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Abstract 

Observational trends, physical reasons and modelling results suggest an increase in extreme 

precipitation with climate warming. In particular, sub-daily precipitation extremes are 

expected to increase heavily raising concerns about the future impacts of flash floods in urban 

environments and for small or steep river catchments. In order to quantify the potential risk of 

flash floods in the future, impact studies often require site-specific sub-daily estimates of 

precipitation extremes. But in their current stage, most Regional Climate Models (RCMs) are 

only able to provide areal averaged projections at ca. 12.5km resolution and simulated sub-

daily precipitation extremes tend to be heavily biased. As a result, statistical downscaling 

methods are needed to provide site-specific more reliable projections of sub-daily 

precipitation extremes. 

In this thesis, a statistical downscaling method was developed to project site-specific future 

hourly precipitation extremes over the UK. Circulation patterns (CPs) were classified using a 

fuzzy rules based approach to categorize extreme hourly precipitation events according to 

their corresponding atmospheric conditions. In a next step, an analogue day method was 

applied to find the most similar day in the past by comparing the RCM simulated daily 

precipitation and temperature with the observations for each CP. The daily maximum hourly 

precipitation record on the most similar day was extracted and perturbed based on 

precipitation duration-temperature relationships conditioned on CPs. Within the field of 

statistical downscaling techniques, the applied method is best described as a hybrid of the 

analogue and the regression-based method. It was shown that the method is capable of 

reproducing observed extreme hourly precipitation over different validation periods. 

Projections based on the applied statistical downscaling method indicate increases in UK 

hourly extremes but with high variations depending on the twelve different stations, the two 

future time periods, the two emission scenarios and the four different GCM-driven RCMs. 
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Chapter 1  

Introduction 

1.1 Motivation 

Both observed trends (see e.g. Hartmann et al., 2013; Madsen et al., 2014; Seneviratne et al., 

2012) and modelling results (see e.g. Orlowsky and Seneviratne, 2012; Arnbjerg-Nielsen, 2012; 

Willems and Vrac, 2011) suggest that extreme precipitation will become more intense in the 

future under a warming climate caused by increased concentration of greenhouse gases. This 

is physically plausible under the assumption that a rise in temperature results in higher 

moisture content in the atmosphere and increased evapotranspiration (Maraun et al., 2008) 

and could lead to increased flood risk and vulnerabilities (Willems et al., 2012). Some studies 

(Pall et al., 2007; Willems and Vrac, 2011) used the thermodynamic constraint based on the 

Clausius-Clapeyron equation to quantify these changes in precipitation extremes. They 

suggested that future precipitation extremes increase by 7% per one degree warming based on 

the assumption that specific humidity also increases by 7% per degree of temperature. But this 

approach has been questioned. For example, Lenderink and van Meijgaard (2008) found 

increases of 14% per one degree warming for observed and simulated extreme hourly 

precipitation and Hardwick Jones et al. (2010) showed a point of inflection for high 

temperature, where the relationship between extreme precipitation and temperature 

becomes negative.  

Generally, it is likely that future increases in sub-daily precipitation extremes are stronger than 

those in daily precipitation extremes under a warming climate (Beck, 2013; Lenderink and van 

Meijgaard, 2008; Westra et al., 2014). Sub-daily precipitation extremes are often associated 

with flash flooding events especially in urban environments or for small and steep river 

catchments, which can lead to dramatic consequences. As a result, there is an urgent need to 

quantify the potentially increasing risk of flash floods in the future. But many impact studies 

require site-specific sub-daily estimates of precipitation extremes, whereas most Regional 

Climate Models (RCMs) in their current generation can only provide projections of areal 

averaged precipitation at ca. 12.5km resolution due to limited computing power. The RCM 

performances are further restricted by their parameterization schemes to simplify complex 

mechanism. As a consequence, RCM simulated precipitation intensities may be heavily biased 
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(Buonomo et al., 2007; Fowler and Ekström, 2009; Hanel and Buishand, 2010; Kendon et al., 

2014) and adaptation strategies, which are often heavily based on climate modelled 

projections, may fall short and leave humans more vulnerable to flood risk (He et al., 2013). 

In contrast to climate models, statistical downscaling methods are able to provide site-specific 

projections of precipitation extremes. Those statistical methods often combine large-scale 

atmospheric (e.g. sea level pressure) and certain surface variables (e.g. temperature) 

simulated by climate models to project precipitation extremes. Most studies in the past have 

focused on the downscaling of daily precipitation events (e.g. Beuchat et al., 2012; Hundecha 

and Bárdossy, 2007; Maraun et al., 2010; Bárdossy and Pegram, 2011), whereas only few 

attempted to establish statistical relationships between predictors and sub-daily precipitation. 

Among those, Haberlandt et al. (2014) applied a statistical model to reproduce hourly 

precipitation extremes and relied on changes in hourly precipitation simulated by the REMO 

RCM driven by the ECHAM5 GCM to project site-specific future changes over Northern 

Germany for the future time period 2071-2100. However, it needs to be questioned whether 

changes in RCM precipitation derived on a grid-scale are applicable to project site-specific 

precipitation (Olsson et al., 2012). Mezghani and Hingray (2009) used a Generalized Linear 

Model (GLM) based on daily atmospheric circulation indices to estimate daily regional 

precipitation. In a next step, they disaggregated the estimated daily regional precipitation 

variable to site-specific hourly precipitation. But temporal disaggregation is problematic 

because the relationships between daily and hourly precipitation are likely to change under a 

warmer climate (Beck, 2013; Westra et al., 2014). Different analogue day methods were tested 

in Willems and Vrac (2011) to project sub-daily precipitation extremes for one station in 

Belgium. The best performances were obtained by comparing the exceedance probabilities of 

observed and simulated daily precipitation conditioned on circulation patterns (CPs) and 

perturbing the observed sub-daily precipitation on the analogue day based on the Clausius-

Clapeyron (CC) relation. However, as mentioned earlier, changes in daily precipitation may be 

different to the changes in hourly precipitation and the CC relation may not be sufficient to 

represent changes in hourly precipitation under a warmer climate.  

1.2 Research aim and research objectives 

As outlined in the previous section, statistical downscaling methods in the past often relied 

solely on changes in RCM simulated daily precipitation to project extreme hourly precipitation. 

Two main problems with this approach can be identified: (1) RCM simulated precipitation 

should always be interpreted as an areal average and thus is unlikely to realistically represent 
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changes in site-specific precipitation extremes needed for many impact studies, (2) Changes in 

daily precipitation extremes are unlikely to realistically represent changes in hourly 

precipitation extremes. 

The aim of this thesis is to provide reliable and robust projections of site-specific UK hourly 

precipitation extremes under a warmer climate based on a statistical downscaling method 

which uses a set of different predictors. To achieve the aim of this thesis, the research 

objectives are defined as follows. 

 

1. Identification of certain months or seasons during which hourly precipitation extremes 

are more likely to occur. 

2. Categorisation of synoptic weather conditions that exhibit distinguishable 

relationships between atmospheric circulation patterns (CPs) and extreme hourly 

precipitation. 

3. Development of a reliable and robust statistical downscaling method that can assign 

the “correct” exceedance probability to high precipitation values (reliability) over 

different time periods (robustness). The statistical downscaling method should also be 

able to perform under a future climate which is likely to be warmer. 

4. Projections of extreme hourly precipitation that are representative of the UK spatial 

variability, the influences of different time periods and emission scenarios. Assessment 

of the uncertainties associated with the GCM-driven RCM runs and the statistical 

downscaling method. 

1.3 Study approach 

Historical UK daily and hourly precipitation records at a station level are extracted from the 

MIDAS Land Surface Stations database (NCAS British Atmospheric Data Centre, 2012). A 

screening procedure is applied to eliminate suspicious or duplicated records and outliers 

within the precipitation data set. Station selection criteria are defined to ensure that the 

stations used in the method development contain the best homogeneous precipitation time 

series with a high level of completeness and represent different UK extreme precipitation 

regions (Jones et al., 2014). Historical gridded sea level pressure from the NCAR SLP data set 

(Hurrell and Trenberth, 2013) is used for the definition of the CP-classification. The RCM 

simulated sea level pressure, temperature and precipitation data sets are extracted from the 

CORDEX data archive (CORDEX, 2014) for the evaluation and projection of extreme hourly 

precipitation estimates. Two different RCMs are used, the RCA4 and the RACMO22E. 
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For the twelve selected UK stations, the annual cycle of extreme hourly precipitation is 

investigated. The performances of multiple fuzzy rules CP-classifications based on different 

input configurations are assessed. The automated fuzzy rules CP-classifications have the 

advantage that information of local precipitation characteristics can be incorporated into the 

classification process. For the selected fuzzy rules CP-classification, the relationship between 

CPs and extreme hourly precipitation for each CP and season is established and assessed. The 

number of CPs needs to be restricted, in order to be able to calibrate the statistical 

downscaling method on large enough subsample sizes for each season and CP. 

For the development of the statistical downscaling method, different aspects need to be 

considered. The method should be able to represent the physical effects of a warmer climate 

in terms of site-specific extreme hourly precipitation. Another important aspect is that RCM 

spatially averaged precipitation cannot realistically simulate localized convective precipitation 

events (Chan, 2013), which are most important in terms of extreme hourly precipitation, and 

RCM precipitation intensities tend to be heavily biased (Maraun et al., 2010b). The statistical 

downscaling method should also not rely only on temporal disaggregation relationships 

between daily and hourly precipitation because they are likely to change under a warmer 

climate (Beck, 2013; Westra et al., 2014).  

Against this background, an analogue day method is developed. By means of the analogue day 

method, local precipitation characteristics, including extremes, can be reproduced on every 

temporal time scale for which observed precipitation data is available. Different approaches of 

finding the analogue days are evaluated, in order to optimise the quality of the statistical 

downscaling method. Similarly to (Willems and Vrac, 2011), daily precipitation and 

temperature are used as predictors conditioned on different seasons and CPs. However, in this 

thesis, the two predictor variables (daily precipitation and temperature) can be combined and 

considered as equally important within the process of finding the analogue days. The 

perturbation of observed hourly precipitation as defined in this thesis is novel to the statistical 

downscaling of hourly precipitation events. In terms of the selection of the predictor variables, 

using temperature as a predictor is important to represent changes in extreme hourly 

precipitation under a warmer climate and is needed to take into account future changes in the 

disaggregation relationships between daily and hourly precipitation. This is because 

particularly convective precipitation events are expected to intensify with higher temperature 

(Berg et al., 2013; Molnar et al., 2014) and can often be linked with extreme hourly 

precipitation (Beck and Bárdossy, 2013; Gregersen et al., 2013). Daily precipitation, as a 

predictor of hourly precipitation extremes, enables the statistical downscaling method to 

create a direct link with the historical weather in terms of precipitation. For example, high 
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temperature in summer can lead to clear skies and dry conditions, but can also result in an 

increased risk of extreme precipitation associated with convective events (Beck and Bárdossy, 

2013). In this context it is also important to note that moisture availability may decline as 

temperature increases (Hardwick Jones et al., 2010). Therefore, the use of daily precipitation 

as a second predictor is very important as it provides additional information about the actual 

amount of precipitation on each day. It needs to be emphasised that RCM simulated 

precipitation intensities, which can be heavily biased, are only used to find the analogue days. 

Conditioning the statistical downscaling method on seasons and CPs is important mainly for 

two reasons. (1) Extreme hourly precipitation is likely to occur more often for certain seasons 

and CPs. (2) The increases in extreme hourly precipitation with higher temperature are likely to 

depend on the season and the CP (Blenkinsop et al., 2015). The main limitation of the analogue 

day method, to only simulate precipitation events observed in the past, is overcome by 

perturbing the observed hourly precipitation records based on a precipitation duration–

temperature relationship.  

The aim of this thesis is to provide estimates of hourly precipitation extremes, which are in 

good agreement with observed records (reliability) over varying time periods (robustness). For 

this purpose, the 99.5th percentile errors between observed and estimated hourly precipitation 

extremes are analysed over different validation periods. By calculating the 99.5th percentile 

error over 100 different bootstrapping samples, the quality of the estimated extreme 

precipitation is assessed beyond the 99.5th percentile only. Two different RCMs are used, the 

RCA4 and the RACMO22E. The stationarity assumption, that the statistical downscaling 

method remain valid under a different climate, is also assessed. Estimates of hourly 

precipitation extremes are validated over the ten warmest summers. In a second test to assess 

the stationarity assumption, the residual time series between observed and estimated annual 

maximum hourly precipitation are analysed for each station.  

The best statistical downscaling method is applied to project hourly precipitation extremes at 

the twelve selected stations using four different GCM-driven RCMs, namely the CM5A-MR 

driven RCA4, ESM-LR driven RCA4, EC-EARTH driven RCA4 and EC-EARTH driven RACMO22E, 

over two time periods, 2030-2055 and 2075-2100, and for two different emission scenarios, 

RCP4.5 and RCP8.5. The ranges of uncertainty are quantified over 100 different bootstrapping 

samples. 



6 | P a g e  
 

1.4 Thesis structure 

This thesis is divided into eight chapters, including this introduction, and is organised as 

follows. Chapter 2 provides an overview of the relevant literature, including (1) the observed 

and projected changes in extreme precipitation and the underlying physical reasons for those 

changes, (2) the subject of dynamical downscaling to project extreme precipitation at higher 

resolution, (3) the different types of statistical downscaling to estimate precipitation extremes, 

and finally (4) the use of atmospheric circulation patterns as an important measure to predict 

extreme precipitation events. Chapter 3 describes the multiple data sets which are applied in 

this thesis and the process of selecting twelve stations for which hourly precipitation are 

estimated in Chapter 6 and 7. In Chapter 4, the fuzzy rules based CP-classification method and 

the statistical downscaling process are described. Chapter 5 presents the results of the fuzzy 

rules based CP-classification. It examines the performances of 180 different CP-classifications 

over the UK using different input parameters, and identifies the most optimal CP-classification 

for the statistical downscaling process. For this finally selected CP-classification, the 

atmospheric pressure patterns of each CP are discussed, as well as the relationships between 

the CPs and extreme hourly precipitation. Chapter 6 provides the statistical downscaling 

results of hourly precipitation extremes based on observed data. First, it derives the 

relationships between precipitation duration and temperature for different seasons and CPs. 

In a next step, hourly precipitation extremes are predicted over different validation time 

periods for the twelve stations. The stationarity assumption of the statistical downscaling 

process is also assessed. In Chapter 7, the RCM data is used instead of the observed data to 

predict hourly precipitation extremes. In the first section, precipitation extremes are predicted 

by the ERA-interim driven RCM data and validated over the same time periods as in the 

previous chapter to assess the reliability and robustness of the downscaling results. In the 

following sections, GCM-driven RCM data is used to estimate hourly precipitation over a 

reference and two future time periods. Chapter 8 summarises the key findings in this thesis. It 

also discusses uncertainties and current limitations of the presented statistical downscaling 

results, as well as the potential for future developments.  
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Chapter 2  

Literature review 

This chapter presents an overview of studies in the past, which are relevant to the subject of 

this thesis. It begins with a short overview of observed trends in extreme precipitation over the 

last decades and then discusses the causes which could have led to these changes. The first 

section ends with an outlook into the future by discussing projections of extreme precipitation 

simulated by climate models. In the following section, the subject of climate models is 

introduced with a specific focus on extreme sub-daily precipitation. After that, different types 

of statistical downscaling methods are presented. The chapter ends with a section about the 

use of atmospheric circulation patterns. 

2.1 Changes in extreme daily and sub-daily precipitation events 

2.1.1 Observed trends 

Given that the globally averaged surface temperature increased about 0.72°C over the period 

1951-2012 (Hartmann et al., 2013), multiple studies in the past assessed the potential impact 

on observed extreme precipitation. On a global scale, Seneviratne et al. (2012) concluded that 

more regions experienced statistical significant increases in the number of extreme 

precipitation events than decreases over the second half of the 20th and early 21st century but 

there are strong regional and seasonal variations. Furthermore, inhomogeneities in the 

measurement conditions and instrumentation technologies, as well as inconsistent methods 

for quality assessment and control of precipitation records (Westra et al., 2014) may have 

contributed to differing results between studies in the past. 

Over western Europe, de Lima et al. (2014) found a tendency towards more daily precipitation 

extremes in Portugal over the 1976-2007 period, but not over the 1941-2007 period. 

Hundecha and Bardossy (2005) found increases in daily extremes in winter and decreases in 

summer between 1958 and 2001 in western Germany. Similarly, Maraun et al. (2009) showed 

an increase in daily extreme events in winter and a decrease in summer between 1961 and 

1995 over the UK. It was suggested that the decrease in summer appeared to be a return to 

earlier levels before 1960. Fowler and Kilsby (2003) also found a decrease in extreme daily 

precipitation in summer between 1961 and 2000. For spring and autumn, they showed an 

increase in daily extremes over the UK. Maraun et al. (2008) updated the trend analysis from 
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1961 to 2006 and found that the decrease in summer extremes might have reversed over the 

most recent ten years in all English/Welsh regions except Northeast England. Overall, the 

increase in winter daily extremes is consistent throughout the UK, while complex changes in 

daily extremes occurred in spring and autumn with opposite changes in different regions of the 

UK.  

In terms of sub-daily extremes, Beck (2013) found that the precipitation extremes over short 

time periods intensified more rapidly compared to daily extremes during the second half of the 

20th century in South West Germany. Ntegeka and Willems (2008) analysed 10min 

precipitation extremes from the Uccle station in Belgium between 1898 and 2004 and found 

that extremes were clustered in the 1910s-1920s, the 1960s and 1990s. Leahy and Kiely (2011) 

assessed sub-daily precipitation extremes during the second half of the 20th century in Ireland 

and showed an increase since the late 1970s particularly in the western part of the country. 

Over the UK, an increase in the number of extreme hourly precipitation occurred between 

1980 and 2009 in summer according to Beard (2010). It was also shown that the number of 

hourly extreme events declined over the same time period for the other three seasons (winter, 

spring, autumn). Paulson (2010) found an increase in the number of extreme sub-hourly 

extreme events between 1988 and 2007 in the southern UK. It needs to be mentioned that a 

20-year time series is very short for providing a robust trend analysis. On the other hand, sites 

with a long time series of historical sub-daily precipitation are likely to have used different 

measurement techniques over their operating lifetime. This can lead to systematic 

inhomogeneities when analysing precipitation records from a single location (Westra et al., 

2014).  

More studies assessing trends in extreme precipitation over Europe were recently summarised 

in Madsen et al. (2014). However, most of them were based on daily precipitation extremes 

due to the lack of long high-quality records at sub-daily scale (Westra et al., 2014). 

2.1.2 Causes 

On a global scale there is medium confidence that human induced global warming has 

contributed to an increase in extreme precipitation as discussed in Seneviratne et al. (2012). 

They stated that observed changes in extreme precipitation appear to be consistent with the 

effects of human induced global warming (e.g. an increase in atmospheric moisture content), 

but a direct cause-and-effect relationship between global warming and extreme precipitation 

could not be found. Min et al. (2011) compared observed and simulated changes in extreme 

daily precipitation over the second half of the twentieth century on Northern Hemisphere land 

areas and concluded that human induced global warming has indeed contributed to an 
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intensification in extreme precipitation. The main challenge in explaining changes in climate 

extremes is to separate climate oscillations (natural variability) from the potential impacts of 

human induced global warming. For example, Ntegeka and Willems (2008) found cyclic 

patterns of 10min precipitation extremes between 1898 and 2004 for one station (Uccle) in 

Belgium and concluded that no strong evidence of a link between global warming and an 

increase in 10min precipitation extremes can be drawn.  

However, the hypothesis that global warming leads to an increase in extreme precipitation is 

physically plausible (Maraun et al., 2008; Westra et al., 2014). The Clausius-Clapeyron (CC) 

equation states that specific humidity, which represents the atmospheric moisture content, is 

expected to increase about 7% per degree of warming (Seneviratne et al., 2012). As a result, 

Pall et al. (2007) suggested the thermodynamic constraint based on the CC equation as a 

predictor for extreme precipitation at mid-latitudes.  

In terms of hourly precipitation extremes, however, other studies (Haerter and Berg, 2009; 

Lenderink and van Meijgaard, 2008) found increases at a rate close to 14% per degree of 

warming compared to the 7% increase suggested by the CC relation. Lenderink and van 

Meijgaard (2008) argued that upward air motions may be intensified by an increase in latent 

heat release to explain super CC scaling (14% increase) of convective precipitation. They 

showed that a super CC relation was only found for extreme hourly precipitation in summer, 

when convective precipitation dominates. For extreme hourly precipitation in winter and for 

daily extremes, a rate close to the CC relation was still found. Berg et al. (2013) showed that 

increases in convective precipitation intensities with temperature indeed exceed the CC 

relation, while large-scale frontal precipitation extremes increase at a rate close to the CC 

relation. They also found a decrease in convective precipitation intensities for temperature 

above ca. 22°C, which can be due to a decrease in relative humidity with rising temperature. 

This indicates that moisture availability becomes the dominant factor in terms of extreme 

precipitation for high temperatures (Hardwick Jones et al., 2010). Haerter and Berg (2009) 

proposed a different explanation of the super CC scaling for hourly extremes. They argued that 

convective precipitation events are naturally more intense than large-scale events, and 

therefore the fact that convective (large-scale) events occur more often for high (cool) 

temperature leads to the super CC relation. In this context it is interesting to note that Molnar 

et al. (2014) showed a statistically significant trend towards more observed convective storm 

events between April and September over the last 30 years in the Alps under a warmer 

climate. Over the UK, (Blenkinsop et al., 2015) found super CC relations of hourly precipitation 

extremes only under anticyclonic conditions in summer.  
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Apart from the precipitation-temperature relationship, other factors also need to be 

considered when estimating changes in precipitation extremes. For example, Kendon et al. 

(2010) noted that changes in soil moisture and potential feedbacks play an important role in 

terms of extreme precipitation. Molnar et al. (2014) showed that local (orography) and 

regional effects limit moisture availability and therefore extreme precipitation. (Blenkinsop et 

al., 2015; de Lima et al., 2014; Fowler and Kilsby, 2003; Leahy and Kiely, 2011) suggested a link 

between changes in extreme precipitation and atmospheric circulation, although uncertainties 

in the projections of changes in storm tracks, particularly for the North Atlantic basin, remain 

high (IPCC, 2013). 

2.1.3 Future projections 

There is evidence, in terms of projections simulated by climate models, for extreme 

precipitation to become more intense and frequent in the future in many regions over the 

globe as stated in Seneviratne et al. (2012). However, it needs to be kept in mind that future 

projections of precipitation changes are more uncertain than those of temperature and there 

is less consistency between different climate models, in particular in terms of extreme 

precipitation (Tebaldi et al., 2006). For projections of temperature extremes regarding the end 

of the 21st century, the main source of uncertainty is found in the emission scenarios. In 

contrast, uncertainties in future projections of precipitation extremes  are mostly due to 

uncertainties within the climate models (Seneviratne et al., 2012).  

Globally, Kharin et al. (2007) estimated based on an ensemble of GCMs that over land the 

present day 20 year return period will reduce to 10.7 years for 2046-2065 and to 9 years for 

2081-2100 on average corresponding to the same return level of annual daily precipitation 

extremes. In this particular ensemble, the change in extreme daily precipitation is most 

pronounced for Central Asia, South Asia and North America. Orlowsky and Seneviratne (2012) 

extended this study to a larger number of CMIP3 ensemble and used seasonal instead of 

annual time scales. It was found that projections of extreme precipitation agree most between 

different models for high latitudes and in the tropics, and in some mid-latitude regions of the 

Northern Hemisphere in winter. In general, models agree better in terms of extreme 

precipitation changes in winter than in summer for most regions. Comprising the evidence of a 

large number of different studies, the IPCC special report on extreme events suggests that “it is 

likely that the frequency of heavy precipitation or the proportion of total precipitation from 

heavy precipitation will increase in the 21st century over many areas of the globe” (Seneviratne 

et al., 2012). 
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Over Europe, Buonomo et al. (2007) showed a widespread increase in extreme daily and 30-

days precipitation based on two RCMs (HadRM2 and HadRM3) even in regions where mean 

precipitation decreases. The magnitude of the changes increased with shorter duration and 

longer return periods. Ban et al. (2015) found that high-resolution climate models project an 

increase in extreme daily (and hourly) precipitation over middle and southern Europe in 

accordance with the CC relation. Evidence derived from multiple studies suggests an increase 

in extreme daily precipitation over northern Europe in particular during winter (Seneviratne et 

al., 2012). Over the UK, Fowler and Ekström (2009) projected an increase in daily precipitation 

extremes during winter, spring and autumn. In summer, no increase in extreme precipitation 

was found. However, it was noted that there is low confidence in projections for summer due 

to poor model performance in this season. It was also shown that the increases in precipitation 

extremes are more pronounced for short-duration (daily compared to ten days). Within the 

framework of the UK climate projections (UKCP09), Jones et al. (2009) used a weather 

generator to project changes in precipitation extremes and found increases in the future 

annual daily precipitation maximum across the UK. 

In terms of sub-daily precipitation extremes, Hanel and Buishand (2010) showed large 

differences in the projections of annual hourly precipitation maxima between different 25km 

RCMs (RACMO2.1, REMO5.7, HadRM3, HIRHAM5 and RCA3) over the Netherlands. The 

changes in precipitation extremes were much higher for shorter duration (hourly compared to 

daily). Gregersen et al. (2013) assessed two different 25km RCMs (RACMO and HIRHAM) over 

Denmark and also found significant increases in hourly precipitation extremes. Over the 

southern UK, Chan et al. (2014) and Kendon et al. (2014) projected an increase in hourly 

precipitation extremes in winter based on a 1.5km RCM and a 12.5km RCM. During summer, 

the 1.5km RCM also projected an increase in extreme hourly precipitation, which was not seen 

in the 12.5km RCM. It can be assumed that the projections of the high-resolution RCM are 

more reliable as it reproduced the observed hourly precipitation characteristics more 

realistically as discussed in Section 2.2.2. It was therefore suggested that previous results 

derived from coarser-resolution RCMs should be revised since changes in convective events 

could have been misrepresented. 

Instead of only focusing on the RCM simulated precipitation variable, other studies applied 

statistical downscaling methods to project sub-daily precipitation extremes. For example, Beck 

and Bárdossy (2013) predicted an increased risk of extreme hourly precipitation over 

southwestern Germany based on changes in daily MSLP and temperature. Willems and Vrac 

(2011) showed increases in 15min hourly precipitation extremes for one station at Belgium, 
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but also highlighted the wide range in projections depending on the climate model and the 

statistical downscaling method.  

For a more detailed summary regarding projected precipitation extremes over Europe, the 

reader is referred to Madsen et al. (2014).  

2.2 Climate modelling 

2.2.1 Global climate models (GCMs)  

Global climate models (GCMs) project the future climate by taking into account the impact of 

changing concentrations of greenhouse gases in the atmosphere. Projections based on GCMs 

provide spatially consistent information for all regions, while large-scale modes of variability, 

such as the El-Niño-Southern Oscillation (ENSO) and the monsoon systems, which affect 

precipitation extremes, are also attempted to be simulated in GCMs. However, due to the 

coarse spatial resolution GCMs cannot represent all the physical processes that are important 

in terms of precipitation extremes (e.g. cyclones, fronts and convective events). The simplified 

representation of topography and geography in GCMs is another limitation in simulating 

reliable patterns of precipitation extremes (Goodess, 2012). Therefore, downscaling 

techniques are required to improve the poor representation of precipitation associated with 

GCM projections. There exists two different methods to downscaling, namely dynamical 

downscaling and statistical downscaling.  

First, dynamical downscaling is a procedure of nesting a Regional Climate Model (RCM) within 

a GCM to represent the physical processes in the atmosphere with a higher resolution for a 

limited area of interest. It will be discussed in more detail in Section 2.2.2. The second method, 

statistical downscaling, establishes statistical relationships between predictors and the 

predictand (see Section 2.3). 

2.2.2 Regional climate models (RCMs) - Dynamical downscaling  

In general, RCMs contain the same representations of atmospheric dynamical and physical 

processes as in GCMs but on a finer spatial scale (50km or less) over a sub-global domain (e.g. 

Europe). They provide a consistent physical simulation of large and small scale features, while 

also maintaining the interrelationships between precipitation and other climate variables and 

attempting to simulate the transient characteristics of the different processes (Haberlandt et 

al., 2014). Because of their higher spatial resolutions, RCMs usually require a decreased model 

time step and provide a better representation of orographic effects, land-sea contrast and the 



13 | P a g e  
 

mechanism of soil-precipitation feedbacks. They also show an improved representation of 

small-scale physical and dynamical processes (e.g. convective precipitation) and are able to 

generate mesoscale circulation patterns that are not captured by GCMs (Buonomo et al., 

2007). 

RCMs are driven by wind, temperature, humidity and sea surface temperature imposed at the 

boundaries of the RCM domain, all provided by the GCMs, which generally lead to high 

agreement between the large-scale fields in the RCMs and the GCMs (Buonomo et al., 2007).  

However, GCM outputs can differ heavily between each other due to uncertainties in model 

parameters, numerical schemes, resolution, internal variability of the chaotic climate system 

dependent on initial conditions (e.g. soil moisture), natural forced variability (e.g. solar forcing) 

and temporal variability caused by large-scale circulation (e.g. blocking effects and El Niño) 

(Seneviratne et al., 2012). These discrepancies in the GCM outputs can have considerable 

effects on the RCM outputs (Deidda et al., 2013). Kendon et al. (2012) noted that precipitation 

projections rely heavily on the driving model to represent the synoptic variability realistically 

and any changes (e.g. a shift in the storm tracks) could have a significant impact on 

precipitation over the UK. For example, Fowler and Ekström (2009) used thirteen 50km RCMs 

nested into different GCMs to assess changes in the seasonal daily precipitation extremes and 

found that the largest proportion of uncertainty was caused by the lateral boundary conditions 

from the GCMs.  

But differences in the projections of precipitation characteristics were also found between 

different RCMs for a given boundary forcing. These discrepancies are caused by different RCM 

model formulations and are also due to small-scale internal variability generated by the RCMs. 

In order to assess the performances of a RCM, it can be driven by reanalysis data. In this case 

the GCM input data is replaced by quasi observed boundary conditions, which allows the 

isolated assessment of the RCMs predicitive skill. For example, the EURO-CORDEX project 

provides a set of 30 years ERA-interim reanalysis driven RCMs. Reanalysis-driven RCM 

simulations not only exclude systematic biases inherited from the GCM, in theory they should 

also be able to reproduce the actual day-to-day weather. This allows a more comprehensive 

assessment of the RCM downscaling skill (Maraun et al., 2010b). Although (Chan, 2013; 

Kendon et al., 2012) noted that reanalysis-driven RCMs cannot be expected to exactly 

reproduce the day-to-day sequences of the observed data due to the large RCM domain size 

and due to the fact that observed data are only fed into the RCM at the lateral and sea surface 

boundaries.  
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Over more than a decade, RCMs have continuously been improved in the generation of 

climate projections within international coordinated frameworks such as the PRUDENCE 

(2001-2004), ENSEMBLES (2004-2009) and EURO-CORDEX (2009-present) project. A very 

important aspect in this context is the increased spatial resolution over which RCMs generate 

climate projections. Nowadays, the EURO-CORDEX project provides climate projections for 

certain regions at a spatial resolution of 12.5km.  

However, limitations in RCMs still exist. For example, most RCMs are not able to explicitly 

resolve physical processes such as radiation, convection, cloud microphysics and land 

atmosphere interaction affecting the precipitable water. Instead, they use parameterization 

schemes, which simplify the complexity of the real world processes, and leads to inherent 

model uncertainties in terms of precipitation. One example is the formation of clouds 

simulated by two separate schemes. Clouds and precipitation caused by atmospheric 

processes such as frontal systems or cyclones are resolved by a large-scale scheme, whereas 

clouds and precipitation due to subgrid-scale convective processes are represented by a 

convection scheme as discussed in Maraun et al. (2010b). Also, local characteristics of the 

topography, which affect precipitation patterns, cannot be accurately resolved at the spatial 

resolution commonly used by RCMs. Spatial inhomogeneity of land use, soil moisture and 

vegetation processes are other examples that can lead to uncertainties (Seneviratne et al., 

2012). Some physical processes involving feedbacks such as land-atmosphere interaction, 

ocean-atmosphere interactions, stratospheric processes and blocking dynamics are still 

insufficiently understood. They are of great importance in reproducing climate extremes. In 

terms of stationarity, assumptions need to be made for the parameterization schemes to be 

valid under a different climate. Therefore, Maraun et al. (2010b) concluded that although 

some of the bias in RCMs may be inherited from the GCM simulated lateral boundary 

conditions, RCMs themselves also contribute largely to the uncertainties in the simulated 

precipitation. 

As a result, RCMs generally overestimate the occurrence of wet days (drizzle effect) and thus 

mean precipitation (Buonomo et al., 2007). In terms of precipitation extremes, Gregersen et al. 

(2013) analysed two RCMs (RACMO and HIRHAM) driven by ERA40 data and by GCM 

(ECHAM5) data and found that none of the RCMs runs reproduced the observed seasonal cycle 

realistically. Buonomo et al. (2007) applied two different 50km RCMs and found that daily 

precipitation extremes in the western and upland areas of the UK were underestimated in the 

HadRM2 and overestimated in the HadRM3 due to different parameterization schemes. In the 

South and East of the UK, daily precipitation extremes were underestimated in both RCMs. 

Chan (2013) showed that increasing the spatial resolution (from 50km to 12.5km) of RCMs 
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helps to reduce the biases in orographic precipitation. But RCMs, which rely on convection 

parameterization, are still not able to simulate local convective precipitation events 

realistically (Westra et al., 2014). This particularly affects the representation of extreme sub-

daily precipitation. 

For example, Gregersen et al. (2013) compared temporal and spatial characteristics of hourly 

precipitation extremes from three different RCM runs at 25km resolution, representing one 

ERA40-reanalysis driven run (ERA40 driven RACMO) and two GCM-driven runs (ECHAM5 

driven RACMO and ECHAM5 driven HIRHAM). They found that neither the temporal changes 

nor the spatial structure in observed local extreme hourly precipitation were well reproduced. 

Comparing the two RCMs (RACMO and HIRHAM) driven by GCM (ECHAM5) data, large 

differences in hourly extreme precipitation intensities were found, as well as significantly 

different changes in hourly extreme precipitation intensities between the two RCMs over time. 

It was also shown that the HIRHAM RCM driven by ECHAM5 GCM data exhibited a general bias 

towards too many precipitation extremes in spring. In a different study, Hanel and Buishand 

(2010) found large differences in the distribution between annual hourly precipitation maxima 

in the Netherlands simulated by five RCMs at 25km (RACMO2.1, REMO5.7, HadRM3, HIRHAM5 

and RCA3) and high-quality observed radar data. The negative bias in the location parameter, 

which is found for the majority of the RCM simulations, implies that the RCMs tend to 

underestimate annual hourly precipitation maxima. They also showed large differences 

between hourly precipitation extremes for different RCMs but the influence of the driving 

model (GCM-driven or ‘perfect boundary’ ERA40 reanalysis driven) on the hourly precipitation 

extreme distributions was in most cases small. Several studies (Chan et al., 2014a; Chan et al., 

2014b; Kendon et al., 2014) found that even 12.5km RCMs significantly misrepresented 

extreme hourly precipitation particularly in summer, where hourly extremes tend to be most 

intense. 

Over the last few years, RCMs at 1km to 5km resolution have been tested for small domains, 

such as the Alpine Region (Ban et al., 2014; Ban et al., 2015; Hohenegger et al., 2008) or the 

southern part of the UK (Chan et al., 2014a; Kendon et al., 2014; Kendon et al., 2012). These 

models provide a spatial resolution at which clouds and convection can be explicitly resolved, 

no convection parameterization is required and the diurnal precipitation cycle tends to better 

reproduced (Seneviratne et al., 2012). In fact, several studies (Ban et al., 2014; Chan et al., 

2014b; Kendon et al., 2014) showed that RCMs can reproduce hourly precipitation, including 

extremes, characteristics more realistically when run at high resolution in comparison with 

those runs relying on parameterized convection. The former produced more short-lived high 

peak intensity precipitation as a result of the convection-resolving structure. In the 12.5km 
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RCMs, precipitation was too persistent due to light rain and this bias was considerably reduced 

in 1.5km RCMs (Kendon et al., 2012). Apart from that, the differences between convective and 

large-scale precipitation were much more realistically simulated for 1.5km RCMs compared to 

12.5km RCMs.  

However, the 1.5km RCMs still tend to overestimate extremes. This is possibly due to the lack 

of physical understanding of the complex mechanism leading to convective precipitation 

(Willems et al., 2012). Although RCMs at kilometre-scale are able to simulate convection on 

the model grid, they cannot resolve convective plumes and smaller showers (Chan et al., 

2014a; Kendon et al., 2012). It also needs to be pointed out that even the 1.5km RCM is not 

able to provide projections of precipitation on a local-scale, which is particularly important in 

terms of representing convective precipitation events and no clear evidence was found that 

the 1.5km RCM is superior to the 12.5km RCMs at the daily scale (Chan, 2013).  

Due to computational limitations, previous studies have been limited to a single season 

(Hohenegger et al., 2008), selected events (Attema et al., 2014) or small spatial domains (Ban 

et al., 2014; Chan et al., 2014a; Chan et al., 2014b; Chan, 2013; Kendon et al., 2012). Longer 

multi-model ensembles simulations are required to draw broader conclusions on how 

precipitation extremes will change under a future climate. This will improve as computational 

power increases and more high-resolution modelling studies become available. Until then, the 

use of RCMs at coarser resolution with convective parameterization for the projection of 

precipitation events remains necessary (Chan et al., 2014a). 

As a consequence of the current limitations, RCM hourly precipitation projections should 

always be applied with great caution and alternative methods, such as statistical downscaling 

techniques, should be considered whenever possible (Hanel and Buishand, 2010). 

2.3 Statistical downscaling  

2.3.1 Introduction 

To study the impacts of climate changes, many geo-physical and bio-geochemical models (e.g. 

rainfall-runoff models) require precipitation as the driving input in finer spatial and temporal 

scales than what may be currently simulated by Global Climate Models (GCMs). Two types of 

downscaling methods exist, namely dynamical and statistical downscaling, to bridge the spatial 

and temporal gap. Section 2.2.2 already discussed the dynamical downscaling method and its 

associated limitations. In comparison with the dynamical downscaling method, statistical 

downscaling methods may be more capable of producing finer spatial and temporal scales 
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with less computational resources. They can also be used to reduce biases in the precipitation 

variable simulated by the climate models. The underlying assumption is that large-scale 

atmospheric variables (e.g. MSLP) and certain surface variables (e.g. temperature) are more 

reliably represented in climate models than precipitation (Beck and Bárdossy, 2013). In the 

purest form, the idea of statistical downscaling describes a mapping between a predictor X and 

the expected values of a predictand Y as defined in Equation 2.1. 

𝐸(𝑌/𝑋) =  𝑓(𝑋, 𝛽) (2.1) 

𝛽: A vector of unknown parameters that needs to be calibrated  

In the following, statistical downscaling methods are categorised into three different groups. 

The first group comprises all the perfect prognosis (PP) methods. Those methods establish 

statistical relationships between climate variables. In the context of climate change 

projections, PP methods are based on the assumption that the predictors simulated by climate 

models represent a physically plausible realization of a future climate and that the observed 

relationships between predictors and precipitation remain stationary in the future.  

Methods in the second group, model output statistics (MOS), make direct use of the simulated 

predictand (precipitation) by climate models. 

The last group comprises the so-called weather generators (WGs). WGs represent statistical 

methods that generate local-scale weather time series resembling the statistical properties of 

the observed weather (precipitation). In their most basic form, WGs are calibrated against 

observations on local-scale only and are therefore technically not a downscaling method 

(Maraun et al., 2010b). In order to take into account climate changes in the future, change 

factors are derived from climate models. 

2.3.2 Perfect prognosis (PP) 

A PP method defines a relationship between a set of predictors and the expected value of a 

predictand. Simple PP methods ignore any residual noise term, while the state-of-the-art PP 

methods explicitly incorporate natural variability and extreme events by adding noise into the 

model (Maraun et al., 2010b).  

The main advantage of PP methods is that the predictand is simulated based on statistical 

relationships that can be observed in reality. The quality of the statistical relationships is 

expected to be improved in cases where the predicted variable is averaged in space and/or 

time (Wilby et al., 2003).  
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The main disadvantage of the method is that PPs often only explain a fraction of the observed 

natural climate variability, in particular in terms of extreme precipitation (Hundecha and 

Bardossy, 2008). It is also highly sensitive to the selection of the predictor variables and the 

statistical transfer functions describing the relationship between the predictor and the 

predictand. The projection of future precipitation extremes is particularly problematic since 

these extreme events tend to lie at the margin or beyond the range of the calibration data set 

(Wilby et al., 2002).  

2.3.2.1 Predictor selection 

In terms of estimating precipitation, several different predictors can be used including 

variables such as circulation patterns (see Section 2.4), humidity and temperature often in a 

combined approach. Pure PP downscaling methods do not in general simulate explicitly 

physical coherence between predictor and predictand. This can be problematic. For example, 

high temperature (predictor) in summer may be due to dry conditions (predictand) as a result 

of clear skies or high temperature may cause convective wet conditions. Therefore, the 

correlations are difficult to interpret (Maraun et al., 2010b).  

In a climate change context, it is also important that predictors are able to capture the effects 

that a warmer climate has on precipitation. In particular, measures of temperature or humidity 

are needed to represent increases in the water-holding capacity of the atmosphere under 

warmer conditions. Downscaling approaches which implicitly assume that changes in 

precipitation are only due to changes in atmospheric circulation are therefore at least 

questionable. For example, several studies (Haberlandt et al., 2014; Kendon et al., 2014; Wilby 

and Wigley, 1997) showed that changes in precipitation cannot be explained by changes in CP 

frequency only. 

Other studies (Beck and Bárdossy, 2013; Berg et al., 2013; Blenkinsop et al., 2015; Hardwick 

Jones et al., 2010; Lenderink and van Meijgaard, 2008; Molnar et al., 2014) specifically 

assessed the observed relationships between extreme precipitation and temperature. These 

studies had the common conclusion that the intensity of extreme precipitation increased with 

higher temperature. Further, some studies (Hardwick Jones et al., 2010; Lenderink and van 

Meijgaard, 2008) showed that the rate of increase is greater for hourly compared to daily 

precipitation. (Berg et al., 2013) found that the rise in the intensity of extreme precipitation 

with temperature is substantially higher for convective precipitation compared to stratiform 

precipitation events. They suggested that this is due to physical processes as convective 

plumes entrain more moisture from the surrounding atmosphere with higher temperature. It 

was also shown that the relative contribution of convective precipitation events to the total 
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sum of precipitation increased with temperature. However, the intensity of convective 

precipitation extremes decreased for temperature above 22°C, which may be partly caused by 

a decline in relative humidity with rising temperature. It indicates that temperature as the only 

predictor is also not sufficient to estimate extreme precipitation. Similarly, Blenkinsop et al. 

(2015) and Molnar et al. (2014) noted that extreme hourly precipitation depends on various 

other factors, such as atmospheric circulation, local topography and complex physical 

mechanism. Hardwick Jones et al. (2010) used daily mean temperature and maximum daily 

temperature to investigate the relationship between temperature and the intensity of 

precipitation extremes. They found consistent results between the two temperature variables: 

A decrease in precipitation duration as temperature increases. Similarly, Beck and Bárdossy 

(2013) found a decline in the frequency of wet hours with increasing temperature. They 

concluded that higher temperature results in fewer wet hours, but causes a shift in the hourly 

precipitation distribution towards higher intensities in particular in summer for anticyclonic 

conditions. This is consistent with physical considerations (Trenberth, 1999) that stronger 

convective uplift combined with higher moisture content due to an increase in temperature 

should lead to fewer but more intensive precipitation events.   

   

It is important to note that predictors characterized as informative capturing the impact of 

climate change might be of little use if they cannot be realistically simulated by climate 

models. In this context, moisture-related variables are generally considered as problematic 

(Maraun et al., 2010b).  

In general, the relationships between predictors and predictand should be stationary (Maraun 

et al., 2010b). In some studies additional auto correlated driving variables are required, to 

simulate the precipitation variable more realistically (Beuchat et al., 2012; Mezghani and 

Hingray, 2009). Apart from climate variables, geographical variables such as elevation, distance 

to the coast, advective continentality (represents the degree at which incoming air mass 

travelled over land versus over the ocean) and topographical slope can also be used to 

downscale precipitation (Vrac et al., 2007). However, taking too many predictors into account 

leads to over fitting and can decrease the predictive power of the downscaling model.  

In terms of the climate model output, Beuchat et al. (2012) noted that GCM projections are 

more reliable on monthly than on daily timescales and therefore used monthly predictors to 

downscale daily precipitation. Wilby and Wigley (2000) found that the grid point nearest to the 

location of the predictand does not always exhibit the strongest predictor-predictand 

relationship. Karl et al. (1990) showed that regression-based downscaling methods benefit 
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from the standardization of the predictor variables, so that the corresponding distributions of 

the observed and the present-day GCM/RCM predictors are in better agreement. 

2.3.2.2 Different PP models 

Linear and nonlinear regression based models 

For linear models, the relationships between the predictors 𝑋𝑖  and the mean µ of the 

predictand 𝑌, such as local-scale precipitation, is described in Equation 2.2. 

µ =  𝛽0 +  𝛽1𝑋1 + .. (2.2) 

𝛽𝑖: Strength of the influence of the predictor 𝑋𝑖   

The predictand 𝑌 is Gaussian distributed, with mean µ and some variance which remains 

unexplained. However, the Gaussian assumption may only be valid for annual precipitation, 

whereas on shorter time scale (e.g. daily or even sub-daily) distributions of precipitation 

intensities are more and more skewed. 

In contrast, General Linear and additive Models (GLMs) assume the distribution of the local-

scale predictand 𝑌 no longer to be Gaussian and instead allow a wide range of distributions. 

