
Data Min Knowl Disc
DOI 10.1007/s10618-016-0483-9

The great time series classification bake off: a review
and experimental evaluation of recent algorithmic
advances

Anthony Bagnall1 · Jason Lines1 ·
Aaron Bostrom1 · James Large1 · Eamonn Keogh2

Received: 7 June 2016 / Accepted: 1 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In the last 5years there have been a large number of new time series clas-
sification algorithms proposed in the literature. These algorithms have been evaluated
on subsets of the 47 data sets in the University of California, Riverside time series
classification archive. The archive has recently been expanded to 85 data sets, over half
of which have been donated by researchers at the University of East Anglia. Aspects of
previous evaluations have made comparisons between algorithms difficult. For exam-
ple, several different programming languages have been used, experiments involved a
single train/test split and some used normalised datawhilst others did not. The relaunch
of the archive provides a timely opportunity to thoroughly evaluate algorithms on a
larger number of datasets. We have implemented 18 recently proposed algorithms
in a common Java framework and compared them against two standard benchmark
classifiers (and each other) by performing 100 resampling experiments on each of the
85 datasets. We use these results to test several hypotheses relating to whether the
algorithms are significantly more accurate than the benchmarks and each other. Our
results indicate that only nine of these algorithms are significantly more accurate than
both benchmarks and that one classifier, the collective of transformation ensembles,
is significantly more accurate than all of the others. All of our experiments and results
are reproducible: we release all of our code, results and experimental details and we
hope these experiments form the basis for more robust testing of new algorithms in
the future.

Responsible editor: Johannes Fuernkranz.

B Anthony Bagnall
ajb@uea.ac.uk

1 School of Computing Sciences, University of East Anglia, Norwich, UK

2 Computer Science & Engineering Department, University of California, Riverside, Riverside, CA,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-016-0483-9&domain=pdf
http://orcid.org/0000-0003-2360-8994

A. Bagnall et al.

Keywords Time series classification · Shapelets · Elastic distance measures · Time
series similarity

1 Introduction

Time series classification (TSC) problems are differentiated from traditional classifi-
cation problems because the attributes are ordered. Whether the ordering is by time or
not is in fact irrelevant. The important characteristic is that there may be discrimina-
tory features dependent on the ordering. Prior to 2003, there were already at least one
hundred papers proposing TSC algorithms. Yet as (Keogh and Kasetty 2003) pointed
out that year, in an influential and highly cited paper, the quality of empirical evalu-
ation tended to be very poor relative to the rest of the machine learning community.
The majority of TSC algorithms were tested on a single dataset, and the majority of
these datasets were synthetic and created by the proposing authors, for the purpose of
showcasing their algorithm. The introduction of the University of California, River-
side (UCR) time series classification and clustering repository (Chen et al. 2015) was
designed to mitigate these issues. The ready availability of freely available datasets is
surely at least partly responsible for the rapid growth in the number of publications
proposing time series classification algorithms. Prior to the summer of 2015 over 3000
researchers have downloaded the UCR archive and it has been referenced several hun-
dred times. The repository has contributed to increasing the quality of evaluation of
new TSC algorithms. Most experiments involve evaluation on over forty data sets,
often with sophisticated significance testing and most authors release source code.
This degree of evaluation and reproducibility is generally better than most areas of
machine learning and data mining research.

However, there are still some fundamental problems with published TSC research
thatwe aim to address. Firstly, nearly all evaluations are performed on a single train/test
split. The original motivation for this was perhaps noble. The original creators of the
archive had noted that some authors would occasionally accidently cripple the baseline
classifiers. For example, Ge and Smyth (2000) did not z-normalize the time series
subsequences for simple Euclidean distance matching, making the Euclidean distance
perform essentially randomly on a task were it might be expected to perform perfectly.
This example was visually apparent by a careful inspection of the figures in Ge and
Smyth (2000), but in a simple table of results such errors would probably never be
detected. Thus the single train/test split was designed to anchor the comparisons to a
known performance baseline.

Nevertheless, this can lead to over interpreting of results. The majority of machine
learning research involves repeated resamples of the data, and we think TSC
researchers should follow suit. To illustrate why, consider the following anecdote.
We were recently contacted by a researcher who queried our published results for
one nearest neighbour (1-NN) dynamic time warping (DTW) on the UCR repository
train/test splits. When comparing our accuracy results to theirs, they noticed that in
some instances they differed by as much as 6%. Over all the problems there was no
significant difference, but clearly wewere concerned, as it is a deterministic algorithm.
On further investigation,we found out that our datawere rounded to six decimal places,

123

The great time series classification bake off...

their’s to eight. These differences on single splits were caused by small data set sizes
and tiny numerical differences (often just a single case classified differently). When
resampling, there were no significant differences on individual problems when using
six or eight decimal places.

Secondly, there are some anomalies and discrepancies in the UCR data that can bias
results. Not all of the data are normalised (e.g. Coffee) and some have been normalised
incorrectly (e.g. ECG200). This can make algorithms look better than they really are.
For example, most authors cite an error of 17.9% for the Coffee data with 1-NNDTW,
and most algorithms easily achieve lower error. However, 17.9% error is for DTW on
the non-normalised data. If it is normalised, 1-NN DTW has 0% error, a somewhat
harder benchmark to beat. ECG200 has been incorrectly formatted so that the sum of
squares of the series can classify the data perfectly. If a classifier uses this feature it
should be completely accurate. This will be a further source of bias.

Thirdly, the more frequently a fixed set of problems is used, the greater the danger
of overfitting and detecting significant improvement that does not generalise to new
problems.We should be constantly seeking newproblems and enhancing the repository
with newdata. This is the only real route to detecting genuine improvement in classifier
performance.

Finally, whilst the release of source code is admirable, the fact there is no common
framework means it is often very hard to actually use other peoples code. We have
reviewed algorithms written in C, C++, Java, Matlab, R and python. Often the code is
“research grade”, i.e. designed to achieve the task with little thought to reusability or
comprehensibility. There is also the tendency to not provide code that performs model
selection, which can lead to suspicions that parameters were selected to minimize test
error, thus biasing the results.

To address these problems we have implemented 18 different TSC algorithms in
Java, integrated with the WEKA toolkit (Hall et al. 2009). We have applied the fol-
lowing selection criteria for the inclusion of an algorithm. Firstly, the algorithm must
have been recently published in a high impact conference or journal. Secondly, it must
have been evaluated on some subset of the UCR data. Thirdly, source code must be
available. Finally, it must be feasible/within our ability to implement the algorithm
in Java. This last criteria lead us to exclude at least two good candidates, described
in Sect. 2.7. Often, variants of a classifier are described within the same publication.
We have limited each paper to one algorithm and taken the version we consider most
representative of the key idea behind the approach.

We have conducted experiments with these algorithms and standard WEKA clas-
sifiers on 100 resamples of every data set (each of which is normalised), including
the 40 new data sets we have introduced into the archive. In addition to resampling
the data sets, we have also conducted extensive model selection for many of the 37
classifiers. Full details of our experimental regime are given in Sect. 3.

We believe that this is one of the largest ever experimental studies conducted in
machine learning. We have performed tens of millions of experiments distributed over
thousands of nodes of a large high performance computing facility. Nevertheless, the
goal of the study is tightly focused and limited. This is meant to act as a springboard for
further investigation into awide rangeofTSCproblemswedonot address. Specifically,
we assume all series in a problem are equal length, real valued and have no missing

123

A. Bagnall et al.

values. Classification is offline, and we assume the cases are independent (i.e. we do
not perform streaming classification). All series are labelled and all problems involve
learning the labels of univariate time series. We are interested in testing hypotheses
about the average accuracy of classifiers over a large set of problems. Algorithm
efficiency and scalability are of secondary interest at this point. Detecting whether a
classifier is on average more accurate than another is only part of the story. Ideally, we
would like to know a priori which classifier is better for a class of problem or even be
able to detect which is best for a specific data set. However, this is beyond the scope
of this project.

Our findings are surprising, and a little embarrassing, for two reasons. Firstly, many
of the algorithms are in fact no better than our two benchmark classifiers, 1-NN DTW
and Rotation Forest. Secondly, of those 9 significantly better than both benchmarks,
by far the best classifier is COTE (Bagnall et al. 2015), an algorithm proposed by
a subset of the current authors. It is on average over 8% more accurate than either
benchmark. Whilst gratifying for us, we fear that this outcome may cause some to
question the validity of the study. We have made every effort to faithfully reproduce
all algorithms. We have tried to reproduce published results, with varying degrees
of success (as described below), and have consulted authors on the implementation
where possible. Our results are reproducable, and we welcome all input on improving
the code base. We must stress that COTE is by no means the final solution. All of the
algorithms we describe may have utility in specific domains, and many are orders of
magnitudes faster than COTE. Nevertheless, we believe that it is the responsibility of
the designers of an algorithm to demonstrate its worth. We think our benchmarking
results will help facilitate an improved understanding of the utility of new algorithms
under alternative scenarios.

All of the code is freely accessible froma repository (Bagnall et al., https://bitbucket.
org/TonyBagnall/time-series-classification) and detailed results and data sets are
available from a dedicatedwebsite (Bagnall et al., http://timeseriesclassification.com).

The rest of this paper is structured as follows. In Sect. 2 we review the algorithms
we have implemented. In Sect. 3 we describe the data, code structure and experimental
design. In Sects. 4 and 5 we present and analyse the results. In Sect. 6 we look in detail
at the performance of different algorithms on case study problems and in Sect. 7 we
summarise our findings and discuss the future direction.

2 Time series classification algorithms

We denote a vector in bold and a matrix in capital bold. A case/instance is a pair
{x, y} with m observations (x1, . . . , xm) (the time series) and discrete class vari-
able y with c possible values. A list of n cases with associated class labels is
T = (X, y) = ((x1, y1), . . . , (xn, yn)). A classifier is a function or mapping from
the space of possible inputs to a probability distribution over the class variable val-
ues. Time series classification algorithms involve some processing or filtering of the
time series values prior or during constructing the classifier. There have been a wide
range of approaches to TSCwhich draw from a large number of diverse research areas.

123

https://bitbucket.org/TonyBagnall/time-series-classification
https://bitbucket.org/TonyBagnall/time-series-classification
http://timeseriesclassification.com

The great time series classification bake off...

Forming some taxonomy of the algorithms helps in the understanding of the similarity
and differences of the various approaches.

There are several alternative ways of grouping algorithms for TSC. We think the
most useful involves classifying algorithms by the type of discriminatory features the
technique is attempting to find. We classify techniques into the following categories.

1. Whole series Two series are compared either as a vector (as with traditional clas-
sification) or by a distance measure that uses all the data. Most research effort has
been directed at finding techniques that can compensate for small misalignments
between series using elastic distance measures (Sect. 2.1).

2. Intervals Rather than use the whole series, this class of technique selects one or
more (phase dependent) intervals of the series. At its simplest, this involves a
feature selection of a contiguous subset of attributes. However, as described in
Sect. 2.2, better results have been obtained through selecting multiple intervals
and using summary measures as features.

3. ShapeletsA family of algorithms focus on finding short patterns that define a class,
but that can appear anywhere in the series. These phase independent patterns are
commonly called shapelets (Sect. 2.3).A class is then distinguished by the presence
or absence of one or more shapelets somewhere in the whole series.

4. Dictionary based Some problems are distinguished by the frequency of repetition
of subseries rather than by their presence or absence. Dictionary based methods
(Sect. 2.4) form frequency counts of recurring patterns, then build classifiers based
on the resulting histograms.

5. Combinations A further class of algorithms combines two or more of the above
approaches into a single classifier. Two of these techniques are described in
Sect. 2.5.

6. Model based Model based algorithms fit a generative model to each series then
measure similarity between series using similarity between models. Some of the
approaches used include fitting auto-regressivemodels (Bagnall and Janacek 2014;
Corduas and Piccolo 2008), hidden Markov models (Smyth 1997) and kernel
models (Chen et al. 2013). We do not include any of these approaches in the
study for three reasons. Firstly, the techniques are commonly proposed for a task
other than classification (e.g. Maharaj 2000) or as part of a larger classification
scheme (Bagnall et al. 2015). Secondly, code is unavailable for many of these
methods (for example, Chen et al. 2013). Finally, our informal opinion based on
experimentation and published results is that many generative model similarity
approaches are not competitive for classification of the majority of these datasets.
They are more appropriate for long series with unequal length (see Bagnall and
Janacek 2014 for more detail).

2.1 Whole series similarity

Whole series TSC algorithms usually employ a similarity measure between series that
quantifies the distance between two series after compensation for localised distortions.
These similarity/distance measures are usually employed with a nearest neighbour
classifier. Whole series similarity is appropriate when there may be discriminatory

123

A. Bagnall et al.

Fig. 1 Four cases from two classes of the dataset FiftyWords. The top two series show class 30, the bottom
two class 50. The common pattern is clear, but only detectable with reallignment

features over the whole series, but there may also be some shifting of these features in
the time axis. For example, consider the problem FiftyWords. This data set was first
used in Rath and Manamatha (2003) and a reformatted version has since become part
of the UCR archive. Each case consists of the height profile of one of fifty words taken
from the George Washington archive. An example of the data is given in Fig. 1.

Clearly, the whole series is required to distinguish between words, because cases
from different classes could differ at any point (e.g. there could be one letter different).
Vector based approacheswill be confounded by the fact that theremay be some dilation
in the location of the peaks and troughs.Wewould expectwhole series elasticmeasures
to be the best family of approaches for this sort of problem.

The large majority of time series research in the field of data mining has concen-
tratedon alternative elastic distancemeasures formeasuring thewhole series similarity.
For TSC, these distance measures are almost exclusively evaluated using a one near-
est neighbour (1-NN) classifier. The standard benchmark elastic distance measure is
dynamic time warping (DTW).

2.1.1 Dynamic time warping

Suppose we want to measure the distance between two series, a = (a1, a2, . . . , am)

and b = (b1, b2, . . . , bm). Let M(a,b) be the m × m pointwise distance matrix
between a and b, where Mi, j = (ai − b j)

2. A warping path

P = ((e1, f1), (e2, f2), . . . , (es, fs))

is a series of points (i.e. pairs of indexes) that define a traversal of matrix M . So, for
example, the Euclidean distance dE (a,b) = ∑m

i=1(ai − bi)
2 is the path along the

diagonal of M . A valid warping path must satisfy the conditions (e1, f1) = (1, 1) and
(es, fs) = (m, m) and that 0 ≤ ei+1 − ei ≤ 1 and 0 ≤ fi+1 − fi ≤ 1 for all i < m.
The DTW distance between series is the path through M that minimizes the total
distance, subject to constraints on the amount of warping allowed. Let pi = Mei , fi

123

The great time series classification bake off...

be the distance between elements at position ei of a and at position fi of b for the i th
pair of points in a proposed warping path P . The distance for any path P is

DP (a,b) =
s∑

i=1

pi .

If P is the space of all possible paths, the DTW path P∗ is the path that has the
minimum distance, i.e.

P∗ = min
P∈P

(DP (a,b)).

The optimal path P∗ can be found exactly through a dynamic programming formu-
lation. This can be a time consuming operation, and it is common to put a restriction
on the amount of warping allowed. This restriction is equivalent to putting a maximum
allowable distance between any pairs of indexes in a proposed path. If the warping
window, r , is the proportion of warping allowed, then the optimal path is constrained
so that

|ei − fi | ≤ r · m ∀(ei , fi) ∈ P∗.

It has been shown that setting r through cross validation to maximize training
accuracy, as proposed in Ratanamahatana and Keogh (2005), significantly increases
accuracy on unseen data (Lines and Bagnall 2015). Numerous speed ups for DTW
have also been described in the literature (Rakthanmanon et al. 2013).

Many alternatives to DTW have been proposed. Distance measures include edit
distance with real penalty (ERP) (Chen and Ng 2004) and longest common subse-
quence (LCSS) (Hirschberg 1977). Other approaches use differences between the first
order differences of the whole series. However, in 2008, Ding et al. (2008) and Wang
et al. (2013) evaluated eight different distance measures on 38 data sets and found
none significantly better than DTW. Since then, many more elastic measures have
been proposed. We assess the three most prominent that meet our selection criteria as
described in the introduction.

2.1.2 Weighted DTW (WDTW) (Jeong et al. 2011)

Jeong et al. describe WDTW (Jeong et al. 2011), which adds a multiplicative weight
penalty based on the warping distance between points in the warping path. It favours
reduced warping, and is a smooth alternative to the cutoff point approach of using a
warping window. When creating the distance matrix M , a weight penalty w|i− j | for a
warping distance of |i − j | is applied, so that

Mi, j = w|i− j |(ai − b j)
2.

123

A. Bagnall et al.

A logistic weight function is used, so that a warping of a places imposes aweighting
of

w(a) = wmax

1 + e−g·(a−m/2)
,

where wmax is an upper bound on the weight (set to 1), m is the series length and g
is a parameter that controls the penalty level for large warpings. The larger g is, the
greater the penalty for warping.

