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Abstract 

The factors involved in the diversity, transition and persistence of commensal 

Escherichia coli, both between and within hosts, are not fully understood. The 

aim of this project was to develop and use comparative approaches to 

investigate traits associated with colonisation of the gut by taking advantage of 

two collections of natural isolates of E. coli, the ECOR (host-associated) and 

GMB (plant-associated) collections. A new method for uniquely tagging and 

monitoring individual E. coli strains was developed to facilitate the assessment 

of large numbers of strains in complex environments, such as the gut. 

Competition studies between ‘barcoded’ strains show that this technique has a 

high sensitivity enabling the identification of E. coli present in the population at 

low levels, which may be undetected using currently available methods. 

Together with genome-wide association studies, barcoding is a powerful tool for 

identifying adaptive traits associated with the environment.  

One trait linked to E. coli gut colonisation is production of the siderophore 

enterobactin. Comparisons of siderophore production and the distribution of 

siderophore loci between the GMB and ECOR collections highlighted that faecal 

strains produce higher levels of siderophores and possess a larger number of 

siderophore systems at the population level. However, while our 

epidemiological data indicated a role for siderophore biosynthesis in the GI-

tract, we did not observe significant differences in the competitiveness of 

siderophore biosynthesis mutants in a mouse model. Whether this is linked to 

the ability of mutants to cheat and use siderophores generated by the wild-type 

strain or to obtain iron through other ways remains to be determined.  

Overall, this study provides further details on the factors determining how the 

environment shapes the associated E. coli populations. This knowledge is 

essential to assess the relationship between the environment, the associated E. 

coli populations and the risk they represent to human health. 
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1. Introduction 

1.1 General introduction to E. coli 

1.1.1 Escherichia coli 

Escherichia coli is a Gram-negative, non-sporulating facultative anaerobe which 

is able to colonise the intestines of multiple different vertebrate hosts. Its 

primary host environment is in the large intestine of warm-blooded animals and 

reptiles, where it is most commonly found (Berg, 1996; Gordon and Cowling, 

2003). The mucus layer that covers the intestinal epithelium is thought to be the 

primary niche of E. coli. Within the mucus E. coli forms part of the gut 

microbiota, which can consist of more than 500 species of microorganisms that 

can reach densities as high as 1011 CFU/g in the large intestine of humans (Berg, 

1996). E. coli is one of the first bacteria to colonise the gut after birth, where it 

can reach high densities of over 109 CFU/g in faeces (Penders et al., 2006), 

before the microbiota becomes dominated by anaerobic bacteria. In adults, the 

proportion of facultative anaerobes drops to only 0.01-1% of the total 

microbiota (Berg, 1996; Eckburg et al., 2005), of which E. coli is the most 

predominant. In humans it has been shown to be almost ubiquitous, appearing 

in over 90% of collected samples to date (Penders et al., 2006; Tenaillon et al., 

2010).  

E. coli is a versatile organism, able to occupy non-host secondary reservoirs, 

such as soil, plants and water, as well as colonising a wide variety of hosts. 

Under the assumption that E. coli populations die off rapidly, E. coli detection is 

frequently used as an indicator of recent faecal contamination events of water 

sources. However, recent studies have highlighted that E. coli is able to persist 

in the non-host environment in soils, waters and on food products for long 

periods, questioning its suitability in this practice (Desmarais et al., 2002; Hartz 

et al., 2008; Brennan, Abram, et al., 2010). The total population of E. coli in the 

wild is estimated to be 1020 cells (Whitman et al., 1998; Tenaillon et al., 2010), 

half of which are thought to be associated with non-host environments 

(Savageau, 1983). 
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Similarly to several other genera (Salmonella, Yersinia, Klebsiella and 

Citrobacter) in the Enterobacteriaceae family, to which E. coli belongs, E. coli is 

able to act as a pathogen. It is estimated that pathogenic strains of E. coli cause 

the deaths of more than two million humans across the world per year (Kosek et 

al., 2003; Russo and Johnson, 2003). In contrast, commensal strains of E. coli are 

able to acquire nutrients, shelter and/or movement without causing any harm 

or damage to their hosts (Boucher, 1985). As E. coli can be both a commensal 

and pathogen, it is very suitable to study the differences between pathogenesis 

and commensalism, as well as how bacteria switch between them. E. coli is one 

of the best studied and characterised model organisms, being important in both 

biotechnology and microbiology research, especially in the fields of genetics, 

molecular biology, cell physiology and biochemistry. 

1.1.2 E. coli as a pathogen 

Although most E. coli strains are harmless commensals, many isolates can be 

pathogenic and cause a wide variety of infectious diseases. Pathogenic E. coli 

can be split into two main groups based on the site of infection, with those 

strains causing disease in the GI-tract being called intestinal pathogenic E. coli 

(IPEC) and those that cause disease in other parts of the body are called 

extraintestinal pathogenic E. coli (ExPEC). ExPEC strains that infect humans are 

sub-divided depending on where the infection occurs and include 

uropathogenic E. coli (UPEC), neonatal meningitis-associated E. coli (NMEC) and 

sepsis-causing E. coli (SEPEC). IPEC strains are also divided into pathotypes; 

however, this is based on the phenotypic characteristics of infection and 

disease. Strains within each pathotype typically share a set of virulence factors 

which allow for pathotype identification. The main six pathotypes are 

enterohaemorrhagic E. coli (EHEC), enterotoxigenic E. coli (ETEC), 

enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), diffusely adherent 

E. coli (DAEC) and enteroaggregative E. coli (EAEC) (reviewed in Kaper et al., 

2004; Croxen and Finlay 2010). E. coli causes more than two million deaths due 

to infant diarrhoea (Kotloff, 1999; Kosek et al., 2003) and extraintestinal 

infections (Russo and Johnson, 2003) per year. ExPEC infections are also 
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responsible for approximately 150 million cases of uncomplicated cystitis (Russo 

and Johnson, 2003).  

1.1.2.1 IPEC  

The virulence factors of IPEC strains include a wide range of traits that are 

predominantly involved in the attachment to host epithelial cells through 

fimbriae or pili, as well as the secretion of toxins. The extensively-studied model 

EHEC O157:H7 strain EDL933, for example, possesses the locus of enterocyte 

effacement (LEE) Pathogenicity Island which is required for the formation of 

attaching and effacing (A/E) lesions on epithelial cells (McDaniel et al., 1995; 

Perna et al., 1998). The LEE Pathogenicity Island is also found in EPEC strains 

(McDaniel et al., 1995) and encodes the adhesin intimin, a type 3 secretion 

system (T3SS), and several effector proteins (Garmendia et al., 2005; Croxen and 

Finlay, 2010). The effectors secreted by EPEC and EHEC strains into host 

epithelial cells are slightly different, with twice as many effectors identified in 

EHEC compared to EPEC (Tobe et al., 2006). The distinctive feature of EHEC 

strains, however, is the ability to produce Shiga toxin (Stx), which is encoded on 

a prophage. As no secretion system is present in EHEC, the Stx is released via 

phage-mediated lysis as part of the SOS response (Kimmitt et al., 2000; Toshima 

et al., 2007). Released Stx is able to spread systemically and bind 

globotriaosylceramide (Gb3) on kidney endothelial and epithelial cells, which 

can lead to fatal haemolytic uraemic syndrome (HUS). 

ETEC strains use colonisation factors (CFs) for attachment to host cells, which 

can be fimbrial, non-fimbrial, helical or fibrillar (Turner et al., 2006). They 

modulate the gut environment to facilitate access to the epithelium by secreting 

enterotoxins. These bind to receptors on epithelial cells on the brush border 

which leads to impaired uptake of Na+ and efflux of water into the lumen which 

disrupts the integrity of both the epithelium and mucus (Turner et al., 2006). 

EAEC strains possess the pAA plasmid, which encodes aggregative adherence 

fimbriae (AAFs) biosynthesis genes which are required for biofilm formation and 

aggregation on host cells (Croxen and Finlay, 2010). For the DAEC pathovar, host 

cell attachment is mediated through Afa-Dr adhesins which are able to damage 
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the intestinal brush border by altering the cell cytoskeleton (Bétis et al., 2003; 

Servin, 2005).  

EIEC and Shigella are considered to be a single pathovar rather than different 

species, but the Shigella name has been retained because of the bacteria’s 

association with the disease shigellosis (Croxen and Finlay, 2010). These strains 

are intracellular pathogens that acquired the pINV plasmid, which encodes a 

T3SS on the Mxi-Spa locus, as well as other genes which are required for cell 

invasion, intracellular survival and apoptosis (Schroeder and Hilbi, 2008). As well 

as this, large deletions are present in the EIEC and Shigella chromosome which 

correspond to the loss of key genes involved in amino acid and carbohydrate 

transport and nucleotide metabolism which are important in commensal strains 

(Maurelli et al., 1998; Touchon et al., 2009). This suggests that EIEC and Shigella 

are adopting an obligate host-associated intracellular evolutionary pathway (van 

Passel et al., 2008).   

1.1.2.2 ExPEC 

Some virulence factors have been identified in ExPEC strains that contribute to 

their pathogenicity, including adhesins, invasins, iron acquisition systems, toxins 

and protectins (Köhler and Dobrindt, 2011). However, many ExPEC strains 

cannot be clearly distinguished from commensal strains of E. coli based on the 

presence or absence of specific virulence factors. Unlike IPEC strains which must 

use specific virulence factors to cause disease, ExPEC strains are able to cause 

disease using a variety of virulence factors in multiple combinations, making 

them difficult to classify and distinguish.  

It has been suggested that ExPEC strains are opportunistic pathogens, normally 

being a part of the healthy intestinal microbiota and living asymptomatically as 

commensals (Dobrindt et al., 2010; Tenaillon et al., 2010). However, when these 

strains gain access to areas outside the gut, such as the urinary tract, they are 

capable of causing infections (Yamamoto et al., 1997; Nielsen et al., 2014). In 

support of this hypothesis, a study of 148 human gut samples showed that of 

the three most common E. coli strains detected, two were UPEC strains, UTI89 
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and CFT073 (Gao et al., 2014). Virulence factors that increase pathogenicity in 

ExPEC strains can possibly be considered as fitness or colonisation factors that 

are broadly spread throughout commensal strains of E. coli. These factors may 

be able to persist within the commensal population as they increase fitness 

during the normal commensal lifestyle, either in the primary host gut 

environment, or in the secondary external environment (Köhler and Dobrindt, 

2011). Several ExPEC virulence factors have been associated with increased 

fitness and successful colonisation of the GI-tract (Wold et al., 1992; Aslam and 

Service, 2006; Nowrouzian et al., 2006; Diard et al., 2010). Commensal strains of 

E. coli have been shown to possess virulence genes associated with ExPEC 

infections, such as strain HS, which possesses pili and fimbriae genes required 

for host cell attachment, as well as a type 2 and ETT2 type 3 secretion systems 

(Rasko et al., 2008). 

It has been suggested that ExPEC strains can be divided into two groups, the 

first consisting of strains that possess the typical virulence genes associated with 

ExPEC infection. A second group may exist, however, which contains strains that 

do not have these ExPEC virulence factors, but are still capable of causing 

disease (ö and Dobrindt, 2011). Indeed, ExPEC infections in elderly or 

immunocompromised patients can be caused by strains with few virulence 

genes, suggesting that depending on the conditions, virulence factors do not 

play a large role in determining whether a strain will cause an infection, but 

rather that the strain is in the right place at the right time (Köhler and Dobrindt, 

2011).  

1.2 Evolutionary biology and population genetics of E. coli 

1.2.1 The E. coli genome 

The genome of E. coli is approximately 4.5 to 5.5Mb in size (Bergthorsson and 

Ochman, 1998) with the difference of up to 1Mb reflecting the large amount of 

genomic variability seen in E. coli. As examples, the K-12 commensal E. coli 

strain has a genome of size 4.6Mb, which encodes 4,405 genes, whereas the 

pathogenic E. coli strain O157:H7 EDL933 has 5,416 genes encoded on a 5.4Mb 
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genome (Perna et al., 2001). Unlike with eukaryotic genomes, there is a clear 

correlation between the size of the chromosome and the number of genes 

available, with coding genes being present at similar densities between strains 

(Mira et al., 2001). However, the gene repertoires of similar sized genomes in E. 

coli can vary widely (Welch et al., 2002; Willenbrock et al., 2007), suggesting 

that strains with larger genomes are not simply adding extra genes to a large 

core of essential genes. Interestingly, it has been observed that pathogenic 

strains typically possess a larger genome than commensals, possibly due to the 

addition of virulence genes or Pathogenicity Islands (Croxen and Finlay, 2010).  

Studies have shown that the core genome, which consists of genes conserved in 

all strains, is indeed much smaller than the average genome size in E. coli, which 

is approximately 4,700 genes (Touchon et al., 2009). A study of 15, mostly 

pathogenic, E. coli genomes showed that there were 2,200 core genes and 

13,000 genes in the pan-genome (Rasko et al., 2008). These numbers have since 

been revised by another study of 21 E. coli genomes to 1,976 core genes and a 

pan-genome of 17,838 (Touchon et al., 2009). A further study of an even larger 

number of E. coli strains revised the number of core genes conserved across 61 

isolates of E. coli down to 993 (Lukjancenko et al., 2010). This clearly shows that 

a large proportion of the E. coli genome is variable, as on average only 

approximately 20% of the genome of a specific strain belongs to this core set of 

genes and more than 90% of the pan-genome is made up of accessory genes 

(Touchon et al., 2009; Lukjancenko et al., 2010). This also highlights how one 

strain of E. coli does not represent the species as a whole, as a single genome 

will only contain about 25% of the entire pan-genome (Touchon et al., 2009). 

Genes that do not make up the core genome, known as accessory genes, can 

vary considerably in frequency, with some genes appearing in large numbers of 

strains (persistent genes), whereas some genes may only be present in one or 

two strains (volatile genes) (Touchon et al., 2009).  The core and accessory 

genes make up the pan-genome of E. coli, which has been described as “open” 

due to the fact that as more studies are carried out, the number of genes 

discovered in the E. coli species increases. A large, open pan-genome is 
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generally observed in bacteria that occupy many environments, such as 

Pseudomonads, Streptococci, Salmonellae and Streptomyces, or environments 

that have changing conditions, as not only do bacteria benefit from the variety 

of genes that enables them to adapt to multiple different conditions, but they 

also have more opportunities to share genes with other bacteria (Medini et al., 

2005; Tettelin et al., 2008). The opposite can be said for bacteria that are 

adapted to a specific niche which is not shared with other species of bacteria. 

The smallest bacterial genomes have been found mainly in symbiotic bacteria, 

which live within specialised host cells that provide a very stable environment 

and also reduce the need to produce nutrients provided by the host 

(McCutcheon and Moran, 2012). In contrast, the largest genomes have been 

found in Ktedonobacter spp. (Cavaletti et al., 2006; Chang et al., 2011) that 

reside in soil, a very complex environment (Tiedje et al., 1999). 

1.2.2 Gene dynamics 

It is important to understand the gene dynamics that give rise to such a high 

level of gene diversity in E. coli (figure 1.1). Variation in bacterial populations at 

the genetic level arises through mutations, which can alter gene function, delete 

genes, introduce new ones, duplicate them or have no effect from a fitness 

perspective. Several types of mutations can occur, including point mutations, 

deletions, insertions, duplications and recombination. Mutations can occur 

spontaneously, such as through naturally occurring lesions, by transposable 

genetic elements, or as a consequence of inaccuracies during DNA replication or 

repair. However, this rate of mutation has been shown to be as low as 1x10-3 

mutations per genome per generation for wild-type E. coli grown under 

conditions with minimal natural selection (Wielgoss et al., 2011; Lee et al., 

2012). Spontaneous genomic rearrangements (SGRs) and intrachromosomal 

recombination can alter gene regulation as well as disrupting or duplicating 

genes and have been shown to occur in both E. coli (Iguchi et al., 2006) as well 

as Salmonella enterica Typhimurium (Sun et al., 2012). New genetic material 

which can undergo recombination can also be introduced and lost from cells via 



20 
 

a process called horizontal gene transfer (HGT). Together these mechanisms 

lead to gene acquisition and loss from the E. coli genome. 

Figure 1.1: Gene dynamics in E. coli. The core genome of E. coli has been estimated to 

be of approximately 1,000 genes in size, which consists of key housekeeping and 

metabolic genes. The pan-genome consists of 18,000 gene families, of which 

approximately 10% are part of the core genome (Touchon et al., 2009; Lukjancenko et 

al., 2010). Evolutionary forces and pressures both within the gut and in the non-host 

environment constantly shape the genome within E. coli which undergoes gene 

acquisition, maintenance and loss (adapted from van Elsas et al., 2011). 

1.2.2.1 Gene acquisition 

Gene acquisition occurs through two mechanisms which are gene duplication 

and HGT. Gene duplication involves replicating a gene to form a homologous 

repeat, known as a paralog. This duplication followed by divergence occurs as a 

natural evolutionary response to environmental pressures and selection as it 

allows bacteria to adjust the amount of a specific protein being produced in a 

dosage type response to the environment. This can lead to increased fitness and 

a wider phenotype range for the species as a whole (Kondrashov, 2012). As the 

environment changes and the selection pressure is removed, these duplications 

have been shown to acquire mutations at a higher rate (Bergthorsson et al., 
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2007). As such, they may develop different functions, but still belong to the 

same gene family (Hahn, 2009). These genes can then also undergo concerted 

evolution (Liao, 1999; 2000), where homologous genes within a species undergo 

homologous recombination and gene conversion, so they become identical for 

certain regions of the gene. The genes encoding ribosomal rRNA in bacteria are 

a good example of concerted evolution keeping diversity of paralogous genes 

low. Sequence divergence within the seven rRNA operons of E. coli is 0.195%, 

whereas the divergence between E. coli and the related 

Gammaproteobacterium Haemophilus influenzae is as high as 5.9% (Liao, 1999). 

However, not all genes undergo concerted evolution, with some genes being 

more biased towards gene conversion (Gevers et al., 2004; Serres et al., 2009). 

Alternatively, duplicated genes can become silenced or truncated through 

mutations to form pseudogenes, which can then be lost from the genome 

through gene erosion, as discussed later in this section.  

The second process through which genes are acquired in E. coli, HGT, can occur 

through three mechanisms: conjugation, transformation and transduction. In all 

three of these mechanisms, genetic material is acquired from an external 

source. Conjugation occurs between two cells that make direct cell-to-cell 

contact, with a donor cell providing a mobile genetic element, often in the form 

of a plasmid or transposon, to a recipient cell. Transformation occurs as a result 

of competent cells taking up exogenous free DNA. Not all bacteria are able to 

carry out transformation naturally, though natural transformation has been 

described in E. coli (Baur et al., 1996; Sinha and Redfield, 2012). Competency 

can be induced by environmental stressors (Charpentier et al., 2012). 

Transduction occurs when DNA is injected into a bacterial cell by a 

bacteriophage. Mobile genetic elements often encode virulence genes, 

antibiotic resistance cassettes or colonisation-associated genes alongside the 

genes required for mobilisation, and as a result these traits can spread rapidly in 

E. coli populations. 

The mobile genetic elements that are transferred into a cell will either remain in 

the cytoplasm as circular DNA or be integrated into the chromosome. The 
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homology between the mobile DNA and the chromosome influences the 

likelihood of integration into the chromosome, with DNA that does not share 

close homology more likely to be degraded (Shen and Huang, 1986; Thomas and 

Nielsen, 2005; Skippington and Ragan, 2011). This supports the observation that 

gene transfer is much rarer between distant taxonomic families than within or 

between species from the same genus (Skippington and Ragan, 2011). 

Homology can and does occur, however, at any of these taxonomic levels (Beiko 

et al., 2005; Toth et al., 2006). The physical proximity between two strains has 

been suggested as the most important factor for determining whether gene 

transfer will occur between two bacteria (Matte-Tailliez et al., 2002). It has been 

noted, however, that often the nearest bacteria are clones or closely related 

bacteria (Didelot and Maiden, 2010). Two main hypotheses have been 

suggested to explain how HGT evolved in bacteria. The first is that HGT is an 

important mechanism through which bacteria are able to repair the 

chromosome by using homologous external sources of DNA to replace possibly 

damaged areas (Vos and Didelot, 2009). The second hypothesis is that bacteria 

take up exogenous DNA primarily as source of nutrients, and gene transfer is a 

by-product (Redfield, 2001). Indeed, evidence suggests that there is a fitness 

benefit to metabolising DNA (Redfield, 1993; Finkel and Kolter, 2001; 

Palchevskiy and Finkel, 2006). 

The role of HGT in E. coli genetics was originally thought to be quite minimal. 

Early multilocus enzyme electrophoresis (MLEE) studies, which characterised 

isolates based on differences in electrophoretic mobility of housekeeping 

enzymes, showed that there was a high level of linkage disequilibrium in E. coli 

populations (Selander and Levin, 1980; Whittam et al., 1983a; 1983b; Selander 

et al., 1986; Herzer et al., 1990).  A high level of linkage disequilibrium, the non-

random association of alleles at different loci, suggested that the proportions of 

allelic variants within the population were non-random, indicating that few 

recombination events occurred in E. coli populations. However, it has since been 

shown that DNA is transmitted laterally in E. coli through HGT, and a lot of the 

variation present is as a result of recombination events. The high linkage 
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disequilibrium could be explained by the fact that only certain regions of the 

chromosome are prone to recombination events, and large sections of the 

chromosome remain clonal (Smith et al., 1993).  

HGT is important for the loss and gain of virulence factors in pathogenic E. coli 

strains, which are often transferred on Pathogenicity Islands (PAIs). PAIs are 

sections of a genome encoding virulence genes that are acquired through HGT. 

They are commonly flanked with mobile genetic elements enabling them to be 

readily transferred between bacteria. The large variety in virulence gene 

combinations arises through HGT, as seen especially in ExPEC strains, with 

certain combinations leading to particularly virulent strains. It was recently 

shown that the evolution of EHEC strains of E. coli was also non-linear, with 

several EHEC strains acquiring virulence genes independently (Ogura et al., 

2009). The constant acquisition of new virulence genes is one important factor 

for the rapid emergence of epidemics caused by novel pathogens, as seen 

recently with EHEC and EIEC pathogenic strains (Wirth et al., 2006). The 2011 

German outbreak strain, for example, was an EAEC pathovar that acquired the 

genes needed for Shiga toxin production, typically seen in EHEC and other Shiga 

toxin-producing E. coli (STEC) strains (Mellmann et al., 2011).  

It is important to note that PAIs typically associated with pathogenic strains of E. 

coli can be functionally characterised as ecological, saprophytic or symbiotic as 

well as pathogenic (Hacker and Carniel, 2001). An example is the High-

Pathogenicity Island (HPI) that contains the yersiniabactin locus. Yersiniabactin 

has been linked to virulence in UPEC strains (Brumbaugh et al., 2015), but has 

been found in many commensal strains of E. coli, albeit with an increased 

prevalence in two phylogenetically distinct groups. The recent rapid spread of 

the yersiniabactin locus through the E. coli population suggests that it plays a 

role in the commensal lifestyle of E. coli (van Elsas et al., 2011). The probiotic E. 

coli strain Nissle 1917 also raises a possibility for multiple siderophore systems 

as a benefit within the gut environment. Nissle 1917 is known to produce all 

four siderophore systems found in E. coli (Valdebenito et al., 2006), three of 
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which (aerobactin, yersiniabactin and salmochelin) are implicated in ExPEC 

pathogenesis (Torres et al., 2001; Schubert et al., 2002). 

1.2.2.2 Gene loss 

There are two mechanisms through which genes are lost from the genome, 

which are genetic erosion and gene deletion. Compared to eukaryotes the 

amount of “junk” (non-coding) DNA is very limited in bacteria. This suggests the 

presence of selective pressures to maintain a ‘streamlined’ genome. Important 

examples of gene loss are “black holes”, or large deletions, that occur in some 

pathogenic bacteria that are adapting to new niches (Maurelli et al., 1998; 

Maurelli, 2007). For example, in Shigella and EIEC, a large region of DNA has 

been lost which includes the gene cadA which encodes lysine decarboxylase 

(LDC). LDC converts lysine to cadaverine which inhibits the activity of 

enterotoxins produced by Shigella and EIEC strains (Maurelli et al., 1998). 

Mutants where the cadA gene is reintroduced and LDC function restored have 

reduced virulence, supporting the hypothesis that gene loss is enabling these 

strains to evolve towards an intracellular pathogenic lifestyle (Maurelli et al., 

1998). There is also evidence for the loss of genetic material turning a 

pathogenic strain into a commensal one. The E. coli strain 83972 was isolated 

from a patient with asymptomatic bacteriuria (ABU), where the bacteria 

colonised the urinary tract without causing symptoms (Hancock et al., 2008). 

This strain was shown to be phylogenetically related to other UPEC strains, but 

had undergone genome reduction events which possibly caused a loss of 

pathogenicity, and may signify continuing evolution towards host specialisation 

(Zdziarski et al., 2008). 

To maintain the optimal gene complement as required by the environment, 

considering that bacteria are constantly acquiring new genes as described 

above, a “deletional bias” or an evolutionary selection for the loss of genes and 

genetic material through genetic erosion and subsequent removal of genes can 

be predicted (Mira et al., 2001). In gene erosion, a gene is truncated or becomes 

non-functional to form a pseudogene. These pseudogenes were originally 

considered to be neutral in terms of selection pressures and fitness (Li et al., 
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1981). However, they are often removed from the genome at a rate that is 

greater than expected for the neutral model of stochastic loss, suggesting that 

they incur a cost and are actively removed from the genome (Lerat and 

Ochman, 2004; Kuo and Ochman, 2010). It has been suggested that these 

pseudogenes are under negative selection because the non-functioning proteins 

they encode are costly to make and may interfere with cellular processes (Kuo 

and Ochman, 2010). In agreement with this hypothesis, pseudogenes linked to 

fewer other genes, or with lower levels of protein-protein interactions have 

been shown to persist longer in the genome (Kuo and Ochman, 2010).  

Genomic rearrangements, or recombination, can modify gene order (synteny) 

through inversions and translocations of large regions of DNA between two 

repeat sequences within the genome. Depending on the orientation of these 

two repeats, the type of recombination that occurs will be different. If the two 

repeats are facing opposite directions inversion will occur, whereas, if the 

repeats are facing the same direction the region of DNA between these two 

repeats will be excised and deleted. Both gene function as well as gene 

expression can be modified by recombination, as genes can become truncated 

or chimeric, or become relocated under a different promoter, resulting in new 

phenotypes. These inversions and rearrangement of the genome may be 

important for bacteria that live in multiple or changing environments as it may 

enhance diversity and provide a selective advantage (Ussery et al., 2004). In 

contrast, the bacterium Buchnera aphidicola is an obligate endosymbiont of 

aphids and analysis of its genome suggests that both chromosomal 

rearrangements and gene acquisitions are very rare events resulting in a very 

stable genome, probably as a reflection of its constant environment or a lack of 

interaction with other species of bacteria within the aphid (Tamas et al., 2002). 

The E. coli genome shows fewer large genetic rearrangements compared to 

other bacteria, such as Shigella (Tenaillon et al., 2010). The high rate observed 

in Shigella may be related to the recent adaptation to an intracellular lifestyle 

resulting in many genes becoming unnecessary or even detrimental to this new 
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lifestyle (van Passel et al., 2008). This is further highlighted by the high number 

of insertion sequence elements (Touchon et al., 2009).  

Genome plasticity is likely to have limits, as while certain regions of the E. coli 

genome are hotspots for recombination, others display limited recombination, 

resulting in the genome maintaining a strong clonal structure (Touchon et al., 

2009). The chromosome must maintain a certain amount of symmetry, with the 

origin of replication and the terminus being positioned opposite each other. 

Imbalances of more than 15% have been shown to affect E. coli cells 

detrimentally (Esnault et al., 2007). For this reason, recombination events do 

not usually occur between the left and right replichores across either the origin 

or the terminus (Blattner et al., 1997), as this would have a negative impact on 

chromosome replication (Esnault et al., 2007). Indeed, cells that possess 

chromosomes where the origin is adjacent to the terminus often produce 

anucleated daughter cells (Niki et al., 2000). The chromosome is also structured 

into macrodomains, which locate to specific locations within the cytoplasm 

during the cell cycle and are involved with chromosome localisation (Niki et al., 

2000). Disruption of the synteny of certain parts of the chromosome during 

recombination may therefore have an impact on cell division (Niki et al., 2000). 

1.2.2.3 Selection and gene maintenance  

Once a gene has been added, lost or changed, new selection pressures arise for 

the organism based on the new phenotype they cause. This selection can be 

positive, negative or neutral. Beneficial mutations that arise do not always 

become dominant within a population and may be lost to stochastic genetic 

drift. In populations where strong selection pressures exist, clonal interference 

can be important in determining which mutations become fixed. This is where 

beneficial mutations are competing with one another, leading to fluctuations in 

which bacteria are dominant based on which mutant confers the greatest 

increase in fitness (Rozen et al., 2002). As a result, mutations with the largest 

beneficial effects are more likely to become fixed in a population, even though 

these mutations may be rarer than others (Fogle et al., 2008).  
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The effect of a mutation can be influenced by the genetic background of the 

bacterium in which it arises, a phenomenon known as epistasis. Positive 

epistasis results in an increase in fitness greater than expected and negative 

epistasis causes a lower fitness than expected (Phillips, 2008). High levels of 

positive epistasis have been observed in E. coli, especially in essential genes, 

though this may be down to essential genes causing large disturbances in non-

associated pathways (He et al., 2010). Sign epistasis occurs when multiple 

mutations individually have one effect on fitness, which when combined 

together result in the opposite effect occurring (Weinreich et al., 2005). 

Compensatory mutations can arise, which remove deleterious effects of earlier 

mutations, allowing them to persist within the population (Kimura, 1990). 

1.2.3 Population structure and phylogeny of E. coli 

Early studies on population structure in E. coli used MLEE studies which 

demonstrated that there were clear groups of E. coli isolates based on their 

electrophoretic profiles. From these MLEE profiles, the ECOR reference 

collection (consisting of 72 strains of E. coli) was created to represent the full 

genetic diversity of the E. coli species as a whole (Ochman and Selander, 1984). 

Phylogenetic studies using MLEE profiles identified four major clades, or 

phylogenetic groups, of E. coli, called A, B1, B2 and D (Selander and Levin, 1980; 

Selander et al., 1986; Herzer et al., 1990) along with two accessory groups C and 

E. Multilocus sequence typing (MLST) techniques that emerged alongside DNA 

sequencing used the nucleotide sequences of multiple genes to determine 

allelic profiles and sequence types (Lecointre et al., 1998; Escobar-Páramo, 

Sabbagh, et al., 2004). Analysis using MLST supported the MLEE evidence for 

phylogroups A, B1, B2, D and E (Reid et al., 2000; Escobar-Páramo, Sabbagh, et 

al., 2004; Johnson et al., 2006; Wirth et al., 2006; Gordon et al., 2008). However, 

no evidence was found for the accessory group C, which was later split between 

the D and E groups (Herzer et al., 1990; Wirth et al., 2006). Group F has since 

been identified as a subgroup within the phylogenetic clade D (Jaureguy et al., 

2008).  
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The order in which these phylogroups emerged is unclear, with different 

phylogenetic studies yielding different evolutionary trees. It was initially 

determined that phylogroups B2 and D were the oldest, with A and B1 diverging 

later (Lecointre et al., 1998; Wirth et al., 2006). Some studies have placed the B2 

group as the first to emerge (Lecointre et al., 1998; Tenaillon et al., 2010; Sims 

and Kim, 2011), whereas a whole-genome phylogeny study has suggested that 

the earliest group was D, followed by B2 (Touchon et al., 2009). It was observed 

that using S. enterica as the reference group (outgroup) for determining 

relatedness between E. coli strains resulted in long-branch attraction 

(Felstenstein, 1978; Touchon et al., 2009). This led to distantly related lineages 

being incorrectly identified as closely related solely due to the amount of 

evolutionary changes within each lineage. However, replacement of S. enterica 

with Escherichia furgusonii, the closest relative of E. coli (Lawrence et al., 1991), 

reduced long-branched attraction and supported the D group as the most 

ancient group (Touchon et al., 2009).  

Reconstruction of phylogenetic trees is also made more difficult by frequent 

recombination and gene acquisition or loss (figure 1.2). Phylogenetic trees for 

different genes can yield conflicting results, called phylogenetic incongruences, 

depending not only on real differences in evolutionary processes, but also on 

which region of DNA is used to construct the tree. This is especially problematic 

when DNA inside and around recombination integration sites is analysed 

(Dykhuizen and Green, 1991). For this reason, phylogenetic trees are often 

constructed from multiple genes or loci using MLEE, MLST or whole genome 

sequencing rather than single genes. Indeed, increasing the DNA fragment used 

for phylogenetic tree construction decreases the interference of recombination 

sites as the recombined area becomes a smaller proportion of the analysed DNA 

(Treangen et al., 2014). There are some exceptions, however, with some genes 

possessing enough sequence diversity to reflect the evolution of the whole E. 

coli population (Lescat et al., 2009; Sankar et al., 2009).  
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Figure 1.2:  Effect of recombination on phylogenetic reconstruction. At the top, a 

sequence alignment of 12 E. coli isolates from three phylogenetic groups (A, B and C) 

highlights an integration site for recombination. Phylogenic trees reconstructed using 

the integration site and those produced using the ungapped alignment where 

recombination has not occurred are therefore incongruent (Tenaillon et al., 2010). This 

figure is copyrighted by MacMillan Publishers Ltd. 

Following extensive sequence comparison it has recently been proposed that 

significant genetic exchange occurs, or has occurred, in E. coli between different 

phylogenetic groups (Leopold et al., 2011). Some phylogenetic groups 

apparently exchange DNA more than others (Leopold et al., 2011). The reason 

for this could either be due to different strategies with recombination for each 

phylogenetic group, or it could just be due to spatial or location differences 

(Leopold et al., 2011). Indeed, the proportion of each phylogenetic group in a 

population differs depending on the environment. The dominant phylogenetic 

group differs not only between the host and non-host environments, but also 

between hosts. This has largely been associated with differences in gut 

physiology between different hosts, as well as external environmental 

conditions which may limit E. coli survival or host exposure (Gordon and 

Cowling, 2003).  

The fact that the phylogenetic groups A and B1 are isolated from a greater 

variety of host animals (Gordon and Cowling, 2003) and group B1 is also isolated 
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in greater numbers from the non-host environment (Gordon and Cowling, 2003; 

Walk et al., 2007; Méric et al., 2013) suggests that these groups are 

“generalists”. In comparison, the B2 and D groups are generally limited to 

endothermic vertebrates, showing a greater level of host specialisation (Gordon 

and Cowling, 2003). However, it has been observed that group A strains harbour 

phenotypical traits that are associated with a host-specific lifestyle, including a 

reduction in both extracellular matrix and RpoS production (White et al., 2011; 

Méric et al., 2013). RpoS, the alternative sigma factor, is a central regulator of 

the E. coli General Stress Response, which includes extracellular matrix 

formation (Hengge-Aronis, 2002). For host generalists, a functional RpoS and 

stress response system has been proposed to be essential for adaptation to a 

variety of environmental stresses found outside the host, or in multiple different 

hosts (Ferenci and Spira, 2007; Peterson, 2005). This may explain the observed 

decreased prevalence of RpoS positive strains in host specialist phylogenetic 

groups A and B2 (White, 2011). An interesting observation is that strains from 

phylogenetic group A have some of the smallest genomes in E. coli 

(Bergthorsson and Ochman, 1998) and that their genomes have relatively few 

accessory genes compared to other groups (Sims and Kim, 2011). This has led to 

the hypothesis that group A strains are displaying “commensal minimalism”, the 

loss of genes not associated with host commensalism.   

In humans, data compiled from 1,117 individuals showed that the overall 

distribution of the phylogenetic groups was 40.5% group A, 25.5% B2, 17% B1 

and 17% D (Tenaillon et al., 2010). However, looking at individual studies, the 

dominant group varies depending on geography. Samples collected from Africa 

(Mali and Benin), Asia (Pakistan) and South America (French Guiana, Colombia 

and Bolivia) all showed that group A was dominant (Duriez et al., 2001; Escobar-

Páramo, Grenet, et al., 2004; Pallecchi et al., 2007; Nowrouzian et al., 2009). In 

contrast, samples from Europe (Sweden and France), North America (USA), 

Japan and Australia all showed that the B2 phylogenetic group was predominant 

(Obata-Yasuoka et al., 2002; Zhang et al., 2002; Escobar-Páramo, Grenet, et al., 

2004; Nowrouzian et al., 2005; Gordon et al., 2015). Interestingly, samples 
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collected from Europe (Sweden, France and Croatia) in the 1970s and 1980s 

showed similar phylogenetic profiles as those from Africa, Asia and South 

America, suggesting that socioeconomic factors such as hygiene and diet are 

more influential than geography (Duriez et al., 2001; Escobar-Páramo, Grenet, 

et al., 2004). In comparison, from 1,154 animal samples, the distribution of 

phylogenetic groups was 41% B1, 22% A, 21% B2 and 16% D (Tenaillon et al., 

2010). Domestication, however, greatly impacted on the distribution with 

domesticated animals (farm and zoo) having lower levels of B2 and higher levels 

of A group strains (Tenaillon et al., 2010). 

Longitudinal studies in humans were carried out in Sweden that differentiated 

between E. coli strains that persisted long-term within the gut (resident strains) 

and those that were only detected for a short period of a few days or weeks 

(transient strains). They showed that the B2 phylogenetic group was more likely 

to be a resident strain (Nowrouzian et al., 2005; Nowrouzian et al., 2006). 

Importantly, the dominant phylogenetic group of the resident strain for the 

1970s study was the B2 group, although the A group was most prevalent 

(Nowrouzian et al., 2006). This highlights the possibility that different 

phylogenetic groups may adapt different strategies towards gut commensalism. 

Serotyping was used classically to identify IPEC strains as they typically belong to 

a small number of O:H serotypes (Karch et al., 2005; Stenutz et al., 2006). IPEC 

strains are found in most phylogenetic groups within E. coli, though they are 

found to a lesser extent within group A. Although some highly virulent ExPEC 

strains do belong to a small number of serotypes, as with IPEC, many strains 

cluster with commensal strains (Smith et al., 2007). MLEE has shown that the 

majority of ExPEC strains belong to the B2 phylogenetic group, and to some 

extent the D group (Selander and Levin, 1980; Boyd and Hartl, 1998), but this 

was not sufficient to split the ExPEC strains from commensal strains. MLST again 

confirmed that the B2 phylogenetic group includes the majority of ExPEC strains 

(Köhler and Dobrindt, 2011). There were some allelic profiles, known as 

sequence types (ST), which only contained ExPEC strains and highlighted clonal 

lineages that have the potential to be ExPEC-associated. However, in general, 
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ExPEC could not be distinguished from commensal E. coli strains (Köhler and 

Dobrindt, 2011). It has also been shown that the B2 group is, however, not 

homogeneous, in that there are possibly sub-groups of the B2 group that 

possess fewer virulence factors and may have a lower potential to cause disease 

(Le Gall et al., 2007). An in vivo mouse model of ExPEC virulence showed that 

phylogenetic groups A and B1 were largely unable to cause infections (Picard et 

al., 1999). Large numbers of strains from the B2 and D groups, however, were 

able to cause infection and death, suggesting that the genetic background may 

be important for shaping virulence (Picard et al., 1999).  

1.3 The Ecology of E. coli 

1.3.1 The gut (primary) environment 

The primary niche of E. coli is in the large intestines of warm-blooded animals 

and reptiles. In humans, the facultative anaerobe E. coli is usually one of the first 

bacteria to colonise the gut after birth, but its abundance decreases over time 

as the gut environment becomes more anaerobic as a result of oxygen 

consumption by colonising bacteria. Eventually the microbiota becomes 

dominated by anaerobic bacteria (Matamoros et al., 2013). Despite this shift in 

microbiota, E. coli can usually persist at lower levels and can be detected in 

approximately 90% of humans sampled (Penders et al., 2006; Tenaillon et al., 

2010). Within the gastrointestinal (GI) tract the generation time for E. coli has 

been approximated to between 40 and 120 mins (Poulsen et al., 1994; Poulsen 

et al., 1995), which is much longer than that seen in vitro of about 30mins when 

grown on intestinal mucus (Licht et al., 1999). This reduced growth reflects that 

within the gut E. coli must compete with a large variety of other bacteria for 

nutrients as well as cope with any host responses. As a result, the majority of E. 

coli ingested are thought to quickly transit through the GI-tract without any 

negative impact on the host or stably colonising the gut (Caugant et al., 1981; 

Savageau, 1983). Many of these strains will only be detectable for a few days or 

weeks before they are released back into the external environment and are 

known as transients. However, some are capable of persisting for longer periods 
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of time, up to several years, and are called residents (Wallick and Stuart, 1943; 

Sears et al., 1950; Cooke et al., 1972; Touchon et al., 2009; Tenaillon et al., 

2010).  

Early studies on human faecal samples using MLEE indicated that one strain of 

E. coli typically constitutes more than 50% of the colonies isolated from a single 

individual. This dominant strain tends to also be a long-term resident of the 

microbiota (Caugant et al., 1981). A study looking at E. coli diversity in the 

human GI-tract found that a single host typically has 1-4 strains (or genotypes) 

with a diversity score (Simpson’s Index) of 1.74, with 85% of individuals 

possessing two or more strains (Gordon et al., 2015). Of those possessing more 

than two strains, 85% had strains only from one or two phylogenetic groups, 

with the second most abundant strain being significantly more likely to be from 

the same phylogenetic group as the dominant strain. Also, the dominant 

phylogenetic groups also influenced the distribution of different strains within 

the lower intestines, with groups E and F resulting in greater heterogeneity and 

group B2 resulting in the least (Gordon et al., 2015).   

The location of E. coli within the gut is still debated, but because E. coli is 

detected in the colon at 1,000 times the levels found in the ileum, the colon is 

considered to be its primary niche (Savageau, 1974). Commensal E. coli strains 

have been isolated from all areas of the lower intestinal tract in humans (ileum, 

colon and rectum), but with variability in diversity depending on location 

(Gordon et al., 2015). However, in vitro plug flow and chemostat cultures have 

suggested that E. coli is more adapted to the small intestine (Koch, 1987) and 

increased colonisation of the ileum by some strains of E. coli has been observed 

(Staley et al., 1969; Aktan et al., 2007; Barnich and Darfeuille-Michaud, 2007). 

Several pathogenic E. coli, including EPEC, ETEC, DAEC and some EAEC strains, 

have also been shown to predominantly colonise and cause disease in the small 

intestine (Kaper et al., 2004; Croxen and Finlay, 2010; Okhuysen and Dupont, 

2010). Other pathotypes, including EHEC and some EAEC strains, are able to 

attach to epithelium in the large and small intestine and EIEC strains colonise 

the large intestine only (Phillips et al., 2000; Croxen and Finlay, 2010; Okhuysen 
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and Dupont, 2010; Lewis et al., 2015). However, the isolation of E. coli from 

different areas of the GI-tract does not necessarily equate to colonisation 

throughout the gut. It is possible that E. coli are able to attach to the mucus or 

epithelium of a particular region of the gut without establishing a growing and 

persistent population (colonisation), making it more difficult to determine 

exactly where in the gut the primary niche of E. coli is.   

1.3.1.1 Gut physiology  

The gut is structured both laterally and longitudinally, with the environment in 

each area of the gut being very different and presenting different challenges to 

ingested bacteria. Examples include differences in food transit time, nutrient 

concentrations and availability, pH and bile, oxygen availability and changes in 

mucus and epithelial cells. After ingestion bacteria must survive transit through 

the oesophagus and stomach. Once within the lower intestinal tract, to cope 

with the constant flow of material within the gut, it is important for E. coli to 

form an attachment to the gut lining in order to prevent being washed out of 

the GI-tract. Mucus is secreted by goblet cells in the intestine and forms a layer 

covering the gut epithelium. Commensal E. coli strains are thought to colonise 

the gut by forming microcolonies within this mucus layer. In fact, E. coli in the 

lumen do not appear to grow compared to E. coli that have managed to colonise 

the mucus layer (Poulsen et al., 1995). This could be related to the difference in 

persistence of transient and resident strains of E. coli, with transient strains 

unable to colonise the mucus and passing quickly through the lumen where they 

do not grow, resulting in them only being present for a short amount of time. 

