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In the generic formulation of optical interactions there is, beyond the familiar electric and magnetic multipolar 

forms of coupling, an additional diamagnetization term that rarely receives attention. In fact it can give rise to 

effects that should be observable in the general context of nonlinear optical spectroscopy, as well as scattering. 

A quantum electrodynamical analysis reveals features of special interest in two specific cases: two-photon 

absorption and Rayleigh scattering. Diamagnetic contributions are seen to be dispersion free with regards to  

the frequency of input radiation, and can represent unique interactions within optical absorption and emission 

processes. There is also a configuration in which diamagnetic couplings, which are quadratic in the magnetic field, 

can supersede those that are dependent linearly on the electric field strength, such as the electric dipole. In this 

connection the influence of retroreflected circularly polarized light, which leads to a local distance dependence 

in magnitude of the electromagnetic fields, produces conditions in which the diamagnetization response can 

become a prominent feature in two-photon absorption. 

 

I. INTRODUCTION 

In the field of electrodynamics, optical processes are often 

studied under the constraint of the electric-dipole approxi- 

mation, wherein the wavelength of the incident or emergent 

light is assumed to be much larger than the dimensions of  

the irradiated particle. Under this supposition, the spatial 

variation of the vector potential is neglected. In consequence, 

higher-order couplings expressed in multipolar form, such as 

the light-matter interactions mediated by a magnetic dipole, 

can usually be disregarded. However, these higher-order terms 

are important for certain systems, such as chiral discrimi- 

nation in molecules of low symmetry [1,2], light-harvesting 

complexes [3], nanomaterials [4–6], metamaterials [7,8] and 

numerous theoretical studies including optical trapping [9–14]. 

Such terms also assume  greater  significance  for  systems  

in which electric-dipole couplings are either very small or 

vanish altogether—when, for example, a relevant electronic 

transition is electric-dipole forbidden by symmetry. In fact, at 

a level of magnitude approximately two orders smaller than 

electric-dipole coupling, there are contributions to the quantum 

amplitude from both magnetic dipole and electric quadrupole 

terms, both of which are linear in the radiation field. Recent 

research on thin films has even shown that, at judiciously 

chosen wavelengths, higher-order nonlinear effects can be 

larger than linear [15]. However, as will be shown, another 

form of electromagnetic coupling can also become important 

under certain circumstances, as discussed in the following. 

In addition to electric and magnetic multipolar couplings, 

one contribution that is very rarely discussed, or else assumed 

unimportant, is the diamagnetic interaction. As  we  shall 

see, this has many unique properties—including a quadratic 

dependence on the electromagnetic field, so that its importance 

grows with higher light intensities. Moreover, since  each 

field interaction involves the creation or annihilation of a 

photon, it follows that this diamagnetic term is always present 

in any process that fundamentally involves more than one 
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photon event—for example, any form of light scattering or 

multiphoton absorption. Indeed, the diamagnetic interaction 

plays a part in every nonlinear optical interaction, by each and 

every particle of matter. 

This paper begins by laying down the theoretical foundation 

for the diamagnetic form of interaction, starting with a 

Lagrangian representation of the electrodynamics and moving 

to the interaction Hamiltonian, thereby identifying the com- 

mon origin of the diamagnetic interaction alongside the more 

commonly known electric dipole and other higher-order mul- 

tipoles. The lowest-order diamagnetic interaction Hamiltonian 

is presented, and we then use it to study and develop the specific 

cases of two-photon absorption and Rayleigh scattering. By 

application of the Fermi rule, fully rotationally averaged rates 

are derived and presented for both of these processes, and it 

is shown how the rate expressions can be cast in terms of 

more familiar electric-dipole transition moments. We finish 

with a discussion highlighting the dispersive-free nature of 

the diamagnetic interactions, also showing how by exploiting 

retroreflection of circularly polarized beams it should be 

possible to make diamagnetic contributions dominant in any 

given multiphoton process. 

