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Multilayer film flow down an inclined plane in the presence of an insoluble surfactant is investigated
with particular emphasis on determining flow stability and investigating the possibility of travelling
wave solutions. The investigation is conducted for two or three layers under conditions of Stokes flow
and, separately, on the basis of a long-wave assumption. A normal mode linear stability analysis
for Stokes flow shows that adding surfactant to one of the film surfaces can destabilise an otherwise
stable flow configuration. For the long-wave system, periodic travelling-wave branches are detected
and traced, revealing solutions with pulse-like solitary waves on each film surface travelling in phase
with each other, travelling waves with capillary ridge structures, and solutions with two of the film
surfaces almost in contact. Time-periodic travelling wave solutions are also found. The stability of
the travelling waves is determined by solving initial value problems and by computing eigenvalue
spectra. Boundary element simulations for Stokes flow confirm the existence of travelling waves

outside of the longwave regime.

I. INTRODUCTION

In this paper we examine the flow of superposed lay-
ers of viscous fluid down an inclined plane when the
interfaces between the layers, and the free surface, are
covered with an insoluble surfactant. Multilayer film
flows of this type are of considerable interest theoret-
ically and occur in a range of industrial applications,
notably film coating technologies. In optical coating,
for example, a target surface such as a spectacle lens is
coated with one or more liquid layers whose thicknesses
are precision-engineered to maximise anti-reflection ca-
pability [e.g. 1]. Hydrophilic film coating of medical de-
vices such as catheters is used to enhance lubricity and
provide bio-active functionality [e.g. 2]. In many applica-
tions, uniform layer thickness is of the utmost importance
and waves and other disturbances must be eliminated.
One approach to minimise such disruptions is to intro-
duce an insoluble surfactant, working on the intuitive
basis that surfactant lowers the local interfacial tension
between fluids and hence acts to reduce any capillary in-
stability. However, surfactant may promote instability or
even destabilise an otherwise stable system.

The dynamics of a clean (i.e. a surfactant-free) layer
flowing down an inclined plane was discussed by Ben-
jamin [3] and Yih [4]. In the simplest configuration the
free surface of the film is flat and the velocity in the
fluid adopts the classical unidirectional, semi-parabolic
Nusselt profile. Under perturbation, in the absence of
inertia there is a single normal mode, which is found to
be negative corresponding to a stable flow. Long-wave
instability occurs when the Reynolds number exceeds a
threshold value. This was confirmed experimentally by
Liu et al. [5]. Following Whitaker [6], who worked with
a set of approximate boundary conditions, Whitaker [7]
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and Lin [8] extended Yih’s long-wave analysis to allow for
the effect of a surfactant. With surfactant present, the
critical Reynolds number is larger and so the surfactant
has a stabilising effect. This result was obtained for a ver-
tically falling film by Anshus and Acrivos [9], who also
showed that the wavelength of the most dangerous mode
is significantly increased by surfactant. Ji and Setterwall
[10] discussed the effect of soluble surfactant and demon-
strated the existence of an unstable Marangoni mode for
a vertical film. Pozrikidis [11] relaxed the long-wave as-
sumption adopted by previous workers and showed that
for a single film in the inertialess, zero Reynolds number
limit, there are two normal modes, the first of which cor-
responds to that found by Yih [4] and the second of which
is a Marangoni mode contributed by the surfactant. Both
of these modes are stable at zero Reynolds number. Blyth
and Pozrikidis [12] solved the Orr-Sommerfeld problem
for a contaminated film numerically and showed that ei-
ther the Yih mode or the Marangoni mode can be un-
stable in the presence of inertia, and one or the other
dominates depending on the size of the Reynolds num-
ber.

Remarkably, instability can be found for two-layer flow
even at zero Reynolds number. In the basic state, the in-
terface between the fluids and the free surface are flat and
the velocity field is unidirectional. Working in the long-
wave limit in which interfacial tension and surface tension
are both negligible, Kao [13] showed that for clean two-
layer flow the basic state is always unstable when there is
no inertia and when the upper layer is more viscous than
the lower layer. This result was extended to the case of
arbitrary wavenumber in the Stokes flow limit, and in the
absence of interfacial and surface tension, by Loewenherz
and Lawrence [14]. Further analysis by Chen [15] allowed
for surface tension and inertia and concluded that the
clean two-layer flow is always unstable at any Reynolds
number if the less viscous fluid is next to the wall. Jiang
and Lin [16] showed that the unstable two-layered flow on



a vertically inclined plate can be stabilised by oscillating
the plate in its own plane. Fully nonlinear computations
for a clean two-layer system moving under conditions of
Stokes flow were performed by Pozrikidis [17] using the
boundary integral method. Jiang et al. [18] and Gao
and Lu [19] have discussed the physical origin of the in-
ertialess two-layer instability. A set of model equations
for clean, two-layer flow, which is derived on the basis of
the lubrication approximation, and which incorporates
the effect of inertia, has been used by Boutounet et al.
[20] to demonstrate the occurrence of roll waves for an
unstable configuration.

Gao and Lu [21] studied the linear stability of two-
layer flow in the presence of surfactant. They conducted
a normal mode linear stability analysis in the limit of
zero Reynolds number for arbitrary wavelength distur-
bances. With surfactant present there are four possi-
ble normal modes. Assuming layers of equal thickness
they found that at most one of these modes is unsta-
ble. They showed that for a stable, clean configuration
with the more viscous fluid next to the wall, the flow
remains stable when surfactant is added to the free sur-
face but is destabilised when surfactant is added to the
interface. For an unstable clean configuration with the
less viscous fluid adjacent to the wall, and for a mod-
erate size viscosity ratio, introducing surfactant to the
free surface reduces the cut-off wavenumber for instabil-
ity and decreases the maximum growth rate. However,
introducing surfactant to the interface raises or lowers
the maximum growth rate depending on the size of the
interfacial Marangoni number. Recently Samanta [22]
has extended the analysis to include the effect of inertia.

Clean three-layer flow has been investigated by a num-
ber of workers. Following work by Akhtaruzzaman [23]
on three-layer flow, Wang and Seaborg [24] identified
long-wave instability due to viscosity stratification but
only when inertia is included. Later, also working on
the basis of long wavelength perturbations, Weinstein
and Kurz [25] documented the various effects of viscosity
stratification, density stratification, and different layer
thicknesses, and concluded that three-layer flow can be
unstable even at zero Reynolds number, and specifically
when the middle layer is thin and less viscous than ei-
ther of the adjacent layers. Kliakhandler and Sivashinsky
[26] also found instability in a clean three-layer system
in the long-wave limit and likened it to the kinetic alpha
effect in magnetohydrodynamics. Weinstein and Chen
[27] examined disturbances under conditions of Stokes
flow, including the effect of surface tension but neglect-
ing any interfacial tensions. They noted in particular
that the instability identified by Weinstein and Kurz [25]
is still present when the longwave approximation is re-
laxed. They also identified a new instability which is
not present in the longwave regime, which occurs when
the middle layer is thin and highly viscous. Further-
more, they showed that the largest growth rates found
for the three-layer system are orders of magnitude larger
than those found for the two-layer system by Loewenherz

and Lawrence [14]. The physical mechanisms behind the
three-layer instability was investigated by Jiang et al.
[28]. Weakly nonlinear models for three-layer flow have
been proposed by Kliakhandler and Sivashinsky ([29],
[30]). However, the derivation of these weakly nonlinear
models has been criticised ([31]).

In the present work, we re-examine the case of two-
layer flow with surfactant and study, for the first time to
our knowledge, three-layer flow in the presence of surfac-
tant. The paper is organised as follows. In sections II
and IIT we describe the problem formulation and discuss
the linear stability problem for three-layers. In section
IV we derive a model system of equations describing two
or three layer flow working on the basis of the lubrica-
tion approximation. Nonlinear solutions of these equa-
tions are described including travelling-wave solutions,
and the stability of these solutions is discussed. In section
V we present some nonlinear calculations performed un-
der conditions of Stokes flow using the boundary-element
method. Finally, in section VII we summarise our find-
ings and discuss future directions.

II. PROBLEM FORMULATION

We consider the gravity-driven flow of superposed lay-
ers of viscous fluid down a plane inclined at an angle 6
to the horizontal, as is sketched in figure 1. The sketch
shows three-layered flow but two-layer flow is also consid-
ered. The z and y axes are respectively parallel to and
normal to the plane. The films are labelled by the in-
dex j = 1,2,3 with the lowermost film corresponding to
7 = 1 being adjacent to the wall. The fluid in film 5 has
density p; and viscosity p;. The interfaces between the
films and the free surface are covered with insoluble sur-
factant which acts to modify the interfacial tensions and
the surface tension according to the local concentration
through an assumed equation of state to be described
below. Henceforth, interface 1 refers to the interface be-
tween film 1 and 2, and interface 2 to that between film
2 and 3.

The flow in the films is assumed to satisfy the linear
equation of Stokes flow, so that

0= —Vp; + p;g + 11;V>uy, Vou; =0, (1)

for j = 1,2,3, where g = g(sinf, — cos#) and g is the
gravitational acceleration, and u; = (u;,v,) is the fluid
velocity in the jth film. At the interfaces and at the free
surface, the fluid stress experiences a jump discontinuity
due to the interfacial/surface tension, which is given by

) R %tj, @)
where o9 is the Newtonian stress tensor in film j =
1,2,3, with o® = —piI, where p} is atmospheric pres-
sure. The interfacial tensions at interface 1 and 2 are =1,
~o respectively, and the surface tension is 3. The unit
normal vectors n; point downwards into fluid j — 1, and



FIG. 1. Illustration of a three layer flow down an inclined
plane. Interface j lies between layers j and j + 1 for j =
1,2. The sign of the curvature is shown on interface 2 for
illustration. Both two and three-layer flow is considered in
this paper.

the unit tangent vectors point in the direction of increas-
ing arc length [. The curvatures at the interfaces and
at and free surface, k; = —n; - dt;/dl, are defined to be
positive when the respective surface is concave upwards,
as is illustrated in figure 1. The kinematic condition at
each surface requires that

D

Dt (y —y;) =0, (3)
where D/Dt is the material derivative, and y; are the
locations of interface 1, interface 2, and the free surface
respectively.

Assuming that the surfactant concentrations I'; at the
two interfaces (j = 1,2) and at the free surface (j = 3)
are sufficiently dilute, it is reasonable to adopt the linear
equation of state (e.g. [32], [33])

T
Vi = Vie (1 - ﬂjr—jjo> ; (4)

for j = 1,2,3, where 7. is the prevailing tension in the
absence of surfactant for a clean interface/free surface,
and I'jg are reference levels corresponding to the tensions
vjo = Vje(1 — B;). The dimensionless parameters 3; are
related to the interfacial /free surface Marangoni numbers
by
_ B
1-p5;
In the remainder of the paper, the effects of surfactant
will be quantified with reference to the Marangoni num-
bers Ma,;.

