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Abstract We investigate the variations of the ocean CO2 sink during the past three decades using global
surface ocean maps of the partial pressure of CO2 reconstructed from observations contained in the Surface
Ocean CO2 Atlas Version 2. To create these maps, we used the neural network-based data interpolation
method of Landschützer et al. (2014) but extended the work in time from 1998 to 2011 to the period from
1982 through 2011. Our results suggest strong decadal variations in the global ocean carbon sink around a
long-term increase that corresponds roughly to that expected from the rise in atmospheric CO2. The sink is
estimated to have weakened during the 1990s toward a minimum uptake of only−0.8± 0.5 Pg C yr−1 in 2000
and thereafter to have strengthened considerably to rates of more than −2.0 ± 0.5 Pg C yr−1. These decadal
variations originate mostly from the extratropical oceans, while the tropical regions contribute primarily to
interannual variations. Changes in sea surface temperature affecting the solubility of CO2 explain part of
these variations, particularly at subtropical latitudes. But most of the higher-latitude changes are attributed
to modifications in the surface concentration of dissolved inorganic carbon and alkalinity, induced by
decadal variations in atmospheric forcing, with patterns that are reminiscent of those of the Northern and
Southern Annular Modes. These decadal variations lead to a substantially smaller cumulative anthropogenic
CO2 uptake of the ocean over the 1982 through 2011 period (reduction of 7.5 ± 5.5 Pg C) relative to that
derived by the Global Carbon Budget.

1. Introduction

Recent model- and data-based estimates suggest that the global ocean currently removes every year, on
average, roughly 25% of the the carbon dioxide (CO2) emitted into the atmosphere as a result of anthro-
pogenic activities, i.e., fossil fuel burning, cement production, and land use change [Mikaloff Fletcher et al.,
2006; Khatiwala et al., 2013; Le Quéré et al., 2015a]. This fraction appears not to have changed significantly
through time, as a data-based reconstruction of the ocean inventory of anthropogenic CO2 suggests that it
has removed roughly 30% of all anthropogenic CO2 emitted since the beginning of the industrial revolution
[Sabine et al., 2004]. Yet the temporal and spatial variability of this important greenhouse gas sink is not well
constrained, particularly not when considering decadal timescales and longer [McKinley et al., 2011; Fay and
McKinley, 2013; Wanninkhof et al., 2013; Lovenduski et al., 2015]. Quantifying these longer-term variations of the
ocean carbon sink is important not only in order to accurately establish global budgets for the anthropogenic
CO2 [Le Quéré et al., 2015a] but also in order to better understand the vulnerability of the ocean carbon sink
to future climate change [e.g. Matear and Hirst, 1999; Ciais et al., 2013].

Until recently, our knowledge regarding the variability of the oceanic sink for CO2 on decadal timescales
largely stemmed from atmospheric inverse models and hindcast simulations with ocean forward models, yet
recent assessments [e.g. Lenton et al., 2013; Schuster et al., 2013; Wanninkhof et al., 2013; Ishii et al., 2014] have
revealed large differences between these estimates. In general, ocean forward models simulate low levels
of variability [Le Quéré et al., 2003; Lovenduski and Gruber, 2008; Sarmiento et al., 2010]. Their sink strength
varies by only few tenths of a Pg C yr−1 from one year to the next and shows little decadal variation around
the expected long-term trend toward a stronger sink induced by the increase in atmospheric CO2 [see, e.g.,
Le Quéré et al., 2015a]. Atmospheric inversions [Peylin et al., 2005, 2013] suggests stronger variability, but the
pattern and timing is generally rather incongruent with that of the ocean models. Further, the confidence in
these estimates is relatively low, owing to the “leakage” of information from the more variable land to the
ocean [Peylin et al., 2005].
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Observations of the sea surface partial pressure of CO2 (pCO2) have the potential to constrain the variations of
the oceanic sink strength for CO2. But despite a strong increase in the number of measurements taken glob-
ally [Pfeil et al., 2013; Bakker et al., 2014], these observations remain rather sparse in time and space, severely
limiting their use for global-scale assessments without any form of interpolation. Thus, most surface ocean
pCO2-based studies remain restricted to local to regional scales and very few were able to assess multidecadal
timescales. Those analyses that exist suggest a substantial amount of interannual to decadal variability in sea
surface pCO2 [e.g., Feely et al., 1999, 2006; Gruber et al., 2002; Schuster and Watson, 2007; Watson et al., 2009;
Fay and McKinley, 2013; Fay et al., 2014] indicating, like the atmospheric inversions, a more variable carbon
sink than suggested by the ocean model-based assessments.

Many of the regional variations in the air-sea CO2 fluxes have been linked to distinct modes of climate variabil-
ity. The globally most prominent and best known mode of variability in the CO2 flux, i.e., the El Niño–Southern
Oscillation (ENSO) climate mode [Feely et al., 1999; Le Quéré et al., 2003; McKinley et al., 2004a, 2004b; Feely
et al., 2006; Rödenbeck et al., 2014; Landschützer et al., 2014], alters the equatorial Pacific source of CO2 by up
to ±0.5 Pg C yr−1. But on decadal timescales, the Pacific sink appears to vary much less, although significant
differences have been described between the eastern and western tropical Pacific [Takahashi et al., 2003]. In
the North Atlantic, many studies found substantial interannual to decadal variations in this important sink
for atmospheric CO2, linking them to changes in the North Atlantic Oscillation [Gruber et al., 2002; Corbière
et al., 2007; Schuster and Watson, 2007; Thomas et al., 2008; Schuster et al., 2009; Ullman et al., 2009; Metzl et al.,
2010; McKinley et al., 2011; Landschützer et al., 2013]. In the Southern Ocean, atmospheric data and ocean
model simulations suggested that the southward shift and intensification of the westerly wind belt associated
with a trend toward a more positive Southern Annular Mode weakened the Southern Ocean carbon uptake
between the 1970s and the early 2000s [Le Quéré et al., 2007; Lovenduski and Gruber, 2008; Lovenduski et al.,
2015]. More recently, Landschützer et al. [2015a] demonstrated that this weakening stopped around the turn
of the century and that the sink strength since then rebounded back to levels expected based on the increase
in atmospheric CO2.

While these observations suggest a substantial amount of interannual to decadal variations within each of
the ocean basins, several studies showed that trends in the air-sea pCO2 difference, i.e., ΔpCO2, converge to
zero when the analyses are extended to multiple decades and when they cover entire ocean basins [McKinley
et al., 2011; Fay and McKinley, 2013; Tjiputra et al., 2014]. As this difference is the primary driver for the air-sea
exchange of CO2, this near zero trend implies that the ocean carbon sink remains relatively constant over
these multidecadal timescales. But also, this conclusion is hampered by data sparsity.

One of the key needs in order to quantify longer-term variations of the ocean carbon sink is internally consis-
tent observations spanning multiple decades. Recognizing such needs, the surface ocean CO2 measurement
community created the Surface Ocean CO2 ATlas (SOCAT) [Bakker et al., 2014], which, in its second release,
contains roughly 10 million observations from 1968 to 2011, i.e., covering the essential time span to inves-
tigate decadal variations. However, the temporal and spatial heterogeneity of the available observations
represents a major challenge. Only few places in the global ocean exist where the sea surface pCO2 has been
monitored for decades at the same location (e.g., the Tropical Atmosphere Ocean array [see Feely et al., 1999,
2006] or the subtropical time series sites near Hawaii (Hawaii Ocean Time Series, HOT) and near Bermuda
(Bermuda Atlantic Timeseries Study, BATS) [see Gruber et al., 2002; Keeling et al., 2004; Bates, 2007; Bates et al.,
2014]; hence, biome scale averages [e.g., Fay and McKinley, 2013] or interpolation methods [Rödenbeck et al.,
2015] are currently used to fill data gaps existing throughout the majority of the global ocean.

