
HIVE-COTE: The Hierarchical Vote Collective of

Transformation-based Ensembles for Time Series

Classification

Jason Lines

University of East Anglia

Norwich, United Kingdom

j.lines@uea.ac.uk

Sarah Taylor

University of East Anglia

Norwich, United Kingdom

s.l.taylor@uea.ac.uk

Anthony Bagnall

University of East Anglia

Norwich, United Kingdom

ajb@uea.ac.uk

Abstract—There have been many new algorithms proposed
over the last five years for solving time series classification (TSC)
problems. A recent experimental comparison of the leading TSC
algorithms has demonstrated that one approach is significantly
more accurate than all others over 85 datasets. That approach, the
Flat Collective of Transformation-based Ensembles (Flat-COTE),
achieves superior accuracy through combining predictions of 35
individual classifiers built on four representations of the data into
a flat hierarchy. Outside of TSC, deep learning approaches such as
convolutional neural networks (CNN) have seen a recent surge in
popularity and are now state of the art in many fields. An obvious
question is whether CNNs could be equally transformative in the
field of TSC. To test this, we implement a common CNN structure
and compare performance to Flat-COTE and a recently proposed
time series-specific CNN implementation. We find that Flat-COTE
is significantly more accurate than both deep learning approaches
on 85 datasets.

These results are impressive, but Flat-COTE is not without
deficiencies. We improve the collective by adding new components
and proposing a modular hierarchical structure with a probabilis-
tic voting scheme that allows us to encapsulate the classifiers built
on each transformation. We add two new modules representing
dictionary and interval-based classifiers, and significantly im-
prove upon the existing frequency domain classifiers with a novel
spectral ensemble. The resulting classifier, the Hierarchical Vote
Collective of Transformation-based Ensembles (HIVE-COTE) is
significantly more accurate than Flat-COTE and represents a new
state of the art for TSC. HIVE-COTE captures more sources of
possible discriminatory features in time series and has a more
modular, intuitive structure.

I. INTRODUCTION

Time series classification (TSC) problems arise across a
rich and diverse range of domains. We may consider any
ordered data to be a time series, which allows the definition
to encompass data from various fields including, but not
limited to, finance, biology, medicine, and engineering. The
diversity of such data is easily apparent when visiting the
University of California, Riverside/University of East Anglia
(UCR/UEA) time series classification repository [1]1. The
UCR/UEA datasets consist of 85 varied and freely available
problems that are used throughout the TSC literature by many
researchers.

1www.timeseriesclassification.com

Given the ubiquitous nature and easy availability of data,
many researchers have proposed algorithms for solving TSC
problems. The greatest research emphasis has been focused
on classifying problems in the time domain through using
the raw series, typically by defining new elastic distance
measures to couple with nearest neighbour classifiers [2],
[3], [4]. However, other approaches have also been proposed,
including dictionary and interval-based techniques [5], [6], [7],
[8], ensemble algorithms [9], [10], and transformation-based
approaches [11], [12], [13], [14].

With the wealth of solutions that one could choose from
when attempting a new TSC problem, it raises the question of
which technique(s) should be considered? A recent empirical
evaluation was carried out in [1] where 20 published TSC
algorithms were implemented and tested. Experimentation
was extensive; each algorithm was tested with 100 different
resamples of the 85 UCR/UEA datasets, producing one of the
largest ever studies in machine learning with approximately 35
million individual experiments being completed. The results of
this study showed that, while there are many competitive TSC
algorithms with their own merits, one approach significantly
outperformed all other algorithms in terms of classification
accuracy. This approach, the Collective of Transformation-
based Ensembles (COTE) [10], combines classifiers built on
four alternate representations of TSC problems, where the
most effective ensembling strategy was found to combine all
classifiers into a flat hierarchy (Flat-COTE).

While this study evaluated the leading TSC algorithms
published in the literature, it did not include any deep learning
methods. Deep learning approaches have seen a recent surge in
popularity in other fields, with convolutional neural networks
(CNN) in particular garnering state-of-the-art results across
tasks such as image processing, natural language processing,
and speech recognition [15], [16], [17]. It is therefore only
natural to ask whether CNNs could have such an impact on
the field of TSC.