The conditional mean µ of the corresponding distribution is still calculated by a linear function 

of a set of predictors 𝑋𝑖  , but the mean µ of the predictand may be transformed by a link 

function 𝑔( ) as shown in Equation 2.3. 

𝑔(µ) =  𝛽0 +  𝛽1𝑋1 + .. (2.3) 

Similarly to the linear models, the variance of the predictand 𝑌 is not explicitly simulated and 

the unexplained variability is represented by drawing random numbers from the modelled 

distribution of 𝑌. Linear regression-based models therefore generally underrepresent the 

variance of the precipitation. Instead, Wilby et al. (2002) combined a linear regression-based 

method with a stochastic weather generator to artificially inflate the variance of the 

downscaled daily precipitation time series. The combined approach reproduced the seasonal 

cycle in terms of the precipitation mean and variance but still underestimated the variance of 

the daily precipitation variable. 

For better representing the variance or the extreme tail of the precipitation variable, Vector 

Generalized Linear Models (VGLMs) have been developed. Instead of only predicting the 

conditional mean of a distribution, a vector of distribution parameters is predicted as 
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explained in Equation 2.4. The vector 𝑝𝑘  could for example represent the mean 𝑝1 =  µ and 

the variance 𝑝2 =  𝜎 of a precipitation distribution (Maraun et al., 2010b). 

𝑔𝑘(𝑝𝑘) =  𝛽𝑘,0 + 𝛽𝑘,1𝑋𝑘,1+ .. (2.4) 

In general, regression-based models are able to simulate precipitation intensities not observed 

in the past, which is particularly important in a climate change context (Mezghani and Hingray, 

2009). However, a common drawback of regression-based models is the low inter-annual 

variability in terms of precipitation patterns and that regression-based methods tend to be 

highly sensitive to the calibration period (Hundecha and Bardossy, 2008). Another issue is that 

linear regression models perform poorly in reproducing non-linear shapes or even some shape 

discontinuity in the precipitation variable and normally perform better at the regional scale 

than at local-scales (Mezghani and Hingray, 2009).  

In order to capture nonlinear and nonadditive relationships between the large-scale variable 

and local precipitation, nonlinear regression-based methods have been developed. Artificial 

neural networks (ANNs), as applied in Haylock et al. (2006) and Olsson et al. (2001), is one 

example of this technique. Haylock et al. (2006) compared six statistical methods, including 

four regression-based ANN, one correlation analysis and one resampling method, and two 

dynamical downscaling models in their skill to downscale seven indices of extreme 

precipitation at the station scale. They found that non-linear ANNs were the most skilful in 

terms of modelling inter-annual variability of the indices but showed a strong negative bias, 

which implies a tendency to underestimate extremes.  

The popular approach of conditioning local-scale precipitation on circulation patterns can be 

considered as a special case of a regression model. The difference is that instead of a 

continuous field of predictors, a set of categorical circulation patterns 𝑋𝑙  is used to predict the 

parameters 𝑝𝑘 of a precipitation distribution as shown in Equation 2.5. 

𝑝𝑘 =  𝑝𝑘(𝑋𝑙) (2.5) 

The vector 𝑝𝑘 describes the distribution parameters of the local-scale predictand and 𝑙 stand 

for the different circulation patterns. Beck and Bárdossy (2013) used temperature as an 

additional predictor to subdivide each CP into five classes. They predicted future regional 

distributions of hourly precipitation amounts based solely on daily mean sea level pressure and 

temperature, which are considered as more reliably simulated than precipitation by climate 

models (Kendon and Clark, 2008). The observed empirical distribution of hourly precipitation 
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depending on the CP-temperature class was assumed to be constant under a future climate. 

The set of CPs are considered as the link between large-scale atmospheric conditions and the 

local precipitation, while temperature is regarded as the climatic key factor triggering local 

changes in convective uplift and moisture capacity in the atmosphere (Molnar et al., 2014). As 

a result, Beck and Bárdossy (2013) projected an almost 20% increase in hourly precipitation 

extremes (99% quantiles) in summer between 2000 and 2060 mainly due to higher 

temperatures, although they also showed that summer is on average becoming drier. It needs 

to be noted that these results are derived from an average of 30 stations in order to guarantee 

a robust estimation of the empirical precipitation distribution. For generating hourly 

precipitation extremes on a local-scale, the historical precipitation time series would need to 

be longer and the number of CPs should be reduced. Another limitation is that the two 

predictors, SLP and temperature, did not include any information about the precipitable water 

in the atmosphere and therefore may not be enough to predict changes in precipitation 

patterns reliably. It also needs to be mentioned that new and unobserved conditions, which 

are likely to occur under a future (warmer) climate, cannot be simulated by this particular 

method.  

In many other studies, statistical downscaling methods have been conditioned on CPs as well 

to estimate the parameters of the precipitation variable more accurately (Bárdossy and 

Pegram, 2011; Bárdossy et al., 2002; Willems and Vrac, 2011; Yang et al., 2010). The main 

advantages and limitations as well as examples of downscaling methods using CPs are further 

discussed in Section 2.4. 

In terms of extreme precipitation analysis, it needs to be noted that the distributions of 

extreme precipitation tend to be heavily tailed. Regression-based statistical models which do 

not consider that are likely to misrepresent high extremes (Maraun et al., 2010b). Also, 

regression-based models have been typically applied for downscaling daily precipitation 

(Beuchat et al., 2012; Haylock et al., 2006; Hundecha and Bardossy, 2008). However, for many 

hydrological applications sub-daily precipitation is often required. Therefore, different 

methods have been proposed to disaggregate the simulated daily precipitation estimates to 

sub-daily precipitation (Koutsoyiannis and Onof, 2001; Mezghani and Hingray, 2009; Molnar 

and Burlando, 2005; Nguyen et al., 2007). Mezghani and Hingray (2009) found that the 

explanatory power of the climate predictors is better at the regional scale than at the local-

scale and thus downscaled daily precipitation first to a regional scale, before they then 

disaggregated regional daily precipitation in time and space to local-scale sub-daily 

precipitation. As a result, they increased the robustness of the relationship between predictor 

and predictand. For the temporal disaggregation of daily to sub-daily precipitation, they used 
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an analogue method which was found to preserve the large spatial differences in precipitation 

maxima between different regions. A fundamental problem in the temporal disaggregation 

from daily to sub-daily precipitation, however, is caused by the underlying assumption, that 

the observed relationship between daily and sub-daily precipitation remain valid under a 

changing climate. But changes in daily and sub-daily precipitation may be considerably 

different in the future. For example, Beck (2013) found that the ratio between hourly and daily 

precipitation intensities has been increased during the second half of the 20th century in terms 

of average and extreme precipitation.  

Analogue method 

In a nonparametric analogue downscaling method, the most similar weather situation in the 

past is identified and the corresponding local-scale observation 𝑌( ) is selected as the 

predictand for this particular weather situation. It means that the simulated precipitation 

intensities by climate models, which tend to be uncertain (Beck and Bárdossy, 2013), are only 

used for finding the analogue day in the past. Both large-scale atmospheric and surface 

weather variables can be used to identify historical weather situations (Maraun et al., 2010b). 

For example, Lee and Jeong (2014) focused on daily precipitation to find similar days in the 

past by applying a k-nearest neighbour-resampling process. Mezghani and Hingray (2009) used 

daily regional precipitation and temperature values to identify analogue days in the past. In 

order to improve the selection of analogous weather conditions, they suggested to introduce 

synoptic atmospheric variables. Buishand and Brandsma (2001), however, showed that 

incorporating additional synoptic variables does not necessarily lead to improvements in the 

selection of analogue days. Nevertheless, Willems and Vrac (2011) classified the historical 

weather situations into different CPs and months before they used daily temperature and 

precipitation to find the most similar day in the past and to estimate sub-daily precipitation. 

Both surface variables, daily temperature and precipitation, can be considered as meaningful 

predictors in terms of projecting sub-daily precipitation. The temperature variable is expected 

to be of high predictive power in terms of taking into account the impacts of a changing 

climate. Daily precipitation enables the downscaling method to directly reflect on the historical 

weather situation in terms of precipitation. However, there was an increased risk of a limited 

sampling variability as the number of historical weather situations and their corresponding 

precipitation records became too restricted due to the high number of different classes (CPs 

and months). It also needs to be mentioned, that temperature differences between the 

reference and the future period, which are important in terms of perturbing the analogue day, 

were only calculated distribution-wise but not event-wise. As a result, the physical coherence 
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between the predictor (temperature) and the predictand (hourly precipitation) was also 

restricted. 

In general, however, a main advantage of analogue day methods is that that they are able to 

capture physical coherence between the predictor variables (e.g. sea level pressure, 

temperature or daily precipitation) and the predictand (hourly precipitation), as well as spatial 

coherence between different sites (Maraun et al., 2010b). For example, Mezghani and Hingray 

(2009) applied the analogue methods to disaggregate daily regional precipitation in space and 

time and found that the analogue method was able to reproduce observed spatial differences 

in sub-daily precipitation maxima between different regions. Analogue methods are also able 

to simulate infrequent but observed extreme hourly precipitation events (Mezghani and 

Hingray, 2009), as well as site-specific precipitation characteristics (Willems and Vrac, 2011) by 

not making restrictive assumption of the precipitation distribution (Gangopadhyay et al., 

2005). Another reason for using an analogue day method is its technical simplicity along with 

the fact that it still provides comparable or better performances compared to other statistical 

downscaling methods (Zorita and Von Storch, 1999). 

On the other hand, the main disadvantage of the standard analogue method is that the 

observed relationships between predictor and predictand are stationary. It means the 

standard analogue method is not able to simulate precipitation events that have not been 

observed in the past, which makes the projection of future precipitation events under a 

different climate unfeasible. As a consequence, Mezghani and Hingray (2009) estimated daily 

regional weather variables (temperature and precipitation) from GLMs (see above) to identify 

the analogue day and then used the temporal patterns (not the historical record) for this day 

to disaggregate the simulated regional weather variables (daily precipitation) in space and 

time (hour). In this case, the disaggregation factor between daily precipitation and hourly 

precipitation is assumed to be stationary in the future which may not be valid under a 

changing climate (Larsen et al., 2009). Instead, Willems and Vrac (2011) suggested the use of a 

perturbation factor based on the Clausius-Clapeyron (CC) relationship to allow downscaled 

precipitation intensities by the analogue day method to be higher than the observed records. 

The CC rate assumes 7% increase in precipitation per 1°C temperature increase, which is 

equivalent to the rise in the water vapour holding capacity of the atmosphere. However, 

Lenderink and van Meijgaard (2008) questioned the applicability of the CC equation in terms of 

projecting hourly precipitation extremes into the future by showing that for a station in the 

Netherlands extreme hourly precipitation may in some cases increase 14% instead of 7% per 

degree of warming. Similar results were found for the United States (Mishra et al., 2012) and 

under subtropical climate conditions for Hong Kong (Lenderink et al., 2011). On the other 
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hand, Hardwick Jones et al. (2010) showed that the relationship between extreme 

precipitation and temperature can also become negative for high temperature. 

2.3.3 Model output statistics (MOS) 

The second statistical downscaling group, model output statistics (MOS), uses the precipitation 

variable simulated by climate models directly to estimate precipitation events. The main 

difference between PP downscaling methods and MOS lies in the fact, that for MOS the 

statistical relationship is calibrated based on simulated predictors and observed predictand 

(precipitation) instead of observed predictors and predictands in PP methods. The predictand 

can be derived on the same spatial scale as the predictor (Bárdossy and Pegram, 2011; 

Lenderink et al., 2007) or the predictand can be downscaled to site-specific precipitation 

(Willems and Vrac, 2011). The predictors in a MOS method can be either simulated time series 

or properties of the simulated intensity distribution. The same holds true for the predictand 

variable; it can either be a precipitation time series or properties of the precipitation intensity 

distribution. In cases, where the calibration of the MOS method is done for a climate model 

run, which is not driven by reanalysis data, the MOS can only establish statistical relationships 

between the distribution of the simulated predictor variable and the observed predictand 

variable. However, if the climate model is driven by reanalysis data, which means the 

simulated predictor and the observed predictand are directly related from day to day, 

regression techniques can be applied as discussed for the PP method. For all MOS methods it 

needs to be kept in mind that the statistical relationships are model specific and cannot be 

readily applied to any other climate model (Maraun et al., 2010b).  

2.3.3.1 Delta method 

The delta method assumes that the future precipitation 𝑦𝑖+𝑇 at a time 𝑖 + 𝑇 can be calculated 

by perturbing the observed precipitation 𝑦𝑖,𝑜𝑏𝑠 at a time 𝑖 in the historical records by the ratio 

of the mean simulated future precipitation �̅�𝑠𝑖𝑚
𝑓𝑢𝑡

 and the mean simulated control (or 

reanalysis-driven) run precipitation �̅�𝑠𝑖𝑚
𝑐𝑜𝑛.  In this simplest delta approach only future changes 

in the mean precipitation are considered as described in Equation 2.6, whereas changes in the 

variance of the precipitation distribution or in the number of wet days are ignored. However, 

Shabalova et al. (2003) incorporated future changes in the variance of the precipitation 

distribution into the delta method and produced significantly different results compared to the 

simplest delta approach. Another option is to derive and apply the change factors for different 

quantiles of the precipitation distribution. 
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𝑦𝑖+𝑇 = 𝑦𝑖,𝑜𝑏𝑠  
�̅�𝑠𝑖𝑚

𝑓𝑢𝑡

�̅�𝑠𝑖𝑚
𝑐𝑜𝑛 (2.6) 

All delta methods rely on the climate model’s ability to simulate long-term changes in 

precipitation. Instead of perturbing an observed precipitation time series, Lenderink et al. 

(2007) used the corrected RCM control run time series and perturbed it by change factors 

derived from the RCM runs. In this case the RCM control run time series covered 90 years of 

data, although only 35 years of observations were available. Nevertheless, all delta methods 

are subject to the following two limitations in the change factors: (1) when they are derived 

from daily precipitation they may not be the same for sub-daily precipitation (Beck, 2013; 

Larsen et al., 2009), and (2) when they are derived on a grid-scale they may not be applicable 

to local-scale. For example, Olsson et al. (2012) showed that the local change factors were 

generally larger by a factor of 5% to 10% compared to the gridded change factors.  

2.3.3.2 Direct forcing method 

In contrast to the delta method, the direct forcing method uses the simulated future 

precipitation 𝑦𝑠𝑖𝑚
𝑓𝑢𝑡

 ‘directly’ and corrects the biases inherited from the climate model. In the 

simplest form, it only considers ratio between the mean observed precipitation �̅�𝑜𝑏𝑠
𝑐𝑜𝑛 and the 

mean control run (or reanalysis driven) precipitation �̅�𝑠𝑖𝑚
𝑐𝑜𝑛 as described in Equation 2.7. 

𝑦𝑖
𝑓𝑢𝑡

= 𝑦𝑠𝑖𝑚
𝑓𝑢𝑡

 
�̅�𝑜𝑏𝑠

𝑐𝑜𝑛

�̅�𝑠𝑖𝑚
𝑐𝑜𝑛 (2.7) 

More sophisticated methods also correct the biases of the variance or of different quantiles 

(Sunyer et al., 2015). The direct forcing method aims to capture changes in future 

precipitation, such as wet day probability or skewness of the precipitation distribution. It also 

provides precipitation values, which are physically consistent as it directly uses the 

precipitation simulated by the climate model. However, the bias correction may disrupt the 

internal physical coherence inherited by the climate models, in particular between 

precipitation and temperature. The direct forcing method also relies heavily on the climate 

model’s ability to reproduce the precipitation temporal and spatial variability realistically 

(Lenderink et al., 2007). Where the simulated precipitation has simply no skill in capturing the 

temporal and spatial structure of precipitation, the application of a direct forcing method 

should not be justified even if the corrected and observed intensity distribution are brought 

into perfect agreement. It should also be pointed out that the direct forcing method is not able 
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to downscale precipitation events to local-scale (Maraun, 2013), since the precipitation 

estimates are restricted to the spatial scale on which the climate model provides data. 

Instead of only considering the ratio of the mean precipitation, Bárdossy and Pegram (2011) 

applied a more flexible tool, so-called quantile mapping, to project future daily precipitation 

extremes. In this case, the bias correction of the precipitation intensities is conditioned on the 

precipitation distribution quantiles. However, the quantile mapping method does not explicitly 

take into account the tail of the distribution, and as a consequence extreme precipitation may 

not be accurately corrected (Maraun et al., 2010b).  

In terms of projecting future precipitation extremes on an hourly time-scale, the main 

limitation of the direct forcing method is that climate models are not able to represent the 

characteristics of extreme hourly precipitation sufficiently (Lenderink and van Meijgaard, 

2008). However, this is likely to change in the future as RCMs will use finer spatial resolutions 

and thus resolve physical processes more realistically (Kendon et al., 2012).  

2.3.4 Weather generator (WG) 

Weather Generators (WGs) can be described as statistical models that generate random 

sequences of weather variables, with statistical properties that resemble those of the 

observed weather. The general motivation behind the usage of WGs is their capacity to 

simulate synthetic time series of unlimited length, the possibility of filling missing values, and 

their computational efficiency. WGs are also able to simulate precipitation at very high 

temporal and spatial resolution. In contrast to pure PP and MOS methods, which simulate the 

temporal and spatial correlations only by the predictors, WGs explicitly aim to generate time 

series which capture the observed temporal and spatial structure.  

For example, Jones et al. (2009) introduced the UK climate projections (UKCP09) based on a 

weather generator, which provided future daily and hourly precipitation time series. Molnar 

and Burlando (2005) applied a WG based on cascade models to disaggregate observed daily 

precipitation to 10 min precipitation. The advantage of the cascade models lies in the fact that 

they only require a small number of parameters. Beuchat et al. (2011) and Kilsby et al. (2007) 

used a WG based on Poisson cluster processes, which incorporates physical interpretable 

quantities such as storm arrival rate, mean cell intensity and mean number of cells per storm, 

and have been found to provide meaningful simulation down to hourly timescale. The 

simulated precipitation cells may be seen, at least conceptually, as loosely representing small-

scale precipitation-bearing meteorological structures. Burton et al. (2010) used a variant of this 

WG based on the Neyman Scott Rectangular Pulses (NSPR) model to generate transient site-
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specific daily precipitation time series for the time period 1997-2085. The NSPR stochastic 

model also provided the basis for the standard UK industrial urban drainage design software 

and has been shown to realistically represent precipitation extremes for engineering impact 

studies (Kilsby et al., 2007).  

Similarly to the MOS delta method, the main disadvantage of WGs in terms of projecting 

hourly precipitation extremes lies in the fact that WGs rely on change factors. These change 

factors are normally derived from daily precipitation simulated by climate models (Onof and 

Arnbjerg-Nielsen, 2009). However, it is highly questionable that changes in hourly precipitation 

are the same as changes derived from daily precipitation (Larsen et al., 2009). Change factors 

derived from climate models are also not able to represent localized convective precipitation 

events (Chan, 2013), which are particularly important concerning hourly precipitation 

extremes. Apart from that, WGs often underestimate the inter-annual variability 

(overdispersion) and the frequency of extremes. This is due to the fact that WGs are not able 

to take into account the climatic processes of the local weather, which exhibit longer-term 

variability. A possible solution to simulate low frequency aspects more realistically is to 

condition specific parameters of the WG on covariates, such as large-scale atmospheric 

circulation (Maraun et al., 2010b). Another option is the Poisson cluster model, in which the 

parameters of the WG for each day are conditional on the particular weather state observed 

on that day.  

2.3.5 Summary 

Statistical downscaling methods are able to add significant value to climate model projections 

of precipitation. It enables precipitation projections on a local- scale, which are particularly 

important for the estimation of flash-floods in urban environments and in small or steep river 

catchments among others.  

In contrast, precipitation projections from GCMs/RCMs should always be considered as 

spatially averaged values (Chan, 2013). Related to the spatial resolution, there is also a 

minimum temporal scale on which RCMs can provide meaningful information in terms of 

precipitation characteristics. As mentioned earlier, even RCMs at 12.5 km considerably 

underestimate extreme hourly precipitation in summer over the UK (Chan et al., 2014a; Chan 

et al., 2014b; Kendon et al., 2014).  

As a consequence, there is a need for statistical downscaling methods to provide projections of 

sub-daily precipitation extremes. Various statistical downscaling methods have been applied in 

the past for this purpose (see Table 2.1). However, remaining gaps still exist. They include 
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uncertainties due to sparse observed data, representation of summer convective precipitation 

events, sub-daily precipitation, changes in small-scale processes and their feedback on larger 

scales (e.g. soil-precipitation feedback and its impact on evaporation) as noted in Maraun et al. 

(2010b), and the assumption of stationarity between the predictor and predictand. In 

particular the representation of extreme precipitation remains a challenging task. This explains 

why only few statistical models are available to simulate sub-daily precipitation extremes. 

Therefore, this thesis will make a valuable contribution to fill the research gap where 

downscaling of hourly precipitation is yet to be much undertaken.  
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Statistical downscaling 
method 

Advantages Disadvantages 

Perfect prognosis 

Linear regression based 
(Hundecha and Bardossy, 
2008; Mezghani and 
Hingray, 2009) 

 Based on statistical 
relationship which can 
be observed in reality 

 Able to simulate 
intensities not observed 
in the past 

 Explains only a fraction 
of the natural climate 
variability (Low inter-
annual variability) 

 Highly sensitive to the 
calibration period 

 Reproduces poorly non-
linear precipitation 
distributions 

 Is typically applied to 
downscale daily 
precipitation, 
disaggregation is 
required to estimate sub-
daily precipitation   

Artificial neural networks 
(Haylock et al., 2006; Olsson 
et al., 2001; Wilby et al., 
1998) 

 Skilful in reproducing 
inter-annual variability of 
precipitation indices 

 Based on statistical 
relationships which can 
be observed in reality 

 Tendency to 
underestimate 
precipitation extremes 

 Explains only a fraction 
of the natural climate 
variability 

Analogue method (Buishand 
and Brandsma, 2001; Lee 
and Jeong, 2014; Mezghani 
and Hingray, 2009; Willems 
and Vrac, 2011) 

 Based on statistical 
relationship which can 
be observed in reality 

 Captures physically 
coherent relationships 
between predictor and 
predictand 

 Is able to simulate 
infrequent but observed 
precipitation extremes 

 Reproduces local 
precipitation 
characteristics 

 Explains only a fraction 
of the natural climate 
variability 

 Is not able to simulate 
events which have not 
been observed in the 
past (Disaggregation or 
perturbation factor is 
needed) 

 For short record time 
series, important 
meteorological situations 
may be missing 
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Model output statistics 

Delta method (Lenderink et 
al., 2007; Shabalova et al., 
2003; Willems and Vrac, 
2011) 

 Preserves observed 
spatial and temporal 
variability 

 Change factor derived 
from daily precipitation 
may not be applicable to 
project sub-daily 
precipitation 

 Change factor are 
derived on grid-scale and 
may thus not be 
applicable to estimate 
local-scale precipitation 

Direct forcing method 
(Bárdossy and Pegram, 
2011; Lenderink et al., 2007) 

 Is able to capture 
changes in wet day 
probability or in the 
skewness of the 
precipitation distribution 
(not restricted by the 
observed distribution) 

 Provides physically 
consistent precipitation 
intensities as they are 
directly simulated by the 
climate model 

 Bias correction may 
disrupt the physical 
coherence (e.g. between 
temperature and 
precipitation) 

 Relies heavily on the 
climate model’s ability to 
reproduce temporal and 
spatial variability 

 Biases in extreme 
precipitation may not be 
accurately corrected 
since the tail of the 
distribution is not 
explicitly considered 

 Cannot provide 
precipitation estimates 
on local-scale (restricted 
to the resolution of the 
climate model) 

Weather generator 

Poisson cluster processes 
(Beuchat et al., 2011; Kilsby 
et al., 2007) 
Cascade-based models 
(Molnar and Burlando, 
2005) 

 Generates precipitation 
series of unlimited 
length 

 Computational efficiency 

 Is able capture the 
observed temporal and 
spatial structure 

 Change factor derived from 
daily precipitation may not 
be applicable to project 
sub-daily precipitation 

 Change factors are derived 
on grid-scale and may thus 
not be applicable to 
estimate local-scale 
precipitation 

 Takes not into account 
natural climate variability 
(low inter-annual 
variability) 

 Underestimates the 
frequency of extremes 

Table 2.1 Summary of the advantages and disadvantages of different statistical downscaling 

methods to estimate precipitation 
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2.4 The use of atmospheric circulation patterns (CPs)  

2.4.1 Introduction 

Categorization of synoptic weather conditions into atmospheric circulation patterns (CPs) is 

commonly used to describe the climate of a certain region (Beck and Philipp, 2010; Huth et al., 

2008; Philipp et al., 2010) and CPs can be considered as a synoptic predictor for forecasting or 

predicting a range of local variables. However, due to the high non-linearity and influence of 

local factors present in the atmosphere, it is not an easy task to describe the relationship 

between atmospheric circulation and precipitation in particular. Nevertheless, several studies 

have shown that precipitation properties can be linked with large-scale CPs over the UK (Lamb, 

1972; Svensson et al., 2002), Germany (Bárdossy et al., 2002; Haberlandt et al., 2014), Iberian 

Peninsula (Corte-Real et al., 1998; Fernández‐González et al., 2012) and the United States 

(Wilson et al., 1992). Naturally, the interest in CP-classification is highest in regions where the 

day-to-day synoptic variability is the main driver of local weather conditions, which is in the 

mid and high latitudes of both hemispheres (Huth et al., 2008). CPs have also been used 

successfully in previous studies to project extreme precipitation occurrences and intensities for 

different regions across Europe (Bárdossy and Pegram, 2011; Brigode et al., 2013; Garavaglia 

et al., 2010; Willems and Vrac, 2011). In order to assess future changes in extreme 

precipitation, GCM/RCM outputs are downscaled based on statistical models with parameters 

depending on the CP. As noted in Haberlandt et al. (2014), by using CPs, temporal and spatial 

persistence of precipitation can be accounted for and the relationship of precipitation with 

other climate variables can be carefully considered. Another motivation to use CPs is based on 

the assumption, that the predictive capacity of climate models is greatest at the multiple, 

rather than the single, grid point level (Grotch and MacCracken, 1991). CPs are also a 

straightforward way to allow for nonlinear, but sensible and physically plausible, relationships 

between the large-scale predictor (CP) and the local-scale predictand (precipitation). The 

nonlinearity between predictor and local predictand is captured by the CPs, as each of them is 

supposed to exhibit a consistent and distinct relationship with extreme precipitation (Bárdossy 

et al., 2002; Garavaglia et al., 2011). CPs can also be very useful in distinguishing between 

frontal and convective precipitation events even though convective activity may also occur in 

frontal systems (Gregersen et al., 2013; Hand et al., 2004).  

So far, most of the CP-classifications have been used to analyse extreme precipitation on a 

daily time scale, whereas only few studies related CP-classifications to sub-daily precipitation 

extremes. One example can be found in Willems and Vrac (2011), where objective Lamb 

weather types were used to predict future hourly precipitation intensities derived from 
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analogue days in the past. In another study, Svensson et al. (2002) analysed the diurnal 

characteristics of extreme 3hr and 24hr precipitation events based on the Mayes classification, 

which is similar to the Lamb weather type catalogue. Beck and Bárdossy (2013) applied a fuzzy 

rules CP-classification and subdivided each day into different CPs and temperature classes. 

They found that hourly precipitation extremes are strongly intensified with higher temperature 

under anticyclonic conditions. The strong reaction to temperature in summer for certain CPs 

was attributed to convective mechanism in the atmosphere. On the other hand, CPs with 

westerly airflow causing frontal precipitation showed the lowest reaction to temperature. 

2.4.2 The input configuration of CP-classifications 

First, it is important to note that in terms of spatial and temporal scale, the concept of 

circulation patterns is different from that of weather regimes. The latter is defined on large 

spatial scales (typically continental or hemispheric) and longer time scales than daily (typical 5-

days to monthly means). They perform well in describing distinct types of surface climate (e.g. 

hot or cold spells). In contrast, CPs are defined on daily or even sub-daily time scale, depending 

on the data availability of atmospheric circulation variable and are able to explain climate 

features, such as extreme precipitation events (Philipp et al., 2007).  

In general, atmospheric circulation should rather be considered as a continuum rather than a 

system with a certain number of clearly defined, well separated states. Therefore, a set of CPs 

defined over a given region can vary considerably depending on the different methods of the 

CP-classification (see Section 2.4.3) and the configuration of the classification explained in the 

following. Several examples of different input configurations of CP-classifications are shown in 

Table 2.2. Also, several evaluation measures are presented in Section 2.4.6 to assess the 

performances of CP-classifications and to find the most appropriate input configuration. 

2.4.2.1 Pressure variable 

CPs are commonly described by atmospheric pressure variables, such as geopotential heights 

(Bárdossy et al., 2002; Garavaglia et al., 2010) or mean sea level pressure (Bárdossy, 2010; 

Corte-Real et al., 1999; Jones et al., 1993). Instead of the absolute pressure values, normalized 

pressure anomalies can also be used (Bárdossy, 2010; Bárdossy et al., 2002). However, In some 

cases in addition to the pressure variables other climate variables, such as wind (Wilson et al., 

1992), temperature or daily precipitation (Willems and Vrac, 2011), supplement the 

classification process as illustrated in Table 2.2. 
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2.4.2.2 Calibration time period 

As the climate cannot be assumed to be stationary due to natural variability as well as 

anthropogenically forced changes, the final set of defined CPs is likely to vary depending on 

the chosen calibration period of the CP-classification.  

2.4.2.3 Number of CPs 

Defining the number of different CPs is a crucial part within the CP-classification process. Using 

not enough CPs leads to a loss of information as the CPs only represent averaged weather 

conditions. Using too many CPs result in very low frequencies of each CP making statistical 

analysis impossible (Bárdossy et al., 2002). In terms of simulating hourly precipitation, 

Haberlandt et al. (2014) concluded that even a relatively small number of CPs (eight) 

conditioned on two seasons resulted in too many subsamples to provide a robust estimation of 

the model parameter to simulate hourly precipitation events. In other studies, the number of 

CPs varies widely between depending on the classification method and purpose as shown in 

Table 2.2. 

Several evaluation measures are described in Section 2.4.6 to assess the performances of 

classifications for different input variables (e.g. number of CPs) and to decide which input 

variables to be used. However, Philipp et al. (2007) used four different evaluation measures 

(explained cluster variance, silhouette index, cluster overlap ratio and Pseudo-F) to assess the 

quality of a CP-classification over the North-Atlantic-European region in terms of the 

separability between CPs and the variability within each CP conditioned on different number of 

CPs and found inconsistent signals for an optimal number of CPs. Therefore, they concluded 

that there is no clear natural separation between classes of CPs and rather a smooth transition 

between different individual CPs.  

Another aspect in the discussion of the number of CPs is the concept of weather regimes as 

defined. According to Huth et al. (2008), the idea of a small number of naturally existing 

weather regimes with higher persistence and higher frequencies than other states, which are 

merely seen as transitions between the weather regimes, gave reason to the use of only a 

small number of CPs (two to four) in CP-classification schemes. However, Christiansen (2007) 

questioned the existence of a certain predetermined number of weather regimes in 

atmospheric circulation data sets generally. 

2.4.2.4 Spatial domain 

The spatial domain of the pressure data set used for the CP-classification also needs to be 

chosen wisely. The domain should be large enough to be able to capture all the relevant high 

and low pressure zones affecting the local climate over a given region. On the other hand, one 
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needs to be aware of data restriction in terms of the spatial domain, in particular if Regional 

Climate Models (RCMs) are used. Also, derived objective classifications are determined by 

complex and highly demanding computer algorithms and thus the information input, in terms 

of the pressure data, should not exceed the capacity of the algorithms. Predefined CP-

classifications methods, such as the LWT (Lamb Weather types) catalogue (Lamb, 1972) and 

the objective Jenkinson UK catalogue (Jenkinson and Collison, 1977), are restricted by the fact 

that in order to predefine a precise and physical meaningful set of CPs, the volume of the 

information input needs to be narrowed down as much as possible. Concerning the spatial 

resolution, it is common standard for CP-classifications to be defined on spatial domains with 

resolutions in the range of 1° to 5° (see Table 2.2). Beck and Bárdossy (2013) found very similar 

results between the 2.5°  gridded NCEP/NCAR reanalysis data set (Kistler et al., 2001) and the 

5° gridded  NCAR Sea Level Pressure data set and concluded that any spatial resolution is 

suitable as long as it is fine enough to reproduce cyclonic and anticyclonic conditions.  

2.4.2.5 Seasonal variations 

A final point to consider is the seasonal variation of certain atmospheric pressure systems. For 

example over the UK, anticyclonic CPs are more frequent in summer and westerly CPs are 

more dominant in winter (Lamb, 1972). Similarly, the relationship between CPs and 

precipitation may vary over the year. Winter precipitation is normally linked to large-scale 

precipitation events caused by frontal systems or cyclones (Chan et al., 2014a; Lenderink and 

van Meijgaard, 2008), whereas in summer convective localized showers (thunderstorms) often 

lead to sub-daily precipitation extremes (Beck and Bárdossy, 2013; Gregersen et al., 2013; 

Maraun et al., 2008; Maraun et al., 2010a; Westra et al., 2014) as higher solar intake triggers 

convective events. For example, Bárdossy et al. (2002) found that over Greece certain CPs are 

wet in winter but dry in summer.  

Therefore, defining the CPs for different seasons separately by using temporal subsets of the 

data set, can improve the overall performance of the CP-classification. Evaluation measures 

(see Section 2.4.6) can be used to quantify the degree of improvement of the CP-classification 

(Huth et al., 2008). But future seasonal climates may not exactly correspond to the present 

ones (Gutiérrez et al., 2013) and thus future projections conditioned on seasonal sets of CP-

classification may not be representative of the future climate. Another option is to classify only 

one set of CPs throughout the year, but to evaluate the CP-precipitation relationship in the 

classification process for different seasons.   
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Table 2.2 Examples of different input configurations of objective CP-classifications 
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2.4.3 Examples of different CP-classification methods 

2.4.3.1 Predefined CP-classifications 

Predefined CP-classifications define the final set of CPs (subjective classifications) or the 

thresholds to define the CPs (threshold-based classifications) prior to the process of assigning 

observational atmospheric circulation data set to the different CPs. Predefined CP-

classifications often have in common a presumed concept of the relationship between 

atmospheric circulation and precipitation patterns on which the classification is based. 

Most of the subjective predefined CP-classifications were derived before computers became 

widely available. Subjective classifications have the advantage that the expert knowledge and 

experience can be fully reflected in the development of the classification. However, subjective 

classifications cannot be reproduced and as a consequence can only be used by a very limited 

number of applicants in certain geographical regions. In the following, the focus is on objective 

CP-classifications as, in practice, all subjective classifications have the common drawback that 

they cannot be used automatically and so considerable manual effort is required to classify 

each day. Also, subjective classifications are at-risk to be affected by gradual changes in the 

methodology. For example, Stehlik and Bárdossy (2003) found that the dependence between 

objective and subjective classifications decreased over time. But they also showed that 

subjective classifications performed best in identifying CPs different to the precipitation mean. 

In general, subjective classifications, such as described in Lamb (1972) or Little et al. (2008), 

can be a very useful tool to validate automated objective CP-classifications based on the 

knowledge and experience of meteorologists defining the subjective classes. The most popular 

subjective classification for the UK are the Lamb Weather types (LWTs) described in Lamb 

(1972). 

Threshold-based methods define the CPs indirectly by using thresholds to distinguish between 

different CPs. In contrast to the subjective method, threshold-based classification allows 

automated assignments of a given day to a certain CPs. However, the process of defining the 

threshold involves subjective decision making. The advantage of threshold-based CP-

classification compared to subjective methods is their reproducibility and the fast processing 

of assigning each day automatically to a certain CPs (Philipp et al., 2010). The most popular 

example of threshold-based methods for the UK is the objective version of the Lamb Weather 

types described in Jenkinson and Collison (1977). They used sea level pressure to calculate 

indices of wind direction and vorticity. Each day was then classified by grouping these indices 

based on the predefined thresholds. The objective version of the LWT was later used in several 

studies, for example, over the UK (Conway and Jones, 1998; Jones et al., 1993), the Iberian 
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Peninsula (Fernández‐González et al., 2012; Goodess and Palutikof, 1998) and Belgium 

(Willems and Vrac, 2011).  

2.4.3.2 Derived CP-classifications 

In contrast to predefined methods, derived CP-classifications use a certain algorithm for the 

definition of the final set of CPs. They are based on the concept that the observational 

atmospheric circulation data set has a certain structure, which needs to be identified to define 

the final set of CPs (Philipp et al., 2010). Most of the derived classification methods are solely 

based on a large-scale variable, such as mean sea level pressure (MSLP) or geopotential height, 

and the relationship of CP and precipitation is determined after the classification. Bottom-up 

classification methods are different as they are directly derived from the local predictand (e.g. 

precipitation). As a result, derived CP-classifications based on a bottom-up approach may 

result in a more contrasted or discretized classification in terms of the studied variable (e.g. 

precipitation). In general, all derived CP-classifications can be considered as objective CP-

classifications, although truly objective CP-classifications do not exist in reality since every 

classification comprises subjective decision making (Palutikof et al., 1997). Derived CP-

classifications can be further distinguished in two different groups, the principal component 

analysis (PCA)-based methods and the optimization algorithms-based methods.  

Principal component analysis (PCA)-based methods 

Principal component analysis methods determine principal components (PCs), which explain 

major fractions of the variance of the input data, and any given day is assigned to CPs based on 

some relation measure to the PC (Philipp et al., 2010). The potential of PCA to be used as a 

classification method was first discussed by (Richman, 1981) and then further developed by 

(Gong and Richman, 1995). PCA-based CP-classification methods have been used in several 

studies, for example, over the United States (Wilson et al., 1992) and the Pyrenees (Esteban et 

al., 2005). A main advantage of PCA-based classification methods is their ability to incorporate 

multiple atmospheric variables (e.g. wind, surface pressure and geopotential heights) from 

large-scale fields in a very efficient way into the classification process and that they can be 

used as a data reduction technique (Wilson et al., 1992). 

Optimization algorithms-based methods 

Optimization methods aim to arrange a set of days attributed to CPs in such a way that a 

certain function is optimized to achieve a minimal variability within each CP (Philipp et al., 

2010). In contrast to PCA-based methods, classification based on optimization algorithm only 

need a relatively small number of selected input variables (Wilson et al., 1992). 
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Cluster methods are a general tool for finding groups in data sets and they have been applied 

in different scientific disciplines including CP-classifications. Cluster methods can be 

distinguished in two groups, hierarchical clustering methods and non-hierarchical clustering 

methods. In terms of non-hierarchical clustering methods, the most common one is the 𝑘-

means method.  

The 𝑘-means method tends to generate very well separated clusters (CPs) but those are 

equally-sized, which may be unrealistic (Huth et al., 2008). The number of clusters (CPs) has to 

be defined a priori. However, it is not a trivial task to pre-determine the “correct” number of 

clusters and 𝑘-means clustering algorithms can be potentially unstable. The ordering of days, 

which is just a matter of chance, together with the initial clustering partitions leads to random 

local optima for complex data sets (Philipp et al., 2007). One example can be found in Corte-

Real et al. (1998), where they defined four CPs, associated with daily precipitation in Portugal, 

based on daily sea level pressure over the north-eastern Atlantic and western Europe. For this 

purpose, they used a 𝑘-means clustering algorithm coupled with principal component analysis 

(PCA). PCA was used to condense information in daily sea level pressure fields and to reduce 

the number of input variables of the 𝑘-means clustering algorithm. The objective of the 𝑘-

means method was to find a set of clusters (CPs) by minimizing the Euclidean distance 

between the daily SLP patterns and the means of all SLP patterns within a cluster. The optimal 

number of CPs (four) was determined based on an information measure evaluating the 

classification performance in terms of identifying wet and dry CPs.  

Hierarchical clustering methods start with each daily pressure patterns in its own cluster, then 

creating a nested sequence of partitions, and finally form one cluster containing all daily 

pressure patterns. Hierarchical cluster methods are always at risk of the snowball effect, which 

means that one large cluster is formed and more and more pressure patterns are attached to 

it, accompanied by other small clusters and unclassified pressure patterns (Huth et al., 2008). 

One example of an hierarchical cluster method can be found in Garavaglia et al. (2010). They 

used a Hierarchical Ascendant Classification (HAC) to cluster the population of rainy days into 

different classes based on a bottom-up approach to build an objective classifications of eight 

CPs at the daily scale, describing the different precipitation patterns observed over France. A 

bottom-up approach directly used the target variable (e.g. precipitation) to define the initial 

structure of the classification. The relevant precipitation patterns were then linked with 

atmospheric circulation patterns described by geopotential heights or mean sea level pressure 

(MSLP). This particular method has been successfully applied over France (Garavaglia et al., 

2010) and British Columbia (Brigode et al., 2013) for the estimation of extreme precipitation 

events.  
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Another method to derive CP-classifications was developed by Bardossy et al. (1995) based on 

optimized fuzzy rules to describe atmospheric pressure anomalies. The fuzzy rules CP-

classification has been applied in several studies, for example, over Germany (Bárdossy, 2010; 

Bárdossy and Pegram, 2011; Bárdossy et al., 2002; Haberlandt et al., 2014; Yang et al., 2010) 

using different numbers of CPs (between 8 and 20) and over Greece (Bárdossy et al., 2002). 

The classification was carried out using normalized pressure anomalies and every CP was 

described by a fuzzy rule k represented by a vector 𝑣(𝑘) = (𝑣(1)𝑘 … 𝑣(𝑛)𝑘), where 𝑛 is the 

number of grid points. Five different classes 𝑣 were applied as described in Bárdossy (2010).  

𝑣 = 1  Very high pressure  

𝑣 = 2  Medium high pressure 

𝑣 = 3 Medium low pressure 

𝑣 = 4  Low pressure 

𝑣 = 5  No influence on the CPs 

The fifth index was introduced to describe pressure anomalies at those grid points that had no 

influence on the fuzzy rule. The location and number of such grid points depend on the fuzzy 

rule. Usually most grid points were assigned to the fifth index. The membership functions were 

defined as triangular fuzzy number differently in Bardossy et al. (1995) and Bárdossy et al. 

(2002) due to different normalization formulas to calculate pressure anomalies. The 

assignment of a given day to a certain fuzzy rule was based on the membership functions, 

which were calculated for every grid point and every fuzzy rule on any given day. The closer 

the membership function was to 1, the stronger was the belief that the pressure value at this 

grid point on this day belonged to the fuzzy ruleThe membership values were then combined 

over all grid points to calculate the degree of fulfilment (DOF) between the fuzzy rule and the 

actual pressure conditions on a given day. The fuzzy rule for which DOF was maximal was 

selected as the CP for a given day. Therefore, the fuzzy rules give a qualitative, rather 

imprecise description of the atmospheric pressure conditions. 

In Bardossy et al. (1995), the fuzzy rules, describing each CP, were initially defined based on 

verbal description of the subjective European Grosswetterlagen/-typen (Hess and Brezowsky, 

1969). This prototype fuzzy rules based CP-classification could be categorized as a hybrid 

classification, because the CPs were defined subjectively but each day was assigned 

automatically to one of the fuzzy rules based on the membership functions. 

In later studies, information of precipitation was directly used in the CP-classification process 

to define the optimal set of fuzzy rules objectively (Bárdossy, 2010; Bárdossy et al., 2002). In 

contrast to the bottom-up approach described in Garavaglia et al. (2010), the identification of 
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precipitation patterns and the definition of CPs were not two separate steps. Instead, the fuzzy 

rules were optimized automatically based on objective functions, which measure the 

performance of the classification in terms of identifying dry and wet CPs. These objective 

functions gave quantitative assessments of the wet day occurrence and precipitation amounts 

conditioned on a given CP in comparison to the climatological mean during the classification 

process. The objective functions need to be robust and fairly smooth so that the optimization 

process does not stop at a local minimum. It was found that CP-classifications using objective 

functions based on areal precipitation provide better results compared to those based on 

point precipitation because the distribution of the latter can be highly skewed (Bárdossy, 

2010). Due to the very large number of possible fuzzy rules combinations, it was not feasible to 

compute the objective functions for every possible fuzzy rule combination. Instead, a 

simulated annealing algorithm (Aarts and Korst, 1988) was applied to solve the optimization 

problem of finding the fuzzy rules for which the optimization criterion is maximal. It needs to 

be pointed out that the relationship between atmospheric circulation and local precipitation 

was established within the classification process. Therefore, the automated CP-classification 

based on fuzzy rules has the advantage that it is able to incorporate information of local 

climate variables (precipitation, temperature) into the classification process to define the CPs 

and is readily applicable for any given region.  

2.4.4 Examples of CP-classifications over the UK and their relationships with 

precipitation  

Over the UK, the most prominent example of CP-classification is the Lamb Weather Type (LWT) 

catalogue first developed by Lamb as a subjective classification method (Lamb, 1972). He 

introduced seven pure types (Anticyclonic, Cyclonic, Northerly, Easterly, Southerly, Westerly 

and North-Westerly), 19 hybrid types that were similar to more than one pure type, and one 

type of unclassified days. Later, an objective version of the Lamb Weather Type classification 

was constructed by Jenkinson and Collison (1977) using indices of vorticity, wind flow strength 

and direction derived from gridded mean sea level pressure (MSLP) to attribute each day to 

one of the Lamb Weather types. Objective versions of the LWT classification continued to be 

widely used for many applications over the UK (Conway and Jones, 1998; Jones et al., 1993; 

Wilby and Quinn, 2013). However, one limitation of the LWTs classification is that it is not able 

to describe complex synoptic situation with binary airflow over the UK. For example, a day 

with prevailing southerly airflow over Ireland, southern England and Wales, and north-easterly 

airflow over Scotland can only be classified as southerly or as unclassified (Sweeney and 

O'Hare, 1992). 
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Stehlik and Bárdossy (2003) compared six sub-continental CP-classifications pairwise in respect 

to their mutual dependence. The strongest dependence among all pairs was found between 

the objective (Jenkinson and Collison, 1977) and the subjective (Lamb, 1972) derived Lamb 

Weather Types classification in comparison to the Grosswetterlagen (Hess and Brezowsky, 

1969), an hybrid classification over Greece (Maheras, 1989) and the fuzzy rule classification 

applied over Germany and Greece individually (Bárdossy et al., 2002).  

