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Abstract 

The catalytic ozonation of VOCs is a promising approach for degradation of indoor VOCs, 

such as gaseous toluene. However, the mechanism and relevant kinetic steps involved in this 

reaction remain unclear. In this study, the catalytic ozonation of toluene over MnO2/graphene 

was investigated using the empirical power law model and classic Langmuir-Hinshelwood 

single-site (denoted as L-Hs) mechanism. The apparent activation energy determined using the 

power law model was 29.3±2.5 kJ mol
−1

. This finding indicated that the catalytic ozonation of 

toluene over MnO2/graphene was a heterogeneous reaction, and the Langmuir-Hinshelwood 

mechanism was applicable. However, the L-Hs mechanism did not fit the experimental data, 

suggesting that the reaction was non-single-site governed. A novel Langmuir-Hinshelwood 

dual-site (denoted as L-Hd) mechanism was then proposed to explain the experimental 

observations of the catalytic ozonation of toluene over MnO2/graphene through a steady-state 

kinetic study. This mechanism was based on the hypothesis that MnO2 was responsible for 

ozone decomposition and toluene adsorption on graphene; these two types of adsorption were 

coupled by an adjacent attack. Furthermore, XPS results confirmed the presence of a strong 

connection between MnO2 and graphene sites on the surface of MnO2/graphene. This 

connection allowed the adjacent attack and validated the dual-site mechanism. The L-Hd 

model was consistent with the predicted reaction rate of toluene removal with a correlation 

coefficient near unity (r
2 

= 0.9165). Moreover, the physical criterion was in accordance with 

both enthalpy and entropy of toluene adsorption constraints. Fulfillment of mathematical and 

physical criteria indicated the catalytic ozonation of toluene over MnO2/graphene can be well 

described by the L-Hd mechanism. This study helps understand the catalytic ozonation of 

toluene over MnO2/graphene in a closely mechanistic view. 
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Nomenclature 

Xtol conversion of toluene 
0,tol

C  concentrations of toluene at the feed 

tolC  concentrations of toluene at outlet 
olrt  steady-state reaction rates of toluene,  

3O
C  steady-state concentrations of ozone W catalyst weight 

v total gas flow rate Ea activation energy  

A pre-exponential factor 
tolS∆  toluene adsorption entropy  

g
0S∆  standard gas phase entropy 

tolH∆  toluene adsorption enthalpy  

R universal gas constant  T temperature in Kelvin (K) 

ki reaction rate constant  Ktol adsorption equilibrium constant  

calr  predicted reaction rates 
exp

r  experimental reaction rates 

r
2
 correlation coefficient 1s  MnO2 active sites 

2s  graphene active sites   
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1. Introduction 

Toluene, a volatile organic compound (VOC), is carcinogenic and harmful to human 

health [1-4]. Catalytic ozonation is a promising approach used to degrade VOCs [5-9]. The 

catalytic ozonation of VOCs is considered a surface reaction, which follows the 

Langmuir-Hinshelwood mechanism and comprises adsorbed VOC molecules and atomic 

oxygen species; this process was originally proposed by Oyama et al. [10] to investigate the 

kinetics and mechanism of the catalytic ozonation of acetone over MnOx/SiO2 by combining 

in situ Raman spectroscopy with transient kinetics techniques. To the best of our knowledge, 

Oyama et al. study is the only systematic study on the kinetics and mechanism of the catalytic 

ozonation of VOCs, which has been widely used to explain the experimental results of the 

catalytic ozonation of several VOCs, such as toluene [11, 12], propanol [13], benzene [14], 

and cyclohexane [15]. Moreover, the Langmuir-Hinshelwood dual-site (L-Hd) mechanism was 

proposed to explain the elementary steps involved in the reaction [10], in which the SiO2 

support was applied for acetone adsorption, whereas ozone was adsorbed on MnOx. However, 

only one site (MnOx) was involved in the derivation of the proposed kinetic model; thus, the 

derived kinetic equation was actually based on the Langmuir-Hinshelwood single-site 

(denoted as L-Hs) mechanism. 

Although numerous studies were conducted on the catalytic ozonation of VOCs [16-23], 

the underlying mechanism and its relevant kinetic steps remain unclear [24]. Other than the 

recent study by Rezaei and Soltan [24], no studies were performed to test the validity of the 

L-Hs mechanism on the catalytic ozonation of toluene over alumina-supported manganese 

oxide catalysts. The toluene activation step in this model differs from that proposed by Oyama 

et al. [10]. Moreover, the model was established based on the assumption that toluene is 

activated by extracting hydrogen from the methyl group of toluene, and C–H bond cleavage is 
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the relevant kinetic step for catalytic ozonation of toluene. The derived rate expression from 

this assumption is identical to that based on the power law reported in the same study [24]. 

The researchers also suggested that additional techniques, including in situ spectroscopy, 

isotopic exchange techniques, and density functional theory (DFT) calculations, must be 

performed to validate the proposed mechanism [24]. Nevertheless, positive adsorption 

entropy (100 J mol
−1

 K
−1

) and enthalpy (8 kJ mol
−1

) values were obtained, thereby indicating 

the occurrence of endothermic adsorption, which is uncommon for catalytic reactions [24, 25]. 