In recent years a series of such data interpolation-based estimates of the global ocean carbon sink have been
developed [Sasse et al., 2013; Landschützer et al., 2014; Rödenbeck et al., 2014; Zeng et al., 2014; Jones et al.,
2015], using novel machine learning-based regression and mixed layer budget techniques (cf. Rödenbeck et al.
[2015], for an overview). Yet, with the exception of the study by Rödenbeck et al. [2014], none of these studies
addressed the decadal variations of the ocean carbon sink and its drivers on a global scale.

Here we extend the temporal coverage of one of the above methods [Landschützer et al., 2014] by 16 years
to the period 1982 through 2011. From these pCO2 maps, we calculate the exchange of CO2 between the
atmosphere and the ocean using a bulk gas transfer formulation. The resulting air-sea flux maps are then used
to investigate three decades of air-sea CO2 flux variability. Using these pCO2 data, we aim to identify the main
drivers of the interannual to decadal variability. In a last step, we use our global flux estimates to calculate the
residual land sink needed to close the global carbon budget.
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2. Data and Methods

We employed the SOM-FFN (Self-Organizing Map-Feed-Forward Network) neural network method designed
by Landschützer et al. [2013] and spatially extended by Landschützer et al. [2014] to map the sea surface pCO2

from the Surface Ocean CO2 ATlas version 2 (SOCATv2) [Bakker et al., 2014]. Specifically, we used the grid-
ded pCO2 data product [Sabine et al., 2013] and interpolated the observations onto a global 1° × 1° grid and
a monthly temporal resolution. We extended the method from the period 1998 through 2011 covered by
Landschützer et al. [2014] to the period 1982 through 2011 to enable us to investigate 30 years of variations
in the sea surface pCO2 (run identifier ETH30yr [Landschützer et al., 2015b]). Landschützer et al. [2015a] pre-
sented the data from this statistical model for the Southern Ocean south of 35∘S. Here we show, analyze, and
discuss the global data set.

The method is based on a two-step approach, where in a first step the global ocean is clustered into 16 biogeo-
chemical provinces, based on common patterns in sea surface temperature (SST), sea surface salinity, mixed
layer depth, and the pCO2 climatology of Takahashi et al. [2009], using a self-organizing map neural network
approach. By using nonnormalized data in this step, we implicitly give most weight to the pCO2 climatology.
This ensures that we create spatially and temporally dynamic provinces that largely follow the seasonal cycle
of the pCO2 climatology. In a second step, we reconstruct the nonlinear relationships between a second set
of environmental drivers (SST, sea surface salinity, atmospheric dry air CO2 mixing ratio (xCO2), mixed-layer
depth, and satellite chlorophyll) and the available surface ocean CO2 observations from the SOCATv2 database
for each of the provinces established in step 1 individually. These relationships are then used together with
the environmental drivers to reconstruct the temporal evolution of pCO2 globally (except for the Arctic basin
and other enclosed basins).

The temporal extension required us to update and change some of the input data used in our previous global
study [Landschützer et al., 2014], as several of them are not available prior to 1998. Namely, (i) we used the
monthly climatology of chlorophyll (www.globcolour.info) from 1998 to 2013 as a predictor field for each year
before 1998, (ii) we used a climatological mixed-layer product [de Boyer Montegut et al., 2004], and (iii) we used
the monthly Hadley Center EN4 salinity product [Good et al., 2013]. These substitutions led to small changes
in our estimates after 1998 (see supporting information Text S5 for details), while permitting us to extend the
interpolation to the 1980s and early 1990s.

The monthly pCO2 fields were then smoothed using a three-dimensional averaging filter, smoothing the
nearest neighbor domain (3×3×3 domain) in time and space. The smoothing does not influence the long-term
mean estimate, the trend, or the interannual variability, but it ensures the filtering out of the high-frequency
variability that occurs particularly in coastal regions and at frontal zones.

One source of concern when extending the data back to the 1980s and early 1990s is the substantially smaller
amount of data available then to constrain the reconstructed surface ocean pCO2 (see Figure S9). In order
to test the impact of data availability upon the reconstructions, we conducted two SOM-FFN runs where we
artificially thinned the data by subsampling at 5 year intervals, i.e., 5 years of data followed by 5 years with-
out data. The results reveal a robust ability of the SOM-FFN method to reconstruct the oceanic pCO2 field
(supporting information Text S5 and Figure S9), with differences during the periods of missing training data
not exceeding the uncertainties of the reconstruction from 1990 onward. Exceptions are the first and last
years, where the removal of training data leads to larger deviations. This is a result of the method relying on
the trend in atmospheric CO2 to construct the long-term trend in surface ocean pCO2. If several years of train-
ing data are withheld from the training at the beginning or the end, then the trend is ill constrained during
these years, leading to larger errors. This indicates that the SOM-FFN method is not well suited to extrapolate
in time but that this method is not sensitive to changes in data availability when interpolating data in space
and time (e.g., when the carbon sink is further reconstructed with additional data from the SOCATv3 database
[Bakker et al., 2016]). This is also confirmed by the method not showing any signs of temporal dependency
with regard to the distribution of its residuals (see below and Figures S1–S4.)

In a recent intercomparison study of different pCO2 mapping methods [Rödenbeck et al., 2015], our SOM-FFN
method was shown to be very skilled in reproducing the observed variability, particularly on interannual
scales, where it performed among the best two methods out of the 14 compared. But a striking differ-
ence is that our SOM-FFN method reconstructs significantly lower year-to-year variability in the data poor
regions compared to the top performing method by Rödenbeck et al. [2014]. This potential underestimation of
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variability is also seen in the comparison of the reconstructed pCO2 data with the observations from the long
time series in the subtropical gyres (Figures S5 and S6). The low variability in our method is likely linked to the
regression nature of the method, i.e., its limitation to extrapolate signals that are manifested in the driver data.
Very encouraging, though, is that when considering decadal timescales, a good agreement exists between
not only these two methods but also among most others, [Landschützer et al., 2015a; Rödenbeck et al., 2015],
giving us confidence that our SOM-FFN method results are well suited to investigate decadal variations.

As in all our previous studies [Landschützer et al., 2013, 2014, 2015a], we use a standard bulk parameterization
[Wanninkhof , 1992; Garbe et al., 2014] to calculate the air-sea flux density of CO2 (mol C m−2 yr−1) from the
reconstructed sea surface pCO2 maps, namely:

FCO2
= kw ⋅ SCO2

⋅
(

1 − fice

)
⋅
(

pCO2 − pCOatm
2

)
, (1)

where we define a positive flux when CO2 is outgassed from the ocean and a negative flux when the ocean
takes up CO2. The fluxes are scaled to the ice-free area of each pixel, using sea ice cover data (fice) from Rayner
et al. [2003]. The symbol kw refers to the gas transfer velocity of CO2, computed following the Wanninkhof
[1992] parameterization that assumes a quadratic dependence of wind speed, with the latter taken from the
wind data of Dee et al. [2011]. We adjusted the scaling factor in the original Wanninkhof parameterization to
reach a global mean transfer velocity of 16 cm h−1, to match the new radiocarbon-based constraints [Sweeney
et al., 2007; Müller et al., 2008; Graven et al., 2012; Wanninkhof et al., 2013]. The solubility of CO2 in seawater
(SCO2

) is taken from Weiss [1974]. We estimate the partial pressure of atmospheric CO2 (pCOatm
2 ) from the dry

air mixing ratio xCO2 of GLOBALVIEW-CO2 [2014], taking into account the water vapor correction according to
Dickson et al. [2007].