In terms of the frequency occurrences of LWTs, Jones et al. (1993) found that anticyclonic and 

westerly types are the predominant patterns over the UK. Anticyclonic conditions occur more 

often in spring (MAM), summer (JJA) and autumn (SON) compared to winter (DJF). In contrast, 

frequency occurrences of westerly types are lowest in spring, continuously increase over 

summer and autumn, and are highest in winter. Cyclonic types are most likely to occur in 

summer and least likely in winter. 

Several studies showed that the Lamb Weather Types can also be used to explain differences 

in precipitation characteristics over the UK. For example, Conway and Jones (1998) used three 

different versions of CP-classifications to generate daily precipitation series over the UK. Two 

of them used the objective Jenkinson-Collison LWT classification scheme, while the third 

method applied different categories of vorticity. All three methods realistically reproduced 

monthly means, persistence and inter-annual variability of UK daily precipitation. Jones et al. 

(1993) determined correlation coefficients between an area-averaged England and Wales 

precipitation time series (Wigley et al., 1984) and the occurrence of pure (objective and 

subjective) LWTs. They found little difference in performance between the subjective and the 

objective pure LWTs. For the objective classification they used grid-point mean sea level 

pressure (MSLP) obtained from a relatively coarse 5° latitude by 10° longitude dataset 

spanning an area from 45°N to 65°N and 20°W to 10°E without using the corner grid points. It 

was found for all seasons that the anticyclonic LWT exhibits significant negative correlation 

with precipitation across the UK, whereas cyclonic LWTs showed significant positive 

correlation with UK precipitation. For the other five LWTs no relationship was found significant 

for more than one season. Sweeney and O'Hare (1992) analysed the relationship between 

daily precipitation and 27 (pure and hybrid LWTs. They showed that cyclonic south westerlies 

is the LWT which causes the highest daily precipitation on average over the UK as a whole, 

whereas anticyclonic northerlies and north easterlies are the driest. 

In terms of the relationship between regional UK precipitation and LWTs, Conway and Jones 

(1998) analysed the occurrence of the seven pure objective LWTs and area-averaged 

precipitation over the North East of England (NEE). It was found that the cyclonic LWTs result 
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in the highest mean precipitation over NEE, while the anticyclonic LWTs are associated with 

the lowest mean precipitation over NEE. Similarly to the results shown in Jones et al. (1993), 

they found for all seasons that anticyclonic LWTs and NEE precipitation are significantly 

negative correlated, whereas cyclonic LWTs and NEE precipitation are significantly positive 

correlated. For the other five LWTs no relationship was found significant for more than one 

season. They also showed a significant positive correlation between vorticity (one of the three 

parameters used in the objective LWT classification scheme) and NEE precipitation.  

Sweeney and O'Hare (1992) found that westerly LWTs have the highest impact in terms of 

daily precipitation over the western Highlands. These results underlined the importance of 

orographic influences in terms of the relationship between westerly airflow and precipitation. 

For days with prevailing northerly LWTs, enhanced precipitation is apparent in North Wales 

and for the East of England, where moist air is transported from the Irish Sea and the North 

Sea. In terms of easterly LWTs, the highest precipitation is found in southern England, as fronts 

may move from East to West with a prevailing low pressure system over France or the Bay of 

Biscay. In summer, days with easterly airflow may also be associated with increased convective 

activity as already unstable air is directed over warm land surface. In terms of southerly LWTs, 

it was shown that precipitation is highest where orographic lifting occurs. The mountains of 

Cork/Kerry, South Wales and the Highlands are the regions where this orographic influence is 

most pronounced. It was also shown that southerly and cyclonic LWTs are the two pure LWTs, 

which cause the highest precipitation across the UK.  

In terms of extreme events, several studies assessed the relationship between cyclonic 

conditions and extreme precipitation over the UK. For example, Kendon et al. (2014) showed 

that about half of the 50 most extreme hourly precipitation events in the future simulated by a 

1.5km RCM over the southern UK could be attributed to larger-scale storms (embedded 

convection within a front, mesoscale convective systems or squall lines), while the other half 

were associated with individual smaller storms. Almost all of the extreme precipitation events 

were associated with cyclonic air flow and hot humid conditions (high 850hPa wet-bulb 

potential temperature). In contrast, Blenkinsop et al. (2015) found that anticyclonic conditions 

favoured the occurrence of extreme hourly precipitation over the South East of England in the 

past. Similarly, Maraun et al. (2010a) showed that vorticity, indicating cyclonic activity, was 

only an important predictor in terms of observed extreme daily precipitation in northern 

England and Scotland, but its influence was vanishing or even negative in southern England. 

Blenkinsop et al. (2015) suggested that limited moisture availability may restrict future 

precipitation intensities particularly under anticyclonic conditions, in order to explain the 
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strong relationship between cyclonic conditions and future extreme precipitation as projected 

in Kendon et al. (2014). 

Little et al. (2008) classified extreme precipitation events only based on the spatial layout of 

UK precipitation depth, instead of using any synoptic variables (e.g. geopotential height or 

mean sea level pressure). Therefore, it falls technically not into the category of CP-

classification since the classification is solely based on precipitation data. However, the 

classification can be a used as a comparison tool with the corresponding precipitation 

characteristics of “real” CP-classification. Five subjective types of UK extreme daily 

precipitation were defined: orographic, mesoscale convective complexes (MCC), 

thunderstorm, east coast and depression. Four of them (orographic, MCC events, east coast 

and depression) inherited characteristic large-scale atmospheric conditions, which can be also 

attributed to specific classes in a circulation pattern classification. Orographic precipitation 

events occur only in mountainous areas and are often associated with westerly winds over the 

UK. MCC events were associated with a small, shallow depression and intense precipitation 

from convective precipitation with a larger area of stratiform precipitation. They often 

originate from the Bay of Biscay, mostly affect the southern and south western part of the UK 

and the predominant month of occurrence is August. The largest UK daily precipitation have 

been linked with MCCs as noted in Little et al. (2008). Extreme precipitation attributed to the 

east coast type mostly affect the eastern part of the UK and is defined by depression travelling 

in a westerly direction. Those depressions slow down over land and bring moist and easterly 

winds from the North Sea. All precipitation events which were associated with a depression 

but not exhibiting the specific characteristics of any of the other types were classified as 

depression. The only type which was lacking clear characteristic synoptic conditions to 

attribute them to a specific CP is the thunderstorm class. This class represents spatially 

localized convective cells which occur often in summer. 

2.4.5 Limitations of CP-classifications 

In terms of predicting precipitation, several studies found that using a set of CPs as the only 

predictor is not sufficient. For example, Haberlandt et al. (2014) showed that changes in CP 

frequencies are relatively minor compared to changes in daily precipitation intensity. Wilby et 

al. (2002) noted that precipitation changes caused by changes in the CP frequencies are often 

not consistent with the precipitation simulated by the climate model. Bárdossy and Pegram 

(2011) found that Regional Climate Models (RCMs) predict a change in the relationships 

between CPs and precipitation intensity in a future warmer climate. Instead, additional 

predictors are required. For example, Willems and Vrac (2011) used temperature and daily 
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precipitation conditioned on CPs to simulate changes in hourly precipitation extremes. Beck 

and Bárdossy (2013) predicted hourly precipitation based on CPs and temperature. Another 

possibility is to include additional variables (e.g. temperature or moisture fluxes) directly into 

the CP-classification to predict precipitation patterns (Yang et al., 2010).  

Considering hourly precipitation extremes, the highest intensities are usually linked with 

convective activity (Beck and Bárdossy, 2013; Gregersen et al., 2013; Lenderink and van 

Meijgaard, 2008). But localized convective showers are likely to lack a distinguishable 

atmospheric circulation feature and therefore attributing these localized precipitation events 

to a specific CP remains a challenging task. Nevertheless, some studies (Beck and Bárdossy, 

2013; Blenkinsop et al., 2015) argued that localized convective events may be associated with 

high pressure (anticyclonic) conditions, which show strong positive correlation with UK 

temperature in summer (Jones et al., 1993). Similarly, Haberlandt et al. (2014) showed that 

generally dry CPs can have a high potential of causing extreme precipitation in summer.  

2.4.6 Evaluation of CP-classification methods 

Huth (1996) described several criteria to evaluate the performance of a CP-classification only 

based on the large-scale atmospheric variable. Among those are the consistency (small 

changes in the input configuration should only lead to small changes in the CP-classification) 

and the reproduction of predefined CPs. One important property of CP-classifications, which 

can be easily evaluated in a quantitative way, is the separability between classes or in other 

words the ability of the classification to create classes as distinct as possible. It can be 

measured by means of the pattern correlation ratio (PCR) as described in Huth (1996) based on 

the correlation between different pressure maps (Overland and Hiester, 1980). Other 

measures include the Silhouette index (Rousseeuw, 1987), the explained variation (Philipp et 

al., 2007) and the Pseudo-F index (Caliński and Harabasz, 1974). Philipp et al. (2010) compared 

different CP-classification methods (subjective, threshold-based, PCA-based and optimization 

algorithm-based) using CP frequency based properties, such as the variation of CP sizes within 

each classification, mean persistence of CP occurrences, mean seasonal variation of CP 

frequencies, mean inter-annual variation of CP frequencies and the mean trend-noise-ratio. It 

was found that the different CP-classifications exhibit different CP frequency based properties; 

at least the subjective and the optimization CP-classification methods can be clearly 

distinguished from the other CP-classification methods. It was also shown that there are some 

outliers in terms of CP frequency based properties within most of the CP-classification 

methods. It means that although the CP-classifications have been standardized to a large 

degree, differences in the CP-classification procedures such as different similarity metrics, 
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objective functions, data pre-processing and compilers/platforms have also an important 

influence on the CP-classification performances. As a result, it was concluded that a 

comprehensive and robust comparison between different CP-classification methods is very 

hard to fulfil. 

In contrast to the measures described above, information measures do not focus on the large-

scale atmospheric variable. Instead, they assess how well the CP-classifications describe the 

variability of the local climatology for a given region. In terms of precipitation, a good CP-

classification needs to distinguish well between wet and dry conditions or the CP dependent 

precipitation characteristics should differ from the unconditional precipitation mean. Most of 

the applied information measures focused on the occurrence of precipitation (Bárdossy, 2010; 

Garavaglia et al., 2010; Wilson et al., 1992). Other information measures as in Bárdossy (2010) 

and Stehlik and Bárdossy (2003) also take the precipitation intensity into account by using a 

wetness index, mean wet day precipitation amount or the standard deviation of the wet day 

precipitation amount. The fuzzy rules CP-classification method presented in Bárdossy (2010) 

and described in more detail in Bárdossy et al. (2002) is unique by integrating information 

measures directly into the classification process. This means that the final set of CPs is 

calibrated based on information measures, so called objective functions, whereas for most 

other classification methods the calibration of the final set of CPs and the use of information 

measures are two separate steps.  

In the following, different aspects of the evaluation process are discussed.  

2.4.6.1 Reliability of the CP-classification / statistical downscaling method 

In order to assess the reliability of the CP-classification, the quality of the CP-classification is 

tested using an independent time period for which it is not calibrated. This is the so called 

validation, also known in the literature as a split-sampling approach (Bárdossy et al., 2002). For 

example, Garavaglia et al. (2011) compared return levels conditioned on the same CPs but 

estimated over different time periods. The results are often used to compare different input 

configurations of CP-classifications and to identify the ‘best’ CP-classification.  

In terms of assessing the reliability of a certain statistical downscaling method, the method is 

also tested using an independent time period (Beuchat et al., 2012; Hundecha and Bardossy, 

2008; Wilby et al., 2002). One particular interesting way to test the sensitivity (robustness) of 

the downscaling method is to calibrate the model on data from the coldest (driest) years and 

then validate it on data from the warmest (wettest) years (Willems et al., 2012).  
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2.4.6.2 Reliability of the simulated GCM/RCM predictor variables 

The validation of CP-classifications can also be used to assess the ability of the climate model 

to reproduce the observed climate variables. For example, the large-scale pressure variable 

simulated by the climate model and its ability to reproduce the observed circulation pattern 

characteristics can be assessed by comparing the CP frequency (Haberlandt et al., 2014) or the 

correlation coefficients between observed and simulated CPs (Corte-Real et al., 1999). Another 

possibility would be to calculate the correlation coefficient between observed and simulated 

daily pressure maps. Goodess (2000) found that pressure anomalies simulated by GCMs tend 

to be smaller in magnitude in comparison to the observational data set. Therefore, CP-

classification using GCM data might be biased towards a higher frequency of CPs with 

predominant moderate pressure anomalies. Kendon et al. (2012) pointed out the importance 

of climate models to represent atmospheric circulation patterns accurately in terms of the 

projections of local precipitation. During the validation process, the representation of the CP-

precipitation relationship simulated by the climate model in comparison to that based on 

observed data may also be tested.  

2.4.6.3 Stationarity test  

As mentioned earlier, stationarity between the large-scale predictor (CP) and the local 

predictand (precipitation) cannot be assumed. Therefore, the stationarity test is important to 

assess if the observed CP-precipitation relationship remain valid in the future under a different 

climate. For example, Schmith (2008) suggested to test if the residuals of the predicted 

variable exhibit an overall trend for a high fraction of stations. First, the total precipitation 

anomalies were predicted by large-scale circulation anomalies over a 50-year time period. It 

was found that there were indeed instationarities in the predictor-predictand relationship. In a 

next step, relative humidity was used as an additional predictor and the instationarities in the 

predictor-predictand relationship were mostly removed as a consequence.  

2.4.7 Summary 

CPs are normally defined on a daily time scale based on atmospheric circulation variables, such 

as mean sea level pressure or geopotential heights. Those methods can be differentiated in 

predefined and derived CP-classifications. Predefined methods can be separated further into 

subjective and threshold-based CP-classifications. In terms of derived CP-classifications, 

different types exist, such as the PCA-based or the optimization algorithms-based methods. 

CP-classifications also vary depending on the input configuration (e.g. the pressure variable, 

the calibration time period etc.). 
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The theory behind the application of CPs is to link extreme precipitation events with certain 

large-scale pressure patterns as several studies (Corte-Real et al., 1998; Huth et al., 2008; 

Jones et al., 2006; Svensson et al., 2002; Wilson et al., 1992) found strong relationships 

between CPs and precipitation characteristics. Further, the use of CPs can help to understand 

the physical mechanism behind the occurrence of extreme precipitation better. For example, 

the relationships between extreme precipitation events and other climate variables can be 

more carefully investigated by conditioning them on CPs (Beck and Bárdossy, 2013; Haberlandt 

et al., 2014). CP-classifications can also be a useful tool to differentiate better between 

convective and stratiform precipitation events (Maraun et al., 2010b). Those reasons and the 

fact, that the pressure variable tend to be well reproduced by climate models (Kendon and 

Clark, 2008), make the use of CP-classifications a common predictor in terms of estimating 

precipitation extremes (Bárdossy and Pegram, 2011; Brigode et al., 2013; Garavaglia et al., 

2010; Willems and Vrac, 2011). However, most of the studies focused on daily precipitation 

and none of them considered specifically the relationship between CPs and UK extreme hourly 

precipitation. One reason may be that extreme hourly precipitation are often linked with 

convective events but attributing those convective precipitation events to certain CPs remains 

a very challenging task due to the lack of distinguishable atmospheric features associated with 

those types of events. It was also shown that CP-classifications only are not enough to 

estimate future changes in precipitation characteristics sufficiently (Bárdossy and Pegram, 

2011; Haberlandt et al., 2014; Huth et al., 2008; Wilby et al., 2002). This is due to the fact that 

the relationship between CPs and precipitation cannot be assumed stationary under a 

changing climate. Instead, additional predictors, such as temperature, are needed.  

Considering the evaluation of the CP-classifications, the focus can be either on the large-scale 

atmospheric variable defining each CP or on the relationship between the CPs and 

precipitation. In both cases, it is common practice to evaluate the CP-classification over an 

independent time period different to the calibration period. (Philipp et al., 2010) found that 

the final results of the evaluation vary not only depending on the CP-classification method and 

the input configuration (pressure variable, calibration time period, number of CPs, spatial 

domain etc.) but also due to differences in the CP-classification process (pre-processing of 

data, compiler/platform, objective function etc.). Therefore, a comprehensive and robust 

evaluation between different CP-classification methods is very hard to achieve. 

The focus of this thesis is only on the fuzzy rules based CP-classification method. This method 

is used to define different CPs over the UK and the first attempt is made to specifically address 

the relationships between different CPs and UK extreme hourly precipitation. As this literature 

review has shown, the use of CPs alone is not enough to estimate precipitation characteristics 
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sufficiently well. Therefore, the CPs defined in this thesis are combined with additional 

predictors in a statistical downscaling method to estimate and project UK extreme hourly 

precipitation. 
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Chapter 3  

Data description and selection 

A number of different data sets are used within this thesis. They are described in this chapter. 

The historical data set of daily and hourly precipitation at a station level in the UK is described 

in Section 3.1. This data set is used to provide the precipitation characteristics observed in the 

past for the projection of hourly precipitation extremes in the future. Besides, hourly station 

precipitation data is also extracted from the data set to define wet and dry circulation patterns 

in Chapter 5. The historical gridded sea level pressure (SLP) data used for identifying the actual 

synoptic condition of the circulation patterns is described in Section 3.2. In addition to CPs and 

daily precipitation, the temperature variable is used as a third predictor in the statistical 

downscaling method to estimate hourly precipitation extremes. It is also needed for 

determining the relationship between precipitation duration and temperature. The 

temperature data set is also described in Section 3.2. Finally, the Regional Climate Model 

(RCM) data sets, which are required to simulate the predictors (SLP, temperature, daily 

precipitation) to downscale future hourly precipitation extremes, are presented in Section 3.3. 

3.1 Observed daily and hourly station precipitation data  

3.1.1 Introduction 

The entire data set of UK historical precipitation records used in this thesis has been collated 

by the UK Met Office and is available under the MIDAS Land Surface Stations database (NCAS 

British Atmospheric Data Centre, 2012). It comprises records of daily and hourly precipitation 

with a high spatial coverage across the UK. However, stations tend to be located in valleys, 

which can lead to an underestimation of orographic precipitation (Chan, 2013). In total, more 

than 12,000 stations recording daily precipitation have been installed over the last 160 years 

(1853-2012). In terms of hourly precipitation, 530 stations in total have been installed over the 

last 64 years (1949-2012). However, some stations only operated for a few years and are thus 

of very limited value in this study. Also, a large number of stations have been closed over the 

last decades. In 2012, daily precipitation has been recorded by 2643 stations and hourly 

precipitation was still measured by 259 stations. From the earliest days of observing in the UK, 

the standard period for measuring daily precipitation is 0900 UTC – 0900 UTC. Over time, the 

instruments to measure precipitation developed from ordinary rain gauges to tipping bucket 
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rain gauges and tilting siphon rain gauges. Tipping bucket rain gauges are stored directly by the 

Met Office Solid State Event Recorder (SSER) system, which have been operating since the 

early 1980s. Today, all three types of instruments are in use across the UK.  

Ordinary funnel-type precipitation gauges have been used for manual measurements since the 

earliest days of observing. With such devices, the amount of precipitation is measured using a 

rain-measuring glass at regular time intervals. The design of ordinary gauges has changed over 

the years. But, today the Met Office strongly encourages conformity in order to optimize 

comparability among different stations. The standard design has a rim of 127mm diameter and 

stands 30cm above the ground (NCAS British Atmospheric Data Centre, 2012).  

Tipping bucket rain gauges are particularly suitable for automated sub-daily and sub-hourly 

measurements. They are based on a small container which, when filled with rain, tips and 

empties while recording the event electronically. But they do not perform well in freezing 

conditions.  

Another instrument to measure automatically is the tilting siphon rain gauge which produces 

an autographic record of precipitation accumulation from a pen attached to a float in the 

precipitation chamber of the instrument.  

The unit of precipitation is given in mm and amounts are measured and recorded to the 

nearest 0.2mm, and where possible, to the nearest 0.1mm (NCAS British Atmospheric Data 

Centre, 2012).  

It needs to be noted that for most daily and hourly precipitation stations, the precipitation 

gauges have been replaced over the years or changes in the measurement conditions of the 

station occurred. Also as mentioned earlier, the lengths of the precipitation time series vary 

largely across different precipitation stations. As a result, there is a need for controlling the 

quality and pre-screening of the precipitation data to ensure that they are homogeneous, 

consistent with surrounding stations, and without extreme outliers. Section 3.1.2 describes 

these quality control measures. Once the data has undergone the quality control procedure, a 

number of stations that have relatively long time series and are spatially well representative 

over different UK extreme precipitation regions (Jones et al., 2014) are selected. These stations 

are then used for the calibration and validation of the statistical downscaling method. 

3.1.2 Quality control and pre-screening 

The Met Office routinely performs quality control to the data set to identify suspicious 

precipitation values by comparing each value with surrounding precipitation values. A 

screening procedure is then applied within this thesis to the Met Office quality controlled data 

set. It contains a number of measures and criteria summarised as follows.   
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 Precipitation values associated with certain Met Office quality control attributes are 

set to missing (see Section 3.1.2.1) 

 When multiple precipitation values are available on the same date recorded by the 

same precipitation gauge, only one value is selected in this study based on the Met 

Office quality control attributes (see Section 3.1.2.2) 

 Extreme outliers in the data are identified and set to missing by applying a certain 

threshold criteria (see Section 3.1.2.3) 

 In cases where values are provided by more than one precipitation gauge for the same 

station on the same date, the values from those precipitation gauges that stopped 

operating earlier are set to missing. This ensures that the more recent sections of the 

precipitation series are more likely to be homogeneous (see Section 3.1.2.4)  

3.1.2.1 Elimination of values with certain Met Office quality controlled attributes 

Most of the daily and hourly precipitation values have been quality controlled by the Met 

Office to check that the data is correct and consistent with surrounding data. The exact quality 

control processes, as well as corrections, undertaken by the Met Office vary from station to 

station and thus cannot be further detailed in this thesis. Different Met Office quality controls 

include areal, sequence and internal consistency checks. Corrections undertaken by the Met 

Office comprise automated corrections, manual corrections, correction obtained 

retrospectively from the observer/station, corrections derived from a snow/rain equivalence, 

correction obtained by changing units of measurement or corrections obtained by applying a 

systematic adjustment. Values which have not undergone the Met Office quality control are 

set to missing in this study. These values are identified by the version number=0 in the Met 

Office database. Values associated with version number=1 in the Met Office database have 

been quality controlled by the Met Office and are used in this study. 

The quality control attribute prcp_amt_q associated with each quality controlled value gives 

more information about the different aspects of the value’s quality. It includes information 

about trace/accumulated precipitation, corrected precipitation values, suspected values, the 

different quality control processes and the quality control stage reached. 

Hourly precipitation values as well as daily values, which were flagged by the Met Office as 

suspect and failed the Met Office quality control are associated with the quality control 

attribute prcp_amt_q=129. These values are set to missing in this study. 

It is found that accumulated (e.g. precipitation over more than one hour) and trace hourly 

precipitation values are often not corrected through the quality control process by the Met 
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Office and can show high differences in precipitation amount compared to other hourly non-

accumulated and non-trace measurements made by a different precipitation gauge at the 

same station on the same date. Therefore, accumulated hourly precipitation values, indicated 

as prcp_amt_q=20009 and prcp_amt_q=20109 in the Met Office database, often due to 

snowfall, fog, dew or frost are set to missing in this study. Besides, all hourly precipitation 

trace values which are indicated as suspect by the Met Office are set to zero in this study. 

These values are flagged with the quality control code of prcp_amt_q=10129 and 

prcp_amt_q=14129 in the Met Office database. In case of daily precipitation, accumulated and 

trace precipitation values are corrected through the quality control process by the Met Office 

and are thus not set to missing or corrected in this study.  

3.1.2.2 Selection of one single value out of multiple values for the same precipitation gauge on 

the same date 

For those values which have been quality checked by the Met Office, a qc_level has been 

attributed to each value by the Met Office which indicates the stage of the cIimate quality 

control (see Table 3.1). The qc_level is represented by the last digit of the quality control code, 

prcp_amt_q, in the Met office database. In this study in cases where more than one 

precipitation value is available for the same precipitation gauge (rainfall_id) on the same date, 

the values with the lower qc_level are set to missing and only the value with the highest 

qc_level is used. As a result 1,171,500 hourly and 2,332,700 daily precipitation values are set to 

missing. 

qc_level Stage of the climate quality control 

0 Climate quality control has not run 

1 Climate quality control has run 

4 
Climate quality control has included internal consistency or 
sequence checks 

6 Climate quality control has a final areal check 

9 Climate quality control was complete 

Table 3.1 The different stages of the Met Office climate quality control.   

3.1.2.3 Extreme outliers 

Independently of the Met Office quality control, extreme outliers in the data set are identified 

by using the historical maximum of observed UK daily/hourly precipitation as a threshold in 

this study. The highest historical daily precipitation has been recorded in Martinstown, Dorset, 

on the 18th July 1955, 279mm (Met Office). As a result 41 daily precipitation values, exceeding 

the threshold of 279mm, are identified as extreme outliers and are set to missing in this study 

(see Table 3.2). In case of hourly precipitation, the highest intensity has been recorded in 
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Maidenhead, Berkshire, on the 12th July 1901, 92mm (Met Office). As a consequence, nine 

hourly precipitation values higher than 92mm are identified as extreme outliers and are not 

used in this study (see Table 3.2). This criterion is simply to identify extreme outliers generally 

without taking into account the specific precipitation characteristics of each station. Using a 

single threshold may not be well justified, especially when this single value is applied 

throughout the UK disregarding regional precipitation characteristics. There is a remaining risk 

that some outliers are not eliminated. Other methods that can be used to eliminate outliers 

can involve the use of arbitrarily selected threshold values. Hence, it is worth noting here that 

the performance of the downscaling work is always limited by the quality of the underlying 

data sets. 

A summary of the numbers of daily and hourly values that are set to missing or to zero is 

shown in Table 3.2. 

Criterion Comment 
Hourly values 
(56,623,000 in 

total) 

Daily values 
(81,370,000 

in total) 

prcp_amt_q= 129 
Suspicious precipitation values 
which failed the Met Office 
quality control 

492 12 

prcp_amt_q= 20009 Accumulated precipitation values 82,862 n/a 

prcp_amt_q= 20109 Accumulated precipitation values 316 n/a 

prcp_amt_q= 10129 Trace precipitation values 43 n/a 

prcp_amt_q= 14129 Trace precipitation values 41 n/a 

Multiple values 
Multiple values for the same 
gauge on the same date 

1,171,500 2,332,700 

Extreme outliers 
Values > 279mm (daily), 92mm 
(hourly) 

9 41 

Table 3.2 Numbers of hourly/daily values that are set to missing or to zero due to certain 

criteria described in Section 3.1.2.  

3.1.2.4 Selection of one single value out of multiple values for the same station on the same 

date 

A rainfall-id number has been attributed to each value by the Met Office. A change in the 

rainfall-id number identifies cases where the precipitation gauges have been replaced by 

newer ones or changes in the measurement conditions of the station have occurred. Changes 

in conditions include: relocation of the new station more than 400m away from the previous 

station; the new station is 15m altitude different from the previous station; the new 

environment is different (degree of shelter). As a result, for the same precipitation station 
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more than one precipitation value is often available on the same date, as the “older” (initial) 

precipitation gauge has not always stopped operating. 

In this study, where multiple precipitation values are available at the same station on the same 

date, the rainfall-id number is used to select those values from the precipitation gauge with 

the most recent values. By using precipitation values continuously from the same precipitation 

gauge, precipitation series are likely to be homogeneous, with an emphasis on the more recent 

values.  

Note, in theory, precipitation values of each precipitation gauges should be only attributed to 

one unique station. However, there are cases where precipitation values of the same 

precipitation gauge have been associated to two different stations in the data set. In this 

study, these values are listed to be considered in case the affected stations are used for further 

analysis. 

3.1.3 Station selection (Statistical Downscaling) 

A number of criteria are used to select the hourly precipitation stations that provide 

homogeneous precipitation time series with a high level of completeness. They are listed in 

the order of the steps as follows. 

1. Relatively high completeness with no single missing year and less than 5% missing 

values over the time period 1980 to 2009 (see Section 3.1.3.1). A missing year is 

defined as a calendar year for which no precipitation records are available. 

2. Consistency between hourly and daily precipitation records (see Section 3.1.3.2) 

3. Homogenization test by means of the RHtest (see Section 3.1.3.3) 

4. Spatial coverage of the UK extreme precipitation regions (see Section 3.1.3.4) 

The same criteria are also applied to the hourly precipitation stations over the time period 

1960 to 1989, which is used for the calibration of the fuzzy rules based CP-classification (see 

Section 5.1.2). 

3.1.3.1 Incompleteness 

In this study, only those stations are considered which provide hourly values over 1980-2009. 

Stations which started to record after 1980 or were closed before 2009 are not considered in 

this study. Also stations which exhibit missing years (a missing year is defined as a year for 

which no precipitation records are available) of data between 1980 and 2009 are eliminated. A 

large number of hourly precipitation stations started to record in the 1970s and early 1980s 

and as a result the availability of UK observed hourly precipitation values is much higher 
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between 1980-2009 compared to the time period 1961-1990 commonly used in previous 

studies (Lenderink et al., 2007; Willems and Vrac, 2011). 

During the evaluation time period 1980-2009, there are 38 out of 530 stations that provide 

hourly precipitation records with no missing years (a missing year is defined as a year with no 

precipitation records available). The 38 precipitation stations that have more than 5% missing 

hourly values during 1980-2009 are eliminated. As a result, 34 precipitation stations remained 

for further selection. 

3.1.3.2 Consistency between hourly and daily precipitation values 

It is important that the precipitation stations provide consistent hourly and daily records. In 

order to assess the consistency, the hourly time series of precipitation were aggregated to 

daily time series and compared with the corresponding daily time series. In the MIDAS 

database, not every precipitation station that provides hourly records necessarily provides 

daily records for the same time period. In fact, none of the 34 remaining precipitation stations 

provide complete daily precipitation values over the time period 1980-2009. Instead, daily 

precipitation series range from 8 to 29 years of recorded data during the period 1980-2009 

(see Table 3.3). This was unexpected and could be explained by the closure of daily 

precipitation gauges. It can be seen from the MIDAS database that a high number of them 

closed in 2008. As a result, hourly precipitation time series are aggregated to daily time series 

in this thesis, where daily precipitation values are required as predictors in the statistical 

downscaling process. 

The Pearson’s correlation coefficient ρX,Y (see Equation 3.1) and the normalized root-mean-

square deviation NRMSD (see Equation 3.3) are calculated to analyse how well the existing 

daily precipitation value match with the corresponding 24hr aggregated hourly precipitation 

on the same day. The correlation coefficient measures the strength and direction of the linear 

relationship between 24hr aggregated hourly and daily precipitation, whereas the NRMSD is a 

measure of the actual difference in precipitation intensities between daily and 24hr 

aggregated hourly precipitation. For the calculation of the NRMSD, the daily values are 

considered as the benchmark values, while the 24hr aggregated values are regarded as values 

predicted by a model or an estimator. A constant underestimation or overestimation of daily 

precipitation by 24hr aggregated precipitation can only be detected by NRMSD, not by the 

correlation coefficient. The correlation coefficient gives a value between +1 and -1, where 1 is 

total positive correlation, 0 indicates no correlation, and -1 represents total negative 

correlation. The NRMSD ranges from 0 to 1, where a value of 0 indicates total consistency 
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between the two variables (daily and 24hr aggregated precipitation) and 1 indicates maximum 

inconsistency between the two variables. 

𝜌𝑋,𝑌 =
1

𝑁 − 1
∑

(𝑋𝑖 −  �̅�)

𝑠𝑋

𝑁

𝑖=1

 
(𝑌𝑖 − �̅�)

𝑠𝑌
 (3.1) 

𝑁: Number of wet days with daily and 24hr aggregated precipitation values 

𝑋𝑖: Values of daily precipitation 

𝑌𝑖 : Values of 24-hr aggregated hourly precipitation 

𝑋,̅ �̅�: Sample mean of 𝑋𝑖 , 𝑌𝑖   

𝑠𝑋, 𝑠𝑦: Standard deviation of 𝑋𝑖 , 𝑌𝑖 (see Equation 3.2) 
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𝑖=1
𝑁

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

(3.3) 

Discrepancies between 24hr aggregated and daily precipitation are found for nearly every 

station. But a large number of stations show generally high correlation and low NRMSD values 

between hourly and daily values (see Table 3.3). Discrepancies between hourly and daily 

values can be caused by different types of gauges as manual ordinary gauges are often used 

for daily values while for hourly values automated rain gauges, such as tipping bucket gauges 

or tilting siphon gauges, are often used. Another potential reason for differences can be due to 

human errors or inaccuracies in analysing the measurement (Melber and Oswald, personal 

communication)  . 

In this study, precipitation stations are not used which provide more than 15 years of daily 

precipitation values with 𝜌𝑋,𝑌 < 0.9 or 𝑁𝑅𝑀𝑆𝐷 > 0.05 over the time period 1980-2009. In 

Figure 3.1, the daily and 24hr aggregated values are plotted pairwise for the five stations which 

failed to meet this selection criterion. The stations at Kirkwall (North Highlands) and Manston 

(South East England) are both heavily affected by one daily precipitation record. After setting 

this daily value (02/11/2006, 61.2mm) to missing at Kirkwall, the correlation coefficient 

increases from 0.77 to 0.98 and the 𝑁𝑅𝑀𝑆𝐷 decreased from 0.060 to 0.036. As a result, the 

station at Kirkwall can be potentially used in this study and only this one specific daily value 

has to be set to missing in further analysis. At Manston, another value (07/01/1999, 1.8mm) 

from a different measurement gauge, which stopped operating soon after, is available on the 
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date of the outlier (07/01/1999, 101.8mm). This value shows a higher stage in the Met Office 

quality control and is almost identical with the 24hr aggregated value on the same date. After 

using this value at Manston, the correlation coefficient increases from 0.82 to 0.98 and the 

NRMSD decreased from 0.033 to 0.026. As a result, the station at Manston can be used in this 

study after replacing this one specific record (1.8mm instead of 101.8mm).  

The station at Stornoway airport (North Highlands) exhibits a low correlation coefficient 𝜌𝑋,𝑌 =

0.76 also due to one daily precipitation record (06/06/1999, 103.7mm). The correlation 

coefficient increases considerably to 𝜌𝑋,𝑌 = 0.92, after setting this record to missing. 

However, at the same time, the 𝑁𝑅𝑀𝑆𝐷 also increases from 0.043 to 0.070 and thus failed the 

𝑁𝑅𝑀𝑆𝐷 criteria. As a consequence, the station at Stornoway airport is not used in this study. 

The stations at Wick airport (East Scotland) and Lyneham (South England) exhibit multiple 

values with considerable discrepancies between hourly aggregated and daily precipitation. As 

a consequence, these two stations failed to meet the selection criteria and also cannot be used 

in this study.  

It is interesting to note, that the suspected records (see Table 3.4) are all daily and not 24hr 

aggregated hourly values. However, considering the entire range of precipitation values (small, 

medium and high values) across all stations, no systematic overestimation of daily values 

compared to 24hr aggregated hourly values is found. In total, three (Stornoway airport, Wick 

airport and Lyneham) of 34 precipitation stations cannot be used due to large discrepancies 

between 24hr aggregated and daily precipitation.  

Figure 3.2 shows the values of daily and 24hr aggregated values plotted pairwise for the final 

selected stations, which meet all the selection criteria defined in Section 3.1.3. For the station 

at Boscombe Down, one suspicious value of 24hr aggregated hourly records could be 

identified. This was caused by one hourly record (19/02/1996 00:00, 40.0mm). Such a high 

hourly precipitation value can only be caused by increased convective activity which is very 

unlikely to occur at this time of the year to this extent. As a consequence, this hourly 

precipitation value is eliminated in this study. Similarly for the station at Boulmer, suspected 

records of hourly precipitation (01/02/1996 10:00, 20.10mm and 20/02/1994 00:00, 20.0mm) 

are identified and eliminated. 

The scatter plot for the station at Ronaldsway is not shown because it comprises less than 15 

years of 24hr aggregated hourly and daily values between 1980 and 2009. As a result, the 

station at Ronaldsway is not used in this study.
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Table 3.3 Results of the comparison of 24hr aggregated hourly (>1mm) and daily values 

(>1mm) for 34 stations described in Section 3.1.3.2. Stations in bold refer to those that have 

outlier values corrected or set to missing. Stations in italic failed the selection criterion defined 

in Section 3.1.3.2.  

srcId Station name 
Overlapping 

years 
Overlapping 
days (>1mm) 

Pearson’s 
correlation 
coefficient 

𝑵𝑹𝑴𝑺𝑫 

1046 RONALDSWAY 8 7 0.2181 0.4539 

23 KIRKWALL 16 255 0.9828 0.0356 

54 
STORNOWAY 

AIRPORT 
16 698 0.9243 0.0696 

18974 TIREE 17 1085 0.9825 0.0276 

161 DYCE 18 875 0.9837 0.0250 

384 WADDINGTON 19 1209 0.9940 0.0090 

132 KINLOSS 20 1292 0.9907 0.0163 

32 WICK AIRPORT 21 345 0.8459 0.0816 

775 MANSTON 22 950 0.9813 0.0261 

556 
NOTTINGHAM 

WATNALL 
22 841 0.9774 0.0245 

1070 CARLISLE 23 1545 0.9745 0.0333 

1198 ABERPORTH 24 2554 0.9385 0.0213 

708 HEATHROW 24 1591 0.9925 0.0114 

643 SHAWBURY 24 1917 0.9841 0.0170 

461 BEDFORD 25 970 0.9569 0.0271 

9 LERWICK 26 3081 0.9798 0.0158 

886 LYNEHAM 26 1543 0.7913 0.0548 

409 MARHAM 26 1761 0.9871 0.0102 

1395 CAMBORNE 26 2597 0.9869 0.0149 

1023 ESKDALEMUIR 27 3267 0.9877 0.0177 

842 HURN 27 1455 0.9865 0.0244 

583 WITTERING 28 1805 0.9767 0.0159 

605 BRIZE NORTON 28 2670 0.9894 0.0083 

889 BOSCOMBE DOWN 28 2607 0.9790 0.0259 

1346 CHIVENOR 29 2709 0.9673 0.0245 

613 BENSON 29 1845 0.9810 0.0179 

17314 LEEMING 29 2698 0.9798 0.0123 

315 BOULMER 29 2683 0.9692 0.0279 

386 CRANWELL 29 2546 0.9946 0.0090 

862 ODIHAM 29 2537 0.9748 0.0256 

235 LEUCHARS 29 2908 0.9917 0.0142 

709 NORTHOLT 29 2862 0.9954 0.0077 

1145 VALLEY 29 3357 0.9773 0.0214 
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Station (Station 
number) 

Date 
Initial daily 

precipitation 
value [mm] 

Corrected daily 
precipitation 

value 

Kirkwall (23) 02/11/2006 61.2 Set to missing 

Manston (775) 07/01/1999 101.8 1.8 

Stornoway airport (54) 06/06/1999 103.7 Set to missing 

Table 3.4 Detected suspicious records of daily precipitation values by comparing daily with 

24hr aggregated precipitation values. 

 

 
 
Figure 3.1 Scatter plot of daily precipitation (horizontal axis) and 24-hour aggregated 
precipitation values (vertical axis) recorded on the same day for the five stations with  𝜌𝑋,𝑌 <

0.9 or 𝑁𝑅𝑀𝑆𝐷 > 0.05 (failing selection criterion defined in 3.1.3.2).  
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Figure 3.2 Scatter plot of daily precipitation (horizontal axis) and 24-hour aggregated 
precipitation values (vertical axis) on the same day for the final selected stations with  𝜌𝑋,𝑌 >
0.9 and 𝑁𝑅𝑀𝑆𝐷 < 0.05 (fulfilling all selection criteria). 
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3.1.3.3 Homogenization test by means of the RHtest 

The RHtest V3, developed under the auspices of ETCCDI (Zhang) is a tool to homogenize 

precipitation time series by detecting artificial changing points and adjusting the biased 

precipitation amounts. In this study, it was used solely as a selection tool to identify and 

eliminate stations with an inhomogeneous time series. No adjustment of precipitation 

amounts was conducted. The RHtest was applied on monthly total precipitation amounts 

derived from the corresponding hourly precipitation values for each station because 

hourly/daily precipitation time series are much noisier and thus more difficult to test for 

changing points compared to monthly precipitation. Also, the monthly total precipitation 

amounts were logarithm transformed before being used in the RHtest as recommended in 

Wang and Feng (2010). 

In particular those stations with multiple rainfall-ids associated to it, indicating a replacement 

or changes in the measurement conditions, are at risk of exhibiting inhomogeneities (changing 

points) in their precipitation time series. In this study, all of the 30 stations tested on 

homogeneity exhibit multiple rainfall-ids within the MIDAS database, but none of them 

showed any changing points based on the RHtest. Hence none of the 30 stations are 

eliminated in this step. 

3.1.3.4 Spatial coverage of UK extreme precipitation regions 

In Table 3.5 and Figure 3.3, the step-wise elimination of hourly precipitation stations, 

according to the criteria described in Section 3.1.3.1 and Section 3.1.3.2, is shown. Figure 3.4 

illustrates the 14 different UK extreme precipitation regions defined in Jones et al. (2014) 

based on spatial differences of daily extreme precipitation. For this regionalisation scheme, 

precipitation statistics such as magnitude, seasonal variation and variance of yearly maxima 

are applied to find coherent regions with different characteristics in terms of daily extreme 

precipitation over the UK. In this study, twelve of the 14 UK extreme precipitation regions are 

represented by one or more of the final selected hourly precipitation stations. The two regions 

which are not represented by any hourly precipitation time series in this study are Mid Wales 

and South Scotland. In cases, where more than one hourly precipitation stations is available for 

an extreme precipitation region in the UK, the precipitation station with the lowest 

incompleteness over the time period 1980-2009 is selected. As a consequence, 18 stations are 

eliminated. The eliminated stations are still used for calibration purposes in terms of 

establishing relationships between hourly precipitation and other variables, such as daily 

precipitation, temperature etc. But the projection of hourly extremes is solely done for the one 

selected station within each region. As a result, twelve final precipitation stations are selected 
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to represent the characteristic spatial diversity in precipitation extremes over the UK (see 

Table 3.6 and Figure 3.4 - 3.6). It should be pointed out that the classification of the 14 UK 

extreme precipitation regions was solely based on daily precipitation pattern and it is possible 

that the same analysis based on hourly precipitation patterns could result in different UK 

extreme precipitation regions. 

In previous studies, instead of the 14 UK extreme precipitation regions, the Hadley UK 

Precipitation (HadUKP) regions were used to analyse changes in current and future extreme 

precipitation (Fowler and Ekström, 2009). However, the nine HadUKP regions were developed 

from the England and Wales precipitation regions (Wigley et al., 1984) based on mean 

precipitation characteristics and do not specifically represent the spatial variability of UK 

extreme precipitation. In Figure 3.5, the HadUKP regions are shown as well as the final 

selection of hourly precipitation stations used in this study. Although the HadUKP regions are 

not assumed to reflect on the specific characteristics of precipitation extremes, it is worth 

mentioning that each region is still covered by at least one of the twelve precipitation stations. 

Criterion Comment 
Number of 
eliminated 

stations 

Number of 
selected 
stations 

3.1.3.1 Incompleteness 496 34 

3.1.3.2 
Comparison of 24hr aggregated and 

daily values 
4 30 

3.1.3.3 Homogenization test (RHtest) 0 30 

3.1.3.4 
Spatial coverage of UK extreme 

precipitation regions 
18 12 

Table 3.5 Step-wise elimination of hourly precipitation stations (initially 530) depending on the 

specific criterion.  
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Station 
number 

Station name 
Extreme 
regions 

Elevation 
[m] 

Complet
eness 

Rainfall-
ids 

Days with 
hourly and 

daily 
precipitation 

(>1mm) 

Pearson’s 
correlation 
coefficient 

𝑵𝑹𝑴𝑺𝑫 

132 KINLOSS ES 5 0.9910 1 1292 0.9907 0.0163 

235 LEUCHARS FOR 10 0.9941 1 2908 0.9917 0.0142 

315 BOULMER NE 23 0.9931 2 2683 0.9692 0.0279 

386 CRANWELL HUM 63 0.9935 2 2546 0.9946 0.0090 

409 MARHAM EA 21 0.9908 3 1761 0.9871 0.0102 

709 NORTHOLT SE 33 0.9945 1 2862 0.9954 0.0077 

889 
BOSCOMBE 

DOWN 
WC 126 0.9954 2 2607 0.9790 0.0259 

1023 ESKDALEMUIR SOL 236 0.9774 2 3267 0.9877 0.0177 

1145 VALLEY NW 10 0.9976 2 3357 0.9773 0.0214 

1395 CAMBORNE SW 87 0.9914 1 2597 0.9869 0.0149 

1450 ALDERGROVE NI 63 0.9939 4 3022 0.9834 0.0229 

18974 TIREE NHI 9 0.9889 3 1085 0.9825 0.0276 

Table 3.6 Details of the twelve final selected hourly precipitation stations following the 

selection criteria in Section 3.1.3 for the time period 1980-2009. The associated extreme 

precipitation regions are given as North Highlands and Islands (NHI), East Scotland (ES), South 

Scotland (SS), Forth (FOR), Northern Ireland (NI), Solway (SOL), North West (NW), North East 

(NE), Humber (HUM), Mid Wales (MW), East Anglia (EA), South West (SW), West Country (WC) 

and South East (SE). Completeness is given as the ratio of available precipitation values per 

station divided by the total number of hours between 1980 and 2009. Rainfall-ids indicate the 

number of changes in the measurement conditions between 1980 and 2009 according to the 

Met Office.  
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Figure 3.3 Step-wise elimination of UK hourly precipitation stations. Left: All available 530 
hourly precipitation stations; middle: 34 hourly precipitation stations that provide records 
between 1980-2009 (criterion defined in Section 3.1.3.1); right: 30 hourly precipitation stations 
that fulfil criteria defined in 3.1.3.1 and 3.1.3.2. In colour the different extreme precipitation 
regions as described in Jones et al. (2014).  



