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We study the relaxation of a 2D ultracold Bose-gas from a nonequilibrium initial state containing vortex
excitations in experimentally realizable square and rectangular traps. We show that the subsystem of vortex gas
excitations results in the spontaneous emergence of a coherent superfluid flow with a non-zero coarse-grained
vorticity field. The streamfunction of this emergent quasi-classical 2D flow is governed by a Boltzmann-Poisson
equation. This equation reveals that maximum entropy states of a neutral vortex gas that describe the spectral
condensation of energy can be classified into types of flow depending on whether or not the flow spontaneously
acquires angular momentum. Numerical simulations of a neutral point vortex model and a Bose gas governed
by the 2D Gross-Pitaevskii equation in a square reveal that a large scale monopole flow field with net angular
momentum emerges that is consistent with predictions of the Boltzmann-Poisson equation. The results allow us
to characterise the spectral energy condensate in a 2D quantum fluid that bears striking similarity with similar
flows observed in experiments of 2D classical turbulence. By deforming the square into a rectangular region,
the resulting maximum entropy state switches to a dipolar flow field with zero net angular momentum.

Rapid experimental advances that have been made to re-
alize superfluidity of ultracold atomic condensates in differ-
ent shaped traps have paved the way to study nonequilibrium
phenomena in different dimensions. These include the sce-
nario of non-equilibrium relaxation of a system driven out
of equilibrium, the Kibble-Zurek mechanism for defect for-
mation following a temperature quench, and nonequilibrium
regimes arising from a quantum phase transition [1–8]. More
recent work has focussed on uncovering under what condi-
tions a quasiclassical regime of turbulence can emerge in a
2D spinless Bose superfluid where the topological excitations
correspond to vortices and antivortices [9–14]. Indeed, even
holographic duals of superfluid and classical turbulence have
been proposed to help identify the emergence of the quasi-
classical regime [15, 16]. Turbulence in 2D is particularly
intriguing as it behaves essentially differently from 3D. Fol-
lowing the classical theory of Kraichnan, Leith, and Batchelor
[17–19], it is known that, if the system is forced at interme-
diate scales, the energy will favour an upscale cascade. An
important consequence of the inverse energy cascade in 2D is
the spontaneous formation of large scale structures in the flow
[20, 21]. For this reason, 2D turbulence has been motivated by
its relevance to the emergence of large scale flow structures in
quasi-geostrophic flows such as the ocean and planetary at-
mospheres [22, 23]. In contrast, such structures are absent in
3D turbulence that favours a downscale transport of energy.
The essential difference between 2D and 3D arises as a conse-
quence of the presence of a quadratic invariant for an inviscid
2D fluid called the enstrophy. In addition to energy, the en-
strophy acts to severely constrain the spectral energy transfer
in the system. Therefore, to sustain the inverse energy cascade
in 2D, a downscale cascade in enstrophy is also observed.

In [10, 24] evidence of the emergence of an inverse cascade
in models of 2D superfluid turbulence was presented while
such an inverse cascade was argued to be absent in [11, 16]. In
fact, the emergence of the inverse cascade is likely to be sen-
sitive to the particular parameter regimes under consideration.
The existence of an inverse energy cascade permits spectral

condensation of energy to occur. This scenario is analogous to
the situation involving the formation of a Bose-Einstein con-
densate in an atomic gas from a non-equilibrium initial state
[25, 26]. In this case, it has been demonstrated that a particle
flux towards low wavenumbers results in the formation of a
condensate in the matter wave field. It is now well understood
that characterising the properties of the coherent condensate
field and its interaction with the incoherent thermal excitations
is essential for a complete description of the system.

In this work, we present an analogous theory in order to
describe the emergent coherent large flow patterns associated
with the spectral condensation of energy in a 2D quantum
fluid. When our results describing the spectral energy con-
densate are combined together with the theory of the inverse
energy cascade, we are able to characterise the key qualita-
tive features of 2D quantum turbulence thus providing a more
complete description of this phenomena in a quantum fluid.
The theory we present also allows us to identify how a contin-
uum coarse-grained enstrophy density emerges in a quantum
fluid. This helps resolve how a direct enstrophy cascade that
is associated with the process of filamentation of the vorticity
field, can be sustained in a quantum system despite the fact
that individual vortices in such a system are discrete.

It is well established that topological excitations in 2D
play a key role in characterising the low temperature states
of matter in Bose superfluids. In particular, it is known that
even though a fully ordered Bose-condensate may not emerge,
topological order can restore superfluidity in 2D at finite tem-
perature as explained by the theory of Berezinskii-Kosterlitz-
Thouless (BKT) [27, 28]. This topological ordering also
arises in thin films of liquid Helium and superconductors, in
Ferromagnetism in 2D, in Coulomb gases [29], and in ultra-
cold Bose gases [30, 31]. For a spinless Bose gas, the state of
the topological vortex excitations is given by their positions in
physical space. In this case, it follows from Onsager’s theory
[32] that the gas of vortex excitations in a confined domain
can admit negative temperature states. This results in another
form of long-range topological ordering in the limit of zero
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temperature that is associated with the collective motion of
like-signed vortices as has been observed in [33]. This col-
lective behaviour results in the emergence of an order param-
eter, the streamfunction of the coarse-grained superfluid flow
that demarcates the onset of the quasiclassical regime. The
long-range Coulomb-like interaction that exists between the
vortices precludes a well-defined thermodynamic limit as in
the case for gravitational problems and systems of electrically
charged particles. We find that the resulting streamfunction of
the coherent flow field is, therefore, dependent on the shape of
the enclosing domainD. These observations are directly rele-
vant to experiments in 2D where finite-size effects arise from
the confinement of the condensate within a trapping potential.