 
II. THEORETICAL FOUNDATION 

The treatment of particles and fields in a single electro- 

dynamical system, in which energy can exchange between 

radiation and matter, can be achieved either through a 

Lagrangian or Hamiltonian formulation. The starting point 

for any quantum electrodynamical framework is usually the 

adoption of the minimal coupling Lagrangian or the multipolar 

Lagrangian, in either case followed by canonical transforma- 

tion to the respective Hamiltonian form [16]. In its application 

to molecules, the advantage of the multipolar Hamiltonian 

over the minimal coupling formulation is the fact that, in the 

former, intermolecular Coulombic (instantaneous) interactions 

are eliminated so that these interactions are mediated solely by 

photons. Moreover, the minimal coupling method introduces 

unnecessary additional complexity when examining radiation- 

molecule and molecule-molecule interactions [17]. A strong 
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case can be made that the multipole approach more directly 

delivers physical insights with regard to selection rules: As   

a result, this article focuses on the multipolar Hamiltonian 

formulation. With the aim  of  highlighting  the  origin  of  

the diamagnetic interaction, a concise derivation from the 

corresponding Lagrangian is outlined below. More detailed 

derivations can be sourced elsewhere [16,17]. 

The total multipolar Lagrangian can be partitioned into    

a sum of three terms: one for the molecules, Lmol  (labeled   

by ξ ), another for the radiation, Lrad, and the third for their 

interactions, Lint. The molecular components are written in 

terms of particles α  with coordinates  qα(ξ ) and velocities   

q̇ α(ξ ), and the vector potential field a(r) with time derivative 

molecules ξ and ξ r. In Eq. (4), m(r) is the magnetization field 

that is related to the current density of a medium and p⊥(r) 

is the transverse component of the electric polarization field 

[18], which also involves the charge distribution of a medium. 

Changing from the multipolar Lagrangian to the multipolar 

Hamiltonian requires a canonical transformation of Eq.   (1). 

This basically means that q̇ and ȧ are eliminated and replaced 

by the canonical momenta p and M, such that 
¸ 

Hmult = 
. 

pα(ξ ) · q̇ α(ξ ) + M(r) · ȧ (r)d3 r − Lmult. 
ξ,α 

(5) 

ȧ (r).  In  the  absence  of  interaction  between  molecules  and 

radiation, Lmol and Lrad are simply the particle Lagrangian  

and the free-field Lagrangian, whose respective    dynamical 

The momentum pα(ξ ) is canonically conjugate to the 

position vector qα(ξ ), as determined by the partial derivative, 

variables bear no influence on one another. However, in a 

single dynamical system where the equations of motion    of 
pα(ξ ) = 

∂Lmult 

∂ q̇ α(ξ ) 

¸ 

= mq˙ α(ξ ) − nα(ξ,r)×b(r)d3 r, (6) 

both matter and radiation are dependent on one another,  the 

coupling appears as the interaction term Lint. The explicit form 

of the multipolar Lagrangian is given by 

where the vector field, nα(ξ,r), is defined as 

nα(ξ,r) = −e[qα(ξ ) − Rξ ] 
¸ 1 

 
in which 

Lmult = Lmol + Lrad + Lint, (1) × λδ[r − Rξ − λ(qα(ξ ) − Rξ )]dλ.   (7) 
0 

. 
me

 
Here  e   is  electric  charge,   Rξ   denotes  the  center   of 

. 
the molecule ξ , and the integral over λ is defined as    

Lmol = 
. 

q̇  (ξ ) − V (ξ ) , (2) ¸ 1 1 

2 α 
0  λ

ndλ = (n + 1)− (integration over this dimensionless pa- 
ξ α 

ε0 

¸ 
2 2 2     3 

rameter allows the multipole series to be expressed in a closed 

form), with nα(ξ,r) signifying a distribution for  polarization 

Lrad =  
2 

{ȧ  (r) − c  [∇ × a(r)]  }d 

¸ 

r, (3) that differs from pα(ξ,r) in its multipolar weightings. The 
momentum conjugate to the vector potential a(r) is 

Lint = [∇ × m(r)] · a(r)d3 r 

− p⊥(r) · ȧ (r)d3 r − 
. 

Vinter(ξ,ξ r). (4) 

∂ Lmult 

M(r) = 
∂ ȧ 

= ε0ȧ (r) − p⊥(r) = −d⊥(r), (8) 

where d⊥(r) is the transverse electric displacement field. Now 
ξ<ξ r that the canonical momentum has been determined, we   can 

Here V(ξ ) is the intramolecular Coulomb potential energy substitute  for  q̇  and  ȧ in the Legendre transformation,   and 

of molecule ξ , summing all the internal Coulombic interac- 

tions, and Vinter(ξ,ξ r) is the intermolecular energy    between 

by regrouping terms the following multipolar Hamiltonian is 

found: 
 

 
 

.. 
1 
. 

Hmult = 
.

 
ξ 

. 
pα(ξ ) + 

α 

.2 

nα(ξ,r)×b(r)d3 r 

. 

+ V (ξ ) 

. ε0 
¸ .. 