Indeed, the community of bacteria within the mucus has been shown to 

significantly differ from that recovered from the faeces (Zoetendal et al., 2002), 

with a higher diversity of E. coli being detected from intestinal samples (Gordon 

et al., 2015). 

The mucus in the colon can be differentiated into two layers; the inner layer 

which makes direct contact with the epithelium and the outer layer which 

extends into the lumen (Atuma et al., 2001). Colonisation by the microbiota and 

E. coli is thought to be primarily in the outer layer of the mucus. Mucus consists 
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of approximately 98% water and the heavily glycosylated mucin proteins, 

primarily MUC2 in the human GI-tract (Hansson, 2012). The mucin is much 

tighter in the inner layer so that pore sizes are too small for bacteria to enter 

through without having to degrade it (Johansson et al., 2008; Johansson et al., 

2010; Johansson et al., 2011). The expansion of the mucin, and thus 

enlargement of the pore sizes in the outer mucus layer, allows bacteria to enter 

and colonise (Johansson et al., 2011). The inner layer is thicker in the proximal 

colon, compared to the distal colon, and as such is partially penetrable to 

bacteria (Ermund et al., 2013). However, within the inner mucus layer digestive 

enzymes and antimicrobial peptides are also secreted by epithelial cells, as well 

as Paneth cells in the small intestine, making it difficult for bacteria to survive. 

As a result of small pore size and antimicrobial secretion the inner layer of 

mucus is largely devoid of bacteria (Hansson, 2012). Dextran sulphate (DSS) 

models of bacterial invasion of the inner mucus layer have shown a breakdown 

of mucin which allows bacteria to enter the inner layer and access the 

epithelium underneath resulting in a strong induction of the intestinal 

inflammatory response (Johansson et al., 2010). 

The structure of the mucus layer within the small intestine is less clear, but 

recent studies have suggested that although it is predominantly loose and easily 

penetrated by bacteria, a thin tight layer is directly attached to the epithelium, 

which prevents bacteria from attaching to host cells (Ermund et al., 2013; Bajka 

et al., 2015). However, gaps in the mucus may exist which allow penetration of 

bacteria through the mucus layer and direct contact with the epithelium (Bajka 

et al., 2015). The reason for this is probably related to the fact that most 

absorption of nutrients by the host occurs in the small intestine, so having a 

thinner and penetrable mucus layer would facilitate nutrient uptake.  

1.3.1.2 Attachment and motility 

Commensal bacterial adhesins are able to interact with and bind to host O-

glycans found within mucus, facilitating attachment of E. coli (Hansson, 2012). It 

is important to note that mucus is constantly being shed into the lumen with a 

turn-over of 1h. Therefore, although E. coli can attach to the mucus, washout 
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still occurs. Possession of P-fimbriae and the K5 capsular polysaccharide have 

been linked to increased colonisation of E. coli in the colon of gnotobiotic rats 

(Herías et al., 1995; Herías et al., 1997). Both of these were also shown to be 

more prevalent in long persisting E. coli strains compared to transient strains 

(Nowrouzian et al. 2001a; 2001b; Nowrouzian et al., 2003). Interestingly, P-

fimbriae are involved in urinary tract infections, and alongside type 1 fimbriae, 

mediate adherence to the epithelium (Melican et al., 2011). Type 1 fimbriae 

have been shown to be more prevalent in resident strains (Nowrouzian et al., 

2003). The K5 capsule has also been associated with ExPEC infections (Gransden 

et al., 1990) and the interactions of E. coli strain Nissle 1917 with host epithelial 

cells and maintenance of gut health (Hafez et al., 2009; Nzakizwanayo et al., 

2015).  

S-fimbriated E. coli adhere to mucus glycoproteins extracted from faeces better 

than other strains of E. coli (Tuomola et al., 1999), and have been shown to be 

important for attaching to host colonic epithelial cells (Adlerberth et al., 1995), 

but the relevance of this for commensal strains in a healthy gut is unclear. 

Indeed, S-fimbriae knockout mutants do not show reduced colonisation in 

streptomycin treated rats (Herías et al., 2001). S-fimbriae were shown to be 

present at equal levels in transient and resident strains of E. coli, suggesting a 

limited role in long-term persistence in the GI-tract (Nowrouzian et al., 2001a). 

S-fimbriae may instead be virulence factors that are implicated in ExPEC 

meningitis in children (Stins et al., 1994) as well as being found in UPEC strains 

(Herías et al., 1995). The repertoire of adherence factors possessed by 

pathogenic E. coli is important in defining the pathotype, with each pathotype 

having its own characteristic mechanisms for host cell attachment. For example, 

EPEC strains possess bundle-forming pili (BFP) and intimin for attachment to 

epithelial cells in the small intestine, whereas UPEC strains utilise type 1 

fimbriae and P-fimbriae to attach to the uroepithelium (Croxen and Finlay, 

2010). 

Pathogenic bacteria that attach to the epithelium are generally able to breach 

the mucus layer via several mechanisms, including penetration of the mucus, 
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secretion of mucus degrading enzymes, evading the mucus via attachment to 

intestinal microfold cells (M-cells) and production of toxins that disrupt mucus 

producing cells. It is not clear, however, if commensal bacteria are able to form 

close attachments to the epithelium. Many commensal E. coli strains are able to 

produce adhesins used by pathogenic strains to adhere to intestinal epithelial 

cells. This includes CFA/I produced by ETEC strains (Tullus et al., 1992; Herías et 

al., 1995) and the E. coli common pilus (ECP) used by many pathogenic E. coli, 

including EHEC O157:H7 strain EDL933 (Rendón et al., 2007).  

Flagella are also thought to be involved in intestinal cell adherence by some 

strains of E. coli, including the probiotic strain Nissle 1917 (Haiko and 

Westerlund-Wikstrom, 2013). However, within the gut, non-motile mutations 

quickly occur in successful E. coli colonisers, with the GI-tract environment 

selecting against expression of flagella. Motility has been shown to be lost in a 

few days after gut colonisation in mice (Gauger et al., 2007; De Paepe et al., 

2011). Non-motile mutants of the EHEC O157:H7 strain EDL932 had increased 

colonisation of the cattle GI-tract compared to the wild-type (Dobbin et al., 

2006). However, another study showed that the H7 flagella of EHEC O157:H7 

were involved in attachment to the bovine intestinal epithelium (Mahajan et al., 

2009). A role for flagella in the EHEC EDL933 and EPEC E2348/69 strains in 

adhering to bovine mucus has also been observed (Erdem et al., 2007). 

Therefore, it is possible that flagella may be involved in moving to the site of 

attachment and initial adherence. Flagella are probably required by Salmonella 

and pathogenic E. coli to swim against the flow of mucus being shed into the 

lumen, so that it can reach and adhere to epithelial cells (Stecher et al., 2004). 

This is supported by the observation that flagella and adhesion molecules are 

not usually concomitantly expressed, but bacteria switch from one to the other 

as it adapts to either a motile or sessile lifestyle (Haiko and Westerlund-

Wikstrom, 2013). Studies have shown that reduced motility can arise though 

mutations in either the EnvZ/OmpR two-component transduction system 

(Giraud et al., 2008) or the flhDC operon which encodes the flagella master 

regulator (Dobbin et al., 2006; De Paepe et al., 2011). The presence of flagella is 
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associated with reduced colonisation ability, most likely because of energy 

expenditure on flagella construction and function (Giraud et al., 2008). 

Expression of the flagella genes may also affect colonisation through other 

mechanisms as many genes not involved in flagella synthesis and function are 

down regulated in flagella mutant strains (Zhao et al., 2007). Flagellin is very 

immunogenic and stimulates cytokine production by the innate immune system 

(Ciacci-Wollwine et al., 1998; Hayashi et al., 2001; Moors et al., 2001). It has 

therefore been proposed that E. coli modulates flagella production to prevent 

recognition by the immune system (Kim et al., 2012; Cullender et al., 2013). 

Mutations in the EnvZ/OmpR system also reduce cell permeability, which may 

increase resistance to bile salts or other stressors in the gut (De Paepe et al., 

2011).  

1.3.1.3 Stressors in the GI-tract 

To be able to colonise the GI-tract, bacteria must be able to adapt to stresses 

that are present in the gut environment. Two of the main stressors which 

bacteria must overcome to survive within the gut are gastric acidity and the 

activity of bile salts.  After ingestion of food, stomach pH will decrease to a pH of 

approximately 2 as a result of the secretion of gastric acid, which contains 

hydrochloric acid. Bacteria that transmit between hosts through the faecal-oral 

route, such as E. coli, must survive transit in the stomach to reach the lower 

intestines where they colonise. There are several acid resistance systems that 

have been described in E. coli which generally involve the removal of protons 

from the cell to maintain intracellular pH levels (Foster, 2004). Acid resistance 

system 1 (AR1) is regulated through the alternative sigma factor rpoS and as a 

result is linked to the stationary growth phase (Arnold and Kaspar, 1995). The 

exact mechanism of AR1 is not fully understood, but an equivalent system in 

Streptococcus has been shown to actively pump protons across the cell 

membrane (Martin-Galiano et al., 2001).  

The influx of protons into the cell not only influences pH, but also affects the 

electrical membrane potential of the cell by introducing positive charge. When 

E. coli is grown at pH7, its membrane potential is -50mV, but this can rise up to 
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80mV in acid resistant strains (Richard and Foster, 2004). This strategy is used 

by many acidophilic bacteria (Matin, 1999) and reduces damage by slowing 

down movement of protons into the cell (Matin et al., 1982). The AR2 and AR3 

systems are both able to contribute towards this increase of membrane 

potential. These systems involve the combined activity of amino acid 

decarboxylases and antiporters. Decarboxylases are able to “consume” a proton 

by replacing the carboxyl group on an amino acid substrate with a proton. The 

product, however, still retains the charge from the proton, so the cell is able to 

maintain a high positive charge while also removing protons (Foster, 2004). The 

AR2 and AR3 have also been suggested to have a role in intracellular pH 

homeostasis (Foster, 2004).  

As well as hydrochloric acid, gastric acid also contains enzymes that carry out 

proteolysis, which has been shown to be important in bacterial killing (Zhu et al., 

2006). Indeed, studies have shown that acid resistant bacteria are able to 

survive at approximately pH 2 for several hours, but this is not frequently 

reached or sustained for long periods in the stomach environment (Gorden and 

Small, 1993; Small et al., 1994; Zhu et al., 2006). The stomach enzyme pepsin 

has an active pH range of 2.5-3.5, which can increase the killing of acid resistant 

bacteria in the stomach (Zhu et al., 2006). 

After reaching the small intestine, bacteria are exposed to bile salts, which are 

detergents produced by the liver to facilitate dispersion and digestion of fats. 

They are made from bile acids, which include cholic acid and chenodeoxycholic 

acid in humans, and are mainly secreted as conjugates, connected to either 

taurine or glycine. Conjugated bile acids are able to penetrate into cells via porin 

channels, such as OmpF (Thanassi et al., 1997). In their unconjugated form, bile 

acids are able to diffuse through the cell membrane (Plésiat and Nikaido, 1992), 

which may be of importance as several members of the microbiota are able to 

deconjugate bile salts (Franklund et al., 1993; Ridlon et al., 2006). E. coli has 

been shown to actively pump out bile salts through efflux systems EmrB and 

AcrAB (Thanassi et al., 1997). The AcrAB system has also been shown to be 

upregulated in the presence of bile salts and fatty acids (Rosenberg et al., 2003).  
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1.3.1.4 Nutrients and carbon sources  

The resource ratio model of competition proposes that the predominance of 

different taxa is determined by availability, demand and consumption rate of 

nutrients (Hibbing et al., 2010). Niches are often defined by what nutrients are 

available and in what quantity. The gut is a heterogeneous environment and E. 

coli is able utilise many different carbon sources. The availability of certain 

nutrients changes along and across the gut, influenced by host breakdown of 

food, uptake of nutrients and nutrient utilisation by the microbiota (figure 1.3). 

However, E. coli only accounts for a small proportion of bacteria within the 

healthy gut, suggesting that its preferred nutrients are only available at low 

levels and its niche is small (Chang et al., 2004). E. coli has been shown to 

preferentially catabolise several monosaccharides which are the breakdown 

products of glycans within the mucus. These monosaccharides are most likely 

produced by other commensal bacteria, many of which possess glycan 

degrading enzymes, and perhaps possibly by host cells (Chang et al., 2004).  

Sugars that E. coli has been shown to metabolise preferentially both in vivo and 

in vitro include gluconate, N-acetylglucosamine, N-acetylneuraminic acid, 

glucuronate, mannose, fucose and ribose (Chang et al., 2004; Alpert et al., 

2009). Mutants missing the catabolic pathways for any of these seven sugars are 

outcompeted by wild-type strains in the murine gut, though all mutants were 

able to colonise streptomycin fed mice when monoassociated (Chang et al., 

2004). The metabolism of fucose and ribose is linked, with strains unable to 

utilise fucose switching to ribose metabolism in the mouse GI-tract, and double 

knockout mutants unable to utilise either fucose or ribose being eliminated 

from the gut (Autieri et al., 2007). Glycogen may also play a role in the gut as 

mutants unable to utilise or store glycogen had reduced colonisation abilities 

(Jones et al., 2008).  Importantly, carbon source mutants are differentially 

affected in their ability to colonise the gut. N-acetylneuraminic acid and N-

acetylglucosamine mutants are only affected during initial colonisation, whereas 

glucuronate, mannose, fucose and ribose mutations are affected during 

maintenance (Chang et al., 2004). These observations would indicate that 
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colonisation consists of two phases in terms of catabolic processes; initial and 

maintenance phases, both of which have different nutrient requirements. As 

the use of different carbon sources changes over time, new incoming E. coli 

strains may therefore not be in direct competition with resident E. coli for 

particular resources.  

Figure 1.3: Nutrients available for commensal and pathogenic bacteria in the GI-tract. 

Metabolites shown in bold are specifically used by enteropathogens. SCFA (short-chain 

fatty acid), BCFA (branched-chain fatty acid), BCAA (branched-chain amino acid) (Staib 

and Fuchs, 2014). This figure is copyrighted by Microbiology Society. 

Comparisons between commensal and pathogenic natural isolates and 

laboratory strains of E. coli have highlighted that core catabolic and carbon 

uptake operons show very little variation (Ihssen et al., 2007). This large 

nutritional overlap could explain why commensal strains offer protection 

against intestinal pathogenic strains of E. coli such as O157:H7 in mice (Miranda 

et al., 2004; Leatham et al., 2009). However, in vivo studies in mice have shown 

that the sugars used by EHEC O157:H7 are slightly different to those used by 

commensal strains (Durso et al., 2004; Fabich et al., 2008). The commensal E. 

coli strain HS and probiotic E. coli strain Nissle 1971 were both shown to utilise 

slightly different carbon sources in the GI-tract (Maltby et al., 2013). When 

combined, these two strains use all five sugars known to be important in EHEC 
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O157:H7 strain EDL933 colonisation of the mouse gut, and were shown to 

prevent colonisation by the pathogen (Maltby et al., 2013). It is possible that the 

overlap in carbon sources used by both commensals and pathogens is enough to 

grant colonisation resistance, or the strains may be competing for other 

resources.  

As well as carbon, nitrogen is an essential nutrient for which E. coli has evolved 

multiple uptake and catabolic systems which utilise nitrogen in many forms, 

including amino acids, purines, pyrimidines, ammonia and nitrate. E. coli grown 

on mucus displayed repression of amino acid and nucleotide biosynthesis genes, 

as well as evidence for amino acid catabolism, suggesting that these are 

available in the GI-tract (Chang et al., 2004). However, E. coli K-12 strain 

MG1655 mutants in amino acid catabolism showed no colonisation defect in 

streptomycin treated mice (Chang et al., 2004). Other E. coli K-12 MG1655 

mutants unable to synthesise purines and pyrimidines did have reduced 

colonisation of gnotobiotic mice (Vogel-Scheel et al., 2010), which suggests that 

although purines and pyrimidines may be available in mucus (Chang et al., 

2004), they are limiting in the gut environment and important in gut 

colonisation.  

A major source of nitrogen for the gut microbiota is nitrate. The majority of 

human dietary nitrate is absorbed in the small intestine; however, 

approximately a third reaches the lower intestines, of which only 1% is 

recovered in faeces (Bartholomew and Hill, 1984). Nitrate is thought to be 

converted in the gut by commensal bacteria, including E. coli, into nitrite and 

ammonia. E. coli is able to use nitrate as a terminal electron acceptor during 

anaerobic respiration to produce nitrite, which is then subsequently converted 

to ammonia (Tiso and Schechter, 2015). In the presence of nitrate, E. coli has 

been shown to have increased growth in vitro under the anaerobic and 

microaerobic conditions likely to be found in the GI-tract. Alongside nitrate, N-

oxides (R3N+–O-) and S-oxides (RS+–O-), which are generated during oxidation of 

tertiary amines and thiols respectively (Youssif, 2001; Gupta and Carroll, 2014), 

can be used as terminal electron acceptors, which has implications on E. coli 
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growth during inflammation. Nitrate, N-oxides and S-oxides can all be produced 

during inflammation from nitric oxide (NO) or reactive oxygen species (ROS) 

released by the host immune system (Lundberg et al., 1994; Singer et al., 1996; 

Enocksson et al., 2004; Winter et al., 2013). As a result, E. coli overgrowth may 

be possible, and has been reported in inflammatory bowel disease (Martinez-

Medina and Garcia-Gil, 2014). As well as S-oxides, E. coli is able to utilise other 

forms of sulphur, including cysteine, sulphate, sulphite and sulphonates. E. coli 

preferentially uses cysteine, which is found in intestinal mucus where it is 

responsible for mucus integrity and barrier function (Gouyer et al., 2015).   

1.3.1.5 Respiration and oxygen 

One of the main factors that changes along the gut is oxygen availability. In the 

external environment and in the mouth, oesophagus and stomach, bacteria are 

exposed to high levels of oxygen. After entering the small intestine, however, 

oxygen is gradually reabsorbed through the mucosa (He et al., 1999) leading 

eventually to the primarily anaerobic colon (Saldeña et al., 2000). Oxygen is, 

however, still present in the colon next to the mucosa at levels of approximately 

2-7% and a diffusion gradient occurs across the mucus leading to the anaerobic 

lumen (He et al., 1999; Marteyn et al., 2011; Espey, 2013). As a facultative 

anaerobe, E. coli is able to survive in both the oxygen rich upper GI-tract and the 

oxygen poor colon. Removal of oxygen by E. coli is also vital to the obligate 

anaerobes within the colon, which form more than 99% of the colon microbiota 

(Jones et al., 2011). E. coli are capable of using nitrate and fumarate as 

alternative terminal electron acceptors during anaerobic respiration as well as 

fermentation when oxygen levels are low (Jones et al., 2007). Nitrate within the 

gut is, however, extremely limited and only affects E. coli during initial 

colonisation as it is rapidly depleted. After colonisation with EHEC strain EDL933 

the nitrate concentration in mucus was shown to become undetectable within 

24h (Jones et al., 2011). Nitrate metabolic mutants were, as a result, unable to 

colonise the gut when competing with wild-type strains. In contrast, fumarate is 

important in long-term persistence within the gut, rather than initial 

colonisation, as mutants unable to utilise fumarate were able to colonise the GI-
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tract of mice but numbers declined over time at a faster rate than the wild-type 

strains (Jones et al., 2011). 

It is likely that in the colon, as E. coli occupies the mucus near the epithelium, E. 

coli lives in a microaerobic environment (Jones et al., 2007). Under such growth 

conditions it would be important for it to be able to perform both aerobic and 

anaerobic respiration to optimise fitness and thus increasing its chances of 

entering the microbiota. Indeed, mutants unable to perform either aerobic or 

anaerobic respiration have reduced fitness in the GI-tract of mice compared to 

the wild-type (Jones et al., 2007; Jones et al., 2011).  

1.3.1.6 The gut microbiota and colonisation 

resistance 

The type and amount of resident bacteria influences how well they can prevent 

incoming bacteria becoming stable members of the microbiota. In the human 

GI-tract there is a wide variety of species which form the microbiota, with over 

1,000 species known to be able to colonise the colon (Rajilić-Stojanović et al., 

2007). Not only is the colonic microbiota diverse, but it is also abundant, with up 

to 1011 cells per gram of faeces often being detected in healthy individuals. 

Recently three major distributions, named enterotypes, have been identified 

(Arumugam et al., 2011), though whether these are distinct groups or form part 

of a gradient is unclear (Jeffery et al., 2012). These enterotypes are classified 

based on the dominant genera: Bacteroides, Prevotella or Ruminococcus. Other 

important genera include Bifidobacterium, Eubacterium, Lactobacillus and 

Peptostreptococcus (Wilson, 1993; Arumugam et al., 2011). The differences in 

enterotypes could not be explained by host properties, but some correlations 

were found between microbiota composition and age, Body Mass Index (BMI) 

(Arumugam et al., 2011) and diet (Wu et al., 2011). Key host factors that 

influence the composition of the microbiota include age (Kirjavainen et al., 

1998; Ley et al., 2006; Arumugam et al., 2011; Portal-Celhay and Blaser, 2012), 

gut morphology (Ley et al., 2008), diet (Ley et al., 2008) and immune 

competence (Khachatryan et al., 2008; Gulati et al., 2012). 
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Colonisation resistance occurs when the microbiota prevents colonisation by 

incoming bacteria, both pathogenic and commensal, in the GI-tract. Mouse 

models show that E. coli is rapidly excreted and can be lost from the GI-tract 

within 18 hours of ingestion in wild-type mice (Freter et al., 1983). However, in 

streptomycin treated and germ-free mice, which have a reduced or no 

microbiota respectively, E. coli is able to persist in the gut after ingestion (Freter 

et al., 1983; Rang et al., 1999). This persistence is not reduced after addition of a 

complete conventional microbiota (Freter et al., 1983; Rang et al., 1999), 

suggesting the main effect of colonisation resistance is during initial colonisation 

rather than during maintenance.  

Colonisation ability is not increased if a strain is re-introduced into a GI-tract 

where it has already colonised (Leatham et al., 2009). This is most likely due to 

the incoming population directly competing with the resident population for the 

same niche. Unless there are vacant niches available, or the incoming bacteria 

have a competitive advantage over the current residential strain, colonisation is 

unlikely to occur. Commensal strains can also offer protection against intestinal 

pathogenic E. coli, such as EHEC O157:H7 (Leatham et al., 2009). A reduced 

diversity in resident Enterobacteriaceae, including E. coli, reduces the 

colonisation resistance of the human gut microbiota to E. coli infection 

(Apperloorenkema et al., 1990).  

Several mechanisms of colonisation resistance have been proposed: killing or 

exclusion of incoming bacteria via oxygen consumption (Altier, 2005; Marteyn et 

al., 2010), growth inhibition through secretion of antimicrobials and short-chain 

fatty acid (SCFA) production (Shin et al., 2002; Gantois et al., 2006; Duncan et 

al., 2009; Fukuda et al., 2011), as well as competition for nutrients and niches 

(Lawley et al., 2012). For antimicrobial secretion, incoming bacteria, as well as 

the microbiota, may be able to produce them. Few E. coli strains are known to 

produce bacteriocins such as colicin, which is toxic against other E. coli strains. 

However, the competitive advantage lies with the resident strains in the 

microbiota, as they most likely have superior numbers. To release colicin 

bacteria must lyse and the small number of incoming bacteria may not be able 
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to sufficiently kill enough of the resident microbiota and retain enough cells to 

successfully colonise the microbiota (Durrett and Levin, 1997). The type VI 

protein secretion system (T6SS) has been shown to enable contact-dependent 

killing of competing bacteria via injection of effector proteins and virulence 

factors (Bingle et al., 2008). Many Gram-negative bacteria possess the T6SS 

including V. cholerae, which has been shown to use it to kill competing E. coli 

(Dong et al., 2013). Commensal strains may also be able to suppress expression 

of virulence factors of invading pathogenic bacteria (Kamada et al., 2013) or 

provide a physical barrier by heavily colonising the mucus layer and preventing 

access to the epithelium (Juge, 2012).  

There are several strategies utilised by bacteria to optimise their ability to 

colonise the gut and overcome colonisation resistance.  These include changing 

the gut environment to their advantage and to disrupt the microbiota, 

activation of the immune system (by some pathogenic strains), adaptation to 

the gut environment and increased fitness compared to residents (Rezzonico et 

al., 2011; Stecher and Hardt, 2011). For many commensal E. coli, however, 

although they may be adapted to and competitive within the gut environment, 

whether they can successfully colonise the gut and become stable members of 

the microbiota may depend more on being in the right place at the right time.  

1.3.2 The external (secondary) environment 

It has been estimated that 50% of all living E. coli are present in secondary 

environments at any one time, including soils, water and on plants (Savageau, 

1983). These bacteria are released from the GI-tract into the external 

environment through defaecation by the host, at which point a large majority of 

them probably die (Winfield and Groisman, 2003). Those that are able to survive 

and persist within the external environment may then go on to colonise another 

host when re-ingested. The ability to persist in this external non-host 

environment is not equal for all strains of E. coli and as a result some can be 

found in much higher proportions. This suggests that life and survival in the 

secondary environment is not entirely stochastic and provides certain selection 
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pressures on E. coli which has a significant influence on its ecology (Bergholz et 

al., 2011; Méric et al., 2013).  

The presence of E. coli is monitored by many industries to detect faecal 

contamination, under the assumption that E. coli has a quick and high level of 

death on release from the host and does not persist in the external environment 

for a long time. This assumption has, however, been questioned following 

multiple observations that E. coli is able to persist in the secondary 

environment, such as in soils and water, for long periods of time. DNA 

fingerprint profiles between E. coli isolated from soil and strains from 

surrounding wildlife (hosts) showed that the two groups were distinct, and it 

was suggested that E. coli may form persisting populations in soil, and possibly 

in other secondary habitats (Byappanahalli et al., 2006). Alternatively, the 

predominance of certain E. coli isolates in soil compared to host faecal samples 

may reflect their increased ability to survive in the external environment, rather 

than the presence of entirely different populations of E. coli strains. E. coli 

strains that might constitute true naturalised populations have been isolated 

from secondary environments, including tropical soils (Byappanahalli et al., 

2006; Ishii et al., 2006; Goto and Yan, 2011), water (Bermúdez and Hazen, 1988; 

Power et al., 2005; Vital et al., 2008), sediments (Solo-Gabriele et al., 2000; 

Whitman and Nevers, 2003; Ishii et al., 2007) and plants (Solomon et al., 2003; 

Islam et al., 2004; Ibekwe et al., 2007). It has been postulated that tropical soils 

and waters provided a warm and moist environment that replicated the GI-tract 

enough to permit growth of E. coli in these environments (Winfield and 

Groisman, 2003). However, reports suggest that E. coli could form sustainable 

populations or survive for long periods in soils from temperate climates 

(Sjogren, 1995; Byappanahalli et al., 2006; Ishii et al., 2006; Ishii et al., 2007; 

Texier et al., 2008; Brennan, Abram, et al., 2010; Brennan, O’Flaherty, et al., 

2010). 

1.3.2.1 E. coli adaptation to plants 

Plants are increasingly considered an important reservoir for pathogenic and 

commensal E. coli, with increasing numbers of EHEC outbreaks being traced to 
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contaminated vegetable products (Herman et al., 2015). Initial attachment of E. 

coli to plants has been studied in some detail, with a particular focus on 

pathogenic strains. Biofilm formation has been highlighted as a possible trait 

that influences plant attachment (Niemira and Cooke, 2010; Méric et al., 2013; 

Yaron and Romling, 2014). csg curli, which are an important component of 

extracellular matrices, when introduced into E. coli K-12 strains that are unable 

to colonise plants, resulted in increased binding to alfalfa sprouts and seed coats 

(Torres et al., 2005). Cellulose, another component of extracellular matrices, has 

been implicated in plant attachment by both S. enterica and E. coli O157:H7 

strains, with cellulose biosynthesis mutants having a reduced ability to colonise 

alfalfa sprouts (Barak et al., 2007; Matthysse et al., 2008). 

In EHEC strains, the LEE-encoded EspA filaments were shown to be important in 

attachment to salad leaves with no adherence observed for ΔespA mutants 

(Shaw et al., 2008). To support this observation, EHEC T3SS mutants were also 

shown to have reduced colonisation of spinach and lettuce leaves (Shaw et al., 

2008; Xicohtencatl-Cortes et al., 2009). Due to the physical properties of the 

plant cell wall, it is thought that translocation of effector proteins into plant cells 

via the T3SS is unlikely (Shaw et al., 2008). One effector protein, EspB, was 

shown to not influence attachment, but was important for EHEC tropism 

towards stomata (Shaw et al., 2008). ETEC colonisation factors (CFA) and the 

associated secreted adhesin etpA, which are normally involved in intestinal 

colonisation, did not affect plant colonisation by this pathogen (Shaw et al., 

2011). Strong evidence of virulence traits being involved in the association of E. 

coli with plants has been provided for the AAF (aggregative adherence fimbriae) 

pili, which can be used by EAEC pathogenic strains of E. coli to adhere to 

epithelial cells in the gut (Berger et al., 2009b). 

There is evidence to suggest that flagella are able to influence colonisation of 

plants by E. coli, with studies reporting reduced colonisation of spinach and 

lettuce leaves by ΔfliC ETEC and EHEC mutants (Xicohtencatl-Cortes et al., 2009; 

Shaw et al., 2011). EHEC O157:H7 flagella have been shown to facilitate 

attachment via interactions with ionic lipids in spinach and Arabidopsis thaliana 
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plasma membranes (Rossez et al., 2014). Flagella have been observed to 

influence movement of EHEC and EAEC strains on and within plant tissues 

(Cooley et al., 2003; Berger et al., 2009b). S. enterica Typhimurium flagella have 

also been shown to have a role in chemotaxis-dependent internalisation of 

Salmonella into lettuce leaves (Cooley et al., 2003; Kroupitski et al., 2009). 

However, EAEC flagella mutants showed no reduction in attachment to plants 

compared to the wild-type, suggesting the role of flagella may be different 

depending on strain (Berger et al., 2009b). In support of this, it has been 

observed that Salmonella flagella involvement in plant colonisation is 

dependent on serovar (Berger et al., 2009a).  

Internalisation of E. coli into the plant may be important in terms of persistence, 

as the internal environment may offer protection from external conditions. 

There are many observations of E. coli strains, both commensal and pathogenic, 

being recovered from inside plant tissues (Solomon et al., 2002; Warriner et al., 

2003; Hora et al., 2005; Ongeng et al., 2011). There are two proposed routes of 

internalisation: (i) active movement of bacteria through natural openings (e.g. 

stomata) or sites of damage on the plant surface, and (ii) passive uptake of 

bacteria by plants alongside water uptake (Deering et al., 2012). Chemotrophic 

attraction to stomata has been shown in EHEC O157:H7 strains (Shaw et al., 

2008), suggesting that some strains are able to actively penetrate plant leaves. 

Exposure of seeds or roots to contaminated water has shown that both E. coli 

and Salmonella spp. can be internalised and spread throughout the plant 

through the xylem, as bacteria were subsequently isolated from unexposed 

aerial parts of the plants (Warriner et al., 2003). The likelihood of an E. coli 

strain achieving internalisation is influenced by the type of plant, plant age, 

route of contamination, as well as the strain itself (Pu et al., 2009). Once inside 

the plant, several studies have indicated that E. coli is capable of replicating to 

high levels (Cooley et al., 2003; Jablasone et al., 2005; Deering et al., 2011). One 

difficulty faced by internalised E. coli is that the plant innate immune system 

may be triggered by pathogen associated molecular patterns (PAMPs), such as 

flagella or LPS (Melotto et al., 2014). Whether E. coli can suppress this immune 
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response like phytopathogens has not been investigated. It is important to note, 

that although E. coli is able to become internalised, there are no recordings of E. 

coli being able to cause pathogenesis in plants, and it has been hypothesised 

that E. coli are simply taking advantage of plants as a transmission vector 

(Holden et al., 2009; Chekabab et al., 2013). 

The availability of carbon sources to E. coli on plants varies depending on plant 

age, growing conditions and wound presence (Hora et al., 2005; Brandl, 2008). 

Several nutrients are potentially available to bacteria on or within leaves, 

including carbohydrates, organic acids, amino acids, methanol and various salts 

(Corpe and Rheem, 1989; Mercier and Lindow, 2000). Water availability on 

leaves was shown to be sufficient using a Pantoea agglomerans bioreporter 

strain, with the aqueous laminar layer that coats leaves possibly providing 

access to enough water (Lindow and Brandl, 2003). However, the availability of 

some nutrients on leaves is often not homogenous, with both sugars (fucose 

and sucrose) and ferric iron being concentrated in certain areas (Joyner and 

Lindow, 2000; Leveau and Lindow, 2001). There is evidence that siderophores 

are important in plant colonisation, with enterobactin and salmochelin both 

being induced in S. enterica Typhimurium grown in alfalfa root exudates (Hao et 

al., 2012). This, however, may be influenced by the type of plant being colonised 

as polyphenolic compounds (e.g. tannins) are able to sequester iron to varying 

degrees (Karamanoli et al., 2011). Another limiting nutrient on leaves is 

nitrogen, which was shown to limit growth of E. coli O157:H7 strain H1827 

(Brandl and Amundson, 2008). On well fertilised plants, however, evidence 

suggests that carbon sources become more limiting, due to increased 

availability of nitrogen (Brandl and Amundson, 2008).  

1.3.3 Requirements of the “biphasic” lifestyle of E. coli 

The lifestyle of E. coli is largely biphasic, consisting of host-associated (primary 

environment) and host-independent (secondary environment) phases (van Elsas 

et al., 2011). Two hypotheses have been proposed to explain how E. coli 

responds to the transition from the primary to secondary environment, and vice 

versa. “Demand theory” states that during the transition between 
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environments, E. coli adapts by altering gene regulation and expression, with 

high-demand genes being positively regulated and low-demand genes 

negatively regulated (Savageau, 1974; 1983). In contrast, it has been proposed 

that specific strains are primarily adapted to either the primary or secondary 

environment, with selection pressures influencing E. coli transitioning between 

these environments (Whittam, 1989; Gordon et al., 2002). These strains may 

possess certain genes or phenotypes that facilitate survival in their respective 

environment. Comparisons of the genetic population structures of E. coli in the 

primary and secondary environments show distinct profiles supporting selection 

as shaping E. coli populations (Gordon et al., 2002; White et al., 2011). However, 

it is most likely a mixture of these two processes that shape E. coli adaptation 

with both differences in gene regulation and gene content being important 

factors. 

1.3.3.1 Trade-offs: Self-Preservation and Nutritional 

Competence (SPANC) 

In both the primary and secondary environments, E. coli is exposed to many 

stressors, and as a result stress protection and the stress response are 

important to survival. Stress protection is tightly regulated by the alternative 

sigma factor RpoS, a key regulator of the general stress response (Hengge-

Aronis, 2002). Observations that rpoS mutants were better competitors for 

nutrients but were poor at surviving environmental stressors (King et al., 2004), 

lead to the hypothesis that E. coli faces a trade-off between self-preservation 

and nutritional competence (SPANC) with strains in different positions on the 

SPANC balance possibly occupying different niches (Ferenci, 2005). Stress 

protection diverts energy away from metabolic processes, which could result in 

reduced growth. E. coli O157:H7 isolates with a functional rpoS system have 

increased persistence in soil, which may be linked to oxidative capacity (Franz et 

al., 2011; van Hoek et al., 2013). In the gut, however, RpoS may provide little 

benefit as E. coli strain BJ4 ΔrpoS mutants fed to mice were able to colonise the 

gut and outcompete the wild-type (Krogfelt et al., 2000). In good 
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correspondence with this hypothesis, E. coli rpoS mutants can be readily 

isolated from sources of faecal contamination (Chiang et al., 2011).  

Antibiotic resistance is often acquired through changes in cell permeability, and 

E. coli K-12 strains with varying antibiotic resistance were shown to have 

differing colonisation in germ-free mice (Onderdonk et al., 1981). Importantly, 

increased stress protection against many stressors, including antibiotic agents, 

bile salts and desiccation, appear to be linked to reduced cell membrane 

permeability and possibly reduced nutrient uptake (Ferenci, 2005). Indeed, in 

the murine gut E. coli strains quickly develop mutations in membrane protein 

genes such as ompB, envZ and the flhDC operon, as well as in the malT gene 

that regulates maltose uptake (Giraud et al., 2008; De Paepe et al., 2011). These 

mutations affected membrane permeability leading to increased resistance 

against bile and increased survival in vivo and in vitro when grown in media 

containing bile salts compared to ancestor strains. Mutant strains showed 

reduced growth in the absence of bile salts compared to the parental strains, 

suggesting reduced uptake of nutrients (De Paepe et al., 2011). Within the gut 

the trade-off seems to be between nutritional competence and resistance to 

bile secreted into the small intestine (Giraud et al., 2008; De Paepe et al., 2011).  

In summary, the SPANC balance could reflect the trade-off arising between host 

and non-host environmental adaptation, and might be an important factor 

involved in E. coli diversification within the GI-tract itself (De Paepe et al., 2011). 

1.4 Iron homeostasis and siderophores 

1.4.1 Iron homeostasis in bacteria 

For most bacteria iron is essential, playing a role in many cellular processes, 

including DNA replication, photosynthesis, nitrogen fixation, methanogenesis, 

hydrogen production and consumption, protection from oxidative stress, 

respiration, energy generation, the tricarboxylic acid (TCA) cycle, oxygen 

transport and gene regulation (Andrews et al., 2003). Very few bacteria have 

been shown to be able to grow in the absence of iron, such as lactobacilli 

(Archibald, 1983), the Lyme disease pathogen Borrelia burgdorferi (Posey and 
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Gherardini, 2000) and the syphilis pathogen Treponema pallidum (Posey et al., 

1999). The lactobacilli are thought to have evolved the ability to survive without 

iron as they live in milk which contains lactoferrin, a host iron binding protein 

(Weinberg, 1997). Instead of iron, lactobacilli probably incorporate high levels of 

manganese into their proteins (Archibald and Duong, 1984; Imbert and 

Blondeau, 1998), and intracellular levels of iron in lactobacilli can be as low as 

two atoms per cell (Sabine and Vaseleko, 1967; Imbert and Blondeau, 1998). B. 

burgdorferi and T. pallidum are obligate intracellular pathogens with minimal 

genomes and as such are able to rely on host cellular processes to compensate 

for pathways that require iron (Posey et al., 1999; Posey and Gherardini, 2000). 

It is possible that these intracellular parasites evolved to not use iron as a result 

of their hosts sequestering available iron. 

Because of the high availability of iron during the Archean Eon, 4,000 to 2,500 

million years ago, it has been suggested that it was incorporated into proteins 

early on during the evolution of life (Beinert et al., 1997). Iron can be found in a 

wide range of oxidation states, but the two most common are the Fe2+ (ferrous) 

and Fe3+ (ferric) forms. During early life on Earth, before the appearance of 

photosynthesis and the associated production of significant amounts of oxygen, 

iron would have been readily available in its soluble Fe2+ form. In contrast, 

bacteria (and other organisms) that occupy environments that are rich in oxygen 

cannot gain easy access to iron, as it readily oxidises to its Fe3+ form which is 

extremely poorly soluble.  Another important characteristic of ferric iron that 

indicates it was incorporated in early life forms before the appearance of 

photosynthesis is that under aerobic conditions Fe2+ can be toxic. This is due to 

its ability to react with oxygen and generate free radicals that can damage 

cellular components including DNA and proteins (Andrews et al., 2003). As a 

result, following the increase of atmospheric oxygen bacteria have evolved 

mechanisms to tightly regulate iron levels within the cell to ensure they have 

access to sufficient amounts of iron, while limiting its toxicity.  

There are five main mechanisms (Andrews et al., 2003) through which bacteria 

regulate intracellular iron levels: (i) scavenging iron from the surrounding 
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environment using high-affinity transport molecules and receptors (ii) storage of 

iron within the cell to be used when external iron levels are low (iii) control of 

the incorporation of iron into proteins and enzymes to reduce iron use when it 

is in short supply (iv) redox stress systems able to reduce or prevent damage 

from iron (v) regulatory systems that co-ordinate all of the mechanisms above 

according to iron availability. The way these general mechanisms function will 

depend on the bacteria, their environment and iron availability. 

1.4.2 Siderophores in E. coli 

To survive, E. coli must maintain an intracellular iron concentration between 10-

7 and 10-5M, or 105 to 106 ferric ions each generation (Braun and Braun, 2002; 

Andrews et al., 2003; Raymond et al., 2003). To facilitate uptake of Fe3+ bacteria 

have evolved several different strategies, including lowering the external pH as 

Fe3+ becomes more soluble in acidic environments, reducing Fe3+ into the more 

soluble Fe2+ which can be taken up using less costly ferrous transporters, or 

using Fe3+ chelators known as siderophores (Guerinot, 1994). The main strategy 

employed by E. coli to facilitate Fe3+ uptake is the use of siderophores. Many 

species use these molecules, and more than 500 different siderophores have 

been described (Ratledge and Dover, 2000; Wandersman and Delepelaire, 

2004). There are five major classes of siderophore: catecholates, phenolates, 

hydroxamates, α-hydroxy-carboxylates and mixed type (reviewed in Garenaux 

et al., 2011) which all have slightly different characteristics.  
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Figure 1.4: Chemical structure of the four siderophores produced by E. coli. 

Salmochelin, a glucosylated form of enterobactin, has three possible structures, 

depending on the number of glucose molecules attached. Circles denote the iron-

binding regions of each siderophore (Garenaux et al., 2011). This figure is copyrighted 

by Elsevier B.V. 

E. coli can synthesise up to four siderophore systems; enterobactin, 

salmochelin, yersiniabactin and aerobactin (figure 1.4). Enterobactin, a 

catecholate type siderophore has the highest binding constant for ferric iron of 

any known siderophore (Grass, 2006). Enterobactin is widely synthesised within 

enterobacteria and has been found in almost all E. coli strains, both pathogenic 

and commensal (Ratledge and Dover, 2000; Crosa and Walsh, 2002). 

Salmochelin is a modified version of enterobactin, and as such, shares most of 

its synthetic pathway (Grass, 2006). Salmochelin may be important in the host 

environment, as enterobactin is bound and inhibited by the host molecule 

lipocalin-2. Modifying enterobactin into salmochelin changes its shape, 
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preventing lipocalin-2 from binding, and allowing iron uptake to occur 

(Fischbach et al., 2006). Yersiniabactin was first described in Yersinia 

enterocolitica and is a phenolate type siderophore (Heesemann et al., 1993). 

Finally, aerobactin is a mixed-hydroxymate type siderophore that, similarly to 

salmochelin and yersiniabactin, is often associated with pathogenic strains of E. 

coli as a virulence factor (Köhler and Dobrindt, 2011). Siderophore-dependent 

iron uptake generally follows the same steps, even though they can display a 

wide range of differences in chemical properties. The main stages involved in 

siderophore use and Fe3+ uptake include synthesis, export, binding of the ferri-

siderophore to outer membrane receptors, internalisation and iron release into 

the cytoplasm. 