Two models [10, 24] were developed based on the L-Hs mechanism, in which surface 

reactions occurred only on active metal oxide sites. Supports, such as SiO2 and alumina, 

served as platforms for active site dispersion, which were meaningless from the kinetic point 

of view of rate expression development.  

In our previous study, we reported the reaction performance of MnO2/graphene catalysts 

with different MnO2 loading for catalytic ozonation of toluene [26]. On the basis of the 

reaction performance data and from the chemical point of view, the function of graphene was 

proposed not only as support for MnO2 dispersion, where ozone adsorption occurred, but also 

as a toluene adsorption site because of the π-electron coupling between toluene and graphene. 

From the kinetic point of view, this dual role played by graphene, especially the latter, could 

be attributed to the non-competitive dual-site mechanism. In this mechanism, the MnO2 sites 

are reserved for ozone adsorption according to a classical ozone decomposition mechanism 

[27, 28], whereas graphene offers sites for toluene adsorption. The L-Hd mechanism has been 

commonly used to understand catalytic reactions [29-32]; however, to the best of our 

knowledge, no studies were reported on understanding catalytic ozonation of VOCs by the 

L-Hd mechanism.  
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In this paper, we reported a kinetic study for catalytic ozonation of toluene over 

MnO2/graphene. X-ray photoelectron spectroscopy (XPS) analysis was conducted to 

investigate the catalyst surface structure, and the results confirmed our previous study based 

on bulk phase characterization [26]. Well-designed kinetic reaction tests were also performed 

to collect reaction rate data under the steady state at three temperature points. Three kinetic 

rate models were then developed based on power law, Langmuir-Hinshelwood single-site 

mechanism, and Langmuir-Hinshelwood dual-site mechanism. These models were validated 

by statistically fitting the kinetic data obtained and were differentiated using both 

mathematical and physical criteria. Kinetic parameters, including apparent activation energy, 

activation energy, reaction rate constant, pre-exponential factor, adsorption equilibrium 

constant, and adsorption entropy and enthalpy, were determined and discussed. Based on the 

kinetic modelling results, one promising L-Hd mechanism was proposed for catalytic 

ozonation of toluene over MnO2/graphene. 

 

2. Experimental and data analysis 

2.1. MnO2/graphene preparation and characterization 

The details of sample preparation were reported in previous study [26]. Briefly, 64.6 wt% 

MnO2/graphene composite was synthesized using a redox reaction between the carbons of 

graphene oxide and potassium permanganate and the reduction of graphene oxide sheets to 

graphene sheets under hydrothermal conditions. This reaction can progress completely 

because MnO4
−
 ions can interact with graphene oxide layers given the good hydrophilicity of 

graphene oxide [33]. 

Several characterization techniques are used to examine the bulk structure of the 

MnO2/graphene catalyst in our previous work [26]. In this study, we investigated the surface 



  

Page 8888 of 37373737 
 

structure of MnO2/graphene by XPS analysis and confirmed the connection between surface 

MnO2 and graphene support, which renders the dual-site mechanism as feasible. XPS analysis 

was performed on ESCALab 220i-XL (VG Scientific) equipped with Ar+ sputtering (5 keV) 

for depth profile analysis. Monochromatic Al Kα was used as radiation source, with the 

energy scale calibrated and corrected for charging using the C 1s (284.9 eV) line as the 

reference binding energy. 

 

2.2. Steady-state kinetic study 

All conversion data were collected with values less than 15% under all reaction conditions 

to obtain reliable data for reaction kinetics. The schematic of the setup was reported in our 

previous studies [26, 34, 35]. Briefly, the inlet section consisted of a specific concentration of 

toluene gas produced from a VOC generator (VICI Metronics Dynacalibrator, model 150, 

USA), with N2 as carrier gas, as well as a specific concentration of ozone (volume flow rate of 

50–250 mL/min) produced from O2 (99.99%) through a silent discharge ozone generator 

(MEDOZONS Ltd., Medozons-BM-02, Russia) and a mixer. The inlet gas mixture was fed 

into a tube fixed-bed micro-reactor with a temperature controller (Harrick, model: 

HVC-DRP-3, USA) loaded with approximately 80 mg (volume of 0.11 cm
3
) of the samples. 

To eliminate the mass-transfer effect, we selected a sample size of 100–150 mesh by 

providing the catalyst bed height to a catalyst particle size ratio of L/Dp ≥ 50 and reactor 

internal diameter to a catalyst particle size ratio of D/Dp ≥ 30 [36]. Catalytic ozonation of 

gaseous toluene over the MnO2/graphene sample was performed at varied temperatures (295, 

313, and 333 K) under atmospheric pressure. The total flow rate was set at 150 mL/min (i.e., 

2.5×10-6 m3 s−1) for all runs with different toluene concentrations (300–800 ppm, i.e., 

0.0124–0.0329 mol m−3) and fixed ozone concentration (1600 ppm, i.e., 0.0659 mol m−3) 
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(Table 1).  

