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Abstract

A stationary bilinear (SB) model can be used to describe processes with

a time-varying degree of persistence that depends on past shocks. This

study develops methods for Bayesian inference, model comparison, and

forecasting in the SB model. Using monthly U.K. inflation data, we find

that the SB model outperforms the random walk, first order autoregressive

AR(1), and autoregressive moving average ARMA(1,1) models in terms of

root mean squared forecast errors . In addition, the SB model is superior

to these three models in terms of predictive likelihood for the majority of

forecast observations.
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1 Introduction

The class of bilinear processes was first proposed by Granger and Andersen (1978a)

and was found to be able to, as stated in Raeburn et al. (1995), ‘approximate

any nonlinear model to an arbitrary degree of accuracy over a finite time inter-

val’. Brunner and Hess (1995) note that the bilinear model’s capacity to ap-

proximate any well-behaved nonlinear relationship is analogous to the ability of

an autoregressive moving average (ARMA) model to approximate well-behaved

linear relationships. Bilinear models have been successfully applied to analyse

macroeconomic and financial series to capture data non-linearity; see, for exam-

ple, Byers and Peel (1995), Charemza et al. (2005), and Hristova (2005).

The SB model is specified as the following:

yt = (a + bεt−1) yt−1 + εt, (1)

where b is the bilinear term and εt ∼ i.i.d.N (0, σ2
ε). Granger and Andersen

(1978a) note that a second order stationarity condition for the SB model is

a2 + b2σ2
ε < 1, (2)

where a, b 6= 0. Along with equation (2), Sesay and Subba Rao (1988) and

Kim et al. (1990) established the following necessary restrictions (equations 3

–5) to meet the assumption that the first four moments of {yt}Tt=1 are finite.

|a| < 1, (3)

∣∣a3 + 3ab2σ2
ε

∣∣ < 1, (4)

and

a4 + 6a2b2σ2
ε + 3b4σ4

ε < 1. (5)

The dynamics in an SB process are driven by the idiosyncratic shocks εt,

whereas the persistence parameter, a + bεt−1, is driven by the past shock εt−1.

Because the persistence parameter is defined as ‘the sum of the coefficients on

the lagged dependent variable’ (see O’Reilly and Whelan, 2005), therefore, a non-

zero bilinear term b together with the error term εt−1 would induce a time-varying

persistence that changes corresponding to the lagged shock εt−1.
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According to equation (1), the one-step-ahead forecast of yt+1 using the SB

model is as follows:

Et (yt+1) = (a+ bεt) yt,

which indicates that a large shock in the system may affect both the expectations

of future values and induce changes in the series’ persistence. Moreover, if a series

is modelled with an SB process, all of the past shocks {εi}ti=1 are inevitably

propagated via equation (1) to affect the one-step-ahead forecast Et (yt+1). If

Et (yt+1) is constructed in such a way that the bilinear term b and εt are neglected,

the forecast is distorted; see Charemza et al. (2005) for empirical illustrations.

For instance, if b is misspecified as 0, the SB model is equivalent to a linear

AR(1) model without an intercept:

yt = ayt−1 + εt.

Hence, the forecast is distorted by the amount, bεtyt, if the forecasting model is

misspecified as the above lower order autoregressive AR model.

The SB process is very useful for empirical applications. However, as noted

in the work of Brunner and Hess (1995), the estimation of an SB model could

be problematic, especially when at least one of the four moment conditions in

equations (2)–(5) is close to being violated.

Brunner and Hess (1995) simulate 10,000 series of data using a first order

bilinear process (specified as in equation (1)) with a few sets of ‘true’ values,

where the first moment condition (which is also one of the stationarity conditions)

is close to being violated. They demonstrate that the expected negative log-

likelihood function will be characterized with a long narrow spike under the ‘true’

values. Therefore, because of this characteristic in the expected log-likelihood

function, the estimates of the bilinear parameters from a standard optimization

routine, e.g., maximum likelihood method, are more likely to be biased away

from the ‘true’ values. However, if the moment conditions are easily satisfied, the

well-behaved expected log-likelihood function has a global optimum located over

the ‘true’ parameter values, and the global optimum can be found easily.