The fact that some strains of E. coli encode multiple siderophore systems raises 

the question of redundancy. However, each siderophore displays unique 

characteristics, which may result in differing optimum activity in different 

environments. Enterobactin has been shown to have the highest binding affinity 

for iron of any known iron chelator, with a log β110 of 49 (Loomis and Raymond, 

1991). β110 represents the stability constant, and is calculated based on the ratio 

of siderophore-bound iron to unbound iron in mixed solutions (Boukhalfa and 

Crumbliss, 2002). Higher values for log β110 indicate that the siderophore-iron 

complex has a higher association rate (Boukhalfa and Crumbliss, 2002). The 

binding affinity of salmochelin is unknown, but as its Fe3+ binding site is identical 

to that of enterobactin, it is most likely able to bind Fe3+ with an equivalent 

affinity. In contrast, aerobactin has one of the weakest binding affinities for Fe3+, 

at log β110 = 22.5 (Harris et al., 1979). However, under acidic conditions the 

binding affinity for both enterobactin and aerobactin has been shown to be 

approximately equal, up to a pH of 5.6, after which the binding affinity of 

aerobactin plateaus while enterobactin increases further (Valdebenito et al., 

2006). To reflect these differences, production of aerobactin by E. coli strain 

Nissle 1917 was increased at pH 5.6 compared to pH 7 (Valdebenito et al., 

2006). In contrast to aerobactin, yersiniabactin, which has a binding affinity of 

log β110 of 36.6 (Perry et al., 1999), has reduced stability under acidic conditions 
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(Drechsel et al., 1995) and decreased production by E. coli strain Nissle 1917 

was observed at pH 5.6 (Valdebenito et al., 2006). To support these 

observations, an E. coli Nissle 1917 Δybt mutant which cannot synthesise 

yersiniabactin was outcompeted by the wild-type at pH 7 and pH 7.6, but not at 

pH 5.6 (Valdebenito et al., 2006). Salmochelin production has also been shown 

to be altered by pH, with the salmochelin locus in several S. enterica 

Typhimurium strains being induced under alkaline conditions (Foster et al., 

1994). Higher salmochelin production has also been observed at pH 7 and 7.6 by 

E. coli strain Nissle 1917 (Valdebenito et al., 2006). The observation that each 

siderophore is produced optimally at different pH suggests that possessing 

multiple siderophore systems may improve fitness in environments where the 

pH fluctuates, such as the host urinary tract and gut. 

1.4.2.1 Siderophore synthesis and export 

Siderophores are initially synthesised within the cell, with each siderophore 

having its own unique biosynthesis gene cluster (figure 1.5). The enterobactin 

gene cluster consists of 15 genes, six of which are involved in biosynthesis 

(Crosa and Walsh, 2002). Enterobactin is synthesised in two stages, firstly 2,3-

dihydroxybenzoate (2,3-DHB) is synthesised from chorismate, and then 

converted with serine into enterobactin, a cyclised DHBS (2,3-dihydroxybenzoyl 

serine) triester (Gehring et al., 1997). Salmochelin is a modified form of 

enterobactin and as such it requires the enterobactin biosynthesis machinery. 

Additionally, salmochelin production requires a gene cluster of 5 genes which 

are responsible for the glucosylation of the 2,3-DHB molecule before addition of 

serine and formation of the triester (Mueller et al., 2009). This results in three 

forms of salmochelin (mono-, di- and tri-glucosyl-C-enterobactin) depending on 

how many glucosylated 2,3-DHB molecules are incorporated (figure 1.4) (Lin et 

al., 2005).  

Yersiniabactin, similarly to enterobactin and salmochelin, is synthesised from 

chorismate. However, yersiniabactin belongs to a different class of siderophore, 

the phenolates, which give it different characteristics. The yersiniabactin gene 

cluster is formed of 11 genes and biosynthesis is carried out in seven stages, a 
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description of which can be found in Pfeifer (2003). Finally, the aerobactin gene 

cluster consists of five genes, four of which are involved in synthesis of 

aerobactin from ʟ-lysine (De Lorenzo et al., 1986). After synthesis, siderophore 

export is carried out by transport proteins unique to each siderophore, except 

for enterobactin and salmochelin, which have some overlap. The EntS MFS 

(major facilitator superfamily) and IroC proteins export enterobactin and 

salmochelin, respectively, across the inner membrane into the periplasm 

(Ozenberger et al., 1989; Furrer et al., 2002; Crouch et al., 2008). The TolC 

protein exports enterobactin across the outer membrane (Bleuel et al., 2005), 

however, the equivalent transporter for salmochelin has not been identified. 

The exact mechanisms for secretion of aerobactin and yersiniabactin have also 

yet to be determined. 

Figure 1.5: Gene clusters for all four siderophore systems in E. coli. Biosynthesis 

(black), receptor (yellow), export (blue), import (red), degradation (grey), regulation 

(green). Small arrows indicate promoter regions containing a Fur binding domain. From 

top to bottom: enterobactin, salmochelin, yersiniabactin and aerobactin (adapted from 

Garenaux et al., 2011). This figure is copyrighted by Elsevier B.V. 

1.4.2.2 Siderophore uptake, internalisation and 

release of iron 

After binding Fe3+, ferri-siderophore complexes are imported into the cell via 

siderophore-specific receptors; FepA for enterobactin, IroN for salmochelin, 

IutA for aerobactin and FyuA for yersiniabactin (reviewed in Garenaux et al., 
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2011). These receptors require the TonB-ExbB-ExbD energy transduction system 

to induce conformational changes and thus facilitate internalisation of the ferri-

siderophore into the periplasm (Moeck and Coulton, 1998). Once internalised 

into the periplasm, ferri-siderophores must be transported across the inner 

membrane into the cytoplasm. Salmochelin and enterobactin share the 

transporter FepB and the inner membrane transport system FepDGC which 

together form an ABC transporter system (Chenault and Earhart, 1991). 

Aerobactin is transported into the cytoplasm using the FhuBCD system, which is 

also implicated in ferrichrome transport (Köster, 1991). Finally, yersiniabactin is 

transported using the YbtP-YbtU system (Fetherston et al., 1999). 

After entering the cytoplasm, iron release from most siderophores occurs by 

reducing bound iron to Fe2+, which results in either spontaneous release of iron 

from the siderophore or acquisition of the iron by other molecules (Miethke and 

Marahiel, 2007). This is how iron is released from aerobactin. The strong affinity 

that enterobactin and salmochelin have for Fe3+ means that the redox potentials 

of ferri-enterobactin and ferri-salmochelin are too low for reduction to occur 

(Ratledge and Dover, 2000). As a result these siderophores must be degraded to 

allow the Fe3+ to be released. Enterobactin and salmochelin can both be 

hydrolysed by either the Fes esterase or the IroD and IroE hydrolases (Lin et al., 

2005; Zhu et al., 2005). Degradation of enterobactin and salmochelin is 

irreversible; however, the DHBS monomer produced can still bind ferric iron, 

although with much lower affinity (Hantke, 1990). It is currently unknown what 

the exact mechanism of iron release from ferri-yersiniabactin is, as no specific 

hydrolases have been identified (Brem et al., 2001), and no ferric reductases 

have been identified that are involved in iron acquisition via yersiniabactin 

(Garenaux et al., 2011). 

1.4.2.3 Siderophores as virulence factors 

In pathogenic E. coli, particularly ExPEC strains, siderophores have been 

described as virulence factors, more specifically the siderophores salmochelin, 

aerobactin and yersiniabactin. As enterobactin is in practically all strains of E. 

coli, both pathogenic and commensal, it is unclear whether it has a role in 
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virulence. Several studies have highlighted the fact that enterobactin synthesis 

does not affect virulence of pathogenic E. coli in chicken virulence models 

(Dozois et al., 2003; Caza et al., 2011). In Salmonella spp., some animal virulence 

models suggest that enterobactin increases virulence (Yancey et al., 1979; 

Furman et al., 1994; Nagy et al., 2013), however, other studies have shown no 

role (Benjamin et al., 1985; Rabsch et al., 2003). This indicates the relevance of 

individual siderophores for pathogenesis could be influenced by the host and 

the genetic background of the pathogen. One study of enterobactin production 

by S. enterica Typhimurium showed that although enterobactin production was 

not essential for virulence, iron uptake via its incomplete form, DHBS, was still 

required (Rabsch et al., 2003), suggesting that some form of ferric iron uptake 

system is still necessary for pathogenesis. Avian pathogenic E. coli (APEC) strain 

χ7122 enterobactin secretion mutants, but not biosynthesis mutants, had 

reduced virulence in a chicken virulence model (Caza et al., 2011), indicating a 

cost for enterobactin production.  

A major problem with relying on enterobactin-mediated iron acquisition during 

the infection process is that it is bound and inhibited by lipocalin-2, also called 

neutrophil gelatinase-associated lipocalin (NGAL), a protein that is involved in 

innate immunity by sequestering iron to limit bacterial growth. Lipocalin-2 is 

secreted by host cells, particularly neutrophils, but also by epithelial cells in the 

GI-tract, in response to bacterial PAMPs (Chassaing et al., 2014). The 

glycosylated form of enterobactin, salmochelin, cannot be bound by lipocalin-2 

(Fischbach et al., 2006) enabling E. coli to acquire iron more readily during 

inflammation and infection. Salmochelin has been shown to be involved in 

virulence for both ExPEC and APEC. APEC strain E058 and UPEC strain U17 

salmochelin biosynthesis mutants showed reduced virulence in chicken models 

(Gao et al., 2012). Deletion of the iro locus in APEC strain χ7122 resulted in 

reduced virulence in chickens (Dozois et al., 2003; Caza et al., 2008). The 

salmochelin receptor gene, iroN, was shown to be overexpressed in urothelial 

cell intracellular bacterial communities (IBCs) in a mouse UTI infection model 

(Reigstad et al., 2007). IroN was also shown to be involved in virulence of UPEC 
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strains CFT073 and CP9 (Russo et al., 2002; Feldmann et al., 2007) and NMEC 

strain C5 (Negre et al., 2004). 

As well as salmochelin, yersiniabactin and aerobactin have been shown to affect 

virulence in UPEC and APEC. Both have been shown to influence the 

establishment of infections by UPEC strains CFT073 and 536 in a UTI infection 

model (Garcia et al., 2011). Aerobactin is also more frequently detected in 

pathogenic strains of E. coli, particularly ExPEC strains, compared to 

commensals (Lafont et al., 1987; Linggood et al., 1987; Dozois et al., 1992).  

1.4.2.4 Alternative functions of siderophores 

Alongside binding Fe3+ and facilitating its uptake, several other functions for 

siderophores have been reported, including non-iron metal transport, non-

metal transport, sequestration of toxic metals, protection from oxidative stress, 

molecular signalling and antibiotic activity (Johnstone and Nolan, 2015). 

Yersiniabactin has been shown to act as a zincophore, i.e. it can transport zinc 

instead of iron (Bobrov et al., 2014). Zinc is the second most abundant transition 

metal after iron found intracellularly in E. coli (Rouf, 1964). E. coli does possess a 

zinc transporter system ZnuABC, and the exact role of yersiniabactin in zinc 

transport is uncertain (Hantke, 2005). However, during infections, humans 

secrete zinc-sequestering proteins calprotectin and psoriasin to limit bacterial 

growth, and yersiniabactin may facilitate zinc uptake during infections (Kehl-Fie 

et al., 2011; Hood and Skaar, 2012). The Ybt-Zn complex is not taken up through 

the yersiniabactin receptor fyuA (Bobrov et al., 2014), suggesting a different 

uptake pathway is utilised. 

Copper is secreted during infections by mammals to protect against microbial 

infection (White et al., 2009; Chaturvedi and Henderson, 2014). Copper secreted 

by the host during UTI reacts with enterobactin, producing toxic cuprous ions 

that can damage bacterial cells (Chaturvedi et al., 2014). Yersiniabactin has been 

shown to bind with Cu2+ before it is reduced, preventing any potential damage 

(Chaturvedi et al., 2012). The Ybt-Cu complex is stable and can be detected in 

the urine of UTI patients (Chaturvedi et al., 2012). This Ybt-Cu complex can also 
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work as a superoxide dismutase (Chaturvedi et al., 2014) by helping to reduce 

the level of NADPH oxidase-derived superoxide produced by macrophages, 

again protecting the bacteria from the host immune response. Enterobactin and 

salmochelin have also been shown to have a protective role against toxic 

compounds in the host environment. They have been shown in Salmonella to 

provide protection against oxidative stress in macrophages (Achard et al., 2013). 

When enterobactin and salmochelin are hydrolysed during iron release, 

hydroxyl groups are exposed which can scavenge free radicals (Adler et al., 

2014). Enterobactin has also been shown to inhibit myeloperoxidase (MPO), a 

bactericidal enzyme secreted by the host during infection (Singh et al., 2015). 

One additional role has been proposed for Yersiniabactin as a signalling 

molecule. It has been shown to regulate its own transcription, upregulating 

fyuA, irp2 and ybtP, and downregulating the regulator gene ybtA (Perry et al., 

2003; Anisimov et al., 2005a). The levels at which yersiniabactin elicits an effect 

on gene regulation are much lower than that required for a nutritional effect in 

Yersina pestis (Perry et al., 2003). Siderophores can also potentially be used as 

targeted antimicrobial delivery systems. Some bacteria are able to synthesise 

sideromycins, a class of antibiotics that consists of a siderophore covalently 

bonded to an antibiotic. Notable examples of sideromycins are salmycins 

produced by several Streptomyces spp. and albomycin produced by particular 

Streptomycetes (Braun et al., 2009). These two sideromycins are transported 

through the ferrichrome receptor (FhuA), but both show different activity, with 

salmycins being active against mainly Gram-positive bacteria, and albomycin 

against Gram-negative bacteria including E. coli (Braun et al., 2009). Once 

internalised into the target cell, albomycin is cleaved in the cytoplasm by 

peptidase N (PepN) to release the antibiotic from the siderophore (Braun et al., 

2009). Synthetic sideromycins are currently being developed to utilise this 

specificity (Miethke and Marahiel, 2007). 
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1.4.3 Alternative iron uptake systems 

Aside from siderophores, E. coli have access to multiple other iron uptake 

systems to secure iron scavenging under different conditions in a variety of 

environments. Most E. coli possess the Feo transport system that is able to take 

up Fe2+. The feoABC genes that encode the system are induced under anaerobic 

conditions as well as under iron repression, when Fe2+ is expected to be more 

abundant than Fe3+. FeoB has recently been shown to have G-protein 

functionality (Marlovits et al., 2002) and requires less energy than siderophore 

systems for iron uptake. Secretion of extracellular Fe3+ reductases has been 

documented in E. coli (Cowart, 2002). Reduced iron would then be taken up via 

FeoABC as Fe2+. The second ferrous uptake system found in E. coli is EfeUOB, 

which is upregulated under low iron, aerobic and acidic conditions (Cao et al., 

2007). Fe2+ is more abundant than Fe3+ not only in anaerobic environments, but 

also in aerobic environments when the pH is low. The two ferrous uptake 

systems of E. coli, therefore, allow optimal uptake of Fe2+ under both of these 

conditions. A third ferrous uptake system, SitABCD, is an ABC transporter that is 

prevalent in Shigella and EIEC strains (Johnson and Nolan, 2009). The role of 

SitABCD in the pathogenesis of these strains is unclear, however, it has been 

shown to contribute to virulence and resistance against oxidative stress in APEC 

O78 strain χ7122 (Sabri et al., 2008). 

Receptors for siderophores usually only recognise a specific siderophore 

(Hohnadel and Meyer, 1988; Rabsch and Winkelmann, 1991; Liu et al., 1993; De 

Chial et al., 2003), but multiple siderophores can be used by a strain if they have 

multiple corresponding receptors (Rabsch and Winkelmann, 1991; Barelmann et 

al., 2002; Ghysels et al., 2004). One very interesting characteristic of 

siderophores is their vulnerability to being exploited by non-producing bacteria. 

As siderophores are secreted “public goods”, it is possible for non-producing 

bacteria, called cheaters, to take up siderophores produced by neighbouring 

cells as long as they have the required receptor. Cheating between E. coli cells 

has never been documented within natural populations of E. coli, however, it 

has been observed in a wide range of bacterial populations, from Pseudomonas 
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aeruginosa in the cystic fibrosis lung (De Vos et al., 2001; Buckling et al., 2007) 

to marine bacteria (D'Onofrio et al., 2010; Cordero et al., 2012). E. coli can, 

however, use xenosiderophores, siderophores produced by other species that 

they cannot make themselves, such as the fungal siderophore ferrichrome 

which binds to receptor FhuA (Köster and Braun, 1990; Braun et al., 2004). 

Ferrichrome is a hydroxymate type and shares the same cytoplasmic and 

periplasmic binding proteins as aerobactin, but the cell surface receptors remain 

specific to ferrichrome and aerobactin (Köster and Braun, 1990).  

Other forms of iron, ferric citrate and haem, can also be bound to surface 

receptors. The FecA receptor binds ferric citrate, and internalises it using energy 

from the TonB-ExbB-ExbD inner membrane complex, much like siderophore 

receptors. The ChuA receptor binds haem and also requires energy from the 

TonB-ExbB-ExbD complex for internalisation. ChuA has been associated with 

ExPEC virulence (Torres et al., 2001; Garcia et al., 2011), and shown to be 

encoded by faecal isolates at lower frequencies compared to UPEC strains (Lloyd 

et al., 2007).  

1.4.4 Iron uptake in the GI-tract  

Most dietary iron in the gut will be ferric due to the instability of ferrous iron in 

the presence of oxygen, and is converted into Fe2+ by the host for absorption. 

However, within the mostly anaerobic colon it is possible for ferrous iron to stay 

in solution. E. coli uses several metal permeases, FeoB, EfeB, MntH and ZupT, 

which use passive transport to import Fe2+ into the cell (Kammler et al., 1993; 

Makui et al., 2000; Grass et al., 2005; Cao et al., 2007). FeoAB mutants in both E. 

coli and S. enterica Typhimurium are outcompeted by wild-type strains in the 

streptomycin-treated mouse (Kammler et al., 1993). Dietary iron also exists in 

the form of haem, which can be utilised by E. coli through the haemophores, 

such as the chuA transporter (Cescau et al., 2007), but a role for these in gut 

colonisation has not been described. 

Enterobactin production has been shown to increase fitness in vivo with 

biosynthesis and receptor mutants being outcompeted by wild-type E. coli in the 
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murine GI-tract (Pi et al., 2012). Mutants were able to colonise the gut when 

given to mice alone, suggesting that although not essential to survival within the 

gut, siderophores increase competitiveness. The receptor knockout mutants 

were particularly less fit, possibly because they were still able to synthesise and 

export enterobactin. Exported enterobactin would then be able to sequester 

any surrounding Fe3+ and prevent any other iron uptake mechanisms from 

acquiring it. Within the gut, lipocalin-2 is secreted by immune or epithelial cells 

into the intestinal lumen during inflammation (Raffatellu et al., 2009). Even in 

the healthy gut, low levels of lipocalin-2 can still be detected in faeces 

(Chassaing et al., 2012), though whether this is able to influence the ability of E. 

coli to acquire iron through enterobactin is unclear.   

E. coli K-12 strain MG1655 ΔtonB mutants, which are unable to take up ferric 

iron, had reduced CFUs and persistence in the GI-tract in competitive index 

assays with the wild-type, suggesting that Fe3+ is available in the GI-tract and is 

important in establishing a stable population in the gut (Pi et al., 2012). 

However, Kupz et al. (2013) found no significant reduction in fitness for a ΔentC 

E. coli Nissle 1917 mutant. There was, however, a trend towards the mutant 

having lower CFUs compared to the wild-type and becoming undetectable in 

some mice after 3-7 days. As E. coli strain Nissle 1917 has all four siderophore 

systems, it is possible that other siderophore systems, yersiniabactin and 

aerobactin, were able to compensate for the loss of enterobactin and 

salmochelin production. In contrast, the E. coli K-12 MG1655 strain used by Pi et 

al. (2012) only has the enterobactin siderophore, which may be why there was a 

discrepancy between these two studies. The E. coli Nissle 1917 strain has, 

however, been shown to outcompete pathogenic S. enterica in the mouse gut 

by presumably competing for iron using siderophores (Deriu et al., 2013). TonB 

and siderophore receptor knockout mutants were able to colonise the gut and 

reduce inflammation at a comparable level to the wild-type, but did not reduce 

S. enterica abundance. The contrast in tonB mutant colonisation seen between 

Pi et al. (2012) and Deriu et al. (2013) could be as a result of E. coli strains K-12 

MG1655 and Nissle 1917 possessing a different complement of iron uptake 
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systems which do not require TonB. Alternatively, the presence of S. enterica in 

the GI-tract may affect the gut environment, or E. coli Nissle 1917 directly, that 

results in changes in iron uptake activity. 

The presence of multiple types of siderophore in E. coli is important both in UTI 

strains, and possibly within the gut, as the different types work optimally under 

different environmental conditions (Valdebenito et al., 2005; Valdebenito et al., 

2006). For example, aerobactin forms a more stable complex under acidic 

conditions, whereas salmochelin is better in more alkaline conditions. As the pH 

changes along the GI-tract as it does along the urinary tract, having 

siderophores that are able to function in various pH levels may confer a 

competitive advantage. It may be for this reason that yersiniabactin and 

salmochelin genes have been highly associated with UPEC strains (Henderson et 

al., 2009).  

1.4.5 Regulation of siderophores and iron management 

systems 

To tightly control intracellular iron levels based on iron availability, many iron 

uptake, utilisation and storage systems are under the regulator Fur (ferric 

uptake regulator) protein. The regulon of Fur is known to comprise of 

approximately 90 genes or more (Hantke, 2001; McHugh et al., 2003; Seo et al., 

2014). When bound to its co-factor Fe2+, Fur acts as a repressor. However, in 

conditions where Fe2+ availability is low, apo-Fur is no longer able to bind to 

DNA, causing de-repression of genes. This regulation ensures that iron uptake is 

modulated depending on intracellular levels of iron, with uptake being 

increased as iron becomes depleted. Binding of Fe2+ to Fur is thought to increase 

the binding affinity of Fur to its DNA binding site by 1,000 times (Andrews et al., 

2003). 

The main function of Fur is to repress iron acquisition genes, including 

siderophores, under conditions of iron sufficiency. The Fur regulon, however, 

also includes genes involved in other cellular pathways linked to iron utilisation, 

including respiration, flagella chemotaxis, the TCA cycle, glycolysis, methionine 
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biosynthesis, phage DNA-packing, DNA synthesis, purine metabolism and 

oxidative stress (Stojiljkovic et al., 1994; Park and Gunsalus, 1995; Vassinova and 

Kozyrev, 2000). Fe-S clusters, which are found in a wide variety of proteins, are 

assembled in E. coli by two systems ISC and SUF, which are differentially 

regulated by Fur. The ISC system which is responsible for housekeeping Fe-S 

synthesis is regulated by the IscR regulator independently of Fur which 

specifically monitors Fe-S cluster assembly status of the cell (Schwartz et al., 

2001; Giel et al., 2006). The SUF system, however, responds to oxidative stress 

and iron starvation, and is regulated by Fur as well as OxyR during the oxidative 

stress response (Outten et al., 2004).  

Fur has been shown to act as a positive regulator of some cellular functions. This 

can occur through two mechanisms, either direct binding of Fur, or through the 

activity of the small RNA RyhB. There are only a small number of genes that 

have been shown to be directly induced by Fur. These include the ferritin pfr 

gene of Helicobacter pylori, the OmpT porin in Vibrio cholerae, the ftnA and 

acnA genes in E. coli and the fur gene itself in Vibrio vulnificus (Delany et al., 

2001; Lee and Helmann, 2007; Nandal et al., 2010; Craig et al., 2011; Seo et al., 

2014). The sRNA RyhB is under repression by Fur-Fe2+, so when iron levels are 

sufficient, RyhB activity is reduced. RyhB modulates the utilisation of iron by 

non-essential proteins, ensuring that when intracellular iron levels are low, iron 

utilisation is restricted to core functions (figure 1.6). As an example, the two 

operons implicated in Fe-S cluster formation, suf and isc, show differential 

regulation by RyhB, with the essential suf operon being unaffected by RyhB, 

whereas the non-essential isc operon was repressed (Outten et al., 2004). RyhB 

acts a post-transcriptional repressor, by increasing degradation of mRNA that it 

binds to. It does this through recruiting the multi-protein complex RNA 

degradosome. The degradosome breaks down both the target RNA and RyhB at 

the same time (Massé et al., 2003), ensuring that RyhB activity can be switched 

off quickly if necessary. As RyhB targets mRNA, transcription of regulated genes 

is unaffected, so production can quickly resume once RyhB repression is 

removed (Massé and Gottesman, 2002). Fur and RyhB work together to regulate 
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iron balance within cells, maintain intracellular iron levels and optimise iron 

utilisation (Massé et al., 2005). 

As iron plays such a central and important role in cell function, iron homeostasis 

is influenced by global regulators other than Fur. E. coli strain BW25113 Δcrp 

mutants which cannot make cyclic AMP receptor protein (CRP), a regulator 

which is involved in carbon source utilisation and carbon catabolite repression 

(CCR), were shown to have decreased expression of enterobactin (Zhang et al., 

2005). Enterobactin and salmochelin production by E. coli strain Nissle 1917 was 

also observed to be affected by carbon source, with higher amounts of both 

siderophores being produced in the presence of glycerol compared to glucose at 

pH 7 and 37°C (Valdebenito et al., 2006). Aerobactin and yersiniabactin also 

showed increased production in glycerol, although this was at a lower pH and 

temperature respectively (Valdebenito et al., 2006). These results suggest that 

siderophore production is under CCR, although the exact mechanism through 

which CRP does this is unclear.  

Figure 1.6: Intracellular iron regulation through Fur and RyhB activity. In iron limiting 

conditions, Fur is not bound to iron due to low intracellular iron levels.  As a result, iron-

acquisition genes and ryhB are de-repressed.  By repressing iron-using proteins, RyhB is 

able to increase free intracellular iron levels.  This increased free iron binds to and 

activates Fur, resulting in repression of ryhB and iron acquisition genes, thus preventing 

excess iron accumulating within the cell (adapted from Massé et al., 2005). 
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Iron also plays a large role in oxidative stress, where it can react with ROS to 

form the highly reactive hydroxyl radical (OH). Two key regulators in the 

oxidative stress response, OxyR and SoxRS, have been shown to upregulate fur 

expression (Zheng et al., 1999; Blanchard et al., 2007; Faulkner et al., 2012). Fur 

has also been shown to influence genes within the oxidative stress response, 

such as sodAB, which ensures that high iron levels coincide with tight control of 

ROS (Niederhoffer et al., 1990; Massé and Gottesman, 2002). 

1.4.6 Limiting damage from iron 

The partially reduced forms of oxygen, superoxide (O2
-) and hydrogen peroxide 

(H2O2), both arise as a result of aerobic respiration. Iron can, however, react 

with both O2
- and H2O2 through the Fenton reaction to form the HO· radical 

which can damage iron-sulphur clusters, DNA, and cysteine and methionine 

protein residues (Storz and Imlay, 1999; Imlay, 2003).  

Iron reduction by superoxide: O2
- + Fe3+            Fe2+ + O2 

Fenton reaction: Fe2+ + H2O2            Fe3+ + OH- + HO· 

Haber-Weiss reaction: O2
- + H2O2            HO· + OH- + O2 

In E. coli iron is present in the cell at 0.1mM (Outten and O’Halloran, 2001); 

however, only approximately 20µM is considered freely available to take place 

in Fenton chemistry (Keyer and Imlay, 1996). This free iron is predominantly in 

the more reactive ferrous form (Woodmansee and Imlay, 2002). Intracellular 

iron is kept to a minimum through several mechanisms, including utilising 

storage proteins. Storage in E. coli uses the FtnA (Ferritin), Bfr (bacterioferritin) 

and Dps proteins which bind iron as Fe2+ which then becomes oxidised and 

forms a ferric core (Andrews et al., 2003). The larger Bfr and FtnA molecules can 

store at least 2,000-3,000 iron atoms each, with the smaller Dps storing 

approximately 500 iron atoms (Andrews et al., 2003). Also, as the iron uptake 

regulator Fur protein is relatively abundant, it may be possible that Fur acts as a 

storage protein to bind free Fe2+ in the cytoplasm that may otherwise damage 

the cell (Andrews et al., 2003). 
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E. coli Δfur mutants have reduced total cellular levels of iron (Abdul-Tehrani et 

al., 1999). The majority of this iron in Δfur mutants is thought to be in its free 

form due to unregulated iron uptake and low levels of storage proteins (Keyer 

and Imlay, 1996; Abdul-Tehrani et al., 1999). As a result, these mutants display 

an increased sensitivity to redox stress reagents, although their sensitivity can 

be reduced via decreasing free intracellular iron (Touati et al., 1995). This can be 

achieved through a tonB mutation to prevent Fe3+ uptake, or overexpression of 

the ftnA ferritin gene to increase iron storage (Touati et al., 1995). Upregulation 

of other intracellular iron chelators, such as dipicolinate, can also protect 

mutants sensitive to superoxide (Maringanti and Imlay, 1999).  

1.5 Introduction to research 

E. coli is an important member of the microbiota that colonises a wide variety of 

hosts. As detailed in this introduction, several traits influencing E. coli fitness 

and colonisation of the GI-tract have been identified. However, more 

understanding is required of what makes an isolate a good coloniser of the gut 

and what facilitates its successful integration into the gut microbial community. 

Recent evidence indicates that the environment shapes the associated E. coli 

populations (Bergholz et al., 2011; Méric et al., 2013). Traits conferring a fitness 

advantage in a particular environment should therefore be enriched in the 

associated E. coli strains. We thus hypothesised that the comparison of E. coli 

isolated from the faeces of healthy hosts with isolates from the external non-

host environment would reveal traits involved in gut adaptation and 

colonisation. 

The aim of this project was to use comparative approaches to investigate traits 

associated with colonisation of the gut by taking advantage of two collections of 

natural isolates of E. coli, the ECOR and GMB collections. The ECOR collection 

(host associated strains) consists primarily of human and animal commensal 

strains of E. coli isolated from faecal samples (Ochman and Selander, 1984), 

whereas the GMB collection (non-host associated strains) includes isolates 

taken from salad crops (Méric et al., 2013), a food-safety relevant environment.  
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Assessing the fitness of large numbers of strains in complex environments such 

as the gut is extremely time-consuming and expensive. In Chapter 3, a new 

method for barcoding and identifying E. coli isolates will be described. This 

technique allows the parallel monitoring of several isolates in mixed E. coli 

populations in diverse environments such as the mouse GI-tract or soil columns. 

Competition studies carried out in the GI-tract should indicate whether there 

are specific strains that have persistent increased fitness, or whether dominant 

strains are determined largely by stochastic variations/factors. If individual 

strains do show increased fitness or dominance, this should enable traits and 

phenotypes associated with increased colonisation to be identified.  

It has been hypothesised that siderophore production is an important in vivo 

fitness determinant. Indeed, enterobactin has been shown to increase fitness in 

the GI-tract (Pi et al., 2012). Chapter 4 will address a gap in knowledge relative 

to whether siderophore production in E. coli is influenced by the environment. 

Salmochelin, aerobactin and yersiniabactin have all been linked with virulence in 

pathogenic strains, but their presence in commensal E. coli strains suggest a 

wider role in E. coli lifestyle. To determine whether any siderophore system is 

associated with a particular environment where it possibly confers a fitness 

advantage, we investigated the distribution of siderophore production and 

related genes in the ECOR and GMB collections.  

In Chapter 5, the hypotheses derived from the observed differences between 

the ECOR and GMB collections in terms of siderophore production and gene 

distribution described in Chapter 4 were investigated further. The expression of 

siderophore biosynthesis genes was analysed in vitro, under iron limitation, and 

in vivo, in the mouse GI-tract, to establish whether there was differential 

expression between E. coli strains and to determine whether additional 

siderophore systems to enterobactin were utilised in the host environment. 

Siderophore biosynthesis and tonB mutants were constructed to further 

elucidate the differences between each siderophore system and to establish 

whether siderophore production increases fitness in a mouse model. 
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2. Materials and methods 

2.1 Bacterial strains 

2.1.1 E. coli reference (ECOR) and GMB collections 

In this study, two collections of E. coli natural isolates were used to investigate 

the phenotypic traits and genetic elements that may confer a fitness advantage 

within the gut, the primary environment of E. coli. The first collection is the well 

characterised E. coli reference (ECOR) collection which comprises 72 strains that 

were isolated primarily from faecal samples in USA and Europe in the early 

1980s (see appendix A for full list of isolates). 61 strains were isolated from 

healthy human and zoo animal faecal samples (29 and 32 strains respectively), 

10 strains (ECOR11, ECOR14, ECOR40, ECOR48, ECOR50, ECOR56, ECOR60, 

ECOR62, ECOR64 and ECOR72) were isolated from the urine of women with 

urinary tract infections (UTI) and one strain (ECOR 71) was isolated from an 

individual with asymptomatic bacteriuria. The ECOR collection was created in 

1983 from a larger collection of 2,600 E. coli isolates, with strains being selected 

to represent the genotypic diversity of E. coli based on MLEE profiles (Ochman 

and Selander, 1984). The second collection, the GMB collection, comprises 96 

strains isolated mostly from the aerial parts of salad crops (76 from spinach and 

rocket) grown predominantly in the UK during spring and summer of 2008 and 

2009 (see appendix A for full list of isolates) (Méric et al., 2013). It has been 

shown previously that these host (ECOR) and plant (GMB) associated E. coli 

isolates display phenotypic differences that may confer a competitive advantage 

in their respective environments (Méric et al., 2013).   

2.1.2 Additional strains 

Several other strains of E. coli were used in this study, mainly for molecular 

biology, cloning and mutant generation purposes. For the development of the 

multiplex PCR for siderophore gene detection, the probiotic E. coli Nissle 1917 

strain was used as it is known to have all four siderophore systems. This strain 

was kindly given by Ulrich Sonnenborn (Ardeypharm GmbH, Germany). The E. 

coli strain DH5α containing the pGRG36 plasmid (Addgene plasmid #16666) was 
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used for the construction of barcode mutants (McKenzie and Craig, 2006). To 

generate the siderophore knockout mutants, the E. coli BT340 strain containing 

the pCP20 plasmid as well as three E. coli BW25141 strains that contained the 

pKD46, pKD4 and pKD3 plasmids were used, all of which were kindly provided 

by the Coli Genetic Stock Center (CGSC, Yale University, USA). 

2.1.3 Long term storage of strains, RNA and DNA 

Strains were all stored as frozen glycerol stocks at -80°C. Glycerol stocks were 

prepared by transferring 1ml of overnight culture (LB media) into a 2ml 

Eppendorf tube containing 1ml 40% glycerol and freezing at -80°C. Extracted 

DNA and RNA were stored in water at -20°C and -80°C respectively.  

2.1.4 Growth media 

E. coli isolates were grown from glycerol stocks on Tryptone Bile X-glucuronide 

(TBX) (Oxoid) plates and incubated overnight at 37°C, unless otherwise stated. 

TBX plates select for bacteria that are able to grow in the presence of bile salts 

thus preventing the growth of most Gram-positive bacteria. Due to the presence 

of X-glucuronide, strains that have D-glucuronidase activity (encoded by the 

uidA gene) elicit a colour change to blue/green. The majority of E. coli produce 

D-glucuronidase, differentiating them from other coliforms that can grow on 

TBX plates. Mutant E. coli strains that possessed an antibiotic resistance 

cassette were grown on Lysogeny Broth (LB) plates with the required antibiotic 

(100µg/ml ampicillin, 100µg/ml kanamycin or 25µg/ml chloramphenicol) unless 

otherwise stated.  

Liquid media used in this study include LB medium, Nutrient Broth (NB) (Oxoid), 

Super Optimal broth with Catabolite repression (SOC) and Modified M9 medium 

(MM9). LB medium was prepared by dissolving 10g Difco Bacto tryptone, 5g 

Difco Bacto yeast extract, 10g NaCl in 1 litre of water, adjusting to pH7 and 

autoclaving. SOC medium was prepared by dissolving 20g Bacto tryptone, 5g 

Bacto yeast extract, 0.5g NaCl in 1 litre of water and autoclaving. After cooling, 

10mM MgCl2, 2.5mM KCl and 55mM glucose (filter sterilised) were added. The 

MM9 medium was made according to Watts et al. (2012), firstly a 10x MM9 salt 
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solution was prepared by dissolving 5g NaCl, 10g NH4Cl, 54.8g MOPS free acid, 

51.0g MOPS sodium salt, 0.59g Na2HPO4·2H2O, 0.45g KH2PO4 in 1 litre of water 

and adjusting to pH 7.0. 100ml of the 10x MM9 salt solution was then mixed 

with 2ml 1M MgSO4, 0.1ml 1M CaCl2, 10ml 20% glucose solution, 20ml 10% 

sodium succinate solution, 10ml 2% thiamine-HCl solution, 150ml 2% casamino 

acid solution and then made up to 1 litre with autoclaved milliQ water.  An 

alternative MM9 medium was used where 4ml of 50% glycerol was added as the 

carbon source in place of glucose.  

2.1.5 Generation of mutants 

2.1.5.1 Plasmid extraction and digests 

The pGRG36, pKD46, pKD4, pKD3 and pCP20 plasmids were all purified from the 

appropriate strain for use in generating barcoded strains and siderophore 

knockout mutants. These were extracted from 10ml LB (with relevant antibiotic) 

overnight cultures of E. coli DH5α, BW25141 and BT340 strains using the Omega 

Biotek EZNA Plasmid Mini Kit I as per manufacturer’s instructions for low copy-

number plasmid spin protocol. Purified plasmids were quantified using a 

NanoDrop spectrophotometer (Thermo Scientific).  

To confirm plasmid size and correct composition, restriction enzyme digests 

were routinely carried out and visualised on 1% agarose gels.  The EcoRI enzyme 

was used to digest both pGRG36 and pKD46 plasmids at 37°C for 2h with the 

reaction mixture as follows: 10U EcoRI enzyme (Thermo Scientific), 2µl REact 3 

Buffer (Thermo Scientific), 200ng plasmid DNA and water up to a final volume of 

20µl. For the pKD3 and pKD4 plasmids, a double digest was performed using 

ApaLI and NdeI restriction enzymes (New England Biolabs). The reaction mixture 

was incubated at 37°C for 1h and contained 200ng plasmid DNA, 2U ApaLI 

enzyme, 2U NdeI enzyme, 1µg BSA (NEB), 1µl NEBuffer 4 (NEB) and was made 

up to 10µl using milliQ water. Finally, for the pCP20 plasmid, a digest using the 

AflIII enzyme (New England Biolabs) was carried out. The reaction mixture was 

500ng plasmid DNA, 2.5U AflIII enzyme, 2.5µg BSA (NEB), 2.5µl NEBuffer 3 (NEB) 

and milliQ water up to 25µl, which was incubated for 1h at 37°C.  
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2.1.5.2 Preparing competent cells 

To make barcoded isolates and siderophore knockout mutants, strains needed 

to be made competent for transformation via electroporation. LB overnight 

cultures of selected strains were diluted to a final OD600 of 0.05 in 250ml flasks 

containing 25ml of LB media. They were incubated at 37°C in a shaking 

incubator (250rpm) until they reached an OD600 of 0.4-0.6 and then placed on 

ice for 20min. Bacteria were centrifuged at 4°C for 10min at 3,226 x g and then 

washed twice with 10% filter sterilised glycerol (Sigma-Aldrich). Cells were then 

resuspended in 40µl of 10% glycerol, at which point they could be used for 

electroporation.  

40µl of competent cells were mixed with 500ng of plasmid or 300ng of linear 

DNA insert and placed on ice for 1min. Electroporation settings were 2.5kV, 

200Ω and 25µF. Immediately after electroporation, 1ml SOC medium was added 

to the bacteria and they were incubated for 1-3h at 37°C to recover. Bacteria 

were then plated out on LB plates containing the required antibiotic and 

incubated overnight at 37°C. For plasmids pGRG36, pCP20 and pKD46, ampicillin 

was used at 100µg/ml in LB plates to select for successful transformants. For the 

linear pKD3 and pKD4 inserts, LB plates containing chloramphenicol (25µg/ml) 

and kanamycin (100µg/ml) were used respectively. The pGRG36, pKD46 and 

pCP20 plasmids all contain temperature sensitive origins of replication, so 

incubation temperatures were lowered to 30°C. 

2.1.5.3 Construction of barcoded strains 

To be able to investigate the differences between individual isolates of E. coli 

when they are grown in mixed cultures, each strain needs to be uniquely 

tagged. 20 isolates of E. coli were selected to have a 25nt long unique sequence, 

called a barcode (Xu et al., 2009), inserted into their chromosomes (table 2.1). 

These DNA barcodes were designed for large scale genetic screening of 

mutations or genes; however, we adapted their use for identification of 

individual strains of E. coli. Barcodes were designed to be of homogeneous 

length and melting temperature to enable pooling of samples for microarrays or 

high-throughput sequencing (Xu et al., 2009). The strains used in this study were 
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selected from both ECOR and GMB collections to cover a variety of E. coli based 

on phylogenetic group (8 from Group A, 4 from Group B1, 4 from Group B2 and 

4 from Group D) and phenotypic differences in biofilm formation, siderophore 

production and nutrient competence as previously described (Méric, 2011; 

Méric et al., 2013). Each barcode can be targeted by specific pair of primers 

allowing the amount of each individual strain in a mixed population to be 

quantified using real-time PCR (RT-PCR) or high-throughput sequencing.  

Table 2.1: List of barcoded strains used in this study. 20 isolates representing a variety 

of phylogenetic groups were selected for barcode insertion. Strain GMB45 was 

barcoded twice with different barcodes to determine whether barcode sequence could 

influence transposition. All five ECOR isolates were isolated from faeces of healthy 

hosts as listed. 

Strain Phylogeny Plant/Host 

of 

isolation 

Barcode Barcode Sequence 

ECOR16 A Leopard B1 GGTACTTAAGGTTTGCCCATTCCCT 

ECOR18 A Celebese 

ape 

B23 AGATGCACGGACTGAATTCAGCAGG 

ECOR32 B1 Giraffe 23457 GGCATGAATTCGGTAACGTCACCAT 

ECOR49 D Human B9 AACGAATTCCTGACTGGGGAGGGTG 

ECOR55 B2 Human B11 TGACGCTCACGGAATTCTAGGTAAA 

GMB02 A Rocket 23796 TAATGAATTCTCCGCCTTGGGTGAA 

GMB07 B1 Spinach B19 TGGCCTGAAACGTGAATTCAGCGTA 

GMB104 A Spinach 29884 GCCGCCATTTACGAGAATTCGTGAC 

GMB16 B1 Mizuna 19427 ATCCACAGGGGCATAGGAATTCCCA 

GMB18 B1 Spinach B5 ATTGATGAATTCTGCGGTTGTCGTA 

GMB23 A Spinach 23277 TCTACCATTTTGAATTCACGCCGCA 

GMB32 A Spinach 20239 GAGGCAAGCGAATTCTGGAATCCTT 

GMB34 A Spinach 33233 CCACCGTACATCCAGAATTCTGAAT 

GMB40 B2 Spinach B6 TCACCGAATTCTGACCACTGGACTA 

GMB45 (1) B2 Spinach 19439 GTGTGCCCACGAATATGAATTCCCC 

GMB45 (2) B2 Spinach 23353 CCCTGAGAATTCAGCAGCTGACAAC 

GMB48 A Spinach 21118 TGGCTCTGTCGGAATTCGATGGGTA 

GMB54 D Spinach 33301 GCAGAGGAATTCATCCCACCTTAGT 

GMB71 D Rocket B10 GCCGAGGCGCACGAATTCTACCCTA 

GMB72 D Rocket B8 AGAATTCACTCCGGCTTAATTGGGC 

GMB98 B2 Spinach 30438 AGGAGAATTCGTGGCGTGGTGTCAA 
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Insertion of barcodes into the chromosome was carried out using the Tn7-based 

transposition system as described by McKenzie and Craig (2006). Derivatives of 

the pGRG36 plasmid containing barcodes inserted into the multiple cloning site 

(MCS) within the Tn7 transposon were transformed into the appropriate 

isolates. The pGRG36 plasmid contains the tnsABCD genes for insertion of the 

Tn7 transposon at the attTn7 site in the chromosome of E. coli which is located 

at the end of the glmS gene (figure 2.1). This system was selected as it has been 

previously shown that insertion of the transposon does not affect the 

phenotype (Peters and Craig, 2001; McKenzie and Craig, 2006). Insertion is 

highly specific as the pGRG36 plasmid lacks the tnsE gene which is responsible 

for insertion events at other sites within the chromosome which are unrelated 

to the attTn7 site (Kubo and Craig, 1990). 