From the monthly ΔpCO2 = pCO2 − pCOatm
2 maps, we calculate the leading empirical orthogonal functions

(EOF), following Glover et al. [2011]. Before we conducted the EOF analysis, a few data adjustments were
required. First, we coarsened our pCO2 field from the original 1° × 1° to 2° × 2° by binning the data in order
to reduce the computational power needed to analyze the covariance matrix. Second, at each grid point, we
deseasonalized the time series using a 12 month running average filter and detrended the resulting time series
by removing the slope of the linear trend line. This deseasonalization and detrending permits us in our EOF
analyses to extract the main modes of variability on interannual to decadal timescales without these signals
being masked by the seasonal cycle and the long-term trend.

Owing to the scarcity of observations and/or high variance, we were not able to estimate pCO2 for the Arctic
Ocean and for the coastal ocean areas within 1∘ of the coastline (based on bathymetry [ETOPO2x2, 2006]).
Therefore, our global integrated fluxes need to be corrected for these missing regions in order to represent
a “true” global ocean flux. For the Arctic, we add a constant uptake of −0.12 ± 0.06 Pg C yr−1 [Schuster et al.,
2013], while we refrain from making a correction for the coastal ocean to avoid double accounting, because
we lack an independent estimate that corresponds to the missing coastal areas only.

Furthermore, our surface pCO2 based estimates reflect the contemporary net flux, which is the superposition
of the air-sea fluxes of natural and anthropogenic CO2 [Gruber et al., 2009]. Globally integrated, we expect the
natural CO2 component to amount to a net outgassing flux of about 0.45 Pg C yr−1 [Jacobson et al., 2007],
balancing the net input of carbon from rivers minus burial. Accepting this value, we can estimate the global
uptake flux of anthropogenic CO2 by adding this outgassing value to the globally integrated contemporary
flux, where we include the uptake in the Arctic. We then calculate the residual land sink using fossil fuel
[Boden et al., 2015] and land use change [Houghton et al., 2012] emission estimates and subtracting the
atmospheric accumulation rate (Edward Dlugokencky and Pieter Tans, 2015, NOAA/Earth System Research
Laboratory (ESRL) [www.esrl.noaa.gov/gmd/ccgg/trends/]) as well as our oceanic sink estimates.

To report the error on the grid level, we adopt the method by Landschützer et al. [2014] to estimate the
uncertainty of the integrated flux by combining the error from (a) the gridding of the available observations,
(b) the root-mean squared mismatch between the SOM-FFN estimates and the gridded observations, and
(c) the uncertainty stemming from the chosen air-sea flux parametrization plus 3 additional commonly used
air-sea flux parametrizations [Wanninkhof , 1992; Wanninkhof and McGillis, 1999; Nightingale et al., 2000]

To estimate the uncertainties of our reconstructed air-sea CO2 fluxes, we follow the approach of Landschützer
et al. [2014] and propagate the uncertainties from the different components (gridding error, error derived from
the method, and air-sea gas exchange formulation) to the final flux product. The uncertainties of the spatially
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and temporally integrated fluxes are then computed by propagation from the grid-level uncertainties, taking
into account the substantial spatial autocorrelation of the pCO2 measurements. A substantial part of the basin
or global-scale uncertainties stems from systematic errors, largely owing to the ill constrained parameteriza-
tion for the gas transfer velocity kw . While this error source needs to be considered in full when computing
annual carbon budgets, it is of lesser concern when considering trends and variations in the oceanic fluxes,
since these systematic errors are not expected to vary in time [Landschützer et al., 2014].

3. Evaluation

In order to test the robustness of our results, we performed a series of tests comparing how well our estimates
are able to reproduce observations from the SOCATv2 database as well as independent data that were not
included in the development of the data product. In the supporting information we present a detailed
assessment, whereas we summarize the main findings here.

The method is able to reconstruct the available observations with almost zero bias and a root-mean-square
deviation of less than 20 μatm, confirming the findings of our previous work [Landschützer et al., 2013, 2014,
2015a]. This is true for the global ocean but also for each of the major ocean basins (Pacific Ocean, Atlantic
Ocean, Indian Ocean, and Southern Ocean) (see Figure S1). Overall, we find no correlation between the
number of observations and the magnitude of the error, i.e., the temporal heterogeneity of the data does
not introduce a detectable systematic bias in our estimates. Additionally, we find no systematic bias in space
but rather a random error distribution as shown in Figure S3. However, similar to Landschützer et al. [2014],
the largest residuals are found in the high-latitude oceans and in the equatorial Pacific, i.e., those regions
characterized by the highest level of variability [Landschützer et al., 2014].

The comparison with independent observations, i.e., observations not used in the SOM-FFN training, reveals
larger differences. Nevertheless, the mean difference between our SOM-FFN estimates and observations
from the LDEOv2013 database [Takahashi et al., 2014] that are not included in SOCATv2 stays globally within
±3 μatm. An exception are the first 5 years of the analysis, i.e., 1982 through 1986 (see supporting informa-
tion Figure S2), where the fewest observations exist and the Indian Ocean from 2002 to 2006. Figure S2c,
however, reveals that the latter is likely a result from the low number of observations collected there after the
millennium. The comparison with observations from the time series stations in the subtropical North Atlantic
(BATS and Hydrostation S [Gruber et al., 2002; Bates, 2007, 2012]) and North Pacific (HOT [Dore et al., 2009]),
where observations have been collected continuously over the last decades, suggest that although our esti-
mates show strong decadal variability, the SOM-FFN output still underestimates the full seasonal amplitude,
the interannual variability, and trends identified from the stations (see Figures S5 and S6). For the comparison
to the time series stations, we use the CO2SYS software developed by Lewis and Wallace [1998] and updated
by van Heuven et al. [2011] to calculate the sea surface pCO2 from the directly measured carbonate system
parameters, i.e., DIC and Alk, using also the concurrently measured temperature, salinity, and nutrients as
input. This introduces an additional uncertainty of up to 6 μatm [see Millero, 1995] (see supporting informa-
tion Text S2). A large fraction of the trend mismatch at these time series stations can be attributed to the 1980s
and early 1990s period, where the least amount of SOCATv2 observations exist.

In summary, even though our reconstructed fields of the surface ocean pCO2 are uncertain to within a few
μatm, it is encouraging that we do not find any systematic errors, neither in time nor in space. This gives us
confidence that our trend estimates are a robust feature of the data, although uncertainties in the regions and
times with few observations remain substantial.

4. Air-Sea CO2 Flux Variations and Trends
4.1. Global and Basin-Scale Fluxes
Over the last three decades, our data-based reconstruction of the annual mean CO2 flux integrated over the
world’s ocean (including the Arctic) exhibits strong decadal variations around a long-term trend that is con-
sistent with expectations based on the growth of atmospheric CO2 (Figure 1). To quantify the latter, we used
results from a global ocean biogeochemical model (the National Center for Atmospheric Research (NCAR)
Community Climate System Model [Graven et al., 2012]), which we had run with climatological meteorological
forcing while prescribing the observed history of atmospheric CO2 as a boundary condition. We then linearly
scaled these model results so that they match the ocean inversion results for the contemporary CO2 flux for
the year 2000, i.e., an ocean uptake of −1.7 ± 0.4 Pg C yr−1 [Gruber et al., 2009].
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Figure 1. Time series of the annual mean and globally integrated air-sea CO2 flux from 1982 to 2011 based on the
SOM-FFN (run identifier ETH30yr) output (black thick line) and the contributions of each basin (separated at 44∘S).
The constant uptake flux of the Arctic Ocean [Schuster et al., 2013] is included in the Atlantic basin estimate. The
hatched area indicates the uncertainty interval around the global mean. The dashed black line represents the
expected uptake based on the increase in atmospheric CO2 estimated from a hindcast simulation with an ocean
biogeochemistry model (NCAR Community Climate System Model (CCSM) [Graven et al., 2012]) scaled to the global
contemporary CO2 flux estimated by Gruber et al. [2009].