The surfactant is convected and diffuses over the inter-
faces and over the free surface according to the transport
equation (e.g. [34])

dt ol

Maj (5)

T . 0°T;
7wja—l] +njquj = DjW;, (6)
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where u; = u; - t; and uj = u; - n; are, respectively,

the tangential and normal components of the interfacial
and free surface velocities u;, and the D; are surfactant
diffusivities. The derivative d/d¢ on the left-hand side of
(6) is the rate of change following the motion of interfa-
cial marker points moving with the normal component of
the fluid velocity at the interface and with a tangential
velocity w; which may be chosen arbitrarily (for exam-
ple, if we take w; = u%, the marker points move with the
local fluid velocity).

It will be convenient to nondimensionalise variables us-
ing the unperturbed thickness of the bottom film, hi, as
the lengthscale, and U as the velocity scale, u1U/h; as
the pressure scale and hy/ U as the time scale, where

U = p1gh?sin®/py is twice the classical Nusselt sur-
face speed for a single, flat film flowing down an inclined
plane. The surface and interfacial tensions and the re-
spective surfactant concentrations are made dimension-
less using the values ;o and I'jo. Accordingly we in-
troduce the dimensionless capillary numbers and Péclet
numbers,

Caj = p;U/v0,  Pej = —— (7)
for 7 =1,2,3.

In the simplest configuration, the interfaces and the
free surface are flat so that all of the films are of uniform,
but generally different, thickness, the flow in each film
is unidirectional along the z-axis, and the velocity field
is continuous at each interface. The nondimensionalised
unidirectional velocity field in layer j = 1,2, 3 is given by
u; = u;(y)i, where

_ 1

_ Ry
U = -y’ +ay, Uz =—5—y +agy+ b,
2 2m2

R
Uz =—5 > y® + asy + bs, (8)
ms

where

a1 =1+ roRo+r3Rs, moas = (14 r2)Ra + r3Rs,

mzaz = (1 + 12 +73)R3, (9)
and
by =13 (1 — 1/m2) R3+
[7’27 (1+2T2)/(2m2)] R2+1/2, (10)
and
bg == 7’2[1+7’2/(2m2)]R2 + 1/2
+ [7’3(1+7’2/m2) (11)
— (1 + 7“2)(1 —+ 1r9 + 2r3)/(2m3)]R3.
Here
(ma,m3) = i(maus)a (ra,r3) = hil(hzahs),
(Rz, R3) = p—ll(Pz,/B) (12)



are the viscosity ratios, the layer thickness ratios, and
the density ratios respectively. The dimensionless base
flow pressure field is given by

]_?1 = 7yCOt9+ (1 + (TQ — 1)R2 + (Tg 77’2)R3)C0t9+pa,

(13)
Dy = —yRaocot @ + (roRe + (13 — r2) R3) cot 0 + pg,

(14)
D3 = —yR3cot 0 4+ r3Rs cot 0 + pg, (15)

where p, is the dimensionless atmospheric pressure,
whose value is immaterial for the dynamics.

III. LINEAR STABILITY: STOKES FLOW

To assess the linear stability of the simple, unidirec-
tional flow configuration, we carry out a normal mode
analysis. We perturb the interface locations, y; (z,t) and
ya2(z,t), and the free surface location ys(z,t), so that

y1 =1+ €A1y =y + AN (16)

for [ = 2,3, where y;0 = 1+ 2222 rj. Here and below the
addition of the complex conjugate to the perturbation
terms is understood. The generally complex amplitudes
Ay, As and A3 and the complex wavespeed ¢ are to be
determined for a given value of the perturbation wave
number k. We perturb the flow quantities by writing

(¥5,p) = (¥, D) + (8 (y), 4 (y)) e* "=,

where 1, is the streamfunction defined so that u; =
0vY; /0y and v; = —0y;/0x. The form of the base flow
streamfunction Ej can be readily found using the basic
velocity field given in (8). Similarly, we expand the sur-
face tensions and surfactant concentrations by writing

(17)

(75, T) = (1,1) + e(g;, G;) e ==et), (18)
Substituting these forms in the Stokes equations and
boundary conditions we ultimately derive a sixth order
polynomial for the complex growth rate c¢. The details
of this calculation are given in the Appendix. The six
modes corresponding to the six values of ¢ comprise three
surface modes representing deformations to either of the
two interfaces or the free surface, and three Marangoni
modes associated with perturbations to the surfactant
distribution on each of the surfaces.

For a fixed wavenumber k, the normal modes depend
on the 13 parameters comprising the film thickness ratios
ro and rs, the viscosity ratios ms and mg, the density
ratios Ry and Rz, the Marangoni numbers Mai, Mas
and Mag, the capillary numbers Ca;, Cas and Cag and
the inclination angle . To reduce the dimension of the
parameter space, we henceforth consider fluids of equal
density so that Ry = R3 = 1. We focus attention in par-
ticular on the effect of the surfactant at the fluid inter-
faces and on the free surface, as this is expected to affect

the flow stability. Previous studies have also shown that
the viscosity contrast between the layers can play an im-
portant role in deciding stability. We have validated our
calculations by successfully comparing our results with
those of Gao and Lu [21] in the case of two layers with
surfactant, and with those of Weinstein and Chen [27]
for three clean layers.

A. Two-layer flow

The case of two-layer flow was studied in detail by Gao
and Lu [21] for layers of equal thickness. Assuming equal
densities, a clean two-layer flow is stable when the more
viscous layer is next to the wall, and is unstable when the
less viscous film is next to the wall so that mg > 1. Gao
and Lu [21] demonstrated that a stable, clean two-layer
film with my < 1 is destabilised by adding surfactant
to the interface between the films. However, the flow re-
mains stable when surfactant is added to the free surface,
and they found no evidence that surfactant can stabilise a
unstable clean configuration. Our findings confirm these
observations but, in addition, we find that adding surfac-
tant to the free surface can destabilise a clean two-layer
flow with my < 1 if the upper layer is thinner than the
lower layer so that ro < 1. Figure 2 shows neutral curves
dividing regions of stability and instability for a sample
case with a thinner upper layer. It is clear from figure
2(a) that even a small amount of surfactant on the in-
terface destabilises the flow for any viscosity ratio. The
topology of the neutral curves is quite different, however,
when surfactant is added to the free surface. Figure 2(b)
reveals a closed island of unstable modes in the region
ms < 1, confirming the above observation that a clean,
stably stratified flow can be destabilised by adding sur-
factant onto the free surface. In this case the upper layer
is thinner than the lower layer and we note that the island
of unstable modes vanishes if the upper layer is taken to
be the thicker one. These figures also reveal that the
character of the instability for a more viscous lower layer
(mg < 1) is quite different when surfactant is on the inter-
face or on the free surface. In the former case, long-wave
instability occurs, and in the latter case, the instability
occurs over a band of finite, non-zero wavenumbers. As
a further point of interest, we note from figure 2(a) that
when Ma; # 0 and for sufficiently large ms, there are
two disjoint bands of unstable wavenumbers correspond-
ing to two different and simultaneously unstable linear
modes. The growth rates for these modes are shown in
figure 2(c¢) for my = 2.5. This is a facet of differential
layer thicknesses; when ro = 1 Gao and Lu [21] noted
that at most one of the four possible modes (in the pres-
ence of surfactant) can be unstable for a fixed parameter
set.
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FIG. 2. Two-layer flow: (a-b) Neutral curves for the case
0 =02, Ca; =Caz=1,r2 =0.5, Ry =1 with (a) Maz = 0,
various Mai and (b) Mai1 = 0, various Maz. Regions are
marked stable (S) and unstable (U). (¢) Growth rates for
(a) when mg = 2.5, Maz = 0.5. The two growth rates for
clean layers (Ma1 = Mas = 0) are shown with lines marked
with circles. One of the growth rates is identically zero (since
May = 0) and is not shown; the stable mode is almost coin-
cident with one of the two clean modes.

B. Three-layer flow

A clean three-layer system may also be unstable due
to viscosity stratification. Excluding cases where one or

ot

more layers have equal viscosity, there are six possible
distinct configurations. Writing using the layer num-
ber in order of increasing viscosity, these are given by
(i) {1,2,3}, (%) {1,3,2}, (#i) {2,1,3}, (i) {2,3,1}, (v)
{3,1,2}, (vi) {3,2,1}. On the basis that having a less
viscous layer underneath a more viscous layer is likely
to give an unstable system, we expect only configuration
(vi) to be stable and our computations for a clean system
confirm this to be the case. In particular, in configura-
tion (%) there are two unstable normal modes across the
wave number range, and there is one unstable mode for
configurations (1), (4), (iv) and (v).

Assuming zero interfacial tensions, the growth rates for
a three-layer system are substantially higher than those
for a two-layer system ([27]). Figure 3(a) shows our re-
computed results at the parameter values used by [27] in
their figure 3, and illustrates the effect of adding surfac-
tant. Evidently the surfactant introduces a new mode,
which is always stable. Although the surfactant desta-
bilises small wavelength perturbations, its influence over
larger wavelength disturbances is essentially stabilising.
Note that we do not find it to be generally true that the
three-layer growth rates are much larger than two-layer
growth rates when the interfacial capillary numbers are
finite, as will be discussed in the following paragraphs.
For vanishing interfacial tensions, Weinstein and Chen
[27] also identified a new instability with moderate wave-
length for three-layer flow characterised by near-complex-
conjugate modes (see their figure 2, for example). An ex-
ample of this is illustrated in figure 3(b), where the effect
of adding surfactant to the free surface is also calculated.
As for the case in figure 3(a), the surfactant reduces the
growth rate of the unstable modes.

Adding surfactant to either of the interfaces or to the
free surface can destabilise a clean system, depending
on the relative thicknesses of the layers. We found no
evidence that surfactant can stabilise an unstable clean
configuration. In figure 4 we show neutral curves for a
system with the upper two layers of equal thickness and
half the thickness of the lowermost layer. This system is
stable when clean (May, = Mas = Mag = 0) provided
the viscosity ratio ms < 0.5. The three panels show re-
gions of stability and instability when surfactant is added
to either of the two interfaces or to the free surface. Evi-
dently in each case it is possible to destabilise the stable,
clean system. As for the two-layer flow case shown in
figure 2, the structure of the neutral curves is different
when surfactant is on the free surface (figure 4c). In this
case there is a disconnected island of unstable modes in
the region ms < 0.5. The flow is stable for some values
of m3 < 0.5 even with surfactant on the interface. As
for the two-layer case, the unstable island is present as a
result of different layer thicknesses. If the layer thickness
are all taken to be the same, this island vanishes and the
flow is stable for mg < 0.5.