To induce the insertion of the Tn7 transposon into the chromosome of strains 

containing the pGRG36 plasmid (see section 2.5.1.2), colonies were streaked 

onto LB plates containing 0.1% arabinose to induce the tnsABCD genes which 

are under the arabinose inducible PBAD promoter and incubated overnight at 

30°C. Following induction of the Tn7 transposon element, the pGRG36 plasmid 

was removed from cells by streaking colonies on LB plates and incubating 

overnight at 42°C. The pGRG36 plasmid contains the pSC101 ori ts origin of 

replication which functions at 32°C, but not at 42°C. Colonies were re-streaked 

on LB plates and incubated at 42°C a second time to ensure loss of the pGRG36 

plasmid, which was confirmed by the loss of resistance to 100µg/ml ampicillin. 
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Figure 2.1: pGRG36 plasmid and Tn7 transposon insertion into the E. coli 

chromosome. The pGRG36 plasmid multiple cloning site (MCS) contains several 

restriction sites, AvrII, NotI, PacI, XhoI and SmaI, flanked by the terminal repeats of the 

Tn7 transposon. This facilitates the insertion of the gene of interest into the 

chromosome. The preferred site of insertion in the E. coli chromosome is the attTn7 

site, which is found in the transcriptional terminator of the glmUS genes, with a 

preferred orientation with the right end (Tn7R) joining close to the end of the glmS 

gene. Transposition of Tn7 requires the tnsABCD genes. Transposition is regulated 

through the araC gene and the arabinose-inducible promoter PBAD. pSC101 is a 

temperature sensitive origin of replication which ceases activity at temperature of 42°C 

or higher (DeBoy and Craig, 2000; McKenzie and Craig, 2006). These images are 

copyrighted by BioMed Central Ltd and American Society for Microbiology. 
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Successful insertion of the transposon and barcode was initially confirmed by 

colony PCRs. Colonies were first suspended in 50µl of milliQ water and heat 

lysed by incubation at 99°C for 10min. The PCR reaction mixture included 21µl 

of heat lysed bacterial suspension, 2µl of forward and reverse primers (0.4µM 

final concentration) and 25µl GoTaq Green Master Mix to give a final volume of 

50µl (see table 2.2 for primers). Amplification was as follows: 35 cycles of 94°C 

for 30s, 54°C for 30s, 72°C for 1min, and 1 cycle of 72°C for 5min. PCR products 

were run on 1% agarose gels to determine whether the transposon had 

correctly inserted into the attTn7 site. The PCR products that were of the 

correct predicted size were cleaned using the QIAGEN QIAquick PCR purification 

kit and then prepared for sequencing using the BigDye Terminator Sequencing 

Kit (Thermo Scientific) to determine whether the recombination had occurred 

without any unwanted mutations or errors. The reaction mixture was 0.5µl 

BigDye Terminator v3.1 Reaction Mix, 2µl 5x BigDye Buffer, 1µl primer (2µM), 

40ng DNA and water to bring the final volume to 10µl (see table 2.2 for 

primers). The reaction settings were as follows: 1 cycle of 96°C for 1min, and 25 

cycles of 96°C for 10s, 50°C for 5s, 60°C for 4min. Samples were then sent for 

sequencing by Eurofins MWG. Glycerol stocks were prepared for barcoded 

strains that showed the correct insertion had occurred. 

Table 2.2: Primers used to amplify the Tn7 transposon and barcode region of 

transformed cells. Primers target the region around the Tn7 insertion site. Different 

forward and reverse primers were used depending on strain sequence around the 

attTn7 site. Primers were used for both colony PCRs and sequencing to confirm the 

successful insertion of Tn7 and the barcode. 

 

 

Primer  Sequence 

Forward attTn7-Left GATGCTGGTGGCGAAGCTGT 

 f-attTn7 TGTGACAGAGAAAAAGTAGCC 

 f-50/34 AAAGGAATAGTACACCAAAGA 

   

Reverse attTn7-Right GATGACGGTTTGTCACATGGA 

 r-attTn7 ATCTTCTACACCGTTCCGC 
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2.1.5.4 Construction of siderophore knockout mutants 

To generate the required siderophore knockout mutants (see table 2.3 for list of 

mutants), the lambda red recombinase system was used (Datsenko and 

Wanner, 2000). This recombinase is very efficient and sequence replacements 

(e.g. a target gene by a resistance cassette) by a double-crossover can be 

achieved by providing short flanking homologous sequences (approximately 

50nt). The lambda red system is provided by transforming strains with the 

pKD46 plasmid which encodes the lambda red genes exo, bet and gam (Murphy, 

1998). These genes are under the promoter ParaB which is inducible by 

arabinose. When the lambda red recombinase is induced in the presence of 

arabinose, it is able to switch the gene of interest (thus removing it from the 

chromosome) with specially constructed linear dsDNA inserts which encode an 

antibiotic cassette, allowing mutants where recombination has occurred to be 

selected (figure 2.2). The protocol used in this study to generate mutants is a 

modified version of that described by Datsenko and Wanner (2000). 

To prepare linear DNA inserts for recombination, primers were designed to 

amplify the antibiotic resistance genes present on the pKD3 (Cm) and pKD4 (Km) 

plasmids. Importantly, the primers included 5’ extensions of approximately 

50bp homologous to the flanking regions of the gene to be replaced by the 

antibiotic resistance cassettes on the E. coli chromosome (table 2.4). The PCR 

reaction mixture was prepared by adding 50ng plasmid DNA, 2µl of each primer 

(0.4µM final concentration), 25µl GoTaq Green Master Mix and milliQ water 

added to a final volume of 50µl (see table 2.4 for primers). Amplification for the 

PCR was as follows: 35 cycles of 94°C for 15s, 50°C for 30s, 72°C for 90s, and 1 

cycle of 72°C for 5min. PCR products were run on 1% agarose gels for product 

size confirmation and cleaned using the QIAGEN QIAquick PCR Purification Kit as 

per manufacturer’s instructions. If multiple PCR products were visible on the 

agarose gel, the QIAGEN QIAquick Gel Extraction Kit was used as per 

manufacturer’s instructions to purify the correct PCR product. Clean linear DNA 

inserts were then quantified using a NanoDrop spectrophotometer (Thermo 

Scientific). 
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Table 2.3: List of siderophore deletion and ferric uptake mutants. 

Before introducing the linear DNA fragments, target strains were transformed 

with the pKD46 plasmid (section 2.5.1.2). Overnight cultures of the strains 

containing the pKD46 plasmid grown in LB medium with 100µg/ml ampicillin 

were diluted in 25ml LB to an OD600 of 0.005. The LB medium was supplemented 

with 10-50mM arabinose once the cultures reached an OD600 of 0.1 to induce 

recombinase expression. Cultures were then incubated at 37°C in a shaking 

incubator (250rpm) until they reached an OD600 of 0.4-0.6. The cells were then 

made electrocompetent as described in section 2.1.5.2, and transformed with 

linear DNA fragments. Colony PCRs were carried out on transformed colonies to 

determine whether recombination had successfully occurred as described in 

section 2.1.5.3. The PCR products that were of the correct predicted size were 

cleaned and prepared for sequencing as described in section 2.1.5.3. Sequences 

were compared to known sequences for each siderophore gene as well as the 

resistance cassettes in both pKD4 and pKD3. Glycerol stocks were prepared for 

mutant strains that showed correct insertion. 

Siderophore biosynthesis gene deletion mutants: 

GMB104a GMB104 ΔiucABCD; kanr 

GMB104s GMB104 ΔiroB; cmr 

GMB104y GMB104 ΔybtS; kanr 

GMB104es GMB104 ΔentB; cmr 

GMB104as GMB104 ΔiucABCD ΔiroB; cmr 

GMB1104sy GMB104 ΔiroB ΔybtS; kanr 

GMB104ay GMB104 ΔiucABCD ΔybtS; kanr 

GMB104asy GMB104 ΔiucABCD ΔiroB ΔybtS 

GMB104eas GMB104 ΔentB ΔiucABCD; kanr cmr 

GMB104esy GMB104 ΔentB ΔybtS 

GMB104easy GMB104 ΔentB ΔiucABCD ΔybtS; kanr cmr 

GMB91e GMB91 ΔentB; cmr 

Siderophore tonB deletion mutants: 

GMB104t GMB104 ΔtonB; kanr 

GMB91t GMB91 ΔtonB; kanr 
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Figure 2.2: The pKD46 plasmid and lambda red recombinase system. A) pKD46 

encodes the lambda red genes gam, bet and exo, with the native terminator tL3, which 

are inducible by arabinose via the promoter PBAD. It also possesses the bla gene for 

ampicillin resistance and the temperature sensitive origin of replication repA101ts. B) A 

linear DNA insert is constructed using the antibiotic resistance cassette on plasmids 

pKD3 and pKD4, chloramphenicol and kanamycin respectively, and primers possessing 

extensions that are homologous to the gene of interest. Recombination occurs via the 

lambda red recombinase, replacing the gene of interest with the resistance cassette. 

The pKD3 and pKD4 resistance cassettes are both flanked by FRT sites, enabling 

removal using a Flp recombinase. P1 and P2 labels denote primer binding sites. H1 and 

H2 refer to the chromosome homologous extensions or regions (Datsenko and Wanner 

2000). Image B is copyrighted by National Academy of Sciences. 
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When it was necessary to delete more than two genes from the same strain, we 

first removed the kanamycin and chloramphenicol resistance cassettes inserted 

in the genome. To do so, we exploited the fact that both resistance genes were 

flanked by FRT sites, which are recognised by the site-specific Flp recombinase. 

Recombination results in the excision of the resistance gene. The Flp 

recombinase was provided by transforming the target strains with the pCP20 

plasmid (Cherepanov and Wackernagel, 1995; Datsenko and Wanner, 2000). 

Removal of these antibiotic resistance cassettes enabled further genes to be 

knocked out using pKD4 and pKD3 linear DNA inserts as mutants no longer had 

antibiotic resistance. After transformation with the pCP20 plasmid, the strains 

were incubated at 30°C overnight on LB and ampicillin (100µg/ml) to induce the 

Flp recombinase and then restreaked on LB plates and incubated at 42°C to 

ensure loss of the pCP20 plasmid. Loss of the plasmid was confirmed by 

streaking colonies on LB and ampicillin plates and the Flp-FRT recombination 

was confirmed by sequencing. 

 

 

 

 

 

 

 

Table 2.4: Primers used for the construction of siderophore deletion mutants. (Next 

page) Deletion primers target the resistance cassette of both pKD3 and pKD4 plasmids. 

This PCR was used to generate linear DNA for the transformation and recombination of 

strains. Screen primers were used in colony PCRs of transformed strains to confirm 

successful recombination. Deletion primer extensions homologous to the E. coli 

chromosome are underlined. The deletion primers are from Watts et al. (2012), with 

the exception of the entB and tonB primers which were designed for this study. All 

screen primers were designed for this study. 
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Siderophore Gene Primer Sequence 

Aerobactin iucABCD deletion F 

  

GAGCTGTTTGATTATGATCCTGCCCTCTGAAAA

ATCCGCCACAGATGTGGGTGTAGGCTGGAGCT

GCTTC 

deletion R 

 

GCGGGCGGCATACTGAGATCGAATAAATCACG

TCCCATTACGCGATTAAGCATATGAATATCCTC

CTTAG 

screen F TTCTGACAATAACATTTCTCGTTGA 

screen R ACACCACGAACGTTTCATCA 

Yersiniabactin ybtS deletion F  AGGTTAGAAAACAGTTACTCCTACACCATTAAA

TAGGGCGCAATGCTCGCGTGTAGGCTGGAGCT

GCTTC 

deletion R CCGGCTGCATTCGGCAAGAGAACTGATGACAA

GCGCAATTGATTGATCCGCATATGAATATCCTC

CTTAG 

screen F  CAATGTACTGATGCGGCAAT 

screen R GGTCGGATTATCTGGAAGCA 

Enterobactin entB deletion F  GAAAGTCGATAAAAAACAATTACGTCAGTGGC

TGGCGTCACGCGTGTAGGCTGGAGCTGCTTC 

deletion R  TGAAATCCATTATTTCACCTCGCGGGAGAGTA

GCTTCCACCACATATGAATATCCTCCTTAG 

screen F  TGAGCATGGAAGATGAGCTG 

screen R GTCGCAAAGGGATATTGCTC 

Salmochelin iroB deletion F TCTGTAAAATACGATCCACTGGCCGGATCGTTC

CGCAAAAAAGCCAGCACGTGTAGGCTGGAGCT

GCTTC 

deletion R  TGCGTCGACTGCCTGATTTAGATCGTCAAGCG

GAGAGGGATTTTCTCATGCATATGAATATCCTC

CTTAG 

screen F  GAGCTGTCCATAACGCTGGT 

screen R TGTGATTCGCAGGCATTAAG 

Ferric iron 

uptake 

tonB deletion F GGCGAAGATCTGCAACGGAAAGATGATGTCTT

TGTTAAGGCCATGCATAAGTGTAGGCTGGAGC

TGCTTC 

deletion R CCTTACCTGTTGAGTAATAGTCAAAAGCCTCCG

GTCGGAGGCTTTTGACTCATATGAATATCCTCC

TTAG 

screen F GCGTTTTTCGAGGCTATCAG 

screen R AAGTATGTCGCGGTTGATCC 
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2.1.6 Characterisation of mutants 

When grown under laboratory conditions, bacteria can rapidly accumulate 

adaptive mutations which may cause phenotypic changes (Spira et al., 2011; 

Eydallin et al., 2013). As one of the main aims of this study was to investigate 

the differences in fitness of E. coli strains based on their source of isolation, it 

was important to assess whether the genetically manipulated strains had 

characteristics associated with domestication to the laboratory environment. 

Several assays were therefore performed to assess catalase activity (RpoS 

function), growth patterns, colony morphology and additional phenotypes such 

as nutritional competence. 

2.1.6.1 Growth curves 

Culturing bacteria within the laboratory often involves growing bacteria in 

nutrient rich media designed to achieve maximal growth rates (Neidhardt, 

1999). As a result, it is likely that E. coli adapt to this new laboratory habitat, 

optimising growth within these media and displaying altered growth rates 

compared to ancestor strains (Eydallin et al., 2013). To screen for laboratory 

adaptation, barcoded isolates were grown in triplicate alongside their wild-type 

counterpart in LB medium. LB overnight cultures were used to inoculate 25ml LB 

in 250ml conical flasks to a final OD600 of 0.005. Siderophore mutants were 

grown in triplicate alongside the wild-type in MM9 media both with and without 

the iron chelator 2,2’-dipyridyl (Sigma-Aldrich) to induce low iron conditions. 

Strains that showed reduced growth in MM9 media were grown in MM9 

supplemented with ferrous sulphate (FeSO4) to determine whether reduced 

growth was due to reduced iron uptake. Overnight cultures grown in LB with the 

relevant antibiotic were centrifuged at 9,240 x g for 5 min at room temperature 

(RT) and washed using PBS to remove residual iron present in the LB medium. 

Resuspended cells were then used to inoculate 25ml of MM9 media with or 

without either 100µM 2,2’-dipyridyl or 100µM iron(II) sulphate heptahydrate 

(FeSO4·7H2O) to a final OD600 of 0.05. Cultures were all incubated at 37°C in a 

shaking incubator and OD600 readings taken every hour to monitor growth.  
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2.1.6.2 Catalase assays 

RpoS is a sigma factor (σ38) that is responsible for regulating the general stress 

response by reducing growth and increasing resistance to stressors, such as 

nutrient starvation, extreme temperatures, osmotic shock, pH, oxidative stress 

and other environmental fluctuations that may damage the cell (Battesti et al., 

2011). RpoS mutations have been observed in natural and laboratory 

populations of E. coli (Notley-McRobb et al., 2002) and also readily occur within 

in vitro cultures of E. coli (Farrell and Finkel, 2003). Bacteria that are grown 

under nutrient limitation have been shown to have increased growth rates 

when they possessed an RpoS that was non-functioning (Notley-McRobb et al., 

2002). RpoS regulates the enzyme catalase (KatE) which catalyses the 

breakdown of H2O2 to water and oxygen to prevent damage to the cell. A simple 

catalase assay was used to determine whether mutants had retained catalase 

activity, and thus RpoS function, which would greatly affect their phenotype. 

The assays were performed by picking single colonies of each mutant as well as 

the wild-type for that strain. The colonies were transferred to a plastic petri dish 

and 20µl of H2O2 was applied to each colony. Catalase positive colonies produce 

oxygen which forms as bubbles that can be identified visually.  

2.1.6.3 YESCA plates 

Some laboratory domesticated E. coli strains have been shown to possess 

altered curli fimbriae formation (Eydallin et al., 2013). To assess changes in 

colony morphology and curli formation, barcoded and parental isolates were 

grown on YESCA agar plates. This agar contains two dyes, congo red and 

coomassie brilliant blue G, which stain curli. YESCA plates were made as per 

Hammar et al. (1996), with 10g casamino acids, 1g yeast extract and 20g Bacto 

agar dissolved in 1 litre water and autoclaved. 20mg congo red and 10mg 

coomassie brilliant blue G were added after autoclaving. Both barcoded and 

parental E. coli strains were streaked out from glycerol stocks onto YESCA plates 

and incubated for 48h at 37°C and 7 days at RT. Whole plate images were taken 

using a Panasonic Lumix DMC-F25 digital bridge camera. Individual colonies 

were imaged using a Leica M165C Stereo microscope using the software Leica 
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Application Suite (LAS) V4.2. Parental and barcoded strains colony morphologies 

were visually compared to determine whether any changes had appeared.  

2.1.6.4 BIOLOG plates 

To test nutritional competence of barcoded strains compared to the wild-type, 

BIOLOG GN2 microplates were used to profile carbon source utilisation. GN2 

microplates are 96 well plates where each well contains a unique carbon source, 

as well as a blank control. These 95 carbon sources can be used to generate a 

metabolic profile and identify aerobic gram-negative bacteria. Colonies of both 

mutants and the wild-type were suspended in BIOLOG GN inoculating fluid and 

bacterial suspensions used to inoculate the GN2 microplates which were 

incubated at 37°C. Each well contained tetrazolium violet (2,5-diphenyl-3-(1-

naphthyl)tetrazolium chloride), a redox dye, which generates a purple colour in 

response to the production of NADH generated during metabolic activity, and 

thus carbon source utilisation (Bochner and Savageau, 1977; Bochner, 2009). 

OD600 for the plates was measured at 24h, 48h and 72h incubation to confirm 

any differences observed were a result of metabolic changes rather than 

differences in growth rate. 

2.2 Barcode mixed population competition studies 

2.2.1 Preparation of mixed strain inocula 

To prepare mixed cultures of barcoded E. coli, strains were initially grown 

individually and then mixed together at the start of the mixed culture. LB 

overnight cultures were used to inoculate 10ml of LB to an OD600 of 0.005 for 

each strain to be used in the mixed culture. These were then incubated at 37°C 

in a shaking incubator until they reached an OD600 of 0.2 at which point the 

individual cultures were mixed to give an equal number of each strain according 

to OD600. To prepare mixed populations for use in soil and mice experiments, LB 

overnight cultures of barcoded strains were used to make mixed cultures. The 

barcoded strains for soil and mouse experiments displayed different growth 

rates (data not shown) that made it not feasible to use log cultures to prepare 

mixed cultures. Prior to carrying out competition studies, overnight cultures 
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were spread on TBX plates and incubated overnight at 37°C to confirm that 

OD600 accurately represented bacteria number. The OD600 absorbance of each 

overnight culture was measured and 4 OD600 of each culture harvested and 

mixed together to get an equal number of each strain in the mixed culture. Cells 

were then centrifuged at 3,226 x g at RT for 10min and washed twice using 10ml 

PBS. The OD600 was measured after the second wash and bacteria were 

resuspended in the required amount of PBS to give OD600 = 2 (approximately 1-

2x109 CFU/ml). These bacteria could then be used to inoculate soil or given to 

mice via gavage.  

2.2.2 In vitro competition studies 

To test the ability to quantify and identify the amount of each barcoded strain in 

a mixed population, an in vitro competition study was carried out in LB medium. 

The eight strains GMB71-B10, GMB34-33233, ECOR49-B9, ECOR55-B11, GMB07-

B19, GMB45-23353, GMB45-19439 and ECOR16-B1 were used to create a mixed 

E. coli inoculum as described above (section 2.2.1). The inoculum was then used 

to initiate an LB culture, which was grown at 37°C in a shaking incubator and 

sampled every hour for the first 8h followed by samples taken at 24h and 44h 

(98h in the second culture). During sampling OD600 was measured and 500̄µl was 

taken for gDNA extraction. These 500µl were centrifuged for 5min at 9,240 x g 

at RT and the pellet stored at -20°C prior to gDNA extraction. To extract gDNA 

the QIAGEN Blood and Tissue Kit was used as per manufacturer’s instructions 

for gram-negative bacteria. gDNA was quantified using a NanoDrop 

spectrophotometer (Thermo Scientific) and then used in RT-PCR. 

2.2.3 Mouse GI-tract competition studies 

To investigate whether barcoded strains could be monitored in the gut and 

determine which strains had increased fitness and competitiveness in the GI-

tract, mixed cultures were given to mice via oral gavage. Wild-type female 

C57BL/6 mice were used for the competition experiments, and all were 4-8 

weeks old. All mice were bred and maintained at a conventional animal unit at 

the University of East Anglia (UEA). Mice were specific pathogen-free (SPF) and 

had access to a standard chow mouse diet and sterilised water ad libitum. Mice 
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were given the antibiotics ampicillin and neomycin (1mg/ml of each in drinking 

water) for 1 week prior to gavage to enable bacteria to colonise the gut. E. coli 

has been shown to colonise poorly in conventional mice that have an intact 

microbiota due to colonisation resistance (van der Waaij et al., 1972; Freter et 

al., 1983), so removal of the microbiota by antibiotics greatly facilitates 

colonisation. Ampicillin is active against many Gram-positive bacteria and some 

Gram-negatives, especially Enterococci, Streptococcus and some 

Enterobacteriaceae. Neomycin is particularly effective against Gram-negative 

and some Gram-positive bacteria. Together these antibiotics are able to remove 

a significant amount of the resident microbiota that would otherwise prevent E. 

coli from colonising (van der Waaij et al., 1972; Vijay-Kumar et al., 2010). During 

the antibiotic treatment mice remained on the standard chow diet. 24 hours 

before the bacterial challenge, mice were taken off the antibiotics and returned 

to standard water. Mice were then given 108 CFU of E. coli by single oral gavage. 

Faecal samples were also collected when the gavage was given and spread on 

TBX plates to confirm the absence of E. coli within the GI-tract of the mice.  

For the first mouse competition study the eight strains ECOR49-B9, ECOR16-B1, 

GMB45-19439, ECOR55-B11, GMB45-23353, GMB34-33233, GMB07-B19 and 

GMB71-B10 were used. For the second experiment 13 strains, GMB23-23277, 

GMB32-20239, GMB34-33233, GMB98-30438, GMB45-19439, GMB45-23353, 

GMB104-29884, GMB72-B8, GMB18-B5, GMB71-B10, GMB54-33301, GMB07-

B19 and GMB02-23796, were used to expand on what had been seen previously 

with the first mouse experiment and to compare with the soil competition 

study. Following gavage faecal samples were collected on the following days for 

mouse experiment 1: 1, 2, 3, 9, 16 and 22. For this first experiment, there was 

one cage of 4 mice which were all given the same gavage. As the mice were 

cohoused, it is possible that the microbiota was shared between them as mice 

exhibit coprophagia, consumption of faecal matter (Barnes et al., 1963). Mice 

were then euthanized on day 27 using schedule 1 techniques (carbon dioxide 

and dislocation of the neck) and GI-tract contents (ileum, caecum and colon) 

collected. For the second experiment, two groups of 5 mice were given the 
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same gavage, to account for the possibility of coprophagia. Faecal samples for 

both groups of mice were collected on days 1, 2, 3, 4, 6, 8, 10 and 12. Further 

samples were collected on days 14, 18, 22, 26 and 30 for the first group only. 

The second group had faecal samples taken up to day 12, but on day 14 they 

were euthanized using schedule 1 techniques (carbon dioxide and dislocation of 

the neck) and the GI-tract contents (ileum, caecum, proximal colon and distal 

colon) were collected to determine whether strains were evenly distributed 

across the gut or whether they inhabited different areas which would reduce 

direct competition between different E. coli strains. The mucosae from the 

proximal and distal colon were also collected to determine whether there were 

any differences between E. coli composition in the lumen and that associated 

with the mucosa.   

Two samples were collected from each mouse at each time point, with one 

sample being used to determine CFUs and one for gDNA extraction. Faecal 

samples for CFUs were homogenised in 1ml PBS on the day of collection. A 

dilution series was made by diluting the homogenised faeces in PBS in factors of 

10. These dilutions were then spread on TBX plates and incubated overnight at 

37°C. Colonies were counted the following day and the CFU/g calculated. gDNA 

samples were initially stored at -80°C for gDNA extraction at a later date. gDNA 

was extracted using the QIAGEN QIAamp DNA Stool Mini Kit as per 

manufacturer’s instructions. Faecal samples were homogenised and cells lysed 

using a FastPrep FP120 benchtop homogeniser (Thermo Savant) using the 

following settings: 4 runs of speed 6.5 for 45s with 60-90s on ice in between 

each run, and then manufacturer’s instructions were followed. For the second 

experiment, the QIAGEN QIAamp Fast Stool Mini Kit was used as per 

manufacturer’s instructions but a fast-prep was not required for increased DNA 

yields. Extracted gDNA was quantified using a NanoDrop spectrophotometer 

(Thermo Scientific) and used for either RT-PCR or further preparation for high-

throughput sequencing. 
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2.2.4 Soil competition study 

To assess the viability of using and detecting barcoded strains in natural 

environments, a mixed culture was used to inoculate columns of soil. The 

following 12 strains were used in the soil experiment: GMB23-23277, GMB32-

20239, GMB34-33233, GMB98-30438, GMB45-19439, GMB104-29884, GMB72-

B8, GMB40-B6, GMB18-B5, GMB71-B10, GMB54-33301 and GMB07-B19. Soil 

was kindly provided by Philip Poole (John Innes Centre, UK). The method for the 

soil competition study was adapted from Williams et al. (2007). Soil was placed 

in 50ml falcon tubes and had a moisture content of 15%, with 40g of soil in each 

tube at a density of 1gcm-3. 2ml of three dilutions of bacteria (107, 108 and 109 

CFU/ml) were applied to the top of the soil column. The lids of the tubes were 

left loose to ensure adequate oxygen levels at the soil surface and then soil 

columns were incubated at 20°C in the dark over a period of 24 days. Soil 

columns were divided into three sections (top, middle and bottom) and 0.25g 

soil used for gDNA extraction and 0.5g used to make a 10x dilution series using 

PBS which was plated out on TBX plates and incubated overnight at 37°C to 

estimate CFUs. gDNA extraction from soil samples was performed using the 

PowerSoil (MO BIO) kit as per manufacturer’s instructions. To increase DNA 

yield, a FastPrep FP120 homogeniser (Thermo Savant) was used with the 

following settings: 4 runs at speed 4 for 30s with 1min on ice in between each 

run. Extracted gDNA was then cleaned as contaminants, such as humic acids, 

are often coextracted from soil alongside DNA using the OneStep PCR Inhibitor 

Removal Kit (Zymo Research) as per manufacturer’s instructions. gDNA was 

quantified using a NanoDrop spectrophotometer (Thermo Scientific) and then 

used in RT-PCRs. 

2.2.5 Quantification of barcoded strains using RT-PCR 

Primers for the RT-PCR were designed using the Primer3 software 

(http://frodo.wi.mit.edu/) based on the barcode sequence and on part of the 

Tn7 transposon region. The reverse primer was designed to contain the whole 

barcode sequence as well as part of the surrounding Tn7 region (table 2.5). The 

forward primer was designed to be within the Tn7 region common to all 
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barcoded strains. The amplicon sizes were designed to be about 150bp in length 

to ensure optimum detection during the RT-PCR. To determine whether there 

were any biases in the primers in terms of efficiency, standard curves were 

performed. gDNA was extracted from LB overnight cultures of each barcode 

strain used in the competition studies using the QIAGEN DNeasy Blood and 

Tissue Kit as per manufacturer’s instructions. This gDNA was then diluted using 

milliQ water to give a concentration of 10ng/µl and a dilution series prepared 

from this down to a dilution factor of 10-8. 10µl of each dilution was used for 

each reaction (100ng of gDNA for the highest concentration). The reaction 

mixture per well was 12.5µl SYBR Green JumpStart Taq ReadyMix (Sigma-

Aldrich), 0.25µl Reference dye (in kit), 0.05µl primer 1 (0.2µM final 

concentration), 0.05µl primer 2 (0.2µM final concentration), 10µl gDNA, and 

water up to a final volume of 25µl. Reactions were carried out in a 96 well plate 

which was centrifuged prior to the RT-PCR at 2,760 x g for 1min at RT to remove 

air bubbles that might interfere with signal detection. The RT-PCR reaction 

settings were 1 cycle of 94°C for 2mins, 40 cycles of 94°C for 30s, 60°C for 30s, 

72°C for 45s, 1 cycle of 72°C for 5mins, and 1 cycle of dissociation curve (1 cycle 

of 95°C for 15s, 60°C for 1min, 95°C for 15s and 60°C for 15s). Fluorescence was 

measured during the 45s elongation step at 72°C. RT-PCRs were performed on 

the ABI TaqMan 7500 System. ROX indicator settings were used for detection of 

the reference dye used in this study, which was provided with the Green 

JumpStart Taq ReadyMix (Sigma-Aldrich). The standard curves were used to 

determine how the amount of gDNA translated into Ct values. Assuming 100% 

efficiency of primers, for a 10x dilution series the Ct value is expected to 

increase by 3.3 for every 10-fold reduction of gDNA. Primers with standard 

curves that had gradients between 3.0-3.6 (90%-110% efficiency) were deemed 

suitable for use in the RT-PCR.  

The measured sensitivity for the RT-PCR using purified gDNA diluted in milliQ 

water (for the standard curves) was 0.01pg gDNA per reaction. To ensure that 

the sensitivity was not severely altered by the presence of gDNA from other 

bacteria or other factors present in samples isolated from the mouse gut, 
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barcode gDNA was mixed with faecal gDNA extracted from wild-type C57BL/6 

mice which did not have an altered microbiota kindly provided by Ida Porcelli 

(Institute of Food Research, UK). Mouse faecal gDNA was extracted using the 

QIAGEN Stool Kit as per manufacturer’s instructions. Increasingly diluted 

barcoded gDNA was added to a constant concentration of faecal gDNA (10ng/µl) 

and then used in an RT-PCR (reaction mixture and settings as for the standard 

curves) to generate a standard curve to determine primer efficiency and 

sensitivity. Primer efficiency was unchanged from the standard curves using 

pure barcode gDNA. Sensitivity was still as low as with pure gDNA with 0.01pg 

required for an accurate measure of gDNA quantity. 

Table 2.5: RT-PCR primers used for the detection of barcoded strains. The transposon 

P3 primer was used as the forward primer for all RT-PCR reactions and targeted a 

region of the Tn7 transposon common to all barcoded strains. All other primers were 

unique to a specific barcode strain. 

Strain Barcode Primer Sequence 

GMB45 (1) 19439 GGCCGCGGGGAATTCATATTCGTGGGCACAC 

GMB32 20239 GGCCGCAAGGATTCCAGAATTCGCTTGCCTC 

GMB48 21118 GGCCGCTACCCATCGAATTCCGACAGAGCCAC 

GMB23 23277 GGCCGCTGCGGCGTGAATTCAAAATGGTAGAC 

GMB45 (2) 23353 GGCCGCTGTTGTCAGCTGAATTCTCAGGGTTC 

ECOR32 23457 GGCCGCGGCATGAATTCGGTAACGTCACC 

GMB02 23796 GGCCGCTTCACCCAAGGCGGAGAATTCATTAC 

GMB104 29884 GGCCGCGTCACGAATTCTCGTAAATGGCGGC 

GMB98 30438 GGCCGCTTGACACCACGCCACGAATTCTCCTC 

GMB34 33233 GGCCGCATTCAGAATTCTGGATGTACGGTGGC 

GMB54 33301 GGCCGCACTAAGGTGGGATGAATTCCTCTGC 

ECOR16 B1 GGCCGCAGGGAATGGGCAAACCTTAAGTACC 

GMB18 B5 GGCCGCGATTGATGAATTCTGCGGTTGTCGTGC 

GMB40 B6 GGCCGCGTAGTCCAGTGGTCAGAATTCGGTGAGC 

GMB72 B8 GGCCGCGCCCAATTAAGCCGGAGTGAATTCTGC 

ECOR49 B9 GGCCGCGCACCCTCCCCAGTCAGGAATTCGTTGC 

GMB71 B10 GGCCGCGTAGGGTAGAATTCGTGCGCCTCGGC 

ECOR55 B11 GGCCGCGTTTACCTAGAATTCCGTGAGCGTCAGC 

GMB07 B19 GGCCGCGTACGCTGAATTCACGTTTCAGGCCAGC 

   

All Transposon P3 TGCCCGTCGTATTAAAGAGG 
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For competition study samples, 100ng (concentration of 10ng/µl) of gDNA was 

used for each reaction, which were carried out in duplicate or triplicate. The RT-

PCR reaction mixture and settings were as described for the primer standard 

curves (see above). Standard curve line equations were used to determine how 

much of each barcode strain was in a sample. The proportion of each barcode 

strain in a sample was calculated to determine the population dynamics.  

2.2.6 High-throughput sequencing for detection of 

barcoded strains 

For high-throughput sequencing, an amplicon based system was used. Samples 

were prepared using amplicon primers designed to target the Tn7 region around 

the barcode common to all barcoded isolates, so that primers could amplify all 

barcode strains at the same time (table 2.6). The amplicon primers included the 

Illumina flowcell adapter sequences for use on the Illumina platforms. Reverse 

primers contained a 6nt unique index sequence that enabled pooling of up to 48 

samples. The PCR reaction mixture was 200ng template DNA, 1U phusion DNA 

polymerase (NEB), 10μl 5x buffer (contains 1.5mM MgCl2 final concentration), 

1μl dNTPs (200μM final concentration), 2μl each primer (0.4μM final 

concentration) and water (Sigma-Aldrich) up to a final volume of 50μl (see table 

2.6 for primers). Amplicon PCR settings were 1 cycle of 95°C for 30s, 35 cycles of 

94°C for 15s, 55°C for 30s, 72°C for 45s and 1 cycle of 72°C for 5min. PCR 

products were run on a 1.5% agarose gel to confirm successful amplification and 

correctly sized amplicons purified using the QIAGEN QIAquick PCR purification 

kit as per manufacturer’s instructions. Samples were then sent to TGAC (The 

Genome Analysis Centre, UK) for size fractionation and sequencing. A 100bp SE 

(single-end) read was performed on the Illumina HiSeq. From the sequencing 

data, the Unix grep command was used to count the frequency of each barcode 

and determine the proportion of each barcoded strain in each sample. 
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Table 2.6: Amplicon PCR primers and index sequences. Forward and reverse amplicon 

primers contain adaptor sequences for use in the Illumina MiSeq or HiSeq platforms 

(underlined). The remainder of these primers is homologous to the Tn7 region 

surrounding the barcode, which can be used on all barcoded strains, generating a 

300bp amplicon. The reverse amplicon primer contains a 6nt unique index sequence 

which enables identification of individual samples when pooled (highlighted in red). The 

index sequences listed are those used for the first group of mice from mouse 

competition study 2. The sequencing primer targets the adaptor sequence in the 

forward amplicon primer. Only one sequencing primer was used as single-end (SE), 

rather than paired-end (PE) reads were performed. The index primer targets the 

adaptor region in the reverse amplicon primer. 

2.3 Identification of siderophore genes by multiplex PCR 

2.3.1 ClustalW multiple sequence alignment 

Following the initial observation that siderophore production is increased in 

faecal strains of E. coli compared to plant isolates (Méric, 2011), the presence or 

absence of siderophore genes within the ECOR and GMB collections was 

assessed. A multiplex PCR was designed that could detect four biosynthesis and 

one receptor gene for all four siderophore systems in E. coli. The salmochelin 

Amplicon primers Sequence 

Forward AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC

TCTTCCGATCTTGCCCGTCGTATTAAAGAGG 

Reverse CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCTAAATGATATCGGATCCTAGTAAGC 

Index sequences 

 CGTGAT TCCGCG CGGATA 

 GTGTCG GGACTA CCAGAG 

 AGACCT TCGAAC TGTGCT 

 TACCAA AGATGA CACTCG 

 CCGAGC CTGGCA  

 CATTGT TTCAGG  

 GCGCTA GACAGT  

 TGAACT ACTTAG  

 GGATGC ATTCGA  

 ATCATA GCGTAT  

 AATGGA GAACGC  

Illumina primers Sequence   

Sequencing ACACTCTTTCCCTACACGACGCTCTTCCGATCT 

Indexing AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC 



96 
 

locus, however, only includes one biosynthesis gene, so export and degradation 

genes were included in the PCR. To ensure accurate identification of 

siderophore gene presence, alignments of siderophore gene sequences were 

performed to find conserved regions that could be targeted by the multiplex 

PCR. Publically available whole genome sequences from Ecocyc (Keseler et al., 

2013) and NCBI were used to construct these alignments. Initial alignments 

were performed in Ecocyc using the in-built multi-genome alignment software. 

An nBLAST (nucleotide Basic Local Alignment Search Tool) was then performed 

using default parameters on the NCBI website to check siderophore regions and 

get more sequences for alignments as the NCBI has a greater collection of 

sequences. A Perl script was used to manipulate the output from the NCBI 

nBLAST alignment so that it could be used in the Bioedit Sequence Alignment 

Editor software (Hall, 1999). A multiple alignment was then performed using 

ClustalW v1.4 (Thompson et al., 1994). These alignments highlighted conserved 

regions for primer design. Primers were designed using the Primer3 software 

(http://frodo.wi.mit.edu/). PCR product sizes were designed to be of different 

lengths within one siderophore system to ensure that bands could be 

distinguished on a gel. 

2.3.2 Multiplex PCR 

Template DNA was extracted from overnight cultures using the QIAGEN DNeasy 

Blood and Tissue extraction kit as per manufacturer’s instructions. 10ng of 

template DNA was used for each multiplex PCR in a 25μl reaction volume 

containing 12.5μl Go-Taq Green MasterMix (Promega) and 0.1µM of each 

primer (table 2.7). Amplification for each PCR was as follows: 35 cycles at 95°C 

for 30s, 55°C for 30s, 72°C for 1 min, and 1 cycle at 72°C for 5 min. 

Yersiniabactin and aerobactin multiplex PCRs had slight alterations, with the 

annealing temperature raised to 60°C for the yersiniabactin PCR and elongation 

step shortened to 40s for the aerobactin PCR. Multiplex PCR products were run 

on a 1% agarose gel to determine siderophore gene presence or absence. 

Strains where all five genes (4 biosynthesis genes and 1 receptor) were detected 

for a specific siderophore were considered to possess that siderophore system. 
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Table 2.7: Multiplex PCR primers for detection of all four siderophore systems in E. 

coli. 

Siderophore Gene Primer Sequences Product Size 

 Enterobactin entA F 

R 

GTGCGCTGTAATGTGGTTTC 

CAGAGGCGAGGAACAAAATC 

184 

  entB F 

R 

GCGACTACTGCAAACAGCAC 

TTCAGCGACATCAAATGCTC 

382 

 entC F 

R 

GACTCAGGCGATGAAAGAGG 

TGCAATCCAAAAACGTTCAA 

438 

  entE F 

R 

CGTAGCGTCGAGATTTGTCA 

CCCATCAGCTCATCTTCCAT 

776 

  fepA F 

R 

TTTGTCGAGGTTGCCATACA 

CACGCTGATTTTGATTGACG 

349 

 Salmochelin iroB F 

R 

CAACCATCGGTTTGACAGTG 

GACGTAACACCGCCGAGTAT 

166 

  iroC F 

R 

TGCCACACAGGATTTTACCA 

CTCACTCTGGGTGCAGCATA 

388 

 iroD F 

R 

GGTAAGCAGTTGTCCGGTGT 

GTTACTGCGGCTCCTATTCG 

227 

  iroE F 

R 

ATCATAACCTCTGCCCAACG 

ACCAACCTCCCTTTCGATCT 

300 

  iroN F 

R 

CTTCCTCTACCAGCCTGACG 

GCTCCGAAGTGATCATCCAT 

648 

 Yersiniabactin irp1 F 

R 

AGAGCGGAAATAACCGAACA 

GTAAACAGGCCGTGACGATT 

221 

  irp2 F 

R 

CTGGTGATGGTGATGGAAAA 

CCATCGCGATAAATTGTCCT 

247 

 irp3 F 

R 

GTATACCTCGCCGGAACAGA 

GCCAGCGTTTGTAAGGAACT 

177 

  irp4&5 F 

R 

GCGCCACAAGGACTGATTAT 

GTCTCTCCAGCGACCAGAAC 

905 

  fyuA F 

R 

GGGAATGTGAAACTGCGTCT 

CGGGTGCCAAGTTCATAGTT 

791 

 Aerobactin iucA F 

R 

ATAAGGGAAATAGCGCAGCA 

TTACGGCTGAAGCGGATTAC 

212 

  iucB F 

R 

CCACGAATAGTGACGACCAA 

GTTTTTGATGCAGAGCGTGA 

339 

 iucC F 

R 

ATTTCGGGAAACGCTTCTTT 

GTGGTTCCGCTGTATCACCT 

158 

  iucD F 

R 

TCTTCCTTCAGTCCGGAGAA 

TCCTCATTTTTCCTGGCATC 

630 

  iutA F 

R 

CCAGCCTCAAACTCCATCAT 

ACAGCCGACAACTGGACTCT 

157 
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2.4 Chemical assays to determine siderophore production in 

vitro 

2.4.1 Liquid CAS assay 

To confirm observed increased siderophore production on Chrome Azurol S 

(CAS) agar plates (Méric, 2011), a CAS liquid assay was performed on a subset of 

ECOR and GMB strains. This assay, unlike CAS agar, is not influenced by 

potential differences in diffusion by individual siderophores. Liquid CAS assays 

were also used to characterise siderophore production in siderophore 

biosynthesis and tonB mutants. Chrome Azurol S liquid (CAS) assay solution was 

prepared as per Payne (1994). 2mM CAS solution (0.121g CAS in 100ml water) 

and 1mM Fe stock solution (1mM FeCl3·6H2O in 10mM HCl) were made and 

mixed at a ratio of 5:1. Hexadecyltrimethylammonium bromide (HDTMA) 

solution (0.0219g HDTMA in 50ml water) and piperazine buffer (4.307g 

piperazine in 30ml water and add HCl to bring pH to 5.6) were then made and 

9ml of the CAS-Fe mixture was added to the HDTMA solution. Finally the 

piperazine buffer was added alongside milliQ water to bring the volume up to 

100ml. A shuttle solution, 0.2M 5-Sulfosalicylic acid, was used to enhance the 

colour change. 

