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Abstract 

Given the dramatic loss of tropical forests and accelerating climate change, secondary forest 

regeneration is increasingly recognised as being an important method for reversing losses in 

biodiversity and carbon stocks. The recolonisation of biodiversity within secondary forests 

depends upon the recovery of forest structure, including the range of microhabitats used by 

diverse communities. Here, we investigate the return of critical microhabitats along a 

successional gradient of secondary forest in the Tropical Andes of Colombia. We measured 

the abundance of live (bromeliads, tree ferns and moss) and dead (deadwood and leaf litter) 

microhabitats across three landscapes, each encompassing primary, and young and old 

secondary forests. Considering the increasing rate of climate warming in the region, we also 

explored whether these microhabitats provide thermally buffered microclimates. We found 

that secondary forests have different composition and lower complexity of microhabitats 

than primary forests, but that the abundance of bromeliads and deadwood recover towards 

primary levels. Each microhabitat reduces exposure to extreme temperatures, serving as 

thermal buffers by reducing maximum and increasing minimum temperatures among all 

forest types. These benefits exist despite ambient temperatures in secondary forests 

surpassing those of primary forests by 1-2⁰C on average. The protection of secondary forest 

and promotion of further forest regrowth in the Tropical Andes should represent an urgent 

investment for conservation, and the value of these secondary forests for offering critical 

microhabitats and buffered microclimates under climate change should not be overlooked. 
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Introduction 

Land-use change is a primary driver of global biodiversity loss (MEA 2005) and carbon 

emissions (Grace, Mitchard et al. 2014). During the 1980s and 1990s, more than 80 million 

hectares (ha) of tropical forests were converted into cropland and pasture (Gibbs, Ruesch et 

al. 2010), with the rate of conversion since increasing in many tropical regions (Hansen, 

Potapov et al. 2013). The conversion of tropical forest to agriculture severely fragments the 

landscape, dramatically reducing species richness (Foster, Snaddon et al. 2011; Gibson, Lee 

et al. 2011), and causing severe edge and isolation effects that further increases extinction 

risk (Ferraz, Russell et al. 2003; Schnell, Harris et al. 2013). 

Despite these trends, during the past decades in some regions of the tropics there 

has been a concurrent phase of land abandonment in areas of marginal suitability for 

agriculture (Guariguata and Ostertag 2001; Sanchez-Cuervo and Aide 2013). Seventy 

percent of land abandonment occurs in hilly or montane areas of Central America, the 

Andes, Vietnam, and the Philippines (Asner, Rudel et al. 2009), but also occurs in flat regions 

such as the Amazon and Madagascar (Asner, Rudel et al. 2009; Rodríguez, Armenteras et al. 

2012).  

Following land abandonment, natural forests begin to regenerate in these areas, 

with residual seed banks and dispersed seeds underpinning this process (Lindsell, Lee et al. 

2015). Over time, carbon stocks in secondary forests gradually recover towards levels found 

in primary forests (Martin, Newton et al. 2013; Gilroy, Woodcock et al. 2014). Secondary 

forests are also (re-)colonized by organisms (Martin, Newton et al. 2013; Gilroy, Woodcock 

et al. 2014; Queiroz, Beilin et al. 2014), including species threatened with extinction in some 

regions (Gilroy, Woodcock et al. 2014).  

The precise nature of biodiversity recovery depends on forest structure – the 

properties that define a forest’s general appearance, including foliage density and height, as 

well as the range of critical small-scale habitat features or microhabitats (MacArthur, 

MacArthur et al. 1962). Microhabitats are used by a wide range of taxa: Logs and tree 

cavities provide habitat for amphibians, birds, small mammals, and invertebrates (Stapp 

1997; Cadavid, Roman-Valencia et al. 2005; Grüebler, Widmer et al. 2014); epiphytic plants 

such as bromeliads and bird’s nest ferns (Asplenium) offer shelter and breeding habitat for 



amphibian and invertebrate communities (Ellwood and Foster 2004; Urbina and Galeano 

2009; Silva, Carvalho et al. 2011; Jocque and Field 2014; McCracken and Forstner 2014; 

Scheffers, Phillips et al. 2014); and leaf-litter and soil are commonly used by amphibians and 

invertebrates (Stapp 1997; McGlynn and Kirksey 2000; Cadavid, Roman-Valencia et al. 2005; 

Urbina and Galeano 2009; Wanger, Iskandar et al. 2010). Microhabitats, along with 

providing space for breeding and foraging, also provide buffered shelter during extreme 

weather events, although the latter has only been recorded in primary old-growth forest 

(Scheffers, Edwards et al. 2014), not secondary forests. Thus, the extent of microhabitat 

recovery in secondary forests is an unknown but critically important process to biodiversity 

recovery in these areas. 

In addition to land-use change, biodiversity is also threatened by climate change. 