Stability regions for a sample parameter set are shown
in figure 5 for different viscosity ratios and different layer
thicknesses. The parameters are such that for the right
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FIG. 3. Growth rates for three-layer flow with 0 = 7 /2, Ca;, =
Caz = 00, m3 =1, Ro = Rg = 1, and May, = Maz = 0. (a),
Cas = 0.001, 72 = 0.05/0.475, rs = 1, mp = 0.2, Mas =
0.001. (b) Caz =1, r2 = 0.5, r3 = 1, mg = 10. In (a) the
thinner lines show [27]’s results for Mas = 0). In (b) the thin
lines are for Mas = 0 and thick lines for Masz = 1.

choice of mo, mz and 79, r3 we recover the case studied
in figure 4. Referring to figure 5(a), for the clean system
the flow is stable when m3 < mo and ms < 1 and msg < 1
so that the stability region on a set of my — m3 axes is
triangular. With either Ma; or Mas non-zero, the flow
is unstable for all mo, ms; however a portion of the stable
triangular region remains as Mag is increased from zero.
For figure 5(b) the clean system is stable for all r, r3.
With M as non-zero an unstable region appears as shown,
whose thickness increases as Masg is increased (the flow
is everywhere unstable in the ro — r3 plane when either
May # 0 or Mag #0).

In all of our investigations we found at most three un-
stable normal modes over the wave number range for a
given parameter set. Figure 6 shows an example where
three of the possible six normal modes are unstable. Note
that since Ma; = Mas = 0 two of the six growth rates
are identically zero, s = 0. The clean system is an un-
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FIG. 4. Neutral curves for three-layer flow with 6§ = 0.2,
C(Ll = C(Lz = C(L3 = 1, rTo = r3 = 0.57 mo = 0.5, R2 =
Rs = 1 with (a) Ma2 = Mas = 0, various M, and (b)
May = Mas = 0, various M2, and (¢) Max = Mas = 0,
various M3. Regions are marked stable (S) and unstable (U).

stable configuration of type (i) and therefore, as noted
above, has two unstable normal modes. These are shown
as lines marked with circles in figure 6. The effect of
adding surfactant onto the second interface, and increas-
ing Mas from zero to 0.001 (see figure 6a), is to lower the
maximum growth rate of one of the two unstable clean
modes and to increase the maximum growth rate of the
other; also the cut-off wavenumber of one of the clean
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FIG. 5. Stability regions (U for unstable; S for stable) for
three-layer flow for the case 8 = 0.2, Ca; = Caz = Caz =1,
Ry = R3 = 1, Ma1 = Maz = 0 and various Mas: (a) me
versus mg for ro = r3 = 0.5, and (b) r2 versus rs for ma = 0.5,
ms = 0.3. The cross in the lower panel indicates the unstable
case considered in figure 4.

modes is lowered while the other is raised. At the same
time, a new surfactant mode comes into play and opens
up a band of unstable wavenumbers excluding zero. This
is more clearly seen in 6(b) for the larger Marangoni num-
ber Mas = 0.5. In this case the surfactant mode domi-
nates, contributing the largest growth rate. Note that the
cut-off wavenumber for the second unstable clean mode
is now lower than its clean value, which indicates a non-
monotonic dependence on the Marangoni number. Simi-
larly, the growth rate of the second clean mode is lower,
again indicating non-monotonic behaviour.

IV. LONG-WAVE APPROXIMATION

In this section we analyse two-layer and three-layer
flow on the assumption that variations in the stream-
wise direction are much slower than across the films. We

surfactant mode

0 0.2 0.4 0.6 08 1

FIG. 6. Three-layer Stokes flow growth rates s = Im(kc) for
9 = 0.2, Ca1 = Cag = Cag = 1, Ty = T3 = 0.5, mo = 1.5,
mg = 2.0, Rs = R3 = 1, Ma1 = Mas = 0 and (a) Maz =
0.001 and (b) Maz = 0.5. In both panels the rates found for a
clean system with the same parameter values are shown with
broken lines marked with circles.

discuss the linear stability under this assumption, and
compute nonlinear travelling wave solutions and exam-
ine their stability.

We describe the interfaces and the free surface by the
explicit forms y;(x,t) = Fj(z,t). The surfactant trans-
port equation (6) then adopts the equivalent form ([35])

9(s;15) + O(s;Lj13) - 1 0 (101 . (19)
ot Ox Pe; 0z \ 5; Oz

where s; = (1+F2,)"/? and u$ = u;(z, F}), and on noting
that we have made the choice w; = “3 for the arbitrary
tangential velocity.

We describe the derivation of the long-wave system of
equations for three layer flow — the two-layer case is an
obvious reduction of this. We nondimensionalize using
the same scales used in section II. Introducing the small
long-wave parameter § < 1, we define the slow spatial



and time variables £ = dx and 7 = 6t and expand vari-
ables by writing

Fj:fj+"', Uj:Uj+"', Uj:5‘/j+"'7
pj:Rj(x—ycotQ)vL(;*leJr---, (20)

where Ry = 1, and Ry, R3 were defined in (12). Note that
fj, U;j, W; and P; are all O(1) quantities; moreover we
assume that I'; is O(1). We further assume that cot 6 <
d~', which corresponds to neglecting the component of
gravity in the y direction.To retain the effects of surface
and interfacial tension, and tension gradients, in the long-
wave limit, we adopt the scalings for the capillary and
Marangoni numbers,

Caj = (SBCJ‘, Maj = 62Mj (21)
for j = 1,2,3, where the C; and M; are all O(1) con-
stants. We note that with this scaling for the capillary
number, we will ultimately derive a system of equations
which disregard inertia, and this is consistent with the
Stokes approximation made in the previous section. An
alternative scaling, Ca = O(6?), is also possible, and
working from the Navier-Stokes equation as a starting
point, will yield a generalisation of the classical Benney-
type model for single-layer flow ([36]). This latter scaling
was adopted by Boutounet et al. [20] for two-layer flow,
working in the absence of surfactant.

Substituting the expansions (20) into the nondimen-
sionalised form of the Stokes equations (1), at leading
order we obtain

0=—Pje +m;Ujyy, Pjy =0, Uje+Vjy =0. (22)
The equation of state (4) yields the leading order rela-
tions vj¢ = —§?M,;T'je. The normal components of the
stress balances (2) reduce to

P1*P2+§(1*R2):*% (23)

1

Py — P3+¢(Ry — R3) = *m2fé,—i£ (24)
f@+£R3=—wm%§ (25)

at y = f1, fa2, f3 respectively, and the tangential stress
components become

MiTe

maUsy — Uy = - (26)
1
ms Mg
- Usy — Ugy = —02 (27)
M3I'3¢
Uy, = 3 28
3y 03 ( )

at y = f1, f2, f3 respectively. The no-slip and tangential
flow conditions at the wall y = 0 are

Vi =0. (29)

Continuity of velocity at the two fluid interfaces requires
U, = Uy, Vi=W, (30)
Up=Us, Vo=V (31)

at y = f1, fo respectively, and the kinematic condition
at the free surface requires

fir +Ujfie =V, (32)

at y = fs.

Henceforth we assume equal density fluids so that
Ry = Rz = 1. Solving the momentum equations (22)
and satisfying the boundary conditions (23)-(32), we de-
rive the long-wave evolution equations

fir +aje =0, (33)

for j =1,2,3, where the fluxes ¢; are given by

f1 f2
ihi/ Ut dy, Q2:¢I1+/ U dy,
0

1

f3
43 = @2 +/ Us dy, (34)

and the velocities are

1
Uj = —y*Pje + Ajy + By, j=1,2,3, (35)

2mj
with
M T
A = *(1;,—116 — [1Pie + f1Poc + maAs, (36)
MoT P. P. A
Ay— oloe  fo 2§+f2 B¢ M3 3 (37)
CQ mo mo mo
M3Il'se  f3Psg
Az = — — 38
3 03 ms ) ( )
and B; = 0 and
2 P.
32:% <P1gﬁ)+f1 (A1 — As), (39)
ma
2 (P P.
Bsi% <ﬁﬁ) + fo (A2 — A3) + B2, (40)
mo ms
where the pressures are given by
Jfiee foee faee
P =—£f— =2 —mp=—> —mg—> 41
1 ) ma Cy ms3 Cs ) ( )
Py = —Ry{ — ng - WSE (42)
Cy Cs’
Py = —Rs¢ — mg%. (43)
3

The surfactant transport equations (19) reduce to (as-
suming negligible diffusion),

L, + (T;Uj)e = Pe; 'Tjee, (44)

where U; is evaluated at y = f;. The task now is to
solve the coupled nonlinear equations (33) and (44) to



determine the interface and free surface shapes and to
find the surfactant concentrations. Henceforth, and un-
less otherwise stated, we will assume infinite surfactant
Péclet numbers and set the right hand sides of (44) to
Zero.

In the basic state, the interfaces and free surface are
flat and the surfactant concentrations are uniform. To
compute linearised growth rates for small perturbations,
we expand about the base states by writing

fl = 1+€6&16ik(£76T), fj = (1 —+ Tj) —+ Edjeik(gim—),

T; =1+ el etk (45)
where j = 2,3 and ¢ < 1. The constant amplitudes
a;j, I'; are to be found and the addition of the complex
conjugate to the perturbation terms is understood. Sub-
stituting into the governing equations (33)-(44) we derive
a polynomial equation for the complex wavespeed c. For
three-layer flow the polynomial is of sixth order mean-
ing that there are in general six normal mode solutions
for each choice of the perturbation wave number k. The
system of equations for two layer flow is obtained from
(33)-(44) simply by setting A3 = Bs = P3 = 0. In this
case, we obtain a fourth order polynomial from the linear
stability analysis producing four normal modes for each
k. For both two-layer and three-layer flow the coefficients
of the polynomial are lengthy algebraic expressions which
we suppress in the interest of brevity. As a check on the
calculation, we have confirmed that the presently com-
puted growth rates coincide with those obtained using
the theory for Stokes flow in section II on taking the
limit ¥ — 0 and on adopting the scalings (21).

The main focus of this section is on computing travel-
ling wave solutions to the long-wave system. These are
expected to emerge as Hopf bifurcations from the uni-
form, equal-layer-thickness state at the neutral stability
point where the linear growth rate vanishes. To seek
such solutions, we introduce the travelling-wave coordi-
nate z = § — ¢, 7 and write f; = f;j(z), I'; = g;(2) and
U; = Uj (y,2), ¢; = G;(2), where ¢, is the wave speed to
be found. Substituting into (33) and (44), and integrat-
ing once, we obtain

—cofj+ @i =d;,  (U; —cu)gy = ¢, (46)

where the d; and e; are constants of integration, and

U; is evaluated at y = fj Assuming periodic waves of
period L, we express the surface profiles in the form of
the Fourier series

fi= >0 Frd, (47)
where k = 2x/L, with analogous expressions for the
other variables. Substituting into the remaining equa-
tions in (33)-(44) we obtain expressions for the flux co-
efficients (j;n). Truncating the Fourier series (47) at
the finite level n = N, for M fluid layers (46) yields
a system of 2M (2N + 1) algebraic equations for the
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2M (2N +1) + (2M + 1) unknowns f’;"), ~§"), dj, e; (for
j=1,...M), and ¢,. A further 2M equations are pro-
vided by fixing the mean layer thicknesses and the mean
surfactant concentrations, specifically demanding that

J
A2=1 fP=143nm %=1, (48
1=2

for j = 2,... M. Enforcing these conditions corresponds
to fixing the fluid volume within each flow period.