Reactants in the inlet stream and products in the effluent stream were analyzed online by 

using a Fourier transform infrared (FTIR) spectrometer (Bruker, Model Tenser 27) equipped 

with a 10 cm path-length gas cell (Infrared Analysis, model: SP-10 cm, optical length = 10 cm, 

volume = 100 mL). The recorded spectra were the average of 16 scans at a resolution of 0.5 

cm
−1

. The conversion of toluene (Xtol) was calculated using Eq. (1), where Ctol,0 and Ctol 

represent the concentrations of toluene at the feed and outlet of the reactor, respectively, and 

the subscript “0” represents the feed condition. All data were collected under the steady-state 

condition (i.e., when the concentration of the outlet gas is kept constant). The average value of 

three sets of independent experiments (deviations within ±5%) was reported using three 

different batches of the sample. The steady-state reaction rate was calculated using Eq. (2), 

where rtol, Ctol,0, v, Xtol, and W are the steady-state reaction rates of toluene, toluene feed 

concentration, total gas flow rate, steady-state toluene conversion, and catalyst weight, 

respectively.  

100%
C

C - C 
X

0 tol,

tol0 tol,

ol ×=t  (1) 

W

 
r 0,

ol

toltol

t

vXC
=  (2) 

 

2.3. Data analysis 

Three kinetic models were developed based on different mechanisms (3.2 Kinetic Study 

for details). Kinetic parameters (reaction rate constant ki and adsorption equilibrium constant 

Ktol) were obtained by fitting each model to the experimental results by combining MATLAB 

R2014a by using curve-fitting applications with the Levenberg–Marquardt method and the 

Excel optimizer solver for estimated initial values [37-39]. For each model, after the kinetic 
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parameters were calculated for each temperature, Arrhenius and Van’t Hoff equations were 

employed to determine the pre-exponential factor A, activation energy Ea, toluene adsorption 

enthalpy tolH∆ , and adsorption entropy tolS∆ , if applicable by using linear regression with 

Eqs. (3) and (4). R is the universal gas constant 8.314 J K−1 mol−1, and T is the reaction 

temperature in Kelvin (K). 

T
Aki

1

R

E- 
lnln a 








+=  (3) 

R

S 1

R

H- 
l tol∆

+






 ∆
=

T
nK tol

tol  (4) 

 

Criteria must be met for the models to mathematically converge with the experimental 

results and render the derived kinetic parameters as physically meaningful. First, the sum of 

squared errors between the measured data and the values derived from the kinetic models 

should be minimized as much as possible. As such, nonlinear least squares regression was 

used to calculate the reaction rates that would yield the minimum total squared error between 

the predicted and experimental data, as determined from Eq. 5 at each temperature point. The 

correlation coefficient (r
2
) was then used to intuitively distinguish the derived model [40, 41]. 

∑ −
n

ncaln rr
1

2

.,.,exp )(min  (5) 

 

where rexp. and rcal. represent the experimental and predicted reaction rates based on the kinetic 

model. The index n refers to the nth reaction rate at a specific temperature point and 

corresponds to specific toluene and ozone concentrations. 

 Second, satisfying the mathematical constraint was the first step for model 

discrimination. The physical meaning of the derived parameters was considered to select the 

optimal reaction model. Adsorption entropy and enthalpy should meet the following list of 
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criteria in Eqs. (6) and (7) for catalytic reactions [42-45].  

g
0

ads
0 SS-41.9 ∆<∆<  (6) 

ads
0

ads
0 H1.4-1.51S- ∆≤∆  (7) 

 

Eq. (6) indicates that the loss of entropy ads
0S- ∆  in the adsorption onto the catalyst should be 

higher than 41.9 J mol−1 K−1 but lower than the standard gas phase entropy (320.7 J mol−1 K−1 

for toluene) [46]. From Eq. (7), when a molecule is strongly bound to the catalytic surface, 

ads
0H- ∆  is highly negative and surface motion becomes restricted, indicating a high negative 

loss of entropy. Violation of either physical criteria indicated that the derived value for the 

adsorption parameter was meaningless in terms of physical perspective, thereby suggesting 

that an improper kinetic model was selected. 

 

3. Results and discussion 

3.1. Surface structure of the MnO2/graphene sample 

XPS was used to obtain the surface structure information of the MnO2/graphene 

composite. The O1s spectrum was deconvoluted into four distinct curves, as shown in Fig. 1. 

These curves include the peaks of anhydrous compounds (Mn-O) at 529.31 eV and water 

molecule (H-O-H) peak at 532.40 eV. These findings agree with the literature values of 

529.3–530.3 eV for MnO2 and 531.8–532.8 eV for water [47]. The intensity of the 530.40 eV 

peak can be attributed to the presence of C-O [48]. The fourth peak exhibited a binding 

energy of 529.46 eV. Meng et al. [49] assigned a new binding energy peak to Mn-O-Si which 

was found on manganese containing zeolite synthesized using the hydrothermal method. 

Considering the similar synthesis method used in the present study, the new 529.46 eV peak 

can be reasonably ascribed to Mn-O-C. The presence of the Mn-O-C bond was also proven by 
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the FTIR results in our previous work [26]. The presence of Mn-O-C confirms that the active 

sites of graphene and the dispersed MnO2 are strongly connected on the surface, thereby 

confirming the dual-site mechanism. In this mechanism, the two sites must be located 

sufficiently close to the surface to allow their adsorbed species to easily react with one other 

[50-52].  