In this study, we focus on making Bayesian inference in an SB model, which

has a single bilinear term and a, b, and σ2
ε jointly meet the moment restric-

tions in equations (2)–(5). The Bayesian estimation method for the SB model
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and the model comparison method for non-nested models that we propose may

overcome some of the difficulties highlighted in the literature. Despite the sim-

ple specification of the SB model, the dynamics in the changing persistence of

inflation can be nicely captured by the SB. The SB model specification satis-

fies the stationarity conditions, which makes it distinct from many other bilinear

model specifications that have been investigated in the literature, such as in Chen

(1992a), Charemza et al. (2005),Bibi and Lessak (2009), and Feng et al. (2013).

In this study, we aim to develop an efficient sampling algorithm that enables us

to simulate posterior distributions for all parameters of interest jointly satisfying

the stationarity restrictions.

Chen (1992a) has also proposed to estimate the bilinear models using Bayesian

techniques. However, in Chen (1992a), the stationarity conditions are not given

special considerations to elicit the priors. Because a posterior simulator is nor-

mally constructed by combining the prior and the likelihood function in the

Bayesian framework, in particular, the elicited priors should reflect a ‘priori’

distributional belief in the parameters of interest to a certain extent, if not fully.

Especially considering the characteristics of the expected log-likelihood function

of the bilinear models in Brunner and Hess (1995), the prior elicitation is crucial

for making Bayesian inference in the SB model. The Gibbs sampling algorithm

proposed by Chen (1992a) is efficient using the untruncated elicited priors be-

cause the data simulated for applications in Chen (1992a) can easily satisfy the

stationarity conditions. However, if a bilinear data generating process does not

easily satisfy the first moment condition in equation (2), the Gibbs sampling al-

gorithm proposed in Chen (1992a), and forecasting method in Chen (1992b), will

not be applicable.

In particular, the sampling algorithm proposed by Chen (1992a) is not suitable

for bilinear model specifications with the first moment condition close to being

violated. However, for macroeconomic modellers, such bilinear model specifica-

tions are more appealing and intuitive because this type of underlying process

allows the data to be highly persistent, and it also allows the persistence to be

correlated with shocks in previous periods.

In this study, we refer the lower order autoregressive AR model with an inter-

cept as AR(1) model from here onwards. With an application to monthly U.K.

inflation, we compare the in-sample fit of four non-nested models, the SB model,
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the RW model, an AR(1) model, and an ARMA(1,1) using the likelihood and

the marginal likelihood. We focus on illustrating the flexible model comparison

method that can be used for both nested and non-nested models, rather than

exploring all possible competing models and compare them with the SB model.

To compare the out-of-sample forecasting capacity of competing models, be-

sides evaluating the root mean squared forecast errors (RMSFE) and applying

the Diebold-Mariano test for forecast accuracy comparison, the comparison is also

carried out using the predictive likelihood; (see Geweke and Amisano, 2010). We

find that the SB model consistently provides the highest predictive likelihood

for forecast observations. This paper provides strong empirical evidence that

the variation in the estimated inflation persistence appears to be lower after the

1990s compared with those in the 1970s and 1980s. The results agree with previ-

ous findings in the literature that the structure of inflation persistence may have

changed and that inflation was much more anchored during the recent financial

crisis than during the 1980s (see Watson, 2014).

The remainder of the paper is organized as follows. Section 2 presents methods

in Bayesian inference in the SB model specified in equation (1). Section 3 uses

monthly U.K. inflation data to estimate the SB model and to compare it to other

models in terms of forecasting accuracy at different horizons. Section 4 concludes.