M(r) + p⊥(r)
.
 

. 
2   2 3 

+ 
ξ<ξ r 

Vinter(ξ,ξ r) + 
2
 

+ c  b (r) 
0 

d  r. (9) 

 
 

 

When using (6) and (8) to express the above equation in 

terms of  q̇ α(ξ ) and  ȧ (r), it can be seen that this expression 

that the multipolar Hamiltonian becomes 

sums energy from the molecules and from the radiation field, 
where each of these terms is a sum of kinetic and potential 

energies. Thus the Hamiltonian takes the following form: 

Hmult = Hmol + Hrad + Hint + 
1 

2ε0 

¸ 

| p⊥(ξ,r)| d3 r, 
ξ 

(11) 

H = (T + V )mol + (T + V )rad. (10) 

It transpires that the intermolecular Coulomb interaction 

energy is exactly canceled by the intermolecular part of the 

transverse polarization. In consequence, it follows from Eq. (9) 

 

in which the final term is an intramolecular self-energy 

independent of the electromagnetic field.  The  absence  of 

any contribution linking different molecules means that all 

intermolecular  interactions  are  mediated  by  the transverse 

2m 

¸ 

2 

. 



 

 

1  . 

ε 

. 
k
 

ij = 
. 

ikl  jml  k m 

int 

H 0 

ε 

 

electromagnetic field—i.e., all such couplings are fully re- 

tarded. We now have 
.
  

. 
Hmol = 

. 
p2

 

dipole, and the final cross-product term represents the lowest- 

order diamagnetic coupling. Before proceeding further, it is 

worth noting some differences of the diamagnetization con- 

tribution from the more familiar electric quadrupole term—as 

2m α(ξ ) + V (ξ ) 
ξ α 

, (12) 
it, too, is cast in terms of a second-rank coupling tensor. The 

latter, however, assumes a traceless form as a result of its 

engagement  with the derivative  of the electric field,   whose 1 
¸ . 

M2(r) 2 2

. 
3 

Hrad = 
2

 
+ c ε0[∇×a(r)] d  r 

0 

components in the direction of the field itself vanish. (This is 

because, in the interaction term Qij ∇iej , the trace of Q delivers 

1 
¸ . 

d⊥2
(r) c2ε0 b

2(r) 
. 

d3 r, (13) 
∇iej , and while the gradient of the field lies in the direction of 
propagation, the electric field is entirely transverse. In fact, the 

= 
2 ε0     

+ 

1 
¸ 

3 

¸ 

same comment can be made about the magnetic quadrupole 

term, since the magnetic field is intrinsically divergence free). 

3 

Hint = 
0 

p⊥(r) · M(r)d r − m(r) · [∇×a(r)]d r 

2 

 
III. DIAMAGNETIZATION IN OPTICAL INTERACTIONS 

1 
.¸ 

+ 
2m 

. 

n(r)×[∇×a(r)]d3 r In quantum electrodynamics, the mode expansion for the 

electromagnetic field operator b is given as 

1 
¸ 

= − 
ε0

 

¸ 

p(r) · d⊥(r)d3 r − m(r) · b(r)d3 r 
b(r) = i 

.
 
.  

kk  
.1/2

 

1 
¸ 

3

 

+ 
2 

Oij (r,r r)bi(r)bi(r r)d rd3
 rr. (14) 

 

k,η 
 

 
(η) 

2ε0cV 
 (η) 

 

 i k·r 

 

 
(η) 

 

 †(η) 

 

 −i k·r 

Here, the last term of Eq. (14) represents the diamagnetic 

interaction—the focus of interest in this paper—while the 

first two terms yield the electric and magnetic multipole 

expansions, respectively. It is interesting to observe that this 

term is quadratically dependent on an electromagnetic field, 

which represents an intrinsic nonlinearity in the interaction 

Hamiltonian. For deployment in a QED framework the status 

is clear; this term can contribute only to processes that entail 

two or more fundamental interactions. However, it should be 

borne in mind that such a distinction will be much less obvious 

in any semiclassical treatment, where the usual additivity of 

quantum amplitude contributions masks an assumed    linear 

× {b  (k)a   (k)e − b̄                (k)a (k)e },  (17) 

where a(η)(k) and a†(η)(k) are the normalized annihilation and 

creation operators, respectively, for photons of the mode (k, η). 