A suitable condition to break the translational invari-
ance of the travelling-wave solutions gives the final equa-
tion required to close the system. We impose that

/()Lz(fl(z)l) dz =0, (49)

which requires 22[:7]\,1”#0 fl(n)/n =0.

The computations are performed efficiently in Matlab
making use of the fast Fourier transform facility to com-
pute the Fourier coefficients and Newton’s method to
solve the nonlinear system of algebraic equations. To lock
onto a particular solution branch, we take as the initial
guess for the Newton iterations the normal mode proper-
ties determined from the linear stability calculation (see
45) close to the neutral point where the imaginary part
of the complex wavespeed c is almost zero. Once a so-
lution on the travelling-wave branch has been found, the
remainder of the branch can be traced out using con-
tinuation methods. In the following sections, parameter
sets are chosen to highlight the different types of solution
behaviour which are encountered in two-layer and three-
layer systems. In particular we select parameter values
to obtain one or more neutral stability points from which
travelling wave branches emerge via a Hopf bifurcation.
For a three-layer flow for example, as discussed above,
we have identified at most three unstable modes for a
given parameter set, and so we expect to find at most
three travelling wave branches. The number of Fourier
modes required to accurately resolve the travelling wave
profiles varies, and we typically take from N = 20, but
a considerably larger value may be required for profiles
with more intricate features. Some comment on physical
parameter values for typical fluids that might be used in
experiment will be made in section VI.

A. Two-layer flow

The linear stability graphs we compute for two layers
are qualitatively similar to those found under conditions
of Stokes flow in section II. This is illustrated by the
example two-layer case shown in figure 7. We observe
that the general character of the neutral curves shown in
this figure are broadly in line with those computed for
Stokes flow in section III; for example, both feature an
island of unstable modes when surfactant is present on
the free surface (see figure 2(b) for the Stokes case).



FIG. 7. Long-wave neutral curves for two-layer flow with
C1=2.5,C2=1,r2=0.5, Ry = 1: (a) Maz = 0 and various
May; (b) May = 0 and various Maz. Regions are marked
stable (S) and unstable (U).

The upper panel of figure 8(a) shows the stability
graph for an unstable clean system with mo = 5. We note
that the eigenmodes associated with the instability in
this figure have properties consistent with those required
to produce stability or instability from a physical stand-
point, as discussed by Gao and Lu [19]. For example, at
k = 0.1, we find the two growth rates are s = 2.8 x 107
and s = —1.3 x 1073, The corresponding perturbations
in (45) have the properties arg(ds/d1) = —0.998 and
arg(da/é1) = 6 x 1074 for the unstable and stable mode
respectively. These are very close to the phase shifts of
7 and 0 respectively identified for unstable/stable modes
by Gao and Lu (see their paper for further discussion of
the physical mechanisms at work).

Henceforth, we focus on travelling-wave solutions to
the long-wave system. The lower panel of figure 8(a)
shows the travelling wave branch which emanates from
the neutral stability point at £k = 0.765. The branch
is characterised by the interfacial wave height A =
max(f;) — min(fi). As the wave number k is lowered,
the travelling-wave solutions approach a pulse-like state
with the disturbance on each surface localised in space
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FIG. 8. Clean two-layer long-wave flow with Ca; = 1,
Caz=1,ro=1,m2 =5, Ry =1, Mas =0 and Maz = 0: (a)
Growth rates s = Im(kc) for two-layer long-wave system (up-
per panel) and travelling-wave interface height A and wave
speed ¢, (lower panel); (b) Film profiles at &k = 0.5 (upper
panel) and k£ = 0.1 (lower panel), indicated by dots in (a).

and the film surfaces flat in the far-field. Sample profiles
at k= 0.5 and k = 0.1 are shown in figure 8(b).

The upper panel of figure 9 shows the growth rate
s = Im(kc) plotted against wave number for an unsta-
ble two-layer flow with equal viscosity fluids, equal layer
thicknesses and with surfactant on both the interface and
the free surface. The instability is attributed to the pres-
ence of surfactant since the same flow is stable when
Ma; = May = 0. A travelling-wave branch emerges
from the neutral point at £ = 1.03 where the growth rate
of the unstable mode vanishes (middle panel of figure 9).
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FIG. 9. Two-layer long-wave flow with Ca; = 1.1, Cax =
1, 72 =1, me = 1, Ro = 1, Ma; = Maz = 1. Upper
panel: Growth rates s = Im(kc) for the two-layer long-wave
system. The lines with circles show the two growth rates for
no surfactant, Ma, = Maz = 0. Middle panel: travelling-
wave height A and wave speed c,,. Lower panel: Free surface
and interface profiles at k = 0.35, indicated by the dot in the
middle panel.

12F 4

FIG. 10. Surfactant and interfacial velocity profiles for figure
9 at k = 0.35. Upper panel g1 and shifted interfacial velocity
Ui — cw. The inset shows a close-up near the shock at zs ~
—7.8. Lower panel: g2 and shifted interfacial velocity Uz — ¢y, .
The arrows indicate regions of very rapid change in gradient at
z = zs. The profiles were computed using N = 1400 Fourier
modes.
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As in the previous clean example, the film profiles ap-
proach pulse states as the travelling-wave branch is fol-
lowed from the bifurcation point at & = 1.03. These are
shown in the lowermost panel of figure 9 when k = 0.35.
The pulses are phase-locked and travel together at the
same speed, ¢,, = 1.32. As the solution branch is fol-
lowed from the bifurcation point, the interfacial surfac-
tant concentration eventually touches zero, and as k is
decreased further there widens out an almost clean re-
gion in which §; is very small. This region is clearly seen
in the surfactant profiles at £ = 0.35 shown in figure 9(b),
where the interfacial surfactant level is almost zero over
part of the wave period. Evidently a shock is emerging at
z = zg =~ —7.8 where there is a rapid change in gradient.
This is expected to sharpen into a true shock as k — 0.
The regions of rapid change require a large number of
Fourier modes to resolve accurately (we took N = 3500
to compute the profiles shown in figure 10). However, it
is clear from the computations that the constant e; in
(46) approaches zero as k — 0. In the limit of small k,
then, we expect the balance on the interface,

(U1 — cw)i1 = 0. (50)

Accordingly, we may construct a solution consisting of
clean regions, where g3 = 0, and regions in which the
interfacial velocity matches the wave speed Uy = ¢,,. In
the case shown in figure 10, these regions are separated
by a shock with a discontinuity in the velocity and in the
slope of the surfactant concentration. The near-clean
region occupies approximately the zone —12 < z < —7.8.
There is a smooth transition into the region from the left
but a sharp transition at the near-shock at z = z; =~
—7.8. The surfactant profile on the free surface is shown
in the lower panel of the figure together with the surface
velocity. In this case, the computations show that the
constant ey in (46) approaches a non-zero value as k — 0.
The gradient in both the surfactant and velocity profiles
jumps sharply at z = z,, which is consistent with the
relation [(Us — cy)g2]e = 0 obtained by taking the first
derivative of (46).

To investigate the effect of surfactant diffusivity, we
repeated the calculations for the same parameter val-
ues as figure 9 but with the non-zero Péclet numbers
Pe; = Pes = 0.001. Very similar results were found
with shock-type behaviour again appearing in the inter-
facial surfactant profile. It might alternatively be sup-
posed that the shock-development and the appearance of
a near- clean region is the result of using a linear rela-
tionship for the equation of state (4). We repeated the
calculation for figure 9 instead using the nonlinear Lang-
muir equation of state (see, for example, Pozrikidis [33],
p. 234), and found that when the travelling-wave branch
is followed from the bifurcation point, a similar state is
reached with an extended region which is almost devoid
of surfactant.

The results in section III indicate that at most two of
the possible four normal modes can be unstable across
the range of wave numbers. The upper panel of Figure
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FIG. 11. Two-layer long-wave flow with Ca; = 1, Cas = 1,
ro = 0.1, me =2, Ro =1, Ma; = 0.1 and Ma2 = 10.391:
(a) Growth rates s = Im(kc) for two-layer long-wave system
(upper panel) and interface wave height A and wave speed ¢y,
(lower panel); (b) Film (left) and surfactant (right) travelling-
wave profiles at £ = 0.02, k = 0.38 and k = 1.75, on branches
1, 2, 3 in (a) respectively, indicated by dots on these branches.
Interface profiles are shown with broken lines and surface pro-
files with solid lines.

11(a) shows the linear growth rates plotted against wave
number for the case Ca; =1, Cas =1, r5 = 0.1, mo = 2,
Ry =1, Ma; = 0.1 and Mas = 10.391. In this case the
upper layer is more viscous than the lower layer and the
flow is linearly unstable even in the absence of surfactant.
For this case, two of the four modes are unstable over the
wave number range. The presence of a window of stable
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FIG. 12. Same conditions as for figure 11. (a) Wave height
A and wave speed ¢, on the bifurcation branch (solid line)
emerging subharmonically from branch 1 (broken line) in fig-
ure 11(a). (b) Film (left) and surfactant (right) profiles at
k = 0.11645 and k = 0.02 indicated by dots in (a). Interface
profiles are shown with broken lines and surface profiles with
solid lines.

wave numbers between the two unstable ranges means
that there are three neutral stability points (at k = 0.238,
k =0.452 and k = 2.377) and we therefore expect to find
three travelling-wave solution branches emanating from
these. The wave branches are delineated in the lower
panel of figure 11(a). The wave speed ¢,, is indicated in
the figure and remains almost constant along each of the
branches. Sample film and surfactant profiles on each of
these branches are shown in figure 11(b). As in the previ-
ous case the interfacial surfactant profile develops a steep
gradient while the free surface surfactant concentration
suffers only a minor deviation from its mean level. The
branches stemming from k& = 0.238 and k& = 0.452 were
not traced further than shown because of computational



difficulties. As branch 3 is followed from the bifurcation
point at k = 2.377 to smaller wavenumber, eventually the
interfacial surfactant profile touches down to zero. Simul-
taneously the interface and the free surface almost touch,
producing a travelling-wave state with periodic bulges of
upper layer fluid. On branch 1, for small k£ both the film
profiles and the surfactant concentration profiles exhibit
regions of relatively rapid variation. The film profiles in
this region have a small ridge immediately before the de-
scent in the surface level and as such are reminiscent of
the capillary-ridge profiles found in film flows in other
contexts (e.g. [37, 38]).