Our work seeks to address two questions: first, is Flat-COTE
more accurate than deep learning approaches for TSC? We
implement a CNN using a common framework and conduct
experiments on 85 datasets. We also consider recently published
results on 44 datasets from a TSC-specific CNN implemen-
tation [18]. We demonstrate that Flat-COTE is significantly
better than both deep learning approaches. However, despite

its impressive performance Flat-COTE has certain deficiencies.
This leads to our second question; can we improve on the
structure used in Flat-COTE to make a better classifier?
We address this question by defining a new hierarchical
probabilistic voting structure, defining a new spectral ensemble
classifier, and assimilating classifiers from two further data
representations. The resulting classifier, the Hierarchical Vote
Collective of Transformation-based Ensembles (HIVE-COTE),
contains modules that capture similarity with whole series
measures (Elastic Ensemble (EE) [9]), phase independent
subseries (Shapelet Transform ensemble (ST) [11]), an interval
based ensemble (Time Series Forest (TSF) [6]), a dictionary
ensemble (Bag-of-SFA-Symbols (BOSS) [5]), and the new
spectral ensemble. HIVE-COTE captures more sources of
possible discriminatory features in time series and has a more
modular, intuitive structure. More importantly, HIVE-COTE
is significantly more accurate than Flat-COTE and represents
a new state of the art for TSC. All of our code and data is
available from a public code repository and accompanying
website2.

To summarise, our contributions are as follows:

1) We evaluate two deep learning solutions for TSC:
a standard CNN and a bespoke CNN for TSC. We
demonstrate that the standard approach is no better
than dynamic time warping, and both are significantly
less accurate than the current state of the art.

2) We propose a new probabilistic hierarchical struc-
ture that is modular, encapsulating predictions from
different representations into a single vote.

3) We define a new spectral-based classifier that is
significantly more accurate than the alternative spectral
methods.

4) We assimilate three new classifiers into the collective
and create a new classifier, HIVE-COTE.

II. TIME SERIES CLASSIFICATION BACKGROUND

1) Whole series: Whole series techniques compare two
series either as a vector (as with traditional classification) or by
a distance measure that uses all data points. Most research effort
has been directed at finding techniques that can compensate
for small misalignments between series using elastic distance
measures. The almost universal benchmark for whole series
measures is Dynamic Time Warping (DTW) but numerous
alternatives have been proposed. These involve alternative
warping criteria [3], using versions of edit distance [2], [4] and
transforming to use first order differences [13], [19].

2) Intervals: Rather than use the whole series, the interval
class of algorithm select one or more phase-dependent intervals
of the series. At its simplest, this involves a feature selection
of a contiguous subset of attributes. However, the three most
effective techniques generate multiple intervals, each of which
is processed and forms the basis of a member of an ensemble
classifier [6], [20], [21].

3) Shapelets: Shapelet [8] approaches are a family of
algorithms that focus on finding short patterns that define a class
and can appear anywhere in the series. A class is distinguished
by the presence or absence of one or more shapelets somewhere

2www.timeseriesclassification.com/icdm2016.php

in the whole series. Two common ways of finding shapelets
are through enumerating the candidate shapelets in the training
set [11] or searching the space of all possible shapelets with a
form of gradient descent [22].

4) Dictionary-based: Some problems are distinguished by
the frequency of repetition of subseries, rather than by their
presence or absence. Dictionary-based methods form frequency
counts of recurring patterns, then build classifiers based on the
resulting histograms [23], [5].

5) Spectral: The frequency domain will often contain dis-
criminatory information that is hard to detect in the time domain.
Methods include constructing an autoregressive model [24],
[25] or combinations of autocorrelation, partial autocorrelation
and autoregressive features [10].

6) Combinations of the previous: Two or more of the
above approaches can be combined into a single classifier.
For example, concatenating different feature spaces [14],
forward selection of features for a linear classifier [26], and
transformation into a feature space that represents each group
and ensembling classifiers together [10].