2.1.3 Time warp edit (TWE) (Marteau 2009)

Marteau proposes the TWE distance (Marteau 2009), an elastic distance metric that
includes characteristics from both LCSS and DTW. It allows warping in the time
axis and combines the edit distance with Lp-norms. The warping is controlled by
a stiffness parameter, ν. Stiffness enforces a multiplicative penalty on the distance
between matched points in a manner similar to WDTW. A penalty value λ is applied
when sequences do not match (Algorithm 1).

Algorithm 1 TWE Distance(a,b)
Parameters: stiffness parameter ν, penalty value λ

1: Let D be an m + 1 × m + 1 matrix initialised to zero.
2: D(1, 1) ← 0
3: D(2, 1) ← a1

2

4: D(1, 2) ← b1
2

5: for i ← 2 to m + 1 do
6: D(i, 1) ← D(i − 1, 1) + |ai−2 − ai−1|
7: for j ← 2 to m + 1 do
8: D(1, i) ← D(1, j − 1) + |b j−2 − b j−1|
9: for i ← 2 to m + 1 do
10: for j ← 2 to m + 1 do
11: if i > 2 and j > 2 then
12: dist1 ← D(i − 1, j − 1) + ν × |i − j | × 2 + |ai−1 − b j−1| + |ai−2 − b j−2|
13: else
14: dist1 ← D(i − 1, j − 1) + ν × |i − j | + |ai−1 − b j−1|
15: if i > 2 then
16: dist2 ← D(i − 1, j) + |ai−1 − ai−2| + λ + ν

17: else
18: dist2 ← D(i − 1, j) + |ai−1| + λ

19: if j > 2 then
20: dist3 ← D(i, j − 1) + |b j−1 − b j−2| + λ + ν

21: else
22: dist3 ← D(i, j − 1) + |b j−1| + λ

23: D(i, j) ←min(dist1, dist2, dist3)
24: return D(m + 1, m + 1)

2.1.4 Move–split–merge (MSM) (Stefan et al. 2013)

Stefan et al. (2013) present MSM distance (Algorithm 2), a metric that is conceptually
similar to other edit distance-based approaches, where similarity is calculated by using

123

The great time series classification bake off...

a set of operations to transform a given series into a target series. Move is synonymous
with a substitute operation, where one value is replaced by another. The split operation
inserts an identical copy of a value immediately after itself, and the merge operation
is used to delete a value if it directly follows an identical value.

Algorithm 2MSM(a,b)
Parameters: penalty value c
1: Let D be an m × m matrix initialised to zero.
2: D(1, 1) ← |a1 − b1|
3: for i ← 2 to m do
4: D(i, 1) ← D(i − 1, 1) + C(ai , ai−1, b1)
5: for i ← 2 to m do
6: D(1, i) ← D(1, i − 1) + C(bi , a1, b + i − 1)
7: for i ← 2 to m do
8: for j ← 2 to m do
9: D(i, j) ← min(D(i − 1, j − 1) + |ai − b j |,

D(i − 1, j) + C(ai , ai−1, b j),

D(i, j − 1) + C(b j , ai , b j−1))

10: return D(m, m)

C(ai , ai−1, b j) =
{

c if ai−1 ≤ ai ≤ b j or ai−1 ≥ ai ≥ b j

c + min(|ai − ai−1|, |ai − b j |) otherwise.
We have implemented WDTW, TWE, MSM and other commonly used time

domain distance measures (such as LCSS and ERP). They are available in the pack-
age elastic_distance_measures in the code base (Bagnall et al., https://bitbucket.org/
TonyBagnall/time-series-classification). We have generated results that are not sig-
nificantly different to those published when using these distances with 1-NN. In Lines
and Bagnall (2015) it was shown that there is no significant difference between 1-NN
with DTW and with WDTW, TWE or MSM on a set of 72 problems using a single
train/test split. In Sect. 4 we revisit this result with more data and resamples rather
than a train/test split.

There are a group of algorithms that are based on whole series similarity of the first
order differences of the series,

a′
i = ai − ai+1, i = 1 . . . m − 1,

which we refer to as diff. Various methods that have used just the differences have been
described (Jeong et al. 2011), but the most successful approaches combine distance
in the time domain and the difference domain.

2.1.5 Complexity invariant distance (CID) (Batista et al. 2014)

Batista et al. (2014) describe a means of weighting a distance measure to compensate
for differences in the complexity in the two series being compared. Any measure of
complexity can be used, but Batista et al. recommend the simple expedient of using
the sum of squares of the first differences (see Algorithm 3). CID is evaluated with ED

123

https://bitbucket.org/TonyBagnall/time-series-classification
https://bitbucket.org/TonyBagnall/time-series-classification

A. Bagnall et al.

Algorithm 3 CID(a,b)
Parameters: distance function dist
1: d ← dist (a, b)

2: ca ← (a1 − a2)
2

3: cb ← (b1 − b2)
2

4: for i ← 2 to m − 1 do
5: ca ← ca + (ai − ai+1)

2

6: cb ← cb + (bi − bi+1)
2

7: return d · max(ca ,cb)
min(ca ,cb)

and DTW. We use the latter measure. For consistency with the published algorithm,
window size for DTW is set using cross validation of DTWdistance (rather than CID).

2.1.6 Derivative DTW (DDDTW) (Górecki and Łuczak 2013)

Górecki and Łuczak (2013) describe an approach for using a weighted combination of
raw series and first-order differences for NN classification with either the Euclidean
distance or full-window DTW. They find the DTW distance between two series and
the two differenced series. These two distances are then combined using a weighting
parameter α (See Algorithm 4). Parameter α is found during training through a leave-
one-out cross-validation on the training data. This search is relatively efficient as
different parameter values can be assessed using pre-computed distances.

Algorithm 4 DDDTW (a,b)
Parameters: weight α, distance function dist , difference function diff
1: c ← diff(a)
2: d ← diff(b)
3: x ← dist (a, b)

4: y ← dist (c, d)

5: d ← α · x + (1 − α) · y
6: return d

An optimisation to reduce the search space of possible parameter values is proposed
in Górecki and Łuczak (2013). However, we could not recreate their results using this
optimisation. We found that if we searched through all values of α in the range of
[0, 1] in increments of 0.01, we were able to recreate the results exactly. Testing is
then performed with a 1-NN classifier using the combined distance function given in
Algorithm 4.

2.1.7 Derivative transform distance (DTDC) (Górecki and Łuczak 2014)

Górecki and Łuczak proposed an extension of DDDTW that uses DTW in conjunction
with transforms andderivatives (Górecki andŁuczak2014). Theypropose and evaluate
combining DDDTW with distances on data transformed with the sin, cosine and Hilbert
transform. We implement the cosine version (see Algorithm 5), where function cos

123

The great time series classification bake off...

transforms a series a into c using the formula

ci =
m∑

j=1

a j cos

(
Π

2

(

j − 1

2

)

(i − 1)

)

i = 1 . . . m.

The two parameters α and β are found through a grid search.

Algorithm 5 DTDC (a,b)
Parameters: weights α and β, distance function dist , difference function diff
1: c ← diff(a)
2: d ← diff(b)
3: e ← cos(a)
4: f ← cos(b)
5: x ← dist (a, b)

6: y ← dist (c, d)

7: z ← dist (e, f)
8: d ← α · x + β · y + (1 − α − β) · z
9: return d

DDDTW was evaluated on single train/test splits of 20 UCR datasets in Górecki
and Łuczak (2013) and both DDDTW and DTDC were evaluated on 47 in Górecki and
Łuczak (2014), CIDDTW on 43 datasets and DTDC on 47. We can recreate results
that are not significantly different to those published for all three algorithms. All
papers claim superiority to DTW. The small sample size for DDDTW makes this claim
debatable, but the published results for CIDDTW andDTDC are both significantly better
than DTW. On published results, DTDC is significantly more accurate than CIDDTW

and CIDDTW is significantly better than DDDTW.

2.1.8 Elastic ensemble (EE) (Lines and Bagnall 2015)

The EE is a combination of 11 nearest neighbour (NN) classifiers that use whole series
elastic distance measures in the time domain and with first order derivatives. The 11
classifiers in EE are 1-NN with: Euclidean distance; full window DTW; DTW with
window size set through cross validation; derivativeDTWwith full window; derivative
DTW with window set through cross validation; weighted DTW; derivative weighted
DTW; LCSS; ERP; time warp edit distance (Marteau 2009), and the move–split–
merge distance metric (Stefan et al. 2013). Lines and Bagnall (2015) show that none
of the individual components of EE significantly outperforms DTW with window set
through cross validation. They then demonstrate that an ensemble of these 11 whole
series elastic measures that combines the predictions of 1-NN classifiers using a voting
scheme that weights according to cross-validation training set accuracy is significantly
more accurate than any single component, including DTW.

123

A. Bagnall et al.

2.2 Phase dependent intervals

A family of algorithms derive features from intervals of each series. For a series of
lengthm, there arem(m−1)/2 possible contiguous intervals. The type of problem that
will benefit from selecting intervals rather than using whole series is likely to involve
long series with phase dependent discriminatory subseries and regions of noise that
could confound the classifier. For example, consider the problem SmallKitchenAppli-
ances, first used in Lines and Bagnall (2015) and derived from a UK study into power
usage in the home (Energy Saving Trust 2012). The SmallKitchenAppliances problem
involves classifying an electric device as either a kettle, microwave or toaster based
on a daily usage profile. The data is recorded every 2min, hence a case consists of 720
measurements. The pattern of usage is obviously discriminatory, but so is the time of
usage. For example, toasters are used more frequently in the morning, microwaves in
the evening. Each device is used between 1 and 10 times per day, so there are large areas
of redundant information in each instance.An interval based approach that uses numer-
ous intervals should be able to mitigate against this confounding effect. Normalising
makes the pattern of usage more important, as it distorts the actual electricity usage.
At their simplest, interval based methods are simply attribute selection technqiues.
Consider the spectral classification shown in Fig. 2. The data are light readings across
a wide spectra. The discriminatory features are at the infrared region of the spectrum.
However, ambient conditions cause huge variation in the visible light range which
is independent of class. This variation may swamp a whole series distance measure
and confound a traditional classifier. If we just use the correct interval, classification
will be much more accurate. The problem then is finding the best interval. Rather than
search for a fixed number of intervals using the training data, TSC algorithms generate
many different random intervals and classifiers on each one, ensembling the resulting
predictions.

The two key decisions about using random intervals to classify are, firstly, how to
deal with the fact there are so many possible intervals and secondly, what to actually

Region of greatest
series varia�on

Interval where
discriminatory
features are located

Fig. 2 An example dataset where interval methods should do well. The noise in the early part of the series
may confound whole series methods

123

The great time series classification bake off...

do with each interval once selected. Rodríguez et al. (2005) were the first to adopt an
interval based approach. They address the first issue by using only intervals of lengths
equal to powers of two and the second by calculating binary features over each intervals
based on threshold rules on the interval mean and standard deviation. A support vector
machine is then trained on this transformed feature set. This algorithmwas a precursor
to three recently proposed interval based classifiers that we have implemented.

2.2.1 Time series forest (TSF) (Deng et al. 2013)

Deng et al. (2013) overcome the problem of the huge interval feature space by employ-
ing a random forest approach, using summary statistics of each interval as features.
Training a single tree involves selecting

√
m random intervals, generating the mean,

standard deviation and slope of the random intervals for every series then creating and
training a tree on the resulting 3

√
m features. Classification is by a majority vote of

all the trees in the ensemble.

Algorithm 6 buildClassifierTSF(A list of n cases of length m, T = (X, y))
Parameters: the number of trees, r and the minimum subseries length, p.
1: Let F = (F1 . . . Fr) be the trees in the forest.
2: for i ← 1 to r do
3: Let S be a list of n cases (s1, . . . , sn) each with 3

√
m attributes

4: for j ← 1 to
⌊√

m
⌋
do

5: a = rand(1, m − p)

6: b = rand(a + p, m)

7: for k ← 1 to n do
8: sk,3(j−1)+1 = mean(xk , a, b)
9: sk,3(j−1)+2 = standardDeviation(xk , a, b)
10: sk,3(j−1)+3 = slope(xk , a, b)
11: Fi .buildClassi f ier({S, y})

The classification tree has two bespoke characteristics. Firstly, rather than evaluate
all possible split points to find the best information gain, a fixed number of evaluation
points is pre-defined. We assume this is an expedient to make the classifier faster, as it
removes the need to sort the cases by each attribute value. Secondly, a refined splitting
criteria to choose between features with equal information gain is introduced. This is
defined as the distance between the splitting margin and the closest case. The intuition
behind the idea is that if two splits have equal entropy gain, then the split that is furthest
from the nearest case should be preferred. This measure would have no value if all
possible intervals were evaluated because by definition the split points are taken as
equi-distant between cases. We experimented with including these two features, but
found the effect on accuracy was, if anything, negative. We found the computational
overhead of evaluating all split points acceptable, hence we had no need to include the
margin based tie breaker. We used the built in WEKA RandomTree classifier (which
is the basis for the WEKA RandomForest classifier) with default parameters. This
means there is no limit to the depth of the tree nor a minimum number of cases per
leaf node. A more formal description is given in Algorithm 6.

123

A. Bagnall et al.

2.2.2 Time series bag of features (TSBF) (Baydogan et al. 2013)

Time series bag of features (TSBF) is an extension of TSF that hasmultiple stages. The
first stage involves generating a new classification problem that involves creating new
instances from subseries of the full data. The second stage forms class probability
estimates for each subseries. The third stage constructs a bag of features for each
original instance from these probabilities. Finally a random forest classifier is built
on the bag of features representation. Algorithm 7 gives a pseudo-code overview,
modularised for clarity. TSBF can be summarised as follows.

Algorithm 7 buildClassifierTSBF(A list of n cases of length m, T = (X, y))
Parameters: the length factor z, the minimum interval length a and the number of bins, b.
1: Let F be the first random forest and S the second.
2: Let v be the number of intervals, v =
((z · m)/a)�
3: Let e be the minimum subseries length, e = v · a
4: Let w be the number of subseries, w =
m/a� − v

5: S =generateRandomSubseries(e, w) { S is the w × 2 matrix of subseries start and end points}
6: I =generateEqualWidthIntervals(S, v) { I is the w × v × 2 matrix of interval start and end points}
7: {W, y′} =generateIntervalFeatures(T,I)

{W is a set of n · w cases, where cases i · j is the summary features of intervals in the j th subseries of
instance i in training set X and y′

i · j is the class label of instance i .}

8: F.buildIncrementalClassifier({W, y′})
9: P ←getOOBProbabilities(F,W) { P is an n · f by c matrix of out of bag probability estimates for the

n · f cases in W .}
10: Z ←discretiseProbabilities(P, b) { Z is an n · w by c matrix of integers in the range of 1 to b}
11: Q ←formHistograms(Z) { Q is an n by (b · (c − 1) + c) list of instances where qi corresponds to

the counts of the subseries derived from instance i in X in Z, split by class. Overall class probability
estimates are appended to each case.}

12: S.buildIncrementalClassifier({Q, y}).

Stage 1: Generate a subseries classification problem.

1. Select w subseries start and end points (line 5). These are the same for each of the
full series. Then, for every series, repeat the following steps
(a) for each of the w subseries, take v equal width intervals (line 6) and calculate

the mean, standard deviation and slope (line 7).
(b) concatenate these features and the full subseries stats to form a new case with

w · v + 3 attributes and class label of the original series (line 7).

Stage 2: Produce class probability estimates for each subseries.

1. Train a random forest on the new subseries dataset W (line 8). W contains n · w

cases, each with w · v + 3 attributes. The number of trees in the random forest is
determined by incrementally adding trees in groups of 50 until the out of bag error
stops decreasing.

2. Find the random forest out of bag estimates of the class probabilities for each
subseries (line 9).

Stage 3: Recombine class probabilities and form a bag of patterns for each series.

123

The great time series classification bake off...

1. Discretise the class probability estimates for each subseries into b equal width bins
(line 10).

2. Bag together these discretised probabilities for each original series, ignoring the
last class (line 11). If there are c classes, each instance will have w · (c − 1)
attributes.

3. Add on the relative frequency of each predicted class (line 11).

Stage 4: Build the final random forest classifier (line 12).
New cases are classified by following the same stages of transformation and internal

classification. The number of subseries and the number of intervals are determined
by a parameter, z. Training involves searching possible values of z for the one that
minimizes the out of bag error for the final classifier. Other parameters are fixed for
all experiments. These are the minimum interval length (a = 5), the number of bins
for the discretisation (b = 10), the maximum number of trees in the forest (1000), the
number of trees to add at each step (50) and the number of repetitions (10).