In contrast to [34] where vortex clusters were created by
a moving obstacle, in [24], the phenomena of vortex cluster-
ing in a Bose gas was seen to emerge from a random initial
distribution of vortices. It was shown that the annihilation of
vortex-antivortex pairs drives the quantized vortex gas into the
negative temperature regime through the process of evapora-
tive heating. The final large scale mean flow was shown to
correspond to a dipole. In [24], a circular geometry was mod-
elled which is a rather special case as the rotational symme-
try imposes conservation of angular momentum thus severely
constraining the dynamics of the vortices. In order to uncover
the different types of coherent flow that can emerge from the
condensation of energy, we will consider a Bose gas that is
trapped in a square box potential. A box potential has recently
been realized in [35].

I. GROSS-PITAEVSKII MODEL

We will model a condensate that is effectively trapped in a
square box potential with principal axes aligned along the x
and y coordinate directions and with a tight harmonic oscil-
lator trap assumed along the z-direction. To simulate the key
effects induced by the shape of the trap, we will impose re-
flective boundary conditions on the condensate wavefunction
φ(x,y, t). The time evolution of the wavefunction is then given
by the 2D Gross-Pitaevskii (GP) equation

i~φt = −
~2

2m
∇2φ+ g2D|φ|

2φ, (1)

where φ(x,y) = 1/(
√

2πaz)
∫
φ3D(x,y,z)exp(−(z/az)2)dz is the

axially integrated wavefunction, g2D = g
√

mωz/(2π~) is the
effective 2D interaction parameter with g = 4π~2a/m, a is the
s-wave scattering length, and az =

√
~/mωz = 0.284µm. Mo-

tivated by typical experimental parameters [4, 9, 36], we will
assume a 87Rb condensate with N = 5× 105 atoms and with
ωz = 2π× 1440 Hz. For these parameters, the healing length
at z = 0 is equal to lh = ~/

√
2mg2DN/L2 = 0.236µm where

we have set the extent of the condensate to correspond to
L2 ∼ (72µm)2. These parameters imply that our system can
contain many well-separated vortices. Since we are partic-
ularly interested in the vortex dynamics, the 2D assumption
for the vortices is valid provided that Kelvin waves excited
along the length of the vortex would be damped efficiently.

The length scale of the longest Kelvin waves that can exist
in our case relative to the healing length satisfies az/lh ≈ 1.2.
Since these scales are of the same order, Kelvin waves would
be damped effectively and hence the 2D assumption remains
valid for the vortices also. In addition, since we will also be
interested in simulating the system close to T = 0, our assump-
tion to integrate out the dependence on z is justified.

We solved a non-dimensional form of the GP equation by
scaling space, time, and the wavefunction as x→ (L/512)x,
t→ 2mL2/(5122~)t, φ→

√
Nφ respectively. It follows that g̃ =

2mg2DN/~2 = 93367. The time evolution of the wavefunction
is then governed by the 2D Gross-Pitaevskii (GP) equation
given by

iφt = −∇2φ+ g̃|φ|2φ. (2)

The initial vortices are imprinted onto the condensate wave-
function by adapting the expression for the velocity potential
(phase field) of a periodic array of vortices as described in
[10]. As we are interested in reflecting (Neumann) boundary
conditions, we take our vortices to lie within a square box that
is equivalent to a 1/4 of a periodic cell. The remaining 3/4 of
the cell contain image vortices that are added in order to sat-
isfy the reflective boundary conditions of the square box (see
e.g. [37]). The resulting expression for the phase field corre-
sponding to a neutral vortex gas consisting of Nv vortices can
then be written as

ϕ(x,y) =

(Nv/2)∑
k=1

∞∑
m=−∞

g(X+
k ,X

−
k ,Y

+
k ,Y

−
k ) + g(Xi−k ,Xi+k ,Y

+
k ,Y

−
k )

+g(X+
k ,X

−
k ,Yi−k ,Yi+k ) + g(Xi+k ,Xi−k ,Yi+k ,Yi−k ),

g(Xp,Xm,Y p,Ym) = atan
[
tanh

(
Ym

2
+ mπ

)
tan

(
Xm−π

2

)]
(3)

−atan
[
tanh

(
Y p

2
+ mπ

)
tan

(
Xp−π

2

)]
+π

[
H(Xp)−H(Xm))

]
,

where H(·) is the Heaviside step function, X+
k = π(x− xv,+

k )/Lx,
X−k = π(x− xv,−

k )/Lx, Y+
k = π(y− yv,+

k )/Ly, Y−k = π(y− yv,−
k )/Ly,

Xi+k = π(x + xv,+
k )/Lx − 2π, Xi−k = π(x + xv,−

k )/Lx − 2π, Yi+k =

π(y+yv,+
k )/Ly−2π, Yi−k = π(y+yv,−

k )/Ly−2π, and superscripts
± denote vortices with positive/negative circulation. In prac-
tice, the rapidly convergent infinite sum over m allows us to
truncate the series so that m ∈ {−5,5}. The wavefunction is
then reconstructed from φ(x,y) = exp(iϕ(x,y)). The phase field
obtained from the above expression is then frozen in time but
the density of the condensate is relaxed through integration
of the GP equation in imaginary time. This produces the de-
sired distribution of vortices and antivortices with the required
density profile in the condensate wavefunction. Using this as
our initial condition for the wavefunction in the GP equation,
we then integrate Eq. (2) forward in time using a four stage
Strang Splitting method with a timestep of ∆t = 0.1 using a
discrete cosine transform. Unless stated otherwise, an x− y
grid of (513×513) points was used for the simulations in the
square. For simulations in the rectangle, a grid of (769×513)
was used.
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II. POINT VORTEX MODEL