The decadal variations are characterized by two distinct phases: Starting from a mean global uptake of about
−1.4±0.4 Pg C yr−1 in the 1980s, the global ocean sink weakened throughout the 1990s to a minimum uptake
of−0.8±0.5 Pg C yr−1 in 1999. Then the trend reversed, and since 2000, the global ocean sink has strengthened
by more than 1 Pg C yr−1 to an uptake rate of −2.3±0.6 Pg C yr−1 in 2011. The uncertainties of our annual flux
estimates are fairly large, leading to barely significant differences between individual years. But the decadal
differences are clearly significant, as is the deviation from the long-term expected trend during the low uptake
period from 1997 to 2002. The significance of the decadal fluctuation is furthered by the uncertainties of
the decadal means and trends likely being smaller than those of any individual year. This is because of the
systematic nature of a substantial fraction of the error in the global integral (e.g., gas transfer velocity), most
of which no longer has to be considered when investigating longer-term trends [Landschützer et al., 2014].

The post 1999 strengthening trend was already identified in our earlier reconstruction [Landschützer et al.,
2014] that covered only the period 1998 through 2011. Our extended 30 year reconstruction confirms this
finding but suggests also a somewhat steeper trend for the post 1999 period, largely owing to the inclusion of
new data. This period of a steeply increasing sink was also identified by Rödenbeck et al. [2014], albeit in their
case masked by a much stronger level of interannual variability. Further support comes from several more
independent reconstructions of the oceanic pCO2 fields summarized by Rödenbeck et al. [2015], especially
those that performed best against a data misfit-based metric.

Our extension back in time puts this recent strengthening of the oceanic sink into the longer temporal
context, i.e., contrasting it with the relatively stagnant ocean carbon sink of the 1980s and the 1990 through
1999 period when the ocean carbon sink progressively weakened. This stagnant to weakening sink period
is supported by the analyses of Fay and McKinley [2013], who identified pCO2 trends in the ocean from
1990 to 2005 that were steeper than that in the atmosphere [see, e.g., Fay and McKinley, 2013, Figure 4].
A steeper trend results in a reduction of the air-sea gradient in pCO2, i.e., a weaker sink. Also, reconstructions of
Rödenbeck et al. [2014] indicate a weakening trend in the pre 1999 period. In summary and combining the
pre- and post-1999 periods, our results suggest a substantially stronger decadal ocean carbon sink variability
than expected based on previous, mainly model-based, estimates [see, e.g., Sarmiento et al., 2010; Le Quéré
et al., 2015a, 2015b].

Figure 1 reveals that the decadal variations of the global ocean carbon uptake are not equally contributed
to by the different ocean basins. The Southern Ocean uptake pattern follows that of the global ocean, with a
reduction of the carbon sink in the 1990s and a reinvigoration since the turn of the millennium (see discussion
by Landschützer et al. [2015a]). In fact, roughly 50% of the global sink increase after 2002 can be attributed to
the area south of 35∘ S. The Atlantic Ocean shows a similar pattern with a decreasing uptake trend in the 1990s
followed by an accelerated carbon uptake after 2000. In contrast, the Pacific Ocean as a whole contributes
less to the decadal trends, although it dominates the variability on interannual timescales. The Indian Ocean
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Figure 2. Hovmöller plots of the zonally integrated air-sea flux from 1982 to 2011 for (a) the Pacific Ocean, (b) the
Atlantic Ocean, (c) the Indian Ocean, and (d) the Southern Ocean. While Figures 2a–2c are plotted for the basins north
of 44∘S, the northern boundary of the Southern Ocean was extended to 35∘S to be comparable with the results by
Landschützer et al. [2015a]). The time series were deseasonalized and smoothed using a 12 month moving average filter.

shows a fairly steady carbon uptake up to 1998, followed by a slight increase in the most recent decade. But
this adds little to the global ocean flux increase of the last decade.

4.2. Zonal Mean Flux Variations
The separation of the basin-wide trends into zonal mean variations by means of Hovmöller diagrams reveals
a distinct pattern within each basin (Figures 2 and 3). The latitudinal variations of the zonally integrated and
deseasonalized air-sea CO2 fluxes in each of the four major ocean basins in Figure 2 primarily depict the annual
mean fluxes, dominated by tropical outgassing and CO2 uptake in the temperate and high latitudes [Takahashi
et al., 2002, 2009; Gruber et al., 2009; Landschützer et al., 2014]. A closer inspection reveals substantial variations
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Figure 3. As Figure 2, except for the CO2 flux anomalies. This anomaly time series was created by subtracting the
30 year mean flux and by smoothing the data using a 12 month moving average filter.

within each basin. These variations become more distinct by removing the long-term mean CO2 flux and thus
just plotting the anomalous component (Figure 3). Note that the different magnitude of the zonally integrated
fluxes (Tg C yr−1 per degree latitude) is largely due to the differing longitudinal extent of each basin.

The Hovmöller diagram of the zonally integrated flux anomalies in the Pacific (Figure 3a) highlights the
well-known ENSO driven variability within the equatorial Pacific [Feely et al., 1999, 2006; Landschützer et al.,
2014; Rödenbeck et al., 2014]. This pattern dominates the year-to-year variability. On longer, i.e., decadal
timescales, two signals stand out. The first one is in the North Pacific between 50∘N and 60∘N and is char-
acterized by an anomalous CO2 sink in the 1980s, an anomalous source in the 1990s and early 2000s, and a
return back to a strong sink by the late 2000s. The second signal that stands out in Figure 3a is characterized
by an anomalous source over a substantial part of the Pacific in the late 1990s and then a nearly basin-wide
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trend toward an anomalous sink starting around 2002. The almost basin-wide sink anomaly after 2002 is
offset, however, by a strong anomalous outgassing in the equatorial band, explaining the absence of a strong
decadal trend in the Pacific-wide integrated flux (Figure 1).

In contrast to the Pacific Ocean, the Atlantic Ocean (Figure 3b) has little variability in the equatorial region,
though anomalies occur between the mid-1990s to the mid-2000s. But, as is the case for the Pacific, the
Atlantic exhibits a whole basin tendency toward a stronger sink after 2000, following a period of an anomalous
source that began around 1995. The Indian Ocean (Figure 3c) is reconstructed to vary the least of all basins,
although it trends also toward a larger ocean CO2 uptake during the last decade. As discussed by Landschützer
et al. [2015a], the Southern Ocean (Figure 3d) experiences the strongest decadal variations and changes
from negative anomalies (anomalous sink) in the late 1980s and early 1990s to strong positive anomalies
(anomalous source) in the late 1990s and early 2000s followed by a negative anomaly after that, with most of
the variability stemming from the region in the latitude band between 40∘S and 65∘S.

