
Narrative Review

The role of metabolism (and the microbiome) in defining the clinical
efficacy of dietary flavonoids1

Aedı́n Cassidy* and Anne-Marie Minihane

Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom

ABSTRACT
At a population level, there is growing evidence of the beneficial ef-
fects of dietary flavonoids on health. However, there is extensive het-
erogeneity in the response to increased intake, which is likely
mediated via wide interindividual variability in flavonoid absorption
and metabolism. Flavonoids are extensively metabolized by phase I
and phase II metabolism (which occur predominantly in the gastro-
intestinal tract and liver) and colonic microbial metabolism. A num-
ber of factors, including age, sex, and genotype, may affect these
metabolic processes. In addition, food composition and flavonoid
source are likely to affect bioavailability, and emerging data suggest
a critical role for the microbiome. This review will focus on the cur-
rent knowledge for the main subclasses of flavonoids, including an-
thocyanins, flavonols, flavan-3-ols, and flavanones, for which there is
growing evidence from prospective studies of beneficial effects on
health. The identification of key factors that govern metabolism
and an understanding of how the differential capacity to metabolize
these bioactive compounds affect health outcomes will help estab-
lish how to optimize intakes of flavonoids for health benefits and
in specific subgroups. We identify research areas that need to be
addressed to further understand important determinants of flavonoid
bioavailability and metabolism and to advance the knowledge base
that is required to move toward the development of dietary guide-
lines and recommendations for flavonoids and flavonoid-rich
foods. Am J Clin Nutr doi: 10.3945/ajcn.116.136051.

Keywords: absorption, ADME, flavonoids, genotype, health, me-
tabolism, microbiome

INTRODUCTION

Dietary flavonoids represent a diverse range of polyphenolic
compounds that are present in many commonly consumed fruits,
vegetables, grains, herbs, and beverages (1). Growing evidence
from both population-based studies and randomized controlled
trials (RCTs)2 suggests that several flavonoid subclasses may be
important for cardiometabolic health with substantial interest in
other outcomes, including cognitive function, Parkinson disease,
and specific cancers, also developing (2–6). In this article, rather
than conducting an exhaustive review of the current literature,

we set out to summarize the current state of the art in the field by
drawing on examples from recent studies on specific subclasses
to highlight gaps in our understanding that may explain dis-
crepancies in findings across the translational research pathway.
We also identify research areas that need to be addressed to
further understand how to optimize intake of flavonoids for
different health benefits and in specific subgroups and to ad-
vance the knowledge base that is required to move toward the
development of dietary guidelines and recommendations for
flavonoids and flavonoid-rich foods.

The structural complexity of flavonoids has led to their sub-
classification as flavonols, flavones, flavanones, flavan-3-ols
(including their oligomeric and polymeric forms, proanthocya-
nidins), isoflavones, and anthocyanins (7–9). The diversity of
flavonoid structures undoubtedly contributes to differences in
biological efficacy with subtle differences affecting both bio-
availability and bioactivity. It is clear that the bioavailability of
dietary flavonoids is highly variable between individuals. After
ingestion, flavonoids undergo extensive metabolization with
absorption occurring in both the small and large intestines with
a substantial fraction of intake reaching the colon, where the
flavonoids are exposed to colonic microbiota. The resident mi-
crobiome operates as a metabolic reactor, thereby playing a key
role in catabolizing unabsorbed flavonoids into smaller mole-
cules such as phenolic and aromatic acids, which may become
bioavailable (10). Data from available interventions provide
evidence to suggest that there is extensive variability in the
amount of metabolites that have been measured in biological
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samples, with 15–99% of the original flavonoid dose recovered
as a wide range of flavonoid metabolites (7, 11). The hetero-
geneity has been highlighted in data from a 1-y flavonoid in-
tervention in 93 participants; mean 24-h urinary epicatechin
(flavan-3-ol) excretion rates were 156.7 mmol/d with wide in-
terindividual variability that ranged from 9.6 to 327.0 mmol/d
across study participants (Figure 1) (12). This metabolic vari-
ability has likely been a factor that has contributed to the wide
CIs in the physiologic responsiveness observed in both in-
tervention and observational studies.

Although a large variability in the physiologic response to
flavonoid intake has also been observed (Figure 2 shows the
insulin response to the previously mentioned 1-y intervention)
(12), RCTs have seldom concurrently addressed metabolism and
health outcomes. The few studies that have included plasma or
urinary measures of the flavonoid under study did so pre-
dominantly as a measure of compliance to the intervention (7, 9,
12). At a population level, the heterogeneity in responsiveness
and a poor response to flavonoid intake in certain individuals
may, therefore, obscure beneficial associations between intakes
and health outcomes in responsive subgroups.

In some prospective studies, strong associations between low
intakes of anthocyanins (median intakes of 15 mg/d with a range
up to 1 g/d) and beneficial health effects have been observed
(2, 3), whereas in other studies, no effects have been observed for
anthocyanins, but benefits have been reported for other subclasses
including flavonols (13, 14). This variability in the strength of the
association between flavonoid intake, the wide CIs observed, and
the responsiveness both within and between populations were
likely, in large part, attributable to differences in the absorption,
distribution, metabolism, and elimination (ADME) of flavonoids
as will be discussed. This review will focus mainly on the current
knowledge and research gaps for the main subclasses of flavo-
noids, including anthocyanins, flavonols, flavan-3-ols, and fla-
vanones, for which there is growing evidence from prospective
studies for beneficial effects on health. The isoflavone-related

literature will not be included because isoflavone metabolism and
biofficacy have been extensively reviewed previously (15, 16),
and intakes of this flavonoid subgroup are low (,3 mg/d) in
individuals who have followed a Western-style diet in which soy
products are not commonly consumed (17).