Results from a recent experimental evaluation of the leading
TSC algorithms in these groups [1] are summarised in the
critical difference (CD) diagram in Figure 1. CD diagrams were
introduced in [27]. They show the average ranks of multiple
classifiers over multiple datasets and summarise a significance
test between the ranks. The horizontal black bars are cliques;
if two classifiers are in the same clique, their ranks are not
significantly different. If they are not in the same clique, they
are significantly different. The main conclusion from [1] is
that Flat-COTE is significantly more accurate than all the other
classifiers evaluated, representing the current state of the art
for TSC.

CD

9 8 7 6 5 4 3 2 1

2.1118
Flat-COTE

3.5588
ST

4.0412
BOSS

5.0176
EE

5.6118
DTW

F

5.7118
TSF

5.9235
TSBF

6.4059
LPS

6.6176
MSM

Fig. 1. The top 9 classifiers in [1]: Flat-COTE, ST, BOSS, EE, DTWF (DTW
Features), TSF, TSBF (Time Series Bag-of-features), LPS (Learned Pattern
Similarity), and MSM (Move-Split-Merge).

A. Flat-COTE

Flat-COTE combines 35 classifiers into a single ensemble. It
consists of 11 whole series classifiers (EE), 8 shapelet classifiers
(ST), and 16 spectral classifiers (8 built on autocorrelation
features, 8 using the power spectrum). Each classifier is built
independently and produces separate training accuracies. Given
a test instance, each individual classifier outputs a single class
prediction and weights it by training accuracy. Weighted test
predictions are then pooled, and the class with the highest
combined vote is the predicted class by Flat-COTE. The generic
proportional ensemble scheme is outlined in Algorithm 1.

Algorithm 1 ProportionalEnsemble(classifiers, train, test)

1: trainAccs = ∅;
2: for i← 1 to |classifiers| do

3: trainAccsi = loocv(train, classifiers[i])
4: classifiersi.buildClassifier(train)

5: testPreds = ∅
6: for i← 1 to |test| do

7: votes = ∅
8: bsfWeight = −1;

9: bsfClass = −1;

10: for c← 1 to |classifiers| do

11: p = classifiersc.classify(testi)

12: votesp = votesp + trainAccsc;

13: if votesp > bsfWeight then

14: bsfWeight = votesp
15: bsfClass = p
16: testPredsi = bsfClass
17: return testPreds

The results in [1] demonstrated that Flat-COTE is signifi-
cantly more accurate than any of the other algorithms that were
evaluated, but the conclusions give rise to several questions:

1) Could a classifier from a different area of machine
learning do better? The evaluation in [1] considered
many such approaches, but an obvious omission were
deep learning algorithms.

2) Does the flat structure cause a lack of robustness? For
example, the EE component contains 11 classifiers
while the other representations only have 8 each. This
gives EE a higher weight in Flat-COTE. Also, EE
contains full DTW and windowed DTW; in cases
where the optimal window is 100%, these classifiers
will be identical but have two votes. Conversely, if we
included a tree-based ensemble (such as TSF) with
500 classifiers, do we give it one compound vote, or
500 individual votes? Either is undesirable.

3) The ACF and PS classifiers make up almost 50%
of Flat-COTE, yet the features are deterministically
linked and derived from the whole series.

4) Flat-COTE only contains classifiers from three of the
five groups that we identified in Section II.

In Section III we define HIVE-COTE, a modular collective
with a new hierarchical structure that includes a novel spectral
ensemble and two new modules derived from other published
algorithms. We then compare against Flat-COTE and deep
learning algorithms in Section VI.

III. A NEW COLLECTIVE: HIVE-COTE

We introduce a new version of COTE that we call the Hi-
erarchical Vote Collective of Transformation-based Ensembles
(HIVE-COTE). HIVE-COTE is an improved version of Flat-
COTE that uses a modular hierarchical meta-ensemble structure.
Given a problem where all classifiers across the four domains
achieve similar training accuracies, Flat-COTE will be biased
towards time domain classifiers over other domains simply
because more classifiers are built in the time domain. HIVE-
COTE overcomes this potential design bias by modularising
the elements of each group of classifiers. It allows only a
single probabilistic prediction from each domain (whole series;
interval; shapelet; dictionary; and spectral). The components
of a module (ensemble of classifiers on a certain type) then
becomes an encapsulated design decision. From the top level,
it does not matter if a module contains one classifier or five

hundred. The overseer simply defines how to combine module
predictions into a single overall estimate.