Over the last 50 years, the rate of warming has increased significantly while extreme 

weather events (e.g., droughts and heat-waves) have become more frequent and intense 

(IPCC 2014), severely threatening biodiversity globally (Sekercioglu, Schneider et al. 2008; 

Chen, Shiu et al. 2009; Chen, Hill et al. 2011; Hannah 2011; Maclean and Wilson 2011; 

Freeman and Class Freeman 2014). Carbon enhancements under carbon-based payments 

for ecosystem service schemes (e.g., United Nations Reducing Emissions from Deforestation 

and Forest Degradation, REDD+), can been implemented to reduce carbon emissions by 

financially incentivising forest recovery and restoration. Although these programmes offer 

some positive biodiversity co-benefits (CBD 2011; Gilroy, Woodcock et al. 2014), whether 

they have a positive impact on microhabitats and microclimates – and thus the species 

depending on them – is unknown.  

Species have limited options in responding to climate change: become extinct; cope 

or adapt in situ; or shift their ranges to track optimal climates (Lawler, Ruesch et al. 2013), 

which has already occurred with a large number of species (Parmesan and Yohe 2003; 

Hickling, Roy et al. 2006). Nonetheless, for the numerous species that are unable to track 

their optimal climate niches (Chen, Shiu et al. 2009), the presence of microhabitats could 

provide a microclimatic shelter during extreme weather events. Thus, the ability of 

microhabitats to buffer increased ambient temperatures in secondary forests will likely 

determine the survival of these species. 



Here, we aim to answer: (1) How similar is microhabitat composition in secondary 

forests to that found in primary forests? (2) How much time since land abandonment is 

required for the recovery of critical microhabitats? (3) Is there a positive relationship 

between carbon stock recovery and microhabitat recovery? And (4) how well do 

microhabitats in secondary forests buffer climate compared to primary forests? Here we 

answer these key questions by focusing on a successional gradient of secondary forest in the 

Tropical Andes, which is a global hotspot of extinction risk and species endemism. 

 

Methods 

Study area 

We chose three study landscapes located within the departments of Antioquia, Risaralda 

and Chocó, along the Western cordillera of the Colombian Andes (long: -75.8895 to -

76.0825, lat: 5.2396 to 5.8251) (Fig. S1; following (Gilroy, Woodcock et al. 2014)). Each site 

encompasses primary forests, naturally regenerating secondary forests and an agricultural 

matrix dominated by cattle pasture, with other crops present under very limited cover (<10 

hectares in total, including maize and plantations of tamarillo Solanum betaceum (Gilroy, 

Woodcock et al. 2014). The study area covered an altitudinal range of 1,290-2,680 m above 

sea level. This region supports one of the highest global diversities of threatened and 

endemic taxa (Myers, Mittermeier et al. 2000; Orme, Davies et al. 2005), and is 

characterised by a long history of cattle farming (Gilroy, Woodcock et al. 2014).  

Across these three landscapes (Fig. S1B, from north to south: Reserva Tangaras, 

Chocó; Reserva Mesenia-Paramillo, Antioquia; and Cerro Montezuma, Risaralda), we 

created 29 sampling squares of 400 m x 400 m and spaced by >400 m apart, with squares 

representing one land-use type (naturally-regenerating young secondary forest from 4 to 18 

yr old, old secondary forest from 19 to 35 yr old, and primary old-growth forest). In each 

square, data were sampled from three sampling points, totalling 87 sampling points each 

spaced by 200 m (following (Gilroy, Woodcock et al. 2014)). 

Microhabitats  



We placed a 25 m x 6 m plot at each of our 87 sampling points, within which we sampled 

microhabitat abundance. Elevation was measured in the plot centre. We measured three 

live (bromeliad, fern, moss) and two dead (deadwood, leaf litter) microhabitats across each 

plot. Logistic field limitations allowed us to have only 74 plots for dead microhabitats and 

carbon. 

Live vegetation: 

Bromeliads - Epiphytes are particularly vulnerable to forest degradation (Turner, 

Chua et al. 1996), but are important microhabitats for amphibians and invertebrates (Jocque 

and Field 2014; Scheffers, Phillips et al. 2014). Bromeliads are one of the most abundant 

epiphytes in the Tropical Andes (Benzing 2000). We recorded the total number of 

bromeliads in our plot. Total number of plots (Ntotal) = 87 plots. 

Tree ferns – Understorey tree ferns (Order Polypodiales) have a single erect trunk 

and very large fronds, making them important microhabitats for amphibians, mites, spiders 

and several arthropods including beetles (Shuter and Westoby 1992; Richards 2007; Li, 

Wang et al. 2011; Fountain-Jones, McQuillan et al. 2012). We measured height and 

diameter at breast height (dbh) of all ferns >5 cm dbh (following (Gilroy, Woodcock et al. 

2014). We estimated tree fern biomass using the allometric equation of (Tiepolo, Calmon et 

al. 2002). Ntotal = 87 plots. 

Moss – Moss is an important microhabitat for insects and amphibians (Tarkowska-

Kukuryk and Mieczan 2014; Lee-Yaw, Sechley et al. 2015). In each plot, we delimited fifteen 

1 m2 quadrats (following (Urbina and Galeano 2009)). Moss height and density defines how 

easy species move through it (Lee-Yaw, Sechley et al. 2015)). Therefore, moss was assessed 

in such a way as to retain moss original structure during measurement. To do this, we 

derived a metric of moss volume by multiplying depth (an average of four measurements 

per quadrat) and the percentage of moss coverage (Maanavilja, Aapala et al. 2014). 