2 Bayesian Inferences in the SB Model

We start by introducing some notation: a time series with a sample size of N is

denoted as y = (y1, · · · , yn)′, and we assume the first observation y1 is the initial

observation. The error disturbances εt for t = 1, · · · , n are ε = (ε1, · · · , εn)′ .
Following the recommendations in Charemza et al. (2005), the initial disturbance

value is set as ε1 = 0. We denote the error precision hε = σ−2
ε and collect

all parameters of interest in θ, where θ = (a, b, hε)
′. Let N (µ, V ) denote the

normal distribution with mean µ and variance V . Therefore, the normal density is

denoted by fN (µ, V ). Suppose a random variable x follows a gamma distribution,

x ∼ Γ (α, β), where α is the shape parameter and β is the scale parameter, then

the gamma density is fΓ (α, β) =
1

βαΓ(α)
xα−1 exp

(
−x

β

)
. 1

1Later on in this study, the gamma prior is truncated to a region, where a second order sta-
tionarity condition is met.
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Using equation (1) recursively, we can write

εt−1 = yt−1 − (a+ bεt−2) yt−2,

for t = 2, · · · , n, so that yt can be written as

yt = af1 (t, b) + f2 (t, b) + εt, (6)

where

f1 (t, b) =
t−1∑

i=1

[
(−b)i−1

i

Π
j=1

yt−j

]
,

and

f2 (t, b) =

t−2∑

i=1

[
(−1)i+1 biyt−i

i

Π
j=1

yt−j

]
.

Note that f2 (t, b) = 0 when t = 2. The corresponding derivations can be found

in Appendix A. Denote Ft−1 = (y1, · · · , yt−1)
′. According to equation (6), the

likelihood function of p (yt | θ, Ft−1) for t ≥ 2 is as follows:

p (yt | θ, Ft−1) =
h

1

2

ε

(2π)
1

2

exp

{
−hε

2
[yt − af1 (t, b)− f2 (t, b)]

2

}
,

which leads to a joint likelihood function of p (y | θ) expressed as follows:

p (y | θ) = h
1

2
(N−1)

ε

(2π)
1

2
(N−1)

exp

{
−hε

2

N∑

t=2

[yt − af1 (t, b)− f2 (t, b)]
2

}
. (7)

The density function of the prior, which incorporates the moment restrictions, is

p (a, b, hε) = p (b | hε, a) p (hε | a) p (a) I[a2+b2h−1
ε <1] (a, b, hε) I[M ] (a, b, hε) ,(8)

where M is the region in which the inequalities (4) and (5) are satisfied. From

equation (7), we are not able to elicit a prior for b such that the conditional

posterior follows a standard distribution. Therefore, for simplicity, we assume b

to be uniformly distributed within a region such that the moment condition in

equation (2) is satisfied. With the derived likelihood in equation (7) and the joint

prior in equation (8), the joint posterior is given by Bayes theorem as

p (a, b, hε | y) ∝ p (y | a, b, hε) p (a, b, hε)

∝ p (y | a, b, hε) p (b | hε, a) p (hε | a) p(a)
I[a2+b2h−1

ε <1] (a, b, hε) I[M ] (a, b, hε) .
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The conditional posterior of hε is a truncated gamma and that of a is a truncated

normal.

A truncated normal prior for a is elicited, p (a) = fN
(
µa, V a

)
I[|a|<1] (a), where

I[A] (·) is the indicator function indicating that the moment restriction in equation

(3) is satisfied. By choosing µa = 0 and V a = 104, the truncated normal prior is

roughly equivalent to a uniform prior in the interval that verifies the restriction.

We also try to depart from this value as well in a sensitivity analysis. We elicit

a gamma prior for the error precision hε as p (hε | a) = fΓε

(
αε, βε

)
. Note that

the typical improper non-informative prior (p (hε | a) ∝ |hε|−1) corresponds to

p (hε | a) = fΓε

(
αε, βε

)
with αε = 0 and β

ε
= ∞. To make the prior for hε as

non-informative as possible, yet ensure it is a proper prior, we choose αε = 1.

By choosing αε = 1, the distribution of σ2
ε = h−1

ε is an inverted gamma with

one degree of freedom. Therefore, it has no prior moments with infinite mean

and variance, which implies great uncertainty. We may try a range of values

for β
ε
for prior robustness analysis. The smaller β

ε
is, the greater prior weight

is given to large values of σ2
ε , which results in a greater chance that yt is large

in absolute value. To analyse macroeconomic series, such as inflation, we have

elicited β
ε
= 0.01 as a reasonable value. For model comparison purpose, αε = 1

and β
ε
= 0.01 are also elicited to estimate the error variance in an AR(1) and an

ARMA(1,1) model.