OVERVIEW OF FLAVONOID METABOLISM

An overview of flavonoid ADME is given in Figure 3 (18–20).
Flavonoids are generally consumed as glycosides with a pro-
portion of the aglycone released either in the epithelium or lu-
men of the small intestine. Unlike dietary macronutrients and
micronutrients, a large proportion of ingested flavonoids are
unabsorbed in the proximal intestine and reach the colon where
they are exposed to microbiome-mediated hydrolysis and fer-
mentation. Within the epithelium, flavonoids undergo phase I
metabolism with the resultant metabolites transported to the
liver via the portal vein. In the liver, they undergo further phase I
and phase II metabolism that result in more-polar compounds,
which mediate an array of biological effects in target tissues.
The efflux of flavonoids from the body is via the kidney, from
the intestinal epithelium, and via bile excretion. Flavonoids se-
creted via the biliary route into the duodenum are subjected to
the action of microbial enzymes and may be reabsorbed and
undergo enterohepatic recycling (Figure 3).

Absorption

In the lumen of the small intestine, lactase phlorizin hydrolase
(LPH, lactase) hydrolyses flavonoid glycosides into their re-
spective aglycones (21). LPH is a transmembrane protein
with broad substrate specificity for a range of flavonoid-O-b-D-
glucosides. Aglycones may enter the epithelial cells by passive
diffusion as a result of increased lipophilicity. Alternatively, the
glycosides can be directly transported into the epithelium via
epithelial transporters such as sodium-dependent glucose

FIGURE 1 Mean interindividual variability in urinary epicatechin excretion in 93 participants after intake of 85 mg epicatechin/d for 1 y (12).
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transporter (21–24) with the glycosides subsequently hydrolyzed
by intracellular b-glucosidases such as cytosolic b-glucosidases
(21, 25, 26). Therefore, as a general rule, flavonoid glycosides
are cleaved either in the intestinal lumen or epithelium before
absorption. However, anthocyanins are an exception and are
present in plasma and urine as glycosides (27). The impact of
lactase deficiency (which has a 60–100% prevalence in many
Latin American, African, and Asian countries) on flavonoid
bioavailability is currently unknown.

Membrane-bound ATP-binding cassette (ABC) transporter
proteins are involved in the epithelial transcellular passage of
many compounds including dietary flavonoids (28). This protein
group is involved in the efflux of bioactive compounds either
through the basolateral membrane into the portal bloodstream,
which facilitates absorption, or transported back into the in-
testinal lumen thereby reducing bioavailability. The main ABC-
group members include P-glycoprotein, multidrug resistance
proteins, and breast cancer–resistance protein (28). In addition to
transcellular absorption, transport via the paracellular route has
also been identified (29, 30) with its relative contribution to the
overall bioavailability likely to be dose and isoform dependent.

Postabsorptive metabolism

After absorption, flavonoids may undergo phase I metabolism
in the liver (oxidation or O-demethylated) by cytochrome P450
monooxygenases. In humans, there are 57 cytochrome genes
that are divided in 18 families with isoforms such as cytochrome
1A1, cytochrome 1A2, cytochrome 1B1, cytochrome 3A4 (the
predominant human intestinal and hepatic cytochrome 450s),
and cytochrome 2C9 that are involved in flavonoid metabolism
(31, 32). However, phase I metabolism–derived oxidation prod-
ucts tend to be minor metabolites of most flavonoids, which is
probably due to the rapid glucuronidation, sulphation, or meth-

ylation of potential phase I substrates in the intestine and the liver
(18, 33) by phase II conjugating enzymes including urine-5#-
diphosphate glucuronosyltransferases (UGTs), sulphotransferases,
and catechol-O-methyltransferases (COMTs). The glucuronide
sulfate and methyl conjugates are more-polar metabolites and
may be excreted via the kidneys in urine or via bile or transported
by ABC-mediated efflux back into the intestinal lumen. In gen-
eral, the majority of conjugates in the plasma and urine are glu-
curonides (34). The conjugation mechanisms are highly efficient,
and aglycones are generally either absent in the circulation or
present in low concentrations after physiologic intakes.

UGTs catalyze the transfer of a glucuronic acid from UDP-
glucuronic acid to polyphenols (including flavonoids) and other
xenobiotics. The UGT gene superfamily gives rise to .22 UGT
isoforms that belong to the UGT1A, UGT2A, UGT2B, UGT3, or
UGT8 families (35). The glucuronidation of flavonoids is re-
giospecific and isoform dependent (36, 37). Sulphotransferases
add a sulfate moiety to the flavonoids. They also belong to a gene
superfamily with .10 different sulphotransferase isoforms in
humans (38, 39). Sulphotransferases 1A1–4 and 1E1 have been
specifically shown to be involved in the metabolism of flavonoids
(37, 40–44). COMTs are involved in the O-methylation of cat-
echolic polyphenols including catechins, epicatechins, and epi-
gallocatechins from the flavan-3-ol subclass (45). Methylation
decreases the hydrophilicity of compounds, and after methylation,
subsequent glucuronidation and sulphation are often needed for
the effective elimination from the body.