66 | P a g e  
 

 
Figure 3.4 The twelve final selected hourly precipitation stations across the UK following the 
selection criteria in 3.1.3. In colour the different UK extreme precipitation regions as described 
in Jones et al. (2014). 
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Figure 3.5 The twelve final selected hourly precipitation stations across the UK following the 
selection criteria in 3.1.3 with the HadUKP regions overlapped on the extreme precipitation 
regions (Jones et al., 2014). 
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Figure 3.6 The twelve final selected hourly precipitation stations across the UK following the 
selection criteria in 3.1.3 with the elevation map. 
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3.1.4 Station selection for the calibration of fuzzy rules based CP-classifications 

The same criteria described in Section 3.1.3 are applied to the candidate stations in this 

section, but during the calibration time period 1960-1989. The selection aims to ensure only 

the stations with high completeness of hourly precipitation data during the time period 1960-

1989 are used for the fuzzy rules based calibration. Table 3.7 shows the three stations that are 

selected. They do not have missing years (a missing year is defined as a year with no 

precipitation records available) and have less than 0.5% missing values during 1960-1989. The 

two stations at Elmdon and Aldergrove provide consistent values between hourly and daily 

precipitation. The Stornoway airport station could not be tested due to limited daily 

precipitation availability, but remained in the selection to maximise the number of stations 

that could be used for the calibration. None of the three stations shows signs of 

inhomogeneities during 1960-1989 according to the RHtest, despite the fact that four changes 

occur in the measurement conditions at Elmdon over this time period. The three stations 

(Elmdon, Aldergrove and Stornoway Airport) also represent three different HadUKP regions 

respectively (Central England, Northern Ireland and Northern Scotland). 

 In total, five different precipitation Sets 1-5 are applied and evaluated for the calibration of 

the different CP-classifications. Precipitation Sets 1-3 comprise different site-specific hourly 

precipitation series (Table 5.2) derived from these three selected stations (Table 3.7). 

Precipitation Set 4 uses two series of hourly precipitation, each representing an average over 

multiple stations (Table 3.8 and Figure 5.1). The two precipitation series represent two 

different HadUKP regions, namely the South West England (Boscombe Down, Aberporth, 

Rhoose, Plymouth Mountbatten) and Northern Scotland (Wick Airport, Stornoway Airport, 

Tiree). For this Set, no selection criteria are applied in order to maximise the number of 

available stations within the two HadUKP regions. Set 1-4 use the number of wet hours per day 

as the input in order to distinguish between days with no precipitation, days with short spells 

of precipitation and days with persistent precipitation. In contrast to the other four 

precipitation Sets, Set 5 is based on the nine HadUKP regional daily precipitation intensities 

across the UK. 
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Station 
number 

Station name 
Elevation 

[m] 
Complet

eness 
Rainfall

_ids 

54 Stornoway Airport 15 0.9987 0 

593 Elmdon 96 0.9957 4 

1450 Aldergrove 63 0.9994 2 

Table 3.7 Details of the three hourly precipitation stations used in three different precipitation 

Sets to define fuzzy rules CP-classification over the calibration period (1960-1989). 

Completeness is given as the ratio of available precipitation values per station divided by the 

total number of hours during 1960-1989. Rainfall_ids indicate the number of changes in the 

measurement conditions during 1960 and 1989 according to the metadata of the MIDAS 

database.  

Station 
number 

Station name 
Elevation 

[m] 
Completeness Rainfall_ids 

889 Boscombe Down 126 0.9950 1 

1336 Plymouth Mountbatten 50 0.9915 1 

1267 Rhoose 65 0.9914 2 

1198 Aberporth 133 0.9795 2 

     

18974 Tiree 9 0.9962 1 

54 Stornoway Airport 15 0.9987 0 

32 Wick Airport 36 0.9973 0 

Table 3.8 Details of the hourly precipitation stations used in the fourth precipitation Set to 

define fuzzy rules CP-classification over the calibration period (1960-1989). Completeness is 

given as the ratio of available precipitation values per station divided by the total number of 

hours during 1960-1989. Rainfall_ids indicate the number of changes in the measurement 

conditions during 1960-1989 according to the metadata of the MIDAS database. 

3.1.5  Precipitation analysis of the selected stations 

3.1.5.1 Monthly/annual precipitation totals  

In Table 3.9, the mean annual precipitation totals of the twelve selected stations are shown 

and the corresponding regional HadUKP precipitation totals between 1980 and 2009. Similarly, 

Table 3.10 includes the mean annual precipitation totals of the three stations used for the 

calibration of the fuzzy rules CP-classification and the corresponding regional HadUKP 

precipitation between 1960 and 1989. For eleven of the twelve selected stations in Table 3.9, 

the mean annual total precipitation of the respective regional HadUKP precipitation series is 

higher than the mean annual precipitation totals of the stations. Only the station at 

Eskdalemuir exhibits a higher mean annual precipitation total compared to its respective 

regional HadUKP precipitation series. The reason for that lies probably in the elevation of the 

stations. The station at Eskdalemuir has an elevation of 236m, while the other eleven selected 
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stations exhibit smaller values of elevation (between 5m and 126m). For the stations used for 

the calibration of the fuzzy rules CP-classification, lower precipitation totals can be found at 

Stornoway and Aldergrove compared to the corresponding regional HadUKP precipitation 

totals (see Table 3.10). This is also likely to be due to the low elevation at Stornoway (15m) and 

Aldergrove (63m) compared to the regional topography, which are characterized by 

mountainous areas in Northern Scotland and Northern Ireland. The fact that Aldergrove is 

located on the leeward side of a mountain range is likely to be another reason that relatively 

small precipitation totals are measured at Aldergrove compared to the regional average. In 

contrast, the standard deviation (see Equation 3.2) of the mean annual precipitation totals is 

not consistently lower than the standard deviation of the respective regional annual HadUKP 

precipitation total. This is very likely due to the fact that precipitation extremes are smoothed 

out in the spatially averaged regional HadUKP precipitation series. For all stations, the inter-

annual variability of the regional HadUKP precipitation is realistically reproduced indicated by 

the Pearson’s correlation coefficient.  

In terms of the spatial variability of the annual precipitation totals, stations in the western part 

of the UK (Tiree, Eskdaelmuir, Aldergrove, Valley, Camborne and Stornoway airport) show 

higher annual totals compared to the rest of the stations. The reason for that lies in the fact 

that stations in the western part of the UK are more exposed to humid airflow coming in from 

the North Atlantic. Concerning the mean monthly precipitation averages shown in Figure 3.7 

and Figure 3.8, it can be seen that the monthly precipitation total of the twelve selected 

stations and the three stations used in the fuzzy rules CP-classification reproduce the annual 

cycle of the regional HadUKP precipitation totals realistically.  
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Stations (HadUKP regions) Mean [mm] 
Standard 
deviation 

[mm] 

Pearson’s 
correlation 
coefficient 

Kinloss (Eastern Scotland) 651 (793) 96   (91) 0.81 

Tiree (Northern Scotland) 1257 (1737) 127 (192) 0.75 

Leuchars (Eastern Scotland) 671 (793) 112 (91) 0.84 

Eskdalemuir (Southern Scotland) 1663 (1494) 223 (162) 0.89 

Aldergrove (Northern Ireland) 854 (1034) 95   (108) 0.86 

Boulmer (North East England) 681 (809) 117 (110) 0.75 

Valley (North West England) 842 (1059) 112 (135) 0.82 

Cranwell (Central England) 605 (670) 88   (84) 0.93 

Marham (Central England) 638 (670) 99   (84) 0.85 

Northolt (South East England) 633 (745) 113 (106) 0.91 

Boscombe Down (South West England) 751 (1067) 121 (120) 0.74 

Camborne (South West England) 1044 (1067) 127 (120) 0.61 

Table 3.9 Annual precipitation statistics over the time period 1980-2009 derived from the 

aggregated hourly records at the twelve selected stations. In parentheses are the statistics of 

the corresponding regional HadUKP precipitation series given. The Pearson’s correlation 

coefficient is calculated for the annual precipitation totals of the station and the corresponding 

annual HadUKP precipitation totals. 

Stations (HadUKP regions) Mean [mm] 
Standard 
deviation 

[mm] 

Pearson’s 
correlation 
coefficient 

Stornoway Airport (Northern Scotland) 1153 (1580) 151 (201) 0.81 

Aldergrove (Northern Ireland) 851 (1026) 90 (99) 0.88 

Elmdon (Central England) 676 (654) 85 (80) 0.79 

Table 3.10 Annual precipitation statistics over the time period 1960-1989 derived from the 

aggregated hourly records of the three hourly precipitation stations used for the calibration of 

the fuzzy-rules CP-classification. In parentheses are the precipitation statistics of the 

corresponding regional HadUKP precipitation series given. The Pearson’s correlation 

coefficient is calculated for the annual precipitation totals of the station and the corresponding 

annual HadUKP precipitation totals. 
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Figure 3.7 Monthly precipitation averages of the twelve selected stations (blue solid line with 
asterisk markers) and of the corresponding HadUKP regions (red dotted line with square 
markers) averaged over the time period 1980-2009. 
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Figure 3.8 Monthly precipitation averages of the three stations used for the calibration of the 
fuzzy rules CP-classification (blue line) and of the corresponding HadUKP regions (red line) 
averaged over the time period 1960-1989. 

3.1.5.2 Extreme daily precipitation  

Figure 3.9 illustrates the monthly 99.5th percentile of daily precipitation for all the twelve 

selected stations, in order to give a representation of the intensity of daily precipitation 

extremes through the year. It can be seen that the station at Eskdalemuir exhibit higher 

intensities of daily precipitation extremes compared to the other stations for most of the 

months, except May, June and July. The higher intensities are likely due to the effects of 

orographic precipitation (Chan et al., 2014b; Chan, 2013) as Eskdalemuir is the station with the 

highest elevation (236m) and is situated in a mountainous area (Svensson et al., 2002). In 

terms of the annual cycle of the daily precipitation extremes, no clear systematic pattern can 

be identified over multiple stations. The fact that no pronounced maximum occur in the 

warmest months indicates the convective mechanism may be less important in driving daily 

precipitation extremes than in driving hourly precipitation extremes. Instead, stratiform 

precipitation events caused by cyclonic weather systems are likely to be most important in 

terms of daily precipitation extremes (Chan et al., 2014b). 
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Figure 3.9 Annual cycle of the 99.5th percentile of daily precipitation between 1980 and 2009 

for the twelve selected stations. 
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3.1.5.3 Extreme hourly precipitation  

Figure 3.10 shows the statistical distributions of daily maximum hourly precipitation between 

1980 and 2009 for the twelve selected stations. The station at Kinloss, which is located furthest 

North, exhibit a very steep distribution slope resulting in lower high percentile values 

compared to most of the other stations. For example, the 90th percentile at Kinloss amounts to 

1.78mm/hr in comparison to 90th percentile values of 2.93mm/hr at Camborne or 2.81mm/hr 

at Tiree. However, these existing differences in the distribution for high percentiles are difficult 

to detect and almost vanish when considering the global distributions only. The reason for this 

is found in the high discrepancy between relatively high percentile (e.g. the 90th percentile) 

values and the very most extreme hourly precipitation values. For example, at Kinloss the most 

extreme hourly precipitation value is more than 30 times higher than the 90th percentiles. This 

shows the importance of using very high percentiles when conducting extreme hourly 

precipitation analysis, in order to represent the most extreme events realistically. Besides, for 

the design of flood prevention measures engineers are often interested in very rare extreme 

precipitation events (e.g. the 1% annual exceedance probability event, which occurs on 

average once every 100 years). But the measure of extreme event depends strongly on the 

available sample size of precipitation records. For example, it would be highly uncertain to 

estimate the 1% annual exceedance probability event based on a statistical downscaling 

method which is only calibrated over a 30-year period of precipitation records. As a result, the 

decision on which measure of extreme to focus on must always be a trade-off between a 

comprehensible interest in the most extreme precipitation events and the recognition of a 

limited sample size of precipitation records to calibrate the statistical downscaling method on. 

It should be also mentioned, that the most extreme events are often estimated by using the 

extreme value theory (EVT). This approach aims to derive a probability distribution for the 

extreme events only, which can be used to assess the probability of events that are outside of 

the observed data range. For example, Jones et al. (2013) applied the EVT to assess changes in 

the 10-. 20-, 50- and 100-year return levels of UK extreme daily precipitation but 

acknowledged that estimates of the higher return periods are not necessarily reliable. In this 

thesis, the focus will be on the 99.5th percentile of extreme hourly precipitation events, which 

occurs on average at least once every year, and therefore the EVT is not required.  

In Figure 3.11, the monthly 99.5th percentiles of the maximum hourly precipitation of the 

twelve selected stations are shown. Two groups of stations can be identified with 

distinguishable annual cycle in terms of the 99.5th percentile. The first group comprises seven 

stations (Kinloss, Leuchars, Aldergrove, Boulmer, Cranwell, Marham, Northolt) and is 

characterized by higher 99.5th percentiles between May and October compared to the rest of 
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the year. The stations in this group also exhibit a pronounced maximum in the 99.5th 

percentiles between June and August. This is the time of the year when convective extreme 

precipitation events are most likely to occur (Hand et al., 2004). Therefore, the maximum is 

likely due to increased convective activity in the summer months (Blenkinsop et al., 2015; Chan 

et al., 2014b; Chan, 2013). It needs to be mentioned that the annual cycle representing the 

99.5th percentile of the maximum hourly precipitation differs from the annual cycle of the 

99.5th percentile of the daily precipitation. This suggests that summer convective precipitation 

events have a greater impact on hourly than on daily precipitation extremes (Gregersen et al., 

2013). 

The second group shows a different annual cycle in terms of hourly precipitation extremes. For 

the three stations (Tiree, Valley and Camborne) in this group, the second half of the year (July-

Dec) is characterized by slightly higher 99.5th percentiles compared to the rest of the year and 

no pronounced maximum in the 99.5th percentile can be identified for the warmest time of the 

year (JJA). Therefore, the annual cycle of the hourly precipitation extremes for stations in the 

second group corresponds with the annual cycle of the daily precipitation extremes shown in 

Figure 3.9. The differences between the two groups in terms of the annual cycle of hourly 

precipitation extremes are likely to be due to geographical location, as the three stations in the 

second group are the stations most exposed to the North Atlantic and as a result more under 

the influence of westerly synoptic-scale weather systems. Chan (2013) argued that stations in 

the West are less affected by convective precipitation extremes and more by stratiform 

precipitation events, which is the dominant feature for winter precipitation (Chan et al., 

2014b; Lenderink and van Meijgaard, 2008). As a result, these stations do not exhibit any 

maximum in hourly precipitation extremes in the summer (JJA) and a stronger relationship 

may exist between hourly precipitation and daily precipitation intensities. In terms of the 

convective available potential energy (CAPE), Holley et al. (2014) identified three main CAPE 

seasons: “land dominated CAPE” between April and September, “sea dominated CAPE” 

between September and January and “low CAPE” from January to April. As extreme hourly 

precipitation can often be linked with increased convective activity (Gregersen et al., 2013), 

this may also explain why the three stations most exposed to the North Atlantic exhibit higher 

extreme hourly precipitation in the second half of the year (July-Dec). 

For the station at Eskdalemuir, orographic effects play an important role in terms of its 

precipitation pattern (see above). Orographic precipitation events can result in extremely high 

sub-daily precipitation extremes. For example, the highest 30min UK precipitation record is 

80mm at Eskdalemuir on the 26th June 1953 according to the (Met Office). 
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As shown in Figure 3.11, the monthly maximum of each station of the 99.5th hourly 

precipitation percentiles is close to the threshold of 10 mm/hr. As a result, hourly precipitation 

values equal to or higher than the threshold of 10mm/hr are defined as extreme hourly 

precipitation for the validation of the CP-classifications (see Section 4.2.2 and 5.3.2). Figure 

3.12 shows the annual cycle of the frequency of extreme hourly precipitation (>= for 10mm/hr) 

for the twelve selected stations. The above defined two distinguishable groups based on the 

annual cycle of the monthly 99.5th percentile remain not valid in terms of the frequency of 

extreme hourly precipitation. Over the whole year, the three stations furthest north of the UK 

(Leuchars, Tiree and Kinloss) exhibit fewer extreme hourly precipitation events compared to 

the other nine stations. It is likely that this can be attributed to the fact that temperature tend 

to be lower for higher latitudes (see Section 3.2.2) resulting in reduced convective activity 

(Chan, 2013) and less intense hourly precipitation events (Berg et al., 2013; Molnar et al., 

2014). However, in terms of the annual cycle of the frequency of extreme hourly precipitation 

all of the twelve stations share one similar pattern that the majority of extreme hourly 

precipitation events occur between May and October.  
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Figure 3.10 The daily maximum hourly precipitation distributions between 1980 and 2009 for 
the twelve selected stations. 
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Figure 3.11 Annual cycle of the 99.5th percentiles of the daily maximum hourly precipitation 
between 1980 and 2009 for the twelve selected stations. 
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Figure 3.12 Annual cycle of the frequency occurrences of daily maximum hourly precipitation 

(>10mm/hr) between 1980 and 2009 for the twelve selected stations. 
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3.2 Historical gridded data sets 

3.2.1 NCAR Sea Level Pressure (SLP) data set 

The NCAR SLP data set is a 5° gridded analysis based on land station observations, covering 

1899 to present for latitudes 30°N - 90°N and longitudes 0°E - 355°E. It provides daily (at 1200 

UTC) and monthly data and has been constructed by the National Centre for Atmospheric 

Research (NCAR). It includes data from several sources and the data is “analysed” which means 

other variables, in particular surface winds, are taken into account and the grid-scale noise is 

minimized. The fact that different sources have been used over time along with changes in the 

corresponding analysis techniques can lead to inconsistencies in the data set. The raw data set 

also contain numerous erroneous data points. Therefore, the SLP data set has been quality 

controlled and corrected accounting for changes in instrumentation and station location as 

explained in Trenberth and Paolino Jr (1980). The quality controlled and corrected data set is 

available under Hurrell and Trenberth (2013).  

The main advantage of the data set is the long time series dating back to 1899, which enables 

the fuzzy rules based CP-classification used in this thesis to be calibrated from 1960 to 1979. 

Hence the calibration of the CP-classification is independent from the time periods of the 

calibration and validation of the statistical downscaling method (1980-2009). In contrast, the 

ERA-interim reanalysis data set only provides SLP data from 1979-2013. A slight trade-off was 

made in selecting the NCAR over the ERA-interim reanalysis data in terms of the spatial 

resolution. The former provide SLP data on a 5° grid, the latter on a 0.75° grid. Given the SLP 

data set is used to classify the large-scale circulation patterns over the UK, the longer time 

period available for the calibration of the CP-classification is more important that having a 

finer spatial resolution. Previous studies used similar spatial resolution to the NCAR resolution 

for the purpose of CP-classification (Jones et al., 1993; Philipp et al., 2010). It also needs to be 

noted that SLP, in contrast to precipitation, can be considered as a continuous climate variable 

with relatively low spatial variability and hence an increase in the spatial resolution only is not 

likely to result in considerable different results. For example, Bárdossy et al. (2002) found that 

most of the available grid points providing SLP data have no direct influence on defining the 

CP-classification. Therefore, it is likely that an increase in the number of grid points, by 

increasing the spatial resolution, would not benefit the performance of the CP-classification, as 

the number of characteristic grid points to describe the CPs is not expected to increase 

simultaneously due to the relatively low spatial variability of the SLP variable. In terms of 

extreme hourly precipitation, mesoscale features are often considered as an important factor 

as they have the potential to trigger convective precipitation events (Hand et al., 2004). 

Therefore, it could be argued that an increase in the spatial resolution of the CP-classification 
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could benefit the prediction of the occurrence of extreme hourly precipitation. However, due 

to the small number of CPs used in this thesis it is very likely that the representation of 

mesoscale features would be smoothed out and would not lead to a better prediction of 

extreme hourly precipitation independently of the spatial resolution of the SLP data set. 

3.2.2 E-OBS temperature data set  

The E-OBS data set (Van den Besselaar et al., 2011) provides gridded observed climate 

variables on a 0.25° resolution between 1950 and 2013. In this study, daily mean temperature 

is extracted from the E-OBS data set for the statistical downscaling process applied in Chapter 

6 and 7. The E-OBS daily mean temperature variable is defined as the mean of the daily 

maximum and minimum temperature. For each of the twelve stations, the grid point with the 

smallest distance to the respective station is selected and the temperature at this grid point is 

used. The gridded E-OBS temperature time series exhibit considerably higher level of 

completeness compared to the temperature data on a station level available within the MIDAS 

Land Surface Stations database (NCAS British Atmospheric Data Centre, 2012). Another reason 

for using the E-OBS data set is the fact the daily mean temperature values are averaged 

between 0000UTC and 0000UTC (the following day), which is in accordance with the daily 

mean temperature extracted from the RCM data sets. In contrast, the station temperature 

data is given each day for the day time between 0900UTC (the previous day) and 0900UTC. 

Similarly to Mishra et al. (2012), the gridded temperature data set is therefore the preferred 

choice over station data. Daily mean temperature is used, rather than daily maximum 

temperature, as it better represents the temperature of the air mass and is less influenced by 

boundary-layer processes and radiation (Lenderink and van Meijgaard, 2008). 

Figure 3.13 shows the monthly 99.5th percentiles of the daily mean temperature for each of 

the twelve selected stations. This is important as convective precipitation can be linked with 

high temperature (Maraun et al., 2010b) and often cause extreme hourly precipitation 

(Gregersen et al., 2013). It has been also shown that precipitation intensifies with higher 

temperature, in particular for convective events (Berg et al., 2013). 

It can be seen that the annual cycles of the monthly 99.5th percentiles are highly similar 

amongst the twelve stations. The highest temperatures occur in July and August, while the 

lowest 99.5th percentiles are recorded in December, January and February for all of the twelve 

stations. In terms of the magnitude of the 99.5th percentiles, it is found that the temperature 

decreases as the latitude increases (see Table 3.11). The only exception is Camborne, which is 

the station located furthest south of the twelve stations. In this case, the 99.5th percentiles in 
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particularly June, July and August are lower compared to the other stations in the southern 

part of the UK (Boscombe Down, Northolt, Marham and Cranwell). This can be explained by 

the geographical location of the station. Camborne is in very close proximity to the North 

Atlantic, which leads to milder summer compared to the stations further inland. In terms of 

the annual mean, temperatures also tend to decrease with higher latitude. However, the 

annual mean temperature at Eskadelmuir is the lowest of all twelve stations. This might be due 

the fact that the stations at Eskdalemuir exhibit the highest elevation (236m) of the twelve 

stations as given in Table 3.6.  

In terms of the inter-annual variability, an increase in the annual temperature is found at all 

stations between 1980 and 2009. The increases are significant at the 5% level based on the p-

value test. The annual increases range from 0.035 °C to 0.057 °C depending on the particular 

station (see Figure 3.14). 

Station (latitude) 
Mean 

temperature 
99.5th 

percentiles 

Camborne (50.22°) 10.95 19.98 

Boscombe Down (51.16°) 10.34 21.78 

Northolt (51.55°) 11.12 23.39 

Marham (52.65°) 10.16 22.03 

Cranwell (53.03°) 10.04 21.66 

Valley (53.25°) 9.33 19.47 

Aldersgrove (54.66°) 9.41 19.44 

Boulmer (55.42°) 8.53 18.88 

Eskdalemuir (55.31°) 8.05 19.15 

Leuchars (56.37°) 8.61 18.77 

Tiree (56.5°) 8.73 17.87 

Kinloss (57.65°) 8.44 18.83 

Table 3.11 Annual temperature statistics for the twelve selected stations between 1980 and 

2009. Mean temperature and 99.5th percentiles are given in Celsius. The stations are listed 

according to their latitude, which is given in parenthesis in the first column. 
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Figure 3.13 Annual cycle of the monthly 99.5th percentiles of the daily mean temperature for 
the twelve selected stations between 1980 and 2009. 
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Figure 3.14 Observed trends in temperature between 1980 and 2009 for the twelve selected 

stations. All trends are significant at the 5% level based on the p-value test. 



87 | P a g e  
 

3.3 Regional Climate Model (RCM) data  

Within international coordinated frameworks such as the PRUDENCE (2001-2004), ENSEMBLES 

(2004-2009) and CORDEX (2009-present) projects, the RCMs have been continuously made 

available to the wider scientific communities. The CORDEX project represents one of the latest 

development of RCMs. The EURO-CORDEX is the European branch of the international CORDEX 

initiative and provides data with spatial resolution of 0.11° (EURO-11, equivalent to ca. 

12.5km) and 0.44° (EUR-44, equivalent to ca. 50km). 

In Table 3.12, the different 12.5km RCMs are presented for which an ERA-interim driven run is 

available under the CORDEX data archive (CORDEX, 2014) over Europe. The ERA-interim runs 

are essential for the statistical downscaling method applied in this study. The time periods of 

the ERA-interim runs vary depending on the different RCMs. In this study, only the RCA4 RCM 

and the RACMO22E RCM are used. They both cover the time period from 1980 to 2009, which 

is the same as the time period used for the calibration and validation of the statistical 

downscaling methods. The other three available RCMs do not cover the period 1980-2009 

when driven by the ERA-interim reanalysis data. 

The RCA4 RCM was developed by the Rossby Centre at the Swedish Meteorological and 

Hydrological Institute (SMHI) in Sweden. It is the fourth version of the Rossby Centre’s 

Regional Climate Models. The Rossby Centre was established in 1997 and has since then 

developed the [RCA1 (Rummukainen et al., 2001), RCA2 (Jones et al., 2004), RCA3 (Samuelsson 

et al., 2011)] through to RCA4. The latest RCA4 has undergone numerous physical changes. The 

focus has been mainly on the land and hydrological processes. For example, the Kain-Fritsch 

convection scheme has been updated to the Bechtold Kain-Fritsch scheme. It is a mass flux 

scheme and separates the shallow and deep convection processes. The lake model Flake 

replaced PROBE and is consistently flux coupled to the atmosphere. The soil hydrology layer in 

RCA4 is now grouped into forest and open land tiles. The inclusion of soil carbon in the RCA4 

decreased the overestimated soil-heat transfer in the RCA3. In addition, the heat transfer in 

the top soil layer was further decreased for vegetation. These parameterisations regarding the 

soil characteristics lead to an improved representation of the diurnal temperature range 

(SMHI). For a more detailed description and a discussion of the performances of the RCMs 

developed at the Rossby Centre, the reader are referred to Samuelsson et al. (2011).  

The RACMO22E was developed by the Royal Netherlands Meteorological Institute (KNMI) in 

the Netherlands. The version used in this study, referred to as RACMO22E, is an update of the 

RACMO2 cycle. RACMO22E is based on the ECMWF physics package embedded in the 

dynamical numerical weather prediction model HIRLAM and few routines to link the physical 
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and dynamical parts (Sponsor, 2012). The updated convection scheme consists of a 

reformulation of the triggering of shallow and deep convection over land (Van Meijgaard et al., 

2008). It is based on the Tiedtke convection scheme and is parameterized by a mass-flux 

approach, which is separated in deep, mid-level and shallow convection (DOCUMENTATION–

Cy31r1). The main difference between the Tiedtke scheme and the Bechtold Kain-Fritsch 

scheme, which is used in the RCA4, is the convection closure assumption. In the former, the 

closure assumption is based on moisture convergence and on Convective Available Potential 

Energy (CAPE) in the Bechtold Kain-Fritsch scheme (Dierer and Schubiger, 2008). Within the 

ENSEMBLES project, RACMO2 was found to be the best performing RCM among 14 others in 

representing climatic features of temperature and precipitation over Europe (Sponsor, 2012). 

In addition to RCM runs driven by ERA-interim reanalysis data, CORDEX data sets also archive 

RCM runs driven by various GCMs. These GCM-driven RCM runs either cover the historical 

time period 1970-2005 or the future time period 2006-2100. For the future time period, 

different emission scenarios are used, namely RCP26, RCP45 and RCP85. The availability of 

GCM-driven RCM runs under the RCP26 emission scenarios is very limited and therefore the 

RCM runs based on the RCP26 emission scenario are not included in this study.  

All daily SLP and near surface temperature values simulated by RCMs are temporally averaged 

over instantaneous values every three hours from 0000UTC to day+1 0000UTC and assigned to 

1200UTC of that day. The extent of the spatial domain of the RCMs run is illustrated in Figure 

3.15, where an example of a simulation of Mean Sea Level Pressure (MSLP) over Europe is 

given.  

 ERA-interim EC-EARTH CM5A-MR ESM-LR 

RCA4 1980-2010 x x x 

RACMO22E 1979-2012 x   

HIRHAM5 1989-2011    

CCLM4-8-17 1989-2008    

WRF331F 1989-2008    

Table 3.12 List of the 12.5km RCM runs available from the EURO-CORDEX data archive 

(CORDEX, 2014). The first column represents the available RCMs and the first row gives the 

driving ERA-interim reanalysis or GCM data. The red-colour filled cells represent the available 

runs and the red-colour filled cells with a white x indicate the RCMs runs used in this thesis. 
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Figure 3.15 Illustration of the spatial domain (contoured area) of the EURO-CORDEX data set. It 
shows the daily SLP simulated by the RCA4 RCM driven by the ERA-interim reanalysis data.  

3.4  Summary 

In this chapter, the different data sets (observed site-specific daily/hourly precipitation data, 

observed gridded SLP/temperature data and multiple RCM runs) applied in this thesis are 

introduced and discussed. The focus is on the observed site-specific hourly and daily 

precipitation extracted from the MIDAS Land Surface Stations database (NCAS British 

Atmospheric Data Centre, 2012). A number of criteria are defined to eliminate extreme 

outliers, suspicious and multiple available precipitation records. Twelve stations are selected 

based on the homogeneity and the completeness of the observed hourly precipitation time 

series. The twelve stations represent twelve of the 14 different UK extreme precipitation 

regions as defined in Jones et al. (2014). For each of the twelve stations, the annual cycle of 

extreme hourly precipitation is assessed. Two groups of stations can be distinguished. The 

majority of the stations show higher extreme hourly precipitation extremes between May and 

October compared to the rest of the year and a maximum in June, July and August. It is very 

likely that those stations are strongly affected by convective extreme precipitation events, 

which tend to occur in summer when temperature are highest (Hand et al., 2004). Similarly, 

Maraun et al. (2009) assessed the annual cycle of extreme daily precipitation across the UK 

and also found that extremes occur most often in summer for those stations (regions) that are 

dominated by convective precipitation extremes. For the second group of stations, extreme 

hourly precipitation tends to be higher in the second half of the year (Jul-Dec) and shows no 

pronounced maximum in June, July and August. The three stations (Tiree, Valley and 



90 | P a g e  
 

Camborne) in this group are located in the west of the UK and are most exposed to the North 

Atlantic. In terms of daily precipitation extremes, (Jones et al., 2013; Maraun et al., 2009) 

identified a similar annual cycle for stations in the western part of the UK with daily extremes 

peaking in late autumn or winter. It was argued that those stations are more strongly affected 

by westerly frontal weather systems. Another explanation for higher hourly extremes in the 

second half of the year may be given in Holley et al. (2014) where they identified three main 

convective available potential energy (CAPE) seasons. The “sea dominated CAPE” season, 

which is highly relevant for those three stations in close proximity to the North Atlantic, was 

defined from September to January and therefore for months in the second half of the year 

(with the exception of January).  
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Chapter 4  

Methodology 

4.1 Introduction 

In this thesis, the categorization of synoptic weather conditions into circulation patterns (CPs) 

is used to describe characteristic features of different atmospheric patterns and their 

corresponding relationships to extreme hourly precipitation events. However, the relationship 

between the atmospheric predictor, CP, and the local predictand, hourly precipitation, may 

not remain the same in a future climate. As a consequence, using CPs as the only atmospheric 

predictor may not be sufficient to reflect changes in future extreme hourly precipitation. Thus 

in this thesis, CPs are first used to subsample extreme hourly precipitation events according to 

their corresponding atmospheric conditions. In the next step, the effects of a changing climate 

on the relationship between CPs and extreme hourly precipitation events are analysed for 

each CP individually. The potential changes are represented by daily temperature and 

precipitation simulated by Regional Climate Models (RCMs). Daily temperature and 

precipitation are assumed to be more reliably simulated by RCMs compared to hourly 

precipitation events (Maraun et al., 2010b). In this thesis, changes in extreme hourly 

precipitation are therefore derived from the combination of changes in daily temperature and 

precipitation conditioned on CPs.  

The underlying assumptions with respect to using CPs are as follows: 

I. Consistent and distinct relationships between CPs and hourly precipitation can be 

established to identify CPs at higher risk of extreme hourly precipitation.  

II. The relationships between the predictors, daily precipitation and temperature, and the 

predictand, extreme hourly precipitation, are different depending on the CPs  

Section 4.2 explains the methodology of deriving the CP-classification based on fuzzy rules 

(Bardossy et al., 1995). This approach has been used in several previous studies over Europe 

(Bárdossy, 2010; Bárdossy and Pegram, 2011; Bárdossy et al., 2002; Haberlandt et al., 2014; 

Yang et al., 2010). In Bárdossy et al. (1995) , the fuzzy rules were identified subjectively based 

on the European Grosswetterlagen/types (Hess and Brezowsky, 1969). In later studies 

(Bárdossy, 2010; Bárdossy et al., 2002), objective functions, which assessed the quality of the 

CP-classification in distinguishing between dry and wet CPs, were used instead. In order to 
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evaluate the quality of the CP-classification based on fuzzy rules, information measures were 

needed. Generally, these objective functions and information measures focused on mean 

precipitation characteristics. In this thesis, one objective function and one information 

measure is modified to specifically reflect on the CP-classification’s ability to identify days of 

extreme precipitation events. None of the previous studies have applied the fuzzy CP-

classification over the UK. Therefore, the spatial domain of the fuzzy rules CP-classification in 

this thesis is redefined, in order to be able to capture the characteristic atmospheric circulation 

patterns over the UK.  

In Section 4.3, the focus shifts to the statistical downscaling method. The newly developed 

method addresses limitations of previous studies in terms of the statistical downscaling 

process of extreme hourly precipitation as discussed in Section 1.3. It is similar to the analogue 

day methods presented in Willems and Vrac (2011) where they tested several analogue day 

methods to project sub-daily precipitation extremes for one site in Belgium. Analogue day 

methods are able to reproduce local precipitation characteristics and simulate infrequent 

precipitation extremes on every temporal resolution for which observed data is available. The 

statistical downscaling process of the analogue method is relatively straightforward to 

understand and relies on physically coherent relationships between the predictor variables 

and the predictand. One of the methods in Willems and Vrac (2011) applied a perturbation 

factor to be able to project precipitation events which have not been observed in the past. In 

this case, they used daily precipitation, conditioned on different CPs and months, as the only 

predictor to find the most similar day in the past and applied a perturbation factor based on 

the Clausius-Clapeyron relationship.  

In contrast in this thesis, daily precipitation and temperature, conditioned on different CPs and 

seasons, are used as combined predictors to find the most similar day (analogue day) over the 

calibration period. Incorporating temperature as a second predictor is desirable, since sub-

daily precipitation extremes are likely to be more strongly intensified with temperature 

compared to daily precipitation events (Westra et al., 2014). Four different approaches of 

finding the analogue day are compared. In a next step, the observed maximum hourly 

precipitation value is extracted from the respective analogue day and perturbed based on the 

precipitation duration and temperature relationship conditioned on different CPs and seasons. 

The perturbation of the observed hourly precipitation values is required in order to simulate 

hourly precipitation values which have not been observed in the past. This is particularly 

important in terms of taking into account changes in the future climate.  
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Figure 4.1 summarises the applied method in this thesis to downscale extreme hourly 

precipitation. On the left side of the flowchart, the calibration of the statistical downscaling 

method and the derivation of the fuzzy rules CP-classification based on observed data sets are 

shown. The right side of the flow chart focuses on the estimation of hourly precipitation events 

using RCM simulated predictors. 

Within the taxonomy of statistical downscaling techniques, the applied method is best 

described as a hybrid of the analogue and the regression-based method. 

 

Figure 4.1  Flowchart of the applied method to downscale extreme hourly precipitation. SLP 
stands for sea level pressure, P for precipitation and T for temperature. 

4.2 CP-classification based on fuzzy rules 

The fuzzy rules CP-classification applied in this thesis uses the concept of fuzzy sets, in order to 

represent imprecise statements such as ‘high pressure’ mathematically.  For example, the 

fuzzy set 𝑣 = 1, which represents ‘high pressure’, is described by its membership function µ1. 

The value range of µ1 is between zero and one. The closer µ1 is to one, the stronger is the 

belief that a certain SLP value should be attributed to 𝑣 = 1. The CP-classification based on 

fuzzy rules was first developed in Bardossy et al. (1995), where the concept of fuzzy sets is 
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explained in more detail. Initially, the fuzzy rules were defined subjectively (Bardossy et al., 

1995), whereas in more recent studies (Bárdossy, 2010; Bárdossy et al., 2002) and in this thesis 

objective functions are used to derive the fuzzy rules automatically. Each CP is described by a 

fuzzy rule 𝑘 and each fuzzy rule is represented by a vector of fuzzy sets 𝑣(𝑘) as explained in 

Equation 4.1. 

𝑣(𝑘) = ( 𝑣(1)𝑘 …  𝑣(𝑛)𝑘  ) as in Bárdossy et al. (2002)  (4.1) 

𝑛: Number of grid points for which SLP data is available within the selected spatial domain. 

Five different fuzzy sets are used: 

𝑣 = 1 (very high pressure) 

𝑣 = 2 (medium high pressure) 

𝑣 = 3 (medium low pressure) 

𝑣 = 4 (very low pressure) 

𝑣 = 5 (is introduced for those grid points that have no influence on the CP) 

With the exception of 𝑣 = 5, each fuzzy set uses their own membership functions. The 

membership function µ(𝑖, 𝑘) shows how strongly the normalized daily SLP anomaly value 

𝑔(𝑖, 𝑡) belongs to a certain fuzzy set 𝑣(𝑖)𝑘  for a given day 𝑡 and grid point 𝑖. The normalized 

daily SLP anomaly values 𝑔(𝑖, 𝑡) are defined in Equation 4.2. In contrast to Bárdossy et al. 

(2002), 𝑔(𝑖, 𝑡) is modified to 𝑔∗(𝑖, 𝑡)  as described in Equation 4.3. As a result, the range of 

anomaly values 𝑔(𝑖, 𝑡) is narrowed so that the membership functions µ(𝑖, 𝑘) only need to be 

defined for values of 𝑔∗(𝑖, 𝑡)  between zero and one (see Equation 4.4). Similarly to Bárdossy et 

al. (2002), the membership functions are defined as so-called triangular fuzzy numbers (see 

Figure 4.2). 

𝑔(𝑖, 𝑡) =
𝑝(𝑖, 𝑡) −  �̅�(𝑖, 𝑑)

√ 1
𝑁 − 1

∑ (𝑝(𝑖, 𝑑, 𝑗) −  �̅�(𝑖, 𝑑))2𝑁
𝑗=1

 
(4.2) 

𝑝(𝑖, 𝑡): SLP pressure for a given day 𝑡 and grid point 𝑖 

�̅�(𝑖, 𝑑): Mean SLP pressure of the 𝑑𝑡ℎ  calendar day of the year at grid point 𝑖 averaged over all 

the years 𝑁 

𝑁: Number of years for which 𝑝(𝑖, 𝑑) is available 

𝑔∗(𝑖, 𝑡) = 0.3 ∗ 𝑔(𝑖, 𝑡) + 0.5 

𝑔∗(𝑖, 𝑡) = 0 

𝑔∗(𝑖, 𝑡) = 1 

, if 0 < 𝑔(𝑖, 𝑡)  < 1 

, if 𝑔(𝑖, 𝑡) ≤ 0 

, if 𝑔(𝑖, 𝑡) ≥ 1 

(4.3) 
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For 𝑣(𝑖)𝑘 = 1 µ1(i, k) = 1          , if 𝑔∗(𝑖, 𝑡) = 1 (4.4) 

 µ1(i, k) = 0   , if 𝑔∗(𝑖, 𝑡) ≤ 0.5  

 µ1(i, k) =  2𝑔∗(𝑖, 𝑡) − 1 , if 0.5 < 𝑔∗(𝑖, 𝑡) < 1.0  

    

For 𝑣(𝑖)𝑘 = 2 
µ2(i, k)  =  

 1.3 −  𝑔∗(𝑖, 𝑡)

0.5
 , if 𝑔∗(𝑖, 𝑡) ≥ 0.8 

 

 µ2(i, k)  = 0   , if 𝑔∗(𝑖, 𝑡) ≤ 0.4  

 
µ2(i, k)  =  

 𝑔∗(𝑖, 𝑡) − 0.4

0.4
 , if 0.4 < 𝑔∗(𝑖, 𝑡) < 0.8 

 

    

For 𝑣(𝑖)𝑘 = 3 
µ3(i, k)  =  

𝑔∗(𝑖, 𝑡) + 0.3

0.5
 , if 𝑔∗(𝑖, 𝑡) ≤ 0.2 

 

 µ3(i, k)  = 0   , if 𝑔∗(𝑖, 𝑡) ≥ 0.6  

 
µ3(i, k)  =  

0.6 − 𝑔∗(𝑖, 𝑡)

0.4
 , if 0.2 < 𝑔∗(𝑖, 𝑡) < 0.6 

 

    

For 𝑣(𝑖)𝑘 = 4  µ4(i, k)  = 1          , if 𝑔∗(𝑖, 𝑡) = 0  

 µ4(i, k)  = 0   , if 𝑔∗(𝑖, 𝑡) ≥ 0.5  

 µ4(i, k) =  1 − 2 𝑔∗(𝑖, 𝑡) , if 0 < 𝑔∗(𝑖, 𝑡) < 0.5  
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Figure 4.2  The membership functions of the fuzzy sets 𝒗 =  𝟏, . . , 𝟒 

The closer the membership function µ𝑣(𝑖)𝑘(i, k) is to one, the stronger is the belief that the SLP 

anomaly value 𝑔(𝑖, 𝑡) belongs to the fuzzy set 𝑣(𝑖)𝑘 . In order to assign each day 𝑡 to a certain 

rule 𝑘, the degree of fulfilment 𝐷𝑂𝐹(𝑘, 𝑡) is calculated over all the grid points 𝑖: 

For 𝑣(𝑖)𝑘 = 1 𝐷𝑂𝐹1(𝑘, 𝑡) =  1 −  (
∑ 1 − µ(𝑖, 𝑘)𝐷1

𝑖

𝐷1
)1/1.25 (4.5) 

For 𝑣(𝑖)𝑘 = 2 𝐷𝑂𝐹2(𝑘, 𝑡) =  1 −  (
∑ 1 − µ(𝑖, 𝑘)𝐷2

𝑖

𝐷2
)1/5 

 

For 𝑣(𝑖)𝑘 = 3 𝐷𝑂𝐹3(𝑘, 𝑡) =  1 −  (
∑ 1 − µ(𝑖, 𝑘)𝐷3

𝑖

𝐷3
)1/5 

 

For 𝑣(𝑖)𝑘 = 4 𝐷𝑂𝐹4(𝑘, 𝑡) =  1 − (
∑ 1 − µ(𝑖, 𝑘)𝐷4

𝑖

𝐷4
)1/1.25 

 

 𝐷𝑂𝐹 (𝑘, 𝑡) =  𝐷𝑂𝐹1(𝑘, 𝑡) ∗  𝐷𝑂𝐹2(𝑘, 𝑡) ∗ 𝐷𝑂𝐹3(𝑘, 𝑡) ∗  𝐷𝑂𝐹4(𝑘, 𝑡)  

𝐷𝑣: Number of grid points 𝑖 classified to class 𝑣 in rule 𝑘 

The 𝑘 for which 𝐷𝑂𝐹(𝑘, 𝑡) is maximal is chosen as the fuzzy rule (CP) on day 𝑡. Before each day 

can be assigned to a certain fuzzy rule (CP), the fuzzy rules need to be defined first. This is 

done by an optimization process, which is explained in the following. It is important to keep in 
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mind that here the definition of the fuzzy rules is done based on observed SLP data (Hurrell 

and Trenberth, 2013). The subsequent assignment of each day to a certain CP can be done for 

other SLP data sets as well, including data sets derived from climate models to project extreme 

hourly precipitation as described in Chapter 7.  

Three different objective functions are incorporated into the optimization process to define 

the fuzzy rules. Each fuzzy rule represents one CP. The aim of the objective functions is to 

distinguish between wet and dry CPs and thus to define a set of CPs, which explains the 

variability of precipitation patterns as much as possible. Objective function 𝑂𝐹1 assesses the 

ability of the CP-classification to identify CPs with a high probability of precipitation and CPs 

with a low probability of precipitation (see Equation 4.6). The same objective function was also 

applied in Bárdossy (2010). 

𝑂𝐹1 =  ∑ √
1

𝑇
 ∑ (𝑝(𝐶𝑃(𝑡))𝑠 − �̅�𝑠)2  𝑇

𝑡=1
𝑆
𝑠=1   (4.6) 

𝑆: Number of precipitation series 

𝑇: Number of days  

𝑝(𝐶𝑃(𝑡))𝑠: Wet day (≥0.2mm/hr) probability on a day with given CP for precipitation series 𝑠. 

