Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice (Oryza sativa L.): A field study

Zhang, Youchi, Chen, Tingting, Liao, Yongkai, Reid, Brian J., Chi, Haifeng, Hou, Yanwei and Cai, Chao (2016) Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice (Oryza sativa L.): A field study. Environmental Pollution, 216. 819–825. ISSN 0269-7491

[img]
Preview
PDF (Accepted manuscript) - Submitted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (643kB) | Preview

Abstract

Much research has considered the influence of biochars on the availability and phytoaccumulation of potentially toxic elements (PTEs) from soil. However, the vast majority of these studies use, what are arguably, unrealistic and unpractical amounts of biochar (10, 50 and even up to 100 t/ha). To offer a more realistic insight into the influence of biochar on PTE partitioning and phytoaccumulation, a field study, using modest rates of biochar application (1.5, 3.0 t/ha), was undertaken. Specifically, the research investigated the influence of sewage sludge biochar (SSBC) on the accumulation of Cd into rice (Oryza sativa L.) grown in Cd contaminated (0.82 ± 0.07 mg/kg) paddy soil. Results indicated, Cd concentrations in rice grains to significantly (p < 0.05) decrease from 1.35 ± 0.09 mg/kg in the control to 0.82 ± 0.07 mg/kg and 0.80 ± 0.21 mg/kg in the 1.5 t/ha and 3.0 t/ha treatments, respectively. Accordingly, the hazardous quotient (HQ) indices for Cd, associated with rice grain consumption, were also reduced by ∼40%. SSBC amendment significantly (p < 0.05) increased grain yields from 1.90 ± 0.08 g/plant in the control to 2.17 ± 0.30 g/plant and 3.40 ± 0.27 g/plant in the 1.5 t/ha and 3.0 t/ha treatments, respectively. Thus, the amendment of SSBC to contaminated paddy soils, even at low application rates, could be an effective approach to mitigate Cd accumulation into rice plants, to improve rice grain yields, and to thereby improve food security and protect public health.

Item Type: Article
Uncontrolled Keywords: sewage sludge biochar,rice (oryza sativa l.),cadmium,paddy soil,field
Faculty \ School: Faculty of Science > School of Environmental Sciences
Depositing User: Pure Connector
Date Deposited: 27 Sep 2016 10:00
Last Modified: 17 Mar 2020 22:14
URI: https://ueaeprints.uea.ac.uk/id/eprint/60604
DOI: 10.1016/j.envpol.2016.06.053

Actions (login required)

View Item View Item