Tissue uptake

Although likely to be important determinants of flavonoid
ADME and their effects on cell and tissue functions, little is
known about the tissue uptake and subsequent partitioning of
flavonoid metabolites. A limited number of studies that have

FIGURE 2 Variability in changes in fasting insulin concentrations (mU/L) in 93 participants after a 1-y flavonoid intervention (12).
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focused mainly on anthocyanins have indicated that bili-
translocase may be involved in vascular epithelial and hepatic
flavonoid uptakes and anthocyanin absorption from the stomach
(46–49). However, the relative importance of bilitranslocase and
the identity of other transporters remain to be established.

Elimination

Breast cancer–resistance protein, organic anion transporting
polypeptide, and, in particular, organic anion transporters 1 and
3 that are expressed in basolateral membranes of renal tubules
and couple with phase I and phase II metabolism are thought to
be important facets of the elimination process (28, 50–52). The
overexpression of organic anion transporter is associated with
more-efficient renal uptake and elimination into the urine (51).
In addition to urine, a significant proportion of bioavailable
flavonoid metabolites may be excreted via bile into the feces
although enterohepatic recirculation results in some recycling
back to the small intestine through bile excretion (53, 54).

ETIOLOGY OF THE HETEROGENEITY IN FLAVONOID
ADME

As detailed above, w200 proteins have been identified as
having the potential to affect flavonoid ADME. Modulators of
the expression and activity of these proteins, such as age, sex,
and genotype, are likely, to varying degrees, to influence the
circulating concentrations, elimination and tissue exposure to
flavonoids (Figure 1) and, ultimately, to dose-response relations
(Figure 2). Although little relevant published literature is cur-
rently available, lessons may be learned from traditional xeno-
biotic and, in particular, drug metabolism because many phase I

and II metabolic pathways are common to both drug and flavonoid
groups. While there is likely to be considerable redundancy in
oxidation, glucuronidation, sulphation, and methylation pathways,
there exists some evidence that flavonoid intake may influence
drug metabolism with the reciprocal relation also likely to exist,
with habitual drug use potentially influencing flavonoid ADME in
an individual. Although currently largely unknown, this effect may
be a particular issue in cases in whom the metabolism of the drug
or flavonoid is reliant on one or a limited number of cytochrome,
UGT, sulphotransferase, or COMT isoforms or in a situation of
compromised phase I and II metabolic capacities, which are per-
haps associated with disease or aging. Furthermore, it is also un-
clear what the physiologic consequences of altered ADME are
likely to be. Reduced absorption would be predicted to reduce
biopotency, but reduced phase I and phase II metabolism, although
potentially reducing excretion rates and increasing the dose and
length of tissue exposure, may result in a lower formation of more
bioactive metabolites (relative to their parent compounds) and also
potentially result in toxicity in susceptible individuals.

Impacts of age and sex on xenobiotic and flavonoid ADME

The aging process is associated with reduced hepatic perfusion
and morphology including reduced hepatocyte density, which has
been suggested to reduce the phase I and phase II metabolism of
xenobiotics (55, 56) and therefore potentially flavonoid metab-
olism. However, the impact of aging on the activity of oxidation
and conjugation enzymes per se is controversial. In isolated
perfused livers from 3- to 6- or 22- to 24-mo-old rats exposed to
p-nitrophenol, there was evidence of reduced oxidation and
glucuronidation with aging, which was speculated to be partly
attributed to reduced cofactor availability (57). In contrast, no

FIGURE 3 Overview of flavonoid absorption and postabsorptive metabolism.
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obvious effect of aging was reported in human (58) or rat (59)
microsomal UGT activities in response to commonly prescribed
medications. In more-recent publications, the individual or in-
teractive effects of aging and sex on a wider range on xenobiotic
metabolizing enzymes were examined. Fu et al. (60) included
a gene-expression analysis of 101 xenobiotic-processing genes
including cell transporters, phase I and II enzymes, efflux trans-
porters, and transcription factors that were quantified at 10 time
points in the livers of male and female mice across the life span
(60). Complex impacts of both age and sex emerged, whereby the
messenger RNA concentrations for 44% of the genes changed in
male mice, and 63% of the genes changed in female mice, ac-
cording to age. Significant upregulation and downregulation were
evident, but overall, 40% of the xenobiotic-processing genes were
lower in aged male mice and 43% in aged female mice. Kawase
et al. (61) noted higher breast cancer–resistance protein, organic
anion transporting polypeptide 1a1, and UGT1A1 and lower cy-
tochrome 3A1 and cytochrome 32 in young female rats than in
male rats, with an age-related downregulation of gene expression
that was evident only in female rats (61). Two recent publications
have specifically focused on flavonoids as model compounds. The
glucuronidation characteristics of the flavonoid glucoside tilianin
and its aglycone acacetin (flavones) were characterized with the
use of human UGT isoforms, liver microsomes, and intestinal
microsomes that were obtained from different animal species.
Overall, and consistent with Kawase et al. (61), higher glu-
curonidation rates attributed to higher UGT1A1 activities were
evident in females across several species (62). The impact of
aging on the glucuronidation of quercetin and genistein in male
rat hepatic microsomes was also studied (63). Overall, although
some age-related changes were evident, they were modest in their
magnitudes. The glucuronidation of genistein decreased with age.
The quercetin total glucuronidation capacity was constant with
age, but young and old rats had different metabolite profiles.

Therefore, although there is limited evidence to suggest that
there is possibly higher UGT1A-mediated glucuronidation in
females than in males and a possible overall age-related decline
in phase I and phase II metabolism, available data are wholly
inadequate to make any definitive conclusion regarding the likely
impact of these variables on flavonoid metabolism in humans.