 

3.2. Steady-state kinetic study 

High-temperature reactions would achieve high conversion for catalytic ozonation of 

toluene over the MnO2/graphene composite [53]. Therefore, relatively low temperatures (295, 

313, and 333 K) and high gas flow rate were selected for the reaction tests. All conversions of 

the toluene data were less than 15%, whereas those of ozone were typically more than 30% 

under the tested reaction condition. For reliability, the resulting kinetic data were only used to 

determine the kinetic parameters for toluene. Three kinetic models were developed based on 

the power law, L-Hs mechanism, and L-Hd mechanism. 

 

3.2.1. Power law model 

The power law model contained three unknown parameters (k, α, and β), as shown in Eq. 

(8) [54, 55]. 

βα

3olr Otolt CkC=  (8) 

 

where olrt  is the steady-state reaction rate of toluene. tolC  and 
3O

C  are the steady-state 

concentrations of toluene and ozone, respectively. α and β are the orders with respect to 

toluene and ozone concentrations, respectively. Reaction data at each temperature point in 

Table 1 were fit to an expression as shown in Eq. (8) by using nonlinear least squares 



  

 

Page 13131313 of 37373737 
 

regression analysis explained in Section 2.2 Data analysis to determine the rate expression. 

The results of the fitting are shown in Table 2. The fitting analysis obtained an adjusted R2 

degree of fit values of 0.9, 0.96, and 0.96 for the three selected temperature points (295, 313 

and 333 K). These results indicated that the power law model was well fitted. Both α and β 

values for different temperatures slightly differed, which could be due to experimental and 

statistical errors. The similar results were also found in the study on steady-state kinetic 

analysis of catalytic ozonation of acetone [10]. The apparent activation energy (Ea) of the 

reaction was determined to be 29.3±2.5 kJ mol
−1

 based on the derived reaction rate constant 

of each temperature point with Eq. (3) through linear regression (Fig. S1 for details). This 

value is close to the value (31 kJ mol
−1

) obtained by Rezaei and Soltan [24] for catalytic 

ozonation of toluene over alumina-supported manganese oxide catalysts. The determined 

activation energy of 29.3±2.5 kJ mol−1 in the present study was lower than that for the 

homogeneous reaction (55.6 kJ mol−1) between toluene and ozone, as reported by Toby et al. 

[56]; thus, under the current reaction condition, the catalytic ozonation of toluene over 

MnO2/graphene was considered a heterogeneous reaction that occurred on the catalyst surface. 

Therefore, the Langmuir-Hinshelwood mechanism could be utilized to explain experimental 

observations [57-59]. 

 

3.2.2. L-H kinetic model development 

In our previous work [26], we found that pristine graphene showed some activity for 

ozone decomposition while MnO2 exhibited much higher decomposition rate than that on 

graphene (around 10 times), which was attributed to its superior ability to adsorb ozone [27]. 

Based on this, we concluded that MnO2 would be much more active for ozone adsorption than 

graphene and serve as the active site for ozone adsorption when MnO2/graphene composite 
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was used for catalytic ozonation. Therefore, in the present work, we proposed that MnO2 

(instead of graphene) was the active site for ozone adsorption during the kinetic modelling. 

Two kinetic models were developed based on L-Hs and L-Hd mechanisms. The elementary 

steps involved for both mechanisms are presented in Table 3. For the L-Hs mechanism, the 

proposed steps by Oyama et al. [10] as well as Rezaei and Soltan [24] were fully adopted and 

listed in the left of Table 3. Briefly, the L-Hs mechanism consists of two cycles: ozone 

decomposition, as shown in steps (1) to (3), and toluene equilibrated adsorption [step (4)], 

migration [step (5)], and activation [step (6)], which are involved in one another. Further steps 

after step (6) were assumed to be not significant from the kinetic point of view [10]. Given the 

presence of the migration step, active site balance only occurred on one type of active site ( s1 ; 

i.e., MnO2), whereas the other site ( s2 ; i.e., graphene) was dismissed for kinetic expression 

development. Thus, the developed equation [Eq. (9)] [10, 24] could be considered as actual 

L-Hs mechanism-based kinetic expression.  

3

87tol32

2

3871

])H[C][O'(1

]][OH[C' 
r

Kk

k
Ktoltol

++
=  (9) 

 

where tolr is the toluene reaction rate, tolK  is the product of two equilibrium adsorption 

constants in steps (4) and (5) [10]. '2k  is set as 
3

1

k

k
, which is the reaction rate constant in 

step (1) divided by that of step (3). '1k  is defined as '25kk  which is the reaction rate 

constant in step (5) multiplied by '2k . 