Contrasting the anomalous fluxes with their mean (Figure 3 versus Figure 2) reveals that in the post 2000
period, the strong sources have become stronger, and at the same time, the strong sinks have become
stronger as well. Thus, the recent decade is characterized not only by a strengthening of the global ocean CO2

uptake but also by a substantial intensification of the exchange of CO2 between the ocean and atmosphere.

4.3. Spatiotemporal Pattern of the Air-Sea CO2 Flux
In order to obtain more insight into the spatiotemporal pattern of the air-sea flux we separate it into a
long-term trend component and into a suite of interannually to decadally varying components using an
empirical orthogonal functions (EOFs) approach. We conduct the spatiotemporal separation on ΔpCO2, i.e.,
the difference between the surface ocean pCO2 and that in the atmosphere, rather than the flux. This sim-
plification aids us in our subsequent analyses of the drivers and is justified by nearly all of the reconstructed
air-sea CO2 flux variations being driven by variations in sea surface pCO2. In contrast, changes in wind speed,
temperature, and sea ice, i.e., those factors affecting the effective gas transfer coefficient (kw ⋅SCO2

⋅(1 − fice))
(equation (1)), contribute comparatively little (see supporting information Text S3). Given our focus on
interannual to decadal variations, the analyses were performed with deseasonalized data.

The global map of the long-term trend of ΔpCO2 (Figure 4a) depicts overall a relatively uniform negative
pattern with the eastern equatorial Pacific cold tongue standing out with its strongly positive ΔpCO2 trend
values. The global mean ΔpCO2 trend (ocean minus atmosphere) amounts to −0.10 ± 0.04 μatm yr−1, which
is slightly weaker than the expected trend of about −0.2 μatm yr−1 based on the growth in atmospheric CO2,
computed from the NCAR CCSM model [Graven et al., 2012]. This compares well with the findings of Fay et al.
[2014], who suggested that globally, the long-term trends in the surface ocean pCO2 do not differ substantially
from that in the atmosphere on multidecadal timescales, i.e., a ΔpCO2 trend of near zero. We attribute the
positive ΔpCO2 trend in the eastern tropical Pacific to a small but significant trend in ENSO toward a more
negative (La Niña) state over our analysis period. However, this trend is largely a consequence of our analysis
starting during a strong El Niño year (1982) and ending during a relatively strong La Niña episode (2011).

The EOF-based spatiotemporal separation of the detrended ΔpCO2 (Figures 4b and 4c) reveals two dominant
modes, which together explain 53% of the variance. The third EOF explains only 13% of the variance and is
therefore not considered, nor are any of the remaining EOFs.

The spatial pattern of the leading EOF (EOF1) (Figure 4b) has nearly everywhere positive ΔpCO2 anomalies,
with the exception of the central tropical Pacific, where substantial negativeΔpCO2 anomalies occur. This EOF
is rather dominant, as it explains 34% of the variance. The strongest positive ΔpCO2 anomalies are found in
the high northern latitudes of the Atlantic and Pacific, in the eastern tropical Pacific, and around the Antarctic
continent. The associated time series of the first principal component (PC1) varies primarily on decadal
timescales (Figure 5b). Starting from 1982, this principal component first increases, which when combined
with the largely positive ΔpCO2 pattern implies a weakening ocean carbon sink. This trend ends in the late
1990s. Thereafter, the time series of the principal component of EOF1 decreases sharply to negative values,
implying a steep increase of the oceanic sink for atmospheric CO2. Thus, EOF1 appears to have picked up most
of the decadal pattern of the global air-sea CO2 flux seen in Figure 1.

EOF1 appears to be a decadal mode that is unique to the ocean carbon sink, as its time series does not cor-
relate well with any of the major climate indices (see Table 1 and Figure 5). Concretely, we tested correla-
tions with the multivariate ENSO index (MEI) [Wolter and Timlin, 2011], the Pacific Decadal Oscillation (PDO)
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Figure 4. Maps of the different components contributing to variations and trends in the air-sea pCO2 difference, i.e.,
ΔpCO2 = pCO2 − pCOatm

2 . (a) Long-term linear trend (μatm) yr−1 of ΔpCO2, estimated by the slope of a least squares
linear regression over the 1982 through 2011 period. (b) Spatial amplitude (μatm) of the first global empirical
orthogonal function (EOF) of the detrended and deseasonalized ΔpCO2. This EOF explains 34% of the variance.
(c) As in Figure 4b for the second EOF, which explains 19% of the variance.
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Figure 5. Time series of the principal components associated with EOF1 (blue) and EOF2 (red) of ΔpCO2, shown
together with the time series of the major climate indices. MEI:Multivariate El Niño–Southern Oscillation Index, PDO:
Pacific Decadal Oscillation, AMO: Atlantic Multidecadal Oscillation, SAM: Southern Annular Mode, NAM: Northern
Annular Mode. For the SAM and NAM the winter indices are plotted here. Black lines illustrate a spline fit of the indices.
The magnitude if the principal components is scaled to the indices for better visualization.
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Table 1. Correlation Coefficients Between the First and Inverse Second EOF
and the Main Climate Indicesa

AMO MEI PDO SAM NAM

EOF1 0.14 0.07 0.01 −0.04 0.33

EOF2 0.12 0.62 0.48 0.09 −0.15
aHigh-frequency variability has been removed by a smoothing spline fit.

Bold numbers indicate significant correlations (p≤0.05).

[Zhang et al., 1997], the Atlantic Multidecadal Oscillation (AMO) [Enfield et al., 2001], the Northern Annular
Mode or Arctic Oscillation (NAM or AO, December–March-based index) [Higgins et al., 2002] and the Southern
Annular Mode (SAM, winter index) [Marshall, 2003], which are available as dimensionless values. We were not
separately considering the Interdecadal Pacific Oscillation (IPO) [e.g., England et al., 2014], as its index is highly
correlated to that of the PDO. We further used a smoothing spline fit to reduce the amount of high-frequency
noise present in all indices.

In contrast to the decadal nature of the first EOF, the second EOF (EOF2) varies primarily on interannual
timescales. It is quite a bit weaker than EOF1, explaining 19% of the total variance. The spatial pattern of EOF2
closely matches the typical ENSO pattern [see, e.g., Feely et al., 2006] with a strong negative ΔpCO2 pattern in
the tropical Pacific, creating periods of anomalously low outgassing during El Niño events, and exceptionally
strong outgassing during La Niña events (Figure 4c). The connection of the second EOF with ENSO is further
confirmed by the high correlation of the time series of the principal component of EOF2 (PC2) with the MEI
(R=0.62) (Table 1, see also Figure 5a). Owing to the high correlation between the MEI and the PDO, EOF2 also
correlates significantly with the PDO index.

Viewed together, the EOF analyses demonstrates that more than 50% of the global air-sea CO2 flux variability
over the past 30 years can be described by the superposition of an ENSO-related interannual mode and with
the center of action in the tropical Pacific, and a decadal mode, whose largest contribution comes from the
high latitudes. It is also noteworthy that the relative contribution of the different modes of variability changed
compared to the EOF analysis of our shorter reconstruction from 1998 to 2011 [Landschützer et al., 2014].
During this shorter period, we found that interannual variations associated with ENSO dominated the global
air-sea CO2 flux variability, explaining 28% of the variance. Such a dominance had been suggested also by a
number of modeling studies [e.g., McKinley et al., 2004a]. However, our extended analysis shows that this is
no longer the case when considering the last 30 years. Such a strong dominance of decadal timescale vari-
ability is not common for global ocean time series, as most of them tend to be dominated by ENSO-timescale
variability or a multidecadal trend (e.g., sea surface temperature and sea level height). But the intense debate
about the role of decadal variability in the ocean in connection with the period of reduced global warming
[e.g., England et al., 2014] illustrates the need to better understand the nature and source of such decadal
timescale variations.

