibody. When 

the mSiglec-E-Fc/antibody-complex is added to a solution of glyconanoparticles, the 

mSiglec-E in the antibody-complex will recognise the sialic acid on the nanoparticles surface 

and will bind to it. mSiglec-E has been reported to bind strongly to α2,6- and α2,3-linked 

sialic acids (Fig. S3);3, 4, 12 thus, it is anticipated that mSiglec-E should recognise the sialic acid 

ligand 1 present on the designed glyconanoparticles. The binding of the mSiglec-E to the 

sialic acid will induce the aggregation of the glyconanoparticles (Fig. 2a) and a colour change 

in the solution should be observed by eye and also by recording the UV-Vis extinction 

spectrum of the solution before and after addition of the mSiglec-E-Fc/antibody-complex. 

 

The effect of the carbohydrate density on the surface of the AuNPs upon the efficacy of the 

binding to targets of interest has been highlighted previously.31, 34 To achieve the optimal 

plasmonic detection of mSiglec-E, AuNPs were functionalised with different ratios of sialic 

acid ligand 1:PEG ligand 2, i.e. 100:0, 50:50, 25:75 and 5:95. The ligands were first mixed in 

the different ratios, ensuring that the total concentration of ligands remained constant, and 

then added to a solution of citrate-reduced AuNPs. As reported by other authors, the final 

ratio of ligands functionalising the surface of nanoparticles is highly dependent on the 

kinetics of the Au-S bond formation for each ligand and thus, on the nature of the ligands 

used.48 Consequently, to control the ratio of the ligands on the surface of the nanoparticles 

and following the work reported previously by Barrientos et al.,49 we selected PEG ligand 2 

as the dilutant since it is structurally equivalent to the aliphatic side chain of the sialic acid 

ligand 1. Thus, the sialic acid ligand 1:PEG ligand 2 ratio functionalising the surface of the 

nanoparticles was expected to be in the same ratio as the molar ratio added to the solution 

of citrate-reduced AuNPs. To obtain the optimal ligand density on the glyconanoparticles for 

the plasmonic detection of mSiglec-E, increasing amounts of mSiglec-E-Fc/antibody-complex 

(from 0 to 4.7 µg) were added to the corresponding glyconanoparticles solution and the UV-

Vis extinction spectrum of each sample was measured before and after addition of the 

mSiglec-E-Fc/antibody-complex (Fig. 3). The addition of mSiglec-E-Fc/antibody-complex to 

AuNPs functionalised with sialic acid ligand 1:PEG ligand 2 (100:0) induced only a slight shift 

in the surface plasmon absorption band (Fig. 3a), suggesting that a full monolayer of sialic 
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acid derivative was not a suitable coverage to induce aggregation of the particles in the 

presence of the mSiglec-E-Fc/antibody-complex. Reducing the sialic acid coverage, AuNPs 

functionalised with sialic acid ligand 1:PEG ligand 2 (50:50), proved to be a more sensitive 

assay for the plasmonic detection of mSiglec-E (Fig. 3b). While high concentrations of the 

Siglec were still required to induce aggregation, there was a greater shift in the surface 

plasmon absorption band (indicated with a horizontal arrow in Fig. 3b) as compared to the 

shift observed in Fig. 3a for a full monolayer coverage of the sialic acid ligand. The efficiency 

in the aggregation of the sialic acid ligand 1:PEG ligand 2 (50:50) in the presence of the 

mSiglec-E-Fc/antibody-complex was also confirmed by the broadening of the surface 

plasmon absorption band and the change in extinction intensity at 620 nm (indicated with a 

vertical arrow in Fig. 3b) observed upon addition of increasing amounts of the complex. 

When the sialic acid density on the surface of the nanoparticles was further reduced, sialic 

acid ligand 1:PEG ligand 2 (25:75) and (5:95), only small changes in the surface plasmon 

absorption band were observed in the presence of the mSiglec-E-Fc/antibody-complex (Fig. 

3c and 3d, respectively). It is apparent that when the carbohydrate density on the surface of 

the nanoparticles is low, the binding interactions between the Siglec and the sialic acid are 

significantly reduced and, therefore, the aggregation of the AuNPs is less likely to occur.  