 We propose a novel kinetic model based on L-Hd mechanism, other than the L-Hs 

mechanism. The elementary steps involved in the former mechanism are shown in the right 

column of Table 3. The L-Hd model also consists of two cycles, which follow the conclusion 
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from the systematic study by Oyama et al. [10, 28], particularly with regard to the results of in 

situ Raman spectroscopy. The ozone decomposition cycle in the present study [i.e., steps (1)– 

(3)] is similar to a previously reported cycle [27, 28], and the difference originates from 

toluene. In the present study, the s2  (graphene) site can be used for toluene adsorption 

because two active sites exist [step (4)]. The adsorbed toluene molecule on the s2  (graphene) 

site can react with the adjacent atomic oxygen species [step (5)] formed by ozone 

decomposition; this process occurred in the first ozone cycle on the s1  (MnO2) site, and step 

(5) in L-Hs was skipped in the proposed L-Hd mechanism. The well-designed catalyst renders 

the L-Hd mechanism as reasonable because of two advantages. First, the inherent π orbitals in 

graphene allow the toluene molecule to be adsorbed easily on the graphene surface by 

π-electron coupling between graphene and toluene. Lazar et al. [60] reported similar results, 

that is, toluene exhibits the highest affinity to graphene through combined experimental and 

computational (DFT) studies of seven organic molecules on graphene. These studies aimed to 

identify the magnitude and nature of the interaction.  

Second, adsorbed toluene molecule can be activated by neighboring atomic oxygen 

species because of the strong connection between graphene and MnO2. The presence of this 

connection was confirmed by the XPS results. With this strong connection and following the 

adjacent attack, the migration step shown in the L-Hs mechanism [step (5)] could be 

dismissed. As a result, the dual-site mechanism should be utilized to explain the surface 

reaction. On the basis of this L-Hd mechanism, both s1  and s2  active sites should be 

considered for the kinetic model development. The detailed derivation procedure is shown in 

later section. However, before the derivation, three assumptions were made and clarified. 

First, the last step in the L-Hd mechanism can be considered a slow step for catalytic 

ozonation of toluene, and the following steps were kinetically meaningless [10, 24]. Therefore, 
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Eq. (10) was used to develop the rate of toluene removal, which includes both 1s  (MnO2) 

and 2s  (graphene) sites. The concentration of both intermediates, ]2*[ 87 sHC  and ]1*[ sO

, in the reaction rate expression could not be measured. These two variables need to be 

replaced by known or determinable ones.  

]1*][2*[r 8755 sOsHCkrtol ==  (10) 

 

Second, step (4) is under the equilibrium adsorption state, which indicates that the forward 

reaction proceeds at the same rate as the reverse reaction [Eq. (11)]. 

]2[]s2][[ 874-874 sHCkHCk ∗=  (11) 

 

where k4 and k-4 represent the forward and reverse reaction constants in step (4), respectively. 

]2[s  is the concentration of vacant sites of 2s  (graphene). ][ 87HC and ]2[ 87 sHC ∗  are the 

concentrations of toluene in the gas phase and adsorbed toluene on the active site 2s  

(graphene). 

Third, the pseudo-steady-state hypothesis (PSSH) [61, 62] can be used to derive rate law, 

given that all data were collected under the steady-state conditions in the present study. Each 

species adsorbed on the surface is assumed to be a reactive intermediate. Consequently, the 

net rate of formation of species adsorbed on the surface is zero, as shown in Eqs. (12) and 

(13). 

0
]1*[

521 =−−= rrr
dt

sOd
 (12) 

0
]1*[

32
2 =−= rr
dt

sOd
 (13) 

  

where ]1*[ sO  is the concentration of the atomic oxygen species intermediate adsorbed on 
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1s  (MnO2) active sites. ]1*[ 2 sO  is the concentration of peroxide species adsorbed on s1 

(MnO2) active sites. ir  is the reaction rate corresponding to step (i) reaction listed in the right 

part of Table 3.  

Two unknown variables, namely, ]2*[ 87 sHC  and ]1*[ sO , need to be replaced by other 

measurable factors to achieve the reaction rate expression for toluene removal. After starting 

with Eqn. (11), ]2*[ 87 sHC  can then be expressed as Eq. (14). 

]2][[]2*[ 8787 sHCKsHC tol=  (14) 

where 
4-

4

k

k
Ktol =  is the equilibrium adsorption constant of toluene on active site 2s . The 

site balance on 2s  was performed with ]2[s  and ]*[ 287 sHC , that is 

1]*[]2[ 287 =+ sHCs . 

Substituting Eq. (14) to the 2s  site balance equation, the concentration of vacant 2s  

site can be determined to be: 

 
][1

1
]2[

87HCK
s

tol+
=  (15) 

 

By combining Eqs. (14) and (15), we can determine ]2*[ 87 sHC , the concentration of 

adsorbed toluene species on the 2s  site (graphene), with measurable factor, concentration of 

toluene in the gas phase. 

][1

][
]2*[

87

87
87

HCK

HCK
sHC

tol

tol

+
=  (16) 

 

In the next step, we go back to Eq. (12) to replace ]1*[ sO . The concentration of the 

adsorbed atomic oxygen species can be expressed using two measurable factors ( ][ 3O  and 
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][ 87HC ) and one undeterminable variable ]1[s . 