The threshold of 0.2mm is chosen based on the accuracy of the UK observed precipitation 

records as described in Section 3.1.1. 

�̅�𝑠: Wet day probability over all days within time period 𝑇 for precipitation series 𝑠 

Objective function 𝑂𝐹2 determines the CP-classification performance in terms of 

distinguishable wet days associated with different CPs (see Equation 4.7). A similar function 

was applied as information measure in Bárdossy (2010). In this thesis, an exponent of 1.25 is 

used to increase the importance of CPs associated with very wet days. Depending on the five 

different input precipitation Sets (see Table 5.2), a wet day is defined differently. Precipitation 

Sets 1-4 focus on the number of wet hours per day as the input in order to distinguish between 

days with no precipitation, days with short spells of precipitation and days with persistent 

precipitation. In contrast, Set 5 is based on regional daily precipitation intensities across the 

UK. 

𝑂𝐹2 = ∑
1

𝑇
 ∑ |

𝑧(𝐶𝑃(𝑡))𝑠

𝑧�̅�
− 1|

1.25

  

𝑇

𝑡=1

𝑆

𝑠=1

 (4.7) 

𝑧(𝐶𝑃(𝑡))𝑠: Mean maximum 1hr precipitation intensity on wet days with given CP for 

precipitation series 𝑠  

𝑧�̅�: Mean maximum 1hr precipitation intensity over all wet days within time period 𝑇 for 

precipitation series 𝑠 
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For objective function 𝑂𝐹3, the focus is on distinguishing different extreme wet day 

probabilities between the CPs (see Equation 4.8). Again, depending on the input precipitation 

Set the meaning of the index varies. Using input precipitation Set 1 to 4, an extreme wet day is 

defined as a day with 24 hours of precipitation. Whereas for input precipitation Set 5, an 

extreme wet day correspond to daily precipitation equal or higher than 98% of the maximum 

daily precipitation. This is different to Bárdossy (2010), where only absolute thresholds were 

used to define the objective functions. The advantage of using relative thresholds is that it 

takes into account that the definition of an extreme event can vary in terms of precipitation 

intensity over different stations.  

𝑂𝐹3 = ∑ √
1

𝑇
 ∑(𝑝𝑒(𝐶𝑃(𝑡))𝑠 − 𝑝𝑒̅̅ ̅

𝑠
)2

𝑇

𝑡=1

𝑆

𝑠=1

 (4.8) 

𝑝𝑒(𝐶𝑃(𝑡))𝑠: Extreme wet day probability on a day with given CP for precipitation series 𝑠  

𝑝𝑒̅̅ ̅
𝑠
: Extreme wet day probability over all days within time period 𝑇 for  

precipitation series 𝑠 

In this thesis, it was decided to calculate the objective functions for four different seasons 

separately: winter (Dec-Feb), spring (Mar-May), summer (Jun-Aug) and autumn (Sep-Nov). The 

final objective of the optimization process is to find fuzzy rules for which the sum of the 

objective functions is maximal. For this purpose, a simulated annealing algorithm is used 

(Bárdossy et al., 2002). The optimization process also guarantees that none of the CPs 

becomes too dominant in terms of their frequency occurrences. 

4.2.1 The spatial domain of the fuzzy rules CP-classification 

In terms of the spatial domain of the CP-classification, it is important to keep in mind that the 

classification is also applied to RCM data. Therefore, the chosen spatial domain need to be not 

only within the spatial extent of the observed NCAR SLP data set (Hurrell and Trenberth, 2013), 

which is used for the definition of the fuzzy rules, but also within the spatial boundaries of the 

RCM data sets (Jacob et al., 2014). Figure 4.3 shows the spatial domain of the observed NCAR 

SLP data sets, the RCM data sets, as well as the chosen spatial domain of the fuzzy rules CP-

classification fitted to the two data sets. The chosen spatial domain of the CP-classification was 

stretched as far as possible to the western boundary of the RCM data sets, in order to 

represent the large-scale atmospheric features over the North Atlantic. As a result, the chosen 

spatial domain of the fuzzy rules CP-classification spans from 45°N to 65°N and -25°E to 10°E. 
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Figure 4.3  The spatial domains of the NCAR gridded SLP data set (Hurrell and Trenberth, 
2013), the RCM data sets the fuzzy rules CP-classification.  SLP pressure map represents the 
spatial domain of the RCMs (Jacob et al., 2014). The white points represent the NCAR gridded 
data set and the blue rectangle represents the spatial domain used for the fuzzy rules CP-
classification. 

4.2.2 The quality assessment of the fuzzy rules CP-classifications 

In total 180 different fuzzy rules have been defined, resulting in 180 CP-classifications based on 

five different  input precipitation series, four different calibration periods and nine different 

number of CPs as described in Section 5.1. Therefore an objective evaluation of the 

performance of the CP-classifications is needed, in order to find the “best fitting” CP-

classification for the statistical downscaling method. Four different validation measures are 

applied for this purpose over the validation period 1980-2009, which corresponds to the time 

period used for the application of the statistical downscaling method (see Chapter 6). Three of 

them assess different aspects of the relationships between the CPs and precipitation and are 

referred to as information measure 𝐼𝑀1, 𝐼𝑀2 and 𝐼𝑀3 in the following. These three 

information measures are calculated separately for winter and summer and are then averaged. 

The fourth validation measure focuses on the separability between the atmospheric SLP 

patterns derived from the observed NCAR gridded SLP data set. A higher value of the 

validation measure indicates a better performance of the CP-classification.  
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Information measure 𝐼𝑀1 focuses on the CP-classification’s ability to distinguish between CPs 

with high and low probability of precipitation (see Equation 4.9). It was also used as 

information measure in Bárdossy (2010). 

𝐼𝑀1 =  ∑ √
1

𝑇
 ∑ (𝑝(𝐶𝑃(𝑡))𝑠 − �̅�𝑠)2  𝑇

𝑡=1
𝑆
𝑠=1   (4.9) 

𝑆: Number of stations 

𝑇: Number of days  

𝑝(𝐶𝑃(𝑡))𝑠: Wet day (≥0.2mm/hr) probability on a day with given CP at station 𝑠 

�̅�𝑠: Wet day probability over all days within time period 𝑇 at station 𝑠 

Information measure 𝐼𝑀2 assesses the quality of the CP-classification to identify CPs with 

different precipitation intensities (see Equation 4.10). A similar information measure was also 

used in Bárdossy (2010). In this thesis, the exponent of 1.25 is incorporated to emphasize 

those CPs with intense hourly precipitation.  

𝐼𝑀2 = ∑
1

𝑇
 ∑ |

𝑧(𝐶𝑃(𝑡))𝑠

𝑧�̅�
− 1|

1.25

  

𝑇

𝑡=1

𝑆

𝑠=1

 (4.10) 

𝑧(𝐶𝑃(𝑡))𝑠: Mean maximum 1hr precipitation intensity on wet days with given CP at  

station 𝑠  

𝑧�̅�: Mean maximum 1hr precipitation intensity over all wet days within time period 𝑇 at station 

𝑠 

Information measure 𝐼𝑀3 focuses on extreme hourly precipitation (see Equation 4.11). It 

measures how well the CP-classification distinguishes between CPs with a high probability of 

extreme events and those CPs with a low extreme event probability. It was also used in the 

same way as information measure in Bárdossy (2010) with varying thresholds. In this thesis, a 

threshold of 10mm/hr is selected to define extreme hourly precipitation. A single absolute 

threshold regardless of the spatial location and seasonality is chosen over a relative threshold, 

so that the definition of an extreme hourly precipitation event is independent of regional 

differences and the annual cycle.  

𝐼𝑀3 = ∑ √
1

𝑇
 ∑(𝑝𝑒(𝐶𝑃(𝑡))𝑠 − 𝑝𝑒̅̅ ̅

𝑠
)2

𝑇

𝑡=1

𝑆

𝑠=1

 (4.11) 

𝑝𝑒(𝐶𝑃(𝑡))𝑠: Extreme precipitation probability (≥10mm/hr) on a day with given CP at station 𝑠  

𝑝𝑒̅̅ ̅
𝑠
: Extreme precipitation probability over all days within time period 𝑇 at station 𝑠 
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Apart from assessing the quality of CP-classification in terms of its CP-precipitation 

relationship, it is also important that the different CPs are distinct in terms of their 

atmospheric circulation patterns. This can be measured by means of the pattern correlation 

difference (𝑃𝐶𝐷) based on the correlation between different pressure maps as discussed in 

Overland and Hiester (1980). The process of calculating the PCD value is described in Equation 

4.12 – 4.14. If the daily SLP maps attributed to the same CP (indicated by 𝐶1) are as similar as 

possible and those attributed to different CPs (indicated by 𝐶𝑜) are as different as possible, the 

classification is capable of discriminating different circulation patterns. A higher 𝑃𝐶𝐷 value 

indicates a better performance of the CP-classification.  

𝑃𝐶𝐷 =  𝐶1 −  𝐶𝑜 (4.12) 

𝐶𝑜: Mean SLP pattern correlation between two days from different CPs  

𝐶1: Mean SLP pattern correlation between two days attributed to the same CPs 

For 𝐶𝑃(𝑖) ≠ 𝐶𝑃(𝑗)  𝐶𝑜 =  
∑ ∑ 𝜌𝑖𝑗

𝑁
𝑗≠𝑖

𝑁
𝑖

∑ ∑ 1𝑁
𝑗≠𝑖

𝑁
𝑖

 (4.13) 

For 𝐶𝑃(𝑖) = 𝐶𝑃(𝑗)  𝐶1 =  
∑ ∑ 𝜌𝑖𝑗

𝑁
𝑗≠𝑖

𝑁
𝑖

∑ ∑ 1𝑁
𝑗≠𝑖

𝑁
𝑖

  
 

𝑁: Number of days 

𝐶𝑃(𝑖), 𝐶𝑃(𝑗): Prevailing CP on a given day 𝑖 or 𝑗 

By considering the SLP value at each grid point within the spatial domain, the SLP pattern 

correlation 𝜌𝑖𝑗  between two days 𝑖 and 𝑗 is calculated in the following way: 

𝜌𝑖𝑗 =
∑ 𝑃𝑖𝑚𝑃𝑗𝑚

𝑀
𝑚

√∑ 𝑃𝑖𝑚
2𝑀

𝑚 ∑ 𝑃𝑗𝑚
2𝑀

𝑚

 
(4.14) 

𝑃𝑖𝑚, 𝑃𝑗𝑚: SLP deviation from the SLP spatial mean on a given day 𝑖 or 𝑗 at grid point 𝑚 

𝑀: Total number of grid points within the spatial domain 

4.3 The statistical downscaling process 

The statistical downscaling method applied in this study is based on the analogue day method. 

Daily precipitation, temperature and the occurring CP on each day are used as predictors to 

find the most similar day (analogue day) among all the days within the calibration period. Four 

different approaches (M1, M2, M3 and M4) are compared with each other as shown in Table 

4.1. In M1 and M3, each day over the calibration period is subsampled into two seasons, 
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winter (NDJFMA) and summer (MJJASO), and five (plus one unclassified) CPs. Instead of using 

two seasons as a subsample criterion, M2 and M4 categorizes every calibration day into one of 

the twelve calendar months.  

 

Approach    Description 

M1 Calibration days are subsampled into seasons and CPs 

M2 Calibration days are subsampled into calendar months and CPs 

M3 
Calibration days are subsampled into seasons, CPs and daily 
precipitation categories 

M4 Calibration days are subsampled into calendar months, CPs 
and daily precipitation categories 

Table 4.1 Four different approaches of subsampling in order to find the most similar day in the 

past. 

As illustrated in Section 3.1.5, extreme hourly precipitation tends to be more intense for 

certain months. Therefore, the statistical downscaling methods based on M2 or M4 uses the 

twelve calendar months as a subsample criterion. In M1 and M2, every calibration day 𝑡𝐶  

within a certain subsample is characterized by its normalized daily precipitation 𝑛𝑃(𝑡𝐶) and 

temperature value 𝑛𝑇(𝑡𝐶). For the actual day 𝑡, on which hourly precipitation is estimated, the 

relevant subsample is identified and its normalized daily precipitation 𝑛𝑃(𝑡) and temperature 

𝑛𝑇(𝑡) is calculated as described in Equation 4.15 and Equation 4.16. In a next step, the 

distances 𝐷𝑃𝑇(𝑡, 𝑡𝐶) between the actual day 𝑡 and each calibration day 𝑡𝐶  within the relevant 

subsample are calculated in terms of daily precipitation and temperature as shown in Equation 

4.17. The calibration day with the smallest distance is chosen as the analogue day. 

𝑛𝑃(𝑡) =
𝑃(𝑡) − min (𝑃𝑆,𝐶𝑃)

max( 𝑃𝑆,𝐶𝑃) −    min (𝑃𝑆,𝐶𝑃) 
 (4.15) 

𝑛𝑃(𝑡): Normalized daily precipitation for a given day 𝑡 (or calibration day 𝑡𝐶) 

𝑃(𝑡): Daily precipitation for a given day 𝑡 (or calibration day 𝑡𝐶) 

𝑃𝑆,𝐶𝑃: Subsample of daily precipitation values for a given season 𝑆 and 𝐶𝑃 over the calibration 

period. In M2 and M4 season 𝑆 is replaced by month 𝑀 

𝑛𝑇(𝑡) =
𝑇(𝑡) − min (𝑇𝑆,𝐶𝑃)

max( 𝑇𝑆,𝐶𝑃) −    min (𝑇𝑆,𝐶𝑃) 
 (4.16) 

𝑛𝑇(𝑡): Normalized daily temperature for a given day 𝑡 (or calibration day 𝑡𝐶) 

𝑇(𝑡): Daily temperature for a given day 𝑡 (or calibration day 𝑡𝐶) 

𝑇𝑆,𝐶𝑃: Subsample of daily temperature values for a given season 𝑆 and 𝐶𝑃 over the calibration 

period. In M2 and M4 season 𝑆 is replaced by month 𝑀 
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𝐷𝑃𝑇(𝑡, 𝑡𝐶) =  (𝑛𝑃(𝑡) −  𝑛𝑃(𝑡𝐶)) 2 +  (𝑛𝑇(𝑡) −  𝑛𝑇(𝑡𝐶)) 2 (4.17) 

𝐷𝑃𝑇(𝑡, 𝑡𝐶): Distance between the actual day 𝑡 and calibration day 𝑡𝐶  in terms of daily 

precipitation and temperature 

Figure 4.4 provides an illustrative example of how the analogue day method works. It shows all 

the calibration days between 1980 and 1999 in winter which are attributed to CP3 at the 

station of Boulmer. Each day is characterized by its normalized daily precipitation 𝑛𝑃(𝑡𝐶) and 

temperature 𝑛𝑇(𝑡𝐶). The green triangle represents the actual day 𝑡 for which hourly 

precipitation is estimated. The arrow points from the actual day 𝑡 to the analogue day for 

which the distance 𝐷(𝑡, 𝑡𝐶) is minimal over all the calibration days within this subsample 

(Boulmer - winter - CP3). In cases where multiple days exist with the same minimal distance to 

the actual day, the analogue day is randomly selected among those days. 

 

 

Figure 4.4  Subsample of calibration days 𝑡𝐶  occurring on days classified as CP3 in winter 
between 1980 and 1999 at the station of Boulmer. The green triangle represents the actual 
day 𝑡 (11th Jan 2000 - daily precipitation: 10.8mm (normalized: 0.47) - daily mean temperature: 
5.53°C (normalized: 0.60)) for which hourly precipitation needs to be estimated. The arrow 
points to the analogue day for which the distance 𝐷(𝑡, 𝑡𝐶) is minimal over all the calibration 
days within this subsample. The distance is calculated in terms of daily precipitation and 
temperature. This applies to subsampling approach M1 (and M2 using monthly subsamples).  
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In the approaches M3 and M4, the daily precipitation value of each calibration day is used as 

an additional subsample criterion. Similarly to M1 and M2, each calibration day is subsampled 

into one of the two seasons (M3) or twelve months (M4) and 5 (plus one unclassified) CPs. In a 

next step, each calibration day is grouped into one of six daily precipitation categories within 

each subsample as illustrated in Figure 4.5.  

 The first category of each subsample comprises all the dry calibration days defined as 

days with daily precipitation below 1.0𝑚𝑚.  

 The second category includes all the calibration wet days below the 20th daily 

precipitation percentile of wet days.  

 The third, fourth and fifth category consist of calibration days with daily precipitation 

between the 20th and 40th, 40th and 60th, 60th and 80th daily precipitation percentiles of 

wet days respectively.  

 The sixth category includes all the calibration days with daily precipitation exceeding 

or equal to the 80th daily precipitation percentile of wet days.  

The different percentiles of daily precipitation are calculated for each subsample separately 

and only consider calibration days with daily precipitation exceeding or equal to 1.0𝑚𝑚. Each 

calibration day within a certain daily precipitation category and subsample is characterized by 

its normalized temperature 𝑛𝑇(𝑡𝐶) as described in Equation 4.16. In order to find the most 

similar days, the distances 𝐷𝑇(𝑡, 𝑡𝐶) between the actual day and each calibration day, within 

the relevant subsample and daily precipitation category, are considered only in terms of daily 

temperature (see Equation 4.18). The calibration day for which the distance is the smallest is 

chosen as the analogue day. It means that in the approaches M3 and M4, daily precipitation is 

used to categorize each calibration days and the daily temperature variable is used to find the 

analogue day in the respective daily precipitation category. The theory behind the application 

of daily precipitation categories is that RCMs cannot be expected to accurately simulate daily 

precipitation extremes (Fowler and Ekström, 2009; Maraun et al., 2010b). Instead, RCM 

simulated precipitation is only used as a qualitative measure to indicate the occurrence of an 

extreme daily precipitation event. 
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Figure 4.5 Same as Figure 4.4 but using daily precipitation as an additional subsample criterion. 
The different colours of the calibration days represent the six different daily precipitation 
categories. The black horizontal lines represent the corresponding thresholds of those 
categories. The distance is only calculated in terms of temperature. This applies to 
subsampling approach M3 (and M4 using monthly subsamples). 

𝐷𝑇(𝑡, 𝑡𝐶) =   (𝑛𝑇(𝑡) −  𝑛𝑇(𝑡𝐶)) 2 (4.18) 

𝐷𝑇(𝑡, 𝑡𝐶): Distance between the actual day 𝑡 and calibration day 𝑡𝐶  in terms of temperature 

In the next step, the observed maximum hourly precipitation value 𝑀𝐻𝑃𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒 is extracted 

from the respective analogue day. It is then perturbed based on the precipitation duration and 

temperature relationships conditioned on the two seasons, winter (NDJFMA) and summer 

(MJJASO), and five (plus one unclassified) CPs. The perturbation of the observed hourly 

precipitation values is required in order to simulate hourly precipitation values which have not 

been observed in the past. This is particularly important in terms of taking into account 

changes under a warming climate. For each station, season and CP, a linear regression is 

calculated using an ordinary least squares fit to describe precipitation duration (in hours) as a 

function of daily temperature. The linear regression is then tested for two separate criteria, 

the p-value test and the RMSE test. The p-value significance test represents the probability of 

obtaining the observed sample results (or more extreme results) under the condition that the 
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null hypothesis (regression slope is equal to zero) is true. The RMSE (Root Mean Square Error) 

value represents the standard deviation of the residuals and is calculated as described in 

Equation 4.19 for the mean precipitation duration and mean temperature over five 

temperature categories:  

 cold: 0-20th temperature percentile 

 cool: 20th – 40th temperature percentile  

 medium: 40th – 60th temperature percentiles  

 warm: 60th – 80th temperature percentiles 

 hot: 80th – 100th temperature percentiles  

If the linear regression is significant at the 5% significance level based on the p-value test and 

its RMSE value is smaller than 1, the linear regression slope 𝛽𝑠,𝑆,𝐶𝑃 conditioned on a given 

station, season and CP is used. A RMSE value below 1 means that the precipitation duration 

values estimated by the linear regression deviate on average not more than one hour from the 

observed duration records over the five temperature categories. If the two criteria are not 

fulfilled, the linear regression slope is only conditioned on the station and season without 

taking into account the CP-classification. In a small number of cases, where the CP-conditional 

and the CP-unconditional linear regression slope do not fulfil the p-value test or the RMSE test, 

the perturbation of the hourly precipitation cannot be applied. In most of the cases, the 

observed maximum hourly precipitation record extracted on the analogue day is perturbed as 

described in Equation 4.20 and Equation 4.21 for any given day in the past or future. The 

perturbed maximum hourly precipitation value 𝑀𝐻𝑃 (𝑡) is then used as the estimated hourly 

precipitation record on the actual given day 𝑡.  

𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝐷(𝑇𝑡𝑐

̅̅ ̅̅  ) −  𝑃𝐷𝑡𝑐,𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2 5

𝑡𝑐=1

5
 

(4.19) 

𝑅𝑀𝑆𝐸: Root Mean Square Error 

𝑃𝐷(𝑇𝑡𝑐
̅̅ ̅̅  ): The estimated mean precipitation duration by the linear regression for the 

temperature mean 𝑇𝑡𝑐
̅̅ ̅̅  within the temperature category 𝑡𝑐  

𝑃𝐷𝑡𝑐,𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ : The observed mean precipitation duration within the temperature category 𝑡𝑐  

 
𝑃𝐷(𝑡) =  𝑃𝐷𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒 + (𝑇(𝑡) −  𝑇𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒) ∗   𝛽𝑠,𝑆,𝐶𝑃 =  1 , 2 , 3, … 24  (4.20) 

𝑃𝐷(𝑡): The estimated precipitation duration on the given day 𝑡 

𝑃𝐷𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒: The observed precipitation duration on the analogue day 

𝑇(𝑡) : Temperature on the given day 𝑡  

𝑇𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒: Temperature on the analogue day 

𝛽𝑠,𝑆,𝐶𝑃 : The statistically significant regression slope conditioned on station 𝑠, season 𝑆 and 𝐶𝑃 

or alternatively station 𝑠 and season 𝑆 
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𝑀𝐻𝑃(𝑡) =  𝑀𝐻𝑃𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒 ∗ 
𝑃𝐷𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒

𝑃𝐷(𝑡)
 (4.21) 

 

𝑀𝐻𝑃(𝑡): The perturbed maximum hourly precipitation value on the given day 𝑡 

𝑀𝐻𝑃𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒: The observed maximum hourly precipitation value on the analogue day 

 
The reliability and robustness of the extreme hourly precipitation estimates is assessed over 

different validation periods (1980-1989, 1990-1999, 2000-2009 and the ten warmest summers 

of each station). In order to quantify the quality of the estimates, the 99.5th percentile error 

(𝑃𝐸99.5) between the observed and estimated maximum hourly precipitation distribution is 

calculated as described in Equation 4.22. Similar to the quantile verification score (Maraun et 

al., 2010a), it assesses the ability of a model to estimate a certain percentile (99.5th) of a 

distribution. In this thesis, the 𝑃𝐸99.5 is calculated over 100 bootstrapping samples for each 

station and validation period. The use of bootstrapping samples helps to assess the quality of 

the estimated extreme hourly precipitation distribution beyond the 99.5th percentile only. The 

estimated daily maximum hourly precipitation values are resampled 100 times and for each 

bootstrapping sample 𝑖, the 𝑃𝐸99.5,𝑖 is determined. In a next step, the average 𝑃𝐸99.5 
̅̅ ̅̅ ̅̅ ̅̅ ̅ is 

calculated for each station and validation period as shown in Equation 4.23. 

 

 

𝑃𝐸99.5 =
|𝑂𝑀𝐻𝑃99.5 −  𝐸𝑀𝐻𝑃99.5 |

𝑂𝑀𝐻𝑃99.5
 ∗ 100% (4.22) 

𝑃𝐸99.5: The 99.5th percentile error in % 

𝑂𝑀𝐻𝑃99.5: The 99.5th percentile of the observed maximum hourly precipitation distribution 

𝐸𝑀𝐻𝑃99.5: The 99.5th percentile of the estimated maximum hourly precipitation distribution 

 

𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅ =

∑ 𝑃𝐸99.5,𝑖 100
𝑖=1

100
  (4.23) 

𝑃𝐸99.5,𝑖: The 99.5th percentile error for a given bootstrapping sample 𝑖  

  𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅ ̅: Averaged 99.5th percentile errors over 100 bootstrapping samples 
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Chapter 5  

The fuzzy rules based CP-classification 

Section 4.2 describes the methodology of defining the CP-classification based on fuzzy rules. 

This chapter discusses the results of the CP-classification. Section 5.1 focuses on the input 

parameters that are used to derive the sets of fuzzy rules. A total of 180 different sets of fuzzy 

rules are defined resulting in 180 different CP-classifications based on varying input 

parameters. In Section 5.2, the quality of each of the 180 different CP-classifications is 

assessed based on (1) the relationship between large-scale CPs and local precipitation and (2) 

the separability of the different atmospheric pressure patterns. In Section 5.3, one final CP-

classification is selected and the relationships between the different CPs of this selected 

classification and extreme hourly precipitation is described. 

5.1 Input calibration parameters 

5.1.1 Set of precipitation time series 

Five different sets of precipitation series are tested for the calibration of the CP-classification 

(see Table 5.1), in order to assess if differences in the performances of the CP-classification 

occur when the sets are varied. Precipitation Sets 1-3 comprise site-specific hourly 

precipitation series. Set 4 uses the regional hourly precipitation over two selected UK regions. 

Set 5 is based on regional daily precipitation across the UK. For the Sets 1–4, the number of 

wet hours per day is used as the input, distinguishing between days with short spells of 

precipitation and persistent precipitation over the entire day. Set 5 uses the normalized daily 

precipitation amounts as the input index. 

Set 1 
Number of wet hours (≥ 0.2𝑚𝑚) per day at one station (Aldergrove–Northern 
Ireland) resulting in one precipitation series 

Set 2 
Number of wet hours per day at two stations (Aldergrove–Northern Ireland; 
Elmdon-Central England) resulting in two precipitation series 

Set 3 
Number of wet hours per day at three stations (Aldergrove–Northern Ireland;  
Elmdon-Central England; Stornoway–Northern Scotland) resulting in three 
precipitation series 

Set 4 
Spatially averaged number of wet hours per day over two HadUKP regions (South 
West England, Northern Scotland) resulting in two precipitation series 

Set 5 
Spatially averaged normalised daily precipitation for the nine HadUKP regions across 
the UK resulting in nine precipitation series 

Table 5.1 Overview of the input precipitation series used for the calibration of fuzzy rules CP-
classifications. 
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Figure 5.1 shows the different precipitation stations and HadUKP regions used as input 

precipitation series in Set 1-5. Three hourly precipitation stations located in three HadUKP 

regions (Central England, Northern Ireland and Northern Scotland) are used for Set 1-3. The 

station selection criteria and the precipitation characteristics are described respectively in the 

Section 3.1.4 and 3.1.5. The HadUKP regions were specified in Alexander and Jones (2000) and 

defined initially in Wigley et al. (1984). 

Instead of individual stations, two precipitation regions (South West England and Northern 

Scotland), which are more robust in terms of representing the surrounding climate, are used in 

Set 4. In this case, the regional precipitation series are calculated as the numbers of wet hours 

averaged over multiple stations. Figure 5.1 illustrates the stations used to calculate the 

averages over South West England (Boscombe Down, Aberporth, Rhoose, Plymouth 

Mountbatten) and Northern Scotland (Wick Airport, Stornoway Airport, Tiree). 

In contrast to Sets 1-4, which are based on hourly records only, Set 5 uses nine regional daily 

normalised precipitation series across the UK corresponding to the nine HadUKP regions (see 

Figure 5.1)  
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Figure 5.1 Hourly precipitation stations and HadUKP regions used for the calibration of the 
fuzzy rules based CP-classification. 
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5.1.2 Calibration time periods 

As shown in Table 5.2 four different time periods are tested for the calibration of the fuzzy 

rules CP-classification, in order to assess differences in the performances of CP-classification 

based on varying calibration periods. The calibration and validation of the statistical 

downscaling method is between 1980 and 2009. It does not have any overlap with the time 

periods 1, 2 and 4, but overlaps with the time period 3 by 10 years.   

Time period 1 1960 - 1969 

Time period 2 1970 - 1979 

Time period 3 1980 - 1989 

Time period 4 1960 - 1979 

Table 5.2 Overview of the different calibration time periods used for the fuzzy rules CP-
classification. 

5.1.3 Number of CPs 

In this study, different numbers of CPs are tested in terms of their skill to distinguish between 

dry and wet CPs and in terms of their separability (see Section 5.2). However, as discussed in 

Section 2.4, the optimal number of CPs does not only depend on the skill of the CP-

classification, but also on how robust the statistical downscaling method is for the estimation 

of precipitation events. For the latter, the number of CPs needs to be limited to a certain 

extent, in order to provide sufficient precipitation events for each subsample of CP. As a result, 

the maximum number of CPs is set to ten and the different CP-classifications are validated for 

a varying number of CPs between four and ten. In order to assess the potential improvement a 

higher number of CPs could have, the CP-classifications are also tested with a number of 15 

and 20 CPs. 

5.2 Assessment of the performances of the different CP-classifications 

A total number of 180 different fuzzy rule systems are optimized according to the procedure 

described in Section 4.2 based on five different sets of precipitation input time series, four 

different calibration time periods and nine different number of CPs (see Section 5.1).  

The skill of the CP-classification derived from the optimized fuzzy rules system are assessed 

over the time period 1980-2009, which is in line with the calibration and validation period used 

for the statistical downscaling process. The assessment is based on the same twelve 

precipitation stations (see Section 3.1.3), which are also used for the statistical downscaling 

process. Two different types of assessment measures are applied. The first type assesses the 
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relationship between CPs and precipitation and how well the CP-classification distinguishes 

between wet and dry CPs. In the following, these measures are referred to as information 

measures 𝐼𝑀1,  𝐼𝑀2 and 𝐼𝑀3. Information measure 𝐼𝑀1assesses the skill of the CP-

classification to distinguish between CPs with high and low probability of wet days (see 

Equation 4.9).  𝐼𝑀2 focuses on the CP-classification’s ability to define CPs which result in high 

intensity of hourly precipitation (see Equation 4.10). 𝐼𝑀3 is based on extreme hourly 

precipitation (>10 mm/hr) only and assesses how well certain CPs can be linked with these 

extreme events (see Equation 4.11). 

The second type of measures focuses on the atmospheric pressure pattern of each CP. It 

assesses how different the pressure patterns are between different CPs and is measured by 

the pattern correlation difference (𝑃𝐶𝐷) as explained in Equation 4.12 to Equation 4.14. The 

larger the values of the four assessment measures, the better skills the CP-classification has. 

5.2.1 Results 

The results of the information measures and the 𝑃𝐶𝐷 value are shown in Figure 5.2 for the 

time period 1980-2009. Please note that the information measure 𝐼𝑀1,  𝐼𝑀2 and 𝐼𝑀3 are 

averaged over winter (Nov-Apr) and summer (May-Oct). 𝐼𝑀1 and 𝐼𝑀3 represent frequency 

occurences of (extreme) wet days, whereas 𝐼𝑀2 focuses on precipitation intensities. 

It can be seen that the performance improves sharply from 4 CPs to 5 CPs, and then generally 

increase up to 10 CPs with some fluctuation. From 10 to 15 and finally to 20 CPs, information 

measures 𝐼𝑀1, 𝐼𝑀2 and the 𝑃𝐶𝐷 value do not show much improvement, and decrease in some 

cases. Whereas, 𝐼𝑀3 shows steady increases up to 20.   
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Figure 5.2 Results of the assessment of the CP-classification performances. It shows the 
performances of all the 180 tested CP-classification runs. Each colour represent a certain 
combination of the input precipitation Set and the calibration time period (the bold black line 
represents the average). Top left: Information measure 1 (wet day probability); Top right: 
Information measure 2 (precipitation intensity); Bottom left: Information measure 3 (extreme 
precipitation probability); Bottom right: PCD (separability).  

Regarding different calibration time periods, calibration period 4 results in slightly better 

performances of the CP-classifications. This is shown in Table 5.3, where the performances of 

the CP-classification are averaged over different number of CPs and input precipitation Sets 

depending on the calibration time period. The calibration period 4 is the only one that contains 

20 years, twice as long as the other three periods. The longer time period is likely to have led 

to a better performance in the classifications. 
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 Period 1 Period 2 Period 3 Period 4 

Information measure 1 0.182 0.182 0.182 0.183 

Information measure 2 0.181 0.182 0.182 0.184 

Information measure 3 0.0022 0.0022 0.0022 0.0022 

PCD (separability) 0.230 0.225 0.232 0.239 

Table 5.3 Results of the information measures to assess the CP-classification performances. It 

shows the performance of the CP-classification averaged over different number of CPs and 

input precipitation Sets depending on the calibration time period 

In Table 5.4, the averaged performances over different number of CPs and calibration periods 

are summarised depending on the various input precipitation Sets. It can be seen that the 

performance averages achieved for Set 5 are the highest. In other words, the CP-classifications 

based on Set 5 outperform those based on Sets 1-4 on average for the twelve selected 

stations. Set 5 comprises nine HadUKP regional precipitation series covering the entire UK. In 

contrast, Set 1-3 consist of one to three site-specific precipitation series and Set 4 consists of 

two pools of multiple site-specific precipitation series to represent two of the nine HadUKP 

regional precipitation series. It shows that using the nine daily HadUKP regional precipitation 

series for the calibration of the CP-classification result in the most distinguishable CPs both in 

terms of precipitation characteristics and atmospheric pressure patterns.  

 Set 1 Set 2 Set 3 Set 4 Set 5 

Information measure 1 0.176 0.183 0.182 0.183 0.188 

Information measure 2 0.167 0.183 0.179 0.185 0.195 

Information measure 3 0.0021 0.0022 0.0022 0.0023 0.0023 

PCD (separability) 0.210 0.213 0.242 0.244 0.249 

Table 5.4 Results of the information measures to assess the CP-classification performances. It 

shows the performance of the CP-classifications averaged over different number of CPs and 

calibration time periods depending on the input precipitation Set 

In order to assess the spatial variability of the CP-classification performances, the results of 

𝐼𝑀1 conditioned on the twelve stations for CP-classifications obtained by using the 

precipitation Set 1 and the precipitation Set 5 are compared and plotted in Figure 5.3. 

𝐼𝑀1measures the discriminative power of the CP-classification in terms of wet day 

probabilities. It can be considered as more robust than 𝐼𝑀2 and 𝐼𝑀3, which are based on 

precipitation intensities and are thus more affected by extreme values. Regarding the different 

precipitation Sets, Set 1 (using only one site-specific precipitation series) and Set 5 (using nine 

regional precipitation series) are most different to each other and thus differences in the 

spatial variability of the CP-classification performances are likely to be most pronounced 

between these two Sets. 
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CP-classifications based on precipitation Set 1 show the best performances for the stations in 

the western (Aldergrove, Eskdalemuir, Valley) and south western part of the UK (Camborne). 

This is not a surprising result as Set 1 only consists of hourly records at Aldergrove and as a 

result the CP-classifications are calibrated only on the specific precipitation patterns at 

Aldergrove. On the other hand, CP-classifications based on Set 1 show lower skill in 

distinguishing between wet and dry days for stations in the eastern part of the UK (Marham, 

Cranwell, Boulmer and Kinloss). Due to their geographical location, these stations are very 

likely to show different responses to large-scale atmospheric circulation in terms of 

precipitation compared to Aldergrove. Therefore, it seems reasonable to assume that the poor 

performances of the CP-classifications for these four stations can be explained by the fact that 

the CP-classification is only calibrated based on precipitation records at Aldergrove.  

A similar spatial patterns can be found using Set 5. The CP-classifications based on Set 5 also 

show lower skill for the same four stations in the eastern part of the UK (Marham, Cranwell, 

Boulmer and Kinloss) compared to better performances found for stations in the West 

(Aldergrove, Eskdalemuir, Valley) and  South West (Camborne) of the UK. It may be argued 

that stations in the western part of the UK generally exhibit a stronger relationship between 

CPs and precipitation patterns compared to stations in the East. In contrast to CP-

classifications based on Set 1, the CP-classifications derived from Set 5 also show high skill for 

stations in the South (Boscombe Down and Northolt) and South West (Camborne). The 𝐼𝑀1 

based on Set 5 in the South West (Camborne), South (Boscombe Down and Northolt), and East 

(Marlham, Cranwell, Boulmer) of the UK are between 10% - 17% higher compared to that 

based on Set 1. This can be explained by the fact that the CP-classifications based on Set 5 are 

calibrated by taking into account the precipitation response of the entire nine different 

HadUKP regions across the UK. In contrast, the 𝐼𝑀1 based on Set 5 for stations in the northern 

part of the UK (Leuchars, Tiree and Kinloss) is only marginally better, 0% - 5%, than that based 

on Set 1. Performances for stations in the West of the UK (Valley, Eskdalemuir and Aldergrove) 

show no improvement using CP-classifications based on Set 5 compared to those based on Set 

1. This is due to the fact that CP-classifications based on Set 1 are calibrated using the 

precipitation records at Aldergrove and should perform well at Aldergrove and the 

surrounding areas. Nevertheless, the quality of CP-classifications based on Set 5 is still 

generally good for stations in the western part of the UK. Overall, it can be concluded that CP-

classifications based on the nine HadUKP regional precipitation series (Set 5) show better 

performances than those based on only one local precipitation series (Set 1) across the UK. 

The differences between CP-classification based on Set 5 and Set 1 are most pronounced in the 

southern and eastern parts of the UK.  
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Figure 5.3 Spatial variability of the CP-classification in terms of the Information Measure 1 for 

the twelve selected stations using different input precipitation Sets. Results are averaged over 

36 CP-classifications (four different calibrations time period and nine different numbers of 

CPs). Blue points with white labelling on top of the points represent the results obtained by 

using Set 1. Red points with black labelling around the points represent the results obtained by 

using Set 5.  
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5.2.2  The final input calibration parameters 

Based on the results presented in Section 5.2.1, it appears that the number of CPs and the 

input precipitation Set are more important factors than the calibration period. 

As shown in Table 5.4, CP-classifications based on precipitation Set 5 outperforms the rest of 

the CP-classification. In terms of the final number of CPs, the performance increases are 

highest from four to five CPs (plus one unclassified CP). Regarding 𝐼𝑀1, 𝐼𝑀2 and the 𝑃𝐶𝐷 

value, the skill of the CP-classification improves up to a number of ten CPs. In contrast, 𝐼𝑀3 

continues to increase up to the maximum number of 20 CPs. Particularly 𝐼𝑀2 and the 𝑃𝐶𝐷 

value show high fluctuations between the performances of different CP-classification using the 

same number of CPs. 𝐼𝑀3 is highly important in terms of downscaling hourly precipitation 

extremes because it assesses the skill of the CP-classification to link hourly precipitation 

extremes with certain CPs. The decision on the number of CPs is a trade-off between the 

robustness and skill of the classification. A smaller number of CPs can provide more 

precipitation events for each CP, whereas a larger number of CPs may lead to a higher 

performance. Given various factors to consider, the finally selected CP-classification has 5 CPs 

(plus one unclassified CP), is based on the input precipitation Set 5 and calibration time period 

4 (1960-1979). It only compromises 𝐼𝑀3 slightly as the value shows small increase or decrease 

from 5 CPs at 0.0038, to 6, 7, 8, 9 and 10 CPs at 0.0038, 0.0027, 0.0038, 0.0044, and 0.0040 

respectively. It also exhibits the highest 𝑃𝐶𝐷 value (0.348) among all the CP-classifications 

based on five CPs. The calibration time period 4 (1960-1979) is independent from the 

validation period (1980-1989) and also has the best performance (see Table 5.3). 

5.3 The final CP-classification used for statistical downscaling 

5.3.1 Atmospheric pressure patterns of the CP-classification 

Figure 5.4 (in winter) and Figure 5.5 (in summer) shows the selected set of CPs based on the 

NCAR SLP data (Hurrell and Trenberth, 2013) using the input configuration described in Section 

5.2.2 for the time period 1980-2009. In the following, this set of CPs based on the NCAR SLP 

data set is referred to as the NCAR CP-classification. The corresponding SLP anomalies (see 

Equation 5.1) of the NCAR CP-classification are illustrated in Figure 5.6 for the time period 

1980-2009 over the entire year as the differences between winter and summer are minor. 
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𝐴𝐶𝑃,𝑖 =  
𝑃𝐶𝑃,𝑖
̅̅ ̅̅ ̅̅ −  𝑃�̅�

√ 1
𝑁 − 1

∑ (𝑃𝑗,𝑖 −  𝑃�̅�)
2𝑁

𝑗=1  

 
(5.1) 

𝐴𝐶𝑃,𝑖 = SLP anomaly at grid point 𝑖 for certain 𝐶𝑃 for the time period 1980-2009 

𝑃𝐶𝑃,𝑖
̅̅ ̅̅ ̅̅  = Average SLP at grid point 𝑖 for certain 𝐶𝑃 for the time period 1980-2009 

𝑃�̅� = Average SLP at grid point 𝑖 over the total number of days 𝑁 for the time period 1980-2009 

𝑃𝑗,𝑖= Daily SLP at grid point 𝑖 for a certain day 𝑗 

CP1 and CP4 are the two CPs characterized by low pressure over the UK. CP1 is described by a 

shallow low-pressure system and CP4 is characterized by a more dominant low-pressure 

system with a stronger gradient. The location of the low-pressure system is also different 

between CP1 and CP4. The low in CP1 is centred in the South West (in winter) or South (in 

summer) of the UK, while the one in CP4 is in the northern part of the UK. In terms of seasonal 

variations, the low pressure system in CP1 is more extensive trough in winter than it is in 

summer and the pressure gradient is stronger in winter than in summer for both CPs, CP1 and 

CP4. Considering the corresponding SLP anomalies, CP1 exhibit negative SLP anomalies in the 

southern part and positive anomalies in the northern part of the UK. CP4 is characterized by 

only negative SLP anomalies. The highest negative anomalies for CP4 are found in the centre of 

the UK. In terms of the annual frequency occurrences, CP4 is much more likely to occur than 

CP1 (24.1% compared to 6.7%) as shown in Figure 5.6. The CP frequency occurrences are also 

calculated over four different seasons, in order to compare the results with previous studies 

based on Lamb Weather Types (LWTs) over the UK (Jones et al., 1993; Lamb, 1972). It is found 

that CP1 is most likely to occur in summer and CP4 exhibits the highest frequencies in autumn 

(see Table 5.5). Both CP1 and CP4 are least likely to occur in winter. This is in line with results 

shown in Jones et al. (1993), where it was found that cyclonic weather types show the lowest 

frequency occurrences in winter.  

 spring (MAM) summer (JJA) autumn (SON) winter (DJF) 

CP1 6.98 7.57 7.11 4.97 

CP2 13.84 16.35 14.06 15.28 

CP3 29.44 30.52 27.68 29.45 

CP4 24.93 24.40 26.35 19.83 

CP5 18.83 16.75 19.69 21.65 

U 5.98 4.41 5.11 8.83 

Table 5.5 Seasonal frequency of occurrence of the five CPs (+one unclassified) between 1980 

and 2009 in [%]. U stands for unclassified. 

In contrast to CP1 and CP4, CP2 and CP3 feature high pressure systems over the UK. Again, the 

pressure gradient is more pronounced in winter than it is in summer for both of the CPs, CP2 
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and CP3. The main difference between the two CPs is the location of the high pressure centre. 

In CP2 it is located East of the UK and in CP3 South West of the UK. Similar features can be 

found in terms of the SLP anomalies as illustrated. CP2 is characterized by a centre of positive 

SLP anomalies in the North West of the UK. CP3 exhibit the highest positive SLP anomalies in 

the South West of the UK.  Regarding the CP frequency occurrences, CP3 is almost twice as 

likely to occur as CP2 (29.4% compared to 15.0%). Both CPs exhibit the highest frequencies in 

summer as shown in Table 5.5. This is consistent with previous studies regarding LWTs (Lamb, 

1972), where it was found that anticyclonic (high pressure) LWTs are more frequent in summer 

over the UK. 

CP5 is characterized by a negative South to North pressure and anomaly gradient resulting in 

westerly airflow over the UK. This westerly airflow brings humid air from the North Atlantic to 

the UK. Similarly to the other CPs, the pressure gradient is stronger in winter than in summer. 

CP5 occurs on 19.2% of all days. It shows the highest frequency occurrences in winter and the 

lowest in summer. Again this is in line with findings regarding the LWT (Lamb, 1972), where it 

was shown that westerly CPs are most dominant in winter.  

Days which are not attributed to any of the five CPs are unclassified. This category comprises 

5.6% of the total number of days. 

The main difference between the NCAR CP-classification based on fuzzy rules and the most 

prominent example of CP-classification over the UK, the Lamb Weather Types  (Lamb, 1972; 

Lamb, 1977), is that the seven pure LWTs (Anticyclonic, Cyclonic, Northerly, Easterly, 

Southerly, Westerly and North-Westerly) distinguish strictly between different weather types 

by using predefined threshold. For example, a day with cyclonic conditions in the northern part 

and south-westerly airflow in the southern part of the UK may be classified as Cyclonic, 

Southerly or Westerly in the LWT catalogue. In contrast, the fuzzy rules based CP-classification 

allows CPs with multiple features. For example, CP4 is characterized by cyclonic conditions and 

south-westerly airflow over the UK. It needs to be mentioned, that an extended version of the 

LWTs catalogue exists with 19 additional hybrid types (26 LWTs in total). In this case, each 

hybrid type is defined by a combination of two pure LWT types.  
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Figure 5.4 SLP patterns in [hPa] of the five CPs (+ one unclassified CP) derived from fuzzy rules 
using the final input configuration described in Section 5.2.2 for the validation time period 
1980-2009 in winter (Nov-April). The frequency occurrences of each CP are given in 
parentheses. The SLP data comes from the NCAR SLP data set (see Section 3.2.1). 
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Figure 5.5 Same as Figure 5.4 but for the validation time period 1980-2009 in summer (May-
Sept). 
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Figure 5.6 SLP anomalies of the five CPs (+ one unclassified CP) derived from fuzzy rules using 
the final input configuration described in Section 5.2.2 for the validation time period 1980-
2009 over the entire year. The frequency occurrences of each CP are given in parentheses. The 
SLP data comes from the NCAR SLP data set (see Section 3.2.1). 