Ntotal=15 quadrats per plot*87 plots = 1,305 quadrats.  

Dead vegetation: 

Deadwood – Deadwood is a critical requirement for many arthropod species since it 

provides a place to hide and forage (Lassauce, Paillet et al. 2011; Bluhm, Scheu et al. 2015), 



while the volume of deadwood can indicate a higher abundance of birds and beetles 

(Winter, Flade et al. 2005). At each point we established a smaller 15 m x 5 m plot, within 

which we estimated the biomass of all standing or fallen dead trees (snags) >5 cm dbh 

(Gilroy, Woodcock et al. 2014). For snags >10 m high we used allometric equations to 

estimate biomass, applying a deadwood density of 0.31 g cm-3 taken from the literature 

(Gibbon, Silman et al. 2010). For snags <10 m high, we assumed the tree was a cylinder and 

estimated biomass by multiplying volume with wood density. The diameter and length of all 

pieces of fallen deadwood (coarse woody debris) of >5 cm dbh was also recorded, 

converted into volume and used to estimate biomass (assuming a cylindrical shape). Ntotal 

= 74 plots. 

Leaf litter – Leaf litter is an essential microhabitat for amphibians and invertebrates, 

providing physical shelter and foraging space (Urbina and Galeano 2009; dos Santos Bastos 

and Harada 2011; Queiroz, Ribas et al. 2013). We measured litter dry biomass since the 

amount (weight) of leaf litter is one of the most important characteristics to determine 

species abundance and richness (e.g. ants (dos Santos Bastos and Harada 2011; Queiroz, 

Ribas et al. 2013)). Within each smaller 15 m x 5 m plot, we collected all leaf litter, grass and 

small plants (<0.5m in height) from 4 x 0.25 m2 quadrats within each plot (Gilroy, Woodcock 

et al. 2014), following (Queiroz, Ribas et al. 2013). We weighed these samples to the nearest 

0.1 g, then used the fresh:dry weight ratio of an oven-dried subsample (10-20%) to estimate 

the dry biomass of litter (Nascimento and Laurance 2002). Ntotal = 74 m2 quadrats. 

Live non-soil carbon stocks  

To calculate live non-soil carbon stocks, within each smaller 15 m x 5 m plot we also 

measured the diameter at breast height (dbh) of all live trees >5 cm dbh, and measured 

wood specific gravity using tree cores extracted with an increment borer (two threads, 

5.15mm diameter; Haglöf, Sweden) (Gilroy, Woodcock et al. 2014). We used these values in 

four allometric biomass estimation equations taken from harvested tree studies (Chave, 

Andalo et al. 2005; Alvarez, Duque et al. 2012; Feldpausch, Lloyd et al. 2012). We took the 

mean of the four estimates as the final aboveground estimate for each tree. Palm growth 

form differs from that of other trees, and so to calculate palm biomass we measured 

diameter and estimated height, and then used the allometric equation of (Sierra, del Valle 



et al. 2007). Root biomass was estimated using a published upland forest root:shoot ratio of 

0.26 (Cairns, Brown et al. 1997). All vines with a dbh of >2 cm that were <1 m from the long 

edges of the plot were also measured and vine biomass was estimated using an equation 

developed in Colombian montane forest (Sierra, del Valle et al. 2007). We summed the 

biomass pools for each plot before multiplying by 0.5 to give an estimate of the total live 

non-soil carbon stock (Gibbon, Silman et al. 2010). Ntotal = 74 plots. 

Temperature data 

We used 179 iButton data loggers (model: DS1921G-F5; accuracy: 0.5 ⁰C) to record 

understorey ambient, canopy and microhabitat temperature, and we also set nine iButton 

hygrochron loggers (model: DS1923; accuracy: 0.1⁰C) as a backup to record understorey 

ambient temperature across all forest types. We placed the iButtons in 17 plots from Cerro 

Montezuma and 16 plots from Reserva Mesenia-Paramillo, with placement spanning young 

and old secondary, and primary forests (Table S1). All loggers recorded data every two hours 

from February 2013 to February 2014.  

Each iButton was placed inside a re-sealable zipper storage bag (50 mm X 50 mm) to 

shelter them from precipitation and enclosed within a metal mesh to guard them from 

rodents. One iButton logger per plot was hung approximately 1 m above the ground to 

measure understorey ambient temperature (Scheffers, Brunner et al. 2013). To identify the 

(near-)maximum potential ambient air temperature for our study plots, we hung a second 

iButton in the upper canopy cover of trees between ten and thirteen meters above the 

ground (Scheffers, Phillips et al. 2013), as close as possible to directly above the understorey 

ambient logger depending on canopy accessibility. To minimize exposure to direct solar 

radiation, canopy, understorey and humidity loggers were secured under a plastic funnel, 

with all funnels suspended facing north (controlling for diurnal variation in sun position).  