The polarization vector b(η)(k) is a unit vector in the direction 

of the magnetic field and V is the quantization volume. Taking 

the final term of Eq. (16) with the mode expansion (17), we 

can rewrite the lowest-order diamagnetic contribution to the 

interaction Hamiltonian in terms of field components, using 

Levi-Civita symbols to express the vector cross products, as 

follows: 
 2 

dependence on the fields. 
mult e 
int   =−  

   
εijpεklp 

. .
 

. 
(kkr) 1/2 

To continue, the material tensor involved in the diamagnetic 

coupling is the local field Oij (r,r r), given explicitly by 

8m 
k,η 
kr ,ηr

 

α,ξ 
2ε0cV 

 1 
O  (r,r r) ε    ε n  (ξ,r)n  (ξ,r r). (15) 

m 

× {[qα(ξ ) − Rξ ]i[qα(ξ ) − Rξ ]k} 

× (bjaei k· Rξ  − b̄j a
†e−i k· Rξ ) 

ξ,ξ r 
In  most  calculations,  Hmult   is  expanded  in  terms     of × (br r

 kr Rξ − b̄la
r †

 e−i kr · Rξ  ). (18) 

 

multipole moments. While this is familiar for the electric  

and magnetic polarization fields, denoted by p(r) and m(r), 

respectively, the procedure can also be applied to Oij (r,r r). 

After carrying out the volume integral, the first few terms of 

the interaction portion of the multipolar Hamiltonian, H mult, 

are identified as 

la ei  · 

Here, the k and η dependence of the photon annihilation 

and creation operators, along with the polarization vectors, 

are implicit. From the above result, it is immediately clear 

that the diamagnetic term can only participate in processes 

that  involve  two  or  more  photons.  The  reason  is  that the 

mult 

int   = 
. .

−ε−1μ(ξ ) · d 

ξ 

⊥( Rξ ) 
photon creation and annihilation operators appear in quadratic 
combinations, emerging from the product of the last two 

bracketed terms in Eq. (18). Accordingly, if both of the photons 

0 Qij (ξ )∇jdi − m(ξ ) · b( Rξ )
.
 

− ε−1 ⊥ 
relating to these operators are from the same radiation mode, 

the transition diamagnetization moment will depend on   the 
e2 

+ 
8m 

. 
 
ξ,α 

{[qα(ξ ) − Rξ ] × b( Rξ )}
2

 + ·· ·  . (16) 
square of the field strength, and the corresponding rate on the 

square of the radiation mode intensity. On the other hand, for 

a scattering process in which the two magnetic    interactions 

Here, using the convention of implied summation over 

repeated Cartesian indices, the result is now written in explicit 

terms of the electric dipole, electric quadrupole, and magnetic 

relate to different radiation modes, this quadratic dependence 

on the input does not, of course, apply. We now consider these 

two cases in detail. 

H 

r 



 

 

0 

 

dipole moments. This simply involves use of the completeness 

relation to introduce a sum over states |r), together with the 
defining operator relation −e

.
α [qα(ξ ) − Rξ ]i = μi(ξ ). 

Hence we obtain 
.
  kk 

.
 1/2 

.
 
 

fr  r0 

Mfi = εijpεklp 
16mε0cV 

{n(n − 1)} μi  μk bjbl, 
r 

(21) 
 

where  

(μiμk)
f 0 = (f |μiμk|0) = 

. 
(f |μi|r)(r|μk|0) 

r . 
fr r0 

FIG. 1. (a) Feynman diagram for the diamagnetic two-photon 

absorption, where the molecule undergoes transition from an initial 

state i to a final state f . (b) Conventional diagram for two-photon 

absorption, where r is a virtual intermediate state. 

 

A. Application to two-photon absorption 

Two-photon absorption (TPA) is a well-studied process, 

widely used in nonlinear spectroscopy [19]. Single-beam TPA 

is a suitable process to exhibit how a scalar diamagnetic con- 

tribution can become both readily identifiable and dominant 

compared to other multipole contributions. We begin with 

standard perturbation theory, which tells us the leading contri- 

bution to the matrix element for the diamagnetic contribution 

to TPA is of first order in the interaction term. In certain 

respects this appears to be analogous to one-photon absorption 

because, in the diamagnetic contribution, both photons are 

annihilated at the same point on the world line in the Feynman 

graph, Fig. 1(a). In contrast, the leading contributions of the 

nondiamagnetic TPA  terms, which originate from the   other 

= μi  μk . (22) 
r 

 

To secure the rate, we now deploy the Fermi rule T = 
(2π/k)|Mfi |2Nρf . In passing we observe that in applications 
to multiphoton absorption, the most appropriate density of 

states for application of this formula is the density of final 

states ρf of the molecule, so that the result reduces to being 

dependent on the line shape of only the molecular states. 