2.2.3 Learned pattern similarity (LPS) (Baydogan and Runger 2016)

LPS was developed by the same research group as TSF and TSBF at Arizona State
University. It is also based on intervals, but themain difference is that subseries become
attributes rather than cases. Like TSBF, building the final model involves first building
an internal predictivemodel. However, LPS creates an internal regressionmodel rather
than a classification model. The internal model is designed to detect correlations
between subseries, and in this sense is an approximation of an autocorellation function.
LPS selects random subseries. For each location, the subseries in the original data are
concatenated to form a new attribute. The internal model selects a random attribute as
the response variable then constructs a regression tree. A collection of these regression
trees are processed to form a new set of instances based on the counts of the number
of subseries at each leaf node of each tree. Algorithm 8 describes the process. LPS
can be summarised as follows:

Algorithm 8 buildClassifierLPS(A list of n cases of length m, T = {X, y})
Parameters: the number of subseries, w; the maximum depth of the tree, d; and a random forest of

regression trees, F.
1: Let minL ←
(0.1 · m)� and max L ←
(0.9 · m)�
2: for f ∈ F do
3: l =random(minL ,max L) {l is the subseries length}
4: A ←generateRandomSubseriesLocations(l,w) {A is the w × 2 matrix of subseries start and end

points}
5: B ←generateRandomSubseriesDifferenceLocations(l,w)
6: W ←generateSubseriesFeatures(T,A,B) {W is a set of n · l cases and 2w attributes. Attribute i

(i ≤ w) is a concatenation of all of subseries with start position Ai,0 and end position Ai,1.}
7: f.buildRandomRegressionTree(W,d)
8: Let C be a list of cases of leaf node counts C = (c1, . . . , cn)

9: for i = 1 to n do
10: ci ←getLeafNodeCounts(F)

123

A. Bagnall et al.

Stage 1: Construct an ensemble of r regression trees.

1. Randomly select a segment length l (line 3)
2. Select w segments of length l from each series storing the locations in matrix A

(line 4).
3. Select w segments of length l from each difference series storing the locations in

matrix B (line 5).
4. Generate the n · l cases each with 2w attributes and store in W (line 6).
5. Choose a random column from W as the response variable then build a random

regression tree (i.e. a tree that only considers one randomly selected attribute at
each level) with maximum depth of d (line 7).

Stage 2: Form a count distribution over each tree’s leaf node.

1. For each case x in the original data, get the number of rows of W that reside in
each leaf node for all cases originating from x.

2. Concatenate these counts to form a new instance. Thus if every tree had t terminal
nodes, the new case would have r · t features. In reality, each tree will have a
different number of terminal nodes.

Classification of new cases is based on a 1-NN classification on these concatenated
leaf node counts.

There are two versions of LPS available, both of which aim to avoid the problem of
generating all possible subseries. TheR versionwith embeddedC functions creates the
randomly selected attribute at Stage 1 on the fly at each level of the tree. This avoids the
need to generate all possible subseries, but requires a bespoke tree. The second imple-
mentation (in Matlab) fixes the number of subseries to randomly select for each tree.
Experiments suggest there is little difference in accuracy between the two approaches.
We adopt the latter algorithm because it allows us to use the WEKA RandomRegres-
sionTree algorithm, thus simplifying the code and reducing the likelihood of bugs.

TSF and TSBF were evaluated on the original 46 UCR problems, LPS on an
extended set of 75 data sets first used in Lines and Bagnall (2015) (with the stan-
dard single train/test splits). Figure 3 shows the ranks of the published results for the
problem sets they have in common. Although TSBF has the highest average rank,
there is no significant difference between the classifiers at the 5% level. Pairwise
comparisons yield no significant difference between the three.

All three algorithms are stochastic, and our implementations are not identical, so
there are bound to be variations between our results and those found with the original
software. Our implementation of TSF has higher accuracy on 21 of the 44 datasets,

Fig. 3 Average ranks of
published results for TSF, LPS
and TSBF in a critical difference
diagram (explained in detail in
Sect. 3)

CD

3 2 1

1.7955
TSBF

2
TSF

2.2045
LPS

123

The great time series classification bake off...

worse on 23. The mean difference in accuracy is less than 1%. There is no significant
difference in means (at the 5% level) with a rank sum test or a binomial test.

Not all of the 75 datasets LPS used are directly comparable to those in the new
archive. This is because all of the new archive have been normalised, whereas many of
the data proposed in Lines and Bagnall (2015) are not normalised. Hence we restrict
our attention to the original UCR datasets. Our LPS classifier has higher accuracy on
20 of the 44 datasets and worse on 23. The mean difference in accuracy is less than
0.02%. Our results are not significantly different to those published when tested with
a rank sum test and a binomial test.

Our TSBF results are significantly worse than those published. Our TSBF classifier
has higher accuracy on 9 of the 44 datasets, worse on 34. The mean difference is
just over 1%. There is no obvious reason for this discrepancy. TSBF is a complex
algorithm, and it is possible there is a mistake in our implementation, but through our
best debugging efforts and consultation with the algorithm author we were not able to
find one. It may be caused by a difference in the random forest implementations of R
and WEKA or by an alternative model selection method.

2.3 Phase independent shapelets

The third scenario we consider is when one or more patterns within a series define a
class, but the actual location of this pattern is irrelevant. For example, a class of abnor-
mal ECG measurement may be characterised by an unusual pattern that only occurs
occasionally at any point during the measurement. Shapelets are subseries that capture
this type of characteristic. They allow for the detection of phase-independent localised
similarity between series within the same class. Figure 4 shows some example series
from the dataset NonInvasiveFetalECGThorax2. The data series are 750 points long
and there are 42 classes. Each series represents a single fetal heartbeat, so a single
anomaly will differentiate between one class and the others, but this may occur at dif-
ferent locations. Understandably, full series methods perform relatively poorly on this
data. Interval based methods may do better because they can remove some of the noise
caused by the length of series, but they still rely on the discriminatory features occur-
ring in approximately the same location. Figure 4 also displays an example shapelet
matched to three NonInvasiveFetalECGThorax2 series. This shapelet provides a good
match for class 27 but a poor match for class 32.

The original shapelet algorithm by Ye and Keogh (2011) finds shapelets through
enumerating all possible candidates, then uses the best shapelet as the splitting criterion
at each node of a decision tree. Two characteristics of the Ye algorithm are that, firstly,
shapelet enumeration is slow (O(n2m4)) and secondly, using shapelets embedded in
a decision tree does not lead to particularly accurate classifiers. This has lead to the
three recent advances in using shapelets for classification.

2.3.1 Fast shapelets (FS) (Rakthanmanon and Keogh 2013)

Rakthanmanon and Keogh (2013) propose an extension of the decision tree shapelet
approach (Ye and Keogh 2011; Mueen et al. 2011) that speeds up shapelet discov-

123

A. Bagnall et al.

Fig. 4 Example matching between a shapelet and three series of different classes from NonInvasiveFe-
talECGThorax2. The scale of the shapelet is different on each series to reflect that distance is measured
with normalised subseries

ery. Instead of a full enumerative search at each node, the fast shapelets algorithm
discretises and approximates the shapelets using a symbolic aggregate approxima-
tion (SAX) (Lin et al. 2007). SAX is a method for converting series to strings that
reduces the dimension of a series through piecewise aggregate approximation (PAA)
(Chakrabarti et al. 2002), then discretises the (normalised) series into bins formed
from equal probability areas of the normal distribution.

The FS algorithm forms a dictionary of SAX words for each possible shapelet
length. The dimensionality of the SAX dictionary is reduced through masking
randomly selected letters (random projection). Multiple random projections are per-
formed, and a frequency count histogram is built for each class. A score for each
SAX word can be calculated based on how well these frequency tables discriminate
between classes. The k-best SAX words are selected then mapped back to the original
shapelets, which are assessed using information gain in a way identical to that used in
Ye and Keogh (2011). Algorithm 9 gives a modular overview.

2.3.2 Shapelet transform (ST) (Hills et al. 2014; Bostrom and Bagnall 2015)

Hills et al. (2014) propose a shapelet transformation that separates the shapelet dis-
covery from the classifier by finding the top k shapelets on a single run (in contrast
to the decision tree, which searches for the best shapelet at each node). The shapelets
are used to transform the data, where each attribute in the new dataset represents the
distance of a series to one of the shapelets. We use the most recent version of this
transform (Bostrom and Bagnall 2015) that balances the number of shapelets per class
and evaluates each shapelet on how well it discriminates just one class. Algorithm 10
describes the enumerative process of finding k/c shapelets for each class, where c

123

The great time series classification bake off...

Algorithm 9 buildClassifierFS(A list of n cases of length m, T = {X, y})
Parameters: The SAXword length l; alphabet size α and window lengthw; number of random projections

r ; number of SAX words to convert back, k
1: Let b be an empty shapelet with zero quality
2: for l ← 5 to m do
3: S AX List ← createSaxList(T, l, α,w)
4: S AX Map ← randomProjection(S AX List ,r)
5: ScoreList ←scoreAllSAX(S AX List ,S AX Map)
6: s ←findBestSAX(ScoreList , S AX List , k)
7: if quality(b) < quality(s) then
8: b ← s
9: {T1,T2} ← splitData(T, b)
10: if ¬ isLeaf(T1) then
11: buildClassifierFS(T1)
12: if ¬ isLeaf(T2) then
13: buildClassifierFS(T2)

is the number of classes. For each series, all candidate shapelets of all permissable
lengths are assessed for their discriminatory power. This is done in two stages. First,
we find the distance between a shapelet and all series in the data. The distance between
a shapelet a of length l and a series t of length m > l is found by finding the minimum
Euclidean distance between the shapelet and all m − l + 1 windows in t (function
findDistances in line 10). Second, the n distances stored in list d are used to measure
how well the shapelet discriminates between series (using the information gain) of
class i and those not of class i (line 11 function assessCandidate). The candidate list
r is sorted then overlapping candidates are removed (line 14 removeSelfSimilar). The
top k/c shapelets for each class are retained.

Algorithm 10 BinaryShapeletSelection(A list of n cases of length m, T = (X, y))
Parameters: min and max length shapelet to search for; the maximum number of shapelets to find k;

number of classes c.
1: s ← ∅
2: p ← k/c
3: Let Ti be the set of series of class i
4: for i ← 1 to c do
5: for all t ∈ Ti do
6: r ← ∅
7: for l ← min to max do
8: W ← generateCandidates(t, l)
9: for all subseries a ∈ W do
10: d ← findDistances(a,T)

11: q ← assessCandidate(a, d, i)
12: r ← r

⋃
(a, q)

13: sortByQuality(r)
14: removeSelfSimilar(r)
15: s ← merge(s, p, r)
16: return s

The algorithm described in Algorithm 10 creates a set of shapelets. These shapelets
are used to create a new dataset, where an attribute represents the distance between

123

A. Bagnall et al.

each series and a shapelet. Following Bagnall et al. (2015) and Bostrom and Bagnall
(2015)we construct a classifier from this dataset using aweighted ensemble of standard
classifiers. We include k-Nearest Neighbour (where k is set through cross validation),
Naive Bayes, C4.5 decision tree, Support Vector Machines with linear and quadratic
basis function kernels, Random Forest (with 500 trees), Rotation Forest (with 50
trees) and a Bayesian network. Each classifier is assigned a weight based on the cross
validation training accuracy, and new data (after transformation) are classified with a
weighted vote. With the exception of k-NN, we do not optimise parameter settings for
these classifiers via cross validation.

2.3.3 Learned shapelets (LS) (Grabocka et al. 2014)

Grabocka et al. (2014) describe a shapelet discovery algorithm that adopts a heuris-
tic gradient descent shapelet search procedure rather than enumeration. LS finds k
shapelets that, unlike FS and ST, are not restricted to being subseries in the training
data. The k shapelets are initialised through a k-means clustering of candidates from
the training data. The objective function for the optimisation process is a logistic loss
function (with regularization term) L based on a logistic regression model for each
class. The algorithm jointly learns the weights for the regressionW, and the shapelets
S in a two stage iterative process to produce a final logistic regression model.

Algorithm 11 learnShapelets(A list of n cases of length m, T = {X, y})
Parameters: number of shapelets K , minimum shapelet length Lmin , scale of shapelet length, R, reg-

ularization parameter, λW , learning rate, η, number of iterations, max I ter , and softmax parameter,
α.

1: S ←initializeShapeletsKMeans(T,K ,R, Lmin)
2: W ←initializeWeights(T,K ,R)
3: for i ← 1 to max I ter do
4: M ← updateModel(T, S, α, Lmin , R)
5: L ← updateLoss(T,M,W)
6: W,S ← updateWandS(T,M,W,S, η, R, Lmin ,L, λW , α)
7: if diverged() then
8: i = 0
9: η = η/3

Algorithm 11 gives a high level view of the algorithm. LS restricts the search
to shapelets of length {Lmin, 2Lmin, . . . , RLmin}. A check is performed at certain
intervals as to whether divergence has occurred (line 7). This is defined as a train set
error of 1 or infinite loss. The check is performed when half the number of allowed
iterations is complete. This criteria meant that for some problems, LS never terminated
during model selection. Hence we limited the the algorithm to a maximum of five
restarts.

FS, LS and STwere evaluated on 33, 45 and 75 data sets respectively. The published
results for FS are significantly worse than those for LS and ST (see Fig. 5). There is
no significant difference between the LS and ST published results.

123

The great time series classification bake off...

Fig. 5 Average ranks of the
published results for three
shapelet algorithms Fast
Shapelets (FS), Shapelet
Transform (ST) and Learned
Shapelets (LS) on the 33
datasets they have in common

CD

3 2 1

1.4032
LS

1.8548
ST

2.7419
FS

Fig. 6 An example of the need for detecting recurring patterns rather than unique patterns from WormsT-
woClass. The top two series are the motion of normal worms, the bottom two mutant worms. The candidate
subseries would not necessarily be a good shapelet, because there are close matches in both mutant and non
mutant series

We can reproduce results that are not significantly different to FS and ST. We can
reproduce the output of the base code released for LS but are unable to reproduce the
actual published results. On average, our results are 1% worse than those published,
with the published results better on 26 datasets and worse on 7. The author of LS has
contributed several important refinements to the code and is looking to further bridge
this gap.

2.4 Dictionary based classifiers

Shapelet classifiers can find a single phase independent pattern that differentiates
classes. However, if it is the relative frequency of patterns that distinguishes the classes,
the shapelet approach will fail, because it looks for the closest single match in each
series, not the number of repetitions. Consider the problem WormsTwoClass, which
involves detecting whether a Caenorhabditis elegans is a mutant based on its motion
(first used in Bagnall et al. 2015 and derived from Yemini et al. 2013) (Fig. 6).

Mutants are characterised by the fact they make repeated unusual moves that nor-
mal worms rarely make. However, because the series are relatively long it is likely the
normal worms may make the unusual move at least once. This will confound shapelet
algorithms. Dictionary approaches address this scenario by forming a frequency count

123

A. Bagnall et al.

of repeated patterns. To do this they approximate and reduce the dimensionality of
series by transforming them into representative words, then basing similarity on com-
paring the distribution of words. The core process of dictionary approaches involves
forming words by passing a sliding window, lengthw, over each series, approximating
each window to produce l values, and then discretising these values by assigning each
a symbol from an alphabet of size α.

2.4.1 Bag of patterns (BOP) (Lin et al. 2012)

BOP is a dictionary classifier built on theSAX(Lin et al. 2007).BOPworks by applying
SAX to eachwindow to form aword. If consecutive windows produce identical words,
then only the first of that run is recorded. This is included to avoid over counting trivial
matches. The distribution of words over a series forms a count histogram. To classify
new samples, the same transform is applied to the new series and the nearest neighbour
histogram within the training matrix found. BOP sets the three parameters through
cross validation on the training data (Algorithm 12).

Algorithm 12 buildClassifierBOP(A list of n cases of length m, T = (X, y))
Parameters: the word length l, the alphabet size α and the window length w

1: Let H be a list of n histograms (h1, . . . , hn)

2: for i ← 1 to n do
3: for j ← 1 to m − w + 1 do
4: q ← xi, j . . . xi, j+w−1
5: r ← SAX(q, l, α)
6: if r = p then
7: pos ← index(r) {the function index determines the location of the word r in the count matrix

hi}
8: hi,pos ← hi,pos + 1
9: p ← r

2.4.2 Symbolic aggregate approximation-vector space model (SAXVSM) (Senin and
Malinchik 2013)

SAXVSM combines the SAX representation used in BOPwith the vector space model
commonly used in Information Retrieval. The key differences between BOP and
SAXVSM is that SAXVSM forms term frequencies over classes rather than series
and weights these by the inverse document frequency (t f · id f). For SAXVSM, term
frequency t f refers to the number of times a word appears in a class and document
frequency d f means the number of classes a word appears in. t f · id f is then defined
as

t f id f (t f, d f) =
{
log (1 + t f) · log

(
c

d f

)
if d f > 0

0 otherwise

where c is the number of classes. SAXVSM is described formally in Algorithm 13.
Parameters l, α andw are set through cross validation on the training data. Predictions

123

The great time series classification bake off...