Microhabitat temperature loggers were deployed thus: (1) approximately 5 cm 

under leaf litter (ntotal=33); (2) between the leaves of bromeliads (ntotal=26); (3) inside 

holes at the base of trees (tree circumference > 8cm DBH) (ntotal=33); (4) within the roots 

of ferns (fern circumference > 8cm DBH) (ntotal=33); and (5) at approximately 20 cm depth 

in soil (ntotal=9). All loggers were placed within 8 m of the understorey ambient logger 



(most within one and four metres). Only one iButton was placed within a particular 

microhabitat for each plot.  

Statistical Analyses  

Microhabitat composition 

To compare microhabitat composition among secondary and primary forests we used 

nonmetric multidimensional scaling ordination (NMDS, function “metaMDS” from the vegan 

package). This technique uses microhabitat abundance data and makes no prior 

assumptions about habitat-level structuring in the data. To evaluate whether composition 

differed significantly across the forest types, we transformed our data into a similarity 

matrix (Bray-Curtis index) and performed an analysis of similarity (ANOSIM). ANOSIM uses 

ranks of dissimilarities and this test is free from any normality assumptions. A post-hoc 

permutation test (999 replications) was run to detect which pairs of groups significantly 

differed. The community analysis was performed using PRIMER 7 (Version 7.0.7; Clarke, KR, 

Gorley, RN, 2015). We also extract NMDS axis 1 and 2 to create a microhabitat composition 

metric. 

Microhabitat complexity recovery 

To compare microhabitat data to a notionally common scale we normalized the data for 

each microhabitat by rescaling the range from 0 to 1. To create a microhabitat complexity 

metric we added the normalized data for each microhabitat by forest type. This complexity 

metric represents a truthful microhabitat abundance value because it sums each 

microhabitat value, in comparison with the composition metric (derived from NMDS axes) 

which represents the relationship or similitude of microhabitat data among forest types in a 

graphical manner. To compare microhabitat complexity of secondary and primary forest, we 

obtained the ratio of young and old secondary forest complexity compared to primary forest 

complexity (considering the latter our benchmark of 100 percent). We then performed a 

one-way analysis of variance (ANOVA; function “aov”) with forest type as our grouping 

variable. 

To determine whether there were differences in the abundance of each 

microhabitat across forest types, we performed linear mixed effect models (function 



“lmer”), with sampling square, elevation, and landscape as random factors. All data were log 

transformed before each analysis, and residuals were assessed for each model considering 

model assumptions. 

Carbon-microhabitat co-benefits  

Forest structure is a main factor of the global carbon cycle (trees and foliage determining 

carbon storage and sequestration) (Schulze, Beck et al. 2005; Houghton, Hall et al. 2009). 

Due to the ecological meaningfulness of carbon and the high correlation between carbon 

sequestration and forest age, we assessed the relationship between carbon and 

microhabitat recovery using total live non-soil carbon as our predictive variable. We did so 

for each of our microhabitats using the normalized microhabitat data, microhabitat 

complexity metric, and microhabitat composition metric (using NMDS axes 1 and 2). We 

used quantile regression (function “rq”), from the quantreg package, because our data 

showed a larger number of outliers than normal, and quantile regressions give more robust 

estimates against outliers in the response measurements. For the same reason, we analysed 

the 10th, 50th, and 90th percentile to discover more useful predictive relationships 

between our variables. All microhabitat data were log transformed prior to analyses.  

Microclimates 

Our data showed no seasonality patterns, and therefore was not subdivided. Temperature 

maxima and minima have been successfully used to measure microhabitat thermal buffering 

effect (Shi, Paull et al. 2014). Therefore, weekly maximum, minimum and mean 

temperatures were taken from each iButton per microhabitat per forest type. We used 

weekly (taking weekly max, min and mean temperatures) models instead of daily models 

because of their lower AIC values. We used linear mixed effect models (“lme”) to determine 

temperature differences among forest types, including forest type and date as fixed effects, 

and as random effect we placed iButton identity nested within transect and elevation (the 

two landscapes in which we placed iButtons do not overlap in elevation, hence we do not 

need to include landscape as a random factor). P-values for each model were determined 

comparing the model versus the null model (“anova”). Significant differences between 

forest types were assessed via post-hoc Tukey comparisons.  



To obtain the rate of increase in microhabitat temperature for every 1⁰C increase in 

understorey ambient temperature we used the temperature data collected every 2 hours. 

Linear models (“lm”) were employed to generate a relationship between each microhabitat 

metric (i.e. bromeliad max, bromeliad min, bromeliad mean, etc.) depending on 

understorey ambient temperature (ambient max, ambient min, or ambient mean). Residual 

plots were checked to confirm model assumptions were met. Unless stated otherwise, all 

statistical analyses were performed in R (Version 3.1.2).  