A. Hierarchical Voting Structure

More formally, suppose we have g modules for a problem
with C classes, where |C| = c. Each module produces an
estimate of the probability of the class variable y, pj(y = i)
for j = 1 . . . g and i = 1 . . . c. Furthermore, each module has a
cross-validation weight wj . Flat-COTE treats each classifier as
a single module, performing a weighted vote with all modules
to find the class value with the greatest weight. HIVE-COTE
differs as it instead treats each constituent ensemble as a module.
Each module outputs a probability estimate for each class,
weighting estimates proportionally to training accuracy. These
estimates are combined in a second layer to create a meta-
ensemble, where the class value with the greatest weight across
all modules is output as the prediction. This creates a more
balanced and intuitive ensemble as each module corresponds to
a different base ensemble, where each ensemble has an equal
starting weight that is then weighted by training accuracy.

B. HIVE-COTE Modules

HIVE-COTE contains five modules: two modules from Flat-
COTE for whole series and shapelets, two modules from other
published research for interval and dictionary-based similarity,
and one new module for spectral features.

1) Elastic Ensemble (EE) [9]: EE combines 1-nearest
neighbour (1-NN) classifiers using various whole-series mea-
sures. The majority of research emphasis in TSC has been
placed on defining similarity measures to couple with 1-NN
classifiers. Given the wide choice in measures that could
be used, a preliminary experiment in [9] showed that there
was no similarity measure that significantly outperformed
all others when coupled with 1-NN classifiers. However,
it demonstrated that the classifiers did make predictions in
significantly different ways. The EE was created to utilise
this diversity by building 1-NN classifiers with these measures
to combine into a proportional ensemble (as in Algorithm 1),
which was significantly more accurate than any of its constituent
parts. All parameter settings for the measures are set through
cross-validation on the training data.

2) Shapelet Transform Ensemble (ST) [11]: ST separates
shapelet discovery from the classifier by finding the top k
shapelets on a single run. Data are transformed using the
shapelets, where attributes in a new instance are the distances
from an input series to each shapelet. We use the most recent
version of ST [28] that balances the number of shapelets per
class and evaluates each shapelet on how well it discriminates a
single class. Following [10], [28] we construct a classifier from
this dataset using a weighted ensemble of standard classifiers
(as in Algorithm 1). We include k Nearest Neighbour (where
k is set through cross-validation), Naive Bayes, C4.5 decision
tree, Support Vector Machines (linear and quadratic kernels),
Random Forest (with 500 trees), Rotation Forest (with 50 trees),
and a Bayesian network. Each classifier is assigned a weight
proportional to cross-validation training accuracy, and new data
(after transformation) are classified with a weighted vote. With
the exception of k-NN, we do not optimise parameter settings
for these classifiers via cross-validation.

3) Bag-of-SFA-Symbols (BOSS) Ensemble [5]: Shapelet
algorithms look for subseries patterns that identify a class
through presence or absence. However, if a class is defined by
the frequency of a pattern then shapelet approaches will be
poor. Dictionary approaches address this by forming frequency
counts of repeated patterns. They approximate and reduce the
dimensionality of series by transforming into representative
words, then compute similarity by comparing the distribution
of words. The core process involves forming words by passing
a sliding window of length w over each series, approximating
each window to produce l values, then discretising these values
by assigning each a symbol from an alphabet of size α. BOSS
uses a truncated discrete Fourier transform to compress each
window, then discretises through multiple coefficient binning.
The resulting distribution of words forms the basis for 1-NN
classification and uses a bespoke non-symmetrical distance
function. BOSS also includes a parameter that determines
whether the subseries are normalised or not. During the
parameter search of window sizes, the BOSS ensemble retains
all classifiers with training accuracy within 92% of the best.
New instances are classified by a majority vote.

4) Time Series Forest (TSF) [6]: TSF overcomes the
problem of the huge interval feature space by employing
a random forest approach, using summary statistics of each
interval as features. Training a single tree involves selecting√
m random intervals, generating the mean, standard deviation,

and slope of the random intervals for every series. Trees are
trained on the resulting 3

√
m features and classification is by

majority vote.