Impact of genotype on xenobiotic and potentially flavonoid
metabolism

As with the majority of phenotypes, it is likely that $50% of
the interindividual heterogeneity in flavonoid ADME is attrib-
utable to genetic variability. The most recent output from the
1000 Genome Consortium, which was published in October
2015 (64), indicated that there are typically 88 million variants
in a human genome, and with knowledge that the penetrance of
individual variants is influenced by a range of behavioral,
physiologic, and epistatic (gene 3 gene interactions) factors, the
identification of which factors influence flavonoid ADME rep-
resents a major challenge. To date, the limited investigations
have taken a candidate-gene approach and have focused on one
or a small number of variants in a gene encoding for key phase I
or II proteins.

Although currently completely unknown, because of the key
role of LPH and b-glucosidases (see Absorption) in the initial
hydrolysis of flavonoid glycosides, it is likely that variants in

these loci may be important determinants of the bioavailability
of the majority of flavonoid subclasses from the small intestine.

Perhaps the most extensively studied genotype that is relevant to
flavonoid ADME is the COMT missense mutation (rs4680) with
a G-to-A base change that results in a valine-to-methionine amino
acid substitution at position 158 of the protein. This poly-
morphism is thought to produce a less stable protein, which in
vitro studies have proposed can result in a 40% decrease in en-
zyme activity (65) and can influence the metabolism of a number
of exogenous and endogenous compounds including catechol-
amines and a range of drugs (66). In a case-control study of Asian-
American women, the consumption of green tea, which is rich in
flavan-3-ols, was associated with reduced breast cancer risk with
the strongest association evident in subjects with a low-activity
COMT A allele (67). In a cross-sectional analysis of a subset of the
Shanghai Cohort, the AA genotype had significantly lower urinary
total polyphenols and concentrations of 3 of the 5 specific tea poly-
phenol metabolites [(2)-epigallocatechin, 4#-methylepigallocatechin
and 5-(3#,4#,5#-trihydroxyphenyl)-g-valerolactone] relative to
the GG and GA groups with a trend for genotype-associated
differences in epicatechin and 5-(3#,4#-dihydroxyphenyl)-
g-valerolactone (45). Consistent with these findings, in participants
who were prospectively recruited according to genotype, urinary
methylated epigallocatechin concentrations were significantly
higher in the GG COMT group than in AA homozygotes after acute
consumption of green-tea extract (68). In the Minnesota Green Tea
Trial, overweight and obese postmenopausal women underwent
a 12-mo intervention that examined the impact of green-tea extract
on adiposity and measures of cardiometabolic health (69). A re-
sponse to the intervention was established according to COMT
genotype status with no overall impact of the intervention and no
genotype 3 treatment interactions observed. However, no data on
plasma or urinary catechin concentrations were reported, which
would have allowed for the examination of the impact of the in-
terindividual variability in metabolism on physiologic responses.

UGTs glucuronidate bilirubin, estrogens, and exogenous
compounds, including dietary carcinogens and prescribed
medications. The effects of UGT genotypes on the endogenous
concentrations of these compounds, incidences of associated
cancers, and responses to select drugs have been reported (70–
81). An et al. (70) examined the impact of 6 single-nucleotide
polymorphisms (SNPs), including 3 SNPs in the UGT1A1 gene,
on the daily warfarin dosage. One UGT1A1 SNP (rs887829)
exhibited significant association with warfarin use with T-allele
carriers requiring higher doses than for individuals with the CC
genotype (6.3 compared with 5.2 mg/d, respectively). In a study
of 1600 colorectal cancer patients and 2500 unaffected siblings,
the variation in 4 UGT genes (UGT1A3, UGT1A6, UGT2B4,
and UGT2B15) modified risk of colorectal cancer either in-
dependently of interactively with nonsteroidal anti-inflammatory
use (79). Variants in the promoter of the UGT1A1 gene
(UGT1A1*28, rs8175347), which result in 5, 7, or 8 repeats
instead of 6 thymine-adenine repeats, were associated with de-
creased UGT1A1 transcription and higher serum bilirubin with
increased numbers of thymine-adenine repeats (75, 82). Several
dietary phytochemicals, including flavonoids, have been shown
to induce UGT1A1 activity (83, 84), with Lampe and coworkers
reporting that the impact of the UGT1A1*28 genotype on bili-
rubin metabolism was modified by increased intakes of crucif-
erous vegetables, citrus fruit, and soy (72, 76, 78). Although
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intuitively, because of the role of UGT1A1 in flavonoid glu-
curonidation, the UGT1A1*28 variant is also likely to be an
important modulator of flavonoid metabolism, its impact is
currently unknown but worthy of investigation.

Because #10% of flavonoids are sulfated, variants in sul-
photransferase genes may also affect flavonoid plasma and
urinary profiles. Genetic variants in sulphotransferases with
associated functional consequences have been identified with
SNPs in sulphotransferases 1A1 and 2A1, which are associated
with altered drugs responses and sex-steroid concentrations (18,
43). Cytochrome 3A4 is the most abundant isoform of cytochrome
P450 in the adult human liver, with common CYTOCHROME-
3A4 variants that have been shown to influence testosterone
metabolism (85). However, as with UGTs, the effects of
SULPHOTRANSFERASES and CYTOCHROME and cytochrome
genotypes on flavonoid metabolism remain to be tested.