Algorithm 13 buildClassifierSAXVSM(A list of n cases of length m, T = (X, y))
Parameters: the word length l, the alphabet size α and the window length w

1: Let H be a list of c class histograms (h1, . . . , hc)

2: Let M be a list of c class t f · id f (m1, . . . ,mc)

3: Let v be a set of all SAX words found
4: for i ← 1 to n do
5: for j ← 1 to m − w + 1 do
6: q ← xi, j . . . xi, j+w−1
7: r ← SAX(q, l, α)
8: if r = p then
9: pos ← index(r)
10: hyi ,pos ← hyi ,pos + 1
11: v.add(r)
12: p ← r
13: for v ∈ v do
14: pos ← index(v)
15: d f ← 0
16: for i ← 1 to c do
17: if hi,pos > 0 then
18: d f ← d f + 1
19: for i ← 1 to c do
20: Mi,pos ← t f id f (hi,pos , d f)

are made using a 1-NN classification based on the word frequency distribution of the
new case and the t f · id f vectors of each class. The Cosine similarity measure is used.

2.4.3 Bag of SFA symbols (BOSS) (Schäfer 2015)

BOSS also useswindows to formwords over series, but it has severalmajor differences
to BOP and SAXVSM. Primary amongst these is that BOSS uses a truncated Discrete
Fourier Transform (DFT) instead of a PAA on each window. Another difference is that
the truncated series is discretised through a technique called Multiple Coefficient Bin-
ning (MCB), rather than using fixed intervals. MCB finds the discretising break points
as a preprocessing step by estimating the distribution of the Fourier coefficients. This
is performed by segmenting the series, performing a DFT, then finding breakpoints for
each coefficient so that each bin contains the same number of elements. BOSS then
involves similar stages to BOP; it windows each series to form the term frequency
through the application of DFT and discretisation by MCB. A bespoke distance func-
tion is used for nearest neighbour classification. This non symmetrical function only
includes distances between frequencies of words that actually occur within the first
histogram passed as an argument. BOSS also includes a parameter that determines
whether the subseries are normalised or not.

We evaluate the ensemble version of BOSS described in Schäfer (2015). During
the parameter search of window sizes, the BOSS ensemble retains all classifiers with
training accuracy within 92% of the best. New instances are classified by a majority
vote (Algorithm 14).

BOP and SAXVSM were evaluated on 20 and 19 UCR problems respectively.
All algorithms used the standard single train/test split. BOSS presents results on an
extended set of 58 data sets from a range of sources. On the 19 data sets they all

123

A. Bagnall et al.

Algorithm 14 buildClassifierBOSS(A list of n cases of length m, T = (X, y))
Parameters: the word length l, the alphabet size α, the window length w, normalisation parameter p
1: Let H be a list of n histograms (h1, . . . , hn)

2: Let B be a matrix of l by α breakpoints found by MCB
3: for i ← 1 to n do
4: for j ← 1 to m − w + 1 do
5: o ← xi, j . . . xi, j+w−1
6: q ← DFT(o, l, α,p) { q is a vector of the complex DFT coefficients}
7: q′ ← (q1 . . . ql/2)

8: r ← SFAlookup(q′,B)
9: if r = p then
10: pos ←index(r)
11: hi,pos ← hi,pos + 1
12: p ← r

CD

3 2 1

1.4737
BOSS

1.7368
SAXVSM

2.7895
BOP

Fig. 7 Average ranks of published results on 19 data sets or BOP, SAXVSM, BOSS

have in common, BOP is significantly worse than BOSS and SAXVSM. There is no
significant difference between BOSS and SAXVSM (see Fig. 7).

OurBOP results are not significantly different to the publishedones.Wewere unable
to reproduce as accurate results as published for SAXVSMandBOSS.On examination
of the implementation for SAXVSM provided online and by correspondence with the
author, it appears the parameters for the published results were obtained through
optimisation on the test data. This obviously introduces bias, as can be seen from
the results for Beef. An error of 3.3% was reported. This is far better than any other
algorithm has achieved. Our results for BOSS are on average approximately 1%worse
than those published, a significant difference. Correspondence with the author and
examination of the code leads us to believe this is because of a versioning problem
with the code that meant the normalisation parameter was set to minimize test data
error rather than train error.

2.5 Combinations of transformations

Ensembles have proved popular in recent TSC research and are highly competitive
on general classification problems. TSF, TSBF and BOSS are ensembles based on the
same core classifier. Other approaches, such as the EE and ST use different classifier
components. All of these ensembles are constructed on the same representation. Two
recently proposed algorithms that have published very promising results combine
features and classifiers from different representations.

123

The great time series classification bake off...

2.5.1 DTW features (DTWF) (Kate 2016)

Kate (2016) proposes a feature generation scheme, DTWF , that combines DTW dis-
tances to training cases and SAX histograms. DTWF combines whole series and
dictionary based approaches into a single classifier. A training set with n cases is
transformed into a set with n features, where feature xi j is the full window DTW
distance between case i and case j . A further n features are then created. These are
the optimal window DTW distance between cases. Finally, SAX word frequency his-
tograms are created for each instance using the BOP algorithm. These al features are
concatenated with the 2n full and optimal window DTW features. The new dataset
is trained with a support vector machine with a polynomial kernel with order either
1, 2 or 3, set through cross validation. DTW window size and SAX parameters are
also set independently through cross validation with a 1-NN classifier. A more formal
description is provided in Algorithm 15.

Algorithm 15 buildClassifierDTWF (A list of n cases of length m, T = {X, y})
Parameters: the SVM order s, SAX word length l, alphabet size α and window length w, DTW window

width r
1: Let Z be a list of n cases of length 2n + αl , z1 . . . , zn initialised to zero.
2: for i ← 1 to n do
3: for j ← i + 1 to n do
4: zi, j ← DT W (xi , x j)

5: z j,i ← zi, j
6: for i ← 1 to n do
7: for j ← i + 1 to n do
8: zi,n+ j ← DT W (xi , x j , r)

9: z j,i+n ← zi,n+ j
10: for i ← 1 to n do
11: for j ← 1 to m − w + 1 do
12: q ← xi, j . . . xi, j+w−1
13: r ← SAX(q, l, α)
14: if r = p then
15: pos ← index(r)
16: zi,2n+pos ← zi,2n+pos + 1
17: p ← r
18: SVM.buildClassifier(Z, s)

2.5.2 Collection of transformation ensembles (COTE) (Bagnall et al. 2015)

In terms of the taxonomy we describe in this paper, the only classifier we are aware
of that explicitly ensembles over different representations is the collective of transfor-
mation ensembles (COTE). Bagnall et al. (2015) propose the meta ensemble COTE,
a combination of classifiers in the time, autocorrelation, power spectrum and shapelet
domains. The components of EE and ST are pooled with classifiers built on data trans-
formed into autocorrelation (ACF) and power spectrum (PS) representations. EE uses
the 11 classifiers described in Sect. 2.1.8. ACF and PS employ the same 8 classifiers
used in conjunction with the shapelet transform. We use the classifier structure called

123

A. Bagnall et al.

flat-COTE in Bagnall et al. (2015). This involves pooling all 35 classifiers into a single
ensemble with votes weighted by train set cross validation accuracy. There is how-
ever one difference: we use the Shapelet Transform described in Bostrom and Bagnall
(2015) rather than the version in Hills et al. (2014).

DTWF is assessed on 47 UCR data, COTE on a set of 75 datasets that include the
UCR data. We can reproduce the published results of DTWF . We can reproduce the
COTE results with the old version of ST, but the results with the new version of ST
are significantly better.

2.6 Time and space complexity

We reiterate that our primary concern is accuracy.We limit our consideration of timing
experiments to the elastic measures (Sect. 5.1) because comparing all algorithms
presents significant problems and potential biases. If we perform timings then we
would need to ensure all our code was optimized, not just that for our own algorithms.
We run all experiments on a shared cluster, so would need to mitigate for this. We
cannot time on a single problem, because some data has characteristics that slow down
certain algorithms. For example, LS has a condition where it restarts when the search
degenerates. This is much more likely to happen on some problems (for some reason,
ECG200 was the worst) than others. Nevertheless, there is massive variation in the
time and memory these algorithms require, so consideration of the complexity of the
algorithms is of interest. In particular, we found that little consideration has been
given to space complexity in the literature, and we found this a serious problem for
some algorithms. Table 1 summarises the time and space complexity of the 18 TSC
algorithms considered in the study.

Wecan broadly categorise the algorithms by time and space complexity. The slowest
algorithms are ST, EE and COTE. LS and TWE are also relatively slow on large
problems. The fastest algorithms are FS, TSF, BOP and SAXVSM. The most memory
intensive algorithms are DTWF , BOSS, LS, ST and COTE. Thememory requirements
for the shapelet algorithms can be reduced by the simple expedient of finding fewer
shapelets for ST.

2.7 Summary

Wehavegrouped the algorithms into those that use thewhole series, intervals, shapelets
or repeating pattern counts (see Table 2).

The point of any grouping is to aid understanding of the techniques. There are
many alternative classifications we could employ. We could label based on the type
of classifier (most simply, nearest neighbour or not). We could split the whole series
measures into those that use derivatives or not. We could distinguish between those
that use the autocorrelation function or not. Table 3 gives the break down of algorithms
versus these criteria.

There aremany other approaches that have been proposed that we have not included
due to time constraints and failure tomeet our inclusion criteria. Twoworthyofmention
are Silva et al.’s recurrence plot compression distance (RPCD) (Silva et al. 2013) and

123

The great time series classification bake off...

Table 1 Summary of the time and space complexity of the 18 TSC algorithms considered

Train time Train space Parameters

WDTW O(n2m2) O(m2)

TWE O(n2m2) O(m2)

MSM O(n2m2) O(m2)

CID O(n2m2) O(m2)

DDDTW O(n2m2) O(m2)

DTDC O(n2m2) O(m2)

EE O(n2m2) O(m2)

ST O(n2m4) O(kn) k: number of shapelets

LS O(em2n2R2) O(m2n2R2) R: shapelet scale, e: max nos iterations

FS O(nm2) O(nm2)

TSF O(rmn log n) O(rm) r : number of trees

TSBF O(rmnw log n) O(rm) w: number of subseries

LPS O(rmnw log n) O(rm)

BOP O(nm(n − w)) O(nαl) w: window length, l: word length

SAXVSM O(nm(n − w)) O(cαl) α: alphabet size

BOSS O(nm(n − w)) O(nαl)

DTWF O(n2m2) O(n2 + nαl)

COTE O(n2m4) O(knm2)

Train time includes the cross validated parameter search. Series length is m, number of series is n and
number of classes is c

Table 2 A summary of algorithm taxonomy by data feature characteristics: weighted DTW (WDTW)
(Jeong et al. 2011); time warp edit (TWE) (Marteau 2009); move–split–merge (MSM) (Stefan et al. 2013);
complexity invariant distance (CID) (Batista et al. 2014); derivative DTW (DDDTW) (Górecki and Łuczak
2013); derivative transform distance (DTDC) (Górecki and Łuczak 2014); elastic ensemble (EE) (Lines and
Bagnall 2015); time series forest (TSF) (Deng et al. 2013); time series bag of features (TSBF) (Baydogan
et al. 2013); learned pattern similarity (LPS) (Baydogan and Runger 2016); fast shapelets (FS) (Rakthan-
manon andKeogh 2013); shapelet transform (ST) (Hills et al. 2014); bag of patterns (BOP) (Lin et al. 2012);
SAX vector space model (SAXVSM) (Senin and Malinchik 2013); bag of SFA symbols (BOSS) (Schäfer
2015); DTW features (Kate 2016); collective of transformation-based ensembles (COTE) (Bagnall et al.
2015)

Whole series Intervals Shapelets Dictionary

WDTW TSF FS BOP

TWE TSBF ST SAXVSM

MSM LPS LS BOSS

CID COTE DTWF

DDDTW

DTDC

EE

COTE

123

A. Bagnall et al.

Table 3 A summary of
algorithms and the component
approaches underlying them

Approaches are nearest
neighbour classification (NN),
time domain distance function
(time), derivative based distance
function (deriv), shapelet based
(shape), interval based (int),
dictionary based (dict),
auto-correlation based (auto)
and ensemble (ens)

NN time deriv shape int dict auto ens

WDTW x x

TWE x x

MSM x x

CID x x x

DDDTW x x x

DTDC x x x

ST x x

LS x

FS x

TSF x x

TSBF x x

LPS x x x x

BOP x x

SAXVSM x x

BOSS x x x x

DTWF x x x x

EE x x x x

COTE x x x x x x

Fulcher and Jones’s feature-based linear classifier (FBL) (Fulcher and Jones 2014).
RPCD involves transforming each series into a 2 dimensional recurrence plot then
measuring similarity based on the size of the MPEG1 encoding of the concatena-
tion of the resulting images. We were unable to find a working Java based MPEG1
encoder, and the technique seems not to work with the MPEG4 encoders we tried.
FBL involves generating a huge number of possible features which are filtered with
a forward selection mechanism for a linear classifier. The technique utilises built in
matlab functions to generate thousands of features. Unfortunately these functions are
not readily available in Java, andwe considered it infeasible to attempt such as colossal
task. It is further worth noting that COTE produces significantly better results than
both RPCD and FBL (Bagnall et al. 2015).

3 Data and experimental design

The 85 datasets are described in detail on the website (Bagnall et al., http://
timeseriesclassification.com). The collection is varied in terms of data characteristics:
the length of the series ranges from 24 (ItalyPowerDemand) to 2709 (HandOutlines);
train set sizes vary from 16 to 8926; and the number of classes is between 2 and 60.
Figure 8 shows more detailed histograms. There are a large number of datasets with
small train set sizes (twenty have 50 or fewer train instances). Whilst this is histori-
cally valid (labelled data is often expensive to collect), data is becoming cheaper and
ubiquitous, so we believe that larger datasets should be better represented in the future.

123

http://timeseriesclassification.com
http://timeseriesclassification.com

The great time series classification bake off...

Fig. 8 Summary information for the 85 datasets in the archive

The data are from a wide range of domains, with an over representation of image
outline classification problems. We are introducing four new food spectra data sets:
Ham; Meat; Strawberry; and Wine. These were all created by the Institute of Food
Research, part of the Norwich Research Park, as were the three spectra data already
in the UCR repository (Beef, Coffee and OliveOil). Figure 8 gives the breakdown of
number of problems per category.

We run the same 100 resample folds on each problem for every classifier. The
first fold is always the original train test split. The other resamples are stratified to
retain class distribution in the original train/trest splits. These resample datasets can be
exactly reproduced using the method InstanceTools.resampleTrainAndTestInstances
with seeds 0–99.

Each classifier must be evaluated 8500 times (100 resamples on 85 datasets).Model
selection is repeated on every training set fold. We used the parameter values searched
in the relevant publication as closely as possible. The parameter values we search are
listed in Table 4. We allow each classifier a maximum 100 parameter values, each
of which we assess through a cross validation on the training data. The number of
cross validation folds is dependent on the algorithm. This is because the overhead of
the internal cross validation differs. For the distance based measures it is as fast to
do a leave-one-out cross validation as any other. For others we need a new model for
each set of parameter values. This means we need to construct 850,000 models for
each classifier. When we include repetitions caused by bugs, we estimate we have
conducted over 30 million distinct experiments over 6months.

The datasets vary greatly in size. The eight largest and invariably the slowest
are: ElectricalDevices; FordA; FordB; HandOutlines; NonInvasiveFetalECGThorax1;

123

A. Bagnall et al.

Table 4 Parameter settings and ranges for TSC algorithms

Parameters CV Folds

WDTW g ∈ {0, 0.01, . . . , 1} LOOCV

TWE ν ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1} and
λ ∈ {0, 0.25, 0.5, 0.75, 1.0}

LOOCV

MSM c ∈ {0.01, 0.1, 1, 10, 100} LOOCV

CID r ∈ {0.01, 0.1, 1, 10, 100} LOOCV

DDDTW a ∈ {0, 0.01, . . . , 1} LOOCV

DTDC a ∈ {0, 0.1, . . . , 1}, b ∈ {0, 0.1, . . . , 1} LOOCV

ST min=3, max=m-1 k = 10n 0

LS λ ∈ {0.01, 0.1}, L ∈ {0.1, 0.2}, R ∈ {2, 3} 3

FS r = 10, k = 10, l = 16 and α = 4 0

TSF r = 500 0

TSBF z ∈ {0.1, 0.25, 0.5, 0.75}, a = 5, b = 10 LOOCV

LPS w = 20, d ∈ 2, 4, 6, LOOCV

BOP α ∈ 2, 4, 6, 8, w from 10 to 36% of m,
l ∈ 2i |i = 1to log(w/2)

LOOCV

SAXVSM α ∈ 2, 4, 6, 8, w from 10 to 36% of m,
l ∈ 2, 4, 6, 8

LOOCV

BOSS α = 4, w from 10 to m, with min(200,
√

(m)),
l ∈ 8, 10, 12, 14, 16

LOOCV

DTWF DTW paras 0 to 0.99, SAX pars as BOP, SVM
kernel degree {1, 2, 3}

10

EE Constituent classifier parameters only 0

COTE Constituent classifier parameters only 0

The notation is overloaded in order to maintain consistency with authors’ original parameter names

NonInvasiveFetalECGThorax2; StarlightCurves; and UWaveGestureLibraryAll. We
have had to sub-sample these data sets for the model selection stages for the slower or
memory intensive algorithms such as ST, LS and BOSS. Full details of the sampling
performed are in the code documentation.