For the same parameter values, we also identified a
fourth branch which appears as a subharmonic bifurca-
tion from branch 1. This branch is shown as a solid line
in figure 12(a); the broken line in the same figure corre-
sponds to branch 1 from figure 11(a), but with two wave
periods included in the range [0,27/k]. Wave profiles
close to the point at which the solid line bifurcates from
the broken line are almost 7/k periodic, as can be seen
for the case k£ = 0.11645 shown in the upper panels of
figure 12(b). Following the bifurcated branch to smaller
wavenumber, the profiles are seen to develop into pulses.
The solution for £ = 0.02 is shown in the lower pan-
els of figure 12(b). The propagation speed of the pulses
is ¢y, = 0.58. It is notable that for these pulse solutions
the corresponding surfactant profiles do not develop clean
patches as was found for the example in figure 9. Further
computations showing travelling waves for other param-
eter sets can be found in Thompson [39].

As has already been noted, the physical mechanisms
underlying the instability of clean two-layer flows have
been discussed recently by Gao and Lu [19], following
earlier work by Jiang et al. [18]. In particular Gao and
Lu provided an explanation for the instability when the
upper layer is more viscous than the lower layer with
reference to the disturbance flows generated at the free
surface and at the interface. A discussion of the physical
mechanisms responsible for Marangoni-driven instability
in sheared film flow has been presented by Wei [40]. A
partial physical explanation for the saturated travelling-
wave profiles described in this section may be provided
as follows. First, we take an example of a clean flow
and focus on the case of a travelling pulse pair shown
in figure 8(b). According to Gao and Lu [19] the pulse-
like disturbances generate disturbance flows u® and u®,
resulting from (s) the shear stress condition at the free
surface and (c) the velocity continuity condition at the
interface. We viewing the flow in a reference frame trav-
elling at the wave speed ¢, and note that ¢,, > 1 (see
figure 8a) so that the pulses are travelling more rapidly
than the surface velocity of the flat state further up-
stream and downstream (we recall that velocities have
been non-dimensionalised using the surface velocity as
the reference scale). Accordingly, if the wave is travel-
ling to the right, the prevailing flow inside the layers in
this frame is from right to left. When m > 1, the distur-
bance flows u® and u® are both directed from left to right
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(see Gao and Lu [19] figure 3), and against the prevailing
flow direction. Therefore these flows decelerate the fluid
beneath the pulses, thereby sustaining the disturbance.

B. Three-layer flow

A sample case for clean three-layer flow is shown in
figure 13. The system has a more viscous layer between
two layers of equal viscosity, and is linearly unstable. The
stability graph is shown in the upper panel of figure 13(a).
A travelling wave branch emerges from the neutral point
at k£ = 0.813. Following the branch, we find that the
travelling wave profiles approach a state with localised,
but slowly-varying, pulses on each of the film surfaces.
Profiles at & = 0.5 and k& = 0.05 are shown in 13(b).
The speed of propagation of the bumps at £ = 0.05 is
cw = 2.36.

Figure 14 shows a configuration with surfactant on
all three of the film surfaces. There are three unstable
modes, as can be seen in the stability graph in the upper
panel of figure 14(a). Travelling wave branches emerge
from the neutral points at & = 0.752, £ = 1.196 and
k = 1.373, and are shown in the lower panel. Typical
film and surfactant profiles are shown in figure 14(b). It
is noticeable that in the profiles for £ = 1.35 the free
surface and interface 2 almost touch, and for £k = 1.6
the two interfaces almost touch. The profiles at k = 0.3
have a pulse-like structure, and the surfactant profile is
evidently developing a shock in the gradient and a near-
clean region, very much like the case studied for two-layer
flow in figures 9 and 10. Multiple travelling wave solu-
tions exist for some values of k. For example, there are
three solutions in the range 1.35 < k < 1.373.

Figure 15 shows results for almost the same parameter
set as figure 14 but for a clean free-surface and clean in-
terface 1. There is only one unstable mode and a single
travelling wave branch emerging from the neutral point
at k = 0.700. The film profiles develop into pulses as the
travelling wave branch is followed to smaller wavenum-
ber. Similar to the two-layer case shown in figure 9(b)
the pulses are phase-locked and travel together as a group
(for the profiles shown at k = 0.22 the propagation speed
is ¢,y = 3.82).

Next we demonstrate the influence of surfactant on the
speed of the travelling waves. Figure 16(a) shows the ef-
fect of varying any one of the Marangoni numbers for
the parameter set studied in the three-layer flow case of
figure 15. The solid and dashed curves terminate where
two of the interfaces come into close contact. The general
trend found here, and which we also find for the other ex-
amples presented in this section, is that surfactant tends
to lower the wave speed below that found for an entirely
clean system (although it may also raise it, as shown by
the dot-dashed curve in figure 16a). This example also
provides a qualitatively different feature in the wave pro-
files to those seen before. Figure 16(b) shows that the
two interfaces are almost touching and the surfactant on
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FIG. 13. Clean three-layer long-wave flow Ca; = Cazs =
Ca3:1,7'2:7"3:1,WL2:2,WL3:1,R2:R3:1,
May, = Ma2 = Mas = 0: (a) Growth rates s = Im(kc) for
the three-layer long-wave system (upper panel) and travelling-
wave lower interface height A = max(f1) — min(f1) and wave
speed ¢, (lower panel); (b) Film profiles at & = 0.5 (upper
panel) and k = 0.05 (lower panel), indicated by dots in (a).

the lowermost interface occupies a compact and very nar-
row region in an almost spiked distribution. This region
narrows further and the height of the spike increases,
and the two interfaces come closer together, when k is
reduced further. This contrasts with the behaviour seen
in figure 14(b), where two interfaces come into near con-
tact without an apparently singular response in the sur-
factant concentration. In the present case, the singular
behaviour is attributed to the fact that the local velocity
on the lowermost interface approaches the value of the
wave speed c,,. In the limit this requires the surfactant
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FIG. 14. Three-layer long-wave flow Ca; = 1.5, Cax = 1,
7"2:7'3:1,TTL2:TTL3:1,R2:R3:1,]\/[a1:
Mas = Masz = 1: (a) Growth rates s = Im(kc) for the
three-layer long-wave system (upper panel) and travelling-
wave lower interface height A = max(f1) — min(f1) (middle
panel) and wave speed ¢, (lower panel); (b) Film (left) and
surfactant (right) travelling-wave profiles on branches 1, 2, 3
in (@) respectively at k = 1.6, 1.35 and 0.3, indicated by dots
in (a). Lower/upper interface profiles are shown with dot-
dashed/dashed lines and free surface profiles are shown with
solid lines.

concentration on the lowermost interface to grow without
bound in order to maintain a balance in (46).
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FIG. 15. Three-layer long-wave flow Ca; = 1.5, Cax = 1,
7"2:7"3:1,m2:TTL3:1,R2:R3:1,]\/[(11:0,
Maz = 1.0, Masz = 0: (a) Growth rates s = Im(kc) for
the three-layer long-wave system (upper panel) and travelling-
wave lower interface height A = max(f1) — min(f1) and wave
speed ¢, (lower panel); (b) Film (left) and surfactant (right)
travelling-wave profiles at k& = 0.6 and & = 0.22, indicated
by dots in (a). Lower/upper interface profiles are shown with
dot-dashed /dashed lines and free surface profiles are shown
with solid lines.

C. Time-dependent simulations

Having described the existence of a range of travel-
ling wave phenomena in the previous sections, it is of
interest to ask what is likely to be seen in a physical
experiment. To gain some insight into the issue of stabil-
ity, we perform time-dependent simulations of the long-
wave equations. We solve (33) and (44) numerically us-
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FIG. 16. Three-layer long-wave flow Ca; = 1.5, Caz = 1,
7’2:7'3:1,7712:m3:1,R2:R3=1andk:0.6.
(a) Variation of lower interface wave height A = max(f1) —
min(f1) and wave speed ¢, with Marangoni number. In each
case one Marangoni number is varied and the other two are
zero. (b) Wave profiles (upper panel) and surfactant profiles
(lower panel) at Maz = 1.629 (Mai = Mas = 0) correspond-
ing to the dots in (a). Lower/upper interface profiles are
shown with dot-dashed/dashed lines and free surface profiles
are shown with solid lines

ing a fully implicit scheme based on Newton iterations
and Fourier pseudospectral representation of the spatial
derivatives on a grid of points equally-spaced in the range
0 <z < L., for chosen domain size L.. The scheme is
second order accurate in time. The equations are inte-
grated forward in time starting from the initial profiles



of wavelength Ly at 7 = 0,

f1(&,0) = 1+ 0.2 cos(27wE/ Ly),
fi(€,0) = (14 r;)+ 0.2cos(27&/ Lo), (51)
I';(€,0) =1+ 0.2cos(2m¢/Ly),

for j = 1,2 or j = 1,2,3 for two-layer/three-layer flow
respectively.

We first investigate the stability of the two-layer trav-
elling waves found for the clean system in figure 8. We
fix the computational domain size at L. = 47 and take
Ly = L. in (51). The time evolution of the film wave
heights A; = max(f;) — min(f;) are shown in the up-
per panel of figure 17. After an initial transient, the
wave heights eventually saturate and travelling waves be-
come established. The saturated profiles are shown in the
lower panel. The travelling-wave state computed in sec-
tion IV A is superimposed and the two coincide almost
exactly. This indicates that the travelling-waves shown
in figure 8 are stable, at least to perturbations of the
same wavelength. In a physical experiment, however,
perturbations of wavelength larger than the wave period
may be present. To investigate this, we repeated the
simulation taking Lo = 47 in (51) but using twice the
computational domain size so that L. = 2Ly = 87. We
find that once again, at large times, the same travelling-
waves with period L = 47 emerge. Interestingly, in a
further simulation using Ly = L. = 8w, so that now
the perturbation has the same wavelength as the wider
domain, the waves are found to settle eventually to the
same 4m-periodic travelling waves seen in the two previ-
ous simulations. From this set of three calculations, we
conclude that the k = 0.5 travelling-wave computed in
figure 8 is stable and should be realisable in experiment.
However, the travelling-wave at k = 0.25 in figure 8 ap-
pears to be unstable and may not be observable. (We
note that the wave profiles for k = 0.25 closely resemble
those for k¥ = 0.1 shown in figure 8b).

Despite the previous remarks, it may still be the case
that the k£ = 0.25 wave is stable, at least to small de-
viations. To investigate this, we use an initial condition
which is a small perturbation of the travelling wave so-
lution and take

£i(€,0) = f;(€) + 0.2 cos(27€/ Lo),
(52)
I';(£,0) = §;(€) + 0.2 cos(2m¢/ Lo)

for j = 1,2, where fj, g; are the travelling wave solutions
computed in section IV A. The result of a computation
with Lo = L. = 87 is shown in figure 18. Evidently the
solution diverges from the k = 0.25 (8m-periodic) solu-
tion and eventually locks onto the k = 0.5 (4m-periodic)
travelling-wave. This confirms that the £ = 0.25 solution
is indeed unstable. We note in passing that a simula-
tion with Ly = L. = 47 using initial condition (52) also
locks onto the 4m-periodic travelling wave, providing fur-
ther evidence of the stability of this solution. It appears,
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FIG. 17. Two-layer flow. Time-dependent simulation for the
parameters in figure 8 and initial condition (51). Lo = L. =
47 Ai, Az in the upper panel, and saturated profiles at ¢t =
200 in the lower panel. In the lower panel the travelling wave
solution for £ = 0.5 computed using the method of section
IV A is shown with circles.