To provide a framework for formulating a statistical theory
of the quantised vortex gas in order to explain the emergent
coherent flow, we will also adopt a point vortex approxima-
tion which is applicable when the intervortex separation is
much greater than the healing length. Assuming a hard wall
potential which is consistent with our use of reflective bound-
ary conditions and which provide a good approximation to
the square/rectangular well potential assumed in this work,
we use the Hamiltonian (equivalently renormalised Energy,
E) given by [37, 38], H = (1/2)

∑Nv

i=1 γi
∫
ψ(r)δ(r−ri,v)dr−SI.

The streamfunction corresponding to the flow field induced by
the point vortices is

ψ(r) =
ρ

2πNv

Nv∑
j=1

γ j

2

[
f (|x− x j|, |y− y j|)− f (Lx − x j− x, |y− y j|)

− f (|x− x j|,Ly− y j− y) + f (Lx − x j− x,Ly− y j− y)
]
,

f (r) = f (x,y) =
2π
α

[
|y|
Ly

(
|y|
Ly
−1

)
+

1
6

]
(4)

− ln


∞∏

j=−∞

[
1−2cos

(
2πx
Lx

)
e−2π| j+y/Ly |/α + e−4π| j+y/Ly |/α

] ,
where γ j = ±1 is the circulation, and α = Lx/Ly is the aspect
ratio of the domain. The divergent contributions from the self-
interaction energies (SI) and corresponding to the first term in
the above expression for the streamfunction when i = j are
subtracted from the finite contributions to the Hamiltonian.
We have set ρ = 1 for the superfluid density. Hamilton’s equa-
tions governing the time evolution of the vortex positions,
ẋk,v = γ−1

k ∂H/∂yk,v, ẏk,v = −γ−1
k ∂H/∂xk,v are then integrated

numerically using an adaptive 4th/5th stage Runge-Kutta-
Fehlberg scheme with a maximum time-step of ∆t = 0.0005.

Using this Hamiltonian, we modelled vortices placed ran-
domly with a uniform distribution within a domain of lengths
(Lx,Ly) = (2,2) in the (x,y) coordinate directions, respectively.
Constraints were imposed such that that the intervortex and
the vortex-boundary separations were greater than 0.12 and
0.08, respectively. To ensure that our initial vortex distribu-
tion corresponds to a positive temperature, we calculated the
statistical weights by sampling M = 100,000 realizations of
a neutral vortex gas consisting of Nv vortices. For each real-
ization, the interaction energy per vortex was calculated and a
probability distribution constructed from [39]

W(H) =
1
M

Nb∑
i

Wi

σ
√

2π
e−

(H−Hi)
2

2σ2 , (5)

where σ = 0.01, Wi is the number of realizations with an en-
ergy within the interval (H,H + ∆H), and Nb = 50 is the total
number of bins. Fig. 1 presents the statistical weights for dif-
ferent Nv. We note that in comparison to the unconstrained
case where the graphs converge as Nv is increased [37], our
graphs do not converge since the constraint introduces a pack-
ing factor. However, in both cases, the qualitative features of
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FIG. 1. Statistical weight for vortices in square as a function of
energy per vortex with miniumum intervortex and vortex-boundary
separation of 0.12 and 0.08 imposed on vortex distributions.

the distribution persist. In particular, the probability distri-
bution presented in Fig. 1 contains a maximum turning point
with a positive slope at lower interaction energies and a neg-
ative slope at higher interaction energies. The entropy of the
vortex gas is related to the statistical weight by S = kB lnW
with the temperature defined as 1/T = ∂S/∂E. We, therefore,
note that the system passes from positive to negative tempera-
tures through T = +∞. We chose our initial vortex distribution
to lie within the positive temperature regime as indicated by
the vertical line in Fig. 1.

With these initial conditions, we integrated Hamilton’s
equations, for a neutral gas consisting of Nv = 120 point vor-
tices. Being a Hamiltonian system, the motion of the point
vortices is constrained to lie on a surface of constant en-
ergy. To allow vortices to explore different regions of energy
space, we model the mechanism of vortex-antivortex annihi-
lation when two vortices approach each other within a sepa-
ration distance that is twice the respective healing length as
in [24, 37]. The removal of vortex pairs results in a punc-
tuated Hamiltonian model which breaks the invariants of the
system at such vortex annihilation events. To model vortex-
antivortex annihilation, we remove a vortex-antivortex pair
when their intervortex separation falls below a critical value
of δ = 0.01. We note that δ/L ∼ 0.005 is in good agreement
with lh/L ∼ 0.003 for the parameters specified above for our
GP simulations. Vortices in our GP simulations can also an-
nihilate at the boundaries of the domain and thus change the
polarization of the gas. Since our aim in using this model was
to establish the validity of the statistical theory to be presented
in the following section, which is derived under the assump-
tion of a neutral vortex gas, we will focus primarily on simu-
lation results where vortex annihilation at the boundaries has
not been included. However, annihilation at the boundaries
can have noticeable effects on the relaxation timescales of the
vortex gas as will be discussed later.