Although in principle the density of states for any particular 

process will reflect a combination of uncertainties from both 

matter and radiation, it is the factor that contributes the highest 

overall number of states per unit frequency, momentum, or 

energy interval that will play the decisive role. For this 

reason—especially since multiphoton absorption is invariably 

studied with narrow-linewidth laser light—it is both expedient 

and appropriate to deploy a density of final material states for 

nonlinear absorption or other such excitation processes. 

Continuing, the rate T is thus given by 

orders of multipole (including dipole) interactions, are second 
. 

2πN 
.. 

kk 
T = 

.2 
ρfn(n − 1)εijpεklpεqruεst u 

order in the interaction term, Fig. 1(b). Another key difference k 16mε0cV 
between the diamagnetic and nondiamagnetic contributions is 

. 
fr  

k  μ̄ f r μ̄ r0bjblb̄r b̄t . (23) 

now evident: the lack of an intermediate state in diamagnetic 

interactions. It is an issue we shall return to later. 

Let a beam of n photons with mode (k,η) be incident  

upon a system of N molecules each with an initial energy E0. 

For such a case, the matrix element Mfi for the diamagnetic 

contribution to TPA is given by 

× μi  μ
r 

q s 

r 

 

When the product of Levi-Civita tensors is evaluated  

using the tensor identity εijpεklpεqruεst u = δikδjlδqsδrt + 
δilδjkδqtδrs − δikδjlδqtδrs − δilδjkδqsδrt , (23) becomes 

Mfi = (f |Hint|i), (19) 
. 

2πN 
.. 

kk 
T = 

.2 

ρfn(n − 1) 

where Hint  is given  by Eq. (18) and |i)= |n(k,η))|E0)   and k 16mε0cV 
(f | = (n − 2(k,η)|(Ef |.  The  radiation  part  of  the  matrix 

. . fr  r0 fr  r0 2 

element is written as × μi   μi  μ̄ q  μ̄ q  |b · b| 
r 

(n  − 2(k,η)|a(η)a(η)|n(k,η)) fr  r0 fr  r0 

√   − μi   μi  μ̄ t   μ̄ s  (b · b)b̄t b̄s 
= n(n − 2(k,η)|a(η)|n − 1(k,η)) fr  

√ √   − μ̄ f r μ̄ r0μ μr0(b̄ · b̄)bkbl 

= n  n − 1(n − 2(k,η)| n − 2(k,η)) 
q q 

fr  r0 

k l 
fr  r0 ¯  ¯ 

.
 

= {n(n − 1)}1/2. (20) 
+ μk μl μ̄ t μ̄ s  bkblbtbs  . (24) 

On the usual assumption that the two-photon transition 

involves  the promotion of only a single electron, and that   

its wave function is to a first approximation exactly separable 

from those of the other electrons, then it is possible to further 

develop the matrix element into a form that entails transition 

With the aid of standard techniques [20] we can now 

perform a rotational average on the rate, which is required 

when the orientations of the absorbing molecules are random, 

as in a gas or liquid. It is instructive to show the results of the 

averaging technique for each of the different rank tensors  in 



 

 

i  μ
r 

i 

r 

r 

2 fr  

0 

   

0 

λλ 

λμ 

s 

l 

 

Eq. (24). These are given as follows:  
.
μfr 0 

 

fr  r0
. 

q q 

 

 

2 fr   r0 
λ λ 

fr  r0 2 
μ μ 

i  μ̄ μ̄ |b · b| = μ μ   μ̄ μ̄    |b · b| , (25) 

− 
.
μ

fr  
0
.
b · b

.
μ̄ 

f r 
μ̄  0

.
b̄t b̄s = −  μ

f r
μ   μ̄ μ̄    |b · b| , (26) 

i  μ
r 

t 
r 

1 r0 

3   λ λ 

fr  r0 2 
μ μ 

− 
.
μ̄ f r μ̄ r0

.
b̄ · b̄

.
μ

f r 
μr0

.
bkbl = −  μ

f r
μ   μ̄ μ̄    |b · b| . (27) 

q q k l 
1 r0 

3   λ λ 

fr  r0 2 
μ μ 

The final term within the bracket of Eq. (24) corresponds to a rank four tensor and, therefore, is more complicated to use in a 

rotational average procedure, as is shown below: 
.
μ

fr  0μ̄ f r μ̄ r0 bkblb̄t b̄s  = bkblb̄t b̄s 
 1  [δklδt s (4δλμδνπ − δλνδμπ − δλπδμν) + δktδls (−δλμδνπ + 4δλνδμπ − δλπδμν) 

k  μ
r 

t s 

.
 