5) Random Interval Features (RIF): The spectral component
of Flat-COTE contains 8 classifiers built on autocorrelation
features (ACF ensemble) and 8 classifiers trained using the
power spectrum (PS ensemble). The ACF features involve
concatenation of autocorrelation, partial autocorrelation, and
autoregressive terms, and the PS terms are the truncated
periodogram (squared Fourier terms). However, [1] showed that
these two ensembles were significantly worse than the other
components of Flat-COTE (EE and ST). As these ensembles
contribute 16 of the 35 total constituent classifiers in Flat-
COTE it would be expected that including these classifiers will
negatively affect Flat-COTE on problems where discriminatory
features are not in the spectral domain. To overcome this we
propose a new classifier: the Random Interval Feature (RIF)
Ensemble. RIF draws ideas from the interval feature classifier
TSF [6] and we also construct a random forest classifier. How-
ever, instead of using time domain intervals, we use intervals
from the data transformed into alternate representations. We
create two versions: RIF ACF for autocorrelation-transformed
data and RIF PS for the power spectrum-transformed data.
We omit full results for brevity, but detailed analysis can be
found on the accompanying website. Both RIF classifiers are
on average 4% better than their Flat-COTE counterparts and
the difference is significant. RIF ACF beats ACF on 58 of the
85 datasets, RIF PS wins on 68 over PS.

While both RIF variants are improvements over the original
spectral components, we must be careful not to repeat the
issue in Flat-COTE by placing too much weight on spectral
domains. As the ACF and PS transforms are deterministically
linked it makes sense to have a single module in HIVE-
COTE to represent spectral methods. We can either combine

RIF ACF and RIF PS into a single module or use only one. For
simplicity we select the second option; we include RIF ACF
and omit RIF PS. There is little to choose from between
the two classifiers in terms of performance, but the ACF
transform is built by concatenating ACF, partial-ACF, and
autoregressive model terms. Hence this combined approach
likely includes more information than only transforming into
the power spectrum.

IV. DATASETS

A. UCR/UEA Time Series Dataset Repository

We use the 85 datasets from the UCR/UEA repository.
These have been commonly adopted by TSC researchers and
the datasets are split into pre-defined train/test partitions to
allow reproducible research. However, as discussed in [1],
always using the same split risks overfitting on a single sample.
As we are focused on the relative performance of classifiers,
we adopt the same methodology as [1]: we resample each
dataset 100 times and report the average accuracies over 100
folds for a dataset. We seed the resample so that it can be
reproduced exactly. All code and data is available from the
accompanying website, including a new ethanol level problem
that we introduce as a case study for HIVE-COTE.

B. Ethanol Level

Up to 25% of licensed premises in some parts of the UK
have been found to have counterfeit alcohol for sale. Brown-
Forman, the company that makes Jack Daniels, estimates that
around 30% of all alcohol in China is fake. This is a health
risk to the consumer as illegally produced spirits may contain
contaminants such as methanol, and an economic risk due to the
avoidance of taxes. Forgeries can sometimes be detected through
external appearance such as poor labelling, but currently there
is no way to conclusively tell whether spirits are forged without
opening the bottle. However, the alcohol level of genuine spirits
is tightly controlled and must equal the level stated on the bottle,
but forgeries generally do not have this level of quality control.
This means one way of detecting forgeries is by measuring the
level of alcohol. Currently, this can only be done by taking a
sample and is not feasible for widespread screening. We are
investigating non-intrusive ways of testing the alcohol level
using spectroscopy. We have conducted experiments using 20
different bottle types and four levels of alcohol: 35%, 38%, 40%,
and 45%. Each series is a a spectrograph of 1751 observations.
To avoid experimental bias, we evaluate classifiers using a
leave-one-bottle-out cross-validation.

V. A DEEP LEARNING BENCHMARK FOR TSC

Convolutional neural networks (CNN) are a type of feed-
forward artificial neural network with one or more convolutional
layers containing learnable filters. A typical CNN has one or
more convolutional/max pooling layer pairs followed by one or
more fully connected layers, and finally a softmax layer. CNNs
are powerful classifiers due to their ability to automatically
learn discriminative features from the input data. CNNs have
been successfully applied to a wealth of learning tasks including
image classification [15], natural language processing [16], and
speech recognition [17]. The success in these fields naturally
leads to the question of whether CNNs are competitive for

TSC. Though not currently widespread in TSC research, CNNs
have been applied to TSC problems [18]. The authors used
44 of the 85 UCR/UEA datasets to evaluate a standard CNN,
then defined a Multi-scale CNN (MCNN) that builds CNNs
with representations of the input series under various rescaling
factors.