III. MEAN FIELD THEORY OF VORTEX GAS

In this section, we present a statistical theory that we will
adopt to explain the vortex distributions obtained from our nu-
merical simulations that will be presented in the next section.
Working in the microcanonical ensemble, we begin by divid-
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ing the flow domain into a large number of cells with area
∆� A where A is the area of the domain. Each cell is assumed
to contain a large number of point vortices. The macrostate is
defined by the number of point vortices of species a with cir-
culation γa in the i’th cell which we denote by the set {Nv

i,a}.
The statistical weight corresponding to the macrostate {Nv

i,a},
is given by [40]

W({Nv
i,a}) =

∏
a

Nv
a!

∏
i

1
Nv

i,a!

(
∆

A

)Nv
i,a
 , Nv

a =
∑

i

Nv
i,a. (6)

By defining the coarse-grained vorticity field as

ω(x,y) =
∑

a

ωa(x,y) =
∑

a

γana(x,y), na(xi,yi) = Nv
i,a/∆

2,(7)

and taking the continuum limit ∆→ 0, we recover

S = −kB

∑
a

∫
D

ωa

γa
log

(
ωaA
γaNv

a

)
d2x, (8)

for the entropy. We now maximise the entropy subject to the
constraint of fixed energy, and fixed number of vortices and
antivortices (i.e. we’re considering the long time limit where
the system has reached a quasi-equilibrium steady state such
that vortex-antivortex annihilation can be neglected). This
requires δS − βδE −

∑
a µaγaδna = 0, where β is the inverse

temperature and µa is the respective chemical potential of
each species. For a neutral quantized vortex gas (

∑
a γana =

0) with vortices with winding numbers ±1, we recover the
Boltzmann-Poisson equation [40, 41]

∇2Ψ+
λ2

2

 exp(Ψ)∫
exp(Ψ)d2x

−
exp(−Ψ)∫

exp(−Ψ)d2x

 = 0. (9)

Here λ2 = −Nvγ2ρβ/A, γ = |γa| is the magnitude of the cir-
culation of a quantum vortex with winding number one, Ψ

is the streamfunction of the mean flow satisfying ∇2Ψ = −ω,
ω = ẑ · ∇ × u is the local (coarse-grained) vorticity field, and
u = ẑ×∇Ψ. For positive temperatures where λ2 < 0, Eq. (9)
only has the trivial solution, Ψ = 0. However, for negative
temperatures, several solutions can be found for each value of
λ2, and hence we expect to have a non-trivial mean flow-field.
We focus on states that are global maxima.

We have found solutions of this equation by adapting the
method described in [42, 43] for the Sinh-Poisson equation
to numerically solve Eq. (9). To enhance the stability of the
method for the Boltzmann-Poisson equation, we have reex-
pressed the equation into the form

∇2Ψ+
λ̃2

2

√a−

a+
exp(Ψ)−

√
a+

a−
exp(−Ψ)

 = 0.

a+ =
1
A

∫
exp(Ψ)d2x , a− =

1
A

∫
exp(−Ψ)d2x , (10)

and solved for prescribed values of λ̃2 = λ2/
√

a+a−.
In Fig. 2, we present different solutions of Ψ for the square

and rectangular domains that are all local maximisers of the
entropy. The variation of normalized entropy against normal-
ized energy, where Ẽ = ρ(8A2λ4)−1

∫
ωΨd2x, is also presented
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Ẽ
)

 

 

λ̃
2 =11.5

λ̃
2 =11.5

λ̃
2 =11.5

λ̃
2 =3

λ̃
2 =3

λ̃
2 =3

λ̃
2 =11

λ̃
2 =10

λ̃
2 =3

λ̃
2 =3

Dipole (Square)

Diag. Dipole (Square)

Monopole (Square)

Dipole (Rectangle)

Monopole (Rectangle)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

FIG. 2. Entropy as a function of energy of mean flows predicted
by Boltzmann-Poisson equation for square domain (dipole, diagonal
dipole, and monopole solutions) and for rectangular domain (dipole,
and monopole solutions). Insets show vorticity contours of mean
flows (postitive and negative contours correspond to red/solid and
blue/dashed lines, respectively).

for these different flows. We observe that, for the square, the
monopole solution is a higher entropy state as discussed in
[44, 45] and corresponds to a flow with a non-zero compo-
nent of angular momentum Lz = 2ρ

∫
Ψd2x. In contrast, the

two dipolar flow fields correspond to lower entropy states with
zero angular momentum.

We have seen that in contrast to the circular domain con-
sidered in [24] which conserves angular momentum, the most
probable mean flow in the square corresponds to a monopole.
However, because of the long-range Coulomb-like interac-
tions, the vortex gas does not have a well-defined thermody-
namic limit. In fact, a linearized analysis of Eq (9) reveals
that the branches corresponding to the monopole and dipole
configurations will cross each other for a rectangle with an as-
pect ratio of α ' 1.12 [45–47]. Since analytical solutions exist
only for some of these flows [48, 49], we have numerically
analysed the full nonlinear problem given by Eq. (9) by study-
ing how these flow configurations change for a rectangle with
aspect ratio α = 1.5 with dimensions (Lx,Ly) = (2

√
α,2/

√
α).

Fig. 2 shows that for the rectangle, the relative position of
the diagonal and monopole branches switches. Moreover, we
have found that the two dipole branches coalesce into one.