+ δksδlt (−δλμδνπ − δλνδμπ + 4δλπδμν)]μ
f r

μr0μ̄ f r μ̄ r0, (28) 

Upon contracting the greek indices, (28) becomes 

λ μ    ν π 

.
μ

fr  0    fr  r0  1 fr   r0 fr  r0 fr  r0 fr  r0 fr  r0 fr  r0 

k  μl μ̄ t μ̄ s  
.
bkblb̄t b̄s  = bkblb̄t b̄s 30 

.
δklδts  

.
4μλ  μλ μ̄ μ  μ̄ μ  − μλ  μμ μ̄ λ  μ̄ μ  − μλ  μμ μ̄ μ  μ̄ λ 

.
 

+ δktδls 

.
−μ

f r
μr0μ̄ f r μ̄ r0 + 4μ

f r
μr0μ̄ 

f r 
μ̄ r0 − μ

f r
μr0μ̄ f r μ̄ r0

.
 

λ λ μ μ λ μ   λ μ λ μ   μ λ 

+ δksδlt 

.
−μ

f r
μr0μ̄ f r μ̄ r0 − μ

f r
μr0μ̄ 

f r 
μ̄ r0 + 4μ

f r
μr0μ̄ f r μ̄ r0

..
. (29) 

λ λ μ μ λ μ   λ μ λ μ   μ λ 

In all of the above, latin indices refer to the laboratory-fixed frame and the greek indices to the molecule-fixed frame. 

Contracting the latin indices of Eq. (29) gives the final result as .
μ

fr  0    fr  r0  1 2 fr  r0 fr  r0 2 fr   r0 fr  r0 fr  r0 fr  r0 

k  μl μ̄ t μ̄ s  
.
bkblb̄t b̄s = 30 

..
4|b · b| − 2

.
μλ  μλ μ̄ μ  μ̄ μ  − (|b · b| − 3)

.
μλ  μμ μ̄ λ  μ̄ μ  + μλ  μμ μ̄ μ  μ̄ λ 

..
. (30) 

Inserting (25)–(27) and (30) into the rate equation (24) gives the final rotationally averaged result as 

. 
πN 

..
  kk 

.2 . .. 2 
.  fr   r0 fr  r0 

(T)=  
15k 16mε0cV 

ρfn(n − 1) 
r 

14|b · b| − 2  μλ  μλ μ̄ μ  μ̄ μ 

− (|b · b| − 3)
.
μ

fr
μr0

 μ̄ 
f r 

μ̄ r0
 + μ   μr0μ̄ f r μ̄ 

r0
..

. (31) 
λ μ   λ μ λ μ   μ λ 

The premultiplier can be rewritten more succinctly by taking into account the degree of second-order coherence g(2) [21], 

where g(2) = (n(n − 1))/(n)2,  and then making use of the fact that the beam intensity may be given  as the mean irradiance       

Ī  = (n)ckω/V . The rate equation (31) finally becomes expressible as 

(T) = NĪ 2g(2)Bdia , (32) 

where the polarization-dependent molecular factor Bdia is the diamagnetic two-photon analog of the Einstein B coefficient, given 

explicitly as follows: 
πρf 

Bdia = 
. .

(14|b · b|2 − 2)μ
f r

μr0μ̄ f r μ̄ r0 − (|b · b|2 − 3)
.
μ

f r 
μr0μ̄ 

f r 
μ̄ r0 + μ

f r
μr0μ̄ f r μ̄ r0

..
. (33) 

3840m2c6kε2
 

λ λ μ μ λ μ   λ μ λ μ   μ λ 

The absorption rate thus depends on the polarization of the incident radiation through the scalar product (b · b), which is 
unity for linear polarization. Conversely this factor becomes zero for left or right circular polarization, for which we have √ 
b

L/R = (−i/  2)(iˆ ± i ˆj ). 
It is illuminating to compare the above result with the standard electric dipole–electric dipole result—as given by1

 

(T) = NĪ 2g(2)BTPA, (34) 

where 
 

 

 

TPA 
  πρf   .

(2 e e 2 fi fi  

 

 
2 fi  

 
fi . 