123 | P a g e  
 

5.3.2 The relationships between CPs and extreme hourly precipitation  

In the following, the relationship between the CP-classification based on the input 

configuration described in Section 5.2.2 and extreme hourly precipitation is investigated. Two 

different indices of extreme hourly precipitation are applied. The first one is defined as daily 

maximum hourly precipitation exceeding a threshold of 10mm/hr. This one is used as 

information measure 𝐼𝑀3 in Section 5.2. The advantage of the first index is its robustness 

against outliers. This is particularly important for the assessment of the CP-classification, 

where the subsamples of extreme hourly events can be very small. The second one is defined 

as the 99.5th percentile of daily maximum hourly precipitation. This is used for the statistical 

downscaling of extreme events in Chapter 6 & 7. The reason for using the second index is that 

it helps to analyse differences in extreme hourly precipitation intensities beyond a certain 

threshold. 

Figure 5.7 and Figure 5.8 show the probability 𝑝𝐶𝑃,𝑠 of hourly precipitation exceeding 10mm/hr 

(see Equation 5.2). The 99.5th percentiles are displayed in Figure 5.9 and Figure 5.10. Both 

indices are calculated using the final set of CPs and two seasons over all the precipitation 

records between 1980 and 2009. This is in line with the statistical downscaling method, where 

observed hourly precipitation records are also subsampled into five CPs (+one unclassified CPs) 

and two different seasons.  

𝑝𝐶𝑃,𝑠 =  
𝑁𝐶𝑃,𝑠

𝑛𝐶𝑃,𝑠
 (5.2) 

𝑝𝐶𝑃,𝑠 = Probability of extreme hourly precipitation (>=10mm/hr) for a given 𝐶𝑃 in season 𝑠 

𝑁𝐶𝑃,𝑠 = Number of extreme hourly precipitation (>=10mm/hr) events for a given 𝐶𝑃 in season 

𝑠 

𝑛𝐶𝑃,𝑠 = Number of days for a given 𝐶𝑃 in season 𝑠 

In winter, the stations at Eskdalemuir and Camborne record considerable more extreme hourly 

precipitation exceeding 10mm/hr than any other of the ten stations. Eskdalemuir is situated in 

a mountainous area (Svensson et al., 2002) and thus orographic effects play an important role 

in terms of its precipitation patterns over the entire year. Another explanation for the high 

frequency of extreme hourly precipitation at Eskdalemuir may be that the North Channel acts 

as a trigger for convective precipitation under cyclonic conditions particularly in autumn and 

winter (Sweeney and O'Hare, 1992). Camborne is located at the southwestern edge of the UK 

and under the influence of a maritime climate, which can bring humid and relatively warm air, 

particularly in autumn and early winter, to the UK. It is also highly exposed to vigorous frontal 
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and cyclonic weather systems travelling in from the North Atlantic, which are often associated 

with extreme precipitation in winter (Lenderink and van Meijgaard, 2008; Rodda et al., 2009). 

In this context it is interesting to note that the 99.5th percentiles of winter extremes tend to be 

generally higher for the stations Camborne, Valley, Eskdalemuir, Aldergrove and Tiree in the 

western part of the UK with a higher exposure to the North Atlantic. It also needs to be 

mentioned that most of the extreme hourly precipitation events in winter are associated with 

the two cyclonic CPs, namely CP1 and CP4. Cyclonic conditions can lead to so-called 

atmospheric rivers as the cold front of an extratropical cyclone sweeps up moisture in the 

warm sector while catching up with the warm front (Dacre et al., 2015). Champion et al. (2015) 

showed that atmospheric rivers can be linked with extreme precipitation in winter but cannot 

explain the occurrence of summer precipitation extremes. However, they only focused on daily 

precipitation extremes and it may be that atmospheric rivers show a stronger relationship with 

sub-daily precipitation extremes in summer. 

In this study, indices of summer extreme hourly precipitation tend to be considerably higher 

than in winter across all stations, as it was already discussed in Section 3.1.5. It can also be 

seen that for stations in the southern part of the UK (Camborne, Boscombe Down, Northolt, 

Marham and Cranwell), indices of extreme precipitation in summer are higher than for stations 

in the North (Leuchars, Tiree and Kinloss). This can be explained by the fact that convective 

precipitation, which is particularly important in terms of hourly precipitation extremes 

(Gregersen et al., 2013), is strongly linked with high temperatures (Berg et al., 2013; Maraun et 

al., 2010b; Molnar et al., 2014). As a consequence, convective precipitation events are more 

likely to occur and are more intense in the southern part of the UK (Chan, 2013), where 

temperatures are higher than in the North of the UK (see Section 3.2.2). Another reason is that 

the stations in the South, in particular Camborne, Boscombe Down and Northolt, are more 

heavily affected by mesoscale convective complexes (MCCs). As described in Little et al. (2008), 

MCCs occur mostly in summer over southern or southwestern parts of the UK. They can be 

characterized by shallow low pressure zones originating over the Bay of Biscay, travelling from 

France to the UK and leading to intense thunderstorms. MCCs may be attributed to CP1 as this 

circulation pattern is also characterized by a shallow low pressure system over the southern 

part of the UK in summer. As shown in Figure 5.8 and Figure 5.10, CP1 leads to the highest 

extreme indices for stations (Camborne, Boscombe Down, Northolt, Marham and Cranwell) in 

the southern part of the UK in summer. For the remaining stations (except Kinloss), CP1 and 

CP4, which are both characterized by low pressure systems over the UK, are the most 

important CPs in terms of of extreme hourly precipitation in summer. At Kinloss, the station 

located furthest North in this study, extreme hourly precipitation is most likely to occur for CP1 
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and CP5. CP5 is also characterized by a low pressure system to the North of the UK. Overall, it 

can be summarized that for each of the twelve stations, extreme hourly precipitation can be 

strongly linked with the occurrence of cyclonic conditions. This is in line with the results of 

other studies in the past. For example, (Kendon et al., 2014; Mishra et al., 2012) found a strong 

relationship between low pressure systems and extreme hourly precipitation events. (Sweeney 

and O'Hare, 1992) assessed the UK daily precipitation response with each of the Lamb 

Weather Types. They found that cyclonic south-westerly conditions lead to the highest 

precipitation intensities due to the existence both of moist tropical air masses and a low 

pressure system off the north-west coast. Conway et al. (1996) analysed the relationship 

between three different airflow indices (vorticity, strength of airflow and direction of airflow) 

and UK daily precipitation. It was shown that vorticity, a measure of cyclonic activity, exhibited 

the strongest influence on precipitation intensities. 

Table 5.6 lists the maximum hourly precipitation events between 1980 and 2009 for each of 

the twelve selected stations and the prevailing CPs derived from the NCAR CP-classification on 

those days. Eight of the twelve maximum hourly precipitation events occur on days attributed 

to either CP1 or CP4. This means the two CPs characterized by low pressure systems over the 

UK are closely related to the maximum hourly precipitation events. It can be observed that the 

maximum hourly precipitation events of the four stations furthest West of the UK (Tiree, 

Aldergrove, Valley and Camborne) all occur on days attributed to CP4. This CP is characterized 

by a weather system transporting westerly airmasses from the North Atlantic to the UK under 

cyclonic conditions. It is also found that the three stations (Tiree, Valley and Camborne) closest 

to the North Atlantic are the stations with the longest precipitation duration on the day of the 

maximum hourly preciptiation. It may be that those stations are less affected by short and very 

intense convective showers due to their close proximity to the Sea. 
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Station 
Maximum 

hourly 
precipitation 

Daily 
precipitation 

Precipitation 
duration on 

this day 

Date (YYYY-MM-
DD HR:SS) 

CP on 
this 
day 

KINLOSS 50.0 mm 50.3 mm 2 hours 1982-07-11 03:00 CP02 

TIREE 15.6 mm 51.8 mm 15 hours 2006-10-25 02:00 CP04 

LEUCHARS 26.0 mm 45.6 mm 10 hours 2002-07-30 23:00 CP01 

ALDERGROVE 25.1 mm 26.9 mm 3 hours 1986-05-07 18:00 CP04 

BOULMER 19.2 mm 47.4 mm 8 hours 2008-08-01 07:00 CP04 

ESKDALEMUIR 44.0 mm 53.0 mm 7 hours 1982-12-30 20:00 CP03 

VALLEY 15.5 mm 50.2 mm 17 hours 1981-10-01 16:00 CP04 

CRANWELL 26.1 mm 38.5 mm 5 hours 1982-08-04 21:00 CP01 

MARHAM 28.5 mm 36.7 mm 5 hours 1982-06-06 16:00 CP02 

NORTHOLT 36.7 mm 55.7 mm 4 hours 1992-05-30 02:00 CP01 
BOSCOMBE DOWN 28.2 mm 40.4 mm 7 hours 1989-05-24 15:00 CP03 

CAMBORNE 21.4 mm 66.2 mm 12 hours 2004-08-17 20:00 CP04 

Table 5.6 Maximum hourly precipitation between 1980-2009 for each station and the 

corresponding daily precipitation, precipitation duration, date and assigned CPs using the 

NCAR CP-classification. 

Four of the twelve maximum houly precipitation records cannot be attributed to either CP1 or 

CP4. This is probably due to the fact that extreme hourly precipitation events are often 

strongly linked with increased convective activity (Beck and Bárdossy, 2013; Maraun et al., 

2008). However, attributing these convective precipitation extremes, in particular localized 

convective showers, to certain CPs is not an easy task (Little et al., 2008). It also needs to be 

noted that this table cannot be considered as a representative overview of the most extreme 

hourly precipitation events between 1980-2009 across the UK. The twelve selected stations 

only provide precipitation records at a specific point in space. Therefore, it could be argued 

that it is almost by chance to what extent a specific storm, which leads to an extreme hourly 

precipitation events somewhere over the UK, is captured by one of the twelve stations. This is 

particularly the case for convective precipitation events as they are often very localized. 
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Figure 5.7 Extreme hourly precipitation (>10 mm/hr) probability in winter (Nov-April) 
conditioned on CPs (frequency occurrences: CP1=5.5%, CP2=14.7%, CP3=29.4%, CP4=23.0%, 
CP5=20.1% and U=7.4%) of the NCAR CP-classification for the twelve selected stations 
between 1980 and 2009. ‘U’ stands for unclassified CP and ‘All’ stands for all records 
unconditional of the CPs. 

 
Figure 5.8 Same as Figure 5.7 but for summer (May-Oct) conditioned on CPs (frequency 
occurrences: CP1=7.6%, CP2=15.5%, CP3=29.0%, CP4=24.9%, CP5=18.2% and U=4.9%).  
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Figure 5.9 99.5th percentiles of the daily maximum hourly precipitation in winter (Nov-April) 
conditioned on CPs (frequency occurrences: CP1=5.5%, CP2=14.7%, CP3=29.4%, CP4=23.0%, 
CP5=20.1% and U=7.4%) of the NCAR CP-classification for the twelve selected stations 
between 1980 and 2009. ‘U’ stands for unclassified CP and ‘All’ stands for all records 
unconditional of the CPs. 

 
Figure 5.10 Same as Figure 5.9 but for summer (May-Oct) conditioned on CPs (frequency 
occurrences: CP1=7.6%, CP2=15.5%, CP3=29.0%, CP4=24.9%, CP5=18.2% and U=4.9%). 
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5.4 Summary 

In Chapter 5, the results of fuzzy rules based CP-classifications with 180 different input 

parameters over the UK are presented and discussed. The input parameters comprise different 

input precipitation time series, calibration time periods and number of CPs. The best 

performing CP-classification is further used for the statistical downscaling of hourly 

precipitation extremes presented in Chapters 6 & 7. In order to determine the best performing 

CP-classification, the 180 different classifications are assessed based on (1) how well a certain 

classification represent the relationship between CPs and precipitation and how well the CP-

classification distinguishes between wet and dry CPs, and (2) how well a certain classification 

can separate the pressure patterns represented by different CPs within the classification. 

It is found that the CP-classifications exhibit the best performances for input precipitation set 

5, which represents spatially averaged daily precipitation for the nine HadUKP regions across 

the UK. The different time periods used for CP-classifications have no major effect on the skill 

of the classification. In terms of the number of CPs, the performance of the CP-classification 

increases with higher number of CPs up to 10 or 20 CPs depending on the assessment 

measures. However, the highest rate of increase in the performance is reached from 4 to 5 

CPs. In addition, certain CP-classifications with a smaller number of CPs show skills comparable 

to the better performing CP-classifications achieved with higher number of CPs. Another 

important aspect to consider is that a smaller number of CPs is favourable, in order to provide 

sufficient data in each subsample for the calibration process of the statistical downscaling 

method. Otherwise, it could lead to limited sampling variability (Willems and Vrac, 2011) and 

negatively affect the robustness of the precipitation duration–temperature relationships. 

Taking into consideration the performance of the classification and the robustness of the 

statistical downscaling process, the optimum classification has 5 (plus one unclassified) CPs, 

and is based on the input precipitation set 5 (9 HadUKP regional precipitation series) and the 

calibration time period 4 (1960-1979). 

In the last section of Chapter 5, two important features of this finally selected CP-classification 

are described: (1) the different atmospheric pressure patterns of the final CP-classification, and 

(2) the relationships between each CP and extreme hourly precipitation. This is the first study 

to investigate the relationship between a CP-classification and UK extreme hourly 

precipitation. It is also the first study to apply a fuzzy-rules based CP-classification over the UK. 

In contrast to previous applications of the fuzzy rules based CP-classification (Bárdossy and 

Pegram, 2011; Beck and Bárdossy, 2013; Hundecha and Bardossy, 2008), the finally selected 

CP-classification in this thesis only uses a relatively small number of different CPs (five plus one 
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unclassified). Two of the CPs (CP1 and CP4) are characterized by prevailing low pressure 

systems, two other CPs (CP2 and CP3) feature high pressure systems and the fifth CP (CP5) is 

associated with westerly airflow over the UK. The seasonal frequencies of the five CPs are 

shown to be in line with previous studies using the Lamb Weather Types (Jones et al., 1993; 

Lamb, 1972). Low pressure dominated CPs (CP1 and CP4) are most likely to occur in summer, 

whereas the CP featuring westerly airflow over the UK (CP5) show the highest seasonal 

frequencies in winter compared to any other season. In contrast to the LWTs, the fuzzy rules 

based CP-classification applied in this thesis is able to distinguish between different types of 

low (high) pressure systems. For example, CP1 features a relatively weak low-pressure system 

in the southern part of the UK, whereas CP4 is characterized by a more dominant and 

widespread low-pressure system with a stronger pressure gradient. In terms of the 

relationship between CP and extreme hourly precipitation, it is found that the two low 

pressure dominated CPs exhibit the strongest link with extreme hourly precipitation. Similar 

results were found in previous studies regarding hourly (Kendon et al., 2014; Mishra et al., 

2012) and daily precipitation extremes (Conway et al., 1996; Sweeney and O'Hare, 1992). In 

particular for stations in the southern part of the UK, CP1 exhibits relatively high probabalities 

of extreme hourly precipitation. It is suggested that this circulation pattern may be linked with 

mesoscale convective complexes (MCCs). The two CPs featuring high pressure conditions show 

a relatively weak link with extreme hourly precipitation but still have the potential to lead 

occasionally to very extreme events. It is likely that those extreme events are caused by 

localized convective showers under high pressure conditions (Blenkinsop et al., 2015).  

  



131 | P a g e  
 

Chapter 6  

Statistical downscaling based on observed records 

Chapter 6 describes the statistical downscaling process of estimating local hourly precipitation 

extremes based on observed data. At first, the importance of temperature and daily 

precipitation as predictors to estimate hourly precipitation extremes is presented in Section 

6.1. In the statistical downscaling process, temperature and daily precipitation are used to find 

the analogue day conditioned on seasons and CPs as described in Chapter 4. The importance 

of seasonality regarding hourly precipitation extremes is explained in Chapter 3. Only two six-

month seasons (winter and summer) are considered, in order to maximise the data available to 

calibrate the precipitation duration and temperature relationship for each season and CP (see 

Section 6.2). The relevance of CPs in terms of estimating hourly precipitation extremes is 

described in Chapter 5.In Section 6.2, the relationship between precipitation duration and 

temperature is explained. This relationship is used in the statistical downscaling process to 

perturb the observed hourly precipitation record of the analogue days. Finally in Section 6.3, 

the results of the statistical downscaling process based on observed records are presented. 

Estimates of local daily maximum hourly precipitation extremes are compared against 

observed local daily maximum hourly precipitation records over three different validation 

periods. In addition, the stationarity assumption is assessed. 

6.1 Relevance of the predictors in terms of extreme hourly precipitation  

Figure 6.1 - 6.3 show scatter plots of the summer daily temperature and precipitation records 

between 1980 and 2009 exemplary for three stations in the southern part of the UK (Northolt, 

Marham and Cranwell). In this part of the UK, temperature are highest (see Section 3.2.2). As a 

results, those station are under an increased risk of convective precipitation, which often 

cause extreme hourly precipitation (Gregersen et al., 2013). The relevance of daily 

precipitation and daily mean temperature as predictors to estimate extreme hourly 

precipitation is well illustrated in those figures. It can be seen for all three stations, that there 

is a link between the occurrence of extreme hourly precipitation events (>10mm/hr) in 

summer and higher temperature. Such events necessarily require daily precipitation to be 

higher than 10mm/day. Only considering those records (daily precipitation > 10mm/day), 

extreme hourly precipitation records are more concentrated on the right half of the scatter 

plot at mean temperatures higher than approximately 15°C. High temperatures are often 
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considered as a trigger for convective precipitation and therefore the link between warm days 

and the occurrence of extreme hourly precipitation is physically plausible. In this context, it 

should be also noted that those three stations exhibit a pronounced maximum of extreme 

hourly precipitation for the warmest time of the year (JJA) as described in Chapter 3. This is a 

fact which underlines the importance of high temperature regarding hourly precipitation 

extremes. The relevance of the other predictor, daily precipitation, in terms of hourly 

precipitation extremes is self-evident as extreme hourly precipitation can only occur on days 

with daily precipitation higher than 10mm/day. Also, as seen in Figure 6.1, extremely high daily 

precipitation (>45mm/day) may also be strongly linked with very extreme hourly precipitation 

(>20mm/hr) at Northolt. However, this link is not as strong as the ones for Marham and 

Cranwell as illustrated in Figure 6.2 and Figure 6.3.  

 

 
Figure 6.1 Scatter plot of daily precipitation events (>=0.2mm/day) recorded in summer 
between 1980 and 2009 at Northolt. It shows the E-OBS gridded daily mean temperature in 
Celsius degrees (x-axis) and site-specific daily precipitation in mm (y-axis), as well as the 
intensity of daily maximum hourly precipitation represented by different colours. 
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Figure 6.2 Same as Figure 6.1 but for the station at Marham. 

 
Figure 6.3 Same as Figure 6.1 but for the station at Cranwell. 
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6.2 Relationships between precipitation duration and temperature 

In the following section, the relationships between precipitation duration and temperature 

conditioned on CPs are analysed for the twelve selected stations. In this thesis, the 

precipitation duration-temperature relationship is applied to perturb the observed hourly 

precipitation records in order to overcome the main limitation of the analogue day method, 

namely that it only simulates precipitation events observed in the past. Previous studies have 

shown that an increase in temperature often leads to shorter precipitation events. For 

example, Hardwick Jones et al. (2010) found a decrease in precipitation duration as 

temperature increases. Similarly, Beck and Bárdossy (2013) showed that higher temperatures 

lead to a decline in the frequency of wet hours but also causes a shift in the hourly 

precipitation distribution towards higher intensities. Theoretically, the relationship between 

hourly precipitation intensity and temperature could also be used to perturb the observed 

hourly precipitation records. However, it was found that the sample sizes were often too 

limited to identify reliable hourly precipitation-temperature relationships after subsampling 

the records into five (plus one) CPs and two seasons. For the same reason, the precipitation 

duration-temperature relationship applied in this thesis was not calibrated based on extreme 

events only. In terms of the stationarity assumption, conditioning the observed precipitation 

duration – temperature relationship on different CPs is important to identify relationships 

which remain valid under a future warmer climate. Otherwise the relationship between 

precipitation and temperature may lead to false conclusions. For example, Chan et al. (2016) 

found a decline in extreme precipitation intensities above 22°C and argued that it may be due 

to a more frequent occurrence of anticyclonic conditions at high temperatures in the present-

day climate.  

 

Figure 6.4 illustrates different relationships between daily precipitation duration and 

temperature depending on the CPs analysed in this study. It shows the relationships exemplary 

for the station at Camborne (South West England) for the time period 1980-1999 in summer. 

Similar results are found for the other stations as discussed in the following. At Camborne, CP1 

and CP4 exhibit substantially higher negative regression slopes compared to the rest of the CPs 

and only the regression slopes of CP1 and CP4 are significant at the 5% level according to the 

p-value test. In this context, it needs to be mentioned that CP1 and CP4 are both characterized 

by low pressure areas over the UK. It seems that the effect of higher temperature leading to 

precipitation events of shorter duration is particularly pronounced for days of low pressure 

areas over the UK. This holds true for all three different calibration periods at Camborne (see 

Figure 6.5). A similar picture can be seen for the other eleven stations considered in this study 

regarding CP4. In total, 32 of the 36 linear regression slopes conditioned on CP4 are 
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statistically significant and result in RMSE (Root Mean Square Error) values lower than 1 (see 

Table 6.1). In contrast, for CP1 only the three most southern stations (Camborne, Boscombe 

Down and Northolt) exhibit a high fraction (9 of 9) of significant regression slopes (with RMSE 

<1) over the three different calibration time periods. Considering the total number of twelve 

stations, the fraction of significant regression slopes (with RMSE<1) conditioned on CP1 is only 

13 of 36. This can be explained by the fact, that CP1 is characterized by a rather small shallow 

low pressure area south of the UK affecting mostly stations in the southern part of the UK. 

Conversely, CP4 is associated with a large low pressure zone over the UK and as a consequence 

has a more widespread impact. The linear regression slopes associated with CP1 show higher 

negative values than those for CP4. This means a similar rise in temperature results in a larger 

drop in the duration of CP1 associated than CP4 associated precipitation events. One possible 

explanation is that the low pressure area south of the UK, associated with CP1, can be linked 

with warmer temperature due to its geographical location and hence increased convective 

activity, compared to the low pressure area centred north of the UK associated with CP4. 

Considering the other circulation patterns, CP2 and CP3 are characterized by high pressure 

systems over the UK. The limited moisture availability associated with those weather 

conditions is often the restricting factor in terms of the actual precipitation intensities. As a 

result, the frequency occurrences of extreme hourly precipitation events for days attributed to 

CP2 and CP3 across the twelve stations are relatively low (see Section 5.3.2) and do not affect 

the duration-temperature relationship substantially. This may explain why no significant 

relationship can be found between precipitation duration and temperature at Camborne for 

those two CPs (see Figure 6.4 and Figure 6.5). Similarly, for most of the other eleven stations 

(see Table 6.1) no significant relationship between precipitation duration and temperature 

conditioned on CP2 and CP3 can be established. Only the station at Northolt (South East 

England) and Kinloss (East Scotland) show statistically significant regression relationships (with 

𝑅𝑀𝑆𝐸 < 1) in summer over all three calibration periods conditioned on CP2 (Northolt) and 

CP3 (Kinloss).  

Northolt is the station with the highest extreme temperatures as illustrated in Section 3.2.2 

and therefore also exhibits an increased risk of convective precipitation events. It is suggested 

that the statistically significant regression relationships (with 𝑅𝑀𝑆𝐸 < 1) conditioned on CP2 

at this station may be caused by the intensification of convective precipitation events with 

higher temperature on days of anticyclonic conditions. In this context it is interesting to note 

that statistically significant regression relationships (with 𝑅𝑀𝑆𝐸 < 1) conditioned on CP2 

exhibit on average the most negative slopes of all statistically significant regression slopes 

(with 𝑅𝑀𝑆𝐸 < 1) as shown in Table 6.1. This also indicates increased convective activity as the 



136 | P a g e  
 

strongest reaction to temperature is often found for convective precipitation events (Berg et 

al., 2013; Molnar et al., 2014). 

At Kinloss, located in the northern part of the UK, it is more likely that the strong relationship 

between precipitation duration and temperature on days attributed to CP3 is due to 

approaching cold/warm fronts from the North Atlantic under westerly conditions. This is in line 

with the actual SLP pattern of CP3 characterized by westerly airflow in the northern part of the 

UK. 
 

Similarly, CP5 can also be associated with westerly airflow but over the entire UK. At 

Camborne, no statistically significant regression can be identified under CP5 conditions (see 

Figure 6.4 and Figure 6.5). The same holds true for Valley (North West England) and Boulmer 

(North East England), which also exhibit no statistically significant regression slope conditioned 

on CP5 in summer. At Aldergrove (North Ireland) and Leuchars (Forth), only one of the three 

calibration periods show a statistically significant regression slope conditioned on CP5 in 

summer. In contrast, at Boscombe Down, Northolt, Marham, Cranwell and Eskdalemuir a 

different behaviour in terms of the precipitation duration and temperature relationship 

conditioned on CP5 can be found. In total, 14 of the 15 regression slopes are statistically 

significant and fulfil the RMSE criterion conditioned on CP5 in summer over all three 

calibration periods for these five stations (see Table 6.1). It is interesting to note that these five 

stations are all not in close proximity to the sea. As mentioned above, CP5 is characterized by 

westerly airflow over the UK and thus precipitation is often caused by cold/warm fronts 

travelling in from the North Atlantic. It seems that stations further inland of the UK exhibit a 

pronounced intensification of frontal precipitation events with increased temperature, which 

is reflected by the statistically significant duration-temperature relationships. 

The other two stations with statistically significant regression slopes (and  𝑅𝑀𝑆𝐸 < 1) 

conditioned on CP5 in summer are Tiree (North Highlands and Islands) and Kinloss (East 

Scotland). Those two stations, characterized by high latitudes, are under the influence of a low 

pressure zone north of the UK associated with CP5. As mentioned earlier for CP1 and CP4, the 

relationship between precipitation duration and temperature appears to be stronger under 

low pressure conditions than high pressure.  

 

In general, it needs to be noted that the sample size determines the amount of sampling error 

inherent in a regression analysis. Statistical relationships are harder to detect in smaller 

samples, while increases in the sample size helps to improve the statistical power of the 

relationships. For example, 35 of the 36 CP-unconditional relationships between daily 

precipitation duration and temperature are statistically significant and fulfil the RMSE criterion 

over the three different time periods (see Table 6.1). Those statistical relationships are based 
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on at least 975 wet day records, whereas for the regression analysis of some CP-conditional 

relationships not more than 50 wet day records are available. 

The same holds true for the estimation of confidence intervals of the linear regression slopes. 

The uncertainty of the regression analysis, represented by the range of the confidence 

intervals, increases with smaller sample sizes. This is exemplary illustrated for the summer 

time period 1980-1999 at Camborne in Figure 6.5. The relationship between daily precipitation 

duration and temperature conditioned on CP1 are estimated based on only 126 wet days, the 

relationship conditioned on CP4 is based on 603 wet days, and the CP-unconditional 

relationship between is based on 1275 wet days. As a result, the range of the confidence 

intervals are largest for the estimated relationship conditioned on CP1 and smallest for the CP-

unconditional relationship.  

It is also found, that the confidence intervals exhibit a tendency to be skewed towards lower, 

more negative, linear regression slopes. Therefore, it can be suggested that the estimated 

regression slopes applied in the statistical downscaling method are rather conservative and 

may be more extreme in reality. In order to quantify this additional component of uncertainty 

in the process of estimating extreme hourly precipitation events, the confidence intervals of 

the linear regression could be incorporated into the statistical downscaling method. 
 

The same analysis was also conducted for the relationships between daily precipitation 

duration and temperature in winter for all twelve stations over the three different calibration 

periods (results not shown). The number of significant relationships between duration and 

temperature (with 𝑅𝑀𝑆𝐸 < 1) in winter (67 out of 252) is considerably smaller compared to 

summer (131 out of 252) for the twelve selected stations over the three calibration periods, 

although the results are based on similar sample sizes for summer and winter. It also needs to 

be mentioned that for stations in close proximity to the North Atlantic (Camborne, 

Eskdalemuir, Valley and Tiree), the regression slopes in winter exhibit positive values. This 

means that higher temperatures in winter often result in events with longer precipitation 

duration for those stations, whereas in summer all stations show a decrease in precipitation 

duration with increasing temperature. The differences in the duration-temperature 

relationships between winter and summer can at least partly be explained by the different 

predominant precipitation types in winter and summer. Winter precipitation is more strongly 

associated with large-scale precipitation events such as frontal systems or cyclones (Chan et 

al., 2014a; Lenderink and van Meijgaard, 2008), whereas summer precipitation is often caused 

by convective events (Beck and Bárdossy, 2013; Westra et al., 2014). For both types of 

precipitation it holds true that higher temperatures lead to an increase in the water holding 

capacity of the atmosphere. As a result, not only the intensity but also the duration of a 
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precipitation event may increase with higher temperatures. In terms of convective 

precipitation, however, other important aspects also need to be considered. For example, 

higher temperatures cause a stronger convective uplift, which often leads to more intensive 

and shorter precipitation events. The same holds true for positive feedback mechanisms with 

higher temperatures (Berg et al., 2013; Lenderink and van Meijgaard, 2008). It is suggested 

that the convective factors dominate the duration-temperature relationship in summer and 

lead to a decrease in the precipitation duration with higher temperatures. In contrast, in 

winter the convective factors are not as dominant as in summer. Therefore, the surplus of 

precipitable water with higher temperatures can lead to an increase in the precipitation 

duration in winter. 
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Table 6.1 The linear regression slopes for the precipitation duration and temperature 
relationship in summer conditioned on the set of CPs over the three different calibration 
periods and for the twelve selected stations. It only shows the linear regression slopes for 
those relationships that are significant (at the 5% level) and fulfil the RMSE (Root-Mean-
Square-Errors) criterion (RMSE<1). The relationships are estimated based on wet days (≥ 1mm) 
only. The number of wet days are given in parentheses. U stands for unclassified days and w/o 
CPs stands for all days unconditional on the set of CPs. C1, C2 and C3 represent the three 
different calibration periods: 1980-1999 (C1), 1980-1989 + 2000-2009 (C2) and 1990-2009 (C3).  
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CP1 

C1 
-0.24 
(126) 

-0.35 
(108) 

-0.28 
(116) 

-0.49 
(105) 

-0.31 
(101) 

(102) -0.33 
(87) 

(82) (95) (67) (75) (64) 

C2 
-0.27 
(119) 

-0.29 
(104) 

-0.27 
(106) 

(103) (99) (97) (98) (85) -0.38 
(84) 

(85) (65) (75) 

C3 
-0.33 
(131) 

-0.34 
(118) 

-0.26 
(118) 

(106) (108) (119) (99) (95) (95) (86) (76) (63) 

CP2 

C1 
(84) -0.47 

(51) 
-0.25 
(39) 

(59) (52) (76) (100) (83) -0.20 
(103) 

(72) (128) (98) 

C2 
(83) (56) -0.29 

(51) 
(62) (56) (85) (107) (84) -0.36 

(106) 
(78) (142) (95) 

C3 
(71) -0.46 

(53) 
-0.34 
(52) 

-0.33 
(57) 

(58) (75) (103) (87) (107) (76) (124) (109) 

CP3 

C1 
(166) (165) -0.19 

(140) 
-0.22 
(169) 

-0.16 
(196) 

(184) (281) (211) -0.25 
(242) 

-0.17 
(174) 

(334) -0.15 
(272) 

C2 
(172) (150) (153) (174) (192) (196) (294) (225) (253) (177) (358) -0.13 

(279) 

C3 
(176) (167) (129) -0.15 

(167) 
(194) (188) (281) -0.21 

(212) 
-0.25 
(239) 

(177) (350) -0.26 
(265) 

CP4 

C1 
-0.17 
(603) 

-0.20 
(588) 

-0.18 
(488) 

-0.18 
(470) 

-0.24 
(469) 

(563) -0.16 
(657) 

-0.24 
(502) 

(589) -0.26 
(510) 

-0.16 
(540) 

-0.21 
(470) 

C2 
-0.15 
(624) 

-0.21 
(579) 

-0.20 
(507) 

-0.23 
(500) 

-0.28 
(488) 

(583) (713) -0.25 
(503) 

-0.13 
(637) 

-0.23 
(531) 

-0.18 
(598) 

-0.32 
(519) 

C3 
-0.16 
(579) 

-0.17 
(555) 

-0.29 
(483) 

-0.30 
(478) 

-0.33 
(469) 

-0.21 
(548) 

-0.26 
(686) 

-0.33 
(499) 

-0.28 
(592) 

-0.35 
(513) 

-0.24 
(538) 

-0.32 
(491) 

CP5 

C1 
(238) -0.18 

(178) 
-0.25 
(147) 

-0.18 
(160) 

(174) (298) -0.15 
(488) 

(187) (379) -0.13 
(241) 

-0.24 
(507) 

-0.25 
(294) 

C2 
(259) -0.18 

(199) 
-0.23 
(178) 

-0.18 
(200) 

-0.17 
(217) 

(325) -0.27 
(523) 

(215) (415) (285) -0.26 
(548) 

-0.19 
(324) 

C3 
(253) -0.18 

(191) 
-0.36 
(159) 

-0.24 
(186) 

-0.19 
(207) 

(307) -0.18 
(517) 

(196) -0.19 
(394) 

(278) -0.35 
(521) 

-0.20 
(314) 

U 

C1 
(58) (55) (45) (55) (49) (63) (83) (61) (66) (48) -0.55 

(80) 
-0.48 
(67) 

C2 
(57) -0.42 

(57) 
-0.51 
(51) 

(48) (49) (55) (74) (51) (63) (57) -0.46 
(71) 

-0.61 
(52) 

C3 
(63) -0.42 

(56) 
-0.44 
(48) 

(65) (52) (64) (83) (60) (65) (51) (71) -0.47 
(63) 

w/o 
CPs 

C1 
-0.11 
(1275) 

-0.21 
(1145) 

-0.20 
(975) 

-0.21 
(1018) 

-0.19 
(1041) 

-0.07 
(1286) 

-0.14 
(1696) 

-0.16 
(1126) 

-0.14 
(1474) 

-0.21 
(1112) 

-0.17 
(1664) 

-0.20 
(1265) 

C2 
-0.14 
(1314) 

-0.21 
(1145) 

-0.20 
(1046) 
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-0.22 
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-0.18 
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Figure 6.4 The relationship between daily precipitation duration and temperature at 

Camborne in summer (May-Oct) for the time period 1980-1999 conditioned on the set of CPs. 

The results of the p-value significance test are given in the title in parentheses for each CPs. 

The black line indicates the linear regression line and the coloured bins represent mean 

precipitation duration and mean temperature averaged over five temperature categories for 

the time period 1980-1999 in summer (cold: 0-20th percentile; cool: 20th – 40th percentile; 

medium: 40th – 60th percentile; warm: 60th – 80th percentile; hot: 80th -100th percentile). 
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Figure 6.5 The values of the linear regression slopes between precipitation duration and 
temperature in summer conditioned on the set of CPs for the three different calibration 
periods at Camborne. It only shows the linear regression slopes for those relationships that are 
significant (at the 5% level). It also illustrates the confidence intervals at the 10% level of the 
estimation of the linear regression slopes.  

6.3 Cross-validation to assess statistical downscaling performance 

In the following section, the results of the estimation of hourly precipitation values based on 

the statistical downscaling methods described in Chapter 4 are presented. As mentioned 

before, twelve different stations over the UK are selected as shown in Chapter 3. Three 

different validation periods are applied as described in Table 6.2 to assess the reliability and 

robustness of the downscaling method. The three corresponding calibration periods are 

chosen accordingly over which the historical analogue days are drawn and the precipitation 

duration-temperature relationship (see Section 6.2) is defined. In order to test whether the 

downscaling method is able to perform under a warming climate, a fourth validation period is 

defined comprising the ten warmest summers of each station.  

For each validation period and station, the averaged 99.5th percentile error over 100 

bootstrapping samples 𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅  is calculated. For example, the validation period V1 (1980-1989) 

comprises 3653 different calendar days. Therefore, each of the 100 bootstrapping sample 𝑖 
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also consists of 3653 validation days. Those 3653 validations days are selected with 

replacement from the population of 3653 calendar days for each of the 100 bootstrapping 

samples separately. It means that in each bootstrapping sample, some calendar days occur 

multiple times while others are not included at all. In a next step, the 99.5th percentile error 

𝑃𝐸99.5,𝑖 is calculated for each of the 100 bootstrapping samples, in order to determine the 

averaged 99.5th percentile error 𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅  (see Equation 4.22 and Equation 4.23). The same 

procedure is applied in Chapter 7 in order to estimate the averaged 99.5th percentile errors 

and to project the 99.5th percentiles over 100 bootstrapping samples. The only difference is 

that Chapter 6 is based on observed predictor variables, whereas Chapter 7 uses RCM data to 

estimate and project extreme hourly precipitation. 

Four different approaches (M1, M2, M3 and M4) of finding the analogue days as defined in 

Table 4.1 are compared. M1 stands for the analogue day method conditional on summer and 

winter (but not on calendar months) and no daily precipitation categories are applied. The M2 

approach is conditional on the twelve calendar months without any daily precipitation 

categories. In M3, the analogue day method is conditional on winter and summer and daily 

precipitation categories are applied. M4 stands for the analogue day method conditional on 

the twelve calendar months and daily precipitation categories are used. After the analogue day 

in the calibration period is found, the duration-temperature relationship described in Section 

6.2 is applied to perturb the historical daily maximum hourly precipitation record.  

Calibration period Validation period 

C1: 1990 – 1999 V1: 1980 – 1989 

C2: 1980 – 1989 & 2000 - 2009 V2: 1990 – 1999 

C3: 1980 - 1999  V3: 2000 – 2009 

Table 6.2 The different calibration periods and corresponding validation periods used for the 

cross-validation of the statistical downscaling performance in Section 6.3 and Section 7.1. 

As shown in Table 6.3, no approach can be identified as the best for all the twelve stations in 

terms of the estimation of extreme hourly precipitation over different validation periods. On 

average, the statistical downscaling based on M1 performs best over the three validation 

periods and the twelve stations. However, the overall differences in the performances 

between the four approaches are small. The best approach (M1) exhibits a 𝑃𝐸99.5 
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 11.2% 

compared to the worst performing approach (M4) with a 𝑃𝐸99.5 
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 12.8%.   

Although averaged differences in the performances between the different approaches are 

relatively small, M3 and M4 show a tendency to overestimate the most extreme hourly 

precipitation events. For example, using M3 leads to overestimation of the highest hourly 
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precipitation extremes at Cranwell and Kinloss and M4 causes overestimation of the highest 

hourly precipitation extremes at Eskdalemuir and Kinloss for the validation period 2000-2009 

as shown in Figure 6.6. It seems that not using daily precipitation as a final predictor increases 

the risk of overestimating the most extreme hourly precipitation. Instead, the highest hourly 

precipitation values estimated with M1 and M2, using daily precipitation as a final predictor, 

show much better agreement with the observed hourly precipitation extremes for those 

stations. 

In terms of the reliability and robustness of the downscaling methods, it can be seen that all 

four methods show mostly high agreement between the estimated and observed hourly 

precipitation extremes over the three different validation time periods. However, for the 

station at Northolt and Marham, using downscaling approach M1 and M2 result in relatively 

high 𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅  (ca. 20%) over validation period 1 (V1) as shown in Table 6.3. Estimates based on 

M4 show high 𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅  over V3 at Northolt. M3 and M4 result in high 𝑃𝐸99.5

̅̅ ̅̅ ̅̅ ̅̅  at Boscombe Down 

over V1 (20.9% and 42.6%). At Cranwell, M3 shows low skill in estimating hourly precipitation 

extremes over V3 (𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅ =22.0%). It needs to be mentioned that Boscombe Down, Northolt, 

Marham and Cranwell are all located in the southern and south-eastern part of the UK, where 

temperatures are higher (see Section 3.2.2). Those stations exhibit an increased risk of 

convective precipitation events (Chan, 2013), which makes the prediction of extreme hourly 

precipitation a very challenging task. High differences between estimated and observed 

extreme hourly precipitation are also found at Leuchars, although this station is less likely to 

be highly affected by convective precipitation events. 

In Figure 6.7, the influence of the perturbation factor on the hourly precipitation estimates is 

illustrated over the validation period 2000-2009 for all twelve stations. The perturbation factor 

is derived from the duration-temperature relationship described in Section 6.2. It can be seen, 

the influence of the perturbation factor on the hourly precipitation estimates is small 

illustrated by the small differences between non-perturbed and perturbed hourly precipitation 

estimates based on approach M1. Similar results are found based on the other approaches 

(not shown). Non-perturbed estimates represent the hourly precipitation recorded on the 

analogue day, while perturbed estimates are generated by perturbing those observed hourly 

records on the analogue day using the derived relationship. 

The perturbation factor that takes into account changes in the temperature variable is 

intended to address non-stationarity. In other words, the downscaling method needs to 

remain valid under a changing climate. In order to test this assumption, Table 6.4 shows the 

results of the downscaling methods validated over the years with the ten warmest summers 
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(May-Oct) on average between 1980 and 2009 depending on each station. It thus assesses 

whether the downscaling methods are able to perform under a climate, which is as different as 

possible in terms of temperature to the climate it is calibrated on (the 20 coldest summers). 

On average over the twelve stations all four downscaling methods show even better skill over 

the ten year period with the warmest summer, indicated by smaller 𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅ , compared to the 

averaged results over the three validation periods as shown in Table 6.3. It needs to be noted, 

however, that the changes in mean temperature are relatively small (0.8°C-1.3°C) compared to 

the projected temperature increases (up to 3.5°C) in the future scenarios (see Section 7.3). As 

for the results averaged over the three validation periods, approach M1 performs also best 

over the ten warmest summer period on average over the twelve stations. 

As discussed in Section 3.2.2, the observed temperature increased significantly across all 

stations over the time period 1980-2009. It is important to assess if the increase in 

temperature affects the statistical predictor-predictand relationship adversely and leads to a 

systematic underestimation or overestimation of hourly precipitation extremes. The 

differences between the observed and the estimated annual maximum of hourly precipitation 

between 1980 and 2009 are investigated as described in Schmith (2008). A negative value 

stands for an overestimation of the hourly extremes, while positive represents an 

underestimation. Table 6.5 shows the linear regression slopes of the differences for each 

station. For M1 and M2, no significant trends can be found for any of the stations. In other 

words, the downscaling errors of the annual maximum of hourly precipitation using approach 

M1 and approach M2 exhibit no signs of significant instationarity. In contrast, applying 

approach M3 results in significant trends in the residual time series of four stations (Marham, 

Cranwell, Leuchars and Kinloss), while two stations (Leuchars and Kinloss) show significant 

trends in the residual time series for downscaling results based on approach M4. The reason 

for the significant trends using approach M3 and approach M4 can be found in Figure 6.8. At 

Marham and Cranwell, approach M3 heavily overestimates the annual maxima of hourly 

precipitation between 2000 and 2009. At Leuchars, the annual maxima tend to be 

underestimated between 2000 and 2009 by approach M3 and approach M4. At Kinloss, 

approach M3 and approach M4 tend to heavily underestimate the most extreme hourly 

precipitation between 1980 and 1989 and heavily overestimate the most extreme hourly 

precipitation between 2000 and 2009. It shows that using daily precipitation as a final 

predictor to find the analogue day, which is done for approach M1 and approach M2, reduces 

not only the risk of heavily overestimating the most extreme hourly precipitation events as 

mentioned earlier, but also decreases the risk of instationarities in the predictor-predictand 

relationship. 
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One limitation of the analogue day method is well illustrated in Figure 6.9. It shows all the 

precipitation events at Northolt for the summer time period 1980-1999 conditioned on CP3, 

which represents high pressure conditions in the southern part of the UK. Some studies (Beck 

and Bárdossy, 2013; Blenkinsop et al., 2015) suggested that high pressure conditions may be 

associated with localized convective precipitation extremes. Those convective extremes exhibit 

high return periods (Chan, 2013) and are not always included in the calibration period of the 

statistical downscaling method. For example, it can be seen in Figure 6.9 that over the 

calibration period 1980-1999 in summer at Northolt, no hourly precipitation events higher 

than 10mm/hr occurred on days with prevailing CP3. However, over the validation period 

2000-2009, an extreme hourly precipitation event was recorded at Northolt. The problem of 

the analogue day is that this extreme hourly precipitation event is very unlikely to be 

reproduced by the statistical downscaling method because no similar precipitation event can 

be resampled over the calibration period for days of CP3. 

 

Table 6.3 The averaged 99.5th percentile error 𝑃𝐸99.5 
̅̅ ̅̅ ̅̅ ̅̅ ̅ in [%] depending on the four different 

approaches to find the analogue days over the three different validation periods. The results 
are given as an average over 100 bootstrapping samples. Observed data is used as the 
predictor for statistical downscaling. M1, M2, M3 and M4 represent the different approaches 
to find the analogue day. V1, V2 and V3 represent the three different validation periods: 1980-
1989 (V1), 1990-1999 (V2) and 2000-2009 (V3). 
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Table 6.4 Same as Table 6.3, but over the ten year period of warmest summers for each 
station between 1980 and 2009. The mean temperature difference between the ten warmest 
summers and 20 coldest summers is given in parenthesis for each station after the station 
name. 