VI. RESULTS

A. Comparison to Deep Learning

The CNN and MCNN in [18] were evaluated on 44 of the
85 UCR/UEA datasets. However, the CNN was used only as
a comparison to MCNN and the actual results of the CNN
were not published, while the published MCNN results were
only recorded on roughly half of the UCR/UEA datasets. We
wish to run our own standard CNN over the 85 problems as a
benchmark to understand how it compares to other competing
approaches before comparing MCNN to the state of the art. We
create CNNs in the Theano framework [29] using stochastic
gradient descent with momentum with one convolutional layer,
followed by a max-pooling layer and three fully connected
layers. Each convolutional/fully connected layer contains 256
filters/units. The hyper-parameters (and the range of values
we consider) that must be set are: the learning rate (0.1, 0.01,
0.001), filter size (0.05, 0.1, 0.2), pooling size (2, 3, 5), and the
number of training epochs (50, 100, 200). We select parameters
through minimising error in training, favouring smaller epochs
in the event of ties to avoid overfitting. Figure 2 compares
the CNN over the 85 datasets to the current state of the art,
Flat-COTE, and the common benchmark of DTW 1-NN with
warping set in training. Full results and code can be found on
the accompanying website.

CD

3 2 1

1.244
Flat-COTE

2.3333
CNN

2.4226
DTW CV 1-NN

Fig. 2. Flat-COTE compared to DTW 1-NN and CNN.

Flat-COTE significantly outperforms the CNN on the
UCR/UEA datasets, while the average rank of CNN is not
significantly different to DTW. This result is also confirmed
using pairwise tests (Binomial and Wilcoxon Signed-Rank).
This demonstrates that the standard CNN is at least competitive
for TSC in regard to DTW, but cannot match Flat-COTE.
However, the results in [18] stated that MCNN significantly
outperformed a standard CNN on 44 UCR/UEA datasets. We
compare our CNN results with the standard train/test split
to the published MCNN results over the common datasets.
Our analysis agrees that MCNN is significantly better than the
standard CNN, which naturally leads to the question of whether
MCNN is better than Flat-COTE. We test this by comparing
MCNN and Flat-COTE over the 44 datasets. We find that Flat-
COTE wins on 28 datasets, MCNN on 14, and they tie on 2.
The difference is significant according to both a binomial test
and a Wilcoxon signed-rank test.

Though Flat-COTE is significantly better than MCNN,
comparing MCNN to DTW 1-NN over the 44 datasets finds

a significant difference in favour of MCNN. This is still an
impressive feat, as only a handful of algorithms evaluated
in [1] actually outperformed DTW. It demonstrates promise,
and warrants further investigation of deep learning applications
to TSC. However, the current state of the art is confirmed to
be Flat-COTE and our next objective is to evaluate whether
HIVE-COTE is a significant improvement.

B. HIVE-COTE

Figure 1 summarised the experimental evaluation in [1]
that identified the leading algorithms in TSC. Those results
were obtained using 100 seeded resamples of the 85 UCR/UEA
datasets, which allows us to recreate the comparison and include
HIVE-COTE. Due to space limitations we cannot publish
full results here. However, full results are available on the
accompanying website. A summary of the results are reported
in Table I, and Figure 3 shows the CD diagram of HIVE-COTE
compared to the leading TSC algorithms.

CD

9 8 7 6 5 4 3 2 1

1.6353
HIVE-COTE

2.8588
Flat-COTE

4.1588
ST

4.6353
BOSS

5.7882
EE

6.2471DTW
F

6.3
TSF

6.4824
TSBF

6.8941
LPS

Fig. 3. The top TSC algorithms in [1] compared to HIVE-COTE.