IV. NUMERICAL RESULTS OF POINT VORTEX AND
GROSS-PITAEVSKII SIMULATIONS

Upon integrating our point vortex model forward in time,
we obtained a time sequence of the position of point vortices
as shown in Fig. 3a. These results correspond to a simulation
where vortex annihilation at the boundaries was not included.
The positions are shown at the initial time, an intermediate
time, and a late time in units of tv = L2/|γ|. We note that
a monopole distribution emerges at late times in the square
domain for our neutral vortex gas. This causes the flow to
spontaneously acquire a non-zero value of angular momen-
tum defined as L =

∫
(r×ρu)d2x where r is measured relative
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(a) t = 0, t = 47.6tv, t = 65.97tv

(b) t = 0, t = 1.92tv, t = 4.03tv

FIG. 3. Time sequence of locations of vortices (red/circle) and an-
tivortices (blue/square) for: (a) Point vortex model (tv = 4) (b) GP
model (tv = 2.09× 104). In (b), background contour corresponds to
plot of |φ|2.

to the centre of the domain as pointed out in [45, 50, 51] (see
Movies S1a and S1b [52]). These results are consistent with
the mean-field predictions which predict that a monopole dis-
tribution of vortices is the most probable state in the square
and is, therefore, expected to emerge at long times in the lat-
ter stages of the simulation.

To further assert the agreement between the theory and the
dynamical simulations, we take advantage of the fact that the
vortices appear to relax through quasi-equilibrium states and
assume ergodicity to replace ensemble averages by time aver-
ages [53]. We can then proceed by calculating time-averaged
streamfunctions Ψ = ψ. The instantaneous streamfunction, ψ,
can be reconstructed on a uniform grid from knowledge of
vortex/antivortex positions using Eq. (4). We set the stream-
function to zero if a vortex position coincides with the coordi-
nates of a point on the grid.

In analogy with a BEC [54, 55], a spectral condensate is ex-
pected to lead to a non-trivial

〈
ψ
〉

since the condensate can be
identified with a maximum eigenvalue of the two-point corre-
lator

〈
ψ(x, t)ψ(x′, t)

〉
where

〈
·
〉
, denotes an ensemble average.

In this case, the two point correlator can be separated into
connected and non-connected parts such that

〈
ψ(x, t)ψ(x′, t)

〉
= Ψ(x, t) Ψ(x′, t) +

〈
ψ̃(x, t)ψ̃(x′, t)

〉
. In Fig. 5a, we present the

eigenmode corresponding to the maximum eigenvalue of the
two-point correlator. The corresponding time-averaged mean
of the wavefunction is presented in Fig. 5c. The expectations
are evaluated over the time intervals, t ∈ [45.87tv − 48.07tv]
and [64.40tv − 67.54tv], which coincide with the animations
(see Movies S1a and S1b [52]). We observe that the domi-
nant eigenmodes extracted from an eigenvalue decomposition
of the two point correlator over the two time intervals are sim-
ilar to the streamfunctions that are obtained from the time-
averaging. Moreover, both fields coicide with the predictions
of the mean-field theory. When interpreted together, these re-
sults provide clear evidence that our definition of the spectral
condensate, that is analogous to the Penrose-Onsager defini-
tion of a Bose-Einstein condensate, allows us to clearly iden-
tify the spontaneous emergence of a coherent mean flow in
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FIG. 4. Time variation of: (a) total number of vortices; (b) energy
per vortex, for point vortex simulations.

our simulations. Moreover, it confirms that a dipole emerges
at intermediate times which gives way to the monopole at later
times.

We have simulated the same initial condition with the GP
model given in Eq. (2) using the parameters given above. The
resulting initial density field is shown in Fig. 3b together with
the vortex positions indicated in red for vortices and blue for
antivortices. We note that there is a clear disparity between the
relaxation timescales of the point vortex and the GP models
even though we have scaled the results of the two simulations
with the vortex timescales. We attribute this discrepancy to
the fact that our GP simulations permit vortices to annihilate
at the boundaries.

For the results presented in Fig. 3a, we did not model this
effect in our point vortex simulations in order to ensure that
the vortex gas remains neutral for purposes of comparing with
our predictions of the Boltzmann-Poisson equation. Conse-
quently, we observe that the number of vortices in the point
vortex simulations decays more slowly with time resulting in
a slower migration of the system into the negative tempera-
ture regime and a subsequent longer relaxation time for the
emergence of vortex clusters. To verify this, we have repeated
our point vortex simulations by including the effect of vor-
tex annihilation at the boundaries as shown in Fig. 4a. As
can be seen, the number of vortices decays more slowly in the
case when no annihilation at the boundaries is included but the
annihilation rate increases as the annihilation parameter, δB,
(vortex-boundary separation at which vortices are removed)
is increased. A higher annhiliation rate also results in a larger
energy per vortex at later times as illustrated in Fig. 4b. Since
the energy scale sets the timescale associated with the emer-
gent large scale structures in the negative temperature regime,
these results provide confirmation that vortex annihilation at
the boundaries affects the relaxation times in the point vortex
simulations.

As with the point vortex model, the streamfunction can
be reconstructed from knowledge of the location of vortices
and antivortices that we have from the simulations of the GP
model. The dominant eigenmode of the two point correla-
tor and time-averages of the streamfunctions within the inter-
vals t ∈ [1.92tv −2.68tv] and [3.64tv −5.56tv] are presented in
Fig. 5b and 5d, respectively. As with the point vortex sim-
ulations, we observe clear evidence of the dipole at interme-
diate times followed by a monopole distribution of vortices
at longer times in agreement with the mean-field theory (see
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(a) Eigenmode for Point Vortex (b) Eigenmode for GP

(c) Streamfunction for Point Vortex (d) Streamfunction for GP

FIG. 5. Contour plots in square domain of dominant eigenmode
of two point correlator

〈
ψ(x, t)ψ(x′, t)

〉
for (a) Point vortex model

and (b) Gross-Pitaevskii model; Averaged streaminlines for (a)
Point vortex model constructed over time intervals t ∈ [45.87tv −
48.07tv] for dipole and [64.40tv −67.54tv] for monopole; (b) Gross-
Pitaevskii model constructed over time intervals t ∈ [1.92tv −2.68tv]
for dipole and [3.64tv − 5.56tv] for monopole. In both cases, instan-
taneous streamfunctions are reconstructed from quantized vortex po-
sitions (postitive and negative streamlines are shown as red/solid and
blue/dashed lines, respectively).