 

Table 6.5 The linear regression slopes in [mm/year] (using ordinary least squares fit) of the 

residual time series of the annual maxima for the twelve stations between 1980 and 2009. In 

bold the regression slopes which are significant at the 5% level according to the p-value test. 
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Figure 6.6 The part exceeding 0.99 of the empirical cumulative distribution of the estimated 
and observed daily maximum hourly precipitation records for the most recent validation 
period 2000-2009.  M1, M2, M3, M4 represent the different approaches to find the analogue 
day. For all the estimates, a perturbation factor is applied based on the duration and 
temperature relationship. 
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Figure 6.7 The empirical cumulative distribution exceeding 0.99 of the estimated and observed 
daily maximum hourly extreme precipitation records for the most recent validation period 
2000-2009. Estimates are based on approach M1, which showed the best performances on 
average. Non-perturbed represents records as observed on the analogue days; perturbed 
represents estimates for which a perturbation factor is applied based on the duration and 
temperature relationship. 
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Figure 6.8 The residual time series of the annual maxima of hourly precipitation for the twelve 
stations between 1980 and 2009 using the four different statistical downscaling methods. M1, 
M2, M3, M4 represent the different approaches to find the analogue day. 
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Figure 6.9 Scatter plot of daily precipitation events (>=0.2mm/day) recorded in summer at 
Northolt between 1980 and 1999 (calibration period C1) conditioned on CP3. It shows the E-
OBS gridded daily mean temperature (x-axis) and local daily precipitation (y-axis). The magenta 
star represents an extreme hourly precipitation event (34.2 mm/hr) on the 9th August 2001 
during the validation period V1 (2000-2009). 

6.4 Summary 

In this chapter, hourly precipitation records are estimated based on the statistical downscaling 

method described in Section 4.3 using observed daily data. As predictors, daily mean 

temperature, daily precipitation and the five (plus one unclassified) CPs (see Section 5.3), are 

used. The importance of the daily temperature and the daily precipitation variable is illustrated 

in Section 6.1. It can be seen that high daily temperature and/or high daily precipitation often 

correspond with extreme hourly precipitation. 

In the following section, the relationship between precipitation duration and daily 

temperature conditioned on CPs for each of the twelve stations is investigated. It is found that 

the duration-temperature relationship in summer is more likely to be statistically significant 

and to fulfil the Root-Mean-Square-Errors criterion (RMSE<1) for days associated with low 

pressure systems (CP1 and CP4) over the UK. The relationships in summer conditioned on CP4 

are significant and fulfil the RMSE criterion for all twelve stations, while CP1-conditioned 



151 | P a g e  
 

relationships in summer show a tendency to be significant and to fulfil the RMSE criterion for 

the stations in the southern part of the UK only. It also needs to be noted that statistical 

relationships are harder to be identified for smaller sample sizes. It means that the probability 

of the relationships to be significant increases with the size of the record sample it is based on. 

For example, 35 of the 36 relationships in summer not conditioned on any CP are statistically 

significant for the twelve stations and over three calibration periods. This is important as the 

unconditional relationships are used as substitutes in the statistical downscaling process for 

those CP-conditioned relationships that are either not significant or do not fulfil the RMSE 

criterion.  

The relationships between precipitation duration and temperature are then used to perturb 

the historical hourly precipitation records on the analogue day following the statistical 

downscaling process. Results are shown in Section 6.3 for each station and over three different 

validation time periods (plus the 10 year period with the warmest summers). Four different 

approaches of the statistical downscaling method are presented depending on how to find the 

analogue day in the past. It is shown that approach M1, which only subsamples the analogue 

days into different CPs and different season (winter/summer) without subdividing them 

further into calendar months and daily precipitation bins, provides the best results on average 

for the twelve stations and over the three validation periods. However, performances of the 

four different approaches vary depending on the station. For example, approaches M1 and M2 

show better results at Eskdalemuir, which is situated in mountainous area and thus strongly 

affected by orographic precipitation. In this case, it seems that using daily precipitation as the 

final predictor only improves the quality of the extreme hourly precipitation estimates. Results 

based on approach M1 or M2 are also less likely to heavily overestimate the highest 

percentiles of hourly precipitation. Again this is likely to be due to the fact that M1 and M2 rely 

stronger on the actual daily precipitation value to find the analogue day compared to M3 and 

M4. On the other hand, applying approach M1 and M2 lead to high differences between 

estimated and observed extreme hourly precipitation at Marham and Northolt over validation 

period V1. Nevertheless, it can be summarized that the statistical downscaling method is able 

to generate reliable and robust hourly precipitation extremes over different validation time 

periods at different stations in the UK. 

In order to test the performance of the downscaling method under a climate which is warmer 

than the one it is calibrated on, the four different approaches are also validated over the ten 

warmest summer period. It is found that the performance of the downscaling method is not 

negatively affected by the fact that the climates over the validation and calibration period are 

as different as possible in terms of temperature. In addition, the residual time series between 



152 | P a g e  
 

observed and estimated annual maxima of hourly precipitation are investigated in order to 

test if the relationships between the combined predictors (CP, daily precipitation and 

temperature) and predictand (hourly precipitation) remain stationary. For approach M1 and 

M2, no signs of instationarity can be found in the statistical downscaling process, whereas 

applying approach M3 and M4 results in significant trends in the residual time series for four 

and two stations respectively. 
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Chapter 7  

Statistical downscaling based on RCM data 

Chapter 7 presents the results of the statistical downscaling to estimate local hourly 

precipitation extremes using 12.5km RCM data. At first, hourly precipitation is estimated based 

on ERA-interim driven RCM data. The fact that the RCMs are driven under quasi-observed 

boundary conditions means that the predicted hourly precipitation values can be directly 

related with the observed records on a day to day basis. The results are compared with the 

actual observed hourly precipitation extremes in order to find the best performing statistical 

downscaling approach to find the analogue day (amongst M1, M2, M3 and M4). In Section 7.2 

and Section 7.3, the best performing statistical downscaling approach is then used to estimate 

hourly precipitation extremes over a reference period (1980-2005) and two future periods 

(2030-2055 and 2075-2100) based on the GCM-driven RCM data.  

7.1 Cross-validation to assess statistical downscaling performance 

Similar to Section 6.3, the estimated hourly precipitation events using the analogue day 

method as discussed in Chapter 4 are validated for the same twelve selected stations over the 

same three different validation periods. Also, the same four approaches (M1, M2, M3 and M4) 

to find the analogue day are used (see Table 4.1). In contrast to Section 6.3, the predictors are 

derived from ERA-interim driven RCMs in this section. In order to find the analogue days, daily 

temperature, precipitation and CPs derived from ERA-interim driven RCMs are compared for 

each day of the validation period with the observed daily temperature, precipitation and CPs 

over the calibration period. In a next step, the historical hourly precipitation records on the 

analogue days are perturbed according to the temperature difference between each given day 

and the respective analogue day as described in Chapter 4. As the RCM temperature variable 

may be biased, the RCM simulated temperature value is normalized and the equivalent 

observed temperature value to the normalized RCM simulated temperature is used to 

calculate the temperature difference. 

The performances of the statistical downscaling method are again validated based on the 

averaged 99.5th percentile error (𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅ ) over 100 bootstrapping samples. Table 7.1 and Table 

7.2 show the 𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅  between observed and estimated hourly precipitation based on the RCA4 

and the RACMO22E RCM at 12.5 km resolution. Replacing observed data with the RCM data as 
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predictors for the downscaling process has a negative effect on the performances in terms of 

extreme hourly precipitation. Nevertheless, the estimates based on the RCM data still show 

good agreement with the observed extreme hourly precipitation. It can be seen that using the 

statistical downscaling approach M1 results in the best performances on average for the two 

RCMs, the three validation periods and the twelve selected stations. M1 also provides the best 

results on average over the ten warmest summers (see Table 7.3 and Table 7.4). Similar results 

are found in Chapter 6, where hourly precipitation are estimated based on observed predictors 

instead of using RCM simulated predictors. M1 stands for the analogue day method which 

subsamples the precipitation records only into two different seasons, whereas M2 and M4 

subsample the records into twelve calendar months and M3 and M4 also applies six daily 

precipitation categories. In order to find the most similar day in the past, daily precipitation 

and temperature are used as equally important predictors in M1. It can be concluded, that 

additional subsampling of the calibration days into calendar months or daily precipitation 

categories does not improve the performance of the statistical downscaling method. 

Regarding the robustness of the 99.5th percentiles hourly precipitation estimates over different 

validation periods, it is found that RCM estimates show high agreement with observed 

precipitation extremes at most stations (Table 7.1 and 7.2). However, at Leuchars relatively 

high differences occur over V2 for all four approaches using RCA4 RCM data. Large differences 

between estimates based on RCA4 RCM data and observed hourly precipitation extremes are 

also found at Kinloss over V1 (for M1,M2 and M3), at Northolt over V2 (for M1 and M3) and 

over V3 (for M2), at Boscombe Down over V1 (for M3), Cranwell over V3 (M3) and Aldersgrove 

over V2 (M4). Considering the estimates based on RACMO22E RCM data, large differences 

between the estimated and observed data in terms of the 99.5th percentiles occur at Leuchars 

over V1 based on approach M1 and over V2 (M2), at Kinloss over V1 (M1), at Northolt over V3 

(M2) and at Boscombe Down over V1 (M3).  

It also needs to be noted that the RCM estimates based on the M1 or M2 approach exhibit an 

increased risk of overestimating the most extreme hourly precipitation events (see Figure 7.1 

and Figure 7.2) compared to the estimates based on M1 and M2 predicted by observed 

variables as illustrated in Figure 6.6. For example, estimates predicted with RCA4 RCM data 

show overestimation of the most extreme precipitation events at Northolt (for M2), 

Eskdalemuir (M1 and M2) and Kinloss (M2). The downscaling results using RACMO22E RCM 

data overestimate the most extreme hourly precipitation also at Eskdalemuir (M1) and Kinloss 

(M1). The overestimation can be explained by the fact that daily precipitation simulated by 

ERA-interim RCMs cannot be expected to exactly reproduce the observed day to day 

sequences of precipitation. This is due to the large size of the RCM domain and also due to the 
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fact that ERA-interim data is only fed into the RCM at the lateral and sea surface boundaries 

(Kendon et al., 2012). As a result, the RCM estimates based on M1 and M2 show a similar risk 

of overestimating the highest precipitation values as the estimates based on M3 and M4, 

which rely only on temperature as the final predictor. 

The influence of the perturbation factor derived from the duration-temperature relationship is 

relatively small on the estimates based on ERA-interim driven RCMs (not shown). This is similar 

to the estimates based on the observed predictors shown in Section 6.3.  

In order to test the assumption that the statistical downscaling method remains valid under a 

changing climate, the averaged 99.5th percentile error (𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅ ) is shown for the ten warmest 

summers (based on observed data) of each station using RCA4 RCM (see Table 7.3) and 

RACMO22E RCM data (see Table 7.4) calibrated on the 20 coldest summers (based on 

observed data) between 1980 and 2009. Very high differences between estimates and 

observed records are found at Kinloss using the approach M3 for both RCMs. Overall, the 

estimates show good agreement with observed hourly precipitation extremes over the ten 

warmest summers. It needs to be noted that the mean temperature increases between the 

ten years of warm summers and 20 years of cold summers range only from 0.8°C to 1.3°C 

depending on the stations. In contrast, projections of changes in daily mean temperature can 

be as high as 4.0°C for the time period 2075-2100 under RCP8.5 (see Table 7.12). Therefore, 

the ability of the statistical downscaling to perform under a future warmer climate can only be 

tested to a certain extent based on ERA-interim driven RCM data.  

In a second test regarding the stationarity assumption of the statistical downscaling method, it 

is tested if the temperature increase between 1980 and 2009 has a negative on the predictor-

predictand relationship. For this purpose, the residuals between the observed and the 

estimated annual maximum of hourly precipitation are analysed over time. Estimates based on 

RCA4 RCM data exhibit signs of significant instationarities in the residuals at Cranwell (using 

M3), Eskdameluir (M1), Boulmer (M1), Aldergrove (M2) and Kinloss (M2 and M3) as illustrated 

in Table 7.5. In comparison, estimates based on RACMO22E RCM data are affected by 

instationarities at Northolt (using M2), Marham (M1), Boulmer (M4) and Leuchars (M2) as 

shown in Table 7.6. In contrast to the results based on observed predictors, where significant 

trends only occur for estimates based on M3 and M4 as shown in Section 6.3, significant 

trends in the residuals are found for all approaches M1 to M4 based on RCM predictors for at 

least one station. The instationarities in the residual time series may be partly caused by the 

overestimation of annual maxima at certain years. As mentioned above, daily precipitation 

simulated by ERA-interim RCMs cannot be expected to exactly reproduce observed 
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precipitation day by day due to the large size of the RCM domain and due to the fact that ERA-

interim data are only fed into the RCM at the lateral and sea surface boundaries (Kendon et al., 

2012). As a result, very extreme hourly precipitation estimates are not restricted within the 

statistical downscaling process to the occurrence of very extreme RCM daily precipitation only. 

RCM estimates thus derived from M1 and M2 exhibit a similar risk of overestimating the very 

high precipitation values as estimates based on M3 and M4, which rely only on temperature as 

the final predictor. For example, applying approach M2 based on RCA4 RCM data results in the 

overestimation of annual maxima at Kinloss in 2002 and 2009 as indicated by high negative 

residuals for those years (see Figure 7.3). Similarly, estimates based on RACMO22E RCM data 

(using M2) overestimate observed annual maxima at Northolt in 2000, 2003, 2004 and 2008 as 

illustrated in Figure 7.4.  

Biases in the three RCM predictors (daily precipitation, temperature and CP frequencies) have 

also been assessed in terms of statistically significant instationarities between 1980 and 2009 

(not shown). For both RCMs, significant positive trends in the biases of daily temperature over 

time are found. It means, that the RCMs underestimate the increase in observed temperature 

between 1980 and 2009 (see Section 3.2.2). However, no direct relationship between any 

significant instationarities in the residual time series of hourly precipitation extremes and in 

the biases of the three different RCM predictors could be found. 
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Table 7.1 The averaged 99.5th percentile error 𝑃𝐸99.5 
̅̅ ̅̅ ̅̅ ̅̅ ̅ in [%] depending on the four different 

approaches to find the analogue days over the three different validation periods. The results 
are given as an average over 100 bootstrapping samples. RCA4 RCM data is used as the 
predictors for the statistical downscaling. M1, M2, M3 and M4 represent the different 
approaches to find the analogue day. V1, V2 and V3 represent the three different validation 
periods: 1980-1989 (V1), 1990-1999 (V2) and 2000-2009 (V3). 
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M1 V1 16.4 21.9 14.6 19.1 4.4 11.0 13.8 22.7 18.3 9.8 7.3 41.2  

V2 13.3 6.6 44.7 12.1 6.4 7.8 9.6 24.9 12.2 46.4 7.8 9.3  

V3 10.4 26.3 17.4 9.9 16.1 17.7 34.1 6.1 12.5 15.7 7.7 14.5  

 MEAN 13.4 18.3 26.6 13.7 9.0 12.2 19.2 17.9 14.3 24.0 7.6 21.7 16.4 

M2 V1 12.4 35.6 9.1 12.2 7.0 15.3 11.0 11.1 36.6 10.6 8.0 40.3  

V2 25.9 9.5 14.1 14.5 11.2 24.5 12.4 10.4 19.7 49.2 9.0 15.1  

V3 6.0 13.7 52.9 9.2 17.5 10.5 13.6 10.5 10.6 21.0 11.0 12.5  

 MEAN 14.8 19.6 25.4 12.0 11.9 16.8 12.3 10.7 22.3 26.9 9.3 22.6 17.1 

M3 V1 18.0 42.9 22.6 12.0 5.4 19.9 13.1 9.1 20.4 38.8 8.7 11.5  

V2 11.4 14.4 51.2 19.1 12.0 21.3 14.8 38.2 10.9 48.1 8.6 9.1  

V3 12.9 17.7 32.6 29.7 51.8 8.5 25.1 13.7 18.1 10.8 20.3 45.9  

 MEAN 14.1 25.0 35.5 20.3 23.1 16.6 17.7 20.3 16.5 32.6 12.5 22.2 21.4 

M4 V1 9.7 31.6 23.9 9.2 15.0 10.3 10.8 9.1 28.4 32.8 6.1 18.3  

V2 20.2 10.9 16.6 17.4 20.6 30.5 17.4 24.4 54.8 51.3 9.7 15.1  

V3 5.7 12.4 31.7 8.4 16.9 9.9 31.9 7.0 13.6 19.4 14.9 28.4  

 MEAN 11.9 18.3 24.1 11.7 17.5 16.9 20.0 13.5 32.3 34.5 10.2 20.6 19.3 
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M1 V1 11.5 29.6 9.4 18.5 12.0 10.4 8.9 8.7 16.0 44.6 8.0 59.9  

V2 10.5 16.7 21.0 11.1 7.9 26.4 11.4 17.0 11.6 32.0 16.4 7.0  

V3 7.2 10.5 10.2 9.2 11.1 16.9 8.7 17.9 14.2 21.6 23.6 13.6  

 MEAN 9.7 18.9 13.5 12.9 10.3 17.9 9.7 14.5 13.9 32.7 16.0 26.8 16.4 

M2 V1 12.5 32.0 9.8 13.1 11.7 12.9 8.1 8.4 21.9 31.2 6.9 34.4  

V2 24.0 9.9 10.8 11.3 9.3 32.3 17.6 25.8 8.3 48.7 11.1 5.7  

V3 6.6 7.8 41.2 9.0 10.3 16.0 7.2 15.2 11.3 24.0 14.2 15.5  

 MEAN 14.4 16.6 20.6 11.1 10.4 20.4 11.0 16.5 13.8 34.6 10.7 18.5 16.6 

M3 V1 8.6 40.6 11.3 12.3 11.7 14.0 7.1 8.7 17.9 38.8 10.4 8.8  

V2 21.6 8.2 9.8 13.0 7.3 19.5 8.0 32.2 10.1 39.3 9.2 9.2  

V3 15.6 12.2 17.6 17.4 7.6 12.5 15.6 14.0 10.0 12.0 31.0 23.1  

 MEAN 15.3 20.3 12.9 14.2 8.9 15.3 10.2 18.3 12.7 30.0 16.9 13.7 15.7 

M4 V1 7.5 29.1 8.9 11.1 16.5 11.0 8.0 13.3 21.7 22.7 17.4 9.8  

V2 23.4 8.3 10.2 21.6 11.4 8.7 19.7 24.5 9.2 32.5 7.9 6.5  

V3 12.4 9.4 17.2 16.7 6.9 14.5 11.6 7.9 10.6 22.2 18.8 22.5  

 MEAN 14.4 15.6 12.1 16.5 11.6 11.4 13.1 15.2 13.8 25.8 14.7 12.9 14.8 

Table 7.2 Same as Table 7.1 but RACMO22E RCM data is used as the predictors for the 
statistical downscaling instead of RCA4 RCM data. 
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M1 8.0 9.2 11.5 10.1 17.8 18.1 27.6 8.8 14.0 18.2 9.5 18.1 14.2 

M2 10.2 10.0 15.6 8.4 22.1 27.4 30.7 16.0 10.4 20.4 8.9 17.4 16.5 

M3 15.2 14.8 24.3 16.0 24.4 10.2 24.4 14.9 13.5 18.6 7.5 75.5 21.6 

M4 17.1 10.4 20.4 7.1 29.7 23.8 28.0 29.0 13.9 35.8 16.2 9.3 20.1 

Table 7.3 Same as Table 7.1 but over the ten year period of warmest summers on average for 

each station between 1980 and 2009 using RCA4 RCM data as the predictors for the statistical 

downscaling. The mean temperature difference between the ten warmest summers and 20 

coldest summers is given in parenthesis for each station after the station name. 
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Table 7.4 Same as Table 7.1 but over the ten year period of warmest summer on average for 

each station between 1980 and 2009 using RACMO22E RCM data as the predictors for the 

statistical downscaling. 
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M1 0.161 0.226 0.093 0.025 -0.164 0.003 -0.523 0.253 0.042 0.115 0.058 -0.274 

M2 0.104 0.136 -0.603 -0.092 -0.270 -0.093 -0.434 0.023 0.252 0.128 -0.062 -0.975 

M3 0.018 -0.037 -0.160 -0.286 -0.365 0.016 -0.120 0.040 -0.076 0.114 0.020 -0.916 

M4 0.105 -0.070 -0.180 -0.021 -0.170 -0.137 -0.186 0.110 0.034 0.173 0.015 -0.359 

Table 7.5 The linear regression slopes in [mm/year] (using ordinary least squares fit) of the 

residual time series of the annual maxima of hourly precipitation for the twelve stations 

between 1980 and 2009. RCA4 RCM data is used as the predictors for the statistical 

downscaling. In bold the regression slopes which are significant at the 5% level according to 

the p-value test. 
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M1 0.152 0.055 -0.224 -0.333 -0.057 0.105 -0.489 0.179 -0.124 0.196 0.069 -0.451 

M2 0.179 0.199 -0.561 -0.163 0.030 -0.094 -0.132 0.024 0.212 0.224 0.089 -0.223 

M3 -0.048 0.121 -0.163 0.109 -0.161 -0.018 -0.190 0.099 -0.041 0.138 0.034 -0.710 

M4 0.080 0.098 -0.081 0.020 0.076 -0.008 -0.144 0.233 0.188 0.174 0.049 -0.469 

Table 7.6 Same as Table 7.5 but RACMO22E RCM data is used as the predictors for the 

statistical downscaling. 
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M1 9.5 19.0 18.0 10.9 13.2 7.1 11.7 11.3 13.6 31.4 17.8 15.6 14.9 

M2 6.8 8.2 11.1 14.7 14.6 26.2 4.8 8.7 10.4 29.8 17.4 10.0 13.6 

M3 14.8 11.7 10.5 13.5 8.0 5.3 15.1 28.3 12.4 13.2 26.3 64.7 18.7 

M4 12.5 13.8 11.1 10.3 7.1 45.4 10.8 32.6 17.6 18.8 14.4 13.8 17.4 
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Figure 7.1 The part exceeding 0.99 of the empirical cumulative distribution of the estimated 
and observed daily maximum hourly precipitation for the most recent validation period 2000-
2009. RCA4 RCM data is used as the predictors for the statistical downscaling. M1, M2, M3, M4  
represent the different approaches to find the analogue day.  



161 | P a g e  
 

 
Figure 7.2 Same as Figure 7.1 but RACMO22E RCM data is used as the predictor for the 
statistical downscaling.  
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Figure 7.3 The residual time series of the annual maxima of hourly precipitation for the twelve 
stations between 1980 and 2009 using the four different statistical downscaling methods 
based on RCA4 RCM data. M1, M2, M3, M4 represent the different approaches to find the 
analogue day. 
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Figure 7.4 Same as Figure 7.3 but RACMO22E RCM data is used instead of RCA4 RCM data. 
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7.2 Baseline projections based on GCM-driven RCM data  

In the following, hourly precipitation extremes are estimated based on GCM-driven RCM data 

instead of using ERA-interim driven RCM data in Section 7.1. The performances of four 

different GCM-driven RCMs (CM5A-MR driven RCA4, ESM-LR driven RCA4, EC-Earth driven 

RCA4 and EC-Earth driven RACMO22E) are compared with each other in terms of their skill to 

provide reliable extreme hourly precipitation over the reference period 1980-2005. In order to 

find the analogue days, each day between 1980 and 2005 described by GCM-driven RCM 

predictors is normalized and compared with all the days over the calibration period 1980-2009 

described by normalized observed predictors according to the methodology described in 

Chapter 4. In this section, the calibration and the reference period are not independent of 

each other due to the extended length of the reference period. This is to make the length of 

the reference period equivalent to the length of the two future time periods (2030-2055 and 

2075-2100). It means that every hourly precipitation record observed over the reference 

period can be resampled in the statistical downscaling process. The potential limitation of the 

statistical downscaling method, that very extreme hourly precipitation only occur over the 

validation period but cannot be resampled over the calibration period, is not present. In a next 

step, the precipitation duration and temperature relationship, which is also calibrated over the 

time period 1980-2009, is applied to perturb each historical hourly precipitation record. As 

shown in Section 7.1 for estimates derived from the ERA-interim driven RCM data, results 

based on approach M1 show the best performances. Therefore, in this section, the estimation 

of hourly precipitation extremes is based only on approach M1 using GCM-driven RCM data 

from RCA4 and RACMO22E. 

Figure 7.5 displays the observed and estimated hourly precipitation values in summer over the 

reference period 1980-2005 exemplary for the station at Boscombe Down. It can be seen that 

the estimated hourly precipitation records show very high agreement with the observed 

hourly precipitation records independently of which RCM driven GCM is used. This holds true 

for the overall and the extreme precipitation distribution (99th percentiles). Similar results can 

be found for the other eleven stations in both seasons, summer and winter (not shown). This is 

reflected in Table 7.7, which shows the averaged 99.5th percentile error 𝑃𝐸99.5 
̅̅ ̅̅ ̅̅ ̅̅ ̅over 100 

bootstrapping samples between observed and estimated daily maximum hourly precipitation 

for the reference period 1980-2005 at the twelve selected stations. 

Overall, it needs to be noted that the averaged 99.5th percentile error 𝑃𝐸99.5 
̅̅ ̅̅ ̅̅ ̅̅ ̅ based on the 

GCM-driven RCMs are considerably smaller compared to the averaged 99.5th percentile error 

𝑃𝐸99.5 
̅̅ ̅̅ ̅̅ ̅̅ ̅ based on ERA-interim driven RCM data (see Table 7.1 and Table 7.2). However, 
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estimates based on ERA-interim driven RCM data, as shown in the previous section, are 

validated over a time period which is different to the one it is calibrated on. In other words, 

the estimates based on the ERA-interim driven RCM data are validated in terms of their ability 

to generate extreme hourly precipitation events which may have not occurred over the 

calibration time period. In contrast, the estimates presented in this section based on GCM-

driven RCM data are validated over a 26 year reference period, which overlaps with the 

calibration time period. Therefore, those estimates give an indication of how well the climate 

predictors are reproduced by the different GCM-driven RCM runs, but do not assess the ability 

of the statistical downscaling method to perform under a climate different to the one it is 

calibrated on. It can be concluded that the use of all four GCM-driven RCM data set result in 

good agreement between estimated and observed hourly precipitation extremes. 

In Figure 7.6 and Figure 7.7, the two predictors (daily precipitation and temperature) derived 

from GCM-driven RCM data and ERA-interim driven RCM data are validated for the station at 

Boscombe Down in summer. Figure 7.6 shows that the (ERA-interim and GCM-driven) RCA4 

RCM has a tendency to overestimate daily precipitation in comparison to the observed 

distribution. Similar results can be found at most other stations (not shown). Daily 

precipitation distributions based on ERA-interim driven RCM data are very well reproduced by 

the GCM-driven RCM runs at all stations. 

In terms of the second predictor (daily temperature), Figure 7.7 shows that ERA-interim and 

GCM-driven RCMs tend to underestimate the daily temperature variable at Boscombe Down. 

This holds true for most of the other stations in both seasons as well (not shown). It needs to 

be pointed out that the statistical downscaling process is based on normalized RCM predictor 

variables, in order to compensate the existing biases between the observed and RCM 

simulated predictor variables. 

Comparing the outputs of the ERA-interim driven RCMs with the GCM-driven RCMs, it is found 

that the CM5A-MR and EC-EARTH driven RCMs not only underestimate the observed 

temperature but also the ERA-interim driven RCM simulated temperature at Boscombe Down. 

Similar results are found for most other stations in both seasons, summer and winter. In 

theory, the discrepancy in daily temperature between the ERA-interim driven and GCM-driven 

RCMs could have negative implications on the quality of the estimated hourly precipitation 

extremes, as the predictors simulated by the GCM-driven RCMs are normalized based on the 

ERA-interim driven RCMs. However, the good agreement between estimated and observed 

extreme hourly precipitation (see Table 7.7 and Figure 7.5) shows that the discrepancy in the 
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temperature variable is not large enough to downgrade the quality of the extreme hourly 

precipitation estimates considerably. 

Considering the large-scale atmospheric variability, it is found that ERA-interim and GCM-

driven RCMs are able to reproduce the observed CP frequencies between 1980 and 2005 in 

summer (Table 7.8) and winter (Table 7.9), as well as the individual pressure patterns of each 

CP (not shown), realistically. Across all RCMs, CP3 and CP4 are the two CPs with the highest CP 

frequencies in both seasons and CP1 is least likely to occur. 
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RCA4 CM5A-MR 4.4 5.2 12.4 4.8 4.5 8.8 9.4 7.2 5.1 8.2 17.1 25.0 9.3 

RCA4 ESM-LR 4.9 5.1 8.7 7.8 7.1 7.3 6.1 18.8 15.4 10.4 9.7 51.2 12.7 

RCA4 EC-EARTH 3.8 15.3 11.7 5.2 3.9 10.5 6.7 6.8 9.8 6.6 12.2 16.9 9.1 

RACMO22E EC-EARTH 5.5 6.6 19.5 15.8 4.2 6.4 8.7 6.6 12.0 12.7 7.3 14.0 9.9 

Table 7.7 The averaged 99.5th percentile error 𝑃𝐸99.5 
̅̅ ̅̅ ̅̅ ̅̅ ̅in [%] over the reference period 1980-

2005 depending on the GCM-driven RCM. The results are given as an average over 100 

bootstrapping samples. Approach M1 is used to find the analogue day. 

RCM Driven by CP1 CP2 CP3 CP4 CP5 U 

Observed -- 7.8 15.9 29.3 24.8 18.0 4.3 

RCA4 ERA-Interim 7.1 15.6 28.5 25.2 18.5 5.1 

RCA4 CM5A-MR 7.3 14.7 28.0 27.5 17.3 5.1 

RCA4 ESM-LR 6.9 13.1 30.0 25.6 19.0 5.4 

RCA4 EC-EARTH 8.6 13.9 29.0 24.9 18.6 5.2 

RACMO22E ERA-Interim 8.0 14.7 29.6 25.2 17.6 4.9 

RACMO22E EC-EARTH 10.0 13.6 27.5 25.7 19.4 3.8 

Table 7.8 The observed and simulated frequency occurrences of the five CPs (plus one 

unclassified) over the reference period 1980-2005 in summer in [%]. U stands for unclassified. 

RCM Driven by CP1 CP2 CP3 CP4 CP5 U 

Observed -- 6.1 14.7 29.8 22.3 20.5 6.6 

RCA4 ERA-Interim 6.3 15.6 28.5 24.4 18.8 6.5 

RCA4 CM5A-MR 6.5 12.0 28.3 27.7 17.7 7.8 

RCA4 ESM-LR 6.6 12.6 28.7 26.8 17.6 7.8 

RCA4 EC-EARTH 6.8 14.3 29.3 24.8 18.8 6.0 

RACMO22E ERA-Interim 6.6 14.7 28.4 23.6 19.2 7.5 

RACMO22E EC-EARTH 7.5 13.9 27.9 27.2 18.0 5.6 

Table 7.9 Same as Table 7.8 but in winter. 

 



167 | P a g e  
 

 
Figure 7.5 Estimated and observed hourly precipitation in summer over the reference period 
1980-2005 at Boscombe Down. The statistical downscaling results are shown for the four 
different GCM-driven RCM runs. Top: The entire distribution of hourly precipitation. Bottom: 
The part exceeding the 99th percentiles of hourly precipitation. 
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Figure 7.6 Distribution (above 0.6) of the simulated and observed daily mean precipitation in 
summer over the reference period 1980-2005 at Boscombe Down. The four panels from top to 
bottom show the four different GCM-driven RCM runs (CM5A-MR driven RCA4, ESM-LR driven 
RCA4, EC-EARTH driven RCA4 and EC-EARTH driven RACMO22E) and the corresponding ERA-
interim (ERAINT) driven RCM runs. 
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Figure 7.7 Distribution of the simulated and observed daily temperature in summer over the 
reference period 1980-2005 at Boscombe Down. The four panels from top to bottom show the 
four different GCM-driven RCM runs (CM5A-MR driven RCA4, ESM-LR driven RCA4, EC-EARTH 
driven RCA4 and EC-EARTH driven RACMO22E) and the corresponding ERA interim (ERAINT) 
driven RCM run. 
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7.3 Future projections based on GCM-driven RCM data 

In this section, the estimates of hourly precipitation extremes are presented for two future 

time periods, 2030-2055 and 2075-2100, based on the GCM-driven RCM data. For the future 

time period 2075-2100, two different emission scenarios are considered. RCP8.5 corresponds 

to a high emission scenario resulting in very high temperature increases. RCP4.5 represents a 

lower emission scenario causing a smaller increase in future temperature compared to the 

RCP8.5 emission scenario. The distributions of GCM-driven RCM simulated daily temperature 

in summer are shown exemplary for Boscombe Down in Figure 7.8. The changes in the 

summer temperature mean over the twelve different stations are given in Table 7.10 – 7.12. It 

is found that the temperature increases are highest under emission scenario RCP8.5 for the 

future time period 2075-2100. Considering emission scenario RCP4.5, the increases in 

temperature are slightly higher for the time period 2075-2100 compared to 2030-2055. The 

same holds true in winter but the increases in winter temperature are generally smaller (not 

shown). For the future period 2030-2055, only the emission scenario RCP4.5 is applied because 

the respective changes in the climate are expected to be similar over the nearer time period 

between the two emission scenarios (Kirtman et al., 2013).  

In terms of daily precipitation, almost all the GCM-driven RCMs simulate future decreases in 

summer mean precipitation for the six most southern stations, namely Camborne, Boscombe 

Down, Northolt, Marham, Cranwell and Valley (see Table 7.13 – 7.15). Those decreases are 

most pronounced for the time period 2075-2100 under emission scenario RCP8.5. An example 

of the different daily precipitation distributions in summer is shown in Figure 7.9 for the 

station at Boscombe Down. In winter, almost all the GCM-driven RCMs project increases in 

daily mean precipitation for all of the twelve stations. The increases in winter are also most 

pronounced for the future time period 2075-2100 under emission scenario RCP8.5 (not 

shown). 

Considering daily precipitation extremes (represented as the 99.5th percentile), all the GCM- 

driven RCMs project increases for all of the stations in summer (see Table 7.18) and for almost 

all the stations in winter (not shown) for the time period 2075-2100 under emission scenario 

RCP8.5. For 2075-2100 under RCP4.5, the four GCM-driven RCMs project mostly increases in 

daily precipitation extremes in summer (see Table 7.17) and in winter (not shown) for the 

twelve stations. Only for 2030-2055 under RCP4.5, the number of projected decreases almost 

equals the number of increases in daily precipitation extremes in summer (see Table 7.16) and 

in winter (not shown). The increases are highest in magnitude for 2075-2100 under RCP8.5 in 

summer and in winter. 
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In terms of the simulated CP frequencies, it is shown that all the GCM-driven RCMs project a 

small decrease (up to 3%) in the frequencies of CP4 in summer for the future time period 

2075-2100 under both emission scenarios (see Figure 7.10). In terms of the frequencies of the 

other CPs in summer, no consistent pattern of future changes can be identified. The same 

holds true in winter (not shown). In general, simulated future changes in CP frequencies are 

small (below 2%) among all the GCM-driven RCMs. No direct relationship between the changes 

in CP frequencies and the changes in extreme hourly precipitation can be identified. However, 

it needs to be noted that other studies suggested future increases in anticyclonic conditions. 

For example, (Chan et al., 2016) found a shift to more anticyclonic conditions over the UK in 

the future and argued that this would also lead to a decline in extreme hourly precipitation 

intensities on days of high temperatures. 

Figure 7.11 – 7.14 show the projections of the 99.5th percentile of the estimated daily 

maximum hourly precipitation for the twelve selected stations over the two different future 

time periods 2030-2055 and 2075-2100 as well as over the reference time period 1980-2005. 

The estimates of the 99.5th percentiles are derived from four different GCM-driven RCM runs, 

two different emission scenarios and 100 different bootstrapping samples for each individual 

GCM-driven RCM run in order to take into account the different sources of uncertainty in 

terms of the projections. For the time period 2075-2100 at Eskdalemuir, the overall 

uncertainty range can be as high as 156% between the smallest projected increase (-30%) of 

the 100 different bootstrapping samples based on the EC-Earth driven RACMO22E RCM under 

emission scenario RCP4.5 and the highest projected increase (+126%) of the 100 different 

bootstrapping samples based on the EC-Earth driven RACMO22E RCM under emission scenario 

RCP8.5 (see Figure 7.13). In general, increases in hourly precipitation extremes are most 

pronounced for the future time period 2075-2100 under emission scenario RCP8.5, when the 

highest increases in temperature also occur. Between 2075 and 2100 under emission scenario 

RCP8.5, all of the twelve stations show increases in hourly precipitation extremes across all 

four different GCM-driven RCMs. It is also found that increases in hourly extremes are 

generally higher in magnitude between 2075 and 2100 under emission scenario RCP8.5 

compared to changes for the future time periods 2030-2055 and 2075-2100 under emission 

scenario RCP4.5 as illustrated in Table 7.19 – Table 7.21.  

7.3.1 Projections of extreme hourly precipitation under RCP8.5  

Future projected increases in hourly precipitation extremes can be as high as 111.9% 

(averaged over 100 bootstrapping samples) for the future period 2075-2100 under RCP8.5 (see 

Table 7.21). As for RCP4.5, the projections of changes vary across the four GCM-driven RCMs. 
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For example, an average increase in the 99.5th percentile hourly precipitation is estimated to 

be 36.9% for Kinloss using the CM5A-MR driven RCA4 compared to the maximum increase of 

111.9% based on EC-EARTH driven RCA4. The four GCM-driven RCMs simulate more or less 

similar future responses in daily temperature, precipitation and CP frequencies and therefore 

the strong discrepancies in future increases of hourly extremes cannot be due to differences in 

the projection of one particular RCM predictor variable between the four model runs. Instead, 

it is much more likely that certain types of events, which lead to extreme hourly precipitation, 

occur more often in certain GCM-driven RCMs than in others. For example, at Kinloss the EC-

EARTH driven RCA4 simulate 19 summer days with daily precipitation between 8mm to 15mm, 

daily temperatures between 14.2°C to 16°C on days associated with CP5. In contrast, only four 

days with the same predictor characteristics can be found in the CM5A-MR driven RCA4 data 

set. Those particular events then lead to the estimated extreme hourly precipitation of 

16.2mm at Kinloss. This underlines the importance of taking into account multiple GCM-driven 

RCM runs, in order to estimate the uncertainties induced by the different RCMs in terms of 

extreme hourly precipitation more accurately. 

Future increases in hourly precipitation extremes also exhibit high variations depending on the 

different stations. For example, at Tiree the average future increase over the four different 

GCM-driven RCMs (based on the 100 bootstrapping samples) for the future period 2075-2100 

under RCP8.5 is only 12.1% compared to an average increase at Kinloss of 75.1%. The other 

two stations with very high future increases in hourly extremes are Eskdalemuir and Northolt. 

Hourly extremes at Eskdalemuir increase by an average of 45.8% for the future period 2075-

2100 under RCP8.5 over the four GCM-driven RCMs (based on the 100 bootstrapping samples). 

Eskdalemuir is located in a mountainous area and therefore it is likely that orographic effects 

play an important role in terms of its extreme hourly precipitation characteristics as discussed 

in Section 3.1.5. Orographic barriers can also trigger convective precipitation events (Barry and 

Chorley, 2009). At Northolt, increases in hourly extremes amount to 38.3% on average for the 

time period 2075-2100 under RCP8.5. Northolt is the station with the highest mean and 

extreme temperature (see Section 3.2.2). On the other hand, Tiree, the station with the lowest 

increases in hourly precipitation extremes, is highly exposed to the North Atlantic and exhibits 

the lowest daily temperature extremes. 

It needs to be mentioned that no clear spatial pattern of future changes in extreme hourly 

precipitation can be identified. This is at least partly due to the restricted number of selected 

stations in this thesis. As explained in Section 3.1.3, each of the twelve stations represents a 

different UK extreme precipitation region. But one single station is not sufficient to describe 

the precipitation characteristics of an entire region particularly in terms of hourly extremes as 



173 | P a g e  
 

those events tend to be very localized. As a consequence, the high increases at Kinloss should 

not lead to the conclusion that the North Highland and Islands (the region where Kinloss is 

located) is the UK region for which the highest increases in extreme hourly precipitation can be 

expected in the future.  

It is also important to note that the high spatial variability in the estimated increases of 

extreme hourly precipitation is not in line with the increases of spatially averaged daily 

precipitation extremes simulated by the four different GCM-driven RCMs. For example, the 

highest increases in the 99.5th percentiles of daily precipitation averaged over the four 

different GCM-driven RCMs (and over 100 bootstrapping samples for each of the model runs) 

amount to 22.3% at Northolt and the lowest averaged increases are found at Leuchars for 

which an increase of 13.6% is simulated. In contrast, the difference between the station with 

the highest and the lowest average increase in terms of the 99.5th percentile of hourly 

precipitation is more pronounced. As mentioned above, at Kinloss, an average future increase 

of 75.1% is projected compared to only 12.1% increase at Tiree. Overall, it also needs to be 

noted that for most of the twelve stations (except Boscombe Down, Marham and Tiree), the 

increases in hourly precipitation extremes are stronger than the simulated changes in daily 

extremes. 

In terms of the surface warming, the simulated temperature increase for the time period 2075-

2100 under emission scenario RCP8.5 is between 2.1°C (at Tiree) and 3.0°C (at Northolt) 

averaged over the four different GCM-driven RCMs. For the majority of the stations, Valley (8.4 

% °C-1), Aldergrove (8.0% °C-1), Camborne (7.6% °C-1), Cranwell (7.4% °C-1), Boulmer (7.4% °C-1), 

Boscombe Down (5.9% °C-1) and Tiree (5.6% °C-1), this leads to increases (averaged over the 

four GCM-driven RCMs and 100 bootstrapping samples each) in extreme hourly precipitation 

that are consistent or only slightly higher (lower) than what the thermodynamic Clausius-

Clapeyron (CC) relation would suggest (a rate of ca. 7% °C-1). Four of the twelve stations, 

namely Kinloss (28.7% °C-1), Eskdalemuir (16.6% °C-1), Northolt (12.8% °C-1) and Leuchars (9.7% 

°C-1), show increases considerably higher than the CC scaling and only at Marham (4.5% °C-1) is 

the average increase clearly below the CC scaling. 

It is suggested that increases in extreme precipitation exceeding the CC scaling are mostly due 

to convective precipitation events. Extreme hourly precipitation can often be linked with 

convective precipitation events (Beck and Bárdossy, 2013; Gregersen et al., 2013) and those 

convective events are expected to strongly intensify with higher temperatures. Lenderink and 

van Meijgaard (2008) argued that the increase in latent heat release with higher temperatures 

may intensify the upward air motions to explain super CC scaling (ca. 14% increases) of 
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convective precipitation. Berg et al. (2013) found that the convective precipitation response to 

warming exceeds the CC rate, whereas stratiform precipitation extremes (such as large-scale 

frontal precipitation) increase according to the CC scaling. However, it is not always an easy 

task to distinguish between convective and stratiform precipitation events. For example, large-

scale frontal systems are normally linked with stratiform precipitation events but approaching 

cold fronts can also lead to convective precipitation events (Hand et al., 2004). Besides, 

Sweeney and O'Hare (1992) suggested that cyclonic conditions, normally associated with the 

occurrence of stratiform precipitation events, can cause increased convective activity. In this 

thesis, the two CPs (CP1 and CP4) representing cyclonic conditions over the UK show the 

strongest link with the occurrence of extreme hourly precipitation. Overall, the highest 

probabilities of extreme hourly precipitation can be found for stations in the South of the UK 

on days of CP1. It is suggested that CP1 may be linked with mesoscale convective complexes 

(MCCs). As explained in Little et al. (2008), MCC events are associated with a small, shallow low 

pressure system and can lead to intense convective precipitation within a larger area of 

stratiform precipitation. They often originate from the Bay of Biscay and mostly affect the 

South and South West of the UK. 

In this thesis, the observed hourly precipitation records are perturbed based on precipitation 

duration – temperature relationships (see Equation 4.20 and 4.21) to project extreme hourly 

precipitation that have not been observed in the past. In order to illustrate the contribution of 

the final perturbation process to the overall changes, Table 7.22 shows the projected changes 

of the 99.5th hourly precipitation percentile without perturbing the observed hourly records 

exemplary for the time period 2075-2100 under RCP8.5. As expected, not applying the final 

perturbation step leads to smaller overall increases in future hourly precipitation extremes. 

However, for the station at Eskdalemuir, the increases in hourly extremes are considerably 

stronger when the observed records are not perturbed. This can be explained by the fact that 

Eskdalemuir is one of the few stations with positive regression slopes between winter 

precipitation duration and temperature as described in Section 6.2. It means that higher 

temperatures lead to precipitation events of longer duration. Therefore, the application of the 

perturbation process results in a decrease in extreme hourly precipitation in those cases as the 

perturbed duration of a precipitation event increases with higher temperatures. 

Other studies also estimated changes in extreme hourly precipitation over the UK. For 

example, Kendon et al. (2014) applied a high-resolution 1.5km RCM over the southern part of 

the UK. They found a spatially averaged increase of 36% in hourly extremes in summer 

between a 13-year future period (~2100) and a 13-year reference period (1996-2009) under 

emission scenario RCP8.5. In comparison, the projected increase for the six stations 
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(Camborne, Boscombe Down, Northolt, Marham, Cranwell and Valley) in the southern UK 

selected in this thesis amounts only to 21.6 % on average for 2075-2100 under RCP8.5 (see 

Table 7.21). The differences may be at least partly due to the fact that the average increase of 

36% in the study of Kendon et al. (2014) only refers to summer extremes with a high 

proportion of convective events, whereas in this thesis the projected increases are given for 

the entire year. It should be also noted that the definition of extreme precipitation varies 

between the two studies. Kendon et al. (2014) focused on the mean of the upper 5% of wet 

hourly values, while in this thesis extreme hourly precipitation is defined as the 99.5th 

percentiles of the daily maximum hourly precipitation. 