900 1000

FIG. 18. Two-layer flow. Time evolution of the film wave
heights for the parameters in figure 8 and initial condition
(52). Lo = L. = 8r.The L = 47 and L = 87 travelling wave
heights are shown with broken and dot-dashed lines respec-
tively. The inset shows a close-up at large time.

then, that at least part of the travelling-wave branch in
figure 8 is stable, but that stability is lost as the period
of the travelling-wave widens.

We now turn to a case where surfactant is present and
examine the stability of the travelling waves for the case
considered in figure 9. We consider first a travelling-wave
at k = 0.7. A simulation with L. = Lo = 27/0.7 with
initial condition (51) eventually settles to the travelling
wave profile for £ = 0.7 predicted by the methods of



section IV A. Repeating with initial condition (52), the
solution returns to the same travelling-wave profile for
k = 0.7. Computing again using initial condition (52)
but now taking two wave-periods over twice the domain
size with L. = Lo = 27/0.35, we find that the solution di-
verges from the k = 0.7 travelling wave and the wave pro-
files develop to closely resemble the k = 0.35 travelling-
wave solution with a clean region on the interface, as in
upper panel of figure 10. The simulation fails to capture
the profiles accurately because of the sharp variations
in gradient in the profiles discussed in section IV A. To
continue the simulations accurately, a prohibitively large
number of Fourier modes would be required (we recall
that the wave profiles in figure 10 required N = 1400
modes), and consequently, an impractically small time
step would be needed; moreover the inversion of the Jaco-
bian in the Newton iterations at each time step becomes
computationally very expensive. Simulations carried out
with the surfactant diffusion present, taking the Péclet
numbers to be finite in (44), produce qualitatively similar
results, but suffer from similar difficulties when attempt-
ing to integrate to large times. Further evidence that the
k = 0.7 travelling-wave is unstable is provided in the next
section. We conclude that although the travelling wave
for £ = 0.7 is stable to same-wavelength perturbations,
it is unstable to perturbations of twice the wavelength,
and so it may not be observable in an experiment.

Finally, we mention the long-time behaviour for the
initial value problem corresponding to the two-layer flow
cases shown in figure 7. Inside the island of unstable
modes seen in figure 7(b), we find that we may either
latch onto a travelling-wave solution, once transients have
decayed — this occurs when (k, ms) = (0.5,2.2) — or the
time integration continues to a point where the surfactant
concentration on the free surface reaches zero at a point,
at which point the simulation is terminated — this occurs
when (k, m2) = (1.0,0.2), for example. For the case when
surfactant is on the interface and the free surface is clean,
shown in figure 7(a), time-dependent simulations either
break down when the surfactant reaches zero at a point
— this occurs when (k, mz) = (0.5,0.5), for example — or
continue to lock onto a travelling wave solution — this
occurs when (k, mz) = (0.5,1.5) for example.

We now investigate the stability of travelling waves for
three-layer flow. We focus initially on the clean case pre-
sented in figure 13. In a time-dependent simulation with
Ly = L, = 4w, and using initial condition (51), the sur-
faces profiles are found to saturate at large time to pro-
duce the k = 0.5 travelling-wave profiles shown in figure
13(b). In contrast, for the surfactant-laden case in figure
14, quite different behaviour is found. The results of a
simulation with initial condition (51) with Lo = L. = 27
is shown in figure 19. The time signals for the wave
height on the two interfaces are similar to those shown
for the free surface. Interestingly, rather than approach
the travelling-wave profiles computed for £ = 1.0 in sec-
tion IV A, the solution instead locks onto a periodic cy-
cle corresponding to a periodic travelling wave, that is
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FIG. 19. Three-layer flow. (a) Time evolution of the free
surface wave heights A3 = max(f3) — min(f3) and Gz =
max(I's) —min(I's) for the parameters in figure 14 and initial
condition (51) with Lo = L. = 27. The insets show a close-up
of the time signals. (b) The film and surfactant concentration
profiles at ¢ = 303.5.

a travelling wave whose profile (within a reference frame
translating at constant speed) is a periodic function of
time. For illustration, the profiles at one time instant
within the periodic cycle is shown in figure 19(b). It is
striking that the free surface almost touches the second
interface, and this remains the case throughout one time
period. Periodic travelling waves have also been found in
weakly-nonlinear models of surfactant-laden multilayer
films in channel flow (e.g. [41]) and in core-annular flow
(e.g. [42, 43]).

The above observations suggest that it should be pos-
sible to visualise travelling-waves in both two-layer and
three-layer systems in an experiment, but that other be-
haviours are also expected to be seen, including periodic



travelling waves. Further comment on these findings are
presented in the next section where we re-examine the
stability problem by computing eigenvalue spectra.

D. Stability of travelling waves

The stability of the travelling wave solutions described
above can be studied by applying Floquet theory (e.g.
[44]). Working in the travelling wave frame, we perturb
about a basic wave solution, writing,

o0

(£5 97) = (fi, 35) + €e77e®* 7 (ajn, bjn)e™, (53)

n=—oo

for j=1,..., M, where M is the number of fluid layers,
k is the wavenumber of the travelling wave solution, p
is the real Floquet-Bloch parameter in the range [0, k)
and € is a small parameter. The constant coefficients a;y,
and bj, are to be found. Spectral stability is assured
if no point in the spectrum o(p) lies in the right half
complex plane. Since the present problem is defined on
an infinite domain, and the base waves f;(z) and g;(z)
are periodic, the spectrum contains only a continuous
part, that is the point spectrum of isolated eigenvalues is
empty (see section 3.4.2 of Sandstede [45]). Substituting
(53) into the travelling wave equations (33) and (44) and
linearising, we obtain

oo M oo
o Z ajnei”kzzz Z (Dljn(Z;P) ain

n=-—o0 =1 n=—00
+ Bijn(zp) bn ), (54)
and
00 M 00
o 3 ™ =3 3 (Fyuip) am
n=-—oo =1 n=—o00

+ Gijn(2;p) bln)7 (55)

both for j = 1,...,M, where Dyn(z;p), Eiyn(z;p),
Fijn(2;p), Gijn(z;p) are known periodic functions of z
which depend on the basic travelling wave solution and
have period L = 27/k. The formulae for these functions
are lengthy and are suppressed in the interest of brevity.
The stability problem is solved numerically for a chosen
value of p by collocating one period of the basic travelling
wave with the 2N + 1 equally-spaced points

L

N )
and then truncating the infinite series in (54) and (55) at
the finite level n = £N. Evaluating (54) and (55) at the
collocation points yields a system of 8N + 4 linear alge-
braic equations in the unknown coefficients a1y, - .., arm
and bin,...,bymn, and 0. These may be gathered to-
gether to form a generalised eigenvalue problem for o

2= —1Dh, h= j=1,...,2N+1, (56)
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of the generic form Ax = o0Bx, where A and B are
known matrices and x hosts the unknown coefficients.
This eigenvalue problem is solved for each p using the
in-built Matlab routine ‘eig’. To reduce the amount of
computational effort required to determine the spectrum,
we utilise the symmetry property

Dljn(z;p) = Dl*j(fn)(z;_p)a (57)

where the asterisk denotes the complex conjugate; Ejj,,
Fijn and Gyjy, also have this symmetry. It follows that if

{Japv Ain, " 5, AMn, bln; e ;blbfn}
is an eigenset then so is
{J*v —-D, a;(_n)v to aaj\/j(—n)abik(—n)’ e ’bj\/l(—n)}'

Therefore, to complete the spectrum it is only necessary
to consider values of the Floquet-Bloch parameter in the
range p € [0,k/2). We do this numerically by comput-
ing for a discrete set of p points equally-spaced over this
range. An approximation to the continuous spectrum fol-
lows as the union of all of the individual sets of o values
which are computed at each of these individual p values.
We note that as a result of the translational invariance of
the problem, the spectrum also includes the origin ¢ = 0
(e.g. Sandstede [45]).

First we present results for the case of two layers,
M = 2. The numerical code for the Floquet stabil-
ity calculation was checked in the case of uniform layer
thicknesses (flat layer surfaces) against the linear stabil-
ity calculation already discussed, and agreement between
the two was confirmed. As a second check, we used our
unsteady code from section IV C to integrate (33) and
(44) forward in time starting from an initial condition
given by (53) at 7 = 0 with the a;,, bjn corresponding to
an eigenfunction for a chosen p. For 7 > 0, we confirmed
excellent agreement in the early stages of the calculation
between the computed waveform and the linear approxi-
mation (53).

The stability spectrum for the travelling waves in figure
8 is shown in figure 20 for £ = 0.5 and k£ = 0.25. In the
former case all points in the spectrum lie in the left-half
plane and the corresponding travelling-wave solutions are
spectrally stable. This is consistent with the results of
the unsteady simulations discussed in section IV C. For
k = 0.25 part of the spectrum lies in the right-half plane,
implying linear instability. The points on the spectrum
with largest real part or correspond to a non-zero value
of p (see the lower middle panel of figure 20) so that the
most unstable mode is subharmonic, corresponding to a
disturbance with wavelength longer than the wavelength
of the base solution. Note also that p = 0 is unstable so
that the £ = 0.25 solution is unstable to perturbations
of the same wavelength, in agreement with the findings
of section IV C. Further computations reveal that if we
restrict attention to superharmonic disturbances, p = 0,
this branch loses stability at & = 0.258 via a Hopf bifur-
cation as a complex eigenvalue moves from the left to the
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FIG. 20. Stability spectra for the two-layer flows studied in
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figure 9 for k = 0.7.
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right half complex plane. The existence of time-periodic
travelling waves is then suspected; however, we have not
been able to reach such a time-periodic solution via time-
dependent computations. These tend to lock instead onto
the k = 0.5 travelling wave solution (see section IV C).

The spectrum for the parameter case presented in fig-
ure 9 is shown in figure 20 for £ = 0.7. Since p = 0
is stable, the wave solution is stable to superharmonic
perturbations of the same wavelength, which agrees with
the results of the time-dependent simulations in section
IV C. However, the growth rate op at p = 0.35 is evi-
dently positive, so that the wave is unstable to subhar-
monic perturbations of twice the wavelength, which is
again in agreement with the unsteady calculations re-
ported above. We computed the stability spectra along
the travelling wave branch down to & = 0.4 and found
that the waves are always unstable. This is in line with
intuition since we expect the pulse solutions attained to-
ward the end of this branch (figure 9b) to be unstable.
This expectation is based on the observation that the flat
parts of the films away from the localised pulse are lin-
early unstable. The three branches of travelling wave so-
lutions identified in figure 11 was also investigated. Here
branches 1 and 2 are everywhere unstable and branch 3
is everywhere stable.