We follow the basic methodology described in Demšar (2006) when testing for
significant difference between classifiers. For any single problem we can compare
differences between two or more classifiers over the 100 resamples using standard
parametric tests (t-test for two classifiers, ANOVA for multiple classifiers) or non
parametric test (binomial test or the Wilcoxon sign rank test for two classifiers, Fried-
man test for multiple classifiers). However, the fact we are resampling data means the
observations are not independent and we should be careful interpreting too much into
the results for a single problem. The real benefit of resampling is to reduce the risk
of bias introduced through overfitting on a single sample. Our main focus of interest
is relative performance over multiple data sets. Hence, we average accuracies over
all 100 resamples, then compare classifiers by ranks using the Friedman test, which
detects any overall difference in ranks. Following recommendations in Benavoli et al.
(2016) and García and Herrera (2008), we then compare all classifiers with pairwise

123

The great time series classification bake off...

Wilcoxon signed rank tests, and form cliques using the Holm correction, which adjusts
family-wise error less conservatively than a Bonferonni adjustment. We present the
average ranks in a critical difference diagram (for example, see Figs. 3, 5, 7). These
diagrams show the average ranks of the classifiers in order, and groupings, or cliques,
represented by a solid bar. A clique represents a group of classifiers within which there
is no significant pairwise difference.

4 Overall results

Due to space constraints, we present an analysis of our results rather than presenting
the full data. All of our results and spreadsheets to derive the graphs are available
from (Bagnall et al., http://timeseriesclassification.com). All accuracies presented are
absolute and not relative to each other. i.e., if we claim algorithm A is 10% better than
algorithm B, we mean the average accuracy is 0.1 higher for algorithm A than B, not
that it is 10% larger than B.

4.1 Benchmark classifiers

We believe that newly proposed algorithms should add some value in terms of accu-
racy or efficiency over sensible standard approaches which are generally much simpler
and better understood. The most obvious starting point for any classification problem
is to use a standard classifier that treats each series a vector (i.e. make no explicit use
of any autocorellation structure). Three characteristics that make TSC problems hard
are having few cases, long series (large number of attributes) and highly correlated
or redundant features. These are problems that are well studied in machine learning
and classifiers have been designed to compensate for them. TSC characteristics that
will confound traditional classifiers include discriminatory features in the autocor-
relation function, phase independence within a class and embedded discriminatory
subseries. However, not all problems will have these characteristics, and benchmark-
ing against standard classifiers may give insights into the problem characteristics. We
have experimented with WEKA versions of C4.5 (C45), naive Bayes (NB), logistic
regression (logistic), support vector machines with linear (SVML) and quadratic ker-
nel (SVMQ), multilayer perceptron (MLP), random forest (with 500 trees) (RandF)
and rotation forest (with 50 trees) (RotF). In TSC specific research, the starting point
with most investigations is 1-NN with Euclidean distance (ED). This basic classifier
is a very low benchmark for comparison and is easily beaten with other standard
classifiers. A more useful benchmark is 1-NN dynamic time warping with a warping
window set through cross validation (DTW) (Ratanamahatana and Keogh 2005).

Figure 9 shows the average ranks of the classifiers in a critical difference diagram.
RotF, RandF and DTW form a clique of classifiers better than the others. Based on
these results, we select RotF and DTW as our two benchmarks classifiers. Head to
head, RotF has significantly better accuracy on 43 problems, DTW on 33, and no
difference on 9 data sets.

123

http://timeseriesclassification.com

A. Bagnall et al.

CD

11 10 9 8 7 6 5 4 3 2 1

2.7412 RotF
3.8471 RandF
3.9588 DTW
4.5059 SVMQ
5.4059 MLP
5.8882 ED

6.2176SVML

7.4882BN

8.1176NB

8.8118C45

9.0176Logistic

Fig. 9 Critical difference diagram for 11 potential benchmark classifiers

4.2 Comparison against benchmark classifiers

Table 5 shows the summary of the pairwise results of the 19 classifiers against DTW
andRotF.The results largely confirmour prior beliefs.Of those significantly better than
DTW, there is a group that aremore accurate by somemargin:COTE,EE,STandBOSS
are 3–8%more accurate thanDTWon average. There is a second group that offer 1–3%
improvement in accuracy (LPS, MSM, TSF, TSBF and DTWF) and the final cluster
offers a very small, but significant, improvement over DTW (WDTW, LS, DTDC

and CIDDTW). Rotation forest is actually harder to beat. The third group that offer
small but significant improvement over DTW fail to outperform RotF. Nine classifiers
are significantly better than both benchmarks: COTE; ST; BOSS; EE; DTWF ; TSF;
TSBF; LPS; and MSM. BOP, SAXVSM and FS are all significantly worse than both
the benchmarks.

4.3 Comparison of TSC algorithms

Table 6 gives the mean accuracy and standard deviation (over 85 problems) of the nine
classifiers that beat the benchmarks. The rank data is given in Fig. 10.

The most obvious conclusion from this graph is that COTE is significantly better
than the others. COTE performs best on 36 problems. EE and ST are components of
COTE, hence this result demonstrates the benefits of combining classifiers on alterna-
tive feature spaces. We believe the success of COTE is based on the fact that the wide
range of problem types we consider means that no one representation will dominate.
Table 7 shows the difference of the main algorithms from COTE and also the standard
deviation in ranks of the top nine algorithms and the two benchmarks.

COTE, EE andDTWF have relatively low deviation in ranks. COTE andDTWF are
the only algorithms that span different representations and EE combines whole series
measures on both time domain and first order differences. Conversely, ST varies in

123

The great time series classification bake off...

Table 5 A summary of algorithm performance based on significant difference to DTW and Rotation Forest

Comparison to DTW Comparison to RotF

Classifier Prop better (%) Mean difference
(%)

Classifier Prop better (%) Mean difference
(%)

Significantly better than DTW Significantly better than RotF

COTE 96.47 8.12 COTE 84.71 8.14

EE 95.29 3.51 ST 75.29 6.15

ST 80.00 6.13 TSF 63.53 1.93

BOSS 78.82 5.67 BOSS 62.35 5.70

DTWF 75.29 2.87 LPS 60.00 1.86

TSF 68.24 1.91 EE 58.82 3.54

TSBF 65.88 2.19 DTWF 58.82 2.89

MSM 62.35 1.89 MSM 57.65 1.91

LPS 61.18 1.83 TSBF 56.47 2.22

WDTW 60.00 0.20 Not significantly different to RotF

LS 58.82 0.56 LS 61.18 0.58

DTDC 52.94 0.79 CIDDTW 48.24 0.56

CIDDTW 50.59 0.54 DTDC 47.06 0.82

Not significantly different to DTW DDDTW 45.88 0.44

DDDTW 56.47 0.42 TWE 45.88 0.40

RotF 56.47 −0.02 WDTW 44.71 0.22

TWE 49.41 0.37 DTW 43.53 0.02

Significantly worse than DTW Significantly worse than RotF

SAXVSM 41.18 −3.29 BOP 34.12 −3.03

BOP 37.65 −3.05 SAXVSM 31.76 −3.26

FS 30.59 −7.40 FS 22.35 −7.38

The column prop better gives the proportion of problems where the classifier has a significantly higher
mean accuracy over 100 resamples than the benchmark. The column mean gives the mean difference in
mean accuracy over all 85 problems. Thus, for example, COTE is on average 8.12% more accurate than
DTW over the 85 problems

rank considerably, even though it is an ensemble and ranked second overall. Shapelets
work well on some problems but poorly on others where the approach is inappropriate.
The second point Table 7 highlights is that even though COTE is on average better,
this does not necessarily help when given a specific problem. The fact that COTE
is significantly better than the others overall does not mean it will always be a good
choice. On FaceFour, for example, it is ranked 22 of the 37 algorithms we evaluate and
is beaten by algorithms such as a Bayesian Network. Similarly, BOSS is ranked 35th
on ItalyPowerDemand. There are two obvious questions that would aid practitioners of
TSC. Firstly, is there a problem characteristic that would allow us to make an informed
choice as to the best classifier? Secondly, can we choose the algorithm based on
performance on the train data? The latter question can be partially addressed through
mechanisms such as Texas sharpshooter plots (Batista et al. 2014). Where possible,

123

A. Bagnall et al.

Ta
bl
e
6

A
ve
ra
ge

ac
cu
ra
cy

of
th
e
be
st
ni
ne

cl
as
si
fie
rs
ov
er

85
pr
ob
le
m
s

D
at
as
et
s

C
O
T
E

ST
B
O
SS

E
E

D
T
W

F
T
SF

T
SB

F
L
PS

M
SM

A
di
ac

0.
81

0.
76

8
0.
74

9
0.
66

5
0.
60

5
0.
70

7
0.
72

7
0.
76

5
0.
63

6

A
rr
ow

H
ea
d

0.
87

7
0.
85

1
0.
87

5
0.
86

0.
77

6
0.
78

9
0.
80

1
0.
80

6
0.
81

5

B
ee
f

0.
76

4
0.
73

6
0.
61

5
0.
53

2
0.
54

6
0.
64

8
0.
55

4
0.
52

0.
47

4

B
ee
tle

Fl
y

0.
92

1
0.
87

5
0.
94

9
0.
82

3
0.
85

3
0.
84

2
0.
79

9
0.
89

3
0.
79

4

B
ir
dC

hi
ck
en

0.
94

1
0.
92

7
0.
98

4
0.
84

8
0.
86

5
0.
83

9
0.
90

2
0.
85

4
0.
86

6

C
ar

0.
89

9
0.
90

2
0.
85

5
0.
79

9
0.
85

1
0.
75

8
0.
79

5
0.
83

6
0.
84

1

C
B
F

0.
99

8
0.
98

6
0.
99

8
0.
99

3
0.
97

9
0.
95

8
0.
97

7
0.
98

4
0.
97

2

C
hl
or
in
eC

on
ce
nt
ra
tio

n
0.
73

6
0.
68

2
0.
66

0.
65

9
0.
65

8
0.
71

9
0.
68

3
0.
64

2
0.
62

6

C
in
C
E
C
G
to
rs
o

0.
98

3
0.
91

8
0.
9

0.
94

6
0.
71

4
0.
97

4
0.
71

6
0.
74

3
0.
93

5

C
of
fe
e

1
0.
99

5
0.
98

9
0.
98

9
0.
97

3
0.
98

9
0.
98

2
0.
95

0.
94

5

C
om

pu
te
rs

0.
77

0.
78

5
0.
80

2
0.
73

2
0.
65

9
0.
76

8
0.
76

5
0.
72

6
0.
71

3

C
ri
ck
et
X

0.
81

4
0.
77

7
0.
76

4
0.
80

1
0.
76

9
0.
69

1
0.
73

1
0.
69

6
0.
77

8

C
ri
ck
et
Y

0.
81

5
0.
76

2
0.
74

9
0.
79

4
0.
75

6
0.
68

8
0.
72

8
0.
70

6
0.
76

C
ri
ck
et
Z

0.
82

7
0.
79

8
0.
77

6
0.
80

4
0.
78

5
0.
70

7
0.
73

8
0.
71

4
0.
77

9

D
ia
to
m
Si
ze
R
ed
uc
tio

n
0.
92

5
0.
91

1
0.
93

9
0.
94

6
0.
94

2
0.
94

1
0.
89

0.
91

5
0.
93

9

D
is
ta
lP
ha
la
nx
O
A
G

0.
80
5

0.
82

9
0.
81

5
0.
76

8
0.
79

6
0.
80

9
0.
81

6
0.
76

7
0.
75

6

D
is
ta
lP
ha
la
nx
O
C

0.
82

1
0.
81

9
0.
81

4
0.
76

8
0.
76

0.
81

3
0.
81

2
0.
74

2
0.
75

4

D
is
ta
lP
ha
la
nx
T
W

0.
69

3
0.
69

0.
67

3
0.
65

4
0.
65

8
0.
68

6
0.
69

0.
61

8
0.
61

8

E
ar
th
qu

ak
es

0.
74

7
0.
73

7
0.
74

6
0.
73

5
0.
74

7
0.
74

7
0.
74

7
0.
66

8
0.
69

5

E
C
G
20

0
0.
87

3
0.
84

0.
89

0.
88

1
0.
81

9
0.
86

8
0.
84

7
0.
80

7
0.
87

7

123

The great time series classification bake off...