Dale et al. (2015) combined the results of the high-resolution 1.5km RCM and a climate 

analogue approach. They found increases in extreme hourly precipitation of 50% at Newcastle 

and 48% at London between the 2080s and the reference period 1981-2010 using a high 

emission scenario broadly comparable with the RCP8.5 scenario. In this thesis, the projected 

increases at Boulmer (geographically closest station to Newcastle) are only 19.6% on average 

for the future time period 2075-2100 under RCP8.5 relative to the reference period 1980-

2005. At Northolt (geographically closest station to London), increases amount to 38.3% on 

average for 2075-2100 under RCP8.5 (see Table 7.21). However, results are also not directly 

comparable as Dale et al. (2015) focused on return levels to estimate changes in extreme 

precipitation, whereas in this thesis changes in the 99.5th percentiles are considered. 

It needs to be mentioned that the projected changes in this thesis and in other studies 

(Kendon et al., 2014; Dale et al., 2015) are greater than the current guidelines produced by 

DEFRA (2006) and the Environment Agency (2011). According to those guidelines, increases in 

extreme precipitation are only between 5% and 20% for comparable future time periods 

(2030s to 2080s). But it needs to be kept in mind that those guidelines are not designed to be 

used at sub-daily time scales (Dale et al., 2015). 

7.3.2 Projections of extreme hourly precipitation under RCP4.5 

Over the two future time periods 2030-2055 and 2075-2100 under emission scenario RCP4.5, 

most stations exhibit an increase in hourly precipitation extremes across all four different 

GCM-driven RCMs. The increases in magnitude of the hourly extremes tend to be stronger for 

the later time period 2075-2100, for which also the increase in temperature is higher 

compared to the future time period 2030-2055. Similarly to the future time period 2075-2100 

under RCP8.5, the highest increases in extremes hourly precipitation can be found at Kinloss 

for both time periods under RCP4.5. Increases in extreme hourly precipitation are smaller for 

both time periods under RCP4.5 compared to 2075-2100 under RCP8.5. For example, at 
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Kinloss, the average increase is 19.3% for 2030-2055 under RCP4.5 (see Table 7.19) and 43.7% 

for 2075-2100 under RCP4.5 (see Table 7.20), whereas for 2075-2100 under RCP8.5 an average 

increase of 75% is estimated (see Table 7.21). It also needs to be mentioned that the 

uncertainty range in the projections of hourly precipitation extremes (based on the 100 

bootstrapping samples) can be very high for certain stations (Eskdalemuir and Kinloss). 
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RCA4 CM5A-MR 1.1 1.4 1.4 1.3 1.3 0.9 1.1 1.2 1.0 1.2 0.8 1.2 

RCA4 ESM-LR 0.5 0.6 0.6 0.6 0.6 0.5 0.6 0.6 0.6 0.7 0.5 0.7 

RCA4 EC-EARTH 0.9 1.2 1.2 1.2 1.1 0.9 0.9 1.0 0.9 0.9 0.8 1.0 

RACMO22E EC-EARTH 1.0 1.1 1.1 1.1 1.0 1.0 1.0 0.9 1.0 1.0 0.8 0.9 

MEAN 0.9 1.1 1.1 1.1 1.0 0.8 0.9 0.9 0.9 1.0 0.7 1.0 

Table 7.10 Changes in [°C] in the simulated daily mean temperature in summer for the future 

time period 2030-2055 under the emission scenario RCP4.5 relative to the reference time 

period 1980-2005. 
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RCA4 CM5A-MR 1.6 1.9 2.0 1.9 1.9 1.4 1.8 1.8 1.6 1.9 1.5 1.9 

RCA4 ESM-LR 0.9 1.1 1.2 1.2 1.2 0.9 1.1 1.1 1.0 1.1 0.8 1.1 

RCA4 EC-EARTH 1.8 2.2 2.2 2.1 2.1 1.8 1.8 1.9 1.8 1.8 1.7 1.9 

RACMO22E EC-EARTH 1.5 1.6 1.5 1.5 1.5 1.5 1.6 1.5 1.5 1.6 1.3 1.6 

MEAN 1.5 1.7 1.7 1.7 1.7 1.4 1.6 1.6 1.5 1.6 1.3 1.6 

Table 7.11 same as Table 7.10 but changes are calculated for the future time period 2075-2100 
under emission scenario RCP4.5 relative to the reference time period 1980-2005. 
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RCA4 CM5A-MR 2.9 3.4 3.4 3.3 3.2 2.5 2.9 2.9 2.7 3.0 2.3 2.9 

RCA4 ESM-LR 2.2 2.7 2.8 2.6 2.6 2.0 2.2 2.2 2.1 2.2 1.7 2.1 

RCA4 EC-EARTH 3.2 4.0 4.0 3.8 3.7 3.0 3.1 3.2 3.0 3.1 2.6 3.1 

RACMO22E EC-EARTH 2.9 3.4 3.4 3.1 3.1 2.8 2.9 2.7 2.8 2.9 2.2 2.6 

MEAN 2.8 3.4 3.4 3.2 3.2 2.6 2.8 2.8 2.7 2.8 2.2 2.7 

Table 7.12 same as Table 7.10 but changes are calculated for the future time period 2075-2100 
under emission scenario RCP8.5 relative to the reference time period 1980-2005. 
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RCA4 CM5A-MR -5.3 -12.2 -5.3 -10.7 -12.2 -7.2 -1.0 1.9 -0.9 1.3 6.6 -1.5 

RCA4 ESM-LR -0.6 -3.2 2.1 -2.8 0.4 -5.1 -1.9 -6.0 -5.0 -3.8 -4.7 -2.8 

RCA4 EC-EARTH -3.9 -3.2 -5.4 -11.4 -9.4 -1.4 -1.6 -9.7 0.2 -4.1 -2.6 -10.6 

RACMO22E EC-EARTH -5.1 -0.4 -5.0 -3.9 -5.0 -6.5 -5.3 2.3 -6.7 -2.8 -2.3 2.3 

MEAN -3.7 -4.8 -3.4 -7.2 -6.6 -5.1 -2.5 -2.9 -3.1 -2.4 -0.8 -3.2 

Table 7.13 Changes in [%] in the simulated daily mean precipitation in summer for the future 
time period 2030-2055 under the emission scenario RCP4.5 relative to the reference time 
period 1980-2005. 
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RCA4 CM5A-MR -5.0 -7.4 -5.8 -4.7 -5.0 -5.8 6.5 4.2 -4.3 5.0 4.4 -1.0 

RCA4 ESM-LR -9.1 -6.7 -8.3 -8.7 -4.6 -5.0 -1.3 -3.2 -4.8 0.6 -2.1 -2.4 

RCA4 EC-EARTH -5.3 -2.2 -8.9 -13.8 -10.8 -7.3 -9.9 -9.6 -9.6 -5.7 -0.2 -6.6 

RACMO22E EC-EARTH -4.1 0.1 -1.5 2.0 4.0 4.8 4.5 8.1 5.5 7.5 1.1 5.7 

MEAN -5.9 -4.1 -6.1 -6.3 -4.1 -3.3 -0.1 -0.1 -3.3 1.9 0.8 -1.1 

Table 7.14 same as Table 7.13 but changes are calculated for the future time period 2075-2100 
under emission scenario RCP4.5 relative to the reference time period 1980-2005. 
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RCA4 CM5A-MR -20.2 -16.6 -12.5 -12.6 -12.0 -3.9 3.4 9.2 4.6 5.3 7.6 7.0 

RCA4 ESM-LR -13.0 -11.9 -7.8 -12.6 -12.4 -8.2 -6.6 -1.0 -7.2 -2.5 1.6 -0.9 

RCA4 EC-EARTH -14.6 -9.8 -12.5 -17.3 -12.2 -3.5 -6.0 -8.2 -6.7 0.9 -1.9 -4.2 

RACMO22E EC-EARTH -14.3 -9.5 -7.3 -4.4 -3.3 -5.0 -0.5 5.8 -2.3 1.3 3.5 5.2 

MEAN -15.5 -12.0 -10.0 -11.7 -10.0 -5.2 -2.4 1.5 -2.9 1.3 2.7 1.8 

Table 7.15 same as Table 7.13 but changes are calculated for the future time period 2075-2100 
under emission scenario RCP8.5 relative to the reference time period 1980-2005. 
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RCA4 CM5A-MR 16.3 -10.3 9.8 -9.6 -1.4 -5.9 2.5 16.3 5.1 10.0 6.3 -13.5 

RCA4 ESM-LR -5.5 -3.2 7.0 -8.5 3.4 1.4 2.6 -7.3 -8.5 4.0 -9.2 4.0 

RCA4 EC-EARTH 8.1 11.1 4.5 -4.2 -5.6 11.2 11.5 -3.8 13.1 -4.0 -1.7 -6.0 

RACMO22E EC-EARTH 7.4 9.1 -1.3 12.2 7.1 -2.2 -1.0 17.0 -5.9 13.7 10.0 20.6 

MEAN 8.8 1.7 5.0 -2.5 0.9 1.1 3.9 5.6 1.0 5.9 1.4 1.3 

Table 7.16 Changes in [%] in the simulated 99.5th daily precipitation percentile in summer for 
the future time period 2030-2055 under the emission scenario RCP4.5 relative to the reference 
time period 1980-2005. 
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RCA4 CM5A-MR 28.0 15.9 9.1 6.3 13.8 4.3 10.1 28.7 -3.4 13.4 10.7 13.9 

RCA4 ESM-LR -4.3 2.2 -1.5 -0.2 2.7 -2.0 -0.7 -0.3 -7.5 14.4 7.0 -3.9 

RCA4 EC-EARTH 11.2 25.5 2.5 4.3 16.9 7.5 14.5 8.4 4.5 9.2 6.9 -7.3 

RACMO22E EC-EARTH 1.3 3.6 -0.2 21.4 22.2 29.7 1.5 12.1 3.2 17.9 9.3 4.1 

MEAN 9.1 11.8 2.5 8.0 13.9 9.9 6.4 12.2 -0.8 13.7 8.5 1.7 

Table 7.17 same as Table 7.16 but changes are calculated for the future time period 2075-2100 
under emission scenario RCP4.5 relative to the reference time period 1980-2005. 
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RCA4 CM5A-MR 5.3 8.9 10.0 1.6 17.4 12.4 24.8 28.7 22.7 9.2 21.7 26.8 

RCA4 ESM-LR 16.2 8.5 20.6 10.4 3.8 17.8 9.6 11.9 11.3 14.1 12.9 9.5 

RCA4 EC-EARTH 24.6 27.6 17.1 13.6 14.9 24.3 22.7 8.6 18.5 19.9 5.7 3.0 

RACMO22E EC-EARTH 11.0 13.4 22.9 26.6 24.2 19.6 13.7 18.9 11.4 18.0 27.6 8.2 

MEAN 14.3 14.6 17.7 13.1 15.1 18.5 17.7 17.0 16.0 15.3 17.0 11.9 

Table 7.18 same as Table 7.16 but changes are calculated for the future time period 2075-2100 
under emission scenario RCP8.5 relative to the reference time period 1980-2005. 
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RCA4 CM5A-MR 6.3 -5.9 25.5 2.3 0.0 4.3 38.4 1.9 16.7 23.9 4.1 43.3 

RCA4 ESM-LR 12.0 12.1 27.6 3.7 6.2 3.3 27.1 -4.6 -3.4 8.6 1.6 6.8 

RCA4 EC-EARTH -6.9 15.8 27.1 1.4 1.7 2.2 12.7 3.7 22.7 12.6 -0.9 7.2 

RACMO22E EC-EARTH 5.9 -0.1 9.8 2.0 -1.1 -1.6 51.5 9.6 2.4 11.9 -7.3 19.8 

MEAN 4.3 5.5 22.5 2.4 1.7 2.1 32.4 2.7 9.6 14.3 -0.6 19.3 

Table 7.19 Changes in [%] in the estimated median of the 99.5th hourly precipitation percentile 
based on the 100 bootstrapping samples for the future time period 2030-2055 under the 
emission scenario RCP4.5 relative to the reference time period 1980-2005. 
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RCA4 CM5A-MR 21.0 2.9 36.7 3.1 16.6 4.6 62.7 20.6 -2.4 26.0 10.1 14.2 

RCA4 ESM-LR 8.9 13.4 22.4 7.9 7.3 -0.5 19.9 3.7 9.6 12.9 2.0 75.9 

RCA4 EC-EARTH 8.4 26.4 32.8 0.7 3.5 0.0 5.2 3.6 17.1 22.6 10.2 59.2 

RACMO22E EC-EARTH 2.1 -5.3 0.4 4.2 13.3 4.9 2.3 17.3 6.3 22.4 -3.0 25.4 

MEAN 10.1 9.4 23.1 4.0 10.2 2.3 22.5 11.3 7.7 21.0 4.8 43.7 

Table 7.20 same as Table 7.19 but changes are calculated for the future time period 2075-2100 
under emission scenario RCP4.5 relative to the reference time period 1980-2005. 
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RCA4 CM5A-MR 22.1 13.1 41.9 14.2 29.4 28.0 37.1 31.8 25.2 39.5 24.8 36.9 

RCA4 ESM-LR 21.9 15.0 43.9 10.5 27.7 25.7 36.2 9.8 11.0 18.8 13.1 85.8 

RCA4 EC-EARTH 10.8 28.9 46.2 15.6 18.2 9.3 31.7 15.9 29.8 23.2 9.2 111.9 

RACMO22E EC-EARTH 22.0 12.2 21.3 12.2 10.2 18.6 78.0 20.9 13.0 23.8 1.2 65.9 

MEAN 19.2 17.3 38.3 13.1 21.4 20.4 45.8 19.6 19.8 26.3 12.1 75.0 

Table 7.21 same as Table 7.19 but changes are calculated for the future time period 2075-2100 
under emission scenario RCP8.5 relative to the reference time period 1980-2005. 
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RCA4 CM5A-MR 18.0 10.3 34.8 6.8 19.7 25.1 75.1 30.4 24.7 39.1 25.2 38.1 

RCA4 ESM-LR 20.7 14.0 37.4 6.3 19.1 23.2 62.0 9.6 11.4 15.6 13.7 85.6 

RCA4 EC-EARTH 10.6 22.8 37.7 12.1 9.6 9.3 34.3 10.6 31.6 22.0 6.1 113.0 

RACMO22E EC-EARTH 23.4 10.6 18.0 12.3 8.3 19.3 90.3 26.1 13.9 26.9 4.0 60.6 

MEAN 18.2 14.4 31.2 9.4 14.2 19.2 65.4 19.2 20.4 25.9 12.3 74.3 

Table 7.22 same as Table 7.21 but the 99.5th hourly precipitation percentiles are estimated 
without applying the final perturbation step based on the precipitation duration – temperature 
relationship (see Equation 4.20 and 4.21). 
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Figure 7.8 Simulated daily temperature distributions in summer based on four different GCM-
driven RCM data sets for the station at Boscombe Down. 
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Figure 7.9 Simulated daily precipitation distributions in summer based on four different GCM-

driven RCM data sets for the station at Boscombe Down. 
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Figure 7.10 Simulated CP frequencies in summer based on four different GCM-driven RCM 
data sets. 
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Figure 7.11 Estimated 99.5th percentiles of the daily maximum hourly precipitation based on 
GCM-driven RCM data. The percentiles are projected over 100 different bootstrapping samples 
for every individual GCM-driven RCM run. The edges of the boxes indicate the 25th and 75th 
percentiles derived from the 100 bootstrapping samples. The central mark within the boxes 
represents the median. Approach M1 is used to find the analogue days. 
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Figure 7.12 see Figure 7.11. 
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Figure 7.13 see Figure 7.11. 
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Figure 7.14 see Figure 7.11. 
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7.4 Summary 

Chapter 7 focuses on the estimation of hourly precipitation derived from RCM predictors. The 

variables are the daily mean temperature, daily precipitation, and the associated CPs on each 

day. The statistical downscaling methodology described in Section 4.3 is applied. This chapter 

uses the same method and variables as Chapter 6, but the latter uses the observed predictors 

to estimate extreme hourly precipitation. 

The daily temperature, precipitation and CPs derived from ERA-interim driven RCM runs on 

each day within the validation period are compared against the observed climate variables 

over the respective calibration periods, in order to find the analogue days. Four different 

approaches (M1, M2, M3 and M4) are applied to find the analogue day. Overall it is found that 

the RCM estimated hourly precipitation extremes show good agreement with the observed 

hourly precipitation extremes. The best performances in terms of extreme hourly precipitation 

estimates amongst all the twelve stations and the three validation periods are generated with 

the approach M1 that subsamples calibration days into seasons and CPs to find the analogue 

day. 

In addition to the three different validation periods, the ten warmest summers between 1980 

and 2009 are selected for each station to compare the estimated and observed extreme hourly 

precipitation. This is to assess the predictor-predictand relationship for a climate that is 

different to the one it is calibrated on. The approach M1 is again the best approach for all the 

twelve stations, hence it is used for the downscaling of hourly precipitation based on the GCM-

driven RCM data set. It is found that the performance of the downscaling method over the ten 

warmest summers is very similar to the performances over the three validation periods and 

thus it can be concluded that the downscaling method is capable of performing under a 

warmer climate. However, future increases in temperature under emission scenario RCP8.5 

are projected to be considerably higher than the historical temperature difference between 

the ten warmest summers in 1980-2009 and the calibration period. Therefore, the future 

estimates of hourly precipitation extremes still need to be treated with caution since the 

statistically downscaling process may not be fully sufficient to represent the entire complexity 

of changes under a considerably warmer climate. 

In a second test to assess if the predictor-predictand relationship remains valid over time, the 

residuals time series between observed and estimated hourly precipitation extremes are 

assessed over the validation time period 1980-2009. It is shown that statistically significant 

trends in the residual time series can occur for certain stations indicating signs of 

instationarties in the statistical downscaling method in some cases. Considering the results 
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based on approach M1, statistically significant trends in the residual time series are found at 

two stations based on RCA4 RCM ERA-interim driven data and at one station based on 

RACMO22E RCM ERA-interim driven data.  

In Section 7.2, estimates of hourly precipitation extremes derived from the four GCM-driven 

RCM data sets using the approach M1 are compared with the actual observed values over the 

reference period 1980-2005. It is found that estimates agree generally well with the observed 

precipitation extremes for all four different data sets. In terms of the RCM predictors, it is 

shown that the RCA4 runs overestimates daily precipitation and daily temperature tend to be 

underestimated for most of the stations by the RCA4 and the RACMO22E RCMs. However, the 

statistical downscaling process is based on normalized values of the predictor variables and 

therefore any existing biases in the RCM predictors are unlikely to have an adverse effect on 

the estimates of hourly precipitation. Regarding the large-scale atmospheric variability, it is 

found that the observed CP frequencies are realistically reproduced by the RCA4 and the 

RACMO22E RCMs. 

In Section 7.3, hourly precipitation extremes are projected for two future periods 2030-2055 

and 2075-2100. In terms of the future period 2075-2100, two different emission scenarios are 

considered. The emission scenario RCP8.5 represents a high emission scenario and therefore 

results in higher temperature increases than emission scenario RCP4.5. For the future period 

2030-2055, only RCP4.5 is applied, because the respective changes in the climate are projected 

to be similar over this time period between the two emission scenarios (Kirtman et al., 2013). 

In terms of the RCM predictor variables, only daily temperature exhibits considerable future 

changes. The other two RCM predictors, daily precipitation and the CP frequencies, only show 

minor changes under a warming climate. It is shown, that hourly precipitation extremes 

increase for most of the stations under RCP4.5 and for all stations under RCP8.5. The increases 

in estimated hourly precipitation extremes are most pronounced for the future time period 

2075-2100 under RCP8.5, for which also the temperature increases are the highest. Under 

those conditions, increases in hourly extremes can be as high as 111.9% at the station Kinloss 

based on the EC-EARTH driven RCA4. But there is a considerably wide range of changes 

depending on the stations, the future time periods, and the emission scenarios. Additional 

uncertainties in the projections of extreme hourly precipitation are induced by the four 

different GCM-driven RCMs. It also needs to be mentioned that for a given station, future time 

period, emission scenario and GCM-driven RCM, the projections may still vary considerably 

over the 100 different bootstrapping samples. 
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Chapter 8  

Summary and Discussion 

8.1 Summary 

This thesis aimed to project site-specific hourly precipitation extremes over the UK by applying 

a CP-based statistical downscaling method. 

For this purpose, hourly precipitation records from 530 different stations over the UK 

comprising the time period 1949-2012 were extracted and subject to multiple quality control 

measures. In theory, the quality controlled data set could also be used for other studies 

assessing hourly precipitation extremes. For example, it could provide the basis to identify 

different regions of extreme hourly precipitation characteristics. In a next step, a detailed 

regional trend analysis could be conducted to assess changes in hourly precipitation extremes 

over the last decades similarly to the study of Jones et al. (2014). Another potential use of the 

observed hourly data set could be the validation of high-resolution RCM results. These high-

resolution models (1km-5km) are able to reproduce hourly precipitation extremes more 

realistically than the standard RCMs at 12km-50km resolution (Chan et al., 2014b; Kendon et 

al., 2014). A detailed validation process based on comprehensive and quality controlled hourly 

precipitation records could help to further improve the performances of these models.  

A statistical downscaling method based on the concept of analogue days was developed. By 

means of analogue days, local precipitation characteristics can be reproduced on every time 

scale for which precipitation records are available. Different approaches of finding the 

analogue days were tested in order to optimise the performance of the statistical downscaling 

method. Two predictor variables (daily precipitation and temperature) conditioned on five 

(plus one unclassified) CPs were used in the process of finding the analogue days. In a next 

step, observed hourly precipitation extracted on the analogue days was perturbed based on 

precipitation duration – temperature relationships. Projections of changes in UK extreme 

hourly precipitation are given for twelve different stations using four different GCM-driven 

RCMs (at 12.5km resolution), two different future time periods and two different emission 

scenarios. Increases in extreme hourly precipitation (up to 112%) are strongest for the future 

time period 2075-2100 under emission scenario RCP8.5 when the rise in temperature is most 

pronounced. It needs to be noted that the changes in hourly precipitation extremes can vary 
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highly between the twelve stations, between the different GCM-driven RCM runs and over the 

100 different bootstrapping samples within the same GCM-driven RCM run. This is at least 

partly caused by limitations in the RCM simulated predictors and in the statistical downscaling 

process (see Section 8.2). A potential development in the future would be to use RCM 

predictors at very high spatial resolution (1km-5km) within the statistical downscaling process. 

As mentioned above, high-resolution RCMs are able to represent hourly precipitation 

extremes more realistically compared to standard RCMs. However, these high-resolution 

models still misrepresent local convective showers (Chan et al., 2014a) and have a tendency to 

overestimate extreme hourly precipitation (Kendon et al., 2014). Therefore, linking the high-

resolution RCM outputs with the statistical downscaling process in this thesis is likely to further 

improve the quality of extreme hourly precipitation projections. 

In terms of the relationship between CPs and extreme hourly precipitation, the highest 

extreme precipitation probabilities were found for the two CPs that are associated with low 

pressure systems. The two CPs characterized by high pressure conditions over the UK exhibit 

relatively low extreme hourly precipitation probabilities but can occasionally cause very 

extreme precipitation events. It was suggested that those very extreme events may be a result 

of localized convective showers under high pressure conditions (Blenkinsop et al., 2015). 

Considering the relationship between extreme hourly precipitation and temperature, some 

studies (Haerter and Berg, 2009; Lenderink and van Meijgaard, 2008) found considerably 

higher increases in extreme hourly precipitation than the 7% increase per degree of warming 

suggested by the Clausius-Clapeyron relation. It was argued that those higher increases are 

due to a strong intensification of convective precipitation events with higher temperature 

(Lenderink and van Meijgaard, 2008; Molnar et al., 2014). In this thesis, for nine of the twelve 

stations the averaged increase rates in extreme hourly precipitation are higher than 7% °C-1 

but only four of them considerably exceed the CC relation. 

Chapter 3 describes the various data sets. Observed hourly and daily precipitation at station 

level was extracted from the MIDAS Land Surface Stations database (NCAS British Atmospheric 

Data Centre, 2012). A number of criteria were set to eliminate extreme outliers, as well as 

suspicious and multiple available records. A total number of twelve stations were selected. 

They contain the most homogeneous and complete precipitation time series. They represent 

twelve of the 14 different UK extreme precipitation regions classified in Jones et al. (2014). The 

annual cycle of hourly precipitation extremes was assessed for the twelve selected stations. It 

was found that extreme hourly precipitation tends to be more intense between May and 

October for the majority of the stations. Two seasons were defined. Summer comprises the 

period between May and October, whereas winter spans from November to April. The climate 
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model data was extracted from the CORDEX data archive (CORDEX, 2014). It consists of two 

different 12.5km RCMs (RCA4 and RACMO22E) driven by ERA-interim data and by three 

different GCMs (CM5A-MR, ESM-LR and EC-EARTH). 

The methodologies to derive the fuzzy rules based CP-classification and the statistical 

downscaling are explained in Chapter 4. Days of similar SLP patterns were categorised into a 

small number of characteristic circulation patterns (CPs). The definition of the fuzzy rules 

based CP-classification was based on four different objective functions, which optimise the 

quality of the classification to distinguish between dry and wet CPs. Information measures 

were applied to find the best applicable CP-classification for the downscaling process. The 

optimum classification consists of 5 (plus one unclassified) CPs.  

The statistical downscaling method developed in this study can be regarded as a hybrid of an 

analogue and a regression-based method. It is similar to the analogue day method as applied 

in Willems and Vrac (2011). However, in contrast to Willems and Vrac (2011), the historical 

hourly precipitation records extracted on the analogue day were perturbed based on 

precipitation duration – temperature relationships in this study. The fact that daily 

precipitation and temperature conditioned on CPs were used as equally important, combined 

predictors is also unique to the applied method here. All the available days were first 

subsampled into the five (plus one unclassified) different CPs and two seasons or twelve 

calendar months. For each day over the validation period, the most similar day (analogue day) 

over the calibration period was found by comparing the daily precipitation and temperature 

values conditioned on five (plus one unclassified) CPs and two seasons (or twelve months). 

Four different approaches of finding the analogue day were proposed. The temperature 

variable is needed to represent changes of extreme hourly precipitation under a warmer 

climate, as extreme events are expected to intensify with higher temperature (Berg et al., 

2013; Blenkinsop et al., 2015; Lenderink and van Meijgaard, 2008). Daily precipitation provides 

additional information as to whether and how much precipitation on that day actually takes 

place. This is important because high temperature in summer can lead to clear skies and dry 

conditions, but also have the potential of causing convective extreme precipitation (Beck and 

Bárdossy, 2013). In a next step, the daily maximum hourly precipitation on the analogue day 

was perturbed based on the relationships between precipitation duration and temperature. 

Those relationships were derived for different CPs and seasons. The basic assumption is that 

the duration of daily precipitation events decreases with higher temperature. It was shown 

that this assumption is mostly valid in summer under cyclonic conditions and under westerly 

airflow for those stations not in close proximity to the Sea. For example, 32 of the 36 

relationships between precipitation duration and temperature conditioned on CP4 are 
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statistically significant and fulfil the RMSE (Root Mean Square Error) criterion. The statistical 

downscaling process to estimate and project hourly precipitation extremes was applied for the 

twelve stations selected in Chapter 3. 

In Chapter 5, the results of the fuzzy rules based CP-classification over the UK were presented. 

In total, 180 different CP-classifications were defined based on varying input precipitation time 

series, calibration time periods and number of CPs. Each CP-classification was then assessed in 

terms of its skill in distinguishing between different precipitation patterns and in separating 

the SLP patterns. It was found that on average the CP-classifications based on daily 

precipitation series outperform those based on the series of the number of wet hours per day. 

Considering the different calibration periods, the CP-classifications based on a 20-year 

calibration time period performed slightly better on average compared to those derived from 

periods of ten years length. It was also shown that increasing the number of CPs has a positive 

effect on the performances of the CP-classifications up to ten CPs for three (wet day 

probability, precipitation intensity and separability of the SLP patterns) of the four information 

measures. For higher number of CPs (15 and 20), the performance of the CP-classifications 

improves only in terms of identifying distinguishable relationships between CP and extreme 

precipitation. Finding the optimal number of CPs is a trade-off between the performance of 

the CP-classification and the robustness of the statistical downscaling method. It was also 

shown that performances of the CP-classification fluctuate and thus certain CP-classifications 

with a small number CPs may outperform those CP-classification based on higher number of 

CPs. As a result, the final CP-classification used in the statistical downscaling method only 

consists of five (plus one unclassified) CPs, which are defined based on UK daily precipitation 

series over a 20 year calibration period (1960-1979).  

Out of the five CPs, CP1 and CP4 are characterized by low pressure systems, CP2 and CP3 

feature high pressure systems, and CP5 is associated with westerly airflow over the UK. The 

seasonal frequencies of the different CPs analysed based on observed SLP data were found to 

be similar as in previous studies using the Lamb Weather Types (Jones et al., 1993; Lamb, 

1972).  Cyclonic CPs (CP1 and CP4) exhibit the lowest frequency occurrences in winter, 

anticyclonic CPs (CP2 and CP3) are most likely to occur in summer and westerly CPs (CP5) occur 

most often in winter. The main difference lies in the fact that the fuzzy rules based CP-

classification allows CPs with multiple SLP characteristics. For example, CP4 features cyclonic 

conditions in the North and south-westerly airflow in the southern part of the UK. It was also 

shown that the five (plus one unclassified) CPs derived from ERA-interim driven RCM data sets 

(CORDEX, 2014) agree well with the set of CPs based on observed NCAR gridded SLP data, both 

in terms of their SLP patterns and their seasonal frequencies.  
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Considering the relationships between CPs and extreme hourly precipitation, CP1 and CP4 

show the strongest link with summer extreme hourly precipitation. CP1 and CP4 are both 

characterized by low pressure systems. Overall, the highest extreme precipitation probabilities 

in summer can be found for stations in the southern part of the UK conditioned on CP1. This 

circulation pattern may be linked with mesoscale convective complexes (MCCs). CP2 and CP3, 

both associated with high pressure conditions over the UK, exhibit relatively low extreme 

hourly precipitation probabilities. Nevertheless, both CPs can lead occasionally to very extreme 

precipitation events. It was suggested that those events may be linked with localized 

convective showers on days of high pressure conditions (Blenkinsop et al., 2015). 

In Chapter 6 and Chapter 7, the estimated hourly precipitation extremes by the statistical 

downscaling method were validated for twelve different stations by calculating the 99.5th 

percentile error (𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅ ) between the estimated and observed distribution function averaged 

over 100 bootstrapping samples. This was done using predictors derived from observed (see 

Chapter 6) and ERA-interim driven RCM data sets (see Chapter 7). It was found that using ERA-

interim driven RCM predictors, instead of observed predictors, has a negative effect on the 

statistical downscaling performance. This is probably due to the fact that the ERA-interim 

RCMs are not able to exactly reproduce the observed day to day weather sequences 

particularly in terms of precipitation. Nevertheless, the use of ERA-interim driven RCM 

predictors still results in overall high agreement between estimated and observed extreme 

hourly precipitation over the three different validation periods. It was therefore concluded, 

that the statistical downscaling method based on RCM predictors is able to provide reliable 

and robust estimates of hourly precipitation extremes. A reliable method is expected to 

attribute the “correct” exceedance probability to high precipitation values. Reliability can only 

be assessed based on observed data. A robust method simulates similar estimates for slightly 

perturbed data or for different time periods (Garavaglia et al., 2011). Four different 

approaches of finding the analogue day were compared. Overall, the best performances based 

on the observed and RCM simulated predictors were obtained using approach M1. For this 

approach, the 𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅  between estimates derived from ERA-interim driven RCMs and observed 

hourly precipitation extremes amounts to 16.4% on average over the twelve selected stations 

and three independent validation periods. M1 subsamples all the precipitation records into 

two different seasons, instead of using the twelve calendar months as a subsample criterion. In 

order to find the analogue days, M1 uses daily precipitation and temperature as equally 

important predictors.  
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The stationarity assumption, that the projections of the statistical downscaling method remain 

valid in a warmer climate, was also assessed. For this purpose, the estimated 99.5th percentiles 

were validated over the ten warmest summers. In general, stationarity between large-scale 

atmospheric circulation and precipitation cannot be explicitly assumed. Instead, additional 

predictors, such as temperature (used in this thesis) or humidity, are required. Those 

predictors are able to represent changes in the water-holding capacity of the atmosphere, in 

order to capture the impact of a warmer climate on precipitation extremes. It was found that 

the performance of the downscaling method over the ten warmest summer is very similar to 

the performances over the three validation periods. It needs to be noted, however, that the 

temperature differences between the ten warmest summers and the colder calibration 

periods only represent a fraction of the projected temperature changes for the time period 

2075-2100 under emission scenario RCP8.5. Another test to assess the stationarity assumption 

is to identify trends in the residual time series between observed and estimated annual 

maxima of hourly precipitation. For most stations, no signs of instationarities were found. Both 

stationarity tests thus suggest, using observed and RCM predictors, that the quality of the 

extreme hourly precipitation estimates is not downgraded under warmer conditions. However, 

the stationarity tests can only take into account the observed temperature differences, which 

are unlikely to fully represent the magnitude of future warming. 

In a next step, hourly precipitation extremes are estimated based on GCM-driven RCM 

predictors. In this thesis, the data from two RCMs, namely RCA4 and RACMO22E, was used. 

The RCA4 RCM is driven by three different GCMs: CM5A-MR, ESM-LR and EC-EARTH. The 

RACMO22E RCM is only driven by the EC-EARTH GCM. The estimated 99.5th percentiles of 

hourly precipitation extremes agree well with the observed 99.5th percentiles over the 

reference period 1980-2005. Overall, the 𝑃𝐸99.5
̅̅ ̅̅ ̅̅ ̅̅   between estimates based on GCM-driven 

RCMs and observed extreme hourly precipitation is 10.25% on average over the twelve 

selected stations and the four different GCM-driven RCMs. This result, however, cannot be 

directly compared with the results derived from the ERA-interim RCMs. In contrast to the 

validation of the estimates based on ERA-interim driven RCM data, the validation of the 

estimates based on the GCM-driven RCMs was only conducted over one reference period, 

which overlapped with the calibration period of the statistical downscaling method. 

Two different future time periods (2030-2055 and 2075-2100) were considered, in order to 

project hourly precipitation extremes. Regarding the period from 2075-2100, hourly 

precipitation extremes were projected for two different emission scenarios, RCP4.5 and 

RCP8.5. Estimates projected for the time period 2030-2055 were only based on emission 
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scenario RCP4.5. Hourly precipitation extremes increase for most of the stations under RCP4.5 

(2030-2055 and 2075-2100) and for all stations under RCP8.5 (2075-2100) relative to the 

reference period 1980-2005. Unsurprisingly, the increases (up to 112%) are most pronounced 

for the future time period 2075-2100 under emission scenario RCP8.5 for which temperature 

increases are also the highest. Future changes in hourly precipitation extremes highly vary 

between the twelve stations. For example, at Tiree the average future increase over the four 

different GCM-driven RCMs for the future period 2075-2100 under RCP8.5 is only 12.1% 

compared to an average increase at Kinloss of 75.1%. Projections also vary considerably 

between different RCM runs and even within the same RCM run over the 100 different 

bootstrapping samples. At Kinloss, using the EC-EARTH driven RCA4 leads to an increase of 

111.9% for the future time period 2075-2100 under RCP8.5, compared to increases of 36.9% 

based on the CM5A-MR driven RCA4. This is at least partly due to limitations in the RCM 

simulated predictors and in the statistical downscaling process as discussed in the following 

section. But it also needs to be mentioned that every extreme value analysis is by definition 

subject to uncertainties. As a consequence, the presented projections of hourly precipitation 

extremes should rather be interpreted as indicative of the magnitude and direction of future 

changes. 

8.2 Limitations and potential of future developments 

One main limitation of the methodology is the length and quality of the hourly precipitation 

records available to calibrate the statistical downscaling method. Only those observed hourly 

precipitation records can be used in the statistical downscaling process for the period for 

which ERA-interim driven RCM data is available as well. The ERA-interim driven RCM data is 

required for the normalization of the RCM predictor variables as described in Equation 4.15 

and 4.16. ERA-interim driven RCA4 (RACMO22E) data is available from 1980 (1979) to 2010 

(2012). The record length of the observed hourly precipitation highly varies between the 

different stations, but only few stations exist with high completeness of hourly precipitation 

records prior to 1980 up to the present date. Therefore, the selection of 1980 as the start year 

of the calibration period seems to be favourable in terms of RCM simulated and observed data 

sets. The end year of the calibration period was set to 2009, in order to have three different 

calibration periods of equal length (10 years) for the cross-validation of the statistical 

downscaling.  

The restricted calibration period 1980-2009 leads to implications at several levels. First of all, it 

limits the pool of possible extreme hourly precipitation events which can be used for the 
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downscaling process. As a result, certain types of extreme events may not be represented over 

the calibration period as discussed in Section 6.3.  

It is also important in terms of the stationarity assumption underlying the statistical 

downscaling method. It is likely that a longer calibration period leads to a better 

representation of those extreme events, which are expected to occur more often in a future 

warmer climate. But even if the calibration period was infinitely long, extreme precipitation 

events could occur in the future which have never been observed in the past. For this reason, 

the observed hourly precipitation on each analogue day was perturbed based on the 

relationships between precipitation duration and temperature in this thesis.  

However, it could be argued that the application of the precipitation duration – temperature 

relationship is not physically meaningful. As discussed in Section 6.2, the linear regression 

slopes representing the relationships were defined over the entire sample size of each 

subsample, divided by each CP and season. This is because calibrating the precipitation 

duration-temperature relationships only on extreme events is not feasible due to very limited 

record lengths. But average weather conditions may not be relevant to extreme events and 

the response of the duration of a precipitation event to an increase in temperature may be 

very different under extreme weather conditions, such as convective thunderstorms. For 

example, (Lenderink and van Meijgaard, 2008; Molnar et al., 2014) suggested an intensification 

of convective precipitation events with higher temperature beyond the Clausius-Clapeyron 

equation due to complex physical mechanisms. Similarly, the change in precipitation duration 

of extreme events with higher temperature could be considerably different to the average 

climate response.  

The limited calibration period also restricts the number of CPs, since the use of too many CPs 

could otherwise result in limited sampling variability of analogue days and limited records for 

establishing the relationships between the precipitation duration and temperature for each CP 

and season. On the other hand, the number of CPs needs to be large enough to represent the 

different characteristic types of atmospheric circulation over the UK and their specific 

relationship with precipitation. The final number of five (plus one unclassified) CPs is, 

therefore, the result of a trade-off between those two aspects. Nevertheless, it needs to be 

noted that using a higher number of CPs would lead to further improvements in the CP-

precipitation relationships and in the separability of the atmospheric pressure patterns as 

discussed in Section 5.2. 

One possibility to increase the sample sizes for each subsample of CPs and seasons would be 

the pooling of precipitation events over multiple stations. The MIDAS Land Surface Stations 
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database (NCAS British Atmospheric Data Centre, 2012) comprises hourly precipitation records 

at 530 different stations over the UK. For each of the twelve selected stations, additional 

records from nearby stations within a certain radius could be pooled together. Although those 

additional records are not as complete as the records used in this thesis, they still contain 

valuable information to incorporate into the downscaling process. As a result, an increase in 

the number of CPs and robust duration-temperature relationships could become feasible at 

the same time. It could also make the calibration of the duration-temperature relationships 

using only precipitation extremes possible. As discussed above, the perturbation of hourly 

precipitation extremes based on relationships that were defined over the entire sample size, 

which means over average weather conditions, is questionable. Instead, calibrating the 

duration-temperature relationships specifically for precipitation extremes is likely to be more 

representative of potential changes in the future. 

The second limitation is related to the quality of the predictors. In general, any projection 

based on a statistical downscaling method can only be as good as the predictors that are 

simulated by the climate models. In Section 7.1, it was found that both ERA-interim driven 

RCMs underestimate the observed positive trend in temperature between 1980 and 2009. This 

may imply that future increases in the temperature variable derived from the two RCMs are 

also underestimated. As discussed in Section 7.2, RCA4 overestimates daily precipitation and 

both, RCA4 and RACMO22E, show a tendency to underestimate the observed daily 

temperature. It also needs to be mentioned that both RCMs rely on parameterization schemes 

to simplify the physical complexity of convective precipitation events and assumptions are 

required for the parameterization to remain valid under a warmer climate. This leads to 

uncertainties particularly in terms of precipitation extremes which affects the results of the 

statistical downscaling presented in this thesis. It is therefore advisable to increase the number 

of RCMs used in future studies to provide a more comprehensive picture of the uncertainties 

caused by the RCMs. 

Another possible future development of the statistical downscaling method would be to use 

RCMs at very high spatial resolution (1km-5km). These high-resolution models are able to 

explicitly resolve physical processes of convection and thus represent convective precipitation 

extremes more realistically (Kendon et al., 2012). Nevertheless, Kendon et al. (2014) showed 

that extreme hourly precipitation tend to be overestimated in the 1.5km RCM over the UK. 

Applying the statistical downscaling process presented in this thesis could reduce the biases in 

the 1.5km RCMs projections and provide site-specific hourly precipitation extremes. However, 

due to computational costs, high-resolution RCM runs are limited and previous studies have 

been restricted to a single season (Hohenegger et al., 2008), selected events (Attema et al., 
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2014) or small spatial domains (Chan et al., 2014a; Chan et al., 2014b; Chan, 2013; Kendon et 

al., 2012). 

The third limitation lies in the selection of the predictors applied in this thesis. Daily 

precipitation and temperature conditioned on CPs may not be enough to describe the complex 

mechanisms sufficiently that lead to extreme precipitation events. Incorporating additional 

RCM predictor variables into the statistical downscaling method could therefore enhance the 

quality of the projected hourly precipitation extremes. Examples of potential variables are 

measures of humidity or the CAPE (Convective Available Potential Energy) index. Those 

variables provide information of the moisture flux in the atmosphere and could improve 

particularly the representation of convective activity under a warmer climate. In this context it 

is interesting to note that Berg et al. (2013) suggested a decrease in convective precipitation 

intensities for high temperatures due to a decline in relative humidity. Holley et al. (2014) 

recently developed a climatology of the CAPE index over the UK. Relating the results of this 

study with the predictors used in this thesis could help to understand the complex physical 

mechanisms behind the occurrence of extreme precipitation better and therefore improve the 

projections of the statistical downscaling method. 

Finally, it needs to be mentioned that there is a current mismatch between what is defined as 

an extreme event for flood estimation purposes in engineering design and the definition of an 

extreme event in climate studies. For the estimation of floods, engineers are generally 

interested in extreme precipitation events such as the 1% annual exceedance probability (AEP) 

event, which will on average occur once every 100 years. On the other hand, climate studies 

tend to focus on the projection of “moderate” extremes such as the 99th percentile or the 

annual maximum precipitation events. In this thesis, the focus was on the 99.5th percentile of 

extreme hourly precipitation, which will on average occur at least once every year. It is 

therefore questionable whether the results of climate studies, including this one, can be 

extrapolated to the more extreme events that are often required by engineers for urban 

planning and the design of hydraulic flood prevention measures (Westra et al., 2014). 

8.3 Concluding remarks 

Notwithstanding the above mentioned limitations, this thesis is the first research attempt that 

classifies characteristic atmospheric circulation patterns for the UK using a fuzzy rules based 

CP-classification and downscales RCM predictors to site-specific UK extreme hourly 

precipitation events for two future time periods using two emission scenarios. For this 

purpose, a statistical downscaling method was developed, which combines daily precipitation 
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and temperature as equally important predictors to find similar weather conditions in the past 

(analogue day). In a next step, the hourly precipitation records on the analogue days were 

perturbed based on precipitation duration-temperature relationships. 

Results vary considerably between different stations. The highest increases in extreme hourly 

precipitation were found at Northolt (38.3%), Eskdalemuir (45.8%) and Kinloss (75.1%) for the 

future time period 2075-2100 under the high emission scenario (RCP8.5) averaged over the 

four different GCM-driven RCMs. Eskadelmuir is the station with the highest elevation and 

Northolt is the station with the highest mean and extreme temperatures. It was argued that 

both stations can be linked with increased convective activity and concluded that increases in 

extreme hourly precipitation tend to be most pronounced for those stations that are highly 

affected by convective precipitation events. 

For impact studies to assess the potential higher risk of flash floods in the future, the newly 

developed statistical downscaling method in this thesis is relatively simple to understand and 

can be readily applied. The method is able to provide future projections of hourly precipitation 

extremes at any site in the UK, for which observed hourly precipitation records are available. It 

could be also easily adapted to project multi-hour precipitation extremes depending on the 

flood forecasting context. For example, the Extreme Rainfall Alert (ERA), which is a warning 

system for surface water flooding, was issued for 1hr, 3hr and 6hr precipitation values 

(Hurford et al., 2012). In order to project precipitation extremes outside the UK, a re-definition 

of the CP-classification would be required. Two different stationarity tests were applied, 

indicating that the downscaling method remain valid in a future warmer climate. However, the 

stationarity assumption could only be partly assessed since future projections of temperature 

increases for the time period 2075-2100 under the emission scenario RCP8.5 highly exceed 

observed temperature differences in the past.  

In terms of impact studies, it is important to note that extreme precipitation events occur 

within a broader meteorological context which should be considered to assess the severity of 

the resultant flood sufficiently. For example, UK extreme precipitation events over coastal 

areas are likely to be more severe on days when elevated tides and/or storm surges also occur 

(Svensson and Jones, 2004). 

However, the aim of this thesis was to develop a statistical downscaling method to “only” 

project hourly precipitation extremes for the UK. It was found that changes in hourly extremes 

can vary strongly between different RCM runs and even within the same RCM run over the 100 

different bootstrapping samples. This is at least partly due to limitations in the RCM simulated 

predictors and in the statistical downscaling process. As a consequence, there is a need to 
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include more RCMs to allow ensemble-based probabilistic projections of extreme hourly 

precipitation in the future. In terms of the statistical downscaling method, incorporating 

additional predictors could help to represent extreme hourly precipitation events more 

realistically and thus increase the reliability and robustness of the projections.  
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