Single colonies were used to inoculate 10ml of MM9 media and grown in a 

shaking incubator at 37°C for 16h. OD600 absorbance was measured and then 

cultures were centrifuged at 9,240 x g for 5min at RT and the supernatant 

filtered (0.2µm filter) to remove bacteria. 0.5ml of supernatant was added to 

0.5ml CAS assay solution, followed by 10µl of shuttle solution. These were 

mixed by inversion and colour allowed to develop for 10mins. Siderophores 

present in the supernatant will cause the CAS solution to change in colour from 

blue to orange by removing iron from the dye complex. A spectrophotometer 

was then used to measure absorbance at OD600 using the MM9 medium as a 

blank and MM9 medium with CAS and shuttle solutions added as a reference 

measurement. The amount of siderophore present in the supernatant was 
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calculated using the following equation and then standardising to culture OD600 

readings as previously described (Payne, 1994; Watts et al., 2012): 

[(Areference – Asample)/Areference] x 100 = % siderophore units 

2.4.2 Csàky assay 

To specifically assess the production of aerobactin by siderophore biosynthesis 

mutants, a Csàky assay was performed which can measure hydroxamate in used 

media (Csàky, 1948). MM9 overnight culture OD600 absorbance was measured 

and then cultures were centrifuged at 9,240 x g at RT for 5mins and supernatant 

transferred to bijoux. The supernatant was hydrolysed with 1ml 6N sulphuric 

acid in a boiling water bath filled with mineral oil. 1ml of both MM9 medium 

and water were also acid hydrolysed as controls. 3ml 35% sodium acetate 

solution was added to hydrolysed supernatant to buffer the solutions. 1ml 

sulfanilic acid solution (1g C6H7NO3S in 100ml 30% acetic acid) and 0.5ml iodine 

solution (1.3g iodine in 100ml acetic acid) were added and the mixture 

incubated at RT for 5mins. 1ml of sodium arsenite (2g NaAsO2 in 100ml water) 

was then added to neutralise excess iodine (turning the solution transparent) 

followed by 1ml α-naphthylamine solution (3g α-naphthylamine in 30% acetic 

acid) and 1.5ml distilled water to give a final volume of 10ml. The solution was 

incubated at RT for 30mins to allow the colour to develop and then absorbance 

was measured at 543nm. This absorbance was then standardised to overnight 

culture OD600 to give a relative measure of hydroxamate production. 

2.4.3 Arnow assay 

To measure the production of catecholate-type siderophores, enterobactin and 

salmochelin, by siderophore biosynthesis mutants, the Arnow assay was 

performed (Arnow, 1937). MM9 overnight culture OD600 absorbance was 

measured and then cultures were centrifuged at 3,226 x g at RT for 10mins and 

supernatant transferred to glass assay tubes. A blank of 1ml MM9 medium and 

a negative control of 1ml water were also transferred to glass assay tubes. A 

standard curve was prepared using a catechol solution (192mg catechol in 1 litre 

water) and making a 10x dilution series down to 10-5 dilution. 1ml of 0.5N HCl 
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and 1ml nitritre-molybdate reagent (10g sodium nitrite and 10g sodium 

molybdate in 100ml water) were added. Presence of catechols in the 

supernatant causes a colour change to yellow. 1ml 1M sodium hydroxide was 

then added, which in the presence of catechols would cause a colour change 

from yellow to red, and finally 1ml water added to give a final volume of 5ml. 

Solutions were incubated for 5mins at RT to allow the red colour to fully develop 

and absorbance was measured at 521nm. The amount of catechol present in the 

supernatants was calculated using the standard curve and standardised 

according to overnight culture OD600. 

2.5 In vitro gene expression measurement 

2.5.1 Bacteria and growth conditions 

The expression of a biosynthesis gene for each siderophore system was 

determined to investigate possible variations in siderophore regulation between 

strains. LB overnight cultures of eight GMB isolates (GMB23, GMB30, GMB40, 

GMB53, GMB88, GMB91, GMB100 and GMB104) were washed once with water 

and diluted to a final OD600 of 0.05 in 25ml of MM9 medium without addition of 

iron.  Overnight LB cultures of strain GMB104, which possessed all four 

siderophore systems, was also used to inoculate 25ml of nutrient broth (NB) 

with or without the addition of 200μM or 500μM of iron chelator 2,2’-dipyridyl 

(DIP). The cultures were incubated at 37°C with aeration until reaching the 

exponential phase of growth (OD600 = 0.2). 

2.5.2 RNA extraction, DNase treatment and cDNA synthesis 

2.0 OD600 units of bacteria were harvested from cultures grown as described in 

section 2.5.1 and transferred to 50ml falcon tubes containing ice cold 1/5 

volume phenol/ethanol stop solution (10% (v/v) phenol pH 4.3 (Sigma-Aldrich) 

90% (v/v) ethanol (Sigma-Aldrich)). Cultures were left on ice for 30min and 

centrifuged at 3,226 x g for 10min at 4°C. The supernatant was then discarded 

and bacteria resuspended in residual liquid in the falcon tube. The bacteria were 

then transferred to Eppendorf tubes and centrifuged again at 1,700 x g and 4°C 
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for 10min. Any remaining supernatant was removed and pellets were stored at -

80°C if necessary for RNA extraction at a later time. 

For RNA extraction, pellets were resuspended in 100µl TE buffer containing 

50mg/ml lysozyme and incubated at RT for 4min. From this point the Promega 

SV total RNA purification kit was used. 75µl of lysis buffer (provided with the 

Promega kit) were added to cells and mixed by inversion. 350µl RNA dilution 

buffer (Promega) was added and mixed by inversion and samples were heated 

at 70°C for 3min to lyse bacteria. Samples were then centrifuged for 10min at 

15,616 x g at RT and supernatant transferred to RNase free 1.5ml tubes 

(Axygen). 200µl 95% ethanol was added to the lysate and then the Promega SV 

total RNA purification kit spin columns were used to extract RNA as per 

manufacturer’s instructions. Extracted RNA was quantified using a NanoDrop 

spectrophotometer (Thermo Scientific). 

A DNase treatment is included in the Promega SV total RNA purification Kit 

protocol. However, significant amounts of DNA were still found and an 

additional DNase treatment was required: 1U of DNase I (Thermo Scientific) was 

added to each µg of RNA to be treated in the following reaction mixture: 1µl 10x 

buffer (100 mM Tris-HCl, 25 mM MgCl2, 1 mM CaCl2) (Thermo Scientific), 1µg of 

RNA and made up to a final volume of 10µl using RNase free water (Sigma-

Aldrich). The amount of RNA could be scaled up as necessary, increasing the 

amount of DNase I used so that 1U was used for every 1µg of RNA in the 

reaction mixture. The DNase mixture was incubated at 37°C for 30min and then 

0.1 volume of EDTA (Fermentas/Thermo Scientific) added. The mixture was then 

incubated for 10min at 65°C to stop the DNase reaction.  

To remove the DNase from the RNA, the RNA was extracted using phenol-

chloroform. QIAGEN water was added to DNase treated RNA to bring the 

volume up to 400µl and then 400µl of phenol-chloroform acid pH4.3 (Ambion) 

were added and the solution vortexed to form an emulsion. Samples were then 

centrifuged at 13,800 x g for 30min at 4°C and the upper phase transferred to 

an RNase free 1.5ml tube (Axygen). 2.5 volume of ice cold 95% ethanol (Sigma-
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Aldrich) and 0.1 volume sodium acetate 3M pH5.2 (Ambion) were added and 

the solution mixed via inversion. The samples were then incubated at -80°C for 

1h to allow the RNA to precipitate. RNA was pelleted by centrifugation at 

17,982g for 30min at 4°C and the supernatant removed. RNA pellets were 

washed using 1ml ice cold 70% ethanol and then centrifuged again at 17,982 x g 

for 10min at 4°C.  The supernatant was removed and the pellet dried at 95°C for 

2min to remove all residual ethanol. RNA was resuspended in 100µl RNase free 

water (Sigma-Aldrich) and dissolved by heating for 10mins at 65°C. RNA was 

quantified using a NanoDrop spectrophotometer (Thermo Scientific). 

To determine whether DNase treatment was successful, a PCR was performed 

using untreated and treated RNA. Universal primers targeting the 16S gene 

were used (see table 2.8) as it is well conserved in E. coli. Successfully treated 

RNA should not yield a product in the PCR due to the absence of DNA. 100ng of 

treated or untreated RNA was mixed with 12.5µl GoTaq Green Master Mix, 1µl 

each primer (0.4µM final concentration) and water up to a final volume of 25µl. 

PCR reaction settings were as follows: 1 cycle of 95°C for 5min, 40 cycles of 94°C 

for 30s, 55°C for 1min, 72°C for 1 min and 1 cycle of 72°C for 5min. PCR products 

were run on a 1% agarose gel. 

Table 2.8: Universal 16S primers used to detect DNA contamination of DNase treated 

RNA. 

cDNA synthesis was performed using the Fermentas RevertAid premium kit.  5µl 

RNA were mixed with 1µl Random Hexamer primer, 1µl 50x dNTP mix and made 

up to 14.5µl with RNase free water (Sigma-Aldrich). This mixture was incubated 

at 65°C for 5min and then chilled on ice briefly and centrifuged to remove any 

condensation from the Eppendorf lid. 4µl 5x RT buffer and 1µl (200U) RevertAid 

Reverse Transcriptase were added and the mixture incubated for 10min at RT 

Region Primer Sequences 

V3 341F CCTACGGGAGGCAGCAG 

 534R ATTACCGCGGCTGCTGG 

V1-V3 63F CAGGCCTAACACATGCAAGTC 

 338R GCTGCCTCCCGTAGGAGT 
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followed by 30min at 50°C. The reaction was terminated by heating at 85°C for 

5min. cDNA could then be used directly for RT-PCR. 

2.5.3 Real-time PCR 

It was assumed that 1µg of RNA yielded 1µg cDNA (100% yield). The reaction 

mixture per well was 12.5µl SYBR Green JumpStart Taq ReadyMix (Sigma-

Aldrich), 0.25µl Reference dye (in kit), 0.05 primer 1 (100µM), 0.05 primer 2 

(100µM), 100ng cDNA, and water up to a final volume of 25µl. Reactions were 

carried out in 96 well plates which were centrifuged prior to the RT-PCR at 2,760 

x g for 1min at RT to remove air bubbles. The RT-PCR reaction settings were 1 

cycle of 94°C for 2mins, 40 cycles of 94°C for 30s, 60°C for 30s, 72°C for 45s, 1 

cycle of 72°C for 5mins, and 1 cycle of dissociation curve (1 cycle of 95°C for 15s, 

60°C for 1min, 95°C for 15s and 60°C for 15s). Fluorescence was measured 

during the 45s elongation step at 72°C. RT-PCRs were performed on an ABI 

TaqMan 7500 System. ROX indicator settings were used for detection of the 

reference dye used in this study, which was provided with the Green JumpStart 

Taq ReadyMix (Sigma-Aldrich).   

Primers used in the RT-PCR were designed in silico using the Primer3 software 

(http://frodo.wi.mit.edu/) to target conserved regions of one biosynthesis gene 

for each siderophore system (entC, iroB, irp2, iucA) and the internal standard 

rpoB (table 2.9). rpoB was used to standardise gene expression as previously 

described (Lopez-Velasco et al., 2010). rpoB gene expression in strain GMB104 

was analysed under conditions of different levels of iron limitation including 

MM9 medium and NB medium supplemented with 2,2’-dipyridyl at various 

concentrations (0µM, 100µM, 200µM and 500µM). Results showed limited 

variation in rpoB expression, with differences of less than 1 Ct between 

conditions (data not shown). Amplicons were designed to be 100-150bp in size 

and their efficiency was determined by carrying out standard curves using 

known amounts of DNA. The RT-PCR reaction mixture and settings for these 

standard curves were the same as described above. Assuming 100% efficiency 

of primers, for a 10x dilution series the Ct value is expected to increase by 3.3 

for every 10-fold reduction of cDNA. Primers with standard curves that had 
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gradients between 3.0-3.6 (90%-110% efficiency) were suitable for use in the 

RT-PCR. Any primers that fell outside of this efficiency were redesigned to 

optimise their efficiency.  

Table 2.9: RT-PCR primers for the detection of siderophore biosynthesis gene 

expression. 

The relative expression of each gene compared to the housekeeping gene rpoB 

was calculated.  Comparisons between expression in MM9 and NB were 

calculated using the Livak (ΔΔCt) method (Livak and Schmittgen, 2001). This 

method works with the assumption that each primer pair has an equal efficiency 

and that amplification efficiency is 100%. To calculate gene expression ratios, 

the following equations were used: 

ΔCt(gene of interest) = Ct(gene of interest) – Ct(rpoB) 

ΔΔCt = ΔCt(treated) – ΔCt(control) 

Ratio of gene expression = 2-ΔΔCt 

Treated samples were those grown under iron limitation (MM9, NB with 200μM 

DIP and NB with 500μM DIP) and the control was expression measured in NB 

(iron replete conditions). For comparison with siderophore production on CAS 

plates, mRNA levels were normalised to the lowest corresponding value for 

each gene tested. 

Siderophore Gene Primer Sequences Product Size 

Enterobactin entC F 

R 

CGAGCGTTTTAGCTCCATTC 

CCTCTTTCATCGCCTGAGTC 

143 

Salmochelin iroB F 

R 

TATACCGGTCGTGATGCAAA 

ATACTCGGCGGTGTTACGTC 

150 

Yersiniabactin irp2 F 

R 

TAAAACTGAAGCCGGGTCAC 

CCGTTGTGTCACCAGAAATG 

122 

Aerobactin iucA F 

R 

CTGCCGGTCGGATTTATTTA 

ATAAGGGAAATAGCGCAGCA 

138 

RpoB rpoB F 

R 

GTGGTGAAACCGCATCTTTT 

CGATGTACTCAACCGGGACT 

138 
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2.6 Semi-quantitative PCR to determine siderophore 

expression in vivo 

2.6.1 Mouse faecal sampling 

As enterobactin production and ferric iron transport have been shown to be 

important during GI-tract colonisation (Pi et al., 2012), and the possible role of 

yersiniabactin, aerobactin and salmochelin production in the gut by commensal 

E. coli is not known, we assessed whether siderophore genes are expressed 

within the mouse GI-tract. Wild-type female C57BL/6 mice were used for the in 

vivo siderophore expression experiment, and all were 12 weeks old. Mice, 

housing and food and water access were as described in section 2.2.4. Mice 

were given the antibiotics ampicillin and neomycin (100mg/ml of each in 

drinking water) for 1 week prior to gavage to enable bacteria to colonise the 

gut. During the antibiotic treatment mice remained on the standard chow diet. 

24h before the bacterial challenge, mice were taken off the antibiotics and 

returned to standard water. Mice were then given 108 CFU of E. coli strain 

GMB104 by single oral gavage. The strain GMB104 was used as it has all four 

siderophore systems. Faecal samples were also collected when the gavage was 

given to spread on TBX plates to confirm the absence of E. coli within the GI-

tract of the mice.  

E. coli colonisation was monitored 1, 3, 8 and 14 days after bacterial challenge 

by collection of faecal samples for CFU counts. Faecal samples were 

homogenised in 1ml PBS and a 10x dilution series prepared. Dilutions were 

spread on TBX plates which were incubated overnight at 37°C. Colonies were 

counted the following day and faecal bacterial load (CFU/g) was calculated. At 

14 days after the bacterial challenge, mice were euthanized using schedule 1 

techniques (carbon dioxide and dislocation of the neck) and intestinal contents 

collected. Contents were taken from the colon, caecum and ileum and 

transferred to 15ml flacon tubes containing 1ml RNAlater solution (Ambion) and 

homogenised. Samples were snap frozen on dry ice to minimise degradation of 

RNA and stored at -80°C until RNA extraction was performed. 
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2.6.2 RNA extraction from faecal samples 

To extract RNA, 2ml phenol-chloroform acid pH4.5 (Ambion) and 1ml RNase 

free water were added to frozen homogenised intestinal contents. Samples 

were then vortexed until they thawed completely and the solutions were fully 

mixed. Samples were then transferred to 2ml tubes containing a mixture of 

glass beads, sizes 710-1,180µm and ≤106µm (Sigma-Aldrich), macaloid clay and 

70µl 10% sodium dodecyl sulphate (SDS). To lyse bacteria, a FastPrep FP120 

(Thermo Savant) was used as follows: 45s at speed 6.5 5-6 runs with 1min 

incubation on ice between each run. Samples were centrifuged at 9,240 x g for 

6min at RT and the upper phase was transferred to 1.5ml RNase free tubes 

(Axygen). 1.25 volume of ethanol was added and the solution mixed. This 

solution was then transferred to mirVana spin columns for RNA extraction. The 

MirVana miRNA Isolation Kit (Ambion) was used as per manufacturer’s 

instructions. RNA was analysed using the Agilent RNA 6000 Nano Kit and the 

Agilent 2100 Bioanalyser.  RNA was prepared for analysis on the Bioanalyser as 

per manufacturer’s instructions. RNA was then DNase treated and cDNA 

synthesised as previously described (section 2.5.2).  

2.6.3 Semi-quantitative PCR 

100ng template cDNA was used to perform semi-quantitative PCR on in vivo 

intestinal contents.  The reaction mixture also included 25µl GoTaq Green 

Master Mix (Promega), 0.1µl each primer (0.2µM final concentration) and water 

(Sigma-Aldrich) up to a final volume of 50µl. PCR amplification was as described 

for the in vitro siderophore expression RT-PCR (section 2.5.2), except that there 

was no dissociation curve. During the PCR, samples were taken at 20, 25, 30, 35 

and 40 cycles and were visualised on a 2% agarose gel. Gel images were 

analysed using the ImageJ software (http://imagej.nih.gov.ij) (Abramoff et al., 

2004) to determine band intensity, from which relative gene expression could 

be calculated. 
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2.7 Competitive index assays in vivo 

Following on from siderophore expression experiments in the mouse model, 

competitive index assays were performed using siderophore biosynthesis and 

ΔtonB mutants to determine whether there was a fitness advantage for ferric 

iron uptake through siderophores. Overnight LB cultures, containing the 

required antibiotics, of wild-type GMB91 and GMB104 and mutants GMB91e, 

GMB91t and GMB104t were centrifuged at 3,226 x g at RT for 10min and 

washed twice with PBS. OD600 was measured following washing and cultures 

mixed to give 1:1 mixtures of the wild-type strain (GMB91 or GMB104) with one 

of its mutants. 

108 CFU of a single mixture was given to groups of 5 mice (15 mice total) via oral 

gavage. C57BL/6 wild-type mice aged 4-6 weeks were used for the competitive 

index assays. Mice were housed and fed as described in section 2.2.4. Prior to 

gavage, mice were pre-treated for one week with ampicillin (1mg/ml) and 

neomycin (1mg/ml) in drinking water, which was removed 24h before gavage. 

Faecal samples were taken during gavaging to confirm successful antibiotic 

treatment and no detectable E. coli when samples were grown on TBX plates. 

Faecal samples were collected on days 1, 4, 9, 14 and 28. Faecal samples were 

homogenised in PBS, diluted and plated out onto both MacConkey and LB with 

either kanamycin (100µg/ml) or chloramphenicol (25µg/ml) agar plates. The 

MacConkey plates were used to determine total E. coli levels, whereas the LB 

with antibiotics plates would only grow mutants possessing resistance cassettes. 

All plates were incubated at 37°C overnight before counting. A minimum of one 

log difference in CFUs between the wild-type and a mutant was required to be 

considered as a significant difference in colonisation ability. 

2.8 Statistical analyses 

Statistical analysis was performed using GraphPad Prism (version 5) or Microsoft 

Excel (2010) software. A Student’s t-test was used for comparisons between two 

groups, including analysis of differences between the ECOR-F and GMB 

collections (liquid CAS assays, number of siderophore genes), as well as changes 
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in siderophore production and gene expression between wild-type strains 

and/or mutants (Csàky and Arnow assays, liquid CAS assays, siderophore gene 

expression, competitive index assays). For comparisons of multiple groups, the 

Benjamini and Hochberg false discovery rate method was performed following a 

Student’s t-test for the correction of possible type I errors (Benjamini and 

Hochberg, 1995). The Benjamini-Hochberg critical value, (i/m)Q, was calculated, 

where i = p-value rank, m = total number of statistical tests and Q = false 

discovery rate. A false discovery rate of 5% was used for our analysis. p-values of 

less than 0.05 and lower than their corresponding (i/m)Q value were considered 

to be significant.  

Contingency tables produced from calculating the prevalence of siderophore 

systems in ECOR-F and GMB strains were analysed using Fisher’s exact test. For 

multiple comparisons, the Benjamini and Hochberg false discovery rate method 

was performed as described above (Benjamini and Hochberg, 1995). 

For the analysis of Biolog plates, OD600 readings were used to calculate 

Spearman correlation coefficients (rs) between carbon source utilisation 

profiles. These were analysed for both barcoded and siderophore mutants to 

establish possible differences to wild-type strains. For siderophore mutants, 

principal component analysis (PCA) was also performed on OD600 readings, both 

for comparisons between the wild-type and mutants, and between individual 

carbon sources. PCA enables possibly correlated variables to be converted into a 

set of variables that are linearly uncorrelated variables called principal 

components. These principal components are ranked in terms of how much 

variation in the data they account for. The two principal components that were 

responsible for the highest amount of variation were used to construct plots to 

visualise the variation in the data. 
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3. Dynamics of E. coli populations in mixed cultures and in 

primary and secondary environments 

3.1 Introduction 

The factors involved in the diversity, transition and persistence between and 

within hosts of commensal E. coli and other enteric bacteria are not fully 

understood. To address this gap in knowledge, epidemiological approaches can 

be used to assess and compare the diversity of bacterial communities 

associated with various hosts (Hayashi et al., 2002; Zhu et al., 2002) and/or in 

the external environment (Lim et al., 1993; Gray and Herwig, 1996; Gilbert et al., 

2012). 16S sequencing is frequently used in bacterial identification as it is 

present in most strains of bacteria. As the 16S rRNA gene is not changing in 

function, it can be used to give an indication of the evolution and relatedness of 

different species (Janda and Abbott, 2007). In terms of distinguishing different 

strains within single bacterial species, however, 16S rRNA sequencing gives 

mixed results. In some bacteria it has been shown to differentiate between 

strains (Moghadam et al., 2010), but in others accurate identification cannot be 

achieved at the species or even genera levels (Bosshard et al., 2006; Mignard 

and Flandrois, 2006). This is due to variations in heterogeneity that exists in the 

16S rRNA gene between strains of the same species (Janda and Abbott, 2007). 

This can result both in closely related strains being classified as different species, 

as well as some distantly related species being classed as the same species 

(Coenye and Vandamme, 2003). 16S amplicon sequencing of complex 

environments, including the gut, has yielded important information about which 

bacteria are present and in what amount, but it often cannot discriminate down 

to the strain level. This, however, is important in understanding E. coli 

populations, as several studies have indicated that most humans possess more 

than one strain of E. coli in their gut microbiota (Smati et al., 2013; Gordon et 

al., 2015), as well as multiple strains of E. coli being found together in external 

environments (Méric et al., 2013).  
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E. coli are typically identified as lactose-positive and citrate-negative colonies on 

selective agars such as Simmon’s citrate agar. Studies that have investigated the 

diversity of E. coli in the GI-tract have mainly focussed on the prevalence and 

distribution of the major phylogenetic groups as they can be determined fairly 

quickly and easily using a quadruplex PCR targeting the chuA, yjaA and aprA 

genes and the TspE4.C2 gene fragment (Clermont et al., 2013). Studies have 

shown that the phylogenetic groups A and B2 are prevalent in humans (Duriez 

et al., 2001; Zhang et al., 2002; Escobar-Páramo, Grenet, et al., 2004; 

Nowrouzian et al., 2005; Pallecchi et al., 2007; Gordon et al., 2015), with the 

distribution of the phylogenetic groups being influenced by geographic and 

socioeconomic factors (Tenaillon et al., 2010). Although E. coli is widely 

distributed among humans, being detected in over 90% of individuals sampled 

to date, its occurrence in other animals varies significantly, from 56% in wild 

mammals to 23% in birds and 10% in reptiles (Gordon and Cowling, 2003; 

Tenaillon et al., 2010). This can be linked to host characteristics, such as host gut 

morphology, body mass, diet and sex (Gordon and Cowling, 2003). From 1,154 

animal samples, the distribution of the main phylogenetic groups of E. coli was 

41% B1, 22% A, 21% B2 and 16% D (Tenaillon et al., 2010). Some strains have 

only been isolated from specific hosts, suggesting some host specialisation, but 

these only make up a very small proportion of all E. coli (Escobar-Paramo et al., 

2006; Clermont et al., 2008). The B1 phylogenetic group has been shown to be 

prevalent not only in animals, but also in the external environment (Gordon et 

al., 2002; Walk et al., 2007; Méric et al., 2013), possibly reflecting the 

movement of E. coli between the host and environment.  

Few studies have, however, looked at what happens during colonisation of the 

gut by E. coli, and how competing strains interact with one another. This 

assessment of the fitness of large numbers of E. coli strains in complex 

environments, such as the gut or external environment, is extremely time 

consuming and expensive. Studies that do identify individual strains from faecal 

samples use several different techniques, but all involve randomly selecting E. 

coli colonies grown from faecal samples (Nowrouzian et al., 2005; Lautenbach et 
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al., 2008; Gordon et al., 2015; Wassenaar and Gunzer, 2015). This reduces the 

ability to fully analyse the entire population and detect all strains present. The 

quadruplex PCRs used to identify phylogenetic groups described above also 

involve characterisation of a subset of colonies. It has been estimated that a 

phylogroup must occupy at least 10% of the whole population to be accurately 

detected in sampled colonies (Lautenbach et al., 2008; Smati et al., 2013), 

leading to possible underestimations of the number of phylogroups or strains. 

Recently, the phylogroup PCR has been adapted for use in qPCR, reducing the 

threshold for detection from 10% down to 0.1% of the population (Smati et al., 

2013). Methods for identification include multilocus enzyme electrophoresis 

(MLEE), multilocus sequence typing (MLST), random amplified polymorphic DNA 

(RAPD) PCR, Repetitive extrageneic palindromic elements (REP) PCR and 

enterobacterial repetitive intergenic consensus sequences (ERIC) PCR.  

Studies on E. coli colonisation of the GI-tract of babies have shown that those 

strains that colonised shortly after birth are more likely to persist for longer 

time periods in the gut than those that colonise later (Kühn et al., 1986). This 

could highlight that the first strains introduced into the sterile infant gut can 

establish themselves more readily due to absence of the microbiota and the 

resulting reduced competition. Exposure of adults with a healthy microbiota to 

a single high dose of probiotic E. coli (Symbioflor2), however, can result in 

prolonged persistence and detection in faeces of E. coli (Wassenaar et al., 2014; 

Wassenaar and Gunzer, 2015). Indeed, the stability and persistence of early 

colonisers is not observed in all children, with infants from Pakistan possessing 

more resident strains of E. coli in their first 6 months compared to children from 

Sweden (Kühn et al., 1986; Adlerberth et al., 1998; Nowrouzian et al., 2003). 

This difference may reflect increased exposure of Pakistani children to E. coli as 

a result of poor hygienic conditions (Adlerberth et al., 1998).  

Some strains have been shown to be better at persisting in the GI-tract, with E. 

coli isolates acquired from the mother more likely to become residents 

compared to strains from other sources (Adlerberth et al., 1998). Several ExPEC 

virulence factors have been found to be increased in strains that are able to 
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persist for long periods, suggesting they are acting as colonisation factors. These 

include aerobactin, hemolysin, K5 capsule, the iha siderophore receptor and eib 

immunoglobulin binding proteins (Nowrouzian et al., 2001a; Nowrouzian et al., 

2006; Wassenaar and Gunzer, 2015). These virulence factors are found more 

frequently in the B2 phylogenetic group (Lee et al., 2010), which is often 

observed as the most predominant group isolated from the GI-tract (Zhang et 

al., 2002; Escobar-Páramo, Grenet, et al., 2004; Gordon et al., 2015), as well as 

frequently being found as a resident strain (Nowrouzian et al., 2005; 

Nowrouzian et al., 2006; Gordon et al., 2015).  

To identify genes that may influence colonisation ability or pathogenicity in the 

host by several strains of bacteria, many studies have utilised transposon 

insertion sequencing (Gawronski et al., 2009; Goodman et al., 2009; Langridge 

et al., 2009; van Opijnen and Camilli, 2010). Transposons are used to introduce 

knockouts throughout the genome via insertional mutagenesis. Mutants are 

pooled and screened together alongside the parental strain in a host model and 

mutations that are decreased, or increased, in the population indicate which 

genes affect colonisation or pathogenicity. These studies are limited by the fact 

that mutations can only be studied in one specific strain. This is important, as 

the genetic background of a strain influences the phenotype produced when a 

gene is knocked out due to epistatic effects. Also, individual gene mutations can 

only be studied in isolation, which again does not allow epistatic effects to be 

taken into account. 

To address the current limitations in monitoring individual strains in mixed 

populations, we developed a new method for uniquely tagging and identifying 

E. coli isolates that enables parallel monitoring of several isolates in mixed E. coli 

populations to determine population dynamics. To do this unique 20nt barcodes 

(Xu et al., 2009) were inserted into several isolates using the Tn7 transposon 

(McKenzie and Craig, 2006). Insertion by Tn7 of the barcode was at a specific 

site, the end of the glmS gene, to prevent any possible changes in phenotype of 

mutants carrying the barcode. Detection of the barcode was carried out either 

by RT-PCR or using high-throughput sequencing. Competition studies were 
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carried out in the mouse GI-tract to determine whether persistence of particular 

strains is determined by stochastic factors or specific genetic elements. If 

individual strains show increased fitness or dominance, this should enable traits 

and phenotypes associated with increased colonisation to be identified. The 

barcoding method was also assessed in soil columns, to determine the 

application of this technique to other environments. 

3.2 Barcode mutant characterisation 

To minimise known problems associated with strain domestication in the 

laboratory environment, a series of phenotypic tests was used to exclude the 

most likely changes. This is particularly important as domestication is likely to 

result in changes altering E. coli survival both in the host and external 

environment. It is also possible for transposon insertion to occur outside of the 

site of interest (the attTn7 site located at the end on the glmS gene). However, 

the Tn7 transposon used in this study has been shown to have a non-specific 

insertion frequency of 6.8x10-5 (McKenzie and Craig, 2006), so this type of 

mutation should be rare. The barcoded strains were characterised alongside the 

parental strains to confirm that barcoding had no effect on phenotype. Four 

traits were measured, growth rate in LB medium, carbon source utilisation, 

catalase activity and colony morphology, all of which can be altered or lost in 

laboratory-adapted strains of bacteria. 

3.2.1 Growth curves 

Barcoded strains were grown alongside the parental strains in LB medium to 

confirm that insertion of the barcode did not affect growth. The majority of 

barcoded strains showed comparable growth to the parental, however, three 

barcoded strains (ECOR49-B9, ECOR55-B11 and ECOR18-B23) displayed a slight 

reduction in growth (figure 3.1).   
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Figure 3.1: Four example growth curves of barcoded and parental strains grown in LB 

medium at 37°C. A) GMB45 and GMB45-23353. B) ECOR49 and ECOR49-B9. C) ECOR55 

and ECOR55-B11. D) ECOR18 and ECOR18-B23. ECOR49-B9, ECOR55-B11 and ECOR18-

B23 showed a reduction in growth compared to their parental strains. All other 

barcoded strains showed equivalent growth to their parental strains, represented here 

by GMB45-23353. Results show the mean ± standard error (n = 3). Growth curve graphs 

for other barcoded strains are shown in appendix B.1.  

3.2.2 Catalase assays 

A decrease in RpoS activity is often observed when E. coli strains experience 

protracted nutrient starvation, for example, when cultures reach stationary 

phase. One simple method to assess RpoS activity is to perform catalase assays 

which measure the activity of KatE, which is strongly regulated by RpoS (Mulvey 

et al., 1990). Catalase assays were performed on single colonies of both parental 

and barcoded versions of each strain. Results showed that catalase activity, and 

thus RpoS activity, was not altered for any of the mutants (table 3.1). ECOR49-

B9 was not included in the assay due to significant changes in phenotype 

compared to the wild-type (see section 3.2.3). 
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Table 3.1: Catalase activity of parental and barcoded strains. KatE activity was 

determined based on visible oxygen production on exposure of colonies to H2O2. 

Activity levels were determined based on whether oxygen production occurred 

immediately or was delayed after H2O2 exposure. Strains where a large volume of O2 

was produced (larger in size than the colony) were also considered to have strong 

activity. ++ = strong activity, + = weak activity and - = no visible activity. 

3.2.3 BIOLOG plates 

Domestication has also been shown to affect the utilisation of nutrients 

(Eydallin et al., 2013) as assessed by measuring growth using the BIOLOG 

system. GN2 BIOLOG plates were therefore used to assess carbon source 

utilisation of barcoded strains (list of carbon sources on BIOLOG plates in 

appendix B.2). The results indicated that the majority of strains had unaltered 

carbon source utilisation (figure 3.2). ECOR55-B11 and ECOR18-B23, which both 

showed reduced growth in LB, did not show a significantly altered carbon 

utilisation profile compared to their parental strains. GMB16-19427, however, 

although displaying the same growth curve as the wild-type, had a different 

Strain Catalase Activity Barcode strain Catalase Activity 

ECOR16 + ECOR16-B1 + 

ECOR18 ++ ECOR18-B23 ++ 

ECOR32 - ECOR32-23457 - 

ECOR55 + ECOR55-B11 + 

GMB02 + GMB02-23796 + 

GMB07 + GMB07-B19 + 

GMB104 ++ GMB104-29884 ++ 

GMB16 + GMB16-19427 + 

GMB18 ++ GMB18-B5 ++ 

GMB23 + GMB23-23277 + 

GMB32 ++ GMB32-20239 ++ 

GMB34 + GMB34-33233 + 

GMB40 - GMB40-B6 - 

GMB45 ++ GMB45-19439 

GMB45-23353 

++ 

++ 

GMB48 ++ GMB48-21118 ++ 

GMB54 + GMB54-33301 + 

GMB71 + GMB71-B10 + 

GMB72 + GMB72-B8 + 

GMB98 + GMB98-30438 + 
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profile to the parental strain, caused by being unable to metabolise D- and L-

serine.  

ECOR49-B9, which as well as displaying reduced growth, showed a significantly 

different carbon utilisation profile compared to both ECOR49 and all other E. 

coli strains tested. This difference was caused by changes in metabolism of 10 

different carbon sources, all of which could be used by the parental, but not the 

barcoded strain. ECOR49-B9, however, displayed reduced growth on almost all 

carbon sources on the BIOLOG plates compared to other strains, so these 

differences in metabolism may be as a result of ECOR49-B9 being unable to 

grow sufficiently. 
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Figure 3.2: Correlation matrix between BIOLOG GN2 profiles of parental and 

barcoded strains after incubation at 37°C for 24h. Values in the table are Spearman 

correlation coefficients (rs) between whole carbon source utilisation profiles. High 

correlation values are indicated in red and low values in green. The barcoded strains 

are indicated with the ‘BC’ suffix. 
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3.2.4 Colony morphology on YESCA plates 

To determine whether transforming the strains to contain the barcode tag 

influenced colony morphology, bacteria were grown on YESCA plates, which can 

be used to visualise curli formation. Barcoded strains ECOR18-B23, ECOR55-11, 

ECOR49-B9 and GMB16-19429 were excluded from the colony morphology 

assay due to their altered phenotypes in earlier assays. Colony morphology was 

not affected in all the other barcoded strains compared to the parental strains 

(figure 3.3), resulting in 16 out of 20 (80%) of the barcoded strains tested being 

identical for all four phenotypic assays used. 

Figure 3.3: Colony morphology on YESCA plates of two strains of E. coli and their 

barcoded versions. (A) GMB40, (B) GMB40-B6, (C) GMB07 and (D) GMB07-B19 were 

imaged using a Leica M165C Stereo microscope after YESCA plates were incubated at 

37°C for 48h followed by 7 days at RT. All other images are shown in appendix B.3. 

3.3 Characterisation of barcode detection performance 

3.3.1 RT-PCR standard curves 

To be able to accurately determine the relative proportions of each strain, it was 

essential to perform standard curves on all barcoded strains to ensure that the 

efficiency of the RT-PCR reaction was comparable for each primer. Primer 

efficiency was determined by calculating the gradient of the graph, with Ct 
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values expected to reduce by 3.3 for every 10-fold reduction in gDNA 

concentration at 100% efficiency. Equations generated from these standard 

curves were used to calculate the amount of each barcode strain in the 

competition studies below (figure 3.4A). To assess the limit of quantification 

(LOQ) of the RT-PCR, standard curves using lower dilutions of gDNA were 

performed. The efficiency of several primers decreased when the amount of 

gDNA was under 0.01pg, indicating this quantity of gDNA represents the lower 

limit for accurate quantification of barcode strains by RT-PCR.  

Two barcoded strains were used to determine whether primer specificity or the 

sensitivity of the RT-PCR was reduced in the presence of exogenous gDNA. 

gDNA extracted from healthy mouse faecal samples was used to contaminate 

gDNA extracted from pure barcode strains and standard curves performed. 

Faecal gDNA was kept at a constant concentration (10ng/µl), as used for 

competition study RT-PCRs, while the barcode gDNA was reduced, reflecting 

that faecal samples may contain low levels of barcode gDNA compared to gDNA 

derived from the rest of the microbiota. The results suggest that the primers 

were not affected by the presence of exogenous gDNA and that we can 

accurately detect each barcode with a very large dynamic range of 6-7 orders of 

magnitude (figure 3.4).  
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Figure 3.4: RT-PCR example standard curves for barcode detection primers. (A) 

Equation for determining gDNA concentration from RT-PCR Ct values (B) Loss of primer 

efficiency at low gDNA concentrations (C) Different concentrations of barcode gDNA 

mixed with a constant concentration of contaminating mouse faecal gDNA (10ng/µl) 

showed no loss of primer sensitivity.  

3.4 Assessing the barcoding method in vitro using a culture 

competition study 

To assess the feasibility of the barcoding approach, two multi-strain competition 

experiments in independent LB cultures were performed using eight strains (see 

table A.1 for strain information). Two different barcoded versions of GMB45, 
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GMB45-19439 and GMB45-23353, were included in this experiment to 

determine whether the barcode sequence influenced either the fitness or 

detection of a strain. The ECOR49-B9 and ECOR55-B11 barcoded strains were 

also used. These two strains, although displaying a different phenotype to the 

wild-type during barcode mutant characterisation (section 3.2), are still of value 

for testing the reproducibility of the method, which was the aim of the in vitro 

competition study. 

The population dynamics were similar in both independent experiments, with 

strains ECOR16 and GMB45 becoming dominant during the early exponential 

growth phase, followed by GMB45 being dominant in the late exponential 

phase, and finally GMB71 being the most abundant during stationary phase. 

Strain ECOR16 grew well initially, but quickly declined after three hours of 

incubation to a level barely above the detection limit of the RT-PCR. The 

remaining four strains in the mixed cultures remained at fairly stable 

proportions for the duration of the experiment (figure 3.5). These results were 

reproducible between cultures, suggesting that competitive fitness changes 

depend on growth phase, and that ECOR16 was competitively excluded during 

stationary phase growth. There was also evidence of fluctuations within a strain 

which were probably stochastic (displaying an unpredictable pattern as a result 

of a random variable). This was observed in the two barcode versions of GMB45 

which were present at different proportions in each mixed culture. The overall 

population of GMB45, however, is consistent between the two cultures.  
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Figure 3.5: Stacked area graphs of the proportions of each barcode strain as a 

percentage of the whole E. coli population in mixed-strain LB cultures grown at 37°C. 

Graphs show proportions for both independent mixed cultures, which displayed similar 

population dynamics. ECOR16-B1 declined rapidly after 3h to a level barely above the 

detection limit. The cultures displayed a shift in dominant strains dependant on growth 

phase. Samples were taken at 1, 2, 3, 4, 7 and 23h after inoculation for both cultures. 

The final samples were taken at 44h for culture 1 and 92h for culture 2. 

3.5 Determining the competitiveness of E. coli isolates in the 

gut using competition studies in the mouse model 

The GI-tract is a highly complex and dynamic environment. To determine 

whether the barcoding method could be applied in vivo, two independent 

experiments were performed where barcoded strains were given to groups of 

four to five cohoused C57BL/6 mice. These mice were treated with antibiotics 

ampicillin and neomycin one week prior to gavage to facilitate colonisation by E. 

coli. This combination of antibiotics has been shown to disrupt approximately 

90% of the microbiota (Vijay-Kumar et al., 2010). Loss of E. coli and other Gram-

negative bacteria after antibiotic treatment was confirmed by spreading faecal 

samples on TBX and MacConkey plates. CFU counts showed that following a 

single oral gavage of 108 CFU, E. coli were able to persist within the GI-tract for 
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several weeks (figure 3.6). Samples were taken at regular intervals and the 

gDNA was extracted from faecal samples taken alongside CFUs. 

3.5.1 Mouse competition experiment 1 

The GI-tract is a highly complex and dynamic environment. To determine 

whether the barcoding method could be applied in vivo, seven barcoded strains 

were given to four cohoused C57BL/6 mice (see table A.1 for strain 

information). The number of E. coli isolated from faecal samples peaked at an 

average of 7.65x109 CFU/g on day two, which then decreased to approximately 

104-105 CFU/g and stabilised at about that level for the remainder of the 

experiment (figure 3.6). gDNA extracted from faecal samples taken alongside 

CFUs was used in RT-PCRs to quantify the amount of each strain present. 

Figure 3.6: CFUs for total E. coli from mouse faecal samples. CFU counts peaked at day 

2, and then declined to stabilise at approximately 105 CFU/g at the end of the 

experiment. Mice were monitored for 22 days. Results show faecal CFU/g for four mice 

± standard error of the mean. 

The results show there was reproducibility between mice, with the E. coli strains 

displaying similar trends in population dynamics in all four mice (figure 3.7). 

GMB34-33233 and GMB71-B10 initially became the dominant strains, with over 

90% of E. coli belonging to these two isolates after three days in every mouse. 

After the first three days, a shift in the dominant E. coli was observed, to 

GMB45, both GMB45-19439 and GMB45-23343. During this shift in dominance 
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the total E. coli CFUs measured in faecal samples decreased from 109 CFU/g on 

day three to 105 CFU/g on day nine (figure 3.6). 

Figure 3.7: Stacked area graphs of the proportions of each barcode strain in mouse 

faecal samples as a percentage of the whole E. coli population for the first in vivo 

experiment. Graphs show proportions for four individual mice calculated from RT-PCR 

quantification of barcodes. Both ECOR strains, ECOR16-B1 and ECOR55-B11 declined 

rapidly, becoming undetectable by RT-PCR after three days. There was a visible shift in 

strain dominance between days three and nine. Samples were taken on days 1, 2, 3, 9, 

16 and 22 after oral gavage. Day 0 strain proportions were calculated from the bacterial 

mixture used to gavage mice. 
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We also observed variations in the proportion of both GMB45 barcoded 

versions in each mouse. It is possible that this is as a result of clonal 

interference, where beneficial mutations arising in GMB45 are competing with 

one another, leading to fluctuations in which barcode version is dominant as 

new beneficial mutations arise. Dynamic changes would occur in the distribution 

of the two barcode versions of GMB45 as mutations become spread through the 

population and are then replaced by new ones in another clonal line. It was 

quite unexpected that the levels of one barcoded version of GMB45 fell below 

the detection limit in a single mouse (mouse one lost GMB45-19439) as the 

mice were cohoused and exhibit coprophagia, so sharing of their microbiota is 

expected (Barnes et al., 1963). Both ECOR isolates, ECOR55-B11 and ECOR16-B1, 

were quickly lost from the host, becoming undetectable after day three. 

For this study, faecal rather than intestinal content samples were used to 

determine gut fitness of E. coli strains. We used the assumption that an 

increased prevalence in faeces correlates with an increased abundance, and 

thus increased fitness, in the GI-tract. However, differences in strain presence 

and diversity have been observed between faecal and intestinal samples 

(Gordon et al., 2015). This limits the ability to interpret dominance in faecal 

samples, like that displayed by GMB45, as increased fitness in the GI-tract. It is 

therefore important that the distribution of barcoded strains within the gut is 

also examined. 

3.5.1.1 Barcode strain distribution in gut contents 

Intestinal contents from different areas of the gut were collected from the mice 

on day 27, 5 days following the collection of the final faecal samples. 

Unfortunately, there was an insufficient amount of faecal material on day 27 to 

collect for CFUs and RT-PCR, so only bacterial presence in the GI-tract was 

determined. Only two of the barcoded strains were detectable by RT-PCR, 

GMB71-B10 and GMB45-23353, from all of the colonic, caecal and ileal samples. 