Overall, there is a dearth of information on the genetic de-
terminants of flavonoid metabolism. The previously discussed
literature on variants of phase I and II genes that influence the
metabolism of an array of endogenous and exogenous com-
pounds may help inform future research in the flavonoid field.
However, a justification for the selected gene-variant targets has
been rarely provided with the functional consequences of ge-
notype often unknown. Future studies should adopt a more
genome-wide approach or targeted genotyping that is focused on
the key enzymes specific to flavonoid (rather than drug) me-
tabolism. The selection of which individual variants to assess is a
challenge with an intuitive focus on exon variants and, in par-
ticular, nonsynonymous SNPs or those in gene-promoter re-
gions that have the potential to exclude potentially highly
functional variants in intron regions. Although relatively ex-
pensive, genome-wide association studies orwhole-gene or -genome
sequencings represent a more efficient approach to identify-
ing genotypes that are important in flavonoid ADME and,
therefore, potentially bioefficacy. Once a potentially functional
genotype has been identified by untargeted approaches, its role
should be subsequently confirmed with the use of a prospective
recruitment according to the genotype approach in human vol-
unteers along with the use of rodent or cell models in which the
native gene has been replaced by human variants to establish the
effects of the genotype on enzyme activity and flavonoid ADME.

Potential impact of prescribed medication use on flavonoid
metabolism

Because flavonoids and many prescribed medications share
phase I and II metabolic processes, the effects of dietary flavonoid
(and other bioactive) intake on drug ADME and dosing amounts
have been of research and clinical interest for several decades
(86–89). The impact of grapefruit consumption on cytochrome-
3A4 activity and the metabolism of a large number of drug
groups, such as calcium channel antagonists b-hydroxy-
b-methylglutaryl–CoA reductase inhibitors and antihistamines,
represents a widely cited example (90, 91). Although unknown,
it is likely that drug use affects flavonoid metabolism and, ul-
timately, tissue total and metabolite flavonoid exposure and
dose-response relations. The multiplicity of transferases with
overlapping substrate specificity and likely considerable re-
dundancy in phase I and II metabolic capacities may mean that
there is little impact of single drug use on flavonoid metabolism

in the majority of the population. However, in select subgroups,
such as older adults who commonly consume a drug cocktail
and may experience age-related declines in metabolic capacity,
or in individuals with gene variants that are associated with the
reduced expression or compromised function of key enzymes,
habitual drug use may be important.

Impact of habitual diet composition on flavonoid ADME

The impact of habitual dietary intake on flavonoid bio-
availability has not been extensively investigated. However, the
effects of alcohol, fiber, and dietary fat composition have been
studied to a limited degree. In a recent study, differences in
microbial metabolite concentrations in feces were measured after
intake of either red wine or dealcoholized red wine (92) with the
suggestion that the alcohol content may increase the solubility of
the polar flavonoid compounds. However, no significant differ-
ences in total metabolite amounts were observed. In other studies,
although no difference in plasma catechin concentrations were
observed after intake of either red wine or dealcoholized red
wine, the urinary excretion of catechins was more rapid after red
wine intake (93, 94).

The impact of fiber intake on flavonoid bioavailability is not
clearly understood and, to our knowledge, has not been in-
vestigated in human studies. It has been speculated that a high
fiber content may decrease the availability and bioaccessibility of
flavonoids from the foods because of factors such as physical
entrapment, increased viscosity, and increased bulk (95). How-
ever, because of the impact of the microbiome on flavonoid
metabolism, the potential bidirectional relation (see Impact of the
gut microbiome on flavonoid metabolism) together with the
established effects of fiber intake on intestinal transit time and
short-chain fatty acid (SCFA) production, there is the potential to
enhance flavonoid bioavailability and metabolism in the large
intestine. In mice, pectin enhanced quercetin absorption, which
was likely the result of an alteration in the metabolic activity of
the microbiome (96). Although, to our knowledge, no systematic
studies exist for flavonoids, a reduced gastrointestinal transit time
has been shown to decrease the bioavailability of various drugs
(97). To date, few studies have investigated the effect of dietary
fat intakes on flavonoid absorption. Because most polyphenols
are water soluble and transported via the portal vein, dietary
lipids are likely to have little influence on the more-hydrophilic
flavonoids. However, there may be important interactions with
the more hydrophobic (lower number of hydroxyl groups) fla-
vonoids (98). Dietary fats also alter the gastrointestinal transit
time, and this variation has the potential to alter flavonoid kinetics
and absorption. In an acute human study, strawberries, when
consumed with cream, delayed the excretion of anthocyanin
metabolites in the first 2 h but did not alter the total bioavailability
(as measured by the AUC in plasma) of anthocyanins (99) . In an
in vitro digestion model, the higher fractional bioaccessibility of
procyanidins, but not of phenolic acids and flavones, was ob-
served from lipid-rich cacao liquor (45% fat) than from cacao
powder (15% fat) (100), thereby supporting the notion that polar
flavonoids are, at least in part, micellularized and that lipids from
the food matrix may help in stabilizing the mixed micelles or in
making them more soluble. Although a clear dose-response
effect was not evident, an improved bioavailability of quercetin
was observed in pigs fed quercetin together with test meals that
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differed in fat contents (3, 17, or 32 g fat/100-g diet). The AUC
after the 17% fat diet was w57% higher than that of the 3% fat
diet, with no further increase shown when a 32% fat diet was fed
(101). In a small human study (n = 9), the AUC in plasma
quercetin concentrations was 45% higher in subjects who con-
sumed a fat-rich breakfast than in subjects who consumed a fat-
free breakfast (102). In mice, Giunta et al. (103) showed that fish
oil and green tea–derived (2)-epigallocatechin-3-gallate (flavan-
3-ols) had a significantly greater antiamyloidogenic effect than
that of either component fed separately. The inclusion of fish oils
(rich in n–3 fatty acids) in the rodent diet increased both blood
and brain (2)-epigallocatechin-3-gallate concentrations.