The biggest challenge in developing the sampling algorithm is to take random

draws from the truncated posteriors. Because the truncation area could be far in

the tail of the posterior distributions, to draw from these truncated distributions,

we use the mixed rejection algorithm proposed by Geweke (1991). The follow-

ing Gibbs sampling scheme uses the conditional posterior densities outlined in

Appendix A to get draws from the posterior.

Gibbs sampling for a, b, and hε

1. Give initial values to a and b.

2. Repeat (a)–(c) S times and discard the first S0 draws.

(a) Sample hε from hε | y, a, b ∼ Γε
(
αε, βε

)
·I[hε>b2/(1−a2)] (a, b, hε) I[M ] (a, b, hε)

using mixed rejection sampling.
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(b) Sample a from a | y, b, hε ∼ N
(
µa, V a

)
·I[

|a|<
√

1−b2h−1
ε

] (a, b, hε) I[M ] (a, b, hε)

using mixed rejection sampling.

(c) Sample b from a region, where p (b|y, a, hε) ∝ exp

{
−hε

2

N∑
t=2

[yt − af1 (t, b)− f2(t, b)]
2

}

I[
|b|<

√
(1−a2)hε

] (a, b, hε) I[M ] (a, b, hε) using the Griddy–Gibbs sampling

algorithm; for example, see Ritter and Tanner (1992).

The averages of the draws from the Gibbs sampling are estimates of the posterior

means. Convergence diagnostics can be conducted to examine the efficiency of

the proposed Markov chain Monte Carlo (MCMC) algorithm.

3 Application to U.K. Inflation Rates

Because the SB specification accommodates nonlinearity and allows for time vary-

ing persistence, the SB model can be a natural candidate to model inflation.

Analysing inflation persistence in order to improve on the inflation forecasting

and understanding inflation in response to idiosyncratic shocks have been the

primary interests of macroeconomic modellers. In particular, the analysis of

the dynamics of inflation persistence has received increasing attention because

it is widely believed that inflation persistence is closely related to the mone-

tary regime and the effectiveness of monetary policies. As noted in the work of

Meller and Nautz (2012), if inflation persistence is high, then shocks to inflation

have long-lived effects. However, if inflation persistence is low, steering inflation

expectations is more effective and inflation can be brought in line with the target

quickly.

It is suggested in O’Reilly and Whelan (2005) and Osborn and Sensier (2009),

that the persistence of inflation may have changed in the last three decades in

the U.K. and Euro area due to substantial changes in the monetary regime over

time. Meller and Nautz (2012) use the introduction of European Monetary Union

(EMU) as a natural experiment, and they find that the persistence of inflation

has significantly decreased in the Euro area, probably, as a result of effective

monetary policy of the ECB.

In this study, we apply the U.K. inflation to the SB model. The data are

12-month inflation values. For instance, the inflation to July 2014 indicates the
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changes in prices between July 2014 and July 2013. The data series is collected

from the Office for National Statistics (ONS), which has 703 observations cover-

ing the period from January 1956 to July 2014. Two important events occurred

in the sample period. In 1992, a new framework for monetary policy commenced

following the U.K.’s exit from the European Community’s Exchange Rate Mech-

anism. In 1997, the central bank was granted operational independence over

monetary policy, and inflation was targeted.

With an application to the SB model, we provide strong empirical evidence

that both the level and variation of U.K. inflation persistence have decreased after

the 1990s. Moreover, we illustrate how the persistence and inflation dynamics

change in response to the shocks. However, evaluating whether the monetary

policies carried out by the Bank of England are effective is beyond the scope of

this study.

Model Estimation

We fit the data with the first order SB model in equation (1) using the MCMC

algorithm proposed in Section 2. Table 1 provides the estimation results using

the Gibbs sampler from 15000 iterations. The first 5000 draws are discarded.

For prior sensitivity analysis, we choose two different priors of a: a tight prior

with V a = 0.01, and a flat prior with V a = 104. A Griddy–