These two strains were both detected in all four mice at day 22 at relatively high 

densities (figure 3.8). The distribution of these two strains was not equal in 

these three sections of the GI-tract, with one strain typically being detected in 
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isolation for each sample, except for two caecal samples where the two strains 

were detected at almost equal levels (figure 3.8). Two ileal samples contained 

no detectable barcoded E. coli strains, which may be a result of lower levels of E. 

coli typically being present in the ileum compared to the colon (Savageau, 

1974). 

Figure 3.8: Proportion of strains GMB71-B10 and GMB45-23353 in colonic, ileal and 

caecal samples as a percentage of total E. coli detected. Only GMB71-B10 and GMB45-

23353 were detectable in intestinal contents. Mouse three had only one strain 

detected in intestinal contents, whereas in all other mice both GMB71-B10 and 

GMB45-23353 were detectable. All other mice displayed compartmentalisation, where 

strains were detected only in certain regions of the GI-tract, rather than being evenly 

spread throughout. 

The detection of these two strains was, however, near the detection limit of the 

RT-PCR (0.01pg gDNA). As a result, the observed compartmentalisation of 

GMB71-B10 and GMB45-23353 in the GI-tract may be caused by inaccuracies in 

detection rather than differences in distribution. This also has implications for 

whether other strains could still be present in the GI-tract at levels below the 

RT-PCR detection threshold. It was unexpected that only GMB45-23353 was 

detected, and not GMB45-19439, as both were detectable at high levels on day 

22 in three of the mice. The levels of the strains carrying these two barcodes do, 

however, vary considerably throughout the experiment, with GMB45-19439 

disappearing in mouse 4 at day 16 and then reappearing at day 22 (figure 3.7). 

This difference between strains in detection may, however, be caused by 
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variations in primer efficiency at low gDNA concentrations, which can be seen in 

some of the RT-PCR standard curves (figure 3.4).  

3.5.2 Mouse competition experiment 2 

For the second in vivo competition study, detection and quantification of the 

barcodes was performed by using high-throughput sequencing, rather than RT-

PCR. This enabled us to increase the number of strains to put under direct 

competition to 12 (see table A.1 for strain information). Indeed, the number of 

RT-PCR reactions increases exponentially in relation to the number of strains, 

making the use of this quantification method less practical for large numbers of 

strains. 

Informed by the results of the first experiment where the two ECOR strains used 

were undetectable after three days, possibly as a result of mutations 

accumulated during long-term storage, only strains from the GMB collection 

were used in this second experiment. The strain mixture was given to five 

cohoused, antibiotic treated, C57BL/6 mice by single oral gavage. As with the 

first mouse competition study, the barcoded strains were able to colonise and 

persist within the GI-tract for the duration of the experiment (30 days). CFU 

counts showed that E. coli levels peaked at day two, at 7.18x109 CFU/g, and 

then declined to approximately 106 CFU/g after a week, and persisted at those 

levels for the remainder of the experiment (figure 3.9). Although the levels were 

about the same at day two between the two mouse experiments, the levels of 

E. coli were about 1 log higher in the second experiment when the E. coli 

population had stabilised. To determine whether high-throughput sequencing 

could be used as an alternative to RT-PCR for barcode detection, faecal gDNA 

samples were used to prepare amplicons containing the barcode sequence. 

These were then run on the Illumina HiSeq sequencing platform to determine 

the levels of each barcode strain in the faecal samples. 
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Figure 3.9: CFUs for total E. coli from mouse faecal samples. CFU counts peaked at day 

2, and then declined to stabilise at approximately 106 CFU/g at the end of the 

experiment. Mice were monitored for 30 days. Results show faecal CFU/g for five mice 

± standard error of the mean. 

One strain, GMB98-30438, was dominant throughout the experiment, making 

up at least 60% of the entire population at day one in all mice, which increased 

to over 80% by day six (figure 3.10). GMB98-30438 was displaced as the 

dominant strain only in mouse one, where GMB71-B10, GMB72-B8 and GMB54-

33301 became more abundant after day 14. The two versions of GMB45 also 

became more prominent later in the experiment, as was observed in the first 

competition experiment. In agreement with the results from the first mouse 

experiment, variation was observed between GMB45-19439 and GMB45-23353, 

with both appearing at different proportions in each mouse (figure 3.10).  

When the distribution of the remaining strains was examined, there were clear 

patterns emerging that suggested a shift in the prevalence of each strain 

between day three and 14. During the first few days, GMB32-20239 and 

GMB34-33233 became the second most prevalent group, making up at least 

70% of strains other than GMB98-30438 on day three for all mice (figure 3.11). 

Compared to the first competition study, strain GMB07-B19 colonised the gut at 

a much higher level during the first two weeks of the second experiment. It is 

possible that the presence of other strains not included in the first experiment 

facilitated the increased persistence of GMB07-B19. Finally, GMB23-23277, 
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GMB18-B5 and GMB104-29884 colonised the GI-tract poorly for all mice. 

Importantly, GMB23-23277 was the only strain to become undetectable by day 

30 using high-throughput sequencing in four of the mice. 
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Figure 3.10: Stacked area graphs of the proportions of each barcode strain in mouse 

faecal samples as a percentage of the whole E. coli population for in vivo experiment 

2. Graphs show proportions of barcoded strains for five individual mice calculated from 

high-throughput sequencing quantification of barcodes. GMB98 was dominant in all 

mice throughout the experiment, except for mouse one on day 30. Samples sequenced 

were taken on days 1, 3, 6, 14 and 30 after oral gavage. Day 0 strain proportions were 

calculated from the bacterial mixture used to gavage mice. 
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Figure 3.11: Stacked area graphs of the proportions of sub-dominant barcode strains 

in mouse faecal samples as a percentage of the whole E. coli population for in vivo 

experiment 2. Graphs display proportions of barcoded strains for five individual mice 

calculated from high-throughput sequencing. Dominant strain GMB98-30438 was 

excluded from the analysis. In sub-dominant strains, there was a clear shift in 

proportions between the first six days and days 14 and 30. Samples sequenced were 

taken on days 1, 3, 6, 14 and 30 after oral gavage. Data for day 0 is the proportions of 

each strain in the mixed-strain preparation given to mice via oral gavage.  
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3.5.2.1 Validation of high-throughput sequencing 

using RT-PCR 

To compare the use of high-throughput sequencing with RT-PCR and ensure 

that the method of analysis did not influence the results, three samples (gavage 

mixture, mouse 2 day 3 and mouse 5 day 14 faecal samples) that were analysed 

using high throughput sequencing from the second mouse experiment were 

also analysed using RT-PCR. The results showed similar distributions of each 

strain for the three samples analysed (figure 3.12). There were minor 

differences for some of the barcoded strains, with the proportions of GMB104-

29884, GMB32-20239 and GMB54-33301 being slightly increased in the RT-PCR. 

However, the high-throughput sequencing results indicate that it has increased 

sensitivity compared to the RT-PCR, as two strains that were undetectable in the 

RT-PCR (GMB02-23796 and GMB34-33233) were present in the sequencing 

results for the mouse 5 day 14 (M5D14) sample. These results indicate that both 

RT-PCR and high-throughput sequencing can be used to quantify the amount of 

each barcoded strain in mixed-strain populations. 
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Figure 3.12: Proportion of each strain in the gavage mixture, mouse 2 day 3 (M2D3) 

sample and mouse 5 day 14 (M5D14) sample. Both (A) RT-PCR and (B) high-throughput 

sequencing was used for detection of barcodes. GMB104-29884, GMB32-20239 and 

GMB54-33301 are detected at higher levels in the RT-PCR, and as a result, can only be 

clearly seen on the RT-PCR graph for the M5D14 sample. GMB02-23796 and GMB34-

33233 could only be detected by high-throughput sequencing in the M5D14 sample, 

but at such low levels that they cannot be visualised on the graph above.  

3.6 E. coli population dynamics in the external environment 

using a soil competition study 

The next experiment was performed to assess whether the barcoding method 

could be used for assessing the competitiveness of E. coli strains in a complex 

environment other than the gut. A mixture of 10 barcoded strains (see table A.1 

for strain information) was used to inoculate the surface of soil columns (soil 

collected from a Norfolk farm) at room temperature, followed by incubation in 

the dark at 20°C over a period of 24 days. Samples were taken at each time 

point from the top, middle and bottom layers of each soil column. CFU counts 

showed that there was a loss of viability of E. coli used to inoculate soil columns 

during the first 12 days, with population stabilising at 104 CFU/g thereafter 
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(figure 3.13). gDNA was also extracted from soil samples and used to determine 

barcoded strain survival and persistence using RT-PCR. 

Figure 3.13: CFUs for total E. coli from top, middle and bottom layers of soil columns. 

CFU counts were reduced by three logs after 12 days, compared to the inoculum. CFUs 

were relatively stable in the top and middle layers of soil throughout the experiment, at 

about 104 CFU/g. CFUs increased in the bottom layer of soil between day 12 and 24. 

Results show average soil CFU/g for three soil columns ± standard error of the mean. 
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Figure 3.14: Stacked area graphs of the proportions of each barcode strain as a 

percentage of the entire E. coli population in the top, middle and bottom layer of soil 

columns. Graphs display the average proportions (n = 3) of barcoded strains from 

middle, bottom and top layers of soil columns. Barcoded strains were quantified using 

RT-PCR. Strain proportions stayed relatively consistent for the duration of the 

experiment. Data for day 0 represents the proportion of each strain in the mixed-strain 

preparation used to inoculate the surface of soil columns. Samples were taken on days 

7, 12, 17 and 24.  

The proportions of each strain remained fairly stable throughout the 

experiment, except for the bottom layer of soil, where the overall number of 

bacteria (CFU/g) increased by over 1 log, suggesting that there was growth of 

bacteria during the experiment (figure 3.14). GMB71-B10 in particular had 

increased numbers in the bottom layer of soil, which suggests that in 

comparison to the other strains it was more adapted to the environment at the 

bottom of the soil column. Alternatively, GMB71-B10 may have increased 
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motility, allowing it to access the lower layers of soil more readily than other 

strains. Other trends were beginning to appear on day 24, such as GMB40-B6, 

GMB104-29884, GMB72-B8 and GMB18-B5 declining, while GMB23-23277 and 

GMB54-33301 were becoming larger proportions of the whole E. coli 

population. The population was much less dynamic compared to those in the GI-

tract, possibly reflecting the poor availability of nutrients in soils, such as organic 

carbon (Klein and Casida, 1967; Ishii et al., 2006; van Elsas et al., 2011). 

Sensitivity of the method was very good as bacteria present at levels of 103-104 

CFU/g could be detected and quantified. It might be interesting in the future to 

extend this study beyond 24 days to determine whether differences in fitness 

are exacerbated. 

3.7 Discussion 

The results shown in this chapter indicate that the novel barcoding method used 

in this study is capable of monitoring individual strains in parallel in mixed-strain 

E. coli populations with high sensitivity and reproducibility. Compared to 

currently available techniques for identifying and quantifying large numbers of 

strains in complex environments, this barcoding method allows quick, easy and 

reliable identification of strains using either RT-PCR or high-throughput 

sequencing.  

The rate of insertion of the barcode sequence was relatively high, with 

transposition occurring in 77% of transformed strains after two attempts. Of 

these successful strains, 81% of had no alterations in phenotype, resulting in an 

overall success rate of 62%. Once barcoded strains were constructed, they could 

quickly and easily be used in mixed competition studies. For the RT-PCR, 

accurate detection of barcoded strains was possible down to a concentration of 

0.01pg of gDNA. Results from the validation of the high-throughput sequencing 

suggest that it is even more sensitive than the RT-PCR as it can detect a greater 

number of barcoded strains. The high level of reproducibility between 

experiments suggests that we were able to identify strains with increased or 

decreased fitness. Importantly, it appears that these differences in strain 

dominance are non-random, and are not determined solely by stochastic 
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events. Large numbers of strains could potentially be used in mixed population 

studies; however, it is important to note that populations that experience 

bottlenecks, or increase in size above the carrying capacity of an environment, 

may experience stochastic loss of strains. This could lead to strains being 

incorrectly identified as having reduced fitness in a given environment, and also 

lead to inconsistencies between replicates. On the other hand, this would 

provide important information on how bottlenecks affect E. coli population 

structure.  

In the LB multi-strain competition study most of the strains were able to coexist 

even though it was a homogeneous environment. This may be because LB 

medium is rich in nutrients, giving multiple strains enough carbon sources to 

survive together. The main carbon sources of LB are amino acids derived from 

tryptone and yeast extract. BIOLOG carbon utilisation profiles of the seven 

strains used in the mixed culture competition studies did not indicate any 

differences in amino acid catabolism that may have resulted in the fitness 

differences that were observed between the isolates. Bacteria often display 

preferential use of certain nutrients and only switch to using other nutrients 

when the preferred one has run out (Stülke and Hillen, 1999). Shifts in 

dominance in the population may represent when the bacteria have switched to 

alternative carbon sources, with the strain most efficient at utilising the new 

carbon source becoming dominant.   

Changes in utilisation of carbon sources or other nutrients can be a result of 

cross-feeding. This is when bacteria are able to catabolise metabolic breakdown 

products secreted by neighbouring cells (Pfeiffer and Bonhoeffer, 2004). Some 

E. coli have also been shown to utilise nutrients derived from dead cells in batch 

culture experiments (Farrell and Finkel, 2003). This has been linked to the 

growth advantage in stationary phase (GASP) phenotype, where strains are able 

to grow and persist under severe nutrient deprivation (Finkel, 2006). In our 

mixed culture experiments, GMB71-B10 displays continued growth up to 92h, 

suggesting that it may have the GASP phenotype. This phenotype has been 

linked to mutations in the rpoS and lrp genes (Zambrano et al., 1993; Zinser and 
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Kolter, 2000) which result in changes in nutrient use and the stress response of 

cells. Extending the experiment may have resulted in the loss of some strains 

from the mixed cultures as nutrients became increasingly unavailable. However, 

in batch cultures there is no wash out, so strains might persist for very long 

periods without growing.  

The LB culture reached its highest OD600 reading after approximately four hours, 

after which it declined, suggesting that nutrient limitation may have started 

occurring at this point. This coincides with the reduction of ECOR16, which was 

observed between three and seven hours, indicating that it was unable to 

adequately compete for declining resources. Importantly, this strain grows as 

well as the other strains when grown in monoculture (data not shown), 

suggesting that factors other than the ability to utilise particular nutrients may 

be causing it to decline so rapidly. Alternatively, ECOR16 could be sensitive to a 

toxin, for example colicin, produced by another strain used in the mixed culture. 

Production of bacteriocins is usually induced during the SOS response, which 

can be caused by nutrient limitation (Majeed et al., 2011). Bacteria are able to 

interact with each other not only through the secretion of metabolites or 

bacteriocins, but also by making direct contact. Cross-feeding has been shown 

to occur between bacteria through the use of intercellular nanotubes, for 

example, where cells share cytoplasm (Pande et al., 2015). It would be 

interesting to repeat the culture competition experiment with the strains 

separated by membranes that allow the passage of secreted molecules but not 

direct cell-cell contact to see whether the same population dynamics would 

occur. 

In the mouse GI-tract, we observed a shift in dominance between strains from 

day three and nine in the first mouse experiment, and day three to six in the 

second experiment. There are several factors that may influence this change, 

including the restoration of the microbiota, the recovery of the gut following 

antibiotic administration and changes in nutrient use by strains. Administration 

of antibiotics to mice has been shown to reduce bacterial load and diversity in 

the gut (Manichanh et al., 2010; Carvalho et al., 2012). Bacterial load has been 
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shown to be restored following cessation of antibiotic treatment after nine days 

in mice (Linninge et al., 2015) and seven days in humans (Panda et al., 2014). 

We observed a reduction in the bacterial load of E. coli, as CFUs decreased from 

109 CFU/g to 104-106 CFU/g, which does not occur when antibiotics are given to 

mice continuously (Pi et al., 2012). This could be due to the microbiota being 

restored. The antibiotics used in this study, ampicillin and neomycin, are both 

broad spectrum antibiotics that have activity against several Gram-negative 

bacteria, including E. coli, as well as some Gram-positive species. It has been 

shown that administration of ampicillin and neomycin to mice reduces the 

bacterial load of the gut by 90%, as well as enlarging the caecum (Vijay-Kumar et 

al., 2010). How the microbiota recovers following removal of antibiotics is less 

well characterised, so it is difficult to determine exactly how the microbiota is 

affecting the barcoded E. coli as it returns. It is possible that increased 

competition with the microbiota for nutrients or space results in some of the 

strains that are less fit in the GI-tract being unable to persist.  

It has also been shown that treatment of mice with streptomycin induces an 

inflammatory response by the gut epithelium that favours growth of E. coli, 

especially those that are capable of nitrate respiration (Spees et al., 2013). As a 

result, withdrawal of antibiotics may result in a reduction in E. coli as well as a 

change in dominance as strains more adapted to the inflamed gut decline. 

However, it is not known whether ampicillin and neomycin induce 

inflammation. Alternatively, different strains may adopt different colonisation 

strategies that result in a variation in persistence within the GI-tract. For 

example, the shift in dominance may occur as preferred nutrients in the GI-tract 

run out and strains switch to alternatives. Carbon source utilisation by E. coli has 

been shown to change between initial colonisation and persistence within the 

gut (Chang et al., 2004). It is possible, therefore, that the strains that become 

dominant later in the experiment are better able to utilise these new carbon 

sources. 

Looking at the phylogenetic groups of the strains that demonstrated increased 

prevalence in faecal samples, both GMB98 and GMB45 belong to the B2 group, 
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which has been associated with increased adaptation to the GI-tract 

(Nowrouzian et al., 2005). The three strains that displaced GMB98 in mouse 

one, GMB54, GMB71 and GMB72, all belong to the phylogenetic group D. It has 

been suggested that the A/B1 groups and B2/D groups have different 

colonisation niches, with the B2 and D groups showing a higher degree of host 

specialisation (Escobar-Páramo, Grenet, et al., 2004). It is important to highlight, 

however, that few strains were used in these experiments, so further studies 

are needed to confirm these general observations about phylogeny and 

colonisation ability.  

It is not clear why there was a shift in mouse one to the three strains GMB54, 

GMB71 and GMB72, but possibilities include the acquisition of deleterious 

mutations in GMB98 resulting in reduced fitness. This, however, is unlikely, as 

deleterious mutants would be expected to be displaced while the wild-type 

remained in the GI-tract at high levels. Alternatively, beneficial mutations could 

have occurred in GMB54, GMB71 and GMB72, though this also seems unlikely 

to have occurred in all three strains simultaneously. It is possible, however, that 

a beneficial mutation occurred in one of these strains which altered the gut 

environment to the benefit of the other two strains, or directly inhibited the 

growth of GMB98. 

Phylogroup A has also been shown to be prevalent in the GI-tract, especially of 

humans (Duriez et al., 2001; Escobar-Páramo, Grenet, et al., 2004; Pallecchi et 

al., 2007; Tenaillon et al., 2010). However, in our competition studies, the 

majority of strains from the A group did not colonise the gut well (GMB02, 

GMB104 and GMB23), with only GMB32 and GMB34 being present at a 

relatively high proportion. A study on the distribution of E. coli in animals in 

Australia showed that the B1 and D groups were predominant in wild mouse 

(Mus musculus) faecal samples (Gordon and Cowling, 2003). This may explain 

why the majority of group A strains used in our studies were only detected at 

low levels. However, this raises the important question of how accurately a 

mouse model can represent what occurs in humans. Physiological, behavioural 

and ecological differences between mice and humans may limit the extent to 
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which these studies can be used to infer E. coli colonisation and persistence in 

the human GI-tract. However, the Gordon and Cowling (2003) study results 

contrast our observations that the B2 phylogenetic group is often dominant. 

Domestication is an important factor in influencing the phylogenetic distribution 

of E. coli in animals (Tenaillon et al., 2010), which may explain the differences 

between wild and laboratory mice. Also, the wild mice sampled in the Gordon 

and Cowling (2003) study were constantly exposed to E. coli, so direct 

comparisons to our study where a single dose of bacteria were given are 

difficult. 

The early loss of all ECOR strains from the mouse gut, despite them being host 

isolates, could indicate that these isolates are host-specific, as ECOR16 and 

ECOR55 were isolated from leopard (Panthera pardus) and human faeces 

respectively (Ochman and Selander, 1984). However, specialisation to a specific 

host group or species has not been observed in many E. coli and is generally 

considered as rare (Escobar-Paramo et al., 2006). Moreover, this hypothesis 

could be applied to the GMB isolates which are considered to be in the external 

environment following a faecal contamination event. As a result, their primary 

environment should be in the GI-tract of the host responsible for the 

contamination event. It is more likely that, as the ECOR collection is over 30 

years old compared to the GMB collection isolated in 2008-2009, that the ECOR 

strains have become laboratory-adapted or damaged, so that they no longer 

reflect the characteristics of E. coli strains found in the GI-tract. As a result of 

this, ECOR strains were not used in any of the following competition studies. In 

contrast to the ECOR strains, only one GMB strain was drastically reduced 

throughout the experiment, which was GMB07-B19. This strain belongs to the 

B1 phylogenetic group and has been shown to have traits associated with 

adaptation to the non-host environment and plant colonisation (Méric et al., 

2013). 

Barcoded strains detected in the gut contents of mice support observations that 

the major E. coli phylogenetic groups are heterogeneously distributed 

throughout the GI-tract in humans (Gordon et al., 2015), and that E. coli 
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detected in faeces are not necessarily representative of gut contents (Gordon et 

al., 2015). Gut content gDNA samples were also collected during mouse 

experiment 2, but are awaiting sequencing. Once analysed, these should give a 

clearer indication of how E. coli are distributed throughout the GI-tract. 

Populations of E. coli in particular environments outside the host, in this case 

soil, may be less dynamic due to lack of nutrients or E. coli not being as well 

adapted to these environments as it is to its primary niche. Survival of E. coli in 

soil has been shown to be influenced by temperature, soil texture, moisture 

levels, nutrient availability and the presence of a soil microbiota (Ishii et al., 

2010). Increased amounts of organic matter in soil have been linked with 

increased levels of growth by E. coli, although this increase in population size 

was only detected at temperatures over 25°C (Ishii et al., 2006). However, 

growth has been detected at temperatures of 19°C in manure rich soil (Berry 

and Miller, 2005) suggesting that nutrient rich soils can support growth of E. coli 

at lower temperatures. For our soil competition experiment, soil columns were 

incubated at 20°C, and from the CFU counts there were no significant changes in 

the population size, other than in the bottom layer of soil. One factor that may 

influence fitness and growth in soil is oxygen availability. An oxygen gradient is 

present in soil, with higher amounts of oxygen available closer to the surface 

due to shorter diffusion distances. Several soil characteristics, including 

moisture, density and temperature, are known to influence the ability of oxygen 

to diffuse through soil from the air (Stępniewski and Stępniewska, 2009). It is 

possible that GMB71-B10 and other strains that have increased numbers lower 

down the soil column may be more adapted to environments that have reduced 

oxygen availability. 

Our soil competition experiments indicate that the initial die-off of E. coli in soil 

was comparable for all strains, suggesting that in the short term all strains and 

phylogenetic groups have a similar fitness level. After 24 days, however, some 

trends were emerging, notably GMB40, GMB104, GMB72 and GMB18 were 

declining, while GMB23 and GMB54 were becoming larger proportions of the 

whole E. coli population. Several studies have shown that a large proportion of 
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strains that are isolated from the external environment are from the B1 

phylogenetic group, so it was interesting that GMB18, which is a B1 strain, had 

one of the lowest levels on day 24. GMB07 was another B1 isolate, but it 

appeared to persist at a relatively constant proportion of the population 

throughout the experiment. Of course, as few strains were used in this 

experiment, it is hard to extrapolate which phylogenetic groups have increased 

persistence in soils, but future studies using larger numbers of strains may help 

identify soil adapted E. coli. 

The barcoding method described in this chapter has the potential to provide a 

powerful tool for assessing population dynamics in E. coli populations, which 

can be adapted to other bacteria. Importantly, this technique has a high 

sensitivity that allows for the identification of E. coli present in the population at 

low levels, which may be undetected using currently available methods. As a 

result, many studies have focussed on the persistence and growth of dominant 

strains. Potentially, this technique can be used on large numbers of strains, and 

together with genome-wide association studies, identify adaptive traits 

associated with the environment.   
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4. Siderophore gene distribution and production in 

commensal E. coli of faecal and plant origin 

The results in this chapter form part of the paper ‘Variation in siderophore 

biosynthetic gene distribution and production across environmental and faecal 

populations of E. coli’ by Laura J. Searle, Guillaume Méric, Ida Porcelli, Samuel K. 

Sheppard and Sacha Lucchini published in the journal PLoS One (see appendix 

D). I carried out all experimental work except the siderophore production assays 

on chrome azurol S (CAS) agar plates, which were carried out by Guillaume 

Méric. 

4.1 Introduction 

In the previous chapter the possibility of determining whether specific strains of 

E. coli had increased fitness in the gut using a novel barcoding system was 

discussed. Barcoding, alongside genome-wide association studies have the 

potential to identify specific traits associated with gut colonisation by E. coli. 

One trait that has been identified as being involved in GI-tract colonisation by E. 

coli is siderophore production, which will be discussed in this chapter.  

For most bacteria, iron is an essential element that, due to its versatility both as 

a ferrous (Fe2+) and ferric (Fe3+) ion is incorporated into a wide range of enzymes 

and proteins that are used in many different cellular processes including DNA 

replication, respiration and protection from oxidative stress. In the presence of 

oxygen Fe2+ is rapidly oxidised into the less soluble Fe3+, making it far less 

available to bacteria. To maintain intracellular iron levels of 10-7 to 10-5M 

(Garenaux et al., 2011), bacteria have developed several mechanisms to 

scavenge iron from the surrounding environment which involve increasing the 

solubility and availability of Fe3+. These mechanisms include lowering the pH of 

the surrounding environment, the production of molecules known as 

siderophores that bind Fe3+ with high-affinity and facilitate uptake into the cell, 

or reducing Fe3+ to Fe2+ which is more readily internalised into the cell 

(Guerinot, 1994). The main mechanism through which E. coli takes up Fe3+ is 

through siderophores. Most E. coli and many other Enterobacteriaceae are able 
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to secrete the siderophore enterobactin, however up to three other 

siderophore systems have been found in some strains of E. coli. These are 

aerobactin, salmochelin and yersiniabactin.  

These three siderophores have all been linked to virulence in pathogenic strains 

of E. coli, especially ExPEC strains that cause disease in areas outside of the GI-

tract. However, a significant proportion of commensal E. coli strains have these 

three additional siderophores and the majority of ExPEC strains are thought to 

live as commensals as part of the healthy microbiota (Köhler and Dobrindt, 

2011), raising an important question about the role that siderophores have in 

the ecology of E. coli. This includes a possible role in both the primary host gut 

environment as well as the secondary external non-host environment, where E. 

coli populations can persist for long periods of time (van Elsas et al., 2011).  

E. coli is constantly switching between the host and non-host environments due 

to repeated faecal deposition followed by ingestion by the host (faecal-oral 

route transmission). Faecal-oral transmission requires bacteria to survive in 

these secondary environments as they pass between hosts. To reflect this, E. 

coli have been isolated from many different secondary environments, including 

soil, surface and groundwaters and from vegetables and salad crops (van Elsas 

et al., 2011). Long-term persisting strains of E. coli have been isolated from 

secondary environments, including tropical soils (Byappanahalli et al., 2006; 

Goto and Yan, 2011), water (Bermúdez and Hazen, 1988; Power et al., 2005; 

Vital et al., 2008; Goto and Yan, 2011), sediments (Solo-Gabriele et al., 2000; 

Whitman and Nevers, 2003; Ishii et al., 2007) and plants (Solomon et al., 2003; 

Islam et al., 2004; Ibekwe et al., 2007). It was postulated that tropical soils and 

waters provided a warm and moist environment that replicated the GI-tract 

sufficiently to permit growth of E. coli in these environments (Winfield and 

Groisman, 2003). However, the same E. coli isolates could be detected over long 

periods of time in soils from temperate climates (Ishii et al., 2006; Ishii et al., 

2007; Texier et al., 2008; Brennan, Abram et al., 2010; Brennan, O’Flaherty et 

al., 2010), suggesting that E. coli is able to form sustainable populations in the 
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secondary environment as naturalised E. coli (Byappanahalli et al., 2006; Ishii et 

al., 2006). 

The role that siderophores have in the gut and in the external non-host 

environments is unclear; however, there is evidence for the use of siderophores 

in both. Enterobactin production and receptor E. coli K-12 strain MG1655 

mutants were outcompeted by wild-type E. coli in the murine GI-tract (Pi et al., 

2012). Importantly, mutants were still able to colonise the gut when given to 

mice alone, suggesting that although not essential to survival within the gut, 

siderophores increase competitiveness. However, Kupz et al. (2013) found no 

significant reduction in fitness of an E. coli strain Nissle 1917 ΔentC mutant, but 

there was a trend towards lower CFUs, with the mutant being undetectable in 

some mice after 3-7 days, compared to the wild-type. As E. coli strain Nissle 

1917 has all four siderophore systems, it is possible that other siderophore 

systems were able to compensate for the loss of enterobactin (and salmochelin) 

production. The E. coli K-12 MG1655 strain used by Pi et al. (2012) only has the 

enterobactin siderophore, which may be why there was a discrepancy between 

these two studies. E. coli strain Nissle 1917 has been suggested to outcompete 

pathogenic S. enterica in mice by competing for iron through the production of 

siderophores (Deriu et al., 2013).  

Siderophores have also been shown to influence survival in external 

environments which may be iron-poor (Jurkevitch et al., 1992; Cornelis, 2010; 

Diallo et al., 2011). Enterobactin biosynthesis genes were shown to improve 

plant colonisation in S. enterica Typhimurium, and both enterobactin and 

salmochelin genes were upregulated during plant colonisation (Hao et al., 

2012). Several phytopathogenic strains of bacteria, including Erwinia amylovora, 

Erwinia chrysanthemi, Pseudomonas syringae and Dickeya dadantii, have been 

shown to utilise siderophores during infection of host plants (Dellagi et al., 

1998; Dellagi et al., 2005; Franza et al. 2005; Taguchi et al., 2010). 

This contrasting evidence on the role of individual siderophore systems in E. coli 

and related bacterial species probably indicates that the genomic context is an 
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important factor. Since the distribution of a phenotype is influenced by the 

selection pressures of the environments, with traits that increase fitness 

becoming more prevalent (Bergholz et al., 2011; Méric et al., 2013), a 

population-level comparative approach should thus provide important 

complementary information. In this chapter, we build on the initial observation 

that siderophore production on chrome azurol S (CAS) agar plates was increased 

in E. coli isolates from healthy faecal samples (ECOR-F) compared to strains 

isolated from plants (GMB) (Méric, 2011).  

4.2 Validation of the comparison of siderophore production 

by host and plant E. coli isolates 

As ExPEC strains are known to be enriched for virulence genes, including 

siderophores (Escobar-Páramo, Clermont et al., 2004), the ECOR strains isolated 

for women either with a urinary tract infection (UTI) or asymptomatic 

bacteriuria (Ochman and Selander, 1984) were removed to prevent any biases 

in the data. 11 ECOR strains (ECOR11, ECOR14, ECOR40, ECOR48, ECOR50, 

ECOR56, ECOR60, ECOR62, ECOR64, ECOR71 and ECOR72) were therefore 

excluded from any comparative analyses. The remaining ECOR isolates, termed 

ECOR-F, were used as examples of healthy faecal isolates for the comparison 

between host and non-host strains. A further four strains (ECOR29, ECOR52, 

GMB37 and GMB69) were excluded from the siderophore production analysis as 

they did not grow on CAS agar plates. Growth was not restored in MM9 medium 

(similar growth conditions to CAS agar) supplemented with 100µM ferrous 

sulphate (FeSO4), suggesting that auxotrophic mutations prevent these strains 

from growing under these conditions, rather than reduced iron acquisition (data 

not shown).  

CAS agar plates are able to detect total siderophore production through an iron-

bound indicator dye in the agar that changes colour, from blue to orange, in the 

presence of siderophores (Payne, 1994). The total siderophore production of a 

colony was calculated using the diameter of the halo that appeared around 

siderophore producing colonies and standardising to colony diameter (figure 
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4.1A). The CAS agar assay showed that faecal strains (ECOR-F) had increased 

siderophore production compared to plant isolates (GMB) (figure 4.1B) (Méric, 

2011; Searle et al., 2015). Indeed, a higher proportion of ECOR-F isolates 

included high siderophore producers (37% vs 11%) (figure 4.1C).  

Figure 4.1: Siderophore production is higher in faecal isolates compared to plant-

associated E. coli. A) Production on CAS agar was calculated by dividing the halo 

diameter (dhalo) by the colony diameter (dcolony). B) Box plot showing siderophore 

production for ECOR-F and GMB isolates (nECOR-F = 57, nGMB = 96). The median and 

interquartile ranges are displayed by the rectangle and the whiskers span the 5-95 

percentile. Black circles represent outliers and plus signs represent the mean. Statistical 

significance was determined using the Student’s t-test. ****P<0.0001. C) Frequency 

histogram showing siderophore production for both collections.  

To exclude the possibility that the differences in siderophore production were 

not a result of siderophore-specific differences in diffusion, for example, a 

siderophore with a higher diffusion may be more prevalent in ECOR-F strains, 

resulting in a larger halo, liquid chrome azurol S (CAS) assays were performed on 

a representative subgroup of ECOR and GMB strains (n=33). The liquid CAS assay 

measures siderophore production in liquid culture supernatant, so diffusion 

rates between siderophores should be similar. The liquid assay confirmed the 

significantly higher siderophore production by host-associated strains compared 

to plant-associated strains (figure 4.2) as observed on CAS agar plates.  
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Figure 4.2: Siderophore production is increased in faecal E. coli compared to plant 

isolates when grown on glucose. Boxplots showing siderophore production for a 

subset of ECOR-F and GMB strains (nECOR-F = 18, nGMB = 15) grown on A) glucose and B) 

glycerol. The median and interquartile ranges are displayed by the rectangle and the 

whiskers span the 5-95 percentile. Plus signs represent the mean. Statistical significance 

was determined using the Student’s t-test. *P<0.05. 

Liquid CAS assays were also performed using supernatants from strains grown in 

MM9 containing glycerol, rather than glucose, as the sole carbon source. 

Glucose is known to induce carbon catabolite repression (CCR) in E. coli, which 

has been hypothesised as influencing siderophore gene expression (Zhang et al., 

2005; Valdebenito et al., 2006). We observed a much greater level of 

siderophore production in most strains when grown with glycerol (figure 4.2). 

Interestingly, there was no longer a significant difference between the ECOR 

and GMB collections when strains were grown on glycerol, highlighting possible 

regulatory differences between the two collections.  

4.3 Multiplex PCR design and validation 

Both the liquid and agar CAS assays showed stronger siderophore production by 

the ECOR-F samples compared to the GMB isolates. However, this does not 

indicate which specific siderophores are responsible for increased siderophore 

production in ECOR-F isolates. Here we address the question of whether 

differences in siderophore production between the GMB and ECOR-F collections 
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were reflected at the genome level by a different complement of siderophore 

genes. To investigate this, a multiplex PCR was designed to detect one receptor 

and four biosynthesis genes for all four siderophore systems: enterobactin, 

salmochelin, aerobactin and yersiniabactin. As the salmochelin system only has 

one biosynthesis gene, two degradation genes and an export gene were 

included in the multiplex PCR alongside the receptor and biosynthesis genes.  

4.3.1 Multiple Sequence Alignments 

To design highly specific and sensitive primers for the multiplex PCR, publically 

available E. coli genome sequences (both commensal and pathogenic strains) 

were retrieved from both the EcoCyc (Keseler et al., 2013) and the National 

Centre for Biotechnology Information (NCBI) collections. The DNA sequences of 

all the siderophore production loci that could be identified through nBLAST 

similarity searches were then used to generate ClustalW multiple alignments.  

These enabled the identification of conserved regions for each target 

siderophore gene for the PCR. As well as finding conserved regions, the 

alignments highlighted some of the differences in distribution of each 

siderophore and the structure about each siderophore locus. The enterobactin 

locus was detected in every E. coli genome analysed, and the entire 

enterobactin locus appears to be maintained as a whole unit throughout. This 

supports the idea that siderophores have an important role in the lifestyle of E. 

coli. Of course, gene presence does not equate to production, so it is still 

possible that even though all these strains have enterobactin, they might not all 

be capable of producing or using it. 

The other siderophore systems were far less prevalent than enterobactin, with 

yersiniabactin being the second most common. From the Ecocyc alignments, the 

prevalence for the 34 strains analysed was as follows: 14.7% for salmochelin, 

26.4% for aerobactin and 41.2% for yersiniabactin. This was similar to 

alignments performed using the 54 E. coli strains available on NCBI, with 

prevalences of 14.8% for salmochelin, 25.9% for aerobactin and 33.3% for 

yersiniabactin. However, the strains available on both EcoCyc and NCBI were 

predominantly pathogenic strains (52.9% and 61.1% for EcoCyc and NCBI 
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respectively), which may influence how common each siderophore is, as 

siderophores have been linked to virulence. In fact, only three commensal 

strains (14.3%) of E. coli possessed a siderophore other than enterobactin. The 

salmochelin, yersiniabactin and aerobactin loci showed the same level of 

conservation as a whole unit, suggesting that once obtained, the ability to make 

these siderophores was retained.  

4.3.2 Validation of the multiplex PCR using the ECOR 

collection 

To determine the specificity of the multiplex PCR, results obtained using the 

ECOR collection were compared to previous studies that monitored siderophore 

gene presence in this collection of E. coli isolates. These studies used PCR-based 

approaches to identify the genes encoding the siderophore receptors (Johnson, 

Delavari, Kuskowski and Stell, 2001) and the high pathogenicity island (HPI) 

containing the yersiniabactin locus (Schubert et al., 2009). A more recent study 

using multigenome arrays was also included as it monitored the presence of all 

the genes within the enterobactin, salmochelin and aerobactin loci (Jackson et 

al., 2011). The results from our multiplex PCR for the enterobactin, aerobactin 

and salmochelin genes (1,080 genes in total) showed good correlation with the 

array data, with 96.4% (1,041 genes) results matching the Jackson et al. (2011) 

dataset. Comparisons with the Johnson et al. (2001) PCR data showed a 99.1% 

match for the 216 enterobactin, aerobactin and salmochelin receptor genes 

tested. For the yersiniabactin locus, our multiplex PCR results were different for 

only two ECOR strains (97.2% match) when compared to PCR results in Schubert 

et al. (2009) (see appendix C).  

To rule out a strain identification error causing differences between our 

multiplex results and conflicting results from other published datasets, CRISPR 

(clustered regularly interspaced short palindromic repeats) regions were 

assessed. These CRISPRs, alongside CRISPR-associated genes (CAS) are part of a 

prokaryotic acquired immune system offering protection against phages and 

other mobile genetic elements by integrating short DNA sequences from them 

that allow identification and removal from the cell (Barrangou et al., 2007). 
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These CRISPR regions can become hypervariable as a result, and can be used to 

distinguish between different ECOR strains (Diez-Villasenor et al., 2010). The 

strains ECOR02 and ECOR67 were both shown in the multiplex PCR to not 

possess the aerobactin and salmochelin genes respectively, which was in 

contradiction to published data (Johnson, Delavari, Kuskowski and Stell, 2001; 

Jackson et al., 2011). However, the CRISPR2.1 and CRISPR2.3 regions DNA 

sequences were a match to available sequences. Strains ECOR11 and ECOR72 

showed differences in yersiniabactin gene presence to previous PCR results 

(Schubert et al., 2009), but also contained the correct CRISPR sequences, 

confirming the identity of our strains. These discrepancies reflect that changes 

have been observed in the phenotype and genotype of E. coli strains between 

laboratories (Johnson, Delavari, Stell et al., 2001) as well as during transport of 

strains (Spira et al., 2011), highlighting the importance of characterising strains 

used in independent studies.  

4.4 Comparison of siderophore gene distribution in plant- 

and host-associated E. coli isolates 

4.4.1 Maintenance of siderophore loci 

The distribution of siderophore genes in 96 isolates from the GMB collection 

was determined using multiplex PCR to compare to the ECOR collection to 

assess whether the distribution of siderophore genes is influenced by the 

environment from which strains were isolated. After performing the multiplex 

PCR on all isolates, it was evident that the siderophore receptor and 

biosynthesis genes were always detected together (133/133), highlighting not 

only the sensitivity of the PCR, but also that the siderophore loci are 

evolutionarily maintained as a complete unit. This agrees with what was 

observed in the multiple alignments.  

The ECOR05 strain does not have a full siderophore operon; however, it also 

does not possess either the receptor or biosynthesis genes. It only possesses the 

hydrolysis genes iroD and iroE from the salmochelin locus. These genes, 

however, can be used in the hydrolysis of enterobactin as well as the 
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breakdown of salmochelin (Lin, 2005; Zhu, 2005). It is not possible to determine 

from the results whether these siderophore genes were acquired separately 

from the rest of the loci, or whether the strain has lost the rest of the 

salmochelin genes required for its synthesis and uptake.  

4.4.2 ECOR and GMB siderophore gene presence 

Comparing the distribution of siderophore genes between the plant- and 

healthy host-associated E. coli isolates, strains isolated from plants on average 

possessed fewer siderophore systems (figure 4.3), supporting the observed 

increased siderophore production in the ECOR collection (Méric, 2011; Searle et 

al., 2015).  

Examining the specific siderophore systems, aerobactin and yersiniabactin were 

found at significantly lower proportions in the GMB collection. No significant 

difference in prevalence was seen for the salmochelin genes (table 4.1). 

Enterobactin was present in all strains, however, the proportion of strains that 

only possessed the enterobactin locus and had no secondary siderophore 

systems was significantly higher in the GMB collection, at 76% (73/96) 

compared to 42.6% (26/61) for the ECOR-F group (Fisher’s exact test, p<0.0001; 

see appendix C for tables). Interestingly, the B2 phylogenetic group had an 

increased prevalence of siderophore genes compared to groups A and B1 (figure 

4.4), possibly reflecting the association of the B2 group with the host 

environment (Nowrouzian et al., 2006) 
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Figure 4.3: Faecal strains encode more siderophore systems compared to plant-

associated isolates at the population level. Mean number of siderophore production 

systems for the GMB (n = 96) and ECOR-F (n = 61) collections are displayed. Error bars 

show the standard error of the mean. Statistical significance was determined using the 

Student’s t-test. ***P<0.001. 

Table 4.1: A greater proportion of faecal isolates possess the aerobactin and 

yersiniabactin loci compared to plant-associated E. coli. The prevalence data from 

faecal samples used to compare to ECOR-F and GMB results were obtained from recent 

human studies. The range in the number of isolates for these isolates reflects that not 

all studies determined the distribution of all four siderophore systems (aerobactin n = 

1042, yersiniabactin n = 618, salmochelin n = 808). Significance was determined using 

the Fisher’s exact test. In the case of multiple comparisons, the Benjamini and 

Hochberg False discovery rate method was used for correction. NS: no statistical 

significance.  

 

 

 

Siderophore Proportion of detected systems 

(%) 

Statistical significance 

GMB 

(n=96) 

ECOR-F 

(n=61) 

Faecal 

(n=618-

1042) 

GMB vs 

ECOR-F 

GMB vs 

Faecal 

ECOR-F 

vs 

Faecal 

Aerobactin 5 25 29 <0.001 <0.001 NS 

Yersiniabactin 19 48 35 <0.001 <0.01 NS 

Salmochelin 16 20 21 NS NS NS 
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Figure 4.4: ClonalFrame phylogenetic tree showing the presence of three siderophore 

systems in the major phylogenetic groups of E. coli. Phylogenetic groups are based on 

MLST analysis using 8 housekeeping genes: dinB, icdA, pabB, polB, putP, trpA, trpB and 

uidA (Méric et al., 2013). ECOR (n = 66) strains are labelled in red and GMB (n = 67) 

strains in black (adapted from Méric et al., 2013). 