As well as the potential impact of a habitual diet on metab-
olism, note that other sources of variability include the wide
variation in the flavonoid contents of foods. In epidemiologic
studies, food-composition databases have been used to assess
intake, which have not accounted for the variability in content
that occurs as a result of different growing conditions and pro-
cessing and cooking techniques. However, despite these sources
of variation, observational data have allowed us to rank order
intakes, thereby allowing comparisons between high and low
intakes in large population groups. Until validated biomarkers
that integrate intake with in vivo metabolism are available,
current data can only be derived from dietary intake information.
In many trials, the wide variability in the flavonoid contents of
intervention foods is often not considered, and an independent
verification of the amounts that are present in intervention foods
and supplements would allow for a more accurate assessment of
the dose-response effects in the future.

Impact of the physiochemical properties of food on
flavonoid metabolism

In relation to the impact of food composition, Brett et al. (104)
observed no differences in the absorption and excretion of fla-
vanones after feeding a whole-fruit matrix compared with an
orange-juice matrix. However, the solubility of flavanones are
thought to be a key factor for bioavailability, and in juices that
contained different flavanone concentrations, higher urinary
excretion and plasma concentrations were associated with sol-
uble flavanone concentrations in the juice (105). Although there
was little intraindividual variability, the interindividual vari-
ability was large, which supported the notion that specific
microbiota are required to cleave the glycosides (rutinosides) in
the juice, thereby resulting in aglycones that are available for
absorption (105). However, more-recent data have suggested that,
although food-processing methods to improve solubility can
enhance bioavailability, the stratification of volunteers relative to
their excretion capabilities was more important (105, 106).

The flavonoid sugar moiety has been suggested to be an
important determinant for both the absorption site and overall
bioavailability in humans (107, 108). One of the most pre-
dominant forms is the attachment to a b-glucoside, which can
only be absorbed to a very limited extent, and needs to be hy-
drolyzed before absorption in the small intestine (see Absorp-
tion) (7). For flavonoids with other additional attachments,
including rhamnose (the flavonol quercetin), the microflora are
required to cleave off the sugar moieties before absorption
(109). After enzymatic treatment with rhamnosidase, the ruti-
noside moiety can be hydrolyzed to produce the glucoside moiety,

and after enzyme treatment, the bioavailability of flavanones from
juice has increased 4-fold in humans (110). Moreover, it is not
only the chemical structure but also their isomeric configuration
that can affect absorption. For the metabolism of (R/S) hesperidin,
hesperitin-7-glucoside was shown found to have an R:S ratio of
39:69 in human plasma and urine samples, thereby suggesting
that the S configuration could be more bioavailable (111). Spe-
cifically for flavan-3-ols, the bioavailability may be influenced by
the differing proportions of the various enantiomeric forms of the
monomeric flavan-3-ols. Unlike other flavonoids, flavan-3-ols
exist in plants as aglycones rather than as the glycoside form. In
one study in which comparable concentrations of the individual
enantiomers were separately consumed, the bioavailability of the
different stereoisomers differed widely (112), but in most trials,
the individual profile of flavan-3-ol stereoisomers has been rarely
characterized but may be one factor that may explain differences
in the bioavailability and bioactivity across published human
studies.

Impact of the gut microbiome on flavonoid metabolism

Colonic metabolism has long been speculated to be a major
contributor to the overall metabolism of not only dietary fla-
vonoids but also of phase I and II metabolites that have been
excreted back into the intestine via enterohepatic circulation (10,
113). Themicrobial metabolism of flavonoids is thought to follow
a general pattern whereby a diverse range of compounds are
funneled to a reduced number of metabolites. The bacterial
enzymes deglycosylate the compounds, but the microbes can also
perform a range of other transformations including oxidation,
demethylation, and the catabolism to smaller fragments including
small phenolic acids and aromatic catabolites (7, 8, 114–116).
However, it remains unclear how well these metabolites are
absorbed. The colonic bioconversion of flavonoids is thought to
be highly variable although the etiology of the heterogeneity is
currently unclear. There is wide interindividual variability in the
bioconversion of specific flavonoids (115, 117, 118) that has
been attributed in part to specific enterotypes and has resulted
in the suggestion that individuals may be either low- or high-
flavonoid convertors (106, 119). The interindividual variability
may also be related to the fact that small differences in the
chemical compositions of flavonoids (substitution patterns) can
result in major changes in colonic bioconversion (119) or the
modulation of the flavonoid-microbiota interaction by the
background habitual diet, which varies dramatically across
population groups (120). Many of these microbiome-mediated
chemical transformations can result in the production of me-
tabolites with increased biological activity, with the most-
notable example being the isoflavones, which are a subclass of
flavonoids that are derived predominately from soy. In the
1980s, evidence that the microbiome was key for metabolism to
the specific microbial-derived metabolite equol emerged (121),
and wide interindividual variability in the ability to produce this
microbial-derived metabolite has been established, ranging from
25–30% equol producers in Western populations to 50–70% in
Asian counties (122–124). Equol has been shown to be more
bioactive than its food precursor daidzein in vitro and in trials
(predominantly with the equol-producer phenotype assessed
retrospectively), the magnitude of the biological effect was
greatly enhanced in participants who produced equol after
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isoflavone ingestion, which suggested that there is a critical role
of the microbiome for health effects (125–127). In general
terms, there is emerging literature that describes the diverse and
significant impact of flavonoid phenolics and other small mol-
ecules that are produced in the large intestine on physiologic
processes such as SCFA production and bioavailability, bile acid
metabolism, redox and inflammatory status, and associated in-
testinal, hepatic, and overall systemic functions (128). The
production of SCFA is of interest in colonic health, dietary en-
ergy extraction, and body-weight regulation (128, 129). Al-
though flavonoid-induced effects on the main SCFAs acetic
(C2), propionic (C3), and butyric (C4) acids have been re-
peatedly shown in in vitro fermentation systems and in
rodent models (128), data from human interventions have been
limited and nonconclusive. For example, in healthy humans,
red-wine grape-juice extract, but not grape-juice extract, fed
for 4 wk reduced fecal isobutyric acid concentrations (130),
whereas Mosele et al. (131) reported no impact of 4 wk of
pomegranate-juice consumption on total or individual fecal
SCFA concentrations.