]1[

][1

][
][

][
]1[

87

875
32

31 s

HCK

HCkK
Ok

Ok
sO

tol

tol

+
+

=∗  
(17) 

 

Similarly, the concentration of adsorbed peroxide intermediates can be expressed using 

two measurable factors ( ][ 3O  and ][ 87HC ) and one undeterminable variable ]1[s , as shown 

in Eq. (18) by combining Eqs. (13) and (17), 

]1[

][1

][
][

][
]1[

87
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332

2

321
2 s

HCK
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sO

tol

tol

+
+

=∗  
(18) 

 

The concentration of vacant sites ]1[s  can be eliminated by performing a total site 

balance on 1s  with ]1[s , ]1[ sO ∗ , and ]1[ 2 sO ∗ , that is, 1]1*[]1*[]1[ 2 =++ sOsOs . 

Substituting Eqs. (17) and (18) to the site balance equation, we have 

][1

][
][

][

][1

][
][

][
1

1
]1[

87

8753
332

2

321

87

875
32

31

HCK

HCkKk
Okk

Okk

HCK

HCkK
Ok

Ok
s

tol

tol

tol

tol

+
+

+

+
+

+

=  

(19) 

 

By combining Eqs. (17) and (19), we can derive one expression for the concentration of 

atomic oxygen species intermediate with measurable factors, as shown in Eq. (20).  
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(20) 

 

Substituting Eqs. (16) and (20) to Eq. (10), the reaction rate expression for toluene 
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removal under steady-state conditions can be expressed by the following equation: 
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(21) 

 

3.2.3. Model discrimination and parameter estimation 

The rate expressions derived from the L-Hs and L-Hd mechanisms, i.e., Eqs. (9) and (21), 

were fitted to kinetic data in Table 1 by using the method mentioned in 2.3. Data analysis. 

The results are given in the parity plots, as shown in Fig. 2. The power law-based model 

results were also included in Fig. 2. Both the power law and the L-Hd model showed a 

reasonable agreement of the predicted reaction rate of toluene removal and the experimental 

reaction rate with a correlation coefficient near unity (r
2 

= 0.8995 and 0.9165). This finding 

indicated that the proposed L-Hd mechanism with MnO2 for ozone adsorption and toluene 

adsorption on graphene were consistent with kinetic measurements and may be used to 

represent the pattern of the experimental observations. The residual plot for the L-Hd model is 

presented in Fig. 3 to discriminate the selected mechanism and the derived model expression. 

The error was found to be randomly distributed, indicating that the correct rate expression 

should be chosen [57]. By contrast, the expression based on the L-Hs mechanism did not fit 

the experimental data, indicating that the catalytic ozonation of toluene over the 

MnO2/graphene catalyst is non-single-site-governed.  

Thus far, the L-Hd kinetic expression satisfied the mathematical criteria mentioned in 

Section 2.3. Data analysis. The next criterion was evaluated from the physical point of view, 

which would be assessed based on the entropy and enthalpy of toluene adsorption. The 

estimated kinetic parameters for the L-Hd model are listed in Table 4. The reaction rate and 

equilibrium constants are listed in the left part by fitting Eq. (21) to the experimental results in 
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Table 1. Pre-exponential factors, activation energy, and entropy and enthalpy of toluene 

adsorption are shown in the right part, and these factors were determined by linear regression 

with the Arrhenius or Van’t Hoff equation and the details of the derivation shown in Figs. 

S2–S6. As shown in Table 4, the pre-exponential factor for step (1) held a very large number, 

1.50×1019±1.2×105, whereas the values for the following two steps involved in the ozone 

decomposition are low, namely, 4.4±2.1 and 26.0±18.8, indicating that the first step was 

much faster than the subsequent two steps. These results are consistent with the conclusion by 

Oyama et al. [27, 28] that step (1) by itself is faster than steps (2) and (3). Step (6) (the 

reaction between adsorbed intermediates) was considered a slow step for the catalytic 

ozonation of acetone [10]. In the present study, the same assumption was proposed. The 

activation energy for step (5), attack by intermediates on adjacent foreign sites, was found to 

be 43.9±14.3 kJ mol−1, which is close to the value (48 kJ mol−1) determined by Rezaei and 

Soltan for step (6), activation with intermediates on adjacent native sites (left part of Table 3) 

with the L-Hs mechanism [24]. This result suggested that the activation of adsorbed toluene 

on graphene by neighboring atomic oxygen species on MnO2 was true in MnO2-graphene 

dual-site catalyst. The pre-exponential factor for step (5) was relatively high (5.77±0.04×10
3
 

mol kg
−1

s
−1

), leading to a relatively high reaction rate. However, the high activation energy 

(43.9±14.3 kJ mol
−1

) for this step may partially cancel the accelerating influence from the 

pre-exponential factor on the reaction rate. In Table 4, the rate constants for step (5) were very 

low at all three measured temperature points ((9.79±0.13) ×10
-5

, (2.34±0.08) ×10
-4

, and 

(1.05±0.06) ×10
-3

 mol kg
−1

 s
−1

, respectively); hence, this step was the rate-determining step 

for the proposed L-Hd mechanism and confirmed the aforementioned assumption that step (5) 

could be considered a slow step for the catalytic ozonation of toluene. The activation energy 

of ozone adsorption in step (1) is higher than that of the surface reaction between the ozone 
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and adsorbed atomic oxygen species in step (2) or that of desorption of oxygen molecule in 

step (3). These findings may be attributed to the high activity of atomic oxygen species 

intermediates [63, 64]. The entropy and enthalpy of toluene adsorption were negative, which 

are common in adsorption. The estimated value for the entropy of toluene adsorption was 

-158.5±2.2 J mol−1 K−1, which satisfied Eq. (6). The calculated value for the enthalpy of 

toluene adsorption was -57.5±1.3 kJ mol
−1

, which is consistent with the reported value (−13.5 

kcal mol
-1

) of the adsorption enthalpy of toluene to graphene flakes by inverse gas 

chromatography measurement and further DFT calculation [60]. This finding confirmed our 

hypothesis that toluene is adsorbed on the graphene site in the MnO2/graphene catalyst. 