4.4.3 Gene presence and siderophore production 

The results from the multiplex PCR suggest that the differences seen between 

GMB and ECOR siderophore production levels may be linked to the aerobactin 

and yersiniabactin loci, which are more prevalent in ECOR-F isolates. Supporting 

this hypothesis, aerobactin was almost exclusively found in high producing 

strains (table 4.2). However, there was no link between yersiniabactin gene 
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presence and siderophore production on CAS agar plates. Aerobactin gene 

presence did not account for all the observable variation in siderophore 

production between GMB and ECOR-F isolates. In fact, when strains capable of 

producing only enterobactin were examined, the variation in siderophore 

production levels within each strain collection was different, with ECOR-F strains 

displaying higher siderophore production levels compared to GMB at the 

population level (unpaired t-test, p<0.01) (figure 4.5). This highlights the 

possibility that the host and non-host environments select for differential 

regulation of siderophore and iron uptake genes.  

Table 4.2: Distribution of siderophore systems relative to siderophore production on 

CAS agar plates. Significance tests were performed comparing the top and bottom 

quartiles using the Fisher’s exact test (n = 161). The Benjamini and Hochberg False 

discovery rate method was used to correct for multiple comparisons. *P<0.05, 

***P<0.001. 

Figure 4.5: Enterobactin production is higher in faecal isolates compared to plant-

associated E. coli. Frequency histogram comparing siderophore production on CAS 

plates, calculated by dividing the halo diameter by the colony diameter (dhalo/dcolony) 

(Méric, 2011), for GMB and ECOR-F strains only encoding the enterobactin locus. 

Sample sizes were nGMB = 69, nECOR-F = 28. 

 Top 25% 25-50% 50-75% Bottom 25% 

Aerobactin (%) 42*** 5 3 3 

Yersiniabactin (%) 42 24 32 31 

Salmochelin (%) 26* 21 13 5 
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4.4.3.1 Liquid CAS assay 

To exclude the possibility that the link between aerobactin gene presence and 

high siderophore production was not a result of siderophore-specific differences 

in diffusion, we compared the results of the liquid CAS assay for strains with and 

without the aerobactin locus (figure 4.6). The liquid assay confirmed the clear 

link between high siderophore production and presence of the aerobactin locus 

(figure 4.6). Siderophore production of strains possessing the aerobactin locus 

was high in medium containing either glycerol or glucose. In contrast, other 

strains only displayed high siderophore production when grown on glycerol 

(figure 4.7). 

Figure 4.6: Siderophore production is higher in aerobactin producing strains. Boxplots 

showing siderophore production for a subset of ECOR-F and GMB strains with or 

without the aerobactin locus (niuc+ = 10, niuc- = 23) grown on A) glucose and B) glycerol. 

The median and interquartile ranges are displayed by the rectangle and the whiskers 

span the 5-95 percentile. Black circles represent outliers and plus signs represent the 

mean. Statistical significance was determined using the Student’s t-test. ****P<0.0001. 

4.4 Discussion 

Iron acquisition is essential to bacterial growth and survival during gut 

colonisation. The siderophore enterobactin has been shown to be important in 
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the mouse GI-tract for E. coli colonisation (Pi et al., 2012). However, the role 

that other siderophores produced by E. coli have in the gut is not clear. 

The comparison of the distribution of siderophore genes in the ECOR-F and 

GMB collections suggests that the environment of isolation influences which 

siderophore systems are present, and that the gut appears to select for both 

increased siderophore production and the ability to produce a wider variety of 

siderophores. It was also observed that the B2 phylogenetic group, in particular, 

encoded a higher number of siderophore systems. This group has been widely 

associated with host commensalism, especially in humans where it is frequently 

the most abundant group, as well as the dominant group (Zhang et al., 2002; 

Escobar-Páramo, Grenet et al., 2004; Nowrouzian et al., 2005; Gordon et al., 

2015). Our competition studies in mice (Chapter 3, section 3.5) also 

demonstrated that the B2 phylogenetic group can become dominant within the 

gut environment. We therefore hypothesised that isolates from the gut had 

higher siderophore production because the ability to produce siderophores 

confers a fitness advantage in the healthy gut environment. In contrast, the 

non-host environment seems to elicit a weaker selection pressure on E. coli to 

maintain a diverse set of siderophore systems.  

These differences may reflect environmental differences in iron availability. 

Ferrichrome and ferric citrate have both been found in the rhizosphere and 

phyllosphere (Reid et al., 1984; De Vos et al., 1986; Crowley, 2006) and could act 

as alternative iron sources. In the GI-tract, bacteria acquire iron based on the 

host’s diet, so the form of iron available will vary. In humans, most ingested iron 

(up to 90%) is not absorbed and is available for the microbiota (Hurrell and Egli, 

2010). Ingested iron can be broadly divided into haem and non-haem iron, with 

haem being derived from meat and animal products and non-haem mainly from 

plants (Monsen et al., 1978). The form that the iron acquires when it is in the 

colon is unclear as it will largely depend on digestion and the composition of the 

meal the host has consumed. It is, however, likely that iron is available in a 

variety of forms.  
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Having multiple siderophores may provide a benefit to bacteria due to the fact 

that different siderophores have different characteristics and properties based 

on pH and carbon source (Valdebenito et al., 2006). In the heterogeneous 

environment such as the gut, where pH and carbon source availability varies 

considerably, having multiple siderophores may confer an advantage. In the E. 

coli Nissle 1917 strain, for example, it was shown that the binding potential of 

aerobactin for iron is higher than that of enterobactin when the pH is low, 

potentially leading to aerobactin being most useful under acidic conditions 

(Valdebenito et al., 2006). Another potential advantage for producing multiple 

siderophores is that it might allow bacteria to be better competitors for iron 

compared to other strains. Co-culture experiments have shown that under low 

iron conditions when strains are under direct competition, strains that can 

produce siderophores with higher affinity sequester iron away from 

competitors, thus inhibiting their growth (Weaver and Kolter, 2004; Joshi et al., 

2006). 

The liquid CAS assays also highlighted that siderophore production, except for 

aerobactin, is decreased when E. coli is grown in the presence of glucose 

compared to glycerol.  There are two possible explanations for this difference. 

Glycerol and glucose are metabolised differently by E. coli, with glycerol 

requiring aerobic respiration, whereas glucose can be metabolised through 

fermentative pathways. The enzymes that are required for aerobic respiration 

include some that contain both Fe-S clusters and haem groups (Py and Barras, 

2010), which would require more iron compared to the enzymes involved in 

fermentation. This could result in increased iron uptake by E. coli grown on 

glycerol. Alternatively, siderophore production could be under carbon catabolite 

repression (CCR). E. coli strain BW25113 Δcrp mutants, which cannot make 

cyclic AMP receptor protein (CRP), a regulator which is involved in carbon 

source utilisation and CCR, were shown to have decreased expression of 

enterobactin (Zhang et al., 2005), suggesting that siderophore production is 

under CCR.  However, the exact mechanism through which CRP regulates 

siderophore production is not clear. CRP has been shown to regulate the 
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expression of fur, but only by a relatively small amount (Zhang et al., 2005). 

There is, however, a possibility that CRP is able to directly regulate siderophore 

genes, and a putative CRP binding domain has been found upstream of the entC 

operon (Zhang et al., 2005), but no evidence has been recorded of direct binding 

and regulation by CRP.  

From the multiple alignments as well as the multiplex PCR results, it was clear 

that siderophore loci are evolutionarily maintained as a complete unit. This has 

implications for the possibility of cheating in natural populations of E. coli. The 

potential for cheating to arise is linked to the fact that siderophores are “social 

goods” that are secreted by bacteria and can be utilised by neighbouring 

bacteria with the required receptor, and that siderophore production incurs a 

metabolic cost (Lv and Henderson, 2011). Cheating for siderophores has been 

shown to occur for a wide range of bacterial populations, from P. aeruginosa in 

the cystic fibrosis lung (De Vos et al., 2001; Buckling et al., 2007) to marine 

bacteria (D'Onofrio et al., 2010; Cordero et al., 2012). As all of the strains from 

the GMB and ECOR collections contained both biosynthesis and receptor genes, 

this suggests that cheating is uncommon and selected against in natural 

populations of E. coli.  

One possible explanation is that the mucus layer where E. coli is thought to 

reside in the gut is highly viscous, which would limit the ability of secreted 

siderophores to diffuse to neighbouring cells or microcolonies (Kümmerli et al., 

2009). This is supported by the observation that a hypersecretor mutant 

(receptor knockout mutant) is iron starved in the mouse GI-tract (Pi et al., 

2012). Siderophores secreted by this mutant would not diffuse away from the 

bacteria, but would bind and trap any surrounding iron, making it unavailable to 

any other iron uptake systems. However, P. aeruginosa siderophore 

(pyoverdine) mutants in cystic fibrosis patients are found in the thick mucus that 

fills the lungs. This would suggest that siderophores would be able to diffuse 

through the mucus layer covering the gut epithelium. Recent studies have, 

however, suggested that P. aeruginosa strains in the cystic fibrosis lung are 

adapting towards alternative iron uptake mechanisms, such as haem uptake 
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(Ross-Gillespie et al., 2015) and the use of an alternative siderophore pyochelin 

(Nguyen et al., 2014; Ross-Gillespie et al., 2015), rather than utilising pyoverdine 

produced by neighbouring bacteria. Culture experiments using cheaters have 

also highlighted that cheating only tends to arise in populations where there is a 

very strong selection for siderophore production (Kümmerli et al., 2010). In 

populations where siderophores can be recycled (Lehmann, 2007; Kümmerli et 

al., 2010) or where low levels of siderophores are required, the cost associated 

with production is not high enough to outweigh the benefit of cheating. It is 

likely that iron availability in different environments in varied, which would 

mean that retaining siderophore producing genes is important. As the receptor 

and biosynthesis genes are under different promoters for most siderophore 

systems, the only exception being enterobactin (Garenaux et al., 2011), it is a 

possibility that under certain conditions E. coli may be able to “cheat” by 

switching off biosynthesis genes while ensuring the receptor genes are still 

expressed. 

One possible limitation to this study is that the two collections being compared 

were isolated from different geographic locations at different times. The GMB 

collection was primarily collected from the UK, whereas the ECOR collection was 

from a mixture of European and American samples. However, it has been shown 

that approximately 2% of genetic diversity between ECOR strains from Europe 

and America was attributable to geographic location of isolation (Miller and 

Hartl, 1986). To account for the over 30 year difference in the ECOR and GMB 

collections, more recent studies (Hilali et al., 2000; Nowrouzian et al., 2003; 

Johnson et al., 2005; Johnson et al., 2008; Lee et al., 2010; Unno et al., 2011; 

Vollmerhausen et al., 2011; White et al., 2011; Kudinha et al., 2012; Mao et al., 

2012) that identified siderophore gene presence in E. coli isolated from healthy 

faecal samples were compared to the results from the ECOR and GMB isolates. 

The prevalence of each siderophore system was not significantly different 

between these faecal samples and the ECOR-F group, supporting our 

observations that siderophores are more prevalent in faecal E. coli strains 

compared to plant isolates (table 4.1). It would be interesting to investigate if 
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the observed differences seen here between the GMB and ECOR collection 

could be extended to E. coli strains isolated from other plants or secondary 

environments. 

In summary, the results of the multiplex PCRs suggest that yersiniabactin and 

aerobactin production is associated with gut colonisation by E. coli. CAS assays 

on strains that only possess enterobactin highlight the possibility that strain-

specific differences in siderophore production may therefore impact on the 

ability to colonise the GI-tract. In the next chapter, we will investigate these 

differences in siderophore production and whether siderophore production 

affects fitness in the gut.  
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5. In vitro and in vivo siderophore gene expression, 

characterisation and production 

The in vitro siderophore biosynthesis gene expression in MM9 medium results 

in this chapter form part of the paper ‘Variation in siderophore biosynthetic 

gene distribution and production across environmental and faecal populations 

of E. coli’ by Laura J. Searle, Guillaume Méric, Ida Porcelli, Samuel K. Sheppard 

and Sacha Lucchini published in the journal PLoS One (see appendix D). I 

designed and performed these experiments as well as analysing the data. 

5.1 Introduction 

In the previous chapter, siderophore production and gene distribution was 

shown to be increased at the population level in host-associated E. coli 

compared to plant-associated isolates, leading to the hypothesis that 

siderophore production confers an advantage in the GI-tract. In particular, 

higher production could be linked to the presence of the aerobactin and 

salmochelin loci. However, there was a significant amount of variation that was 

not explained by differences in gene distribution. Indeed, strains that only 

possessed the enterobactin gene showed a wide range of siderophore 

production levels, suggesting that there may be differences in the regulation of 

siderophore production between individual E. coli strains.  

All four siderophore systems in E. coli have been shown to be regulated by the 

global regulator Fur (ferric uptake regulator). Fur acts with its co-factor Fe2+ to 

repress the expression of siderophore genes, along with other genes involved in 

ferric iron uptake. When intracellular concentrations of Fe2+ are low, Fur is 

unable to bind to DNA and expression of siderophore genes increases (Hantke, 

2001). The expression of siderophore genes or Fur itself may be modified by 

additional regulators, such as CRP and OxyRS, possibly resulting in unique 

expression profiles for each siderophore depending on environmental 

conditions. The heterogeneous environment in the GI-tract, therefore, may 

select for multiple siderophore systems, with factors such as pH, carbon source 



164 
 

availability and host secreted molecule lipocalin-2 likely to influence 

siderophore production.  

In this chapter, we build on the observed differences in siderophore production 

between individual E. coli isolates from the previous chapter and assess the role 

of each individual siderophore system in iron uptake in vitro and the 

interactions between carbon source utilisation and iron homeostasis using 

siderophore biosynthesis and uptake mutants. Finally, following the observation 

that siderophore production was increased in host-associated strains, and to 

build on work that showed enterobactin to be important during GI-tract 

colonisation (Pi et al., 2012), siderophore gene expression and siderophore 

mutants were assessed in the mouse intestine to elucidate a possible role for 

additional siderophores in commensal E. coli within the host environment. 

5.2 Strain-specific diversity in siderophore gene expression 

under low iron conditions 

To evaluate changes in gene expression and regulation as a possible explanation 

for siderophore production variation observed during liquid and agar CAS assays 

(Chapter 4, section 4.2), the expression of one biosynthesis gene for each 

siderophore system was determined in eight GMB isolates under iron limiting 

conditions in MM9 medium. The isolates analysed were GMB23, GMB30, 

GMB40, GMB53, GMB88, GMB91, GMB100 and GMB104 (see table A.1 for 

strain information), and were selected to represent a wide range of siderophore 

production levels.  

Analysis of RT-PCR results showed that enterobactin and aerobactin were the 

most highly expressed siderophore systems, displaying a 4 and 400-fold greater 

expression level compared to salmochelin and yersiniabactin respectively (figure 

5.1A). Aerobactin and yersiniabactin both showed a narrow range of expression 

for all eight strains, always being expressed at high or very low levels 

respectively. This supports the association of the aerobactin locus with high 

siderophore production (Chapter 4, section 4.4.3). The consistent low 

expression levels of the yersiniabactin biosynthesis gene may also explain the 
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absence of a correlation between yersiniabactin locus presence and siderophore 

production. Importantly, enterobactin and salmochelin displayed a wide range 

of expression levels between the eight strains (figure 5.1A). These expression 

levels showed a strong correlation to siderophore production measured on CAS 

agar plates (figure 5.1B), suggesting strain-specific diversity in the regulation of 

these two siderophore systems. 

Figure 5.1: Gene expression level of siderophore biosynthesis genes in plant-

associated E. coli. The expression of one biosynthesis gene for each siderophore 

system present in eight GMB isolates was determined; entC (enterobactin), iroB 

(salmochelin), irp2 (yersiniabactin), iucA (aerobactin). The strains analysed were 

GMB23 (entC, irp2, iucA), GMB30 (entC, iroB), GMB40 (entC, iroB, irp2), GMB53 (entC, 

irp2), GMB88 (entC, iroB, iucA), GMB91 (entC), GMB100 (entC, irp2) and GMB104 (entC, 

iroB, irp2, iucA). A) Box plot showing the gene expression levels of entC, iroB, irp2 and 

iucA relative to the internal reference rpoB. The centre rectangle of the plot spans the 

interquartile range (IQR). The segment inside the rectangle shows the median, while 

the bars above and below show the maximum and minimum values respectively. 

Statistical significance was determined using the Student’s t-test. In case of multiple 

tests, the significance of individual t-tests was determined using the Benjamini and 

Hochberg False discovery method; *p<0.05, **p<0.01, ***p<0.001. B) To visualise the 

link between the gene expression level of each siderophore and total production, 

mRNA levels were normalised to the lowest corresponding value and plotted against 

relative siderophore production on CAS plates. Relative siderophore production was 

calculated by dividing the halo diameter by the colony diameter (dhalo/dcolony) and 

normalising to the highest producer. 
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5.3 Siderophore gene expression during severe iron 

depletion 

As each siderophore system displayed varying levels of expression in MM9 

medium, the expression of all four siderophores was measured in nutrient broth 

with varying amounts of iron chelator 2,2’-dipyridyl (DIP). In particular, we were 

interested in whether yersiniabactin would be induced by low iron levels, as its 

expression was significantly lower than that of the other three siderophore 

systems in MM9 medium (figure 5.1). Compared to expression in MM9 medium, 

expression in nutrient broth (NB) was 24 and 4-fold lower for enterobactin and 

salmochelin respectively (figure 5.2A), indicating iron availability was higher in 

NB medium. However, expression of yersiniabactin and aerobactin was not 

significantly increased in MM9 medium (figure 5.2A).  

There was, however, a significant induction of biosynthesis genes for all four 

siderophore systems on addition of DIP to NB medium (figure 5.2B). In 

particular, enterobactin and salmochelin expression was greatly increased in 

200µM DIP, both showing a 290-fold increase compared to expression in 

nutrient broth (figure 5.2B). This increase was lower at 500µM DIP, however, 

possibly reflecting the reduced growth observed at this concentration (data not 

shown). It has been previously observed that bacteria that are grown with 

severe iron limitation stop growing and producing siderophores (Merrell et al., 

2003; Valdebenito et al., 2006). Compared to enterobactin and salmochelin, 

aerobactin and yersiniabactin showed a lower level of induction in the presence 

of 200µM DIP, with a 28-fold and 18-fold induction respectively. Their 

expression, however, was slightly increased at 500µM DIP, to 49-fold and 28-

fold respectively. Although aerobactin displayed a reduced level of induction 

compared to enterobactin and salmochelin in NB with 200µM DIP, these three 

siderophores were expressed at the same level relative to the housekeeping 

gene rpoB (figure 5.2A). In the case of aerobactin, the lower level of induction 

might be linked to its already high expression in nutrient broth, which is 10-fold 

higher than enterobactin. The fact that aerobactin is also expressed in MM9 and 

NB media at a similar level, suggests that the aerobactin locus is not repressed 
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to the same extent as enterobactin and salmochelin in the presence of iron. 

Yersiniabactin expression was increased in the presence of DIP, however, it was 

still expressed at lower levels than the three other siderophore systems in NB 

(figure 5.2A). This suggests that yersiniabactin may require factors other than 

low iron to induce high expression levels.  

Figure 5.2: Gene expression of siderophore biosynthesis genes in isolate GMB104 

under iron replete and limiting conditions. Expression levels of entC (enterobactin), 

iroB (salmochelin), irp2 (yersiniabactin) and iucA (aerobactin) for strain GMB104 in 

MM9 medium, nutrient broth (NB), NB with 200µM DIP (2,2’-dipyridyl) and NB with 

500µM DIP. A) Expression relative to the housekeeping gene rpoB. B) Expression 

relative to expression in NB (iron replete conditions). The dotted line signifies NB 

expression levels for all four siderophore systems. Results show the mean ± standard 

error (n = 3). Statistical significance was determined using the Student’s t-test. In case 

of multiple tests, the significance of individual t-tests was determined using the 

Benjamini and Hochberg False discovery method; *p<0.05, **p<0.01, ***p<0.001. 
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5.4 Characterisation of siderophore biosynthesis mutants 

5.4.1 Biosynthesis mutant growth curves 

To assess the contribution of each siderophore system to iron uptake during 

iron limited growth, siderophore biosynthesis and ΔtonB mutants were 

generated (see table 2.3 for a list of mutants). Siderophore mutants were 

generated in a strain that encodes all the four siderophores (GMB104) and a 

strain only possessing the ability to generate enterobactin (GMB91). Growth 

curves were established in MM9 medium, and MM9 medium supplemented 

with either 100µM DIP or ferrous sulphate (FeSO4). Only ΔtonB mutants showed 

reduced growth in MM9 medium compared to the wild-type (figure 5.3). 

Growth was restored by addition of 100µM FeSO4, suggesting that the decrease 

in growth was as a result of a reduced ability to take up ferric iron (figure 5.3C 

and D).  

Supplementation of MM9 with 100µM DIP resulted in slight reductions in 

growth for GMB104es, GMB104a, GMB104esy and GMB104asy, with larger 

reductions in growth rate observed for GMB91e, GMB104eas and GMB104easy 

(figure 5.3). This indicates that aerobactin or enterobactin production is 

required to maintain growth equivalent to the wild-type under iron limitation, 

supporting the observation that enterobactin and aerobactin are expressed at a 

higher level compared to salmochelin and yersiniabactin in MM9 medium. The 

GMB104eas mutant, which can only secrete yersiniabactin, grew poorly 

compared to the other triple knockout mutants GMB104esy and GMB104asy. 

This is consistent with the expression results for yersiniabactin, which was 

expressed 600-fold lower than enterobactin and aerobactin. The salmochelin 

deletion mutant appeared to have no change in fitness compared to the wild-

type. This is most likely due to the fact that salmochelin is synthesised by 

modification of enterobactin. Therefore, if salmochelin is not produced, the 

bacteria can still obtain iron through unmodified enterobactin in vitro. 
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Figure 5.3: Growth curves of strains GMB104 and GMB91 and their siderophore 

biosynthesis and tonB mutants in MM9 medium and MM9 medium supplemented 

with 100µM 2,2’-dipyridyl (DIP) or FeSO4 at 37°C and pH 7.0. A) GMB104 single 

deletion mutants GMB104e, GMB104a, GMB104s and GMB104y B) GMB91e mutant C) 

GMB104t mutant D) GMB91t mutant E) GMB104 triple and quadruple deletion mutants 

GMB104asy, GMB104esy, GMB104eas and GMB104easy. Results show the mean ± 

standard error (n = 3). See table 2.3 for full details of mutants. 
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5.4.2 Csàky and Arnow assays 

To assess production of individual siderophores by biosynthesis and ΔtonB 

mutants, Csàky and Arnow assays were performed that can measure 

hydroxamate (aerobactin) and catecholate-type (enterobactin and salmochelin) 

siderophores respectively. Production of aerobactin was not detected in 

GMB104 mutants lacking the iucABCD locus (GMB104a and GMB104easy) 

(figure 5.4A). The Arnow assay showed that production of enterobactin and/or 

salmochelin was reduced in GMB91e, GMB104es, GMB104eas and GMB104easy 

(figure 5.4B), showing gene deletions successfully removed siderophore 

synthesis activity. The salmochelin deletion mutant GMB104s did not show a 

reduction in the amount of catecholate-type siderophores, due to enterobactin 

production. Interestingly, enterobactin production appeared to be increased in 

the GMB104asy mutant, which may be as a result of compensation for the loss 

of aerobactin synthesis. However, the GMB91 and GMB104 ΔtonB mutants did 

not display hyperproduction of enterobactin and/or salmochelin compared to 

the wild-type, so it is unclear whether reduced siderophore uptake does result 

in increased enterobactin production. The GMB104 ΔtonB mutant did, however, 

display increased aerobactin production compared to the wild-type.  
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Figure 5.4: Csàky and Arnow assays to measure production of hydroxamate and 

catecholate siderophores respectively. A) Hydroxamate (aerobactin) and B) 

catecholate (enterobactin and salmochelin) production was measured in MM9 medium 

at pH 7.0 with glucose at 37°C. No production was detected in mutants lacking the 

required biosynthesis genes. Results show the mean ± standard error (n = 3). Statistical 

significance was determined using the Student’s t-test; *p<0.05, **p<0.01 

5.4.3 Liquid CAS assay 

Total siderophore production by mutant and wild-type strains was assessed 

using the liquid CAS assay with glucose or glycerol as the sole carbon source. 
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GMB104 mutants that produced aerobactin (GMB104es, GMB104s, GMB104y 

and GMB104esy) had similar total siderophore production levels to the wild-

type when grown on both glycerol and glucose (figure 5.5). This supports the 

link between high siderophore production and the presence of the aerobactin 

locus (Chapter 4, section 4.4.3). GMB104a and GMB104asy, which are unable to 

produce aerobactin, but are able to synthesise enterobactin, showed reduced 

siderophore production in the presence of glucose but not glycerol. This 

reduction of siderophore production in the presence of glucose is also 

observable in the GMB91 wild-type, which only possesses enterobactin. These 

results support observations that siderophore production is only maintained in 

E. coli isolates that possess the aerobactin locus when grown on glucose (figure 

4.7). This suggests that under the growth conditions used in this study, only 

enterobactin, and, by extension, salmochelin, are under carbon catabolite 

repression by glucose. Unfortunately, as salmochelin is produced from 

enterobactin, it is not possible to construct a mutant that is only able to 

synthesise salmochelin, so the direct effect of carbon source on salmochelin 

production cannot be determined.  

Three mutants, GMB104eas, GMB104easy and GMB91e, all showed very low 

siderophore production levels in the presence of glucose or glycerol (figure 5.5). 

GMB91e and GMB104easy mutants should both be unable to produce any 

siderophores. However, GMB104eas is still capable of synthesising 

yersiniabactin, suggesting that environmental factors other than iron starvation 

are needed to induce yersiniabactin expression in this strain of E. coli, 

supporting the observation of low yersiniabactin expression in MM9 medium. 

The ΔtonB mutants for both GMB91 and GMB104 strains, which can produce 

but not internalise siderophores, showed hypersecretion of siderophores, with 

increases in siderophore production of approximately 100% for both GMB91t 

and GMB104t in glucose, and increases of 53.5% and 400.2% in glycerol for 

GMB104t and GMB91t respectively (figure 5.5). This is slightly in contrast to the 

Arnow assay (figure 5.4), which showed no increase in catecholate siderophore 

production for GMB91t. 
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Figure 5.5: Total siderophore production by siderophore biosynthesis and ΔtonB 

mutants of E. coli isolates GMB104 and GMB91. Production was measured in MM9 

medium with either glucose or glycerol as the sole carbon source at pH 7.0 and 37°C. 

Bar graph shows percent siderophore units, calculated using [(Areference – 

Asample)/Areference], where the reference is MM9 medium mixed with CAS assay solution. 

Results show the mean ± standard error (n = 3). Statistical significance was determined 

using the Student’s t-test; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

5.4.4 Carbon source utilisation by siderophore biosynthesis 

mutants 

GN2 BIOLOG plates were used to identify the carbon utilisation ability for each 

siderophore mutant at 37°C. Carbon utilisation profiles were used to calculate 

correlations between mutants and carbon sources to construct PCA (principal 

component analysis) plots. We analysed both the variation in carbon source 

utilisation between mutants and the wild-type, as well as differences between 

each carbon source. Plots show the spread of the data based on the two 

principal components (variables) that explain most of this variation. 

Investigating the variation between mutants, there was a clear separation of the 

two genetic backgrounds based on carbon source utilisation, as only GMB91 

was able to metabolise D-galactonic acid lactone (figure 5.6A). There was also a 

clear separation of mutants that had a significantly reduced ability to take up 
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iron (GMB91e, GMB91t, GMB104eas, GMB104easy and GMB104t) from their 

respective wild-type. This could be as a result of mutants being unable to utilise 

certain carbon sources due to low intracellular iron levels.   

The analysis of the utilisation profile of individual carbon sources identified a 

group that are associated with lower growth in ΔtonB and GMB91e, GMB104eas 

and GMB104eas mutants (figure 5.6B). Both succinic acid and bromosuccinic 

acid appear to be unable to support growth of these five mutants, supporting 

observations of Δfur and ryhB hyperexpression mutants having poor growth on 

succinate (Hantke, 1987; Wassarman et al., 2001) due to inhibition of the TCA 

cycle (Massé and Gottesman, 2002; Seo et al., 2014). These five mutants also 

showed no growth after 48h on propionic acid, which is metabolised through 

the activity of the prpECDB operon, which has recently been shown to have 

altered expression in an E. coli K-12 strain MG1655 Δfur mutant (Seo et al., 

2014).  The amino acids D-alanine and L-proline were also unable to support the 

growth of several mutants (GMB91t, GMB104easy and GMB104t). The dadX and 

dadA genes involved in D-alanine metabolism and the putA gene involved in L-

proline degradation have been shown to have altered expression in a Δfur 

mutant (Seo et al., 2014). Proline metabolism also yields fumarate, which is 

metabolised through the TCA cycle. Two carbon sources, p-hydroxylacetic acid 

and D-saccharic acid, were unable to support growth of GMB104 strain mutants 

(GMB104eas, GMB104easy and GMB104t) after 48h, but GMB91 mutants could 

grow, albeit to a reduced degree compared to the wild-type. This suggests 

possible differences in the metabolism of these two carbon sources between 

strains. Alternatively, GMB104 mutants may be more iron deprived due to the 

presence or absence of alternative iron uptake systems in GMB91 and GMB104. 
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Figure 5.6: Principal component analysis (PCA) diagrams from carbon source 

utilisation profiles on GN2 BIOLOG plates of GMB91 and GMB104 siderophore 

biosynthesis and ΔtonB mutants. A) PCA biplot displaying the variance of the carbon 

utilisation among the strains tested (n = 13). B) PCA biplot displaying the variance of 

utilisation among carbon sources (n = 96). The red arrows indicate variable PCA scores 

in the direction of increasing value for each variable. 
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Many of the mutants displayed reduced growth after 48h on several carbon 

sources. One possible reason for this reduction in growth could be a switch from 

oxidative phosphorylation (TCA cycle) to fermentative pathways as proposed in 

other studies (O'Brien et al., 2013; Seo et al., 2014), which could result in slower 

growth, and a trend for reduced growth in severely iron deprived mutants for 

most carbon sources. However, there are a few carbon sources, D-glucose, L-

arabinose, D-fructose and α-D-glucose-1-phosphate, which supported higher 

growth in siderophore knockout mutants, but not in the ΔtonB mutants. This 

suggests that siderophore production has a metabolic cost during growth on 

these sugars. 

5.5 Siderophore expression in vivo 

To assess a possible role for additional siderophore systems to enterobactin in 

the GI-tract, the expression of one biosynthesis gene for all four siderophores 

was measured in the colon contents of mice orally gavaged with strain GMB104. 

Analysis of semi-quantitative results showed that siderophore biosynthesis gene 

expression was lower in the colon compared to in vitro (figure 5.7B). However, 

expression of enterobactin, salmochelin and aerobactin was detected within the 

colon (figure 5.7A). Expression of salmochelin was 2.4 and 2.1-fold higher than 

enterobactin and aerobactin respectively. Yersiniabactin gene expression was 

not detectable, suggesting it does not play a role in the colon. 
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Figure 5.7: Gene expression levels of siderophore biosynthesis genes in the mouse 

colon. The expression of one biosynthesis gene for each siderophore system present in 

GMB104 was determined; entC (enterobactin), iroB (salmochelin), irp2 (salmochelin), 

iucA (aerobactin). A) Expression of siderophore biosynthesis genes relative to rpoB. B) 

Expression in the mouse colon compared to expression in MM9 medium. Results show 

the mean ± standard error (nmice = 4, nMM9 = 3). Statistical significance was determined 

using the Student’s t-test. In case of multiple tests, the significance of individual t-tests 

was determined using the Benjamini and Hochberg False discovery method; *p<0.05, 

**p<0.01, ***p<0.001.  

5.6 Siderophore mutant competitive index assays in vivo 

To determine whether siderophore production or uptake conferred a fitness 

advantage within the GI-tract, competitive index assays were performed in mice 

using 1:1 mixtures of the wild-type and a mutant (GMB104t, GMB91t or 
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GMB91e). CFU counts detected in faecal samples were lower by approximately 

2.5 logs by the end of the experiment (28 days) for both GMB104t and GMB91t 

compared to wild-type strains (figure 5.8), suggesting that they had reduced 

fitness in the gut and ferric iron is important for GI-tract colonisation. GMB91e, 

in contrast, did not show any change in colonisation ability compared to the 

wild-type (figure 5.8). Together these results indicate that although ferric iron 

uptake is important in the GI-tract, siderophore production may not be required 

to obtain the necessary amount. However, it is important to highlight that the 

GMB91e mutant retains the enterobactin receptor, so it may be able to utilise 

siderophores secreted by the wild-type and mask any reduction in fitness. 

By extension, the wild-type may also be able to cheat in the ΔtonB competition 

assays. ΔtonB mutants hypersecrete siderophores, as shown by the liquid CAS 

assay (figure 5.5), which would be available for the wild-type. It is interesting 

then, that the CFU levels for the wild-type are increased at the end of the 

experiment, at 2.28x107 and 5.96x108 CFU/g faeces for GMB104 and GMB91 

respectively. This is quite high compared to the 9.3x105 CFU/g faeces measured 

for GMB91 in the GMB91e competitive index assay. 
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Figure 5.8: ΔtonB mutants show reduced colonisation of the GI-tract compared to 

wild-type strains. No significant difference in colonisation was seen for GMB91 ΔentC 

mutant. In each group, mice were orally gavaged with a 1:1 mixture of a mutant strain 

and the wild-type parent strain (day 0). If the gene of interest confers a competitive 

advantage in the GI-tract, the wild-type is expected to outcompete the mutant and 

become dominant. If the gene has no competitive advantage, the mutant and wild-type 

should colonise the gut at similar levels. Mice were monitored for 4 weeks. Results 

show mean faecal CFU/g ± standard error (n = 5). Statistical significance was 

determined using the Student’s t-test; *p<0.05. 

5.7 Discussion 

Observed differences in siderophore production between the ECOR-F and GMB 

collections were not fully explained by differences in siderophore system 

presence, as discussed in Chapter 4. Investigating the expression of siderophore 

biosynthesis genes confirmed that the four siderophore systems had differing 

expression, which could indicate variations in gene regulation. Aerobactin and 

enterobactin were the most highly expressed. This was supported by 

siderophore mutants that were unable to produce both of these siderophores 
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having the greatest growth reduction under low iron conditions. The variation 

observed in siderophore production on CAS agar plates correlated with the 

variation in expression of enterobactin and salmochelin.  

Interestingly, yersiniabactin was not highly expressed in any of the eight GMB 

strains studied. Induction of yersiniabactin was achieved in strain GMB104 on 

the addition of 2,2’-dipyridyl to NB medium, however, expression levels were 

still lower than those observed for all other siderophores when grown in NB 

with sufficient iron availability. It is possible that low levels of yersiniabactin are 

sufficient to mediate iron uptake, as each siderophore is able to bind and 

transport iron differently. Aerobactin, for example, has been shown to support 

growth of E. coli at lower concentrations than enterobactin (Williams and 

Carbonetti, 1986). However, the fact that the GMB104eas mutant displays a 

much greater reduction in growth under iron limitation compared to the other 

triple mutants GMB104esy and GMB104asy, suggests that insufficient levels of 

yersiniabactin are being produced. This is in contrast to siderophore production 

data for E. coli strain Nissle 1917 (Valdebenito et al., 2006) and E. coli ABU and 

UTI strains (Watts et al., 2012) which displayed high yersiniabactin production 

levels. However, it has been shown that faecal isolates have reduced production 

of yersiniabactin and salmochelin in comparison to UTI strains (Henderson et al., 

2009). It is possible that the GMB strains used in this study do not have the 

correct genetic background, or are unable to express yersiniabactin at high 

levels under the conditions tested.  

The yersiniabactin locus encodes an AraC-type regulator, ybtA, which has been 

shown to induce expression of yersiniabactin biosynthesis genes (Fetherston et 

al., 1996). However, the activity of YbtA is dependent on yersiniabactin-Fe3+ as a 

co-factor, resulting in yersiniabactin production positively regulating itself 

(Anisimov et al., 2005b). None of the other siderophore systems have been 

shown to have a similar feedback mechanism, so it is possible that this may be 

responsible for the different expression of yersiniabactin.  
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It has been proposed that there is a metabolic cost associated with siderophore 

production, which has been used as an explanation for the appearance of 

cheaters that are able to internalise siderophores produced by neighbouring 

cells (Griffin et al., 2004; Henderson et al., 2009; Lv et al., 2014). This metabolic 

cost may explain why the siderophore biosynthesis mutants displayed higher 

growth on some sugars in the BIOLOG assay. E. coli siderophore biosynthesis 

mutants have been shown to have different metabolic profiles compared to 

wild-type strains when grown in monoculture (Lv et al., 2014). It is possible that 

changes in iron uptake, as a result of removing siderophore activity, results in 

altered metabolism by changing iron availability within the cell. Alternatively, 

the increased availability of compounds used to make siderophores may alter 

metabolic pathways. Although a link between carbon source utilisation and iron 

uptake has been observed (Zhang et al., 2005), further work is needed to 

understand all the metabolic pathways influenced by siderophore production. It 

is possible that individual siderophores have a specific cost that influences 

nutrient uptake and growth. The fact that aerobactin was expressed at a 

consistently high level, even during growth in high iron conditions, could 

therefore be associated with an elevated metabolic cost. Therefore, there might 

be a weak selective pressure for the maintenance of this locus in E. coli strains 

that do not require aerobactin for iron acquisition. Interestingly, aerobactin 

prevalence is very low in environmental E. coli compared to faecal isolates, 

suggesting a more important role of aerobactin in the GI-tract (figure 4.4). In the 

pathogenic E. coli strain UTI89, salmochelin production in particular was linked 

to significant changes in the metabolome, possibly because salmochelin 

synthesis consumes UDP-glucose from the gluconeogenesis pathway (Lv et al., 

2014). However, there were no clear differences in carbon utilisation profile on 

BIOLOG plates for the salmochelin mutants used in this study.  

It is also important to take into consideration the ability of a cell to re-use 

siderophores. Iron release from enterobactin and salmochelin requires these 

siderophores to be hydrolysed due to their high affinity for Fe3+ (Langman et al., 

1972; Ratledge and Dover, 2000). This produces dihydroxybenzoic acid (DHBA) 
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in the case of enterobactin, which can also act as a siderophore, although with a 

much reduced binding affinity for iron (Hantke, 1990). Glucosyl-DHBA produced 

from breakdown of salmochelin has been hypothesised as not being re-usable 

by E. coli, rendering salmochelin production more costly to a bacterium (Lv et 

al., 2014). Aerobactin is not hydrolysed during iron release, and can be recycled 

by cells (Braun et al., 1984). No hydrolases have been described for 

yersiniabactin (Garenaux et al., 2011), so it is possible that yersiniabactin can 

also be recycled.  

Several carbon sources on the BIOLOG plates were influenced by intracellular 

iron availability. The mutants that displayed the biggest differences in carbon 

source utilisation compared to the wild-type were those most hampered in their 

ability to take up iron, and thus having the lowest intracellular iron levels. 

Intracellular iron levels may also modulate carbon source utilisation, possibly as 

a result of alterations in iron incorporation into enzymes involved in 

metabolism. Δfur mutants have been shown to be unable to grow on succinate 

(Hantke, 1987) and strains that overexpress RyhB grow poorly (Wassarman et 

al., 2001), most likely as a result of the succinate dehydrogenase (SdhCDAB) 

enzyme being inhibited by RyhB (Massé and Gottesman, 2002; Seo et al., 2014). 

Another enzyme in the TCA cycle, aconitase (AcnA), has also been shown to be 

regulated by Fur and RyhB, resulting in reduced expression during iron 

starvation (Seo et al., 2014). Regulation of the TCA cycle has been suggested to 

enable cells to switch from oxidative phosphorylation to fermentation pathways 

in response to reduced iron availability (O'Brien et al., 2013; Seo et al., 2014), 

most likely due to several of the enzymes involved in the TCA cycle requiring 

iron (Py and Barras, 2010). 

Despite the availability of information about siderophore-mediated iron 

acquisition, it is not clear how having higher production and a more diverse 

repertoire of siderophores may benefit gut commensal E. coli. The fact that the 

four siderophore systems appear to be differentially regulated and are 

expressed and produced at different levels depending on environmental 

conditions, such as carbon source and pH (Valdebenito et al., 2006; Watts et al., 
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2012), suggests that multiple siderophore systems may be beneficial in the 

temporally heterogeneous environment found in the GI-tract. Strains possessing 

several siderophore systems could also have an advantage in the densely 

populated gut environment when in competition with bacteria that utilise a 

narrower range of siderophores. Siderophore biosynthesis gene expression was 

detected in vivo for enterobactin, salmochelin and aerobactin, suggesting that 

multiple siderophores are utilised in the GI-tract. This expression was much 

lower than that observed in vitro, suggesting that E. coli is not severely iron-

starved in the healthy gut environment, and that iron uptake via siderophores is 

limited.  

No expression of yersiniabactin could be detected, suggesting that it is not used 

in the gut. This, along with the observed low in vitro expression, raises the 

question of when yersiniabactin is utilised by commensal E. coli strains. Its rapid 

spread through E. coli strains suggests that it has a role in the commensal 

lifestyle (Johnson, Delavari, Kuskowski and Stell, 2001; Schubert et al., 2009; van 

Elsas et al., 2011), which was supported by our earlier observations that 

yersiniabactin is more prevalent in host-associated E. coli isolates (figure 4.4). 

The salmochelin biosynthesis gene iroB had a higher level of expression in the 

colon compared to entB (enterobactin). This may be because enterobactin has a 

reduced ability to bind iron within the GI-tract due to binding of host molecules, 

such as lipocalin-2, which are secreted into the intestinal lumen (Raffatellu et 

al., 2009; Chassaing et al., 2012). Also, salmochelin expression and production 

has been shown to be induced under slightly alkaline conditions (Foster et al., 

1994), such as those found in the lower intestine (Evans et al., 1988; Fallingborg, 

1999; Engevik et al., 2013).  

Competitive index assays showed that both ΔtonB mutants had a 2.5 log 

reduction in colonisation compared to the wild-type, suggesting an important 

role for ferric iron uptake in GI-tract colonisation. ΔtonB mutants hypersecrete 

siderophores, as shown by liquid CAS assays, which may result in them 

becoming iron starved in the gut. As E. coli is thought to reside in the mucus 

layer in the gut, siderophore diffusion may be limited due to the viscosity of the 
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mucus (Kümmerli et al., 2009). As a result, ΔtonB mutants secreting large 

amounts of siderophores trap any iron surrounding the cell, preventing it from 

being internalised by other ferric uptake systems. Catecholate uptake E. coli K-

12 strain MG1655 mutants have been shown to hypersecrete enterobactin and 

also have significant reduction in colonisation compared to the wild-type (Pi et 

al., 2012). However, in both our study and in Pi et al. (2012) the wild-type in 

these competition assays was detected at much higher densities than when 

competed against mutants that do not hypersecrete siderophores. This suggests 

that the wild-type may be cheating by utilising siderophores produced by ΔtonB 

mutants, enabling higher levels of growth. As a result, ΔtonB mutants may not 

have reduced fitness or colonisation ability in the GI-tract. This is supported by 

the observation that E. coli strain Nissle 1917 ΔtonB mutants are able to 

colonise the gut as well as the wild-type when they colonise separately (Deriu et 

al., 2013). In Pi et al. (2012) ΔtonB mutants showed very poor colonisation of 

the GI-tract, becoming undetectable after 5 days in competitive index assays. 

However, our competitive index assays were carried out in mice pre-treated 

with ampicillin and neomycin and then the microbiota was allowed to recover 

during the assay. In contrast, the assays by Pi et al. (2012) used streptomycin-

treated mice that received antibiotics for the duration of the study. 