 

Results 

Microhabitat composition  

Ordination plots showed that microhabitat composition in secondary forests differed 

significantly from primary forests (Fig. 1A; ANOSIM, R = 0.53, p = 0.001). There is some 

degree of overlap in the microhabitat composition between forest types (Fig. 1A), and 

pairwise comparisons revealed no significant differences between young secondary and old 

secondary forest (R = 0.05, p = 0.25). In contrast, there was significant dissimilarity between 

old secondary and primary forest (R = 0.36, p = 0.001). In the ordination plot, young 

secondary forests were the furthest away from primary forests, making them the least 

similar regarding their microhabitat composition (R = 0.66, p = 0.001). Recovery of 

secondary forest thus regenerates increasingly similar microhabitat composition to primary 

forest over time. 

Microhabitat complexity recovery 

Considering bromeliads, tree ferns, moss, deadwood and leaf litter, primary forests 

held a significantly higher microhabitat complexity than young secondary forests (F2,367 = 

3.57, p < 0.05), although there was no difference between young and old secondary forest 

(Fig. 1B). There was, however, no significant difference between young and old secondary 

forest in their ratio of complexity compared to primary forest (Fig. 1C; F1,8 = 0.07, p = 0.79). 

Live vegetation - There was a significant difference between forest types in number 

of bromeliads (F = 36.5, p < 0.0001): old secondary had more bromeliads than young 

secondary forest, and in turn, primary forest had more bromeliads than old secondary (Fig 



S2A). Therefore, secondary forests need more than 35 years of regeneration to fully recover 

this critical microhabitat. Conversely, there was no significant difference between forest 

types in tree fern biomass (F = 1.96, p = 0.15; Fig S2B) or moss volume (Fig S2C; F = 1.32, p = 

0.27). Thus, even after a short period of time (4 to 18 years) of forest regeneration, tree 

ferns and moss volume were recovered.   

Dead vegetation - There was significant variation between forest types in deadwood 

(F = 8.57, p < 0.001): Young secondary forests (which did not differ significantly from old 

secondary forests) had less deadwood volume than primary forest (Fig S2D). Nevertheless, 

old secondary forest had accumulated almost half (44%) of the total deadwood volume 

found in primary forests just 35 years post-land abandonment (Fig S2D). Leaf litter volume 

did not differ significantly between forest types (F = 5.54, p = 0.02; Fig S2E), thus this critical 

microhabitat recovered even in early stages of forest regrowth. 

Carbon-microhabitat co-benefits  

Live vegetation – Bromeliad abundance showed a positive relationship with carbon 

stock increase. They increased significantly with carbon stock at the 10th (t = 4.79, p < 

0.001), 50th (t = 3.78, p < 0.001), and 90th (t = 2.54, p = 0.01) quantiles (Table 1; Fig. 2A). Tree 

fern biomass and moss volume showed no significant relationship with carbon stock at any 

of the quantiles (Table 1; Fig. 2C). 

Dead vegetation - Deadwood volume recovery showed a positive relationship with 

carbon stock increase. Deadwood volume increased significantly with carbon at the 10th (t = 

2.97, p = 0.003), 50th (t = 2.08, p = 0.04), and 90th (t = 4.4, p < 0.001) quantiles (Fig. 2D). 

Conversely, there was no relationship between leaf litter volume and carbon stock at any of 

the quantiles (p > 0.19; Table 1; Fig. 2E).  

Microhabitat complexity and composition – Microhabitat complexity showed a 

positive increase with carbon at the 50th quantile (t = 2.82, p = 0.005), whereas the 10th and 

90th quantiles showed no relationship (t > 0.80, p > 0.20; Table 1; Fig. 2F). Microhabitat 

composition derived from NMDS axis 1 showed a negative relation with carbon at the 10th (t 

= -4.23, p < 0.001), 50th (t = -4.36, p < 0.001), and 90th (t = -2.82, p = 0.006) quantiles (Table 

1; Fig. 2G). Forest types, therefore, can be distinguished by their carbon stock accumulation. 



Conversely, there was no relationship between NMDS axis 2 and carbon stock (p > 0.19; 

Table 1; Fig. 2H). 

Microclimates 

The maximum ambient temperature in the understorey was lower than in the canopy in all 

forest types (Table2; Fig. 3A and 3B). The daily maximum ambient temperature in the 

understorey of primary forest was cooler than that in young secondary forests (z value = 

2.98, p = 0.007; Fig. 3B2 and 3B4). However, the maximum ambient temperature in the 

understorey in old secondary forests was not significantly different from primary or young 

secondary forests (p > 0.29; Table2). 

Daily maximum temperatures within microhabitats were on average cooler than 

understorey ambient and canopy, whereas the daily minimum temperature within 

microhabitat was on average warmer than understorey and canopy ambient (except for 

bromeliads) (Fig. 3C). Thus, these microhabitats are reducing exposure and serving as 

thermal buffers by keeping cooler temperatures when it is warm and warmer temperatures 

when it is cold. During the day, microhabitats thermally buffered the understorey ambient 

temperature maxima by 0.78⁰C to 2.27⁰C in primary forest, by 0.38⁰C to 2.15⁰C in old 

secondary forest, and by 1.67⁰C to 2.31⁰C in young secondary forest. At night, microhabitats 

buffered the understorey ambient temperature minima by 0.07⁰C to 0.23⁰C in primary 

forest and by 0.64⁰C to 0.97⁰C in old secondary forest. In young secondary forest, only leaf 

litter and tree holes were warmer than understorey ambient night-time temperature by 

0.09⁰C and 0.54⁰C, respectively (Table2; Fig. 3). In contrast, soil minimum and mean 

temperature was significantly lower in primary and old secondary forests compared to 

young secondary forests (p > 0.04; (Table2; Fig. 3G). All microhabitats warmed at a slower 

rate (<1⁰C microhabitat : 1⁰C ambient) than understorey ambient (Table2; Fig. 3).  