Ta
bl
e
6

co
nt
in
ue
d

D
at
as
et
s

C
O
T
E

ST
B
O
SS

E
E

D
T
W

F
T
SF

T
SB

F
L
PS

M
SM

E
C
G
50

00
0.
94

6
0.
94

3
0.
94

0.
93

9
0.
94

0.
94

4
0.
93

8
0.
91

7
0.
93

E
C
G
Fi
ve
D
ay
s

0.
98

6
0.
95

5
0.
98

3
0.
84

7
0.
90

7
0.
92

2
0.
84

9
0.
84

0.
87

9

E
le
ct
ri
cD

ev
ic
es

0.
88
3

0.
89

5
0.
8

0.
83

1
0.
87

4
0.
80

4
0.
80

8
0.
85

3
0.
82

5

Fa
ce
A
ll

0.
99

0.
96

8
0.
97

4
0.
97

6
0.
96

3
0.
94

9
0.
94

2
0.
96

2
0.
98

6

Fa
ce
Fo

ur
0.
85

0.
79

4
0.
99

6
0.
87

9
0.
90

9
0.
89

1
0.
86

2
0.
88

9
0.
92

Fa
ce
sU

C
R

0.
96

7
0.
90

9
0.
95

1
0.
94

8
0.
88

9
0.
89

7
0.
84

9
0.
91

0.
97

Fi
ft
yw

or
ds

0.
80

1
0.
71

3
0.
70

2
0.
82

1
0.
74

8
0.
72

8
0.
74

4
0.
77

6
0.
81

7

Fi
sh

0.
96
2

0.
97

4
0.
96

9
0.
91

3
0.
93

1
0.
80

7
0.
91

3
0.
91

2
0.
89

7

Fo
rd
A

0.
95

5
0.
96

5
0.
92

0.
75

1
0.
88

4
0.
81

6
0.
83

1
0.
86

9
0.
72

5

Fo
rd
B

0.
92

9
0.
91

5
0.
91

1
0.
75

7
0.
84

3
0.
79

0.
75

1
0.
85

2
0.
73

G
un

Po
in
t

0.
99

2
0.
99

9
0.
99

4
0.
97

4
0.
96

4
0.
96

2
0.
96

5
0.
97

2
0.
94

8

H
am

0.
80

5
0.
80

8
0.
83

6
0.
76

3
0.
79

5
0.
79

5
0.
71

1
0.
68

5
0.
74

5

H
an
dO

ut
lin

es
0.
89

4
0.
92

4
0.
90

3
0.
88

0.
91

5
0.
90

9
0.
87

9
0.
86

8
0.
86

4

H
ap
tic
s

0.
51

7
0.
51

2
0.
45

9
0.
45

1
0.
46

4
0.
46

7
0.
46

3
0.
41

5
0.
44

4

H
er
ri
ng

0.
63

2
0.
65

3
0.
60

5
0.
56

6
0.
60

9
0.
60

6
0.
59

0.
54

9
0.
55

9

In
lin

eS
ka
te

0.
52

6
0.
39

3
0.
50

3
0.
47

6
0.
38

2
0.
37

9
0.
37

7
0.
44

9
0.
45

5

In
se
ct
W
in
gb

ea
tS
ou

nd
0.
63

9
0.
61

7
0.
51

0.
58

1
0.
60

2
0.
61

3
0.
61

6
0.
51

9
0.
57

It
al
yP

ow
er
D
em

an
d

0.
97

0.
95

3
0.
86

6
0.
95

1
0.
94

8
0.
95

8
0.
92

6
0.
91

4
0.
93

6

L
ar
ge
K
itc
he
nA

pp
lia
nc
es

0.
9

0.
93

3
0.
83

7
0.
81

6
0.
82

3
0.
64

4
0.
55

1
0.
68

0.
74

9

L
ig
ht
ni
ng

2
0.
78

5
0.
65

9
0.
81

0.
83

5
0.
71

0.
75

7
0.
76

0.
75

7
0.
79

2

L
ig
ht
ni
ng

7
0 .
79

9
0.
72

4
0.
66

6
0.
76

3
0.
67

1
0.
72

3
0.
68

0.
63

1
0.
71

3

M
al
la
t

0.
97

4
0.
97

2
0.
94

9
0.
96

1
0.
92

9
0.
93

7
0.
95

1
0.
90

8
0.
91

8

123

A. Bagnall et al.

Ta
bl
e
6

co
nt
in
ue
d

D
at
as
et
s

C
O
T
E

ST
B
O
SS

E
E

D
T
W

F
T
SF

T
SB

F
L
PS

M
SM

M
ea
t

0.
98

1
0.
96

6
0.
98

0.
97

8
0.
98

3
0.
97

8
0.
98

3
0.
96

8
0.
97

7

M
ed
ic
al
Im

ag
es

0.
78

5
0.
69

1
0.
71

5
0.
76

1
0.
70

1
0.
75

7
0.
70

1
0.
71

0.
75

7

M
id
dl
eP

ha
la
nx

O
A
G

0.
80

1
0.
81

5
0.
80

8
0.
78

2
0.
79

8
0.
79

4
0.
8

0.
77

0.
75

1

M
id
dl
eP
ha
la
nx
O
C

0.
72

2
0.
69

4
0.
66

6
0.
60

9
0.
58

1
0.
67

6
0.
67

3
0.
59

7
0.
56

M
id
dl
eP
ha
la
nx
T
W

0.
58

7
0.
57

9
0.
53

7
0.
52

5
0.
51

9
0.
57

7
0.
56

8
0.
50

3
0.
49

9

M
ot
eS

tr
ai
n

0.
90

2
0.
88

2
0.
84

6
0.
87

5
0.
89

1
0.
87

4
0.
88

6
0.
91

7
0.
88

N
on

In
vF

et
al
E
C
G
T
ho

ra
x1

0.
92

9
0.
94

7
0.
84

1
0.
84

9
0.
87

7
0.
88

0.
84

2
0.
80

7
0.
81

8

N
on

In
vF

et
al
E
C
G
T
ho

ra
x2

0.
94

6
0.
95

4
0.
90

4
0.
91

4
0.
89

8
0.
91

4
0.
86

2
0.
82

6
0.
89

4

O
liv

eO
il

0.
90

1
0.
88

1
0.
87

0.
87

9
0.
86

4
0.
88

3
0.
86

4
0.
89

2
0.
87

2

O
SU

L
ea
f

0.
94
9

0.
93
4

0.
96

7
0.
81

2
0.
80

9
0.
63

7
0.
67

8
0.
76

3
0.
78

7

Ph
al
an
ge
sO

ut
lin

es
C
or
re
ct

0.
78

3
0.
79

4
0.
82

1
0.
78

0.
79

3
0.
80

4
0.
82

5
0.
79

0.
76

Ph
on

em
e

0.
36

2
0.
32

9
0.
25

6
0.
29

9
0.
22

0.
21

1
0.
27

8
0.
24

5
0.
27

5

Pl
an
e

1
1

0.
99

8
1

0.
99

6
0.
99

4
0.
99

3
1

0.
99

9

Pr
ox

im
al
Ph

al
an
xO

A
G

0.
87

1
0.
88

1
0.
86

7
0.
83

9
0.
82

9
0.
84

7
0.
86

1
0.
85

1
0.
80

6

Pr
ox
im

al
Ph

al
an
xO

C
0.
84

8
0.
84

1
0.
81

9
0.
80

5
0.
82

4
0.
84

6
0.
84

2
0.
8

0.
76

9

Pr
ox
im

al
Ph

al
an
xT

W
0.
81

5
0.
80

3
0.
77

3
0.
75

9
0.
77

4
0.
80

8
0.
79

8
0.
72

2
0.
72

9

R
ef
ri
ge
ra
tio

nD
ev
ic
es

0.
74

2
0.
76

1
0.
78

5
0.
67

6
0.
65

6
0.
61

5
0.
63

8
0.
67

5
0.
70

4

Sc
re
en
Ty

pe
0.
65

1
0.
67

6
0.
58

6
0.
55

4
0.
49

9
0.
57

3
0.
53

8
0.
50

6
0.
49

3

Sh
ap
el
et
Si
m

0.
96

4
0.
93

4
1

0.
82

7
0.
88

8
0.
51

0.
91

3
0.
87

4
0.
85

Sh
ap
es
A
ll

0.
91

1
0.
85

4
0.
90

9
0.
88

6
0.
79

6
0.
8

0.
85

3
0.
88

5
0.
87

5

Sm
al
lK

itc
he
nA

pp
lia

nc
es

0.
78

8
0.
80

2
0.
75

0.
70

3
0.
75

3
0.
81

3
0.
67

4
0.
72

4
0.
71

7

123

The great time series classification bake off...

Ta
bl
e
6

co
nt
in
ue
d

D
at
as
et
s

C
O
T
E

ST
B
O
SS

E
E

D
T
W

F
T
SF

T
SB

F
L
PS

M
SM

So
ny
A
IB

O
R
ob

ot
Su

rf
ac
e1

0.
89

9
0.
88

8
0.
89

7
0.
79

4
0.
88

4
0.
84

5
0.
83

9
0.
84

2
0.
76

4

So
ny
A
IB

O
R
ob

ot
Su

rf
ac
e2

0.
96

0.
92

4
0.
88

8
0.
87

0.
85

9
0.
85

6
0.
82

5
0.
85

1
0.
87

7

St
ar
lig

ht
C
ur
ve
s

0.
98

0.
97

7
0.
97

8
0.
94

1
0.
96

0.
96

9
0.
97

8
0.
96

8
0.
88

2

St
ra
w
be
rr
y

0.
96

3
0.
96

8
0.
97

0.
95

9
0.
97

0.
96

3
0.
96

8
0.
96

3
0.
95

8

Sw
ed
is
hL

ea
f

0.
96

7
0.
93

9
0.
91

8
0.
91

6
0.
88

5
0.
89

2
0.
90

8
0.
92

6
0.
88

7

Sy
m
bo

ls
0.
95

3
0.
86

2
0.
96

1
0.
95

7
0.
93

0.
88

8
0.
94

4
0.
96

0.
95

2

Sy
nt
he
tic

C
on

tr
ol

0.
99

9
0.
98

7
0.
96

8
0.
99

4
0.
98

6
0.
99

0.
98

7
0.
97

2
0.
98

2

To
eS

eg
m
en
ta
tio

n1
0.
93

4
0.
95

4
0.
92

9
0.
78

8
0.
92

2
0.
66

1
0.
85

8
0.
84

1
0.
82

1

To
eS

eg
m
en
ta
tio

n2
0.
95

1
0.
94

7
0.
96

0.
90

7
0.
90

4
0.
78

2
0.
88

6
0.
92

6
0.
89

5

T
ra
ce

1
1

1
0.
99

6
0.
99

7
0.
99

8
0.
98

1
0.
96

6
0.
95

6

Tw
oL

ea
dE

C
G

0.
98

3
0.
98

4
0.
98

5
0.
95

8
0.
95

8
0.
84

2
0.
91

0.
92

8
0.
94

1

Tw
oP

at
te
rn
s

1
0.
95

2
0.
99

1
1

1
0.
99

1
0.
97

4
0.
96

7
0.
99

9

U
W
av
eG

es
tu
re
L
ib
ra
ry
X

0.
83

1
0.
80

6
0.
75

3
0.
80

5
0.
80

6
0.
80

6
0.
83

4
0.
81

9
0.
77

5

U
W
av
eG

es
tu
re
L
ib
ra
ry
Y

0.
76

6
0.
73

7
0.
66

1
0.
73

1
0.
71

7
0.
72

7
0.
74

6
0.
75

3
0.
69

U
W
av
eG

es
tu
re
L
ib
ra
ry
Z

0.
76

0.
74

7
0.
69

5
0.
72

6
0.
73

6
0.
74

1
0.
77

6
0.
76

6
0.
70

1

U
W
av
eG

es
tu
re
L
ib
ra
ry
A
ll

0.
96

5
0.
94

2
0.
94

4
0.
96

8
0.
96

3
0.
96

2
0.
94

4
0.
96

8
0.
96

W
af
er

0.
99

9
1

0.
99

9
0.
99

7
0.
99

6
0.
99

7
0.
99

6
0.
99

5
0.
99

6

123

A. Bagnall et al.

Ta
bl
e
6

co
nt
in
ue
d

D
at
as
et
s

C
O
T
E

ST
B
O
SS

E
E

D
T
W

F
T
SF

T
SB

F
L
PS

M
SM

W
in
e

0.
90

4
0.
92

6
0.
91

2
0.
88

7
0.
89

2
0.
88

1
0.
87

9
0.
88

4
0.
88

4

W
or
dS

yn
on
ym

s
0.
74

8
0.
58

2
0.
65

9
0.
77

8
0.
67

4
0.
64

3
0.
66

9
0.
72

8
0.
77

3

W
or
m
s

0.
72

5
0.
71

9
0.
73

5
0.
64

4
0.
67

3
0.
62

8
0.
66

8
0.
64

2
0.
61

6

W
or
m
sT
w
oC

la
ss

0.
78

5
0.
77

9
0.
81

0.
71

7
0.
73

0.
68

5
0.
75

5
0.
74

3
0.
71

2

Y
og
a

0.
89
8

0.
82
3

0.
91

0.
88

5
0.
86

3
0.
86

7
0.
83

5
0.
87

4
0.
88

8

A
ve
ra
ge

ra
nk

2.
11

3.
56

4.
04

5.
02

5.
61

5.
71

5.
92

6.
40

6.
62

W
in
s

36
.5

17
17

6.
5

2
1

3
1

1

T
he

be
st

al
go
ri
th
m

of
th
es
e
ni
ne

is
in

bo
ld
.
So

m
e
of

th
e
pr
ob
le
m

na
m
es

ar
e
ab
br
ev
ia
te
d
an
d
al
l
of

th
e
re
su
lts

ar
e
ro
un
de
d
to

3
de
ci
m
al

pl
ac
es

to
sa
ve

sp
ac
e.

A
pp

ar
en
t

di
sc
re
pa
nc
ie
s
su
ch

as
th
e
fa
ct

ST
ha
s
ac
cu
ra
cy

of
1
on

pl
an
e
bu
t
is
no

t
re
gi
st
er
ed

as
on

e
of

th
e
be
st
ar
e
ca
us
ed

by
ro
un

di
ng

(S
T
av
er
ag
e
ac
cu
ra
cy

is
0.
99

96
1)
.F

ul
l
re
su
lts
,

in
cl
ud

in
g
th
e
ac
cu
ra
cy

fo
r
ea
ch

fo
ld

fo
r
ev
er
y
al
go

ri
th
m
,a
re

av
ai
la
bl
e
on

th
e
w
eb
si
te

123

The great time series classification bake off...

CD

9 8 7 6 5 4 3 2 1

2.1118
COTE

3.5588
ST

4.0412
BOSS

5.0176
EE

5.6118 DTW
F

5.7118
TSF

5.9235
TSBF

6.4059
LPS

6.6176
MSM

Fig. 10 Critical difference diagram for the nine classifiers significantly better than both benchmark clas-
sifiers

Table 7 Average deviation in accuracy from COTE, standard deviation in ranks and maximum rank over
all 85 data sets

Algorithm Difference to COTE Rank Standard Deviation Max Rank

COTE 0 3.81 22

ST −2.00% 7.89 33

BOSS −2.45% 6.93 35

EE −4.61% 5.79 26

DTWF −5.25% 6.57 30

TSF −6.21% 7.27 32

TSBF −5.93% 7.37 33

LPS −6.29% 9.11 35

MSM −6.23% 8.79 37

RotF −8.14% 9.84 37

DTW −8.12% 8.07 36

we address this in Sect. 5. However, for some algorithms it is just not feasible to get
an unbiased train set accuracy estimate. The computation required to perform holdout
shapelet transforms for ST (and hence COTE) is unfeasible. Similarly, algorithms that
perform extensive model selection would require another layer of cross validation.
The first question we address in the following section.

4.4 What does the problem type tell us about the best algorithm type?

Table 8 shows the performance of algorithms against problem type. The data is meant
to give an indication as to which family of approaches may be best for each problem
type. The sample sizes are small, so we must be careful drawing too many conclu-
sions. However, this table does indicate how evaluation can give insights into problem

123

A. Bagnall et al.

Table 8 Best performing algorithms split by problem type

Problem COTE (%) Dictionary
(%)

Elastic (%) Interval (%) Shapelet
(%)

Vector (%) #

Image outline 20.69 17.24 24.14 0.00 17.24 20.69 29

Sensor readings 38.89 0.00 16.67 5.56 22.22 16.67 18

Motion capture 35.71 21.43 14.29 14.29 14.29 0.00 14

Spectrographs 0.00 0.00 0.00 0.00 0.00 100.00 7

Electric devices 0.00 33.33 0.00 16.67 50.00 0.00 6

ECG 33.33 16.67 0.00 0.00 50.00 0.00 6

Simulated 40.00 20.00 20.00 0.00 20.00 0.00 5

Each entry is the percentage of problems of that type a member of a class of algorithm is most accurate for
Bold values indicate the largest value on the row (i.e. the best performing algorithm for each problem type)

domains. Perhaps themost important illustration of understanding the problemdomain
is the fact that vector classifiers are best on all of the spectrographic data sets. Spectral
data are generally unlikely to have much phase shifting, so this makes sense in terms
of the application. Shapelets are best on 3 out of 6 of the ElectricDevice problems and
3 out of 6 ECG datasets, but only 26% of problems overall. This makes sense in terms
of the applications, because the profile of electricity usage and ECG irregularity will
be a subseries of the whole and largely phase independent. COTE wins a relatively
high proportion of sensor and motion data sets. This implies this type of problem is
likely to have descriminatory features in multiple domains and no one representation
is likely to be sufficient.

4.5 What do the characteristics of the problem tell us about the best algorithm
type?

It would be highly desirable if characteristics of the problem type such as train set size,
series length and number of classes could provide guidance on the best algorithm for
a specific problem. Accuracy across different problems is not comparable, so we look
for patterns of relative performance by restricting our attention to the average ranks
for different treatment levels of series length, number of classes and train set size.
This exploratory analysis is far from definitive, but it may give insights into algorithm
selection and indicate areas where algorithms could be improved. We only look at the
individual effect of each characteristic because we do not have a large enough sample
size to usefully assess interactions.

Series length is the least informative data characteristic. For the majority of prob-
lems, the length of the series is an artifact of the preprocessing. For example, consider
the StarLightCurves dataset. The series are of length 1024, but most are created from
just a few dozen data points extrapolated to 1024 data points. If one down samples
these objects to 512, 256, or even 128, it does not have a statistically significant effect
on accuracy. Similarly, one of the longest series is HandOutlines. This data set was
created from a set of outlines of radiographs, each of which was of different lengths.
It was decided to up sample each outline to the length of the longest, but no extra

123

The great time series classification bake off...

Fig. 11 The rank of BOSS against series length, grouped into sets with lengths 1–100, 101–200, etc. The
last group contains all series of length 1000 or more. The dotted line is the linear regression fit

information is added. The only really noticeable effect of series length is that the
benchmark RotationForest gets relatively worse as series length increases whereas the
dictionary methods get better, although this effect is small. Figure 11 shows the rank
of BOSS for the 85 datasets grouped by series length. There is a very slight downward
trend, but much higher variation within each group.

There is wide variation in the way TSC algorithms deal with multi-class prob-
lems, so we would expect some variation in relative performance as the number of
classes varies. We group datasets into those with 2 classes (31 problems), 3 classes
(12 problems), 4–5 classes (11 problems), 6–7 classes (11 problems), 8–12 classes
(10 problems) and 13+ classes (10 problems). For each algorithm we calculate the
average rank over each treatment level. An analysis of variance indicates there is a
significant variation difference in ranks between the class groupings. Table 9 shows the
average rank of nine algorithms factored by number of classes. MSM, EE and COTE
all improve relatively as the number of classes increases, whereas DTWF , BOSS and
ST all get worse. Could this be caused by characteristics of the algorithms? It is hard
to say, but for ST this is likely to be true. The latest version of ST balances the number
of shapelets for each class to avoid the problem of good shapelets from a small number
of classes swamping the transform, but this is a fairly crude control mechanism. It is
still likely that there are too many shapelets from the easy to classify classes excluding
potentially useful ones from the hard to classify classes.

Given that many of the algorithms employ nearest neighbour classification, we
would expect train set size to also have an influence on relative performance. Table 10
presents the average ranks of the top algorithms over four groups of train set size. We
observe the interval based methods TSBF and TSF all improve whereas the elastic
time domain method MSM gets worse. The MSM performance is broadly observable
in the other elastic techniques such as TWE and WDTW. We believe this is caused
by the fact they all use a single neighbour to classify, thus ignoring the extra infor-
mation available in the larger datasets. This idea is supported by the fact the drop in
performance is less observable in EE, which ensembles numerous 1-NN classifiers. A
switch to k nearest neighbours may improve the relative performance of all the elastic
classifiers on larger train sets.