Movies S1c and S1d [52]). We note that the coherent flow
patterns that emerge during the relaxation of our system bear
remarkable similarity with the large scale flows observed in
forced classical fluid experiments due to the spectral conden-
sation of energy (see Fig. 1c of [20, 56]).

Because of the long-range Coulomb like interactions, our
mean-field predictions presented above for the rectangle indi-
cate that a dipole is expected to emerge for a rectangular flow.
We have checked these mean-field predictions by simulating
the dynamics of vortices using both the point vortex and the
GP models for a rectangular domain with an aspect ratio equal
to 1.5 while keeping the area fixed to that of the square.

Time sequence plots showing the positions of the vortices in
both models for the rectangle are presented in Fig. 6. In con-
trast to the square, the long time behaviour leads to a dipole
distribution in the point vortex model. By comparison, for the
GP simulations, the monopole appears to persist throughout
the simulation with no evidence of the dipole emerging. (We
refer to Movies S2a and S2b for a further illustration [52]).
This is further confirmed from the time-averaged streamfunc-
tions presented in Figs. 7a, and b which were evaluated over
the time intervals t ∈ [75.4tv−78.54tv] and t ∈ [5.75tv−6.71tv]
for the point vortex and GP models, respectively.

The discrepancy between the dynamical runs and the mean
field theory can be explained in terms of the polarization de-
fined as (Nv,+ −Nv,−)/(Nv,+ + Nv,−) where Nv,+ and Nv,− are
the number of vortices and antivortices. In Fig. 8a, we ob-
serve that in the square, the increase in polarization coincides
with when a monopole state emerges. In general, the polar-
ization of the vortices can only change by single vortices an-
nihilating at the boundaries of the domain [1, 7]. Since the
centrally located vortices of the monopole configuration are
screened from the boundaries, this explains why this GP sim-
ulation favours the emergence of a polarized vortex state. In

(a) t = 0, t = 38.04tv, t = 77.6tv

(b) t = 0, t = 2.88tv, t = 5.75tv

FIG. 6. Time sequence of locations of vortices (red/circle) and an-
tivortices (blue/square) for: (a) Point vortex model (tv = 4) (b) GP
model (tv = 2.09× 104). In (b), background contour corresponds to
plot of |φ|2.

the rectangle, the perimeter of the domain is larger than in the
square thus enhancing the effects of vortex annihilation at the
boundaries. Moreover, since the monopole should emerge at
earlier times in the rectangle as it has a lower entropy, these
effects result in a polarized vortex state at earlier times as in-
dicated by Fig. 8b which causes the monopole to persist in the
GP simulations.

In rare realizations, the fluctuations can kick the system
back from a polarized to a neutral state. Consequently, the
dipole re-emerges in the rectangle at late times. In the partic-
ular example presented in Fig. 7c (Case 2) corresponding to a
realization with an initial total number of vortices Nv = 350,
and with g̃ = 37346 (N reduced by a factor of 2.5), we observe
that the neutral polarization is restored at late times as seen in
Fig. 8b (see also Movie S3 [52]). This explains why the dipole
is recovered at late times in this GP simulation of the rectangle
which coincides with the predictions of the mean-field theory
that were obtained under the assumption that the vortex gas is
not polarized.

The coherent flows that emerge can be grouped into two
types depending on whether or not these flows spontaneously
acquire angular momentum, Lz. In Fig. 9 we have presented
the variation of Lz with time in the point vortex model. As can
be seen, a non-zero value of Lz arises at late times in the square
whereas it continues to fluctuate about zero for the rectangle.
These qualitatively different coherent flows stand in contrast
to the single coherent phase field in the case of the formation
of a Bose-Einstein condensate in an atomic Bose gas.

The coherent flow also has a clear signature in the occu-
pation number spectrum of the wavefunction φ. In Fig. 10,
we have evaluated the angle averaged spectrum for a high res-
olution simulation of the GP equation in the square at late
times after a coherent flow had emerged. Included are the oc-
cupation number densities corresponding to the classical and
quantum incompressible kinetic energies (CIKE and QIKE re-
spectively) [57] (see Appendix for further details of their defi-
nitions). We observe a clear difference between the two quan-
tities at low wavenumbers. In fact, the two would coincide if
the velocity field remains uncorrelated to the phase. Such a
scenario corresponds to regimes considered in [13, 58] where
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(a) Point Vortex (b) GP (Case1) (c) GP (Case 2)

FIG. 7. Averaged streaminlines in rectangular domain calculated
from quantized vortex positions for: (a) point vortex model con-
structed over the time interval t ∈ [75.4tv − 78.54tv]; (b) and (c) GP
simulations with different parameters constructed over the time inter-
vals t ∈ [5.75tv − 6.71tv] and [8.63tv − 10.55tv], respectively; (posti-
tive and negative streamlines are shown as red/solid and blue/dashed
lines, respectively).

no coherent flow was identified. The emergence of the coher-
ent flow in our case produces strong correlations between the
phase and the velocity field and thus destroys the correspon-
dence between the two quantities (see Appendix). The conse-
quence is a characteristic flattening in the occupation number
spectrum of the QIKE at low wavenumbers.