 

Discussion 

The regrowth of secondary forest on abandoned farmlands is prevalent across the tropics, 

and these forests are important for biodiversity and carbon stock recovery (Gilroy, 

Woodcock et al. 2014). Our study suggests that as abandoned lands regenerate as forests, 



their functional value also increases through the accumulation and diversification of critical 

microhabitats. Specifically, we document a chronological recovery of microhabitat 

complexity and a general trend toward niche diversification in older secondary forests. 

While we found that forest types have different microhabitat composition, secondary forest 

approached primary forest levels of microhabitat complexity over time. In turn, recovered 

microhabitats buffered against extreme low and high temperatures in a similar manner to 

those in primary forest, suggesting positive carbon-microhabitat co-benefits as forests 

regrow. Thus, investment to protect or enhance carbon stocks in secondary forests under 

carbon-based payments for ecosystem services (PES, e.g., REDD+) will also support an 

abundance of thermally buffered microhabitats.  

Microhabitat composition 

Our study indicates that microhabitat composition in primary forests varies greatly from 

secondary forests. The extent to which secondary forests support biodiversity is strongly 

linked to the presence and abundance of critical microhabitats (Michel and Winter 2009). 

Young and old secondary forests have similar microhabitat composition, suggesting that 

even from early stages of forest development some microhabitats are already available for 

biodiversity (Cadavid, Roman-Valencia et al. 2005; Urbina-Cardona, Olivares-Pérez et al. 

2006). 

Microhabitat complexity recovery across habitat types 

We found a highly variable yet predictable recovery of microhabitats across forest types 

(Bittner and Breckle 1995; Oldekop, Bebbington et al. 2012; Woziwoda, Parzych et al. 2014). 

Nevertheless, microhabitat complexity in our study recovered chronologically from young to 

old secondary forests and this increase in ecological complexity has documented benefits 

for vertebrates and invertebrate diversity and abundance even in young secondary forests 

(Lassauce, Paillet et al. 2011; Jocque and Field 2014; Scheffers, Phillips et al. 2014; Bluhm, 

Scheu et al. 2015). As such, our study provides strong support for allocating secondary 

growth forests as an important conservation tool for recovering biodiversity and reversing 

extinction risk (Chazdon 2014; Queiroz, Beilin et al. 2014). 



There is a clear transition from young secondary forests rich in moss and leaf litter to 

bromeliad and deadwood-rich primary forests. Importantly, bromeliad and deadwood levels 

in secondary forest reach almost half of those found in primary forest within 35 years 

following land abandonment (Fig. S2A and S2D). The high elevation of our study sites likely 

supports a faster recovery rate of bromeliads than lower altitude forests. For example, we 

found similar recovery rates as the Venezuelan Andes (Barthlott, Schmit-Neuerburg et al. 

2001), whereas lowland rainforests in Panama (140 m a.s.l.) have not shown any epiphytic 

recovery after 35 years of forest growth (Woods and DeWalt 2013). Such a dichotomy 

probably reflects bromeliad requirements for cooler, wetter climates like the Andes in 

comparison with seasonal and hotter lowlands (Ruiz, Martinson et al. 2012). As amplifiers of 

biodiversity, bromeliad recovery in secondary forests may offer additional niche space. 

Bromeliad abundance and deadwood volume are strongly linked to forest age (Barthlott, 

Schmit-Neuerburg et al. 2001; Woods and DeWalt 2013; McGarvey, Thompson et al. 2015), 

and translocation of bromeliads into medium-aged secondary forests may be a useful tool in 

applied forest management. 

Linking forest carbon and microhabitat recovery 

Climate change scenarios predict increasing temperatures and variable rainfall in the 

Tropical Andes, which may hinder forest and microhabitat recovery (IPCC 2014). Carbon-

based PES initiatives seek to maximize carbon storage and sequestration as part of a global 

scheme for climate change mediation, but may also offer important co-benefits for localized 

biodiversity conservation (Strassburg, Kelly et al. 2010; Phelps, Friess et al. 2012; Gilroy, 

Woodcock et al. 2014). However, to our knowledge, we have for the first time showed a 

strong positive relationship between carbon stock and microhabitat complexity, which 

underpins ecological resilience and increases the benefits to biodiversity (CBD 2011). Forest 

resilience is strong in secondary forests along the Neotropics (from Mexico to Chile), where 

they show high carbon sequestering potential and great carbon storage (Poorter, Ongers et 

al. 2016). Although, secondary forests have lower carbon stocks and biodiversity than 

primary forests (Poorter, Ongers et al. 2016), their recovery may now be linked to 

microhabitat complexity recovery. This also underscores that the Tropical Andes, which is a 

global hotspot of endemism and extinction risk, are of great interest for promoting carbon 

enhancements via natural forest regeneration, given that it would be cheap to do so in this 



region (see (Gilroy, Woodcock et al. 2014)), and that such projects would offer strong 

carbon, microhabitat, and biodiversity benefits (Gilroy, Woodcock et al. 2014). 