5. Drivers of the Interannual to Decadal Variations

In order to investigate the potential mechanisms driving the variations accompanied by the leading modes
of variability in ΔpCO2, i.e., EOF1 and EOF2, we first split these two EOF modes into a temperature-driven
(thermal) and into a nontemperature-driven (nonthermal) component:

ΔpCO2(x)EOF = pCO2(x)EOF,thermal + ΔpCO2(x)EOF,nonthermal (2)

where x describes space. The nonthermal component includes the effect of changes in the surface ocean
concentrations of dissolved inorganic carbon (DIC), alkalinity (Alk) and salinity. However, the direct effect of
changes in salinity on surface ocean pCO2 are of minor importance, so that the nonthermal component is
primarily a result of changes in ocean circulation and/or biology affecting both DIC and Alk. Note that in our
nonthermal trend, we implicitly exclude the effect of the long-term increase in DIC driven by the uptake of
anthropogenic CO2. This is because of our choice to analyze trends inΔpCO2, which results in the atmospheric
pCO2 trend being removed from the nonthermal component in surface ocean pCO2. This choice is motivated
by our desire to focus our analysis on the variations of the ocean carbon sink around the long-term trend
driven by the change in atmospheric CO2.
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We determine the thermal part by multiplying the temperature sensitivity of pCO2 (taken from Takahashi
et al. [1993]) with the EOF-associated SST signal SST(x,t)EOF, determined by the slope of the regression of the
observed sea surface temperature anomaly at each location on the time series of the principal component of
the respective EOF. This gives:

pCO2(x)EOF,thermal = 0.0423⋅ < pCO2(x)> ⋅SST(x)EOF (3)

where<pCO2(x)> is the temporal mean in situ pCO2. The nonthermal component is then computed from (2)
by difference.

To connect these two components with possible underlying climatic drivers, we also regressed sea level
pressure, wind velocity and wind stress, and the thermal and freshwater flux-driven buoyancy forcing on
the time series of the principal components of the two EOFs. The data for these climatic drivers were taken
from the ERA-Interim reanalysis [Dee et al., 2011], with the buoyancy forcing computed from the heat and
freshwater fluxes following Cronin and Sprintall [2009].

The separation of the two EOFs into their thermal and nonthermal components reveals for both EOFs a gen-
erally compensating nature between these two components (Figures 6a and 6b and 7a and 7b), reminiscent
of their compensating nature on seasonal timescales [Takahashi et al., 1993; Sarmiento and Gruber, 2006]. This
compensating nature is primarily a result of the interaction between the temperature dependence of the
CO2 solubility and the temperature dependence of ocean density in the presence of ocean biology creating
vertical gradients in DIC through the production and export of organic matter from the surface (see also dis-
cussion in Sarmiento and Gruber [2006]). On average, warming leads to a stronger stratification, which tends
to lead to a more efficient biological pump, i.e., a larger fraction of the upward supplied DIC being fixed into
organic matter and exported to depth. This leads to lower surface DIC concentrations, i.e., a smaller nonther-
mal component. Thus, while warming drives pCO2 up (positive thermal component), circulation and biology
(nonthermal component) drive pCO2 down. The opposite tends to be the case when the surface ocean is
being cooled. Despite this generally opposing tendency, there are distinct areas for both EOFs where one
component dominates over the other one.

In the case of the ENSO-related second EOF, the strong positive thermal signal in the eastern equatorial Pacific
associated with a positive (El Niño) phase (Figure 6a) is swamped by an even stronger negative anomaly from
the nonthermal component (Figure 6b), leading to the overall negativeΔpCO2 signal in this region (Figure 4c).
The negative nonthermal signal is the consequence of a near cessation of the upwelling of DIC-rich waters
during El Niño events, which, in terms of its effect on pCO2, dominates over the effect of the warming induced
by the eastward propagating Kelvin wave (see discussion in, e.g., Feely et al. [1999]). The thermal signal outside
the eastern tropical Pacific reflects primarily the SST regression pattern of ENSO [Philander, 1990], with cold
anomalies in the North and South Pacific flanking the anomalously warm eastern Pacific and some alternating,
but weak, warm, and cold teleconnection pattern in the Atlantic. But all of the thermal signals associated
with the EOF2 mode outside the eastern and central equatorial Pacific are nearly perfectly compensated for
by the nonthermal component, such that the only major signal left in the total signal, i.e., in ΔpCO2, is the
nonthermally driven signal in the eastern equatorial Pacific.

The regressions of various climatic drivers on the time series of PC2 reveal the substantial sea level pressure
and wind changes expected for a mode that is tightly connected to ENSO (Figures 6c–6f ). During positive
(El Niño) phases of EOF2, the low-pressure systems over the western tropical Pacific/eastern tropical Indian
Ocean move eastward to the central tropical Pacific, leading to a sizeable decrease in the east-west pressure
difference that normally characterizes the tropical Pacific. This induces strong westerly anomalies along the
equator, particularly in the western Pacific causing a substantial reduction of the upwelling favorable trade
winds. Figure 6c shows also the well-known extratropical atmospheric teleconnection pattern associated
with ENSO, namely, the strengthening of the subpolar North Pacific Low [Philander, 1990]. The anomalous
buoyancy forcing associated with positive (El Niño) phases of EOF2 leads to an increase in density along in
the western equatorial Pacific due to reduced precipitation, but this effect is canceled by the decrease in den-
sity due to strong warming. But overall, these changes in buoyancy forcing are likely having a smaller effect
on ocean circulation and mixing influencing DIC and Alk compared to the direct wind forcing influencing
upwelling.

In the case of the decadal mode EOF1, the separation into its thermal and nonthermal components reveals
that the globally nearly uniformly positive ΔpCO2 associated with this mode arises from a relatively patchy
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Figure 6. Global maps of the variations in pCO2 components and potential drivers associated with the second empirical orthogonal function (EOF2) of the
deseasonalized and detrended ΔpCO2. These maps were determined by regressing the quantity of interest on the time series of the principal component of
EOF2 (PC2), i.e., they have units of the quantity of interest per unit change in PC2. (a) The thermal pCO2 component, (b) the nonthermal ΔpCO2 component,
(c) sea level pressure and wind vectors overlain as arrows, (d) the second moment of the wind with wind vectors, (e) the buoyancy freshwater flux, and (f ) the
buoyancy heat flux. Hatched areas indicate where the calculated regressions are not significantly different from zero (p≤0.05).

superposition of positive and negative regions in both components (Figures 7a and 7b). While the pattern
looks rather random at first, a closer inspection reveals distinct and coherent patterns. To this end, we
separately analyze the patterns in the northern and southern extratropics, respectively, and in the tropical belt.

Starting from the north, strong positive nonthermal anomalies characterize the subpolar gyres of both the
Pacific and Atlantic (see also Figure 8), contrasting with (relatively weaker) negative anomalies covering much
of the subtropical gyres. The thermal component not only has the opposite meridional pattern but also has
the opposite relative strengths, i.e., weak (and largely non significant) negative anomalies in the subpolar
gyres and strong positive anomalies in the subtropical gyres. Thus, the positive signal from the dominating
nonthermal component in the subpolar gyres combines with the positive signal of the dominating thermal
component in the subtropical gyres to create the observed relatively uniformly positive ΔpCO2 anomalies in
the Northern Hemisphere extratropics during positive phases of EOF1.
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Figure 7. As Figure 6 but for the leading mode of variability (EOF1).