This signature of the coherent flow can potentially be ac-
cessed from measurements of the momentum distribution of
the Bose gas. The flattening of the spectrum derived from the
QIKE stands in contrast to the spectrum associated with the
CIKE which slightly exceeds the k−4 spectrum at low k due to
the effect of the spectral condensate. Indeed, as discussed in
[57], a clear signature of a spectral energy condensate appears
in the CIKE spectrum only when the vortex gas is deep into
the negative temperature regime whereas the QIKE spectrum
is characterised by a k3 power law in the infrared which corre-
sponds to a flat spectrum in nk. Therefore, the results of Fig.
10 provide clear evidence that our simulations coincide with
the spectral condensation of energy.

V. CONCLUSIONS

We have shown that in 2D quantum fluids, large scale flows
that characterise the spectral condensate in energy emerge as
a result of a form of topological ordering that can occur at
zero temperature and that is distinct from the BKT type. In
contrast to previous works, by extending the Penrose-Onsager
definition of a condensate to the streamfunction, we are able to
define the spectral condensate in a directly analogous way to
a BEC. We have shown how this definition can be combined
with a theory for determining these coherent flows in a 2D
quantum fluid. Our theory corroborates results of our numeri-
cal simulations that two different types of flows can emerge at
large scales with each type distinguished by whether or not
the flow spontaneously acquires angular momentum. Such
spontaneously emerging coherent flows with different angular
momenta add to the diversity of flow regimes that have been
shown to arise in 2D turbulence of superfluids [59]. Moreover,
the simulations reveal that the mean-field predictions that are
formally derived in the limit of a large number of vortices ap-
pear to apply even when the total number of vortices is around
50-100. Since this is achievable in current experimental se-
tups, our results suggest that it may be possible to confirm
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FIG. 8. Time variation of number of vortices and antivortices (nor-
malized with respect to their initial values at t = 0), and vortex polar-
ization in GP simulations.

these predictions in future experiments.
The situation we describe draws a direct analogy with the

scenario of a Bose condensed gas where a coherent mode co-
exists with thermally populated modes. In the same way that
a separate treatment of the coherent and incoherent modes is
essential in order to completely characterise the properties of
a Bose condensed gas, we have presented a model that can
explain the coherent spectral condensate of energy which al-
lows us to characterise 2D quantum turbulence when com-
bined with Kraichnan’s theory [19, 60] of an inverse energy
cascade. The statistical theory that describes the spectral en-
ergy condensate in quantum fluids is also relevant to the phe-
nomena of spectral condensation in 2D classical turbulence.
Indeed the structures we have reported here for the decaying
problem of quantum turbulence bear a striking similarity to
flows observed experimentally even for forced 2D classical
turbulence [20, 56, 61]. This raises further open questions re-
garding the close relationship between the Boltzmann-Poisson
theory and the Robert-Miller-Sommeria theory [62–64] for-
mulated for classical fluids and, in particular, which of the
infinitely many Casimirs that ideal 2D classical fluids possess
are needed in practice to correctly characterise the coherent
flow.
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VI. APPENDIX: EVALUATING SPECTRAL
DISTRIBUTIONS

To evaluate the occupation number spectra, we note that the
total kinetic energy is given by

E =

∫ 〈
|∇φ|2

〉
dxdy =

∫
k2〈|ã(k)|2

〉
d2k = 2π

∫ ∞

0
k3n(k)dk,

where n(k) = 1/(2π)
∫ 2π

0
〈
|ã(k)|2

〉
dθk, and

ã(k) ≡ F [ψ(r] =
1

2π

"
e−ik·rψ(r)d2r. (11)

Thereafter F [·] will be used to denote the Fourier transformed
quantity. It follows from the above that an energy spectrum
with a k−1 power law, consistent with the analysis in [13, 65],
corresponds to an occupation number spectrum with a k−4

power law as observed at intermediate wavenumbers in our
simulations. To define the occupation number spectrum of
the incompressible component of the kinetic energy, we first
identify the hydrodynamic (H) and quantum pressure contri-
butions (QP) to the kinetic energy given by

EC
H =

∫ 〈
ρ(r)|v(r)|2

〉
d2r =

∫ ∞

0
dk

∫ 2π

0

〈
|ũ(k)|2

〉
kdθk,

EC
QP =

∫ 〈
|∇

√
ρ(r)|2

〉
d2r (12)

where the velocity field is given by v = ∇ϕ(r) and u(r) =√
ρ(r)v(r) corresponds to the the density-weighted velocity

field and ũ(k) = F (u(r)). We use the superscript, C, to dis-
tinguish the classical definitions for the different components
of the kinetic energy from the quantum definitions to the ki-
netic energy that include the phase dependent factors to be
presented below.

The incompressible and compressible contributions to the
hydrodynamic component of the kinetic energy spectrum can
be evaluated by utilizing the Helmholtz decomposition of the
field u(r). By writing u = ui +uc where ∇·ui = 0 and ∇×uc =

10
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FIG. 10. Occupation number spectra for GP simulation with 1025×
1025 grid points with the interaction parameter set to g̃ = 282920
and starting with an initial neutral configuration consisting of 360
vortices. Phase field at corresponding time is shown in inset with
locations of vortices (red/circle) and antivortices (blue/square).