 

Are secondary forests climate change ready? 

Microhabitats in secondary forest showed temperature-buffering abilities similar in 

magnitude to those found in primary forests, suggesting that all forest types provide species 

with climate microrefugia. The low rate of temperature increase in microhabitats also shows 

that species are thermally protected for longer periods of time under extreme temperature 

increases than would otherwise be the case in understorey ambient temperatures (see also 

(Scheffers, Edwards et al. 2014) for primary forests). Our findings suggest that microhabitats 

will become an increasingly important resource to help ectotherm communities mitigate the 

negative impacts of climate change (Huey and Tewksbury 2009), especially in the Tropical 

Andes where extreme weather events have become more intense and frequent and overall 

temperatures have increased (Ruiz, Martinson et al. 2012). 

Of concern, much tropical montane vegetation depends on specific environmental 

characteristics to thrive and is highly sensitive to climate change (Morueta-Holme, 

Engemann et al. 2015). Thus climate change could negatively affect the abundance of critical 

living microhabitats, and perhaps more so in recovering secondary forests. For instance, 

mosses and bromeliads need constant moisture to grow (Nadkarni 2000; Merrifield and 

Royce 2002), such that a drastic decline in moisture could reduce their abundance, and as a 

consequence, threaten many bird, amphibian and invertebrate species (Merrifield and 

Royce 2002; Panizzo 2011; Scheffers, Phillips et al. 2014; Silva and Piratelli 2014).  

Survey limitations 

Our study sites are restricted to naturally regenerating secondary forests in an agricultural 

matrix dominated by pasture. Therefore, we cannot expand our results to other agricultural 

systems. For example, different taxa (e.g. birds and arthropods) are affected differently in 

coffee than in oil palm plantations (Edwards, Magrach et al. 2014; Jordani, Hasui et al. 

2015). Our results are restricted to secondary forests near a primary forest, thus source-sink 

dynamics could have improved microhabitat and species recovery (Barlow, Gardner et al. 



2007; Gibson, Lee et al. 2011). Whether similar recovery would occur in isolated secondary 

forests and whether microhabitat recovery would be so rapid in other ecosystems outside 

of the Tropical Andes, especially in hotter and drier lowlands, are both critical unanswered 

questions.  

 

Conclusions 

Old secondary forests have high carbon storage potential, and our results suggest that the 

abundance of critical microhabitats in secondary forests is recovering, sometimes to levels 

found in a primary forest. Higher abundance of microhabitats increases landscape resilience 

by returning structure to forests and as such enhances ecological integrity (Ruiz-Jaen and 

Aide 2004). This provides habitat for biodiverse communities, including many species at risk 

of extinction. While protecting primary forests remains a critical conservation goal (Gibson, 

Lee et al. 2011), we live in an era of increasingly human-dominated tropics (Lewis, Edwards 

et al. 2015). The protection or promotion of secondary forest regrowth is often a more 

economically feasible strategy of protecting microhabitat rich and climate change resilient 

forests as opposed to preserving primary forests, which retain extremely valuable timber 

stocks (Fisher, Edwards et al. 2011). The critical role of secondary forests should not be 

overlooked as we seek solutions to the biodiversity crisis, both now and under future 

climate change.  
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Table legends 

Table 1. Carbon-microhabitat co-benefits. Summary from quantile regressions at the 90%, 

50%, and 10% quantiles from abundances of five microhabitats (Fig. 2A-H), microhabitat 

complexity as the sum of all normalized microhabitat data, and microhabitat complexity 

derived from NMDS axes scores (see Fig. 1), along a gradient of young secondary forest, old 

secondary forest, and primary forest in the Colombian Andes. Bold p values represent 

significant relationships (p<0.05). See text for detailed methods.  

Table 2. Mean comparisons of daily maximum, daily mean, and daily minimum 

environmental temperature, and the rate of temperature increase for every 1⁰C increase in 

understorey ambient temperature per forest type. Values shown are mean ± SE. 

Superscripts reveal pairwise differences at p < 0.05. Key to abbreviations: PF, primary forest; 

OSF, old secondary forest (19 - 35 yr); YSF, young secondary forest (4 - 18 yr). 

 

  



Table 1.  

Microhabitat quantile t value p value 

 

Bromeliad 

90% 2.54 0.01 

50% 3.78 <0.001 

10% 4.79 <0.001 

 

Tree fern 

90% 0.34 0.73 

50% 1.18 0.24 

10% 0.77 0.44 

 

Moss 

90% -0.60 0.54 

50% -0.46 0.64 

10% 1.02 0.30 

 

Deadwood 

90% 4.00 <0.001 

50% 2.08 0.04 

10% 2.97 0.003 

 

Leaf litter 

90% -0.49 0.62 

50% 0.06 0.94 

10% -1.29 0.19 

 90% 0.80 0.42 

Complexity 50% 2.82 0.005 

 10% 1.27 0.20 

 90% -4.23 <0.001 

Composition 
NMDS axis 1 

50% -4.36 <0.001 

 10% -2.82 0.006 

 90% -0.94 0.34 

Composition 
NMDS axis 2 

50% -0.45 0.65 

 10% 1.31 0.19 

 

 

  



Table 2. 