Next we turn to the three layer problem, M = 3, and
investigate the stability of the travelling wave branches
presented in figures 13 to 15. For the surfactant-free
case in figure 13, we find that the travelling wave solu-
tions are unstable all the way along the branch. For the
three wave branches shown in figure 14, branches 1 and 2
are everywhere unstable. On branch 3 the solutions are
unstable all along the branch; however, if we restrict at-
tention to superharmonic perturbations (p = 0), we find
that the branch is stable up to k = kg, with kg = 1.19,
where stability is lost at a Hopf bifurcation when a com-
plex eigenvalue crosses into the right half plane. When
k < kg we therefore expect to find time-periodic so-
lutions in a frame of reference moving with the steadily
propagating wave. Such a periodic travelling-wave has al-
ready been discussed for this case (see figure 19). Further
time-dependent calculations confirm that time-periodic
travelling waves are found for k < kg, while for k > kg
the solution locks onto the steady travelling wave after a
decaying oscillatory transient.

The conclusions of this section are that travelling-wave
solutions of the type discussed in sections IV A and IV B
for two-layer and three-layer flow may be spectrally sta-
ble, and hence should be observable in experiment.

V. BOUNDARY-ELEMENT SIMULATIONS FOR
STOKES FLOW

We now relax the long-wave assumption and consider
the time evolution of the two-layer or three-layer sys-
tem under conditions of Stokes flow through numerical
computation. The calculations are carried out using the
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FIG. 21. Stokes flow simulation for clean two-layer flow with
0= 7r/4, C(Ll = C(Lz = 1, T2 = 0.97 mo = 2.5, R2 = 1, ]M(Ll =
M5 = 0.0 using initial condition (58) with Lo = L. = 27/0.31.
Upper panel: Linear growth rates s = Im(kc) for Stokes flow.
Lower panel: Two periods of the saturated wave travelling-
wave profiles for & = 0.31 (L = 20.27). The discretisation
levels are Ng = N; = 120 and dt = 7 x 1073,

boundary integral method for Stokes flow [e.g 46]. The
formulation itself follows the comprehensive description
provided by Pozrikidis [17] (see also [33] for a detailed
description for multilayer film flows), and the reader is
referred to these papers for particular details. The sur-
factant transport equation is integrated forward in time
using the finite-volume method ([47]). In all of the com-
putations to be described we discretize the interfaces and
the free surface using straight elements. For two layer
flow, we use Nj, Ng elements on the interface and the
free surface respectively. For three layer flow we use Ny, ,
Ni,, Ng elements on interfaces 1, 2 and the free sur-
face respectively. With sufficient numbers of elements
to ensure accuracy, the computations are expensive and
consume very many hours of CPU time on a desktop ma-
chine. The number of boundary elements and the time
step used in each calculation is quoted in the caption of
the relevant figure.

Figure 21 shows the results of a boundary-element sim-
ulation for a clean two-layer system inclined at an an-
gle & = w/4. The computational domain is of length
L. = 2r/k with k = 0.31. The calculation was started
at t = 0 with the initial condition

yr = 1+ eay cos(2mz /Lo + ¢1),
ys = 1+ eag cos(2mx /Lo + p2),
't =1+ €by cos(2mx/Lo + aq), (58)
I's =1+ ebycos(2mx/Lo + a2),

with Ly taken equal to L., and with ¢ = 0.2. The
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subscripts I and S in (58) denote the interface and the
free surface respectively. The film amplitudes and phase
shifts are a; = 0.21777, a2 = 0.05963, and ¢ = 3.12300,
w2 = 0.36643, The surfactant amplitudes and phase
shifts are by = 0.90731, by = 0.01132 and a; = 0.10822
and as = 0.12752. The values are chosen arbitrarily
so that the initial condition represents a mixture of the
available normal modes from the linear theory. The up-
per panel of figure 21(a) shows the stability graph found
using the method described in section III. As the sim-
ulation progresses, the wave height on the free surface,
A, defined as the wave maximum minus the wave mini-
mum, initially decays before starting to grow as the nor-
mal mode with the largest positive growth rate begins
to dominate. Nonlinear effects come into play and even-
tually the wave height approaches a constant value and
the waves saturate into travelling waves. Two periods
of the travelling-wave profiles are shown in figure 21(b).
It is noticeable that the interfacial deformation of the
saturated wave is more marked than the free surface de-
formation. The waves propagate at speed c,, = 1.25. The
longwave theory of section IV A predicts the wave speed
cw = 1.27. This is strikingly close, considering that this
example does not lie within the longwave regime, which
requires small capillary numbers (see section IV A); we
note, however, that the longwave profiles do not closely
resemble those shown in figure 21.

In figure 22 we show the results of a calculation for
a two-layer flow with surfactant on the interface. The
computational domain is L, = 27 /k with k£ = 0.65. The
initial condition is given by (58) at ¢t = 0 with Lo = L,
and a; = 0.11021, a2 = 0.08050, and ¢; = 0.21083,
po = 0.29588, and by = 0.60044, by = 0.02622, and
a; = —2.04395, as = 2.73905. These values corre-
spond to the normal mode with the largest growth rate,
computed following the protocol described in section III.
The upper panel of figure 22 (a) shows the stability
graph found using the method described in section III.
The maximum of the dominant growth rate is noticeably
larger than those typically found for the smaller inclina-
tion angle # = 0.2 used in section III. The lower panel
shows the evolution of the wave height on the free sur-
face, defined above, shown against dimensionless time
t (throughout this section the dimensionless scales are
as given in section IT). Included in this panel are two
broken lines with gradients equal to that of the largest
linear growth rate s = 0.04161. Early in the simula-
tion, this linear growth rate is captured accurately as
the solid and the broken lines are almost coincident. Ul-
timately the waves saturate into travelling waves. The
saturated profiles are shown in 22(b). The waves propa-
gate at speed ¢,, = 1.27. This compares favourably with
the longwave prediction ¢,, = 1.22; however, the travel-
ling wave and surfactant profiles obtained from the long-
wave theory share the same qualitative features as those
seen in figure 22(b) but do not agree quantitatively. In
a separate boundary-element computation for the same
parameter values, but with & = 1.5, the wave height on



0 20 40 60 80 100 120 140 160 180 200

13

(b)
25
ZW
o
S 15F 1
I PN PR
ot N e - S -
0.5F
o .
0 2 4 6 8 10 12 14 16 18
T
2 . .
" /
2o r o
13} ‘I ‘\ II \\
s: 1-\,'_/—‘—‘\_\,'_/gx—-
N - / AR -~ ! Tas
0 T
0 2 4 6 8 10 12 14 16 18
z
FIG. 22. Stokes flow simulation for two-layer flow with

0 = w/4, Cay = Caz = 1, 72 = 09, ma = 0.2, Ry = 1,
May = 0.5, Maz = 0.0 using initial condition (58) with
Lo = L. = 27/0.65: (a) (upper panel) Linear growth rates
s = Im(kc) for Stokes flow and (lower panel) time evolution
of log A, defined in the text, for £ = 0.65. The broken lines
indicate the linear normal mode growth rates. The thick/thin
lines are for the free surface/interface respectively. (b) Two
periods of the saturated travelling-wave profiles for k = 0.65
(L = 9.67). Interface/free surface profiles are shown with
broken/solid lines. For computations, Ng = Ny = 120 and
dt =7x 10"

both the free-surface and the interface decays to zero, in
accordance with the prediction of linear theory (figure
22(a), upper panel).

It might be expected that the nonlinear saturation
identified in figure 22 will disappear if a larger compu-
tational domain with more fundamental periods is used.
The CPU time required to complete such computations
naturally escalates rapidly. We repeated the calculation
for figure 22 using the same parameter values but on a
domain of size L. = 47/0.65 and with an initial condi-
tion given by (58) with Ly = L./2 and with the right
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FIG. 23. Stokes flow simulation for three-layer flow with 0 =
w/4 and Ca; = Caz = Caz = 1, r2 = 0.5, ro = 1.5, ma =
ms3 = 1, Rz = R3 = 1, ]M(Ll = ]\/[ag = ]\/[ae, = 1/2: The
wave profiles and surface tension, «y;, profiles profiles at ¢t =
40.0 for k = 0.65 (L = 12.57) for computation with Lo =
L. = L. Interface 1/2 and free surface profiles are shown
with dot-dashed/dashed and solid lines respectively. For the
computations, Ng = Ny = 120 and dt =7 x 1073,

hand sides supplemented by an additional small pertur-
bation of wavelength L.. For this calculation, the non-
linear saturation previously identified does not occur but
rather the surfactant on the interface reorganises itself
so that the interfacial tension profile becomes zero at one
point and the simulation fails. Qualititatively similar be-
haviour may also be observed for three-layer flow, as is
illustrated in figure 23. The fact that the interfacial ten-
sion 7, touches zero indicates a breakdown in the physi-
cal model before this point in the simulation is reached.
To investigate whether this breakdown has occurred as a
result of the linear equation of state adopted for the sur-
face tension in (4), we repeated the calculation in figure
23, but using instead the nonlinear Langmuir equation of
state (see, for example Pozrikidis [33], p. 234),

¥ = Yje (1 + TooBjlog (1 = T';/T's)), (59)

where 8; = Ma;/(1 + Ma;) = 1/3, and T' is the
maximum surfactant packing concentration. We exper-
imented with the three values ', = 2, 5, 10 and in all
cases found that the same breakdown occurs and the sur-
face tension reaches zero at a point on the lowermost
interface. The effect of surfactant diffusivity was investi-
gated by re-running the simulation with the linear equa-
tion of state (4) and taking Pe; = 10, j = 1,2,3 or
Pe; =100, j = 1,2,3. Once again the same qualitative
breakdown occurs.

An example calculation for three layers is shown in
figure 24. The initial condition is given by the obvi-
ous extension of (58) to three layers with a; = 0.14629,
as = 0.07231, az = 0.04694, and ¢1 = —3.08458, o =
2.84746, w3 = 2.88249, and by = 0.70847, by = 0.04396,
bs = 0.02389, and a3 = 0.72337, aa = —0.09832,
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FIG. 24. Stokes flow simulation for three-layer flow with

0 = 7/4 and Car = Caz = Caz = 2, r2 = 0.5, ro = 1.5,
mo2 = M3 = 1, R2 = Rg = 1, ]Wal = 0, ]\4(12 = 0.257
Masz = 0: (a) (upper panel) Linear growth rates s = Im(kc)
for Stokes flow and (lower panel) time evolution of log A, de-
fined in the text, for k = 0.5. The broken lines indicate
the linear normal mode growth rates. The thick/thin lines
are for the free surface/interface respectively. (b) Two peri-
ods of the saturated wave profiles for k = 0.5 (L = 12.57)
for computation with Lo = L. = L. Interface 1/2 and free
surface profiles are shown with dot-dashed/dashed and solid
lines respectively. For the computations, Ng = N; = 120 and
dt =7x107°.

a3 = —0.41960. Here the subscripts 1,2,3 refer to in-
terface 1, interface 2 and the free surface respectively.
These values correspond to the dominant growth rate,
indicated by the broken lines in the lower panel of figure
24(a). By about t = 200, the solutions have settled into
travelling waves propagating at speed ¢, = 2.51 (this
compares with the longwave prediction at the same pa-
rameter values of ¢,, = 2.5099). The surfactant concen-
tration on interface 2 develops a much larger deviation
from the base level than that on the other two surfaces,
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and reaches quite a large peak value (I'; = 2.6) which
corresponds, according to (4), to the low interfacial ten-
sion o = 0.2.