The large observed heterogeneity in the bioactivity and bio-
availability of different flavonoid metabolites that are formed
after ingestion, including the extensive range of the microbial-
derived metabolites identified particularly for anthocyanins (11,
116), supports a strong interplay between flavonoids and the
microbiome. Although it is likely that flavonoid intake alters the
composition and function of the gut microbiome, and, conversely,
microflora enhances the metabolism of flavonoids, this bi-
directional relation has not yet been addressed in flavonoid re-
search to our knowledge. An examination of this bidirectional
relation has been limited to a few small cross-sectional or short-
term feeding studies. A cross-sectional study, which included
178 elderly subjects, observed that habitual diet-driven microbiota
alterations were associated with health status, including measures
of frailty and inflammation (132), whereas in a study that was
limited to 15 women, a 2-mo dietary intervention was associated
with changes in Gammaproteobacteria and Erysipelotrichi
microbial communities (133). In a recent small RCT (n = 9)
high amounts of Bifidobacteria were associated with increased
amounts of flavonoid microbial metabolites after polyphenol-
rich wine intake (134). Several recent animal studies observed
profound effects in the gut microbial community structure after
intake of flavonoid-rich foods although it is possible that there
are differences in the permeability of microbiome-derived me-
tabolites between rodents and humans. In one animal study,
a reduction in the ratio of Firmicutes to Bacteroidetes and an
increase in Akkermansia muciniphila were observed after intake
of grape extract; these changes conferred protection against the
negative consequences of a high-fat diet, which resulted in
a reduction in inflammation and an improvement in insulin
sensitivity (135). An additional study in mice showed that the
microbial composition (specifically Akkermansia spp.) played
a decisive role in the observed protective effects of a cranberry
extract from diet-induced obesity and insulin resistance (136).
Other flavonoid-rich foods, including green and black teas, have
also been shown to increase the proportion of Akkermansia (137,
138). These animal data provide the first convincing data that the
gut microbiome may play a substantial role in mediating the
health effects of flavonoids, thereby leading to a reduction in
inflammation and improved metabolic function (135, 136). It

remains to be determined in humans if the interaction between
flavonoids and the gut microbiota is a direct effect or an indirect
effect (mediated through altered host physiology), but these ani-
mal data provide clear evidence of significant interactions. The
similarity in animal responses to different sources of flavonoids
(grape and cranberry) also suggest that perhaps diverse sources of
flavonoids may have similar effects on the gut microbiome, but it
is only through human intervention trials that the significance to
human physiology can be established.

In humans, we know that in the subclass anthocyanins, after
feeding stable-isotope labeled anthocyanins, they are extensively
degraded, which is swiftly followed by further transformation
(11, 116). These data provide some support from human data that
anthocyanin bioactivity is likely mediated by the high concen-
trations and longer half-lives of its microbial-derived phenolic
metabolites (116). Recent research has suggested that, in vitro,
nutritionally relevant amounts of these colonic metabolites exert
greater vascular and anti-inflammatory activity than do the
metabolites that are formed and absorbed in the small intestine
(139–141), thereby providing additional evidence that the bio-
activity of anthocyanins is highly likely attributed to their
microbial-derived metabolites. Clinical studies to determine
whether these effects are also observed in humans are urgently
needed because the identities of the main microbiota phyla and
species that modulate anthocyanin metabolism in humans are
unknown, and data from adequately powered acute studies and
long-term human RCTs investigating the potential of microbiota
diversity to explain associations between anthocyanin intake and
CVD risk are completely lacking.

Potential impact of gut-immune homeostasis and intestinal
permeability on flavonoid ADME

The intestinal epithelium, together with the colonic bacteria, is
the first site of interactions between food intake and the host
immune system, and this interaction can affect the microbiota
composition, which, in turn, can directly affect gut-immune
homeostasis and intestinal permeability and potentially flavonoid
ADME. If flavonoids are acting primarily at the level of intestinal
absorption, an understanding of how different dietary flavonoids
influence and regulate the intestinal barrier and intestinal per-
meability is key. In 2 pivotal animal studies, profound effects of
flavonoid intake on the microbial community structure were
observed with resulting effects on intestinal and systemic in-
flammation and the metabolic response (135, 136). However,
overall, the data suggested that these effects were the result of
a direct trophic influence of the flavonoids on Akkermansia rather
than an effect on mucin production. In one study, mucus pro-
duction was increased, but the authors suggest that this increased
production may have followed the direct effects of flavonoids on
Akkermansia (136), whereas in another study, no differences in
mucin gene expression in jejunum or colon samples were ob-
served (135). A direct effect on increasing the abundance of
Akkermansia fits with other in vitro data (138).