 
Forest 
type 

PF OSF YSF L. ratio p df 

Canopy 

Max 20.19±0.09 21.06±0.01 21.71±0.12 21.72 <0.001 458 
Mean 16.46±0.04 16.82±0.04 16.86±0.05 51.39 <0.001 458 
Min 14.21±0.03 14.31±0.03 14.22±0.04 16.39 <0.001 458 
Rate 1.368 1.362 1.140    

       

Understorey 
ambient 

Max 18.78±0.06B 19.79±0.07AB 20.18±0.09A 57.85 <0.001 2054 
Mean 16.60±0.04 17.29±0.04 16.87±0.05 110.60 <0.001 2054 
Min 14.95±0.04 15.43±0.04 15.58±0.05 61.58 <0.001 2054 
Rate -  -  -     

       

Bromeliad 

Max 18.00±0.06 19.41±0.07 18.39±0.08 30.64 <0.001 1009 
Mean 16.02±0.04 17.07±0.04 15.85±0.05 36.61 <0.001 1009 
Min 14.45±0.04 15.25±0.04 13.94±0.05 6.18 0.102 1009 
Rate 0.927 0.901 0.754    

       

Tree fern 

Max 16.51±0.04 18.04±0.03 18.23±0.06 33.36 <0.001 1350 
Mean 15.72±0.04 17.06±0.03 16.70±0.05 120.16 <0.001 1350 
Min 15.02±0.04 16.10±0.03 15.45±0.06 25.95 <0.001 1350 
Rate 0.463 0.473 0.546    

       

Tree hole 

Max 16.54±0.03 17.64±0.03 17.87±0.03 12.07 0.03 1413 
Mean 15.87±0.04 17.05±0.03 16.92±0.03 175.43 <0.001 1413 
Min 15.18±0.04 16.40±0.03 16.12±0.04 46.44 <0.001 1413 
Rate 0.448 0.356 0.303    

       

Leaf litter 

Max 16.85±0.04 18.24±0.05 18.51±0.05 15.09 0.01 1384 
Mean 15.91±0.04 17.12±0.04 16.89±0.04 87.48 <0.001 1384 
Min 15.05±0.04 16.07±0.04 15.67±0.04 20.86 <0.001 1384 
Rate 0.547 0.560 0.503    

       

Soil 

Max 14.83±0.02 14.79±0.01 15.71±0.02 10.42 0.06 373 

Mean 14.45±0.02B 14.70±0.01B 15.45±0.02A 9.25 0.009 1384 

Min 14.13±0.02B 14.60±0.01B 15.20±0.02A 11.25 0.04 1384 

Rate 0.124 0.043 0.124    

       

  



Figure legends (high resolution files available if accepted for publication) 

Fig. 1. (A) Nonmetric multidimensional scaling (NMDS) of microhabitat composition among 

forest types using microhabitat abundance. Young secondary forests are <19 years old, old 

secondary forests are >19 years old, and primary forest is undisturbed old-growth. Ellipses 

represent a grouping function depending on the standard deviation of points with a 95% 

confidence interval. (B) Recovery of microhabitat complexity among forest types. (C) 

Secondary forest ratio of microhabitat complexity compared to primary forest (considered 

as 100%). YSF: young secondary forest; OSF: old secondary forest; PF: primary forest. Values 

represent normalized data from mean abundance of microhabitats. Error bars represent 

standard error. Different superscripts represent significant differences (p<0.05). 

Fig. 2. Carbon and microhabitat co-benefits for bromeliads (A), tree ferns (B), moss (C), 

deadwood (D), leaf litter (E), and NMDS axis 1 (F). Quantile regressions of microhabitat 

abundance data between young (<19 yr old) secondary forest (yellow points), old (19-35 yr 

old) secondary forest (orange points), and primary forest (light green points). Lines 

represent 10th (bottom line), 50th (middle line), and 90th (top line) quantiles. Solid lines 

represent significant relationships (p<0.05). Dash lines represent non-significant 

relationships.  

Fig. 3. Annual temperature variation recorded every two hours (A1-G1), mean maximum 

temperature (A2-G2), mean average temperature (A3-G3), and mean minimum 

temperature (A4-G4) from Feb 2014 to Feb 2015 for canopy (A), understorey ambient (B), 

bromeliad (C), tree fern (D), tree hole (E), leaf litter (F) and soil (G) along a naturally 

regenerating young secondary forest (<19 yr; yellow), old secondary forest (19-35 yr; 

orange), and primary forest (light green) in the Colombian Andes. Error bars represent 

standard error. Similar superscripts represent no significant differences (p<0.05). 
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