VI. PHYSICAL CONTEXT

We use recent experimental studies on multilayer flows
([48], [49]) as a guide to discuss likely physical values for
our parameters. These experiments used predominantly
water-glycerol mixtures with viscosities in the range y =
15—260 mPa.s and density around p = 1200 kgm—2. The
surface tension for each of these fluids (when in contact
with air) was in the range 42 — 60 x 1073 Nm~! and
in the absence of other measurements we will assume
values in this range for our interfacial tensions. The angle
of inclination of the plane was set at § = 7/6 radians,
and the flow rates in the fluid layers was in the range
5—10 x 107 %m3s~ 1.

Integrating the base flow velocity profiles in (8) we ob-
tain the flow rate in the layer i, Q; = ::“ u; (y)dy. Note
that a given choice of flow rates corresponds to a unique
set of layer thicknesses ([39]). We select the typical exper-
imental flow rates Q1 = Q2 = Q3 = 5 x 107%. Choosing
mid-range values for the viscosity and surface tension, we
find the layer thicknesses 0.52cm, 0.78cm and 1.02cm for
layers 1, 2, 3 respectively so that 7o = 0.49 and r3 = 0.44,
and obtain typical values for the Reynolds numbers and
capillary numbers, Re; = p;jhiUs/p; = 5.5 x 107° and
Ca; = 3.2. The smallness of the Reynolds number lends
credence to the assumption of Stokes flow in a theoretical
analysis. The computed values of the layer thickness ra-
tios and the capillary numbers are in line with the typical
values chosen in section III and section V.

If the film thicknesses are on the order of microns (such
thicknesses have been realised in thin-film experiments,
e.g. [50]), much smaller capillary numbers are possible.
Taking the layer thicknesses to be on the order of 1um
in thickness, we obtain capillary numbers on the order
of 1073, corresponding to a long-wave parameter § ~
0.1, which may be small enough to realise the long-wave
regime discussed in section IV.

VII. DISCUSSION

We have examined the flow of bilayer and trilayer flow
of surfactant-laden viscous films down an inclined plane
with the focus on studying flow stability and computing
the nonlinear states which arise in the presence of insta-
bility. We have assumed zero Reynolds number through-
out, so that inertia is absent, and studied the problem un-
der conditions of Stokes flow and in the lubrication limit
of long waves. In the latter case a simpler system of equa-
tions can be derived which is more amenable to analysis
but which nonetheless preserves many of the important
features and characteristics of the full Stokes system. We
have derived the latter system for two or three layers, but



the formulation easily generalises to any number of fluid
layers.

In the basic state, the liquid layers have uniform thick-
ness and the free surface and the interfaces between lay-
ers are all flat. Instability occurs in physical systems
for which at least one of the upper layers is more vis-
cous than a layer below it. Physical systems are also
made unstable when surfactant is present on any of the
interfaces between layers, or when it is present on the
free surface and the uppermost layer is sufficiently thin
in comparison to the other layer or layers. In the lat-
ter case, an otherwise stable clean configuration of layers
may or may not remain stable when surfactant is added
to the free surface, depending on the viscosity ratios of
the fluids. A stable configuration of clean layers of equal
thickness, whose viscosities decrease monotonically from
the bottom layer upwards, is not destabilised by adding
surfactant to the free surface. For specified values of the
physical parameters, for a two-layer flow at most two
or four possible normal modes can be unstable, and for
a three-layer flow at most three of six possible normal
modes can be unstable.

An unstable system supports travelling wave solu-
tions which bifurcate from the neutral stability point, or
points, where the growth rate of one or more of the nor-
mal modes vanishes. A clean two-layer flow has periodic
travelling-wave solutions which evolve into pulses when
the travelling-wave branch is followed to small wavenum-
ber. Each surface exhibits a single pulse and both pulses
travel in phase. A two-layer configuration with surfac-
tant supports travelling-wave states with periodic bulges
and capillary-ridge structures reminiscent of those seen,
for example, in advancing contact lines (e.g. [51]) and
in flow over topography (e.g. [37], [52]). In some cases,
shocks develop in the surfactant profiles as a clean re-
gion appears over part of a wave period. Shocks are
also observed in the spreading of a surfactant monolayer
over a thin film (see for example [53, 54]) and in the
gravity-driven motion of a surfactant-laden liquid drop
over a precursor film ([55]). Pulse states are attained
on travelling-wave branches at small wavenumber. For
these pulses one of the interfaces is devoid of surfactant
in the region behind the pulse. The flow of three clean
liquid layers can also support pulse solutions. Three-layer
flow with surfactant supports travelling-wave solutions in
which two of the film surfaces are almost touching, and
with the surfactant concentration on one of the surfaces
possibly reaching a large peak value in the region of near-
contact. Pulse solutions are also possible with a single
pulse on each surface each travelling at the same speed.

We examined the stability of the travelling-wave states
by carrying out time-dependent simulations of the long-
wave system of equations from a specified initial con-
dition. These demonstrated that travelling-waves for a
clean system may be stable to perturbations with the
same wavelength, or perturbations of larger wavelength.
Waves in surfactant-laden systems were found in some
cases to be stable to same wavelength disturbances but
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unstable to longer disturbances. In the case of a three-
layer flow, these computations also revealed the existence
of time-periodic travelling-waves for which the waves are
time-periodic within a frame of reference travelling at a
constant speed. Time-dependent simulations for Stokes
flow carried out using the boundary-element method
showed that, for both clean and surfactant-laden flows,
travelling-wave states may be attained via nonlinear sat-
uration after an initial transient, at least on sufficiently
short computational domains. We presented evidence
that this nonlinear saturation does not occur when the
computational domain is widened to include more fun-
damental wave periods. Under conditions of Stokes flow,
the breakdown of the physical model was observed for
certain parameter values in which the agglomeration of
surfactant forces the surface tension to zero at a single
point. The breakdown is not removed either by includ-
ing diffusivity in the surfactant transport model, or by
adopting a nonlinear equation of state to describe the re-
lationship between surfactant concentration and surface
tension.

The stability results obtained via time-dependent sim-
ulations were reinforced by calculations of eigenvalue
spectra for the nonlinear travelling-wave states carried
out using Floquet analysis. These confirmed that the
travelling-waves may be stable to perturbations of the
same wavelength as themselves, but unstable to larger,
subharmonic perturbations. In some cases, a travelling-
wave branch is spectrally stable sufficiently close to the
bifurcation from the neutral stability point, but loses
stability further along. In other cases travelling-wave
branches are unstable all the way along.

In conclusion, we have found that physical systems
of two or three liquid layers, which are unstable either
due to viscosity stratification or to the presence of an in-
soluble surfactant, support travelling-wave states which
should be observable in experiment. On this latter point,
it is important to emphasise that where our analysis has
identified that a certain travelling-wave state is unstable,
this does not necessarily render it insignificant from a
physical point of view. For example, the travelling pulse
solutions are linearly unstable simply by virtue of the fact
that the flat part of the film both upstream and down-
stream of the pulse is itself unstable. In fact we expect
that these pulse solutions are actually convectively unsta-
ble and, as such, it should be possible to visualise them
in the laboratory. It is well-known that travelling pulses
are observed in experiments on single-film systems (see,
for example, [56]). Determining the convective/absolute
nature of the instability of our results lies beyond the
scope of the present study, and will be considered in fu-
ture work.
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APPENDIX A: LINEAR STABILITY FOR
STOKES FLOW

To compute the growth rates for Stokes flow, we
substitute the normal mode forms (16)-(17) into the
Stokes equations and simplify to derive the zero Reynolds
number Orr-Sommerfeld equation for the perturbation
streamfunction,

o\ — 2k2¢ + kg = 0, (60)
No-slip at the wall demands that
¢ =0 (61)

at y = 0. Continuity of velocity across interface 1 re-
quires

Aty + ¢ = Al + ¢y, dr=¢2  (62)
at y = 1, and across the interface 2 requires
Agtig + ¢y = Agliy + ¢, P2 = @3 (63)

at y = y20 = 1 + r5. The normal and tangential com-
ponents of the stress balance (2) at interface 1 demand
that

(3261 — ¢1") — ma(3k°dh — ¢') — ik A1 (B —T3)
ik3 A,
Ca1

=0 (64)

and

(¢ + K1 + Aruy) — ma(oh + k2o + Ayl

— kgL G =0 (65)

respectively, with both evaluated at y = 1. At interface
2, the normal and tangential balances of stress are

ma(3k° ¢y — 95") — ms(3k2¢f — @) — ik Aa (P — Ph)
+ k42 — g (66)
and
ma (¢ + ko + Agtiy ) — (¢ + k> ¢3 + Aoty
—ik¥2Gy =0 (67)
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respectively, both at y = y29. At the free surface, the
normal and tangential components of the stress balance
demand that

ik3 A3

mg(3k* ¢y — ¢') — ik Asps + Cas

=0, (68)

and
M
ma( + k3¢ + Agull) — ik;CT??’Gg —0 (69
3
respectively, both evaluated at y = y30.

The kinematic conditions (3) at the the three surfaces
are

Aj(; —c)+¢; =0, (70)

for j =1,2,3 at y = 1, ya0 and ys3g respectively. Substi-
tuting (18) into the surface equation of state (4), we find
g; = —Ma; G for j = 1,2, 3. The linearised forms of the
surfactant transport equation (6) are

_ _ ikG;
G;(W; — ) + (WA; + ) = 5 (71)
€j
for j = 1,2,3 at y = 1, y20, Y30 respectively. Hence-

forth we shall make the physically reasonable assumption
that the surfactant diffusivities are negligible, so that the
Péclet numbers are infinite and set Pe; = oo for all j.

The general solution to (60) is

85(y) = a5 cosh (ky) + by sinh (ky)
+ cjy cosh (ky) + d;y sinh (ky), (72)

where the coefficients a;, b;, ¢c; and d; are to be found.
Substituting (72) into equations (61)-(71) we obtain a
linear system of equations which we may compile to form
the generalised eigenvalue problem for the complex wave
speed c,

A -w=cB- w, (73)

where w contains the 18 unknowns a;, b;, ¢;, d;, A;, G;,
i =1,2,3, and A and B are known 18 x 18 coefficient
matrices with B a diagonal matrix with only six non-zero
elements. Requiring det(A — ¢B) = 0 to satisfy (73) we
derive a sixth-order polynomial for ¢ implying in general
the presence of six normal modes.
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