16 
 

a b

c d
300 400 500 600 700 800

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

 
E

x
ti

n
c
ti

o
n

Wavelength / nm

300 400 500 600 700 800
0.0

0.1

0.2

0.3

0.4

0.5

 

 

E
x
ti

n
c
ti

o
n

Wavelength / nm

300 400 500 600 700 800
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

E
x
ti

n
c
ti

o
n

Wavelength / nm

300 400 500 600 700 800
0.0

0.1

0.2

0.3

0.4

0.5

E
x
ti

n
c
ti

o
n

Wavelength / nm

 

Fig. 3. Optimisation of sialic acid ligand 1:PEG ligand 2 functionalised AuNPs. UV-Vis 

extinction spectra of different samples of the glyconanoparticles following addition of 

mSiglec-E-Fc/antibody-complex (from 0 (black) to 4.7 µg (red)). The different 

glyconanoparticles contain sialic acid ligand 1:PEG ligand 2 ratios of: a) 100:0, b) 50:50 (the 

vertical arrow highlights the increase in extinction intensity at 620 nm while the horizontal 

arrow highlights the red-shift in the extinction maximum of the surface plasmon absorption 

band), c) 25:75 and d) 5:95. 

 

Upon addition of mSiglec-E-Fc/antibody-complex (4.7 µg), the greatest change in the 

extinction intensity at 620 nm was 0.065 units; while the greatest shift in the wavelength 

extinction maximum was 3 nm. Both changes were observed for the AuNPs functionalised 

with sialic acid ligand 1:PEG ligand 2 (50:50) (Fig. 3b). These results suggest that the 50:50 

ratio of sialic acid ligand 1:PEG ligand 2 on the AuNPs, glyconanoparticles 1, exhibit the 

greatest interaction with the mSiglec-E inducing the largest aggregation of the 

glyconanoparticles upon addition of the Fc-fusion protein.  
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TEM was used to further confirm the aggregation of the glyconanoparticles 1 in the 

presence of the mSiglec-E-Fc/antibody-complex. TEM images of the glyconanoparticles 1 

before addition of mSiglec-E-Fc/antibody-complex showed dispersed nanoparticles (Fig. 4a 

and S4a). When the glyconanoparticles 1 were mixed with mSiglec-E-Fc/antibody-complex 

(2.35 µg) for 2 h, networks of particles were observed in the TEM images of the sample, 

confirming the aggregation of the particles (Fig. 4b and S4b). The aggregation of the 

particles was also observed by the naked eye with a colour change from red to light pink 

that was visible 10 min following addition of the mSiglec-E-Fc/antibody-complex (Fig. 4c).  

 

a b

No 
mSiglec-E mSiglec-E

c

 

Fig. 4. Transmission electron micrographs of a sample of the glyconanoparticles 1: a) before 

and b) 2 h after addition of mSiglec-E-Fc/antibody-complex (2.35 µg). The scale bars 

represent 100 nm. c) Glyconanoparticles 1 (left) before and (right) 10 min after addition of 

mSiglec-E-Fc/antibody-complex (2.35 µg). 
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Two control experiments were performed to confirm that the aggregation of the 

glyconanoparticles 1 in the presence of mSiglec-E-Fc/antibody-complex was specifically due 

to the binding of the mSiglec-E to the sialic acids on the glyconanoparticle surface. 

Increasing amounts of goat anti-human-Fc-antibody (from 0 to 6.25 µg) were added to a 

solution of glyconanoparticles 1 and the UV-Vis extinction spectrum was recorded following 

each addition. Changes of the surface plasmon absorption band of the glyconanoparticles 1 

upon addition of the control antibody were negligible (Fig. 5a). Thus, the changes observed 

in the surface plasmon absorption band of the glyconanoparticles in the presence of the 

mSiglec-E-Fc/antibody-complex (Fig. 3b) were due to the mSiglec-E. To confirm the 

importance of the sialic acid for the specific detection of mSiglec-E, AuNPs functionalised 

with the PEG ligand 2 alone were synthesised and the UV-Vis extinction spectrum of the 

sample was measured before and after addition of increasing amounts of mSiglec-E-

Fc/antibody-complex (Fig. 5b). No changes in the extinction spectrum were observed 

following addition of the mSiglec-E-Fc/antibody-complex, which further highlights the 

importance of the sialic acid derivative for the detection of mSiglec-E using the 

glyconanoparticles. 
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Fig. 5. UV-Vis extinction spectra of: a) glyconanoparticles 1 before (black line) and following 

addition of goat anti-human-Fc-antibody: 3.12 µg (blue line) and 6.25 µg (red line); and b) 