HIVE-COTE is significantly more accurate than all alter-
natives, including Flat-COTE. Against all algorithms, HIVE-
COTE wins on 45 out of the 85 datasets and is ranked within
the top 3 classifiers on 83 problems. This underlines the
utility of transformation-based ensembles and demonstrates
the effectiveness of the new hierarchical structure. Finally, we
could not include MCNN in the previous analysis as results were
only published for 44 datasets. However, a pairwise comparison
over the common datasets shows than HIVE-COTE wins on 30,
MCNN on 11, and they tie on 3. The difference is significant.

C. Case Study: Ethanol Level

We can demonstrate the utility of HIVE-COTE by using
the ethanol level problem. We build Flat and HIVE variants of
COTE with a leave-one-bottle-out approach; we select a test
bottle, train with all other bottles, then make test predictions.
Repeating for all bottles gives us an overall accuracy.

As anticipated, this is a difficult problem and whole
series approaches performed poorly. This is likely because
data contains the whole spectrograph to incorporate as much
information as possible, but it is likely that a narrow band
contains the discriminatory features. As a result, the EE
component of Flat-COTE only achieved only 26.6% accuracy,
no better than random guessing. The ACF and PS ensembles
performed slightly better with roughly 35% accuracy each, and
ST performed best with over 50% accuracy. However, due
to the structure of Flat-COTE, the poor learners in the time
domain diluted the discriminatory power of ST and Flat-COTE
barely surpassed 40% classification accuracy. HIVE-COTE

TABLE I. SUMMARY OF TEST RESULTS OVER 100 RESAMPLES OF THE 85 UCR/UEA DATASETS

ST BOSS DTW F TSF TSBF LPS EE Flat-COTE HIVE-COTE

Overall Average Accuracy 83.80 83.35 80.54 79.58 79.87 79.51 81.19 85.79 86.88

Overall Average Rank 4.16 4.64 6.25 6.30 6.48 6.89 5.79 2.86 1.64

faired better; the best individual constituent ensemble, RIF ACF,
achieved 66.7% accuracy, while TSF reported over 63% and
BOSS recorded 52%. Combined, HIVE-COTE produced an
accuracy of 64.1%. This result demonstrates two points. First,
the constituent ensembles in HIVE-COTE were better than
those in Flat-COTE for this problem, especially apparent by
the superior performance of RIF ACF compared to the original
ACF. Second, the hierarchical structure of HIVE-COTE created
a more balanced classifier, handling the poor time-domain
classifiers without a significant degradation in accuracy.

VII. CONCLUSIONS

We set out to address two questions. First, was the existing
state of the art, Flat-COTE, significantly better than current
deep learning approaches for TSC? To answer this question we
implemented a convolutional neural network on 85 datasets. We
found that the CNN compared well to other approaches, but Flat-
COTE was significantly more accurate by a large margin. We
then turned our attention to the results of a recently published
TSC-specific CNN from the literature. Over the 44 dataset that
results were reported for, Flat-COTE was significantly more
accurate. This lead to our second question: could we create
a new version of the collective that was significantly better?
We introduced HIVE-COTE, a meta-ensemble that improves
on Flat-COTE by incorporating three new classifiers into the
collective, two from the literature and one new, and combines
constituent ensembles through a novel hierarchical probabilistic
voting structure. Finally, we compared HIVE-COTE to the
best classifiers from a recent experimental evaluation in [1]
on 100 resamples of 85 datasets. The results demonstrated
that HIVE-COTE is significantly more accurate than all of the
alternatives, including Flat-COTE. To the best of our knowledge,
HIVE-COTE is the most accurate algorithm for TSC.

ACKNOWLEDGEMENTS

This work is supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) [grant number
EP/ M015087/1]. The experiments were carried out on the High
Performance Computing Cluster supported by the Research
and Specialist Computing Support service at the University of
East Anglia. The authors would also like to thank James Large
for recording the Ethanol Level problem data.

REFERENCES

[1] A. Bagnall, J. Lines, A. Bostrom, and J. Large, “The great time series
classification bake off: An experimental evaluation of recently proposed
algorithms,” DAMI, vol. online first, 2016.

[2] P. Marteau, “Time warp edit distance with stiffness adjustment for time
series matching,” IEEE PAMI, vol. 31, no. 2, pp. 306–318, 2009.