123

A. Bagnall et al.

Table 9 Algorithm ranks split by number of classes

#Classes MSM LPS TSBF TSF DTWF EE BOSS ST COTE

2 11.94 10.74 9.76 9.53 8.31 8.97 4.26 4.55 3.16

3 12.92 10.42 8.42 8.83 8.50 7.67 3.67 4.00 2.92

4–5 10.82 12.09 11.64 7.00 8.45 7.45 6.41 7.05 3.91

6–7 10.91 11.27 10.09 10.45 9.73 5.77 7.36 6.05 2.05

8–12 8.70 10.10 8.30 9.10 7.90 4.00 11.70 6.00 1.50

13+ 6.00 7.19 9.63 11.31 11.94 4.00 7.06 6.63 1.81

Each data represents the average rank of that algorithm over all problems with the range of classes shown
in the first column

Table 10 Algorithm ranks split by train set sizes

#Train cases MSM LPS TSBF TSF DTWF EE BOSS ST COTE

<100 (28) 10.89 10.86 11.23 11.13 9.52 7.79 5.64 6.04 3.39

100–399 (28) 8.96 11.61 11.18 10.36 9.57 5.98 5.66 5.75 2.09

400–799 (15) 12.40 10.73 6.73 6.93 8.80 7.53 5.60 4.33 2.53

>799 (14) 12.00 7.71 7.29 6.21 6.07 7.00 7.93 4.29 2.86

Each data represents the average rank of that algorithm over all problems with the range of train set size
shown in the first column. The number of datasets in each category is in brackets

5 Within algorithm type comparison

One of our central arguments is that different problems require different representa-
tions, and the reason COTE is so accurate is that it combines classifiers constructed on
different transformations. If COTE is computationally infeasible, we think the choice
of the correct family of algorithms is at least as important as the choice of which algo-
rithm given a particular representation. To help understand the variation of techniques
by grouping, we look at the relative performance of algorithms without COTE and
DTWF (which both use more than one representation).

Table 11 gives the relative performance of algorithms of different classes grouped
by the optimal for each problem type. The table is meant to highlight the importance of
utilising the correct technique and highlights the similarity of the approaches. Another
reason for its inclusion is to highlight that there are some large variations in accuracy.
5 to 10% differences are commonplace, particularly between classifier types.

A smaller difference indicates a similarity of performance between the two groups.
So, for example, the best of the standard vector based classifiers are on average 15%
less accurate on problems where the dictionary technique is the best and 10% worse
where shapelets wins. The best shapelet approach is only 2% less accurate when
interval methods are optimal. This can be explained by the fact that intervals can also
be shapelets. However, the opposite is not true. Interval methods are 5.54% worse
on problems best approached with shapelets. This highlights that the potential phase
independence of shapelets is crucial. Shapelets do relatively badly when whole series

123

The great time series classification bake off...

Table 11 A summary of the relationship between classes of algorithms

Best # Vector (%) Elastic (%) Interval (%) Shapelet (%) Dictionary (%)

Vector 18 0.00 −5.30 −3.67 −3.02 −5.34

Elastic 18 −9.52 0.00 −3.87 −4.86 −3.41

Interval 8 −4.77 −3.38 0.00 −2.17 −5.79

Shapelet 28 −9.69 −6.40 −5.54 0.00 −3.69

Dictionary 13 −14.98 −5.79 −6.47 −3.58 0.00

All problems are grouped by the type of algorithm which has the highest accuracy. Each table entry is the
average difference in accuracy of the average of the best performing algorithms of the best in each category.
So, for example, the best of the shapelet approaches (ST, LS and FS) is on average 3.58% less accurate than
the dictionary approaches on problems where the dictionary approach is the most accurate overall

elastic measures do best, and vice versa. Perhaps more surprising is the fact that vector
based methods are best on 18 of the problems (although this ignores both COTE and
DTWF) and elastic techniques do poorly on these problems (the best elastic method
is 5.3% worse). This indicates the importance of choosing a representation, but does
not help in choosing a method within a possible representation.

5.1 Whole series methods

Of the three distance based approacheswe evaluated (TWE,WDTWandMSM),MSM
is the highest rank (9th) and is the only one significantly better than both benchmarks.
WDTW(ranked 14th) is better thanDTWbut not RotF. This conclusion contradicts the
results in Lines and Bagnall (2015) which found no difference between all the elastic
algorithms and DTW. This is because whilst there is a significant improvement, the
benefit is small, and undetectable without resampling. MSM is under 2% on average
better than DTW and RotF. The average of average differences in accuracy between
WDTW and DTW is only 0.2%.

In linewith published results, two of the difference based classifiers, CIDandDTDC

are significantly better thanDTW, but themean improvement is very small (under 1%).
None of the three difference based approaches are significantly different to RotF. We
believe this highlights an over-reliance onDTWas a benchmark.Methods that provide
a small improvement to DTW may just be making it a little better on problems where
DTW is not suitable. We should also note that it is possible that simple improvements
could improve the difference based classifiers. In line with the original description we
set the CID warping window as the optimal for DTW. Setting the window to optimise
the CID distance instead might well improve performance. Similarly, DDDTW and
DTDC use full window DTW and could be more accurate with windowed DTW or
WDTW.

Suppose then that through domain knowledgewe believe thewhole series should be
used but there may be some need for allowing for some elasticity in indexing. Which
approach should we take? Figure 12 shows the relative performance of the ten elastic
measures considered.

123

A. Bagnall et al.

CD

10 9 8 7 6 5 4 3 2 1

1.9882 EE
4.7588

MSM
5.6471

DDDTW
5.7235

DTDC
5.9529

LCSS
6.0235

WDTW

6.0235
CID

6.1059
TWE

6.3353
DTW

6.4412ERP

Fig. 12 Critical difference diagram for ten elastic distance measures. The elastic ensemble (EE) is signif-
icantly more accurate than its constituents

Fig. 13 Time to classify ten test instances (averaged over 100 parameter options) for varying number of
train instances of the problem StarlightCurves. The legend is ordered from fastest algorithm (ED) to slowest
algorithm (TWE)

Clearly the answer is to use all of them and ensemble (the EE approach). However,
this may not always be feasible due to computational limitations. Suppose timing is
critical. Of all the measures used in Lines and Bagnall (2015), MSM and TWE were
by far the slowest. Figure 13 shows the average time taken to classify 10 test instances
of StarlightCurves using 7 different distance measures with a 1-NN classifier. DD,
CID and DTD are omitted for clarity because they are simply two or three repetitions
of DTW.

ED is of course much faster, but it is significantly less accurate. There is little to
choose between DTW, WDTW and LCSS. They are on average approximately 1500
times slower than ED. ERP and MSM are significantly slower, taking on average
4500 and 5700 times longer than ED respectively. Slowest of all is TWE, which is
over 10,000 times slower than ED on this dataset. We have not made a huge effort to

123

The great time series classification bake off...

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

)sccAtseTfo
oitaR(

n iaG
ycaruccAlaut cA

Expected Accuracy Gain (Ra�o of Train Accs)

False Posi�ve

False Nega�ve

True Nega�ve

True Posi�ve

Fig. 14 Texas sharp shooter plot for MSM against DTW. The top right quadrant contains the problems
where both the train and test accuracy for MSM is higher than DTW

optimise the efficiency of these algorithms. ED, DTW, WDTW, and MSM all have an
early abandon. LCSS, ERP and TWE do not easily lend themselves to this approach.
Our conclusion from Figs. 12 and 13 is that if a single measure is required it should
be a choice between DTW and MSM, with MSM preferred if there is time because of
its better average performance. It would be beneficial to investigate ways of speeding
up MSM through better early abandoning. It is also useful to examine how good a
choice we could make between MSM and DTW using a Texas sharpshooter plot (first
described in Batista et al. 2014). These address the question of whether we could make
the correct decision between two classifiers by plotting the ratio of train accuracies
against test accuracies over multiple problems.

Figure 14 shows the Texas sharpshooter plot for MSM against DTW. We use the
train and test accuracies of 85 datasets averaged over 100 repetitions. On 53 of the
problems the greater train accuracy of MSM translates into better test accuracy. On 15
data sets, wewould correctly predict DTWperforms better.We onlymade an incorrect
prediction in 20% of datasets. This suggests that an accurate decision between DTW
and MSM can be made.

5.2 Interval based classifiers

The interval based approaches, TSF, TSBF and LPS, are all significantly better than
both the benchmarks. This gives clear support to the idea of interval based TSC.
Figure 15 shows there is no significant difference between the three approaches we
have evaluated.

123

A. Bagnall et al.

Fig. 15 Critical difference
diagram for three interval based
techniques. There is no
significant difference between
them

CD

3 2 1

1.9412
TSBF

1.9882
TSF

2.0706
LPS

It is possible the fact TSBF and LPS do not outperform TSF is caused by our
implementation of these complex algorithms. Variants may perform better. However,
based on the evidence of this study, we conclude that TSF is the best interval approach
to use because of its simplicity and speed, but that TSBF is a viable alternative.
Although LPS is interval based, it is based on autocorrelation characteristics and may
have desirable characteristics for some problems.

5.3 Dictionary based classifiers

The results for window based dictionary classifiers are confusing. SAXVSM and BOP
are significantly worse than the benchmarks and ranked 18th and 19th overall respec-
tively. This would seem to suggest there is little merit in dictionary transformations
for TSC. However, the BOSS ensemble is one the most accurate classifiers we tested.
It is significantly better than both benchmarks and is ranked third overall. All three
approaches involve taking windows along the series, approximating and discretising
the resulting subseries then forming a distribution of word counts, so the difference in
performance is puzzling. There are four key differences between BOP/SAXVSM and
BOSS.

1. Ensemble The BOSS ensemble retains all classifiers with training accuracy within
92% of the best.

2. Window approximation BOP and SAXVSM use PAA to approximate whereas
BOSS uses the truncated DFT.

3. Word discretisation BOSS employs a data driven discretisation rather than fixed
break points used by BOP and SAXVSM.

4. Distance measureBOSSuses a non symmetric distance function that ignoreswords
missing from the first series as opposed to BOP which uses Euclidean distance
and SAXVSM that uses cosine difference.

In order to gauge the relative importance of each of these four factors, we re-ran four
sets of experiments with one of the above features turned off (i.e. BOSS used the
method employed in BOP instead). A priori we thought that one or possibly two of
the four features would explain the improvement. However, each change resulted in
significantly worse accuracy in comparison to the full BOSS ensemble. This makes us
conclude that all four design features are necessary for BOSS. The largest change was
found by using the single best BOSS classifier rather than an ensemble. This reduced
the accuracy on average by over 5%. This re-enforces our general point about the

123

The great time series classification bake off...

importance of ensembling to maximize accuracy, particularly on problems with small
train sets. Almost as striking was the difference in using PAA against the truncated
DFT. PAA reduced the average accuracy of the BOSS ensemble by over 5% also. This
is surprising, since previous studies have shown little difference in the approximation
power of PAA and DFT. The bespoke non-symmetric distance measure made BOSS
more accurate by 3% on average compared to Euclidean distance. This highlights
the systemic problems of balancing loss of information through discretisation against
lack of discrimination due to the sparseness of the histograms. The least amount of
improvment came from using MCB rather than fixed interval discretisation, although
the effect was still significant.

5.4 Shapelet based classifiers

FS is the least accurate classifier we tested and is significantly worse than the bench-
marks. In line with the original shapelet research (Ye and Keogh 2011), FS is used in
conjunction with a decision tree. The key component of FS is the rapid discovery of
shapelets, and there is no reason FS could not be imbedded in the shapelet transform.
We are currently investigating whether using the FS speed up makes any difference to
the accuracy of ST.

LS is not significantly better than Rotation Forest and is only marginally better
than DTW. We have put considerable effort into debugging LS and have been in
correspondence with the author, who has edited and adapted our code. However, it is
a complex algorithm, so it is possible bugs remain. Gradient descent methods such
as LS are known to be sensitive to train set size, and the large number of relatively
small training set sizes of the TSC archive datasets could hinder LS. Analysis of the
aggregated results indicates that a more important factor is that LS performs poorly on
multiple class problems. It uses a logistic model for each class, hence the parameter
spacegrows for each extra class. Examinationof the results for repetitions on individual
problems indicates that on occasional runs LS converges to very poor solutions. This
is always a risk with gradient descent and it will influence average performance.

ST has exceeded our expectations. It is significantly better than both benchmarks
and is the second most accurate classifier overall, significantly better than six of the
other eight classifiers that beat both benchmarks. It is significantly better than FS
and LS. The changes proposed in Bostrom and Bagnall (2015) have not only made
it much faster, but have also increased accuracy. Primary amongst these changes is
balancing the number of shapelets per class and using a one-vs-many shapelet quality
measure. However, ST is the slowest of all the algorithms we assessed and there is
scope to investigate methods of increasing the speed without compromising accuracy.
For example, it is likely that the train set for shapelet search could be condensed
without loss of accuracy, because by definition shapelets appear in a large number of
cases of the same class.

5.5 Combining classifiers and representations

We believe that combining classifiers is the easiest way to get improvement for TSC
without the direct application of domain knowledge. Our results show that ensembling

123

A. Bagnall et al.

over a single representation is very effective; the top seven classifiers are all ensembles.
It seems highly likely the other classifiers would benefit from a similar approach. One
of the key ensemble design decisions is promoting diversity without compromising
accuracy. TSF, TSBF and LPS do this through the standard approach of sampling the
same attribute space. BOSS ensembles identical classifiers with different parameter
settings. ST and EE engender diversity though classifier heterogeneity. Employing
different base classifiers in an ensemble is relatively unusual, and these results would
suggest that it might be employed more often. However, for TSC the best results come
from combining classifiers on different representations. COTE is significantly better
than all other classifiers we have evaluated. It promotes diversity through employing
different classifiers on a range of transformations/data representations and weighting
by a training set accuracy estimate. Its simplicity is its strength. These experiments
suggest COTEmay be evenmore accurate if it were to assimilate BOSS and an interval
based approach.

DTWF also did well (ranked 5th). Including SAX features significantly improves
DTWF . This surprised us, and strengthens the case for combining representations.
Without SAX histograms, the DTWF approach of using distances as features is not
significantly better than DTW. Conversely, the BOP results show us that the SAX
histograms on their own produce a poor classifier. Our conjecture is that the DTW
features are compensating for the datasets that BOP does poorly on, whilst gaining
from those it does well at. This supports the argument for combining features from
different representations.

6 A closer look at specific problems

In Sect. 2 we made qualitative arguments for scenarios for when each algorithm type
would perform better, and in Sect. 5 we examined overall variation in performance
between classes of algorithms. It is also desirable to look at some specific problems to
help understand variation in performance. Our main focus has been on assessing algo-
rithms by rank. This is the best way of mitigating against differences in the underlying
Bayes error, but also may lead to the suspicion that the actual differences in accuracy
are tiny. We examine the results for datasets with the widest gap in accuracy to help
offer insights into the strengths and weaknesses of the algorithms.

6.1 ToeSegmentation1 and ToeSegmentation2

These two data sets are originally from the CMUGraphics Lab Motion Capture Data-
base1 and were formatted for classification in Ye and Keogh (2011). The data are two
class problems with classes “Walk Normally” and “Walk Abnormally” taken from the
left and right toe. The original series were of unequal length. The repository data have
been truncated to the shortest series length (277 for ToeSegmentation1 and 343 for
ToeSegmentation2). The series were subsequently normalised.

1 CMU Graphics Lab Motion Capture Database http://mocap.cs.cmu.edu/.

123

http://mocap.cs.cmu.edu/

The great time series classification bake off...

Fig. 16 Example series from ToeSegmentation1, left is class 1 (normal walking) and right is class 2
(abnormal walking)

Figure 16 shows example series from both classes of ToeSegmentation1. Table 12
shows themean accuracy of all 20 classifiers on this problem. Both problems have over
30% difference in accuracy between the best and the worst algorithm. The benchmark
classifiers RotF is poor at these problems (accuracy of 57.8 and 64.6% respectively),
because the peaks are not alligned in time. DTW is a little better (accuracy of 72.2 and
85.09%), but it is confounded by the fact the number of peaks (equating to strides)
differ within each class. Of the interval classifiers, TSF is no better than DTW, but
TSBF and LPS do better. The internal classification stage of these algorithms goes
some way to mitigating the problems encountered by the whole series approaches.
However, the best methods for this problem are dictionary based and shapelet based
algorithms. The discriminatory features are the shapes of the peaks rather than the
shape of the whole series. ST is the most accurate on ToeSegmentation1, BOSS the
best on ToeSegmentation2 and COTE is ranked second and third. The hybrid DTWF

also performs well. These datasets emphasise the importance of using the correct
family of algorithms, or failing that, the importance of using techniques that combines
representations.

6.2 LargeKitchenAppliances

LargeKitchenAppliances is an electric device classification problem derived from the
Powering the Nation study (Energy Saving Trust 2012) and first introduced in Lines
andBagnall (2015). Each series is length 720 (24h of readings taken every 2min), there
are three classes (Washing Machine, Tumble Dryer and Dishwasher) and a 750 cases
split evenly between train and test. The data is characterised by periods of inactivity
followed by spikes when the device is in use (see Fig. 17).