Furthermore, the derived enthalpy satisfied the requirements of Eq. (7). Both physical 

constraints were met, indicating that the proposed model was physically meaningful. 

Therefore, the proposed L-Hd mechanism could be used to explain the catalytic ozonation of 

toluene over the MnO2/graphene catalyst, that is, the entire reaction consists of two cycles: 

ozone decomposition over MnO2 sites, which was the same as the classical explanation 

proposed by Oyama et al. [27, 28]; and toluene adsorption, which occurred on graphene sites. 

The two cycles were coupled by adjacent attack between adsorbed atomic oxygen species 

formed on the MnO2 site in the first cycle and adsorbed toluene molecule on the graphene site 

in the second cycle. The strong connection between MnO2 and graphene facilitated the 

occurrence of surface reaction between neighboring sites. 

 

4. Conclusion 

In this work, other than the classic Langmuir-Hinshelwood single-site-based model, a 

novel Langmuir-Hinshelwood dual-site-based mechanism was proposed to explain the 

experimental observation in the catalytic ozonation of toluene over the MnO2/graphene 
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catalyst. Steady-state kinetic study was conducted to validate the hypothesis. The strong 

connection between MnO2 and graphene sites on the surface facilitated adjacent attack and 

enabled the dual-site mechanism. Low apparent activation energy was determined by the 

empirical power law model, indicating that the catalytic ozoation reaction was heterogeneous 

and could be explained by the Langmuir-Hinshelwood mechanism. The L-Hs mechanism did 

not fit the experimental data, indicating that the reaction was non-single-site-governed. With 

the proposed L-Hd mechanism, the mathematical and physical criteria can be met, suggesting 

that the reaction can be well described by the L-Hd mechanism. This mechanism consisted of 

two cycle–ozone decomposition over MnO2 sites and toluene adsorption on graphene sites. 

The two cycles were coupled by adjacent attack between adsorbed atomic oxygen formed in 

the first cycle and adsorbed toluene molecule from the second cycle. This study provides new 

insights into catalytic ozonation of toluene over the MnO2/graphene catalyst in a closely 

mechanistic view. 
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Table captions 

Table 1 Experimental conditions and results of the steady-state kinetic study. 

Table 2 Results of nonlinear least squares regression based on power law expressions. 

Table 3 Elementary steps in the catalytic ozonation of toluene over MnO2/graphene catalyst 

based on the Langmuir-Hinshelwood single-site (L-Hs) and dual-site (L-Hd) mechanism. 

Estimated kinetic parameters with their 95% confidence intervals for the L-Hd model. 

 

Figure captions 

Fig. 1 XPS spectra at the binding energy range for O1s. 

Fig. 2 Parity plot of the experimental and predicted reaction rates. 

Fig. 3 Residual plot of the model based on the L-Hd mechanism. 
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Table 1 

Experimental conditions and results of the steady-state kinetic studya. 

Temperature 

(K) 

Ci,0 (mol m
−3

)
b
 Ci (mol m−3)c Xtol

d
 

(%) 

rtol
e
 

(mol kg
−1

s
−1

) Toluene O3 Toluene O3 

295 0.0124 0.0659 0.0112 0.0270 9.39 3.47×10-5 

295 0.0165 0.0659 0.0149 0.0379 9.49 4.67×10
-5

 

295 0.0206 0.0659 0.0188 0.0451 8.68 5.34×10
-5

 

295 0.0247 0.0659 0.0229 0.0477 7.32 5.41×10-5 

295 0.0288 0.0659 0.0270 0.0503 6.36 5.48×10-5 

295 0.0329 0.0659 0.0308 0.0512 6.45 6.35×10
-5

 

313 0.0124 0.0659 0.0108 0.0433 12.33 4.55×10
-5

 

313 0.0165 0.0659 0.0148 0.0461 10.07 4.96×10
-5

 

313 0.0206 0.0659 0.0185 0.0476 10.37 6.38×10-5 

313 0.0247 0.0659 0.0225 0.0491 9.10 6.72×10-5 

313 0.0288 0.0659 0.0261 0.0498 9.40 8.11×10
-5

 

313 0.0329 0.0659 0.0301 0.0517 8.63 8.50×10
-5

 

333 0.0124 0.0659 0.0109 0.0179 11.37 4.20×10
-5

 

333 0.0165 0.0659 0.0147 0.0176 10.78 5.31×10-5 

333 0.0206 0.0659 0.0176 0.0187 14.28 8.79×10-5 

333 0.0247 0.0659 0.0211 0.0232 14.50 1.07×10
-4

 