B = 
120ε2k |   ·  | − 1)αλλ(ω,ω)ᾱ μμ(ω,ω) − (|e · e| − 3)αλμ(ω,ω)ᾱ λμ(ω,ω)  . (35) 

 
 

 

 

 
 

 

 
1A minor difference from the result reported by Craig and 

Thirunamachandran is that our results are written explicitly in terms 

of the square of the input irradiance, reflecting our decision on the 

most appropriate form for the density of states factor. 

In Eq. (35), α
fi 

(ω,ω) is a scalar, the trace of the second- 

rank tensor α
fi 

(ω,ω); the latter is the usual (electric-dipole 
response) molecular two-photon absorption tensor. Although 

this tensor is not intrinsically index symmetric in its con- 

struction, it can be treated as such since only its index- 
symmetric part can give a nonzero result when, in the detailed 

theory, it is duly coupled to the two equivalent input  photon 
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scattering are types of two-photon scattering. As with TPA, 

nondiamagnetic leading contributions to the matrix element 

are of second order in the interaction, but diamagnetic 

contributions are first order in the interaction. The matrix 

element for the latter contribution to scattering is readily found 

to be . 
k 

.
√ .  fr  r0 r  i(k−kr)· R 

Mfi = εijpεklp 
16mε0cV 

nkkr 

r 

μi   μk  bj b̄le . 

 
(36) 

 
 

 

 

 
FIG. 2. (a) Feynman diagram  for the diamagnetic  contribution 

to Rayleigh scattering. (b) Conventional diagram for Rayleigh 

scattering. 

Using the Fermi rate rule together  with    [22]  ρemission = 

kr 2dKrV /(2π)3kc (as it is now more appropriate to associate 

the degree of uncertainty with the precise axis of emission for 

the final state of the radiation field) allows us to express the 

scattering rate differential scattering cross section, using the 

infinitesimal scattering rate below: 
. 

2π 
.. 

k 
.2 

nkkr 3dKrV 

 
polarization vectors. The standard selection rules for TPA 

are a consequence of this form. Comparing in more detail 

dT = 
k
 

. 

. 

 
 

16mε0cV 

 fr  

 
 

(2π)3kc 
.2 

r0 r
.
 

.εijpεklp 

. 
μi   μk  bj b̄l. . (37) 

Eq. (33), it is evident that the selection rules with which the 
diamagnetization contribution is associated are determined by 

properties  of  the  dyadic  μ
fr

μr0. Since  it,  too,  acquires an 

× 
. . 
. 

r 
. 

This  rate  may  be  converted  into  an  infinitesimal cross 
λ μ 

effectively index-symmetric form due to its tensor contraction 

with magnetic polarization vectors, it yields precisely the same 

section by dividing by the photon flux number (nc/V ): 
2 

TPA selection rules. dσ = kkr 3dKr 
.
 μfr   r0 

. b̄r

. 
. 

256m2ε2(2π)2c4 

.

 i  μk bj   l. 
 

 
B. Application to Rayleigh scattering 

0 
. 

r 
. 

(38) 

The two-photon scattering process involving one creation 

and one annihilation of a photon is studied here and illustrated 

by the Feynman diagrams of Fig. 2. Both Raman and Rayleigh 

The differential cross section dσ/dKr follows immediately 
which is the Kramers-Heisenberg dispersion formula. We can 

once again perform a rotational average on the result which 

yields 
 

 

kkr3
dKr . 2 2    .

(14 b   br b   b
r 

1)μ   μr0μ̄ f r μ̄ r0     ( b   br
 − | ·   | − − | · ¯ | 

− 4|b · br|  + 1)μ   μr0μ̄ μ̄ r0
 

dσ  = 
7680m2ε2(2π)2c4 

2 2 fr 0 fr  r0 

λ λ μ μ λ μ   λ μ 

− (|b · b̄r| + |b · br| − 4)μλ  μ
r  μ̄ μ μ̄ λ 

.
. (39) 

Now using I (kr) = dT kckr and writing the result for an assembly of identical atoms non–forward scattering, we have 

NIkr4 . 2 2 fr  2 2 fr fr  I (kr) = 
30720

 
.
(14|b · b̄r|  − |b · br|  − 1)μλ  μλ μ̄ μ  μ̄ μ  − (|b · b̄ | − 4|b · b |  + 1)μλ  μμ μ̄ λ  μ̄ μ 

m2ε2π2c4 

2 2 fr 0 fr  r0 

r0   fr   r0 r r r0 r0 

− (|b · b̄r| + |b · br| − 4)μλ  μ
r  μ̄ μ μ̄ λ 

.
. (40) 