The potential climatic forcing driving this mode in the Northern Hemisphere extratropics becomes evident
when inspecting the regressions of sea level pressure and wind speed on the time series of PC1 (Figure 8).
These regressions reveal sea level pressure variabilities between the high-latitude low-pressure systems and
the midlatitude/subtropical highs. During positive phases of this meridional mode, the pressure gradient
becomes stronger, leading to stronger winds at about 40∘N, causing also a substantially increased wind
stress forcing onto the ocean (Figure 7d). In the subtropical latitudes, the winds and correspondingly also the
wind stress become weaker. This meridional structure of the pressure and wind pattern has some reminis-
cence of the Arctic Oscillation or Northern Annular Mode (NAM) [Thompson and Wallace, 2000]. But relative
to these modes, its center of low-pressure anomalies is shifted toward the Pacific. Also, the corresponding
high-pressure anomalies are shifted to the south. Thus, while this mode has clear similarities to the NAM, it
appears to be broader.

Viewed in the context of an annular mode, the pattern of the thermal component of EOF1 can be linked
directly to the changes in wind, circulation, and heat fluxes (Figures 7c–7f ) that drive a cooling at high lat-
itudes and a warming at lower latitudes, analogous of the SST changes associated with positive phases of
the NAM [Thompson and Wallace, 1998, 2000]. We interpret the nonthermal component to primarily reflect
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Figure 8. North polar stereographic projections of the pCO2 components and potential drivers associated with the leading empirical orthogonal function (EOF1).
(a) The thermal pCO2 component, (b) the nonthermal pCO2 component, and (c) sea level pressure and wind vectors overlain as arrows.

changes in upper ocean mixing. During positive phases of this mode, the colder SSTs and the stronger winds
likely lead to deeper mixed layers in the subpolar gyres. This not only mixes up higher DIC concentrations to
the surface but also tends to cause a stronger light limitation for phytoplankton. Both processes would cause
the positive DIC anomalies that can explain the positive nonthermalΔpCO2 anomalies. This may be enhanced
through a stronger wind stress curl pumping more waters with elevated DIC up to the surface. The resulting
positive nonthermal anomalies dominate over the cooling induced negative thermal component, explaining
the overall positive ΔpCO2 signals in the subpolar gyres.

To the south, i.e., in the western temperate Pacific and in the eastern temperate Atlantic, the opposite appears
to happen, with the warm SST anomalies shoaling the depth of the mixed layers, reducing the upward trans-
port of DIC and stimulating phytoplankton growth. Again, this physical/biological signal may be enhanced
through a more negative wind stress curl pumping more water down into the thermocline. Despite this pos-
sible enhancement, these nonthermal anomalies are weaker than the SST-driven thermal signals, leading
to the overall positive ΔpCO2 anomalies in these temperate regions. Taken together, we have an ocean
dynamics/biology controlled signal in the subpolar gyres and a SST-dominated signal in the temperate
regions, explaining the overall synchronous behavior across the entire Northern Hemisphere. Such a merid-
ional patterning, i.e., physics dominating the subpolar regions and temperature dominating the subtropics,
has also been identified in several modeling studies, particularly for the North Atlantic [e.g. Breeden and
McKinley, 2016; Ullman et al., 2009; Tjiputra et al., 2012] but also suggested by data-based analyses [e.g., Gruber
et al., 2002].

In the tropical Pacific, EOF1 appears to be connected to the decadal modifications of ENSO, i.e., it modifies
the center of action between the eastern and the central Pacific, i.e., between the “classical” and the central
(Modoki)-type El Niño [Ashok et al., 2007; Johnson, 2013] (Figure 5c). This effect is most strongly expressed
in the nonthermal component (Figure 7b), where during positive phases of EOF1 the center of action of an
El Niño is shifted westward to the central Pacific, causing even stronger negative nonthermal anomalies, likely
stemming from even weaker upwelling. Conversely, positive nonthermal anomalies emerge in the far eastern
tropical Pacific, likely due to somewhat stronger upwelling compared to a “normal,” eastern Pacific El Niño.
This interpretation is consistent with the sea level pressure changes, the anomalous westerly winds, and the
changes in precipitation (Figures 7c–7f ). Concretely, when combining the spatial pattern of the EOF1 and
EOF2 with their respective principal component time series, EOF1 made the 1997/1998 El Niño more central
and the 1982/1983 El Niño more eastern.

In the Southern Hemisphere extratropics, the spatial patterns of the two components of EOF1 have some
similarity to those in the Northern Hemisphere extratropics, particularly for the nonthermal component.
Positive anomalies in the nonthermal component in the very high southern latitudes are flanked in the
north by negative anomalies of this component. These regions also tend to be warmer, leading to positive
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anomalies in the thermal component. An exception is the South Atlantic, which is characterized by a strong

positive nonthermal component and a somewhat weaker negative thermal component.

Much of these pattern of change by the two components were already described and discussed by

Landschützer et al. [2015a]. They pointed out that the weakening period of the Southern Ocean carbon sink

during the 1980s and 1990s was caused by a zonally symmetric climatic forcing pattern that was closely asso-

ciated with a trend toward more positive phases of the Southern Annular Mode, i.e., a southward shift and

intensification of the winds over the Southern Ocean. The associated increase in the upwelling of waters with

high DIC caused a strong positive trend in the nonthermal component that was only weakly compensated for

by a cooling induced negative trend in the thermal component (see also studies by, e.g., Le Quéré et al. [2007],

Lenton and Matear [2007], Lovenduski and Gruber [2008]). In contrast, Landschützer et al. [2015a] showed that

the reinvigoration period of the years post-2000 were characterized by a zonally more asymmetric forcing

with distinct differences between the Atlantic and Pacific, whereby the thermal component dominated in the

Pacific and the nonthermal in the Atlantic. With EOF1 attempting to capture the variations over the entire

period with a spatially stationary pattern, such changes in the spatial distribution of the controlling mech-

anisms are not fully captured. Given the substantially longer period, we suspect that EOF1 has picked up

most of its spatial signal in the Southern Hemisphere extratropics from the stagnant/weakening sink phase in

the 1980s and 1990s, i.e., the period where the positive nonthermal component can be clearly linked to the

changes in wind.

In summary, the decadal mode EOF1 appears to be driven primarily by climate variations that show some

resemblance to the Northern and Southern Annular Mode pattern. Overall, these extratropical processes in

the Northern and Southern Hemisphere appear to have acted in relative synchronicity over the last 30 years,

leading globally to a relatively coherent mode. The correlation with the indices for the Northern and Southern

Annular Modes are nevertheless low. We interpret this to be caused by at least two reasons: First, EOF1 may

attempt to fit both the NAM and SAM pattern simultaneously, resulting in its peak to be in-between that of the

SAM and NAM. Second, this could be furthered by the occurrence of the 1997/1998 El Niño, which happened

to be primarily a central El Niño, pushing the time series of EOF1 toward a peak in the late 1990s. But with the

annular modes capturing only a relative small fraction of the overall climate variability in the extratropics, it is

very conceivable that the climate variations driving the variations in the global ocean carbon sink are clearly

distinct from the SAM and NAM.

While we provided some hypotheses about the mechanisms driving the stalling and subsequent weakening

of the global ocean carbon sink during the 1980s and 1990s and its subsequent strong increase, the true

causes of these decadal variations have yet to be determined. Our interpretations remain limited because

of the correlative nature of our arguments, since the data available to us do not permit us to differentiate

between cause and effect nor do they allow us to firmly quantify them. Further, with 30 years of data, the

time series is relatively short to fully assess decadal variations. Despite these limitations, our results provide a

strong target for future studies using models and observations.