333 0.0288 0.0659 0.0247 0.0187 14.48 1.25×10
-4

 

333 0.0329 0.0659 0.0286 0.0231 13.21 1.30×10
-4

 

 

a The reaction test was conducted on 64.6 wt% MnO2/graphene catalyst with a weight of 

8.36×10
-5 

kg and total gas flow rate of 2.5×10
-6 

m
3 

s
−1

; The average value of three sets of 

independent experiments (deviations within ±5%) was reported using three different batches 

of the sample. 

b Feed concentration of toluene and ozone, Ci,0, i is tol or O3, which refers to toluene or ozone; 

c 
Outlet concentration of toluene and ozone, Ci, i is tol or O3 which refers to toluene or ozone; 
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d
 Toluene conversion, 100%

C

C - C 
X

0 tol,

tol0 tol,

ol ×=t  Ctol is toluene concentration in outlet. 

e The toluene reaction rate under the steady- state conditions (mol kg−1 s−1), 
W

 
r 0,

ol

toltol

t

vXC
= , 

Ctol,0: feed toluene concentration (mol m−3); v: total gas flow rate (m3 s−1); Xtol: toluene 

conversion; and W: catalyst weight (kg);  
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Table 2  

Results of nonlinear least squares regression based on power law expressions.  

T (K) k α β Adj. R
2
 

Power law rate expression: 
βα

3olr Otolt CkC=  

295 (3.25±0.71) ×10-3 0.6334±0.062 0.5509±0.061 0.9 

313 (6.18±1.03)×10-3 0.6983±0.058 0.5980±0.047 0.96 

333 (1.27±0.25)×10
-2

 0.6699±0.049 0.5839±0.039 0.96 
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Table 3  

Elementary steps in the catalytic ozonation of toluene over the MnO2/graphene catalyst, based 

on the Langmuir-Hinshelwood single-site (L-Hs) and dual-site (L-Hd) mechanisms
a
. 

Step no. L-Hs mechanism elementary stepsb Step no. L-Hd mechanism elementary steps  

1 1 s1  O 23 sOO ∗+→+  1 1 s1  O 23 sOO ∗+→+  

2 1 1  O 223 sOOsO ∗+→∗+  2 1 1  O 223 sOOsO ∗+→∗+  

3 1 1 22 sOsO +→∗  3 1 1 22 sOsO +→∗  

4 2 s2  HC 8787 sHC ∗⇔+  4 2 s2  HC 8787 sHC ∗⇔+  

5 21s1 s2 *HC 8787 ssHC +∗⇔+  

5 productsO →+ s1* s2 *HC 87  

6 productsO →+ s1* s1 *HC 87  

a 
1s refers to MnO2 sites, and 2s  denotes graphene sites on the catalyst surface. 

b L-Hs mechanism elementary steps were adopted from reference [10, 24]. 
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Table 4  

Estimated kinetic parameters with their 95% confidence intervals for the L-Hd model.
a
 

Rate 

Constant 

Temperature (K) Ai
b
 Ea

c
 ∆H

d
 ∆S

e
 

295 313 333 (mol kg
−1

 s
−1

) (kJ mol
−1

) (kJ mol
−1

) (J mol
−1

 K
−1

) 

k1 / 10
6 1.37±0.19 26.4±3.4 45.2±5.1 1.50×1019±1.2×105 72.6±56.7 - - 

k2 0.80±0.03 0.88±0.01 0.97±0.03 4.4±2.1 4.2±0.4 - - 

k3 0.27±0.01 0.44±0.01 0.48±0.01 26.0±18.8 10.9±11.6 - - 

Ktol 80.4±5.2 21.6±2.7 5.5±0.47 - - -57.5±1.3 -158.5±2.2 

k5 / 10
-5 9.79±0.13 23.4±0.81 105±6.3 5.77±0.04×10

3
 43.9±14.3 - - 

a 
Rate constant attained by fitting Eq. (21) to reaction data in Table 1;  

b 
Pre-exponential factor Ai, and 

c 
activation energy Ea were determined by Eq. (3) with linear 

regression; 

d 
Enthalpy ∆H and 

e 
entropy ∆S of toluene adsorption on the MnO2/graphene catalyst were 

determined by Eq. (4) with linear regression; 
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Fig. 1 XPS spectra at the binding energy range for O1s. Small, open circles in black are the 

measured experiment points. The solid line in yellow is the sum of all the peak fittings.  
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Fig. 2. Parity plot of the experimental and the predicted reaction rates. Experimental condition 

and the rates were given in Table 1. Predicted rates were obtained by fitting experimental data 

in Table 1 with Eqs. (8), (9) and (21) for power law, L-Hs and L-Hd model, respectively. The 

corresponding parameter estimates were given in Table 2 and 4. 
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Fig. 3. Residual plot of the model based on the L-Hd mechanism. 
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Highlights 

• Novel dual-site modeling was performed for catalytic ozonation of toluene 

• Strong connection confirmed by XPS made adjacent attack possible 

• Model predictions were validated with experimental results and reported data 

• Understanding the catalytic ozonation of toluene in a closely mechanistic view 

 