Finally, if we make the common assumption that the transition dipoles are real quantities, and express all of the Cartesian 

index contractions as scalar products, we can write, more simply, 

NIkr 4
 I (kr) = 

30720
 

.
[(13 b   br  2

 − 2|b · br| + 3)(μ 2 · μ  ) − (|b · b̄    | − 4|b · b | + 1)|μ 2 | |μ 2 | ]. (41) 

m2ε2π2c4 

fr r0 r r fr r0 

There is one especially striking difference between this 

result and the usual equation that emerges from electric- 

dipole-only coupling, which is cast in terms of the molecular 

polarizability [16], the lack of a dispersion character, beyond 

the fourth power dependence on frequency (inverse fourth 

power of wavelength) that is a common hallmark of scattering 

intensities. The dispersion character that results from two 

dipole interactions is, in fact, a common feature associated 

r 

r 

2 

r 



 

 

 

with all conventional multipolar contributions. This means 

that in a study of Rayleigh scattering over any wavelength 

region where the kind of line shape arises that is associated 

with proximity to an electronic absorption band, or its wings, 

the diamagnetization contribution that we have identified is 

unique, and will be in principle analytically separable. 

 

 
IV. DISCUSSION 

It has usually been argued that one of the most significant 

in two-photon absorption—if twin-beam excitation with two 

different optical frequencies were to be used (to allow a degree 

of freedom in the frequency input). 

Secondly, there is one other aspect worthy of attention. In 

arriving at Eqs. (32) and (41), it may be observed that there is 

an underlying assumption—namely, that the usual free-space 

relationship between electric and magnetic field strengths 

applies. This is how the anticipated dependence on irradiance 

emerges. Indeed, by applying the relevant quantum operators it 

is readily shown that in their quadratic forms, each contributes 
exactly half of the (n + 1 )kω energy for a state with  photon 

effects of diamagnetization coupling is a relatively small con- 
2 

occupancy n, in a mode of frequency ω. However, as a recent 
tribution to the dispersion interaction between molecules,  in 
which it features alongside magnetic-dipole–magnetic-dipole, 

electric-quadrupole-electric-quadrupole, and the cross-term 

couplings. Elsewhere, inclusion of the diamagnetic coupling 

terms is justified on the basis that they are the same magnitude 

as other higher-order terms that are regularly studied [23–25] 

and in some cases are seen to be larger [26]. As indicated at the 

outset, this is commonly the primary basis for the inclusion 

of diamagnetic interactions; it leads to results that account 

properly for all processes within a given physical phenomenon. 

However, there are other features, of broader application, to 

which we can now draw further attention. 

First, we have observed, with regard to its role in Rayleigh 

scattering, that the diamagnetization term delivers a contri- 

bution without the optical dispersion character with which 

that process is usually associated—as emerged in Eq. (41). 

Another interesting feature is the independence of the Rayleigh 

scattering intensity arising from diamagnetic coupling on 

wavelength; a similar behavior was obtained in the dispersion 

potential between two diamagnetic atoms [27]. In principle, a 

careful study of the wavelength dependence, over a region of 

significant dispersion, ought therefore to enable specific identi- 

fication and quantification of the diamagnetization effect. This 

might be achieved, for example, by best-fitting the dispersion 

curve to a suitable line-shape function, running the residuals 

into  a  log-log  plot  against  wavelength,  and  recognizing a 

-4 gradient. A similar effect could also, in principle, arise 

spate of publications [28–31] has shown, curious anomalies 

can arise with circularly polarized light, in the vicinity of      

a mirror upon which it has normal incidence. As a result      

of the superposition of forward and backward propagating 

light, the relative strengths of the electric and magnetic fields 

are then found to vary over distance, within the space of a 

wavelength. It thus transpires that for any observations of 

phenomena that can engage diamagnetization coupling with 

an input or reflected beam (such as the two-photon absorption 

studied above), the quadratic dependence on the magnetic 

field should manifest an exceptional position dependence, 

according to displacement from the mirror surface. A detailed 

analysis shows that diamagnetization contribution acquires a 

position-modified form, and the corresponding rate, as given 

by Eq. (32), becomes multiplied by a factor of cos4kd, where 

d is the distance from the mirror. In particular, it also emerges 

that the usually dominant electric-dipole form of interaction 

(involving the α tensor) is most strongly suppressed at the same 

location (due to quantum uncertainty the result is not exactly 

zero). In consequence, the diamagnetization response should 

dominate two-photon absorption at this position, alongside a 

weak magnetic-dipole–magnetic-dipole effect. 
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