123

A. Bagnall et al.

Table 12 Results of all
algorithms on
ToeSegmentation1 and
ToeSegmentation2

Bold values indicate the best
overall algorithm for each
problem (i.e. ST is best at Toe1,
Boss at Toe2)

Algorithm ToeSegmentation1 ToeSegmentation2

ST 95.40% 94.72%

LS 93.43% 94.26%

COTE 93.37% 95.15%

BOSS 92.88% 95.97%

SAXVSM 92.79% 92.08%

BoP 92.62% 91.17%

DTWF 92.20% 90.38%

FS 90.41% 87.28%

TSBF 85.82% 88.58%

LPS 84.12% 92.64%

MSM 82.13% 89.52%

TWE 79.59% 88.85%

EE 78.76% 90.70%

DDDTW 74.18% 82.80%

DTDC 72.90% 82.58%

WDTW 72.79% 86.22%

DTW 72.20% 85.09%

CIDDTW 71.80% 84.39%

TSF 66.10% 78.24%

ED 61.20% 78.10%

RotF 57.80% 64.60%

Fig. 17 Example series from
LargeKitchenApplicances. The
top three are Washing Machine
(class 3), the middle three
Tumble Dryers (class 2) and the
bottom three Dishwashers (class
1)

123

The great time series classification bake off...

There is a 40% difference in accuracy between the best and the worst classifier.
Vector based algorithms such as RotationForest obtain accuracies around 60%. This
is better than random guessing, because they are capturing the fact that devices might
well be used at the same time, but this is only a weak feature for classification. Devices
can and are used at different times within and between households. Interval based
methods do slightly better (65–70%) because they are able to compensate for the large
blank periods (i.e. high number of redundant features), but are still confounded by
the time independence. Elastic measures are able to compensate for time shift and
are more accurate still (75–80% range). However, the fact that all devices can and
are used a varying number of times per day means full series elastic measures are of
limited use. Dictionary techniques can overcome this somewhat (accuracy from 80
to 85%), but fail to do better because they lose granularity and best discriminatory
features are not repeated patterns but unique subseries. The shapelet methods are best
or this problem (90–95% accuracy) for this very reason. COTE does not improve on
ST, indicating that this dataset does not contain independent features in the different
domains.

6.3 Adiac

The Automatic Diatom Identification and Classification (ADIAC) project was a pilot
study concerning automatic identification of diatoms (unicellular algae) on the basis
of images (Jalba et al. 2004). The outlines are extracted from thresholded images, but
we do not have full details of the preprocessing. The series are 176 long. One defining
characteristic of Adiac is there are 37 classes, each representing a different species of
diatom.

The vector basedmethods do relativelywell at this problem. SVMandRotF average
around 75% accuracy. This contrasts with the elastic measures, which are all in the
range 60–65%. This suggests that the images have been aligned and length normalised
in preprocessing. Interval, dictionary and shapelet methods are all about the same as
RotF at around 75% accuracy. Given the very different nature of these algorithms, it
seems likely that different diatoms have different discriminatory features and hence
require different representations. This hypothesis is supported by the fact that COTE
is significantly more accurate than all other approaches (81% accuracy). If we had
instigated this project these results would guide our area of research towards a detailed
analysis of the contigency tables of each algorithm to better understand where the
variation lies.

7 Conclusions

The primary goal of this series of benchmark experiments is to promote reproducible
research and provide a common framework for future work in this area. We view data
mining as a practical area of research, and our central motivation is to find techniques
that work. Received wisdom is that DTW is hard to beat. Our results confirm this
to a degree (7 out of 19 algorithms fail to do so), but recent advances show it is not
impossible.

123

A. Bagnall et al.

Overall, our results indicate that COTE is, on average, clearly superior to other
published techniques. It is on average 8% more accurate than DTW. However, COTE
is a starting point rather than a final solution. Firstly, the no free lunch theorem leads
us to believe that no classifier will dominate all others. The research issues of most
interest are what types of algorithm work best on what types of problem and can we
tell a priori which algorithm will be best for a specific problem. Secondly, COTE is
hugely computationally intensive. It is trivial to parallelise, but its run time complexity
is bounded by the Shapelet Transform, which is O(n2m4) and the parameter searches
for the elastic distance measures, some of which are O(n3). ST and EE are also trivial
to distribute, but there is a limit to the number of processors anyone can run in parallel.
An algorithm that is faster than COTE but not significantly less accurate would be a
genuine advance in the field. Finally, we are only looking at a very restricted type of
problem.Wehavenot consideredmulti-dimensional, streaming,windowed, long series
or semi-supervised TSC, to name but a few variants. Each of these subproblems would
benefit from a comprehensive experimental analysis of recently proposed techniques.

There are numerous weaknesses in our study which we freely acknowledge. The
selection of data is ad-hoc and many of the datasets are related to each other. We hope
to overcome this by increasing the archive size so that it may then be sensibly sampled
by problem type. We are constantly looking for new areas of application and we will
include any new data sets that are donated in an ongoing evaluation. We stress that
accuracy is not the only consideration when assessing a TSC algorithm. Time and
space efficiency are often of equal or greater concern. However, if the only metric
used to support a new TSC is accuracy on these test problems, then we believe that
evaluation should be transparent and comparable to the results we havemade available.
If a proposed algorithm is not more accurate than those we have evaluated, then some
other case for the algorithm must be made.

Furthermore, we have not optimised the algorithms or necessarily been fair to them
all. For example, we have fixed the number of parameter contributions for each to 100.
This could be considered unfair to the faster algorithms. Ideally we would like to give
each algorithm a fixed amount of computational time, but we found this impractical.
Our code is not necessarily optimised for all algorithms and some are distributed.

Many of the algorithms are stochastic, and hill climbers such as LS may well
improve if we included number of restarts as a parameter. We did not do this because
it introduces another level of cross validation and we considered that, given the fixed
number of parameter evaluations, it would be more productive to do model selection
within the specific parameter space of each algorithm. These were pragmatic deci-
sions, and we will happily evaluate anyone else’s new or refined algorithm if it is
implemented as aWEKA classifier (with all model selection performed in the method
buildClassifier) and if it is computationally feasible. If we are given permissionwewill
release any results we can verify through the associated website. We also acknowl-
edge that despite our best efforts and communication with the original authors, our
implementations may not be bug free. We will examine any alterations submitted to
us and if an error is found, rerun that classifier.

For those looking to build a predictive model for a new problem we would recom-
mend starting with DTW, RandF and RotF as a basic sanity check and benchmark. We
have made little effort to perform model selection for the forest approaches because it

123

The great time series classification bake off...

is generally accepted they are robust to parameter settings, but some consideration of
forest size and tree parameters may yield improvements. However, our conclusion is
that usingCOTEwill probably give you themost accuratemodel. If a simpler approach
is needed and the discriminatory features are likely to be embedded in subseries, then
we would recommend using TSF or ST if the features are in the time domain (depend-
ing on whether they are phase dependent or not) or BOSS if they are in the frequency
domain. If a whole series elastic measure seems appropriate, then using EE is likely
to lead to better predictions than using just DTW.

Acknowledgements This work is supported by the UK Engineering and Physical Sciences Research
Council (EPSRC) [Grant No. EP/ M015087/1]. The experiments were carried out on the High Performance
ComputingCluster supported by theResearch and Specialist Computing Support service at theUniversity of
East Anglia.Wewould particularly like to thank Leo Earl for his help and forbearancewith our unreasonable
computing requirements.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Bagnall A, Janacek G (2014) A run length transformation for discriminating between auto regressive time
series. J Classif 31:154–178

Bagnall A, Bostrom A, Lines J The UEA TSC codebase. https://bitbucket.org/TonyBagnall/
time-series-classification

Bagnall A, Lines J, Bostrom A, Keogh E The UCR/UEA TSC archive. http://timeseriesclassification.com
Bagnall A, Lines J, Hills J, Bostrom A (2015) Time-series classification with COTE: the collective of

transformation-based ensembles. IEEE Trans Knowl Data Eng 27:2522–2535
Batista G, Keogh E, Tataw O, deSouza V (2014) CID: an efficient complexity-invariant distance measure

for time series. Data Min Knowl Discov 28(3):634–669
Baydogan M, Runger G (2016) Time series representation and similarity based on local autopatterns. Data

Min Knowl Discov 30(2):476–509
Baydogan M, Runger G, Tuv E (2013) A bag-of-features framework to classify time series. IEEE Trans

Pattern Anal Mach Intell 25(11):2796–2802
Benavoli A, Corani G, Mangili F (2016) Should we really use post-hoc tests based on mean-ranks? J Mach

Learn Res 17:1–10
Bostrom A, Bagnall A (2015) Binary shapelet transform for multiclass time series classification. In: Pro-

ceedings of the 17th international conference on big data analytics and knowledge discovery (DAWAK)
Chakrabarti K, Keogh E, Mehrotra S, Pazzani M (2002) Locally adaptive dimensionality reduction for

indexing large time series databases. ACM Trans Database Syst 27(2):188–228
ChenL,NgR (2004)On themarriage ofLp-norms and edit distance. In: Proceedings of the 30th international

conference on very large databases (VLDB)
ChenH,TangF,TinoP,YaoX (2013)Model-basedkernel for efficient time series analysis. In: Proceedings of

the 19th ACMSIGKDD international conference on knowledge discovery and data mining (SIGKDD)
ChenY,KeoghE,HuB,BegumN,Bagnall A,MueenA,BatistaG (2015) TheUCR time series classification

archive. http://www.cs.ucr.edu/~eamonn/time_series_data/
CorduasM, Piccolo D (2008) Time series clustering and classification by the autoregressive metric. Comput

Stat Data Anal 52(4):1860–1872
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Deng H, Runger G, Tuv E, Vladimir M (2013) A time series forest for classification and feature extraction.

Inf Sci 239:142–153

123

http://creativecommons.org/licenses/by/4.0/
https://bitbucket.org/TonyBagnall/time-series-classification
https://bitbucket.org/TonyBagnall/time-series-classification
http://timeseriesclassification.com
http://www.cs.ucr.edu/~eamonn/time_series_data/

A. Bagnall et al.

Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series
data: experimental comparison of representations and distance measures. In: Proceedings of the 34th
international conference on very large data bases (VLDB)

Energy Saving Trust (2012) Powering the nation. Department for Environment, Food and Rural Affairs
(DEFRA)

Fulcher B, Jones N (2014) Highly comparative feature-based time-series classification. IEEE Trans Knowl
Data Eng 26(12):3026–3037

García S, Herrera F (2008) An extension on statistical comparisons of classifiers over multiple data sets for
all pairwise comparisons. J Mach Learn Res 9:2677–2694

Ge X, Smyth P (2000) Deformable Markov model templates for time-series pattern matching. In: Proceed-
ings of the 6th ACM SIGKDD international conference on knowledge discovery and data mining
(SIGKDD)

Górecki T, Łuczak M (2013) Using derivatives in time series classification. Data Min Knowl Discov
26(2):310–331

Górecki T, Łuczak M (2014) Non-isometric transforms in time series classification using DTW. Knowl-
Based Syst 61:98–108

Grabocka J, Schilling N, Wistuba M, Schmidt-Thieme L (2014) Learning time-series shapelets. In: Pro-
ceedings of the 20thACMSIGKDD international conference on knowledge discovery and datamining
(SIGKDD),

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P,Witten I (2009) TheWEKA data mining software:
an update. SIGKDD Explor 11(1):10–18

Hills J, Lines J, Baranauskas E, Mapp J, Bagnall A (2014) Classification of time series by shapelet trans-
formation. Data Min Knowl Discov 28(4):851–881

Hirschberg D (1977) Algorithms for the longest common subsequence problem. J ACM 24(4):664–675
Jalba A, Wilkinson M, Roerdink J (2004) Automatic segmentation of diatom images for classification.

Microsc Res Tech 65:72–85
Jeong Y, Jeong M, Omitaomu O (2011) Weighted dynamic time warping for time series classification.

Pattern Recogn 44:2231–2240
Kate R (2016) Using dynamic time warping distances as features for improved time series classification.

Data Min Knowl Discov 30(2):283–312
Keogh E, Kasetty S (2003) On the need for time series data mining benchmarks: a survey and empirical

demonstration. Data Min Knowl Discov 7(4):349–371
Lin J, Keogh E, Li W, Lonardi S (2007) Experiencing SAX: a novel symbolic representation of time series.

Data Min Knowl Discov 15(2):107–144
Lin J, Khade R, Li Y (2012) Rotation-invariant similarity in time series using bag-of-patterns representation.

J Intell Inf Syst 39(2):287–315
Lines J, Bagnall A (2015) Time series classification with ensembles of elastic distance measures. Data Min

Knowl Discov 29:565–592
Maharaj EA (2000) Clusters of time series. J Classif 17:297–314
Marteau P (2009) Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans

Pattern Anal Mach Intell 31(2):306–318
MueenA,KeoghE,YoungN (2011) Logical-shapelets: an expressive primitive for time series classification.

In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data
mining (SIGKDD)

Rakthanmanon T, Keogh E (2013) Fast-shapelets: a fast algorithm for discovering robust time series
shapelets. In: Proceedings of the 13th SIAM international conference on data mining (SDM)

Rakthanmanon T, Bilson J, Campana L, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E
(2013) Addressing big data time series: mining trillions of time series subsequences under dynamic
time warping. ACM Trans Knowl Discov 7(3):10

Ratanamahatana C, Keogh E (2005) Three myths about dynamic time warping data mining. In: Proceedings
of the 5th SIAM international conference on data mining (SDM)

Rath T, Manamatha R (2003) Word image matching using dynamic time warping. In: Proceedings of the
computer vision and pattern recognition

Rodríguez J, Alonso C, Maestro J (2005) Support vector machines of interval-based features for time series
classification. Knowl-Based Syst 18:171–178

Schäfer P (2015) The BOSS is concerned with time series classification in the presence of noise. Data Min
Knowl Discov 29(6):1505–1530

123

The great time series classification bake off...

Senin P, Malinchik S (2013) SAX-VSM: interpretable time series classification using sax and vector space
model. In: Proceedings of the 13th IEEE international conference on data mining (ICDM)

Silva D, de Souza V, Batista G (2013) Time series classification using compression distance of recurrence
plots. In: Proceedings of the 13th IEEE international conference on data mining (ICDM)

Smyth P (1997) Clustering sequences with hiddenMarkov models. Adv Neural Inf Process Syst 9:648–654
Stefan A, Athitsos V, Das G (2013) The move-split-merge metric for time series. IEEE Trans Knowl Data

Eng 25(6):1425–1438
Wang X, Mueen A, Ding H, Trajcevski G, Scheuermann P, Keogh E (2013) Experimental comparison of

representationmethods and distancemeasures for time series data. DataMinKnowlDiscov 26(2):275–
309

Ye L, Keogh E (2011) Time series shapelets: a novel technique that allows accurate, interpretable and fast
classification. Data Min Knowl Discov 22(1–2):149–182

Yemini E, Jucikas T,GrundyL, BrownA, SchaferW (2013)A database of caenorhabditis elegans behavioral
phenotypes. Nat Methods 10:877–879

123

	The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances
	Abstract
	1 Introduction
	2 Time series classification algorithms
	2.1 Whole series similarity
	2.1.1 Dynamic time warping
	2.1.2 Weighted DTW (WDTW) (Jeong et al. 2011)
	2.1.3 Time warp edit (TWE) (Marteau 2009)
	2.1.4 Move--split--merge (MSM) (Stefan et al. 2013)
	2.1.5 Complexity invariant distance (CID) (Batista et al. 2014)
	2.1.6 Derivative DTW (DDDTW) (Górecki and Łuczak 2012)
	2.1.7 Derivative transform distance (DTDC) (Górecki and Łuczak 2014)
	2.1.8 Elastic ensemble (EE) (Lines and Bagnall 2015)

	2.2 Phase dependent intervals
	2.2.1 Time series forest (TSF) (Deng et al. 2013)
	2.2.2 Time series bag of features (TSBF) (Baydogan et al. 2013)
	2.2.3 Learned pattern similarity (LPS) (Baydogan and Runger 2016)

	2.3 Phase independent shapelets
	2.3.1 Fast shapelets (FS) (Rakthanmanon and Keogh 2013)
	2.3.2 Shapelet transform (ST) (Hills et al. 2014; Bostrom and Bagnall 2015)
	2.3.3 Learned shapelets (LS) (Grabocka et al. 2014)

	2.4 Dictionary based classifiers
	2.4.1 Bag of patterns (BOP) (Lin et al. 2012)
	2.4.2 Symbolic aggregate approximation-vector space model (SAXVSM) (Senin and Malinchik 2013)
	2.4.3 Bag of SFA symbols (BOSS) (Schäfer 2015)

	2.5 Combinations of transformations
	2.5.1 DTW features (DTWF)
	2.5.2 Collection of transformation ensembles (COTE) (Bagnall et al. 2015)

	2.6 Time and space complexity
	2.7 Summary

	3 Data and experimental design
	4 Overall results
	4.1 Benchmark classifiers
	4.2 Comparison against benchmark classifiers
	4.3 Comparison of TSC algorithms
	4.4 What does the problem type tell us about the best algorithm type?
	4.5 What do the characteristics of the problem tell us about the best algorithm type?

	5 Within algorithm type comparison
	5.1 Whole series methods
	5.2 Interval based classifiers
	5.3 Dictionary based classifiers
	5.4 Shapelet based classifiers
	5.5 Combining classifiers and representations

	6 A closer look at specific problems
	6.1 ToeSegmentation1 and ToeSegmentation2
	6.2 LargeKitchenAppliances
	6.3 Adiac

	7 Conclusions
	Acknowledgements
	References