A particularly striking observation is the analogy between our reconstructed variations of the global ocean

carbon sink over the last 30 years and the evolution of the global mean surface air temperature. Following a

period of relatively rapid warming in the 1990s, the global mean rate of increase in surface air temperature

slowed down considerably after 2000. This strongly reduced warming period, often (but not really correctly)

referred to as a “hiatus” period, has been attributed to many potential causes, but changes in ocean circula-

tion and ocean heat uptake appear to be the leading explanations [e.g., Higgins, 2013]. Of particular relevance

for the global ocean carbon sink is the changes in the trade winds [England et al., 2014] and the coalescence

of decadal trends in the North Pacific with those in the North Atlantic [Steinman et al., 2015]. Steinman et al.

[2015] showed through a statistical analysis of global-scale SST pattern, that before 2000, the decadal modes

of the Pacific and the Atlantic trended in different directions, while thereafter, the Pacific mode (related to

the PDO/IPO) became strongly negative, while the Atlantic mode (related to the AMO) remained relatively

constant, causing a nearly worldwide pattern of slower warming. It is thus conceivable, while also being

speculative, that also some of the decadal shifts in the ocean carbon uptake can be attributed to these changes

in the Earth’s major decadal climate modes.
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Figure 9. The evolution of the global anthropogenic carbon budget from 1982 through 2011. (a) Annual mean ocean
sink for anthropogenic CO2 based on the results of this study (blue) and the residual land carbon sink (green) calculated
by the difference between the emissions of fossil fuel and cement CO2, ocean uptake, atmospheric accumulation and
land use change. (b) Cumulative anthropogenic carbon uptake by the ocean estimated from the global carbon budget
by the Global Carbon Project [Le Quéré et al., 2015a] (black), this study (blue) and the expected uptake by the ocean
based on the increase of atmospheric CO2 alone (no climate) from the CCSM3 ocean model [Graven et al., 2012], scaled
to the long-term mean anthropogenic CO2 uptake estimated by Gruber et al. [2009] (red). The shaded area illustrates
the cumulative uncertainty of the neural network estimate (SOM-FFN) and the uncertainty from the global carbon
budget [Le Quéré et al., 2015a], calculated from the square-root of the squared sum of the annual mean uncertainties.
(c) Cumulative residual land sink from the global carbon budget (black) and this study (green). The shaded area
illustrates the uncertainty interval based on the neural network estimate and the uncertainty from the global carbon
budget [Le Quéré et al., 2015a], calculated from the square-root of the squared sum of the annual mean uncertainties.
Negative values indicate carbon sinks.

6. Implications for the Global Carbon Budget

The next question is how the strong decadal variations in the ocean uptake affects our understanding of the
global carbon cycle and of the global anthropogenic carbon budget, as put together on a yearly basis by the
Global Carbon Project (GCP) [Le Quéré et al., 2015a]. This is particularly relevant since in most of these budgets,
the oceanic uptake variability is derived from ocean models [Sarmiento et al., 2010; Le Quéré et al., 2015a] that
are known to underestimate the variability in the surface ocean fluxes [Landschützer et al., 2014; Rödenbeck
et al., 2015].

Figure 9a compares the annual mean ocean uptake of anthropogenic CO2 derived from this study (net flux
plus river outgassing) to the implied residual land sink calculated as the difference between fossil fuel
emissions, land use change, the ocean carbon sink, and the atmospheric accumulation rate. In contrast to the
ocean carbon sink, the residual land sink varies little on decadal timescales but does so greatly from year to
year, with a magnitude exceeding ±3 Pg C yr−1.

The difference between our new pCO2-based estimate of the ocean carbon sink and the previous estimates
from the Global Carbon Budget becomes evident when comparing the cumulative oceanic carbon uptake
(Figure 9b). The shaded area illustrates the cumulative uncertainty of our SOM-FFN estimate. The figure shows
that the cumulative ocean carbon sink in the GCP budget (Global Carbon Budget 2015 v1.1) largely follows
the expected increase due to atmospheric CO2, whereas the strong decadal variations of our estimate leads
through time to a substantial deviation from this trend line. After 30 years, the GCP budget suggests a cumu-
lative uptake of 64.6±2.7 Pg C, while our estimate is 57.1±2.8 Pg C, i.e., 7.5±5.5 Pg less carbon uptake by the
ocean. As a consequence, this leads to an additional∼ 7.5±8.8 Pg C cumulative uptake by the land biosphere
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from 1982 to 2011, implying a 0.25 Pg C yr−1 stronger land sink, on average, compared to the GCP based esti-
mate (Figure 9c). However, given the high uncertainty of the observation-based method in combination with
the uncertainties from all other components, this land sink difference is not significant.

7. Summary and Conclusions

We expanded the method developed by Landschützer et al. [2013] and Landschützer et al. [2014] to recon-
struct the surface ocean pCO2 over three decades from 1982 to the end of 2011. We use high-frequency
winds and a standard quadratic bulk formulation [Wanninkhof , 1992], scaled to a more recent gas transfer
estimate [Wanninkhof et al., 2013], to calculate monthly maps of the air-sea flux of CO2 between the ocean
and the atmosphere. The resulting air-sea flux reveals strong variability, particularly on interannual timescales
in the tropical Pacific and on decadal timescales in the extratropical regions. This indicates that the global
ocean carbon sink is strongly influenced by natural variability, with a stalling of the global ocean carbon
sink in the 1980s, a reduction in the 1990s, and a strong increase in the ocean carbon sink since the turn of
the millennium.

We find that these changes are well captured by the leading mode of variability of the air-sea pCO2 difference,
ΔpCO2, which we link primarily to major reorganizations of the extratropical weather patterns, which have
some similarity to the Southern and Northern Annular Modes. The decadal up and down of the global ocean
carbon sink is strikingly analogous to the decadal changes in ocean heat uptake driving variations in the
rate of growth of surface air temperature. Furthermore, we find that on interannual timescales, the equatorial
Pacific is playing a major role regarding the air-sea flux variability, manifested in the second largest mode of
variability (EOF2) globally .

While our reconstructions of the ocean carbon sink variability over the last 30 years represent a major step
forward in our understanding of the ocean carbon sink, there remain substantial uncertainties. One area need-
ing attention is the level of interannual variability in the global carbon sink, especially the difference in the
reconstructions by Rödenbeck et al. [2014] and this method. A second area is the better and more quanti-
tative elucidation of the mechanisms driving the ocean carbon sink variations. The third area is to develop
data-based methods to distinguish forced trends from internal ones, i.e., to develop methods to attribute the
changes to whether they emerge as a result of anthropogenic climate change or natural (internal) climate
variability [e.g., McKinley et al., 2016].

Despite the uncertainties, our results clearly indicate that climate variations have a strong impact on the
global ocean carbon sink, an effect not fully captured by the current generation of ocean carbon cycle
models. It is therefore essential to continue the observational efforts to reduce the uncertainties attached to
the estimates and better determine the impact of natural variability on the global carbon budget. A better
understanding of the processes that drive the ocean carbon sink variability will further benefit the assess-
ment of the future ocean sink in the presence of climate change. Our results suggest that the ocean carbon
sink could be more sensitive to shifts in weather and climate pattern than previously recognized, particularly
on decadal timescales. This also suggests that future changes in climate have the potential to substantially
alter the strength of the ocean carbon sink, with major implications for, e.g., the magnitude of the emissions
consistent with the internationally agreed 2∘C climate change target.
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