PEG ligand 2 functionalised AuNPs before (black line) and following addition of mSiglec-E-

Fc/antibody-complex (red line, 2.35 µg). 
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A further control experiment was performed to investigate the binding affinity of 

glyconanoparticles 1 towards hSiglec-7. hSiglec-7 expresses a unique preference for α2,8-

linked disialic acid over α2,6-linked and α2,3-linked sialic acids (Fig. S3).3, 4, 12, 50 While both 

hSiglec-7 and hSiglec-9 are structurally similar to mSiglec-E, the binding specificity of 

hSiglec-7 is more similar to that of mSiglec-E (Fig. S3). Thus, it was considered that hSiglec-7 

would be a suitable control to study the specificity of binding of the glyconanoparticles 1. 

No change of the surface plasmon absorption band of glyconanoparticles 1 was observed 

upon addition of the hSiglec-7-Fc/antibody-complex (2.35 µg) (Fig. S5). Further, the changes 

of the surface plasmon absorption band of the glyconanoparticles upon addition of the 

hSiglec-7-Fc/antibody-complex were compared with those observed upon addition of the 

same amount of the mSiglec-E-Fc/antibody-complex (Fig. S5). These results confirm that no 

aggregation of the glyconanoparticles took place in the presence of hSiglec-7-Fc/antibody-

complex. However, a significant aggregation occurred when the mSiglec-E-Fc/antibody-

complex was added, highlighting the specificity of the interaction between the 

glyconanoparticles 1 and the mSiglec-E-Fc/antibody-complex.  

 

Detection of Siglecs expressed on the surface of transfected CHO cells using the 

glyconanoparticles 1 

Once the binding affinity of the optimised glyconanoparticles towards mSiglec-E was 

confirmed in solution, glyconanoparticles 1 were used to detect the mSiglec-E expressed on 

the surface of transfected CHO cells. The sialic acid on the surface of the glyconanoparticles 

should recognise and bind to the mSiglec-E expressed on the surface of the cells (as 

schematically shown in Fig. 2b) which then could be confirmed by TEM. CHO cells expressing 

mSiglec-E and wild-type CHO cells (without mSiglec-E) were grown, collected for use, 

centrifuged and resuspended in Tris-buffer. 106 of each of the cells were individually added 

to a solution of the glyconanoparticles 1 and the UV-Vis extinction spectrum of the 

glyconanoparticles was measured before and after addition of the cells. No changes in the 

surface plasmon absorption band of the glyconanoparticles were observed in the presence 

of the cells (results not shown). A sample of the glyconanoparticles 1 containing 106 CHO 

cells expressing mSiglec-E was imaged using TEM (Fig. 6 and S6). The TEM images 
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(particularly Fig. 6b) clearly show the glyconanoparticles 1 associated with the periphery of 

the cell material. The designed glyconanoparticles 1 were bound to the mSiglec-E expressed 

on the surface of the transfected CHO cells via the sialic acid ligand 1. These TEM images 

also explain why aggregation and the related shift in the surface plasmon absorption band 

were not observed for the solution of the glyconanoparticles in the presence of the CHO 

cells. The nanoparticles are not closely packed together, but are dispersed over the cell 

surface, suggesting that the receptors on the cell membrane are too far apart for the 

surface plasmon fields of individual nanoparticles to interact with one another. The 

nanoparticles attached to the cells were found to be ca. 15 nm in diameter, corresponding 

to the size of the glyconanoparticles 1. The cells observed in Fig. 6 and S6 were stained using 

lead citrate to increase the contrast by interacting with proteins and glycogens. When a 

sample is stained with lead citrate and in the presence of carbon dioxide, a precipitate due 

to the formation of lead carbonate could potentially contaminate the sample and could be 

seen as ‘nanoparticles’ using TEM. To confirm that the 15 nm particles observed in Fig. 6 and 

S6 were the bound glyconanoparticles, a sample of glyconanoparticles 1 in the presence 106 

CHO cells expressing mSiglec-E was imaged in the TEM without staining (Fig. S7). The TEM 

images show that the glyconanoparticles are still present and again appear at the periphery 

of the cells. 
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a b

 

Fig. 6. TEM images of stained samples of CHO cells expressing mSiglec-E in the presence of 

glyconanoparticles 1: a) scale bar: 500 nm, magnification: 7500x; and b) focused image of a 

selected area of a), scale bar: 500 nm. White arrows highlight five of the glyconanoparticles 

1 bound to the cell surface. 