0, the classical incompressible kinetic energy (CIKE) is given
by

EC
IH =

∫ ∞

0
dk

∫ 2π

0

〈
|ũi(k)|2

〉
kdθk =

∫ ∞

0
ECIKEdk. (13)

In relating the incompressible kinetic energy to the total ki-
netic energy spectrum as given by Eq. (11), it turns out that it
is more natural to evaluate the incompressible kinetic energy
from the modified definition given by

EQ
IH =

∫ 〈
|F [ui(r)eiϕ(r)]|2

〉
d2k =

∫ ∞

0
EQIKEdk. (14)

We refer to this quantity as the Quantum Incompressible Ki-
netic Energy (QIKE). Similarly we can define

EQ
QP =

∫ 〈
|F [∇

√
ρ(r)eiϕ(r)]|2

〉
d2k (15)

As noted in [57], this decomposition of the kinetic energy
into different contributions provides genuine spectral energy
densities that are locally additive in k space in contrast to the
classical spectra as given from Eq. (13). With these defini-
tions, we can then define the respective occupation numbers
corresponding to the classical and quantum kinetic energy
spectra as nCIKE(k) = ECIKE/k3 and nQIKE(k) = EQIKE/k3.

Although the CIKE and the QIKE spectra generally differ,
the two are equivalent provided the phase field ϕ is uncorre-
lated to the density weighted incompressible velocity field ui.
In particular, we have

k2n(k) =
1

2π

∫ 2π

0

(〈
|F [u(r)eiϕ(r)]|2(k)

〉
+

〈
|F [∇

√
ρ(r)eiϕ(r)]|2(k)

〉)
(16)

+
〈
2R

(
iF [u(r)eiϕ(r)](k)F [

√
ρ(r)eiϕ(r)]∗(k)

)〉
dθk.

where R(·) denotes the real part. Now if the terms on the
right-hand side are isotropic so they depend on k only, then
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the third term vanishes [58]. The remaining terms can then be
expressed as a convolution so that

k2n(k) =

∫ 2π

0

(〈
[ũ∗F (eiϕ(r))](k)[ũ∗F (eiϕ(r))]∗

〉
(k) (17)

+
〈
[F (∇

√
ρ)∗F (eiϕ(r))](k)[F (∇

√
ρ)∗F (eiϕ(r))]∗(k)

〉)
dθk.

When the phase and velocity are uncorrelated, we can write

the above in the form

k2n(k) =

∫
dp

∫
dq

∫ 2π

0

〈
[ũ](|p−k|)[ũ]∗(|q−k|)

〉
dθk

×

∫ 2π

0

〈
[F (eiϕ(r))](p)[F (eiϕ(r))]∗(q)

〉
dθk

+

∫
dp

∫
dq

∫ 2π

0

〈
[F (∇

√
ρ)](|p−k|)[F (∇

√
ρ)]∗(|q−k|)

〉
dθk

×

∫ 2π

0

〈
[F (eiϕ(r))](p)[F (eiϕ(r))]∗(q)

〉
dθk. (18)

If we furthermore assume that the phase is slowly varying so
that F (eiϕ(r)) is peaked at zero momentum, we can approxi-
mate these terms by delta functions which consequently leads
to the final expression

k2n(k) ' |ũ|2(k) + |F (∇
√
ρ)|2(k). (19)

Hence, departures from this expression at low wavenumbers
arise due to strong correlations developing between the flow
and the phase when the large scale coherent flow emerges.
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051602(R) (2002).
[56] H. Xia, M. Shats, and G. Falkovich, Phys. Fluids 21, 125101

(2009).
[57] M. Reeves, T. Billam, B. Anderson, and A. Bradley, Phys. Rev.

A 89, 053631 (2014).
[58] B. Nowak, J. Schole, D. Sexty, and T. Gasenzer, Phys. Rev. A

85, 043627 (2012).
[59] V. Shukla, M. Brachet, and R. Pandit, New Journal of Physics

15, 113025 (2013).
[60] R. Kraichnan and D. Montgomery, Rep. Prog. Phys. 43, 547

(1980).
[61] H. Xia, H. Punzmann, G. Falkovich, and M. Shats, Phys. Rev.

Lett. 101, 194504 (2008).
[62] R. Robert, J. Stat. Phys. 65, 531 (1991).
[63] J. Miller, Phys. Rev. Lett. 65, 2137 (1990).
[64] R. Robert and J. Sommeria, J. Fluid Mech. 229, 291 (1991).
[65] A. Bradley and B. Anderson, Phys. Rev. X 2, 041001 (2012).

http://dx.doi.org/10.1140/epjb/e2014-40869-x
http://dx.doi.org/ http://dx.doi.org/10.1016/0021-9991(74)90045-X
http://dx.doi.org/10.1063/1.861347
http://dx.doi.org/10.1103/PhysRevLett.102.124505
http://dx.doi.org/10.1103/PhysRevLett.102.124505
http://link.springer.com/article/10.1007%2FBF01014402
http://dx.doi.org/10.1017/S0022112096000316
http://dx.doi.org/ http://dx.doi.org/10.1016/0167-2789(87)90214-4
http://dx.doi.org/10.1103/PhysRevLett.80.5129
http://dx.doi.org/10.1103/PhysRevLett.80.5129

	Long-range Ordering of Topological Excitations in a Two-Dimensional  Superfluid Far From Equilibrium
	Abstract
	Gross-Pitaevskii Model
	Point Vortex Model
	Mean Field Theory of Vortex Gas
	Numerical Results of Point Vortex and Gross-Pitaevskii Simulations
	Conclusions
	Acknowledgments
	Appendix: Evaluating Spectral Distributions
	References