[3] Y. Jeong, M. Jeong, and O. Omitaomu, “Weighted dynamic time warping
for time series classification,” Pattern Recognition, vol. 44, pp. 2231–
2240, 2011.

[4] A. Stefan, V. Athitsos, and G. Das, “The move-split-merge metric for
time series,” IEEE TKDE, vol. 25, no. 6, pp. 1425–1438, 2013.

[5] P. Schäfer, “The boss is concerned with time series classification in the
presence of noise,” DAMI, vol. 29, no. 6, pp. 1505–1530, 2015.

[6] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest for
classification and feature extraction,” Information Sciences, vol. 239, pp.
142–153, 2013.

[7] J. Lin, R. Khade, and Y. Li, “Rotation-invariant similarity in time series
using bag-of-patterns representation,” Journal of Intelligent Information

Systems, vol. 39, no. 2, pp. 287–315, 2012.

[8] L. Ye and E. Keogh, “Time series shapelets: a novel technique that
allows accurate, interpretable and fast classification,” DAMI, vol. 22,
no. 1, pp. 149–182, 2011.

[9] J. Lines and A. Bagnall, “Time series classification with ensembles of
elastic distance measures,” DAMI, vol. 29, no. 3, pp. 565–592, 2015.

[10] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-series classification
with cote: The collective of transformation-based ensembles,” IEEE

TKDE, vol. 27, no. 9, pp. 2522–2535, 2015.

[11] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, “Classifi-
cation of time series by shapelet transformation,” DAMI, vol. 28, pp.
851–881, 2014.

[12] A. Bagnall, L. M. Davis, J. Hills, and J. Lines, “Transformation based
ensembles for time series classification.” in SDM, vol. 12. SIAM, 2012,
pp. 307–318.

[13] T. Gorecki and M. Luczak, “Non-isometric transforms in time series
classification using dtw,” Knowledge-Based Systems, vol. 61, pp. 98–108,
2014.

[14] R. J. Kate, “Using dynamic time warping distances as features for
improved time series classification,” DAMI, vol. 30, no. 2, pp. 283–312,
2016.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural

Information Processing Systems 25, 2012, pp. 1097–1105.

[16] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional
neural network for modelling sentences,” arXiv:1404.2188, 2014.

[17] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in ICASSP 2013. IEEE, 2013, pp.
6645–6649.

[18] Z. Cui, W. Chen, and Y. Chen, “Multi-scale convolutional neural
networks for time series classification,” arXiv:1603.06995, 2016.

[19] G. Batista, E. Keogh, O. Tataw, and V. deSouza, “Cid: an efficient
complexity-invariant distance measure for time series,” DAMI, vol. 28,
no. 3, pp. 634–669, 2014.

[20] M. Baydogan, G. Runger, and E. Tuv, “A bag-of-features framework to
classify time series,” IEEE PAMI, vol. 25, no. 11, pp. 2796–2802, 2013.

[21] M. G. Baydogan and G. Runger, “Time series representation and
similarity based on local autopatterns,” DAMI, pp. 1–34, 2015.

[22] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme,
“Learning time-series shapelets,” in Proc. 20th ACM SIGKDD, 2014.

[23] J. Lin, R. Khade, and Y. Li, “Rotation-invariant similarity in time series
using bag-of-patterns representation,” Journal of Intelligent Information

Systems, vol. 39, no. 2, pp. 287–315, 2012.

[24] M. Corduas and D. Piccolo, “Time series clustering and classification
by the autoregressive metric,” Computational Statistics & Data Analysis,
vol. 52, no. 4, pp. 1860–1872, 2008.

[25] A. Bagnall and G. Janacek, “A run length transformation for discrimi-
nating between auto regressive time series,” Journal of Classification,
vol. 31, pp. 154–178, 2014.

[26] B. D. Fulcher and N. S. Jones, “Highly comparative feature-based
time-series classification,” IEEE TKDE, vol. 26, no. 12, pp. 3026–3037,
2014.

[27] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[28] A. Bostrom and A. Bagnall, “Binary shapelet transform for multiclass
time series classification,” in Big Data Analytics and Knowledge

Discovery, 2015, pp. 257–269.

[29] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints, vol.
abs/1605.02688, 2016.