Streptomycin is known to increase inflammation in the gut (Spees et al., 2013), 

during which lipocalin-2 production is increased (Chassaing et al., 2012) and 

oxygen levels may also increase (Rigottier-Gois, 2013), making siderophore 

production and Fe3+ uptake more important. This could also explain why Pi et al. 

(2012) observed reduced colonisation by enterobactin synthesis mutants, while 

in our studies there was no difference in colonisation between GMB91e and the 

wild-type.  

Our analyses have highlighted the heterogeneity of regulation and production of 

siderophores in E. coli. This probably reflects large strain-dependent differences 

in the requirement for siderophores and the diversity of environments that E. 

coli can adapt to. While our epidemiological data indicates an important role for 

siderophore biosynthesis in the GI-tract, we did not observe significant 
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differences in the competitiveness of a siderophore biosynthesis mutant 

(GMB91e) in a mouse model. Whether this is linked to the ability of mutants to 

cheat and use siderophores generated by the wild-type strain or to obtain iron 

through other ways remains to be determined. Although this initial competitive 

index assay result suggests that siderophore production does not influence E. 

coli fitness in the GI-tract, further studies are needed to investigate whether this 

is the case for other E. coli strains. 
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6. Conclusions 

The aim of this project was to use comparative approaches to investigate traits 

associated with colonisation of the GI-tract. We developed a new technique for 

monitoring individual strains of E. coli in mixed populations to be able to assess 

the fitness of multiple strains in parallel in different environments. This 

barcoding method can potentially be used on large numbers of strains, and may 

provide greater sensitivity compared to currently available techniques, many of 

which rely on sampling colonies isolated from a population (Lautenbach et al., 

2008). This technique was also relatively efficient, providing a high rate of 

insertion (77%) and a low rate of phenotypic changes (19%) when barcoding 

strains. The RT-PCR used for barcode detection showed a large dynamic range 

and good sensitivity, which was increased when using high-throughput 

sequencing for the quantification of barcoded strains. Importantly, this 

sensitivity allowed for the identification of sub-dominant strains which may not 

be detected using currently available alternative techniques that are limited by 

sampling size (Lautenbach et al., 2008; Smati et al., 2013). We showed 

barcoding can be used to reliably characterise populations in different complex 

environments, including the GI-tract and soil. Barcoding has the potential to be 

a powerful tool for assessing population dynamics in E. coli populations which 

can be adapted to other bacteria. Together with genome-wide association 

studies, barcode competition studies may be able to identify adaptive traits 

associated with certain environments. 

For this project, competition studies were performed using several ECOR and 

GMB strains to identify which strains have increased abundance, and by 

extension, fitness in certain environments. Using the assumption that the 

environment shapes the associated E. coli population and influences gene 

distribution (Bergholz et al., 2011; Méric et al., 2013), we hypothesised that E. 

coli isolated from the faeces of healthy hosts would be enriched with genes 

involved in gut adaptation. Therefore ECOR-F strains should display increased 

fitness in the GI-tract compared to strains isolated from non-host environments, 

such as plants (GMB). However, ECOR strains surprisingly showed poor 
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abundance in the first competition study performed in mice, both in faecal 

samples and final gut content (figure 3.7). This may be as a result of the ECOR 

collection being approximately 30 years older than the GMB collection, possibly 

becoming compromised due to long term storage as has been previously 

observed (Lang and Malik, 1996; Johnson, Delavari, Stell, et al., 2001; Prakash et 

al., 2012). As a result, a full GMB and ECOR comparison was not performed in 

our competition studies, with only GMB strains being used for subsequent 

experiments, the majority of which were isolated from spinach (see table A.1). If 

long term storage is responsible for the reduced colonisation ability of ECOR 

strains in the gut, more recently isolated faecal E. coli strains could be used to 

perform further competition studies. 

However, our mouse competition study results suggest that there may be 

differences in prevalence between strains based on phylogenetic group, as has 

been observed previously in several different hosts (reviewed in Tenallion et al., 

2010). The fact that the phylogenetic population structure is different between 

faecal and non-host isolates suggests that phylogroup is important in 

environmental fitness (Bergholz et al., 2011; Méric et al., 2013). Our results 

showed that B2 group strains were dominant in most mouse faecal samples 

analysed. Strains in the B2 group have been suggested to be host-specialists, 

being limited to endothermic vertebrates (Gordon and Cowling, 2003), which 

includes mice. However, we determined fitness by measuring the abundance of 

individual strains in faecal samples, which has been shown to underrepresent 

the number of strains present in the whole GI-tract (Zoetendal et al., 2002; Dixit 

et al., 2004; Schierack et al., 2009; Abraham et al., 2012; Gordon et al., 2015). It 

has been observed that different phylogroups of E. coli have increased 

prevalence in different regions of the porcine GI-tract, suggesting that they are 

adapted to different niches within the gut (Dixit et al., 2004). This may result in a 

reduced prevalence of certain groups or strains in faecal samples, which may 

more closely represent the populations present in the rectum and distal colon 

(Dixit et al., 2004). This may explain the differences we observed in phylogroup 

prevalence in the mouse competition studies. Analysis of the intestinal content 
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samples from the second mouse experiment should help determine whether 

there were differences in the distribution of phylogenetic groups between the 

distal colon, proximal colon, caecum and ileum in our study. It is important to 

highlight, however, that few strains were used in our competition experiments, 

so further studies are needed to confirm these general observations about 

phylogeny and colonisation ability.  

As E. coli is considered to have a biphasic lifestyle, switching from internal (host) 

to external (non-host) environments (van Elsas et al., 2011), it is not clear how 

easy it is to distinguish between “host associated” and “non-host associated” 

strains. The difference in phylogenetic population structure between isolates 

from host and non-host environments suggests that these two populations are 

unique and may possess genes and phenotypes that are beneficial for their 

respective environments, as has been previously observed (Méric et al., 2013). 

However, the original source of the non-host isolates used in this study (the 

GMB collection) is unknown and may have arisen from a recent faecal 

contamination event. For this reason, it is unclear to what extent the GMB and 

ECOR collections are different. Although our soil competition study showed a 

relatively similar initial die-off for different strains of E. coli (figure 3.14), only 

GMB isolates were used, so it is not possible to determine whether host and 

non-host strains may have differences in environmental persistence. Further 

studies are required to investigate how host and non-host populations of E. coli 

are formed and interact with one another. 

A population-level comparison between the ECOR-F and GMB collections did, 

however, show a difference in siderophore production levels with ECOR strains 

producing a higher amount of siderophores. It is possible that higher 

siderophore production and the possession of multiple siderophore systems 

increase fitness in the GI-tract to a greater extent than in the external 

environment. Although siderophore genes (salmochelin and enterobactin) were 

shown to have increased expression in S. enterica Typhimurium in alfalfa root 

exudates (Hao et al., 2012), it is not clear to what extent E. coli requires 

siderophores for survival and growth on plants. Ferric iron availability is not 
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homogeneous on leaves (Joyner and Lindow, 2000; Leveau and Lindow, 2001) 

and can be reduced by the presence of polyphenolic compounds or oxalic acid 

that can sequester iron (Karamanoli et al., 2011), as can be found in spinach and 

rocket. However, the requirement for high production levels of siderophores 

may also depend on the microbiota found on plants and how they compete for 

iron. The density of bacteria present on leaves has been measured as up to 108 

CFU/g (Hirano and Upper, 2000; Lindow and Brandl, 2003), whereas the 

microbiota in the GI-tract of both humans and mice can reach densities of 1011-

1012 CFU/g (Berg, 1996; Lee et al., 2013), leading to potentially higher levels of 

competition for iron in the gut. Which siderophores surrounding bacteria are 

using is also important, as competing bacteria that utilise siderophores with 

higher affinities for Fe3+ may inhibit the growth of E. coli (Weaver and Kolter, 

2004; Joshi et al., 2006). Also, within the host, lipocalin-2 is secreted into the 

lumen of the GI-tract, which binds to enterobactin and prevents its function 

(Chassaing et al., 2014). This may result in a selective pressure in the gut for E. 

coli to possess multiple siderophore systems.  

Aerobactin production was associated with high total siderophore production 

and was more frequently found in ECOR-F strains compared to GMB isolates. 

Aerobactin has been shown previously to be enriched in intestinal E. coli 

isolates, supporting a possible association with the GI-tract environment 

(Nowrouzian et al. 2001a; 2001b). The aerobactin system can be found either 

within the chromosome or on ColV or ColBM plasmids (De Lorenzo et al., 1986; 

Gao et al., 2014), which may influence its spread through the E. coli population. 

It is possible that the close proximity of bacteria and environmental conditions 

within the GI-tract support a higher level of HGT compared to on plants. 

However, the salmochelin system can also be carried on ColV or ColBM plasmids 

(Gao et al., 2014), but does not show an increased prevalence in ECOR-F 

isolates. The multiplex PCRs used in this study were unable to distinguish 

between chromosomal and plasmid aerobactin and salmochelin genes, so it is 

not clear to what extent plasmid carriage is responsible for the differences in 

prevalence of these two systems within the GMB and ECOR-F collections. 
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Neither of the strains possessing aerobactin (GMB104 and GMB23) did well in 

mouse competition study 2; however, both of these strains were from 

phylogroup A, which was in general detected at low levels in faecal samples. 

This suggests that aerobactin production alone is not a strong indicator of 

increased fitness in the gut. Also, initial competitive index assays did not support 

our hypothesis that siderophores were important in E. coli colonisation and 

persistence in the GI-tract. Earlier observations showed decreased colonisation 

of E. coli K-12 strain MG1655 ΔentA mutants (Pi et al., 2012). However, our 

competitive index assay results may contradict those by Pi et al. (2012) as a 

result of experimental design. The antibiotic treatment was different, with 

antibiotics being administered throughout the Pi et al. (2012) study, rather than 

being removed before gavage. Removal of antibiotics may have resulted in 

changes in the microbiota (Manichanh et al., 2010; Panda et al., 2014; Linninge 

et al., 2015), or a reduction in inflammation (Vijay-Kumar et al., 2010; Spees et 

al., 2013), which may have altered the requirement for siderophores. Further 

competitive index assays in a mouse inflammation model or during prolonged 

antibiotic treatment may determine whether siderophore use is altered. In 

agreement with Pi et al. (2012), we observed that the tonB mutants were 

reduced in comparison to the wild-type, but it was not possible to determine 

whether cheating was occurring. As a result, we were unable to confirm 

whether ferric iron uptake was required for increased fitness in the gut. Also, as 

only a small number of strains were used in the competition studies and 

competitive index assays, further experiments are required to determine 

whether siderophore production has a role in GI-tract colonisation by E. coli. 

It is possible that differences on the distribution of phylogroups between 

environments may contribute to observed differences in siderophore 

production and gene presence. We observed that more siderophore systems 

were present on average in ECOR-F isolates compared to GMB strains (figure 

4.3); however, a larger proportion of the ECOR collection belongs to the B2 

phylogenetic group. Our multiplex PCRs showed that the B2 group was enriched 

for siderophore systems compared to other phylogenetic groups, particularly 
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yersiniabactin and salmochelin. However, no significant differences were 

observed in siderophore production on CAS plates between phylogenetic groups 

(data not shown). As a result, although phylogroup may be a strong indicator of 

the possession of multiple siderophore systems, it may not be correlated with 

strain-specific differences in siderophore gene regulation. It is important to 

note, however, that salmochelin and yersiniabactin did not influence total 

siderophore production on CAS plates, as yersiniabactin was not produced 

under the conditions used in our studies and salmochelin would replace 

enterobactin. This may be why phylogroup is linked to siderophore gene 

presence, but not siderophore production. 

The observed differences between ECOR-F and GMB in siderophore production 

seem largely explained by aerobactin gene presence or absence. However, only 

12.7% of the isolates used in this study possessed the aerobactin system and 

significant differences were observed in strains that only possessed 

enterobactin (figure 4.5), suggesting that expression and regulation of 

siderophore genes explains a large amount of variation in siderophore 

production between individual strains. We observed differences in expression 

for the four siderophore systems in E. coli when grown under iron limitation, 

with a strong correlation between enterobactin/salmochelin expression and 

overall siderophore production (figure 5.1). Regulation of siderophore 

production, through the Fur protein, is tightly controlled alongside other 

systems, such as iron storage and the redox stress response, to maintain an 

optimal level of intracellular iron (Andrews et al., 2003). Factors, both within the 

bacterial cell that alter iron requirement and outside the cell in the environment 

that influence iron availability, can potentially alter the regulation and 

expression of siderophore systems. 

The liquid CAS, Csàky and Arnow assays of wild-type strains and siderophore 

knockout mutants confirmed changes in siderophore production depending on 

carbon source that have been previously observed in E. coli strain Nissle 1917 

(Valdebenito et al., 2006). As different metabolic pathways require different 

enzymes, changes in carbon source can affect the iron requirement of a cell.  
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For example, growth on glycerol requires respiration and involves the TCA cycle, 

which requires iron, whereas iron demand may be reduced during growth on 

glucose, which can be used during fermentation (Valdebenito et al., 2006; Seo 

et al., 2014). As a result, siderophore production may be under carbon 

catabolite repression, possibly through the activity of CRP (Zhan et al., 2005). 

We further examined the link between carbon source and iron homeostasis in E. 

coli using GN2 BIOLOG plates and observed altered metabolism in several of our 

siderophore knockout mutants. Our results support observations of changes in 

metabolic pathways towards fermentation to reduce the requirement for iron 

when iron availability is low (O’Brien et al., 2013; Seo et al., 2014). As carbon 

source availability is different depending on environment, the requirement for 

iron may change between host and non-host environments. Alternatively, the 

production of siderophores may alter carbon source use and metabolism in cells 

as has been observed in E. coli siderophore biosynthesis mutants (Lv et al., 

2014). It is highly likely that, as both iron and carbon are essential components 

of bacterial cells, alterations in the acquisition or utilisation of either of these 

nutrients will greatly affect growth and gene expression in bacteria. 

Other factors have also been shown to affect siderophore use, including pH 

(Valdebenito et al., 2006), competing bacteria in the microbiota (Deriu et al., 

2013) and oxygen levels (Zheng et al., 1999). Further studies of individual 

isolates should allow for more detailed characterisation and comparisons and 

help determine how siderophore regulation and production is altered based on 

these environmental factors. The growth conditions used in this study did not 

induce yersiniabactin expression, so further studies may also be able to 

determine what environmental conditions are required for yersiniabactin 

production. However, high levels of yersiniabactin production have been 

observed in for E. coli strain Nissle 1917 (Valdebenito et al., 2006) and E. coli 

ABU and UTI strains (Watts et al., 2012) under growth conditions similar to 

those used in our study. It is possible that the strains used in this study do not 

have the correct genetic background, or are unable to express yersiniabactin at 

high levels under the conditions tested. 
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In conclusion, this work has added to the evidence that phylogenetic groups in 

E. coli can influence environmental fitness. This may be through differences in 

gene content between groups, as we observed with siderophore genes. 

Although we did not show any clear benefits for siderophore production within 

the GI-tract, further studies should help elucidate more detailed information 

about regulation of siderophores and how this is influenced by feedback from 

the host or non-host environment. Our newly developed barcoding method, 

alongside genome-wide association studies, should allow for the identification 

of other genes or traits that are associated with increased fitness in different 

environments. This knowledge is essential to assess the relationship between 

the environment, the associated E. coli populations and the potential risk they 

represent to human health. 
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Appendices 

 Appendix A: ECOR and GMB isolates 

Table A.1: List of all ECOR and GMB strains. 72 ECOR and 96 GMB isolates were used 

throughout this study. ECOR isolates (Ochman and Selander, 1984) were collected from 

healthy host faecal samples except 11 strains isolated from human urine. GMB isolates 

(Méric et al., 2013) were predominantly taken from the aerial parts of plants except 

four strains collected from soil in a rocket field. *Animal host was located in a zoo 

rather than wild. †Mizuna is the common name for the plant species Brassica rapa 

nipposinica and Brassica juncea var. japonica. ‡Mixed plant sources were from mixed 

salad leaves post-harvest. #Plants listed as other include tatsoi (Brassica narinosa), 

amaranth leaves (Amaranthus spp.), red chard (Beta vulgaris) and watercress 

(Nasturtium officinale). Strains are labelled to indicate which experiments they were 

used in as follows: ain vitro barcode competition study (section 3.4), bmouse 

competition study 1 (section 3.5.1), cmouse competition study 2 (section 3.5.2), dsoil 

competition study (section 3.6), esiderophore gene expression (sections 5.2 and 5.3), 
fsiderophore mutant experiments (sections 5.4-5.6). All strains listed were used in 

multiplex PCRs to determine siderophore gene presence.  

Strain Phylogeny 
Source 

Plant/Host Location 

ECOR01 A Human Iowa (USA) 

ECOR02 A Human New York (USA) 

ECOR03 A Dog (Canis lupus) Massachusetts (USA) 

ECOR04 A Human Iowa (USA) 

ECOR05 A Human Iowa (USA) 

ECOR06 A Human Iowa (USA) 

ECOR07 A Orangutan (Pongo sp.) Washington (USA)* 

ECOR08 A Human Iowa (USA) 

ECOR09 A Human Sweden 

ECOR10 A Human New York (USA) 

ECOR11 A Human (urine) Sweden 

ECOR12 A Human Sweden 

ECOR13 A Human Sweden 

ECOR14 A Human (urine) Sweden 

ECOR15 A Human Sweden 

ECOR16ab A Leopard (Panthera pardus) Washington (USA)* 

ECOR17 A Pig (Sus sp.) Indonesia 

ECOR18 A Celebese ape (Macaca nigra) Washington (USA)* 

ECOR19 A Celebese ape (Macaca nigra) Washington (USA)* 

ECOR20 A Steer (Bos taurus) Bali 

ECOR21 A Steer (Bos taurus) Bali 

ECOR22 A Steer (Bos taurus) Bali 

ECOR23 A Elephant (Elephas maximus) Washington (USA)* 
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ECOR24 A Human Sweden 

ECOR25 A Dog (Canis lupus) New York (USA) 

ECOR26 B1 Human Massachusetts (USA) 

ECOR27 B1 Giraffe (Giraffa camelopardalis) Washington (USA)* 

ECOR28 B1 Human Iowa (USA) 

ECOR29 B1 Kangaroo rat (Dipodomys sp.) Nevada (USA) 

ECOR30 B1 Bison (Bison sp.) Alberta (Canada) 

ECOR31 E Leopard (Panthera pardus) Washington (USA)* 

ECOR32 B1 Giraffe (Giraffa camelopardalis) Washington (USA)* 

ECOR33 B1 Sheep (Ovis sp.) California (USA) 

ECOR34 B1 Dog (Canis lupus) Massachusetts (USA) 

ECOR35 F Human Iowa (USA) 

ECOR36 F Human Sweden 

ECOR37 E Marmoset (Cebuella pygmaea) Washington (USA)* 

ECOR38 F Human Iowa (USA) 

ECOR39 F Human Sweden 

ECOR40 F Human (urine) Sweden 

ECOR41 F Human Tonga 

ECOR42 E Human Massachusetts (USA) 

ECOR43 E Human Sweden 

ECOR44 D Cougar (Puma concolor) Washington (USA)* 

ECOR45 B1 Pig (Sus sp.) Indonesia 

ECOR46 D Celebese ape (Macaca nigra) Washington (USA)* 

ECOR47 D Sheep (Ovis sp.) Papua New Guinea 

ECOR48 D Human (urine) Sweden 

ECOR49a D Human Sweden 

ECOR50 D Human (urine) Sweden 

ECOR51 B2 Human Massachusetts (USA) 

ECOR52 B2 Orangutan (Pongo sp.) Washington (USA)* 

ECOR53 B2 Human Iowa (USA) 

ECOR54 B2 Human Iowa (USA) 

ECOR55ab B2 Human Sweden 

ECOR56 B2 Human (urine) Sweden 

ECOR57 B2 Gorilla (Gorilla gorilla) Washington (USA)* 

ECOR58 B1 Lion (Panthera leo) Washington (USA)* 

ECOR59 B2 Human Massachusetts (USA) 

ECOR60 B2 Human (urine) Sweden 

ECOR61 B2 Human Sweden 

ECOR62 B2 Human (urine) Sweden 

ECOR63 B2 Human Sweden 

ECOR64 B2 Human (urine) Sweden 

ECOR65 B2 Celebese ape (Macaca nigra) Washington (USA)* 

ECOR66 B2 Celebese ape (Macaca nigra) Washington (USA)* 
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ECOR67 B1 Goat (Capra aegagrus) Indonesia 

ECOR68 B1 Giraffe (Giraffa camelopardalis) Washington (USA)* 

ECOR69 B1 Celebese ape (Macaca nigra) Washington (USA)* 

ECOR70 A Gorilla (Gorilla gorilla) Washington (USA)* 

ECOR71 A Human (urine) Sweden 

ECOR72 A Human (urine) Sweden 

GMB01 A Rocket (Eruca sativa) Italy 

GMB02c A Rocket (Eruca sativa) Italy 

GMB03 B1 Rocket (Eruca sativa) King’s Lynn (UK) 

GMB04 D Rocket (Eruca sativa) King’s Lynn (UK) 

GMB05 B1 Mizuna (Brassica spp.)† King’s Lynn (UK) 

GMB06 A Spinach (Spinacia oleracea) Berkshire (UK) 

GMB07abcd B1 Spinach (Spinacia oleracea) Dover (UK) 

GMB10 B1 Spinach (Spinacia oleracea) Martham (UK) 

GMB100e B2 Spinach (Spinacia oleracea) Mixed 

GMB101 B2 Mixed‡ Mixed 

GMB102 B2 Rocket (Eruca sativa) Dorset (UK) 

GMB103 B1 Other# Other 

GMB104cdef A Spinach (Spinacia oleracea) Martham (UK) 

GMB105 B1 Spinach (Spinacia oleracea) Italy 

GMB106 A Spinach (Spinacia oleracea) Martham (UK) 

GMB107 A Mixed‡ Mixed 

GMB108 A Spinach (Spinacia oleracea) Martham (UK) 

GMB13 B1 Spinach (Spinacia oleracea) Berkshire (UK) 

GMB14 B1 Mizuna (Brassica spp.)† King’s Lynn (UK) 

GMB15 D Spinach (Spinacia oleracea) Martham (UK) 

GMB16 B1 Mizuna (Brassica spp.)† Martham (UK) 

GMB17 B1 Mizuna (Brassica spp.)† Martham (UK) 

GMB18cd B1 Spinach (Spinacia oleracea) Dorset (UK) 

GMB19 D Other# Dorset (UK) 

GMB20 A Rocket (Eruca sativa) Martham (UK) 

GMB21 D Spinach (Spinacia oleracea) Martham (UK) 

GMB22 B1 Spinach (Spinacia oleracea) Dorset (UK) 

GMB23cde A Spinach (Spinacia oleracea) Dover (UK) 

GMB24 B1 Spinach (Spinacia oleracea) Martham (UK) 

GMB25 B1 Spinach (Spinacia oleracea) Martham (UK) 

GMB26 B1 Other # Dorset (UK) 

GMB27 A Mizuna (Brassica spp.)† Martham (UK) 

GMB28 B1 Spinach (Spinacia oleracea) Berkshire (UK) 

GMB29 B1 Mixed‡ Martham (UK) 

GMB30e D Spinach (Spinacia oleracea) Dover (UK) 

GMB31 A Spinach (Spinacia oleracea) Dover (UK) 

GMB32c A Spinach (Spinacia oleracea) Dorset (UK) 
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GMB33 A Spinach (Spinacia oleracea) Dorset (UK) 

GMB34abcd A Spinach (Spinacia oleracea) Dorset (UK) 

GMB35 A Other # Martham (UK) 

GMB36 B1 Mizuna (Brassica spp.)† Dorset (UK) 

GMB37 A Spinach (Spinacia oleracea) Dover (UK) 

GMB38 B1 Spinach (Spinacia oleracea) Berkshire (UK) 

GMB39 E Spinach (Spinacia oleracea) Dorset (UK) 

GMB40de B2 Spinach (Spinacia oleracea) Dover (UK) 

GMB41 B1 Other # Dorset (UK) 

GMB43 B1 Spinach (Spinacia oleracea) Dorset (UK) 

GMB44 D Mixed‡ Mixed 

GMB45abcd B2 Spinach (Spinacia oleracea) Mixed 

GMB47 B2 Spinach (Spinacia oleracea) Dover (UK) 

GMB48 A Spinach (Spinacia oleracea) Martham (UK) 

GMB49 B1 Spinach (Spinacia oleracea) Martham (UK) 

GMB50 D Spinach (Spinacia oleracea) Berkshire (UK) 

GMB51 D Spinach (Spinacia oleracea) Berkshire (UK) 

GMB52 D Spinach (Spinacia oleracea) Dover (UK) 

GMB53e B1 Spinach (Spinacia oleracea) Martham (UK) 

GMB54cd D Spinach (Spinacia oleracea) Martham (UK) 

GMB58 B1 Other # Mixed 

GMB59 B1 Rocket (Eruca sativa) Martham (UK) 

GMB60 D Rocket (Eruca sativa) Martham (UK) 

GMB61 D Rocket (Eruca sativa) Martham (UK) 

GMB63 D Rocket (Eruca sativa) Martham (UK) 

GMB64 B1 Rocket (Eruca sativa) Martham (UK) 

GMB65 B1 Rocket (Eruca sativa) Martham (UK) 

GMB66 D Rocket (Eruca sativa) Martham (UK) 

GMB67 A Rocket (Eruca sativa) Martham (UK) 

GMB68 D Rocket (Eruca sativa) Martham (UK) 

GMB69 B1 Rocket (Eruca sativa) Martham (UK) 

GMB70 B1 Rocket (Eruca sativa) Martham (UK) 

GMB71abcd D Rocket (Eruca sativa) Martham (UK) 

GMB72cd D Rocket (Eruca sativa) Martham (UK) 

GMB73 B2 Rocket (Eruca sativa) Martham (UK) 

GMB74 D Rocket (Eruca sativa) Martham (UK) 

GMB76 B2 Rocket (Eruca sativa) Martham (UK) 

GMB77 E Rocket (Eruca sativa) Martham (UK) 

GMB78 E Rocket (Eruca sativa) Martham (UK) 

GMB79 B1 Rocket (Eruca sativa) Martham (UK) 

GMB80 B1 Rocket (Eruca sativa) Martham (UK) 

GMB81 B1 Rocket (Eruca sativa) Martham (UK) 

GMB83 B1 Soil Martham (UK) 
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GMB84 A Soil Martham (UK) 

GMB85 B1 Soil Martham (UK) 

GMB86 B1 Soil Martham (UK) 

GMB87 D Spinach (Spinacia oleracea) Dover (UK) 

GMB88e B1 Spinach (Spinacia oleracea) Martham (UK) 

GMB89 B1 Spinach (Spinacia oleracea) Martham (UK) 

GMB90 A Spinach (Spinacia oleracea) Martham (UK) 

GMB91ef A Spinach (Spinacia oleracea) Mixed 

GMB92 B1 Rocket (Eruca sativa) Dorset (UK) 

GMB93 B2 Spinach (Spinacia oleracea) Martham (UK) 

GMB94 B2 Spinach (Spinacia oleracea) Dover (UK) 

GMB95 A Spinach (Spinacia oleracea) Dover (UK) 

GMB96 D Spinach (Spinacia oleracea) Italy 

GMB97 D Spinach (Spinacia oleracea) Dover (UK) 

GMB98c B2 Spinach (Spinacia oleracea) Dorset (UK) 

GMB99 B1 Rocket (Eruca sativa) Italy 
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Appendix B: Barcode mutant characterisation 

B.1 Barcoded and parental strain E. coli growth curves 

Figure B.1: Growth curves of barcoded and parental strains grown in LB medium at 

37°C. All barcoded strains show equivalent growth to their parental strains. Results 

show the mean ± standard error (n = 3).   
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B.2 GN2 BIOLOG plate list of carbon sources 

Table B.2: Carbon sources on a GN2 BIOLOG plate. 

Well Carbon Source Well Carbon Source 

A01 Water (blank) E01 p-Hydroxy Phenylacetic Acid 

A02 α-Cyclodextrin E02 Itaconic Acid 

A03 Dextrin E03 α-Keto Butyric Acid 

A04 Glycogen E04 α-Keto Glutaric Acid 

A05 Tween 40 E05 α-Keto Valeric Acid 

A06 Tween 80 E06 D,L-Lactic Acid 

A07 N-Acetyl-D-Galactosamine E07 Malonic Acid 

A08 N-Acetyl-D-Glucosamine E08 Propionic Acid 

A09 Adonitol E09 Quinic Acid 

A10 L-Arabinose E10 D-Saccharic Acid 

A11 D-Arabitol E11 Sebacic Acid 

A12 D-Cellobiose E12 Succinic Acid 

B01 i-Erythritol F01 Bromosuccinic Acid 

B02 D-Fructose F02 Succinamic Acid 

B03 L-Fucose F03 Glucuronamide 

B04 D-Galactose F04 L-Alaninamide 

B05 Gentiobiose F05 D-Alanine 

B06 α-D-Glucose F06 L-Alanine 

B07 m-Inositol F07 L-Alanylglycine 

B08 α-D-Lactose F08 L-Asparagine 

B09 Lactulose F09 L-Aspartic Acid 

B10 Maltose F10 L-Glutamic Acid 

B11 D-Mannitol F11 Glycyl-L-aspartic Acid 

B12 D-Mannose F12 Glycyl-L-Glutamic Acid 

C01 D-Melibiose G01 L-Histidine 

C02 β-Methyl-D-Glucoside G02 Hydroxy-LProline 

C03 D-Psicose G03 L-Leucine 

C04 D-Raffinose G04 L-Ornithine 

C05 L-Rhamnose G05 LPhenylalanine 

C06 D-Sorbitol G06 L-Proline 

C07 Sucrose G07 L-Pyroglutamic Acid 

C08 D-Trehalose G08 D-Serine 

C09 Turanose G09 L-Serine 

C10 Xylitol G10 L-Threonine 

C11 Pyruvic Acid Methyl Ester G11 D,L-Carnitine 

C12 Succinic Acid Mono-Methyl-Ester G12 γ-Amino Butyric Acid 

D01 Acetic Acid H01 Urocanic Acid 

D02 Cis-Aconitic Acid H02 Inosine 

D03 Citric Acid H03 Uridine 
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D04 Formic Acid H04 Thymidine 

D05 D-Galactonic Acid Lactone H05 Phenyethylamine 

D06 D-Galacturonic Acid H06 Putrescine 

D07 D- Gluconic Acid H07 2-Aminoethanol 

D08 D-Glucosaminic Acid H08 2,3-Butanediol 

D09 D-Glucuronic Acid H09 Glycerol 

D10 α-Hydroxybutyric Acid H10 D,L-α-Glycerol Phosphate 

D11 β-Hydroxybutyric Acid H11 α-D-Glucose-1-Phosphate 

D12 γ-Hydroxybutyric Acid H12 D-Glucose-6-Phosphate 
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B.3 Colony morphology on YESCA plates of barcoded and 

parental strains 
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Figure B.3: Colony morphology on YESCA plates of two strains of E. coli and their 

barcoded versions. (A) GMB18, (B) GMB18-B5, (C) GMB23, (D) GMB23-23277, (E) 

GMB71, (F) GMB71-B10, (G) GMB34, (H) GMB34-33233, (I) ECOR32, (J) ECOR32-23457, 

(K) GMB02, (L) GMB02-23796, (M) GMB98, (N) GMB98-30438, (O) GMB104 and (P) 

GMB104-29884 were all imaged using a Leica M165C Stereo microscope after YESCA 

plates were incubated at 37°C for 48h followed by 7 days at RT. 
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 Appendix C: Siderophore gene presence tables 

Table C.1: Detection of siderophore genes in ECOR isolates by multiplex PCR. 

+ = gene detected, - = gene not detected. aResult different from array-based study 

(Jackson et al., 2011). bResult different from array-based and PCR-based studies 

(Johnson, Delavari, Kuskowski and Stell, 2001; Jackson et al., 2011), cResult different 

from array-based study, but supported by PCR-based study (Johnson, Delavari, 

Kuskowski and Stell, 2001; Jackson et al., 2011), dResult different from array-based and 

PCR-based studies (Schubert et al., 2009; Jackson et al., 2011), eStrain isolated from 

urine sampled from women with urinary tract infections, #Independent literature data 

are not available for irp3-5, *irp4 primers amplified a region spanning both irp4 and 

irp5 genes. Enterobactin results are not shown as all five genes tested for were 

detected in all strains. ECOR35 and ECOR36 showed different results from the array-

based study (Jackson et al., 2011) for one enterobactin gene (entE). 

 
Aerobactin Salmochelin Yersiniabactin 

 Strain  Phylogroup iucA iucB iucC iucD iutA iroB iroC iroD iroE iroN irp2 irp1 irp3
#
 irp4

#*
 fyuA 

 ECOR01 A - - - - - - - - - - - - - - - 

 ECOR02 A -
a
 -

a
 -

a
 -

a
 -

b
 - - - - - + + + + + 

 ECOR03 A - - - - - - - - - - - - - - - 

 ECOR04 A - - - - - - - - - - - - - - - 

 ECOR05 A + + + + + - - + + - - - - - - 

 ECOR06 A - - - - - - - - - - - - - - - 

 ECOR07 A +
a
 + + + +

c
 + + + + + + + + + + 

 ECOR08 A + + + + + - - - - - + + + + + 

 ECOR09 A - - -
a
 -

a
 -

c
 - - - - - + + + + + 

 ECOR10 A - - - - - - - - - - + + + + + 

 ECOR11
e 

A + + + + +
c
 - - - - - +

d
 +

d
 + + +

d
 

 ECOR12 A - - - - - - - - - - - - - - - 

 ECOR13 A - - - - - - - - - - - - - - - 

 ECOR14
e 

A - - - - - - - - - - - - - - - 

 ECOR15 A - - - - - - - - - - - - - - - 

 ECOR16 A - - - - - - - - - - + + + + + 

 ECOR17 A - - - - - - - - - - - - - - - 

 ECOR18 A - - - - - - - - - - - - - - - 

 ECOR19 A - - - - - - - - - - - - - - - 

 ECOR20 A - - - - - - - - - - - - - - - 

 ECOR21 A - - - - - - - - - - - - - - - 

 ECOR22 A - - - - - - - - - - - - - - - 

 ECOR23 A - - - - - - - - - - - - - - - 

 ECOR24 A + + + + + - - - - - + + + + + 

 ECOR25 A - - - - - - - - - - - - - - - 

 ECOR26 B1 - - - - - - - - - - - - - - - 

 ECOR27 B1 - - - - - - - - - - - - - - - 

 ECOR28 B1 - - - - - - - - - - - - - - - 

 ECOR29 B1 - - - - - - - - - - - - - - - 

 ECOR30 B1 - - - - - + + + + + - - - - - 

 ECOR31 E - - - - - - - - - - + + + + + 

 ECOR32 B1 - - - - - -
a
 -

a
 -

a
 -

a
 -

c
 - - - - - 

 ECOR33 B1 - - - - - - - - - - - - - - - 

 ECOR34 B1 - - - - - - - - - - - - - - - 

 ECOR35 F + + + + + - - - - - + + + + + 

 ECOR36 F + + + + + - - - - - + + + + + 

 ECOR37 E + + + + + - - - - - - - - - - 

 ECOR38 F + + + + +
c
 - - - - - + + + + + 
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 ECOR39 F + + + + +
c
 - - - - - + + + + + 

 ECOR40
e 

F + + + + +
c
 - - - - - + + + + + 

 ECOR41 F + + + + +
c
 - - - - - + + + + + 

 ECOR42 E - - - - - - - - - - - - - - - 

 ECOR43 E - - - - - - - - - - - - - - - 

 ECOR44 D - - - - - - - - - - - - - - - 

 ECOR45 B1 - - - - - - - - - - - - - - - 

 ECOR46 D - - - - - - - - - - + + + + + 

 ECOR47 D - - - - - - - - - - - - - - - 

 ECOR48
e 

D - - - - - - - - - - + + + + + 

 ECOR49 D + + + + +
c
 - - - - - + + + + + 

 ECOR50
e 

D + + + + +
c
 - + + + - + + + + + 

 ECOR51 B2 + + + + +
c
 + + + + + + + + + + 

 ECOR52 B2 - - - - - + + + + + + + + + + 

 ECOR53 B2 - - - - - + + + + + + + + + + 

 ECOR54 B2 - - - - - + + + + + + + + + + 

 ECOR55 B2 + + + + +
c
 - - - - - + + + + + 

 ECOR56
e 

B2 + + + + + - - - - - + + + + + 

 ECOR57 B2 + + + + +
c
 + + + + + + + + + + 

 ECOR58 B1 - - - - - + + + + + - - - - - 

 ECOR59 B2 - - - - - - -
a
 -

a
 -

a
 - + + + + + 

 ECOR60
e 

B2 - - - - - + + + + + + + + + + 

 ECOR61 B2 - - - - - - - - - - + + + + + 

 ECOR62
e 

B2 +
a
 + + + +

c
 + + + + + + + + + + 

 ECOR63 B2 - - - - - + + + + + + + + + + 

 ECOR64
e 

B2 - - - - - + + + + + + + + + + 

 ECOR65 B2 - - - - - + + + + + + + + + + 

 ECOR66 B2 - - - - - + + + + + + + + + + 

 ECOR67 B1 - - - - - -
a
 -

a
 -

a
 -

a
 -

b
 - - - - - 

 ECOR68 B1 - - - - - - - - - - + + + + + 

 ECOR69 B1 - - - - - - - - - - - - - - - 

 ECOR70 A +
a
 + + + +

c
 + + + + + + + + + + 

 ECOR71
e 

A - - - - - - - - - - + + + + + 

 ECOR72
e 

A - - - - - - - - - - -
d
 -

d
 - - -

d
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Table C.2: Detection of siderophore genes in GMB isolates by multiplex PCR. + = gene 

detected, - = gene not detected. *irp4 primers amplified a region spanning both irp4 

and irp5 genes. Enterobactin results are not displayed as all genes were detected in all 

strains. 
   Aerobactin Salmochelin Yersiniabactin 

 Strain  Phylogroup iucA iucB iucC iucD iutA iroB iroC iroD iroE iroN irp2 irp1 irp3 irp4
*
 fyuA 

 GMB01 A - - - - - - - - - - - - - - - 

 GMB02 A - - - - - - - - - - - - - - - 

 GMB03 B1 - - - - - - - - - - - - - - - 

 GMB04 D - - - - - - - - - - - - - - - 

 GMB05 B1 - - - - - - - - - - - - - - - 

 GMB06 A - - - - - - - - - - - - - - - 

 GMB07 B1 - - - - - - - - - - + + + + + 

 GMB10 B1 - - - - - - - - - - - - - - - 

 GMB100 B2 - - - - - - - - - - + + + + + 

 GMB101 B2 - - - - - - - - - - + + + + + 

 GMB102 B2 - - - - - - - - - - + + + + + 

 GMB103 B1 - - - - - - - - - - - - - - - 

 GMB104 A + + + + + + + + + + + + + + + 

 GMB105 B1 - - - - - + + + + + - - - - - 

 GMB106 A - - - - - - - - - - - - - - - 

 GMB107 A - - - - - - - - - - - - - - - 

 GMB108 A - - - - - - - - - - - - - - - 

 GMB13 B1 - - - - - - - - - - - - - - - 

 GMB14 B1 - - - - - - - - - - - - - - - 

 GMB15 D + + + + + + + + + + - - - - - 

 GMB16 B1 - - - - - - - - - - - - - - - 

 GMB17 B1 - - - - - - - - - - - - - - - 

 GMB18 B1 - - - - - - - - - - - - - - - 

 GMB19 D - - - - - - - - - - - - - - - 

 GMB20 A - - - - - - - - - - - - - - - 

 GMB21 D - - - - - + + + + + - - - - - 

 GMB22 B1 - - - - - - - - - - - - - - - 

 GMB23 A + + + + + - - - - - + + + + + 

 GMB24 B1 - - - - - - - - - - - - - - - 

 GMB25 B1 - - - - - - - - - - - - - - - 

 GMB26 B1 - - - - - - - - - - - - - - - 

 GMB27 A - - - - - - - - - - - - - - - 

 GMB28 B1 - - - - - - - - - - - - - - - 

 GMB29 B1 - - - - - - - - - - - - - - - 

 GMB30 D - - - - - + + + + + - - - - - 

 GMB31 A - - - - - + + + + + + + + + + 

 GMB32 A - - - - - - - - - - - - - - - 

 GMB33 A - - - - - - - - - - - - - - - 

 GMB34 A - - - - - - - - - - - - - - - 

 GMB35 A - - - - - - - - - - - - - - - 

 GMB36 B1 - - - - - - - - - - - - - - - 

 GMB37 A - - - - - - - - - - - - - - - 

 GMB38 B1 - - - - - - - - - - - - - - - 

 GMB39 E - - - - - - - - - - - - - - - 

 GMB40 B2 - - - - - + + + + + + + + + + 

 GMB41 B1 - - - - - - - - - - - - - - - 

 GMB43 B1 - - - - - - - - - - - - - - - 

 GMB44 D - - - - - - - - - - - - - - - 

 GMB45 B2 - - - - - - - - - - + + + + + 

 GMB47 B2 - - - - - - - - - - + + + + + 

 GMB48 A - - - - - - - - - - - - - - - 
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 GMB49 B1 - - - - - + + + + + - - - - - 

 GMB50 D - - - - - - - - - - - - - - - 

 GMB51 D - - - - - - - - - - + + + + + 

 GMB52 D - - - - - - - - - - - - - - - 

 GMB53 B1 - - - - - - - - - - + + + + + 

 GMB54 D - - - - - - - - - - - - - - - 

 GMB58 B1 - - - - - - - - - - - - - - - 

 GMB59 B1 + + + + + + + + + + - - - - - 

 GMB60 D - - - - - - - - - - - - - - - 

 GMB61 D - - - - - - - - - - - - - - - 

 GMB63 D - - - - - - - - - - - - - - - 

 GMB64 B1 - - - - - - - - - - - - - - - 

 GMB65 B1 - - - - - - - - - - - - - - - 

 GMB66 D - - - - - - - - - - - - - - - 

 GMB67 A - - - - - - - - - - - - - - - 

 GMB68 D - - - - - - - - - - - - - - - 

 GMB69 B1 - - - - - - - - - - - - - - - 

 GMB70 B1 - - - - - - - - - - - - - - - 

 GMB71 D - - - - - - - - - - - - - - - 

 GMB72 D - - - - - - - - - - - - - - - 

 GMB73 B2 - - - - - + + + + + + + + + + 

 GMB74 D - - - - - - - - - - - - - - - 

 GMB76 B2 - - - - - + + + + + + + + + + 

 GMB77 E - - - - - - - - - - - - - - - 

 GMB78 E - - - - - - - - - - - - - - - 

 GMB79 B1 - - - - - - - - - - - - - - - 

 GMB80 B1 - - - - - - - - - - - - - - - 

 GMB81 B1 - - - - - - - - - - - - - - - 

 GMB83 B1 - - - - - - - - - - - - - - - 

 GMB84 A - - - - - - - - - - - - - - - 

 GMB85 B1 - - - - - - - - - - - - - - - 

 GMB86 B1 - - - - - - - - - - - - - - - 

 GMB87 D - - - - - - - - - - + + + + + 

 GMB88 B1 + + + + + + + + + + - - - - - 

 GMB89 B1 - - - - - - - - - - - - - - - 

 GMB90 A - - - - - - - - - - - - - - - 

 GMB91 A - - - - - - - - - - - - - - - 

 GMB92 B1 - - - - - - - - - - - - - - - 

 GMB93 B2 - - - - - + + + + + + + + + + 

 GMB94 B2 - - - - - - - - - - - - - - - 

 GMB95 A - - - - - - - - - - - - - - - 

 GMB96 D - - - - - - - - - - - - - - - 

 GMB97 D - - - - - - - - - - + + + + + 

 GMB98 B2 - - - - - + + + + + + + + + + 

 GMB99 B1 - - - - - - - - - - - - - - - 
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Appendix D: Publication 
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