The relative increase in Akkermansia after cranberry intake
was also associated with the prevention of a high fat– and high
sugar–induced rise in liposaccharide and a decrease in intestinal
inflammation (136). These observations suggest that, by in-
creasing Akkermansia, flavonoids may reduce intestinal permeabil-
ity and liposaccharide leakage, thereby ameliorating insulin

8 of 13 CASSIDY AND MINIHANE



resistance in diet-induced obese mice (136). The understanding
of such interactions in humans is a key next step.

Because large proportions of ingested flavonoids reach the
colon and undergo extensive bioconversion, it is likely that
the resultant metabolites exert local intestinal effects while in the
colon and systemic effects after absorption. In vitro, the flavonol
quercetin was shown to enhance barrier function in rat small and
large intestines and exerted protective effects on cytokine-
induced barrier damage. In caco-2 cell monolayers, several
flavonoids, including flavanols and flavanones, exerted beneficial
effects on intestinal barrier function (increased epithelial re-
sistance and claudin-4 expression in epithelial cells) (142–144).
The impact of these localized effects of flavonoids in the colon
on flavonoid bioavailability remains to be established.

Concluding remarks

In summary, although there is growing evidence from pro-
spective cohort studies and clinical trials of the potential health
benefits of dietary flavonoids, this review highlights the research
gaps in the current knowledge base (Text Boxes 1 and 2).

At a population level, the heterogeneity in responsiveness
to habitual flavonoid intake obscures beneficial associations

between intakes and health outcomes in responsive population
subgroups and creates a difficulty in establishing the physiologic
and molecular mechanisms that underlie the health benefits of
different flavonoid subclasses. Identifying key factors governing
metabolism and understanding if a differential capacity to me-
tabolize these bioactive compounds affects health outcomes will
greatly enhance the ability to optimize intakes of flavonoids for
health benefits. The large observed heterogeneity in the bio-
activity and bioavailability of different flavonoid metabolites that
are formed after ingestion, including the extensive range of
microbial-derived metabolites identified, supports a strong in-
terplay between flavonoids and the microbiome. Although it is
likely that flavonoid intake alters the composition and function of
the gut microbiome, and conversely, microflora enhances the
metabolism of flavonoids, this bidirectional relation has not been
addressed in clinical trials to our knowledge. Furthermore, we
have identified a dearth of data on genetic determinants of fla-
vonoid metabolism. Although it is thought that $50% of the
interindividual variability in ADME may be attributed to genetic
variability, little research focus has investigated which gene
variants may alter flavonoid ADME. An understanding of the
impact of compromised phase I and phase II metabolism that are
mediated by genotype or variables such as age, sex, or habitual

Text Box 2 Study design and research considerations

· Conduct longer-term intervention trials ($6 mo) and consider long-term trials with clinical outcomes.

· Conduct head-to-head comparisons of flavonoid extracts and pure compounds compared with flavonoid-rich foods in clinical trials.

· In animal-model experiments, give consideration to the dose fed to ensure it is applicable to human intake.

· In examining mechanistic insights in vitro, consider the use of physiologically relevant doses and focus on metabolites.

· Develop high-throughput assays for assessing metabolites and develop appropriate standards for mass spectrometry to quantify the
range of metabolites produced in vivo.

· Develop optimal placebo products for clinical trials.

· Select the genotyping approach with close consultation with a genetics expert for a limited targeted genotyping of specific genes of
interest, nonsynonymous variants, or variants in the promoter region of the gene that are most likely to be functional.

· Once genotype-metabolism associations have been established with the use of retrospective genotyping approaches, confirm the
impact of the genotype 1) in an independent human study with the use of prospective recruitment on the basis of genotype and 2) in
rodent transgenic models expressing the human variant versions of the gene.

Text Box 1 Research challenges and future studies required in flavonoid research

· Conduct adequately powered clinical studies to determine the impact of age, sex, habitual diet, genotype, drug interactions, and the
microbiome on flavonoid metabolism.

· Conduct trials to understand the bidirectional relation between flavonoid metabolism and the microbiome.

· Prospectively recruit participants to clinical trials on the basis of the extent of absorption and metabolism to establish dose-response
relations.

· Identify and validate a panel of robust biomarkers of flavonoid intake and subsequent metabolism that can be used to examine
associations of bioavailable flavonoids with health outcomes in future prospective cohort studies.

· Further develop metabolomic data sets to assist in the development of biomarkers.

· Conduct hypothesis-driven research to investigate the impact of specific genotypes on flavonoid metabolism with a particular focus on
variants in LPH, b-glucosidases, phase I metabolism, and phase II metabolism with prospective recruitment by genotype for as-
sociations established with the use of the retrospective genotype approaches.

· Conduct intervention studies to determine how food composition and flavonoid source affect bioavailability.

· Conduct trials in which metabolism and health outcomes are addressed simultaneously.
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prescription drug intake on flavonoid bioavailability and me-
tabolism is almost completely lacking. Addressing these re-
search gaps (Text Boxes 1 and 2) would provide the basis for the
development of targeted dietary advice for subgroups who are
likely to be most responsive and help us work toward the de-
velopment of specific dietary guidelines for several dietary fla-
vonoid subclasses. These research gaps build on the guidance
and key considerations for the design and reporting in flavonoid
research that were outlined by Balentine et al. (145) in 2015. In
prospective studies, an understanding of interindividual varia-
tion after flavonoid intake would allow the establishment of
validated biomarkers that are indicative of both flavonoid intake
and subsequent metabolism to further establish relations be-
tween bioavailable flavonoids and health outcomes.
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