 

 

To ensure that the glyconanoparticles are specifically binding to the mSiglec-E receptors on 

the cell surface, wild-type CHO cells not expressing mSiglec-E on their surface were added to 

the glyconanoparticles 1 and the sample imaged using TEM (Fig. S8). The TEM images show 

that there are no nanoparticles bound to the surface of the cells confirming that the 

glyconanoparticles specifically bind to the CHO cells expressing mSiglec-E via sialic acid-

Siglec interactions. In a final control experiment, mSiglec-E CHO cells without nanoparticles 

were imaged following staining of the sample (Fig. S9). As expected, no nanoparticles were 

observed in the TEM images of the control sample. 

 

 

Conclusions 

The primary aim of this research was to detect the sialic acid-binding immunoglobulin-like 

lectin mSiglec-E overexpressed on the surface of Chinese hamster ovary cells. Siglecs play a 

wide range of biological roles regulating functions in the immune and nervous systems and 

being markers of disease stages including cancer. Methods for the detection of cellular 
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Siglecs should be able to overcome problems such as cis interactions and low Siglec-ligand 

affinity. Bioanalytical detection tools based on nanosystems can overcome these problems 

since they result in multivalent ligand-based probes. While several studies have been 

recently reported describing the use of nanoparticle-based systems to target Siglecs,21-24 the 

fluorescence-based techniques previously used do not provide information regarding the 

localisation of single nanoparticles on the cellular surface. Here we describe a system that 

enables single particle detection and thus, assessment of Siglec distribution on the cell 

surface, using sialic acid functionalised gold nanoparticles in combination with transmission 

electron microscopy. Gold nanoparticles (ca. 15 nm) were functionalised with different 

ratios of a sialic acid derivative ligand 1, diluted with PEG ligand 2, which is able to 

specifically recognise mSiglec-E. The optimum sialic acid density on the surface of the 

nanoparticles for the detection of mSiglec-E was investigated in solution via the plasmonic 

detection of mSiglec-E-Fc/antibody-complex. The optimised glyconanoparticles for the 

detection of the soluble mSiglec-E were found to be those containing sialic acid ligand 1 and 

PEG ligand 2 in a 50:50 ratio, glyconanoparticles 1. The addition of the mSiglec-E-

Fc/antibody-complex to a solution of glyconanoparticles 1 induced the aggregation of the 

nanoparticles which was observed by a shift of the surface plasmon absorption band, a 

change in the colour of the solution 10 min following addition of the complex and also by 

imaging of the sample using TEM. The changes in the surface plasmon absorption band of 

the optimised glyconanoparticles were not observed in the presence of an anti-Fc antibody 

only or in the presence of the structurally similar hSiglec-7-Fc/antibody-complex, confirming 

the specificity of the glyconanoparticles 1 towards mSiglec-E. The importance of the sialic 

acid for the specific plasmonic detection of mSiglec-E was confirmed when the addition of 

mSiglec-E-Fc/antibody-complex to a solution of AuNPs functionalised with only PEG ligand 2 

produced negligible changes in the surface plasmon absorption band of the sample. The 

optimised glyconanoparticles 1 were then used for the detection of mSiglec-E expressed on 

the surface of transfected CHO cells using TEM. TEM enabled the visualisation of single 

glyconanoparticles over the surface of the imaged cells. Binding of the nanoparticles to the 

cell surface was not observed when wild-type CHO cells, without the mSiglec-E, were 

treated with the glyconanoparticles 1. The bioassay described provides an easy to perform 

methodology to assess the specific recognition of ligands by the respective sialic acid-

binding immunoglobulin-like lectin Siglec and with the same glyconanoparticle platform to 
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visualise, with high resolution, the distribution of Siglecs on the surface of a cell using TEM. 

The developed method can be used in the future to assess the distribution of Siglecs 

expressed on the surface of different cell types and can consequently, contribute to further 

our understanding of the biological roles that these lectins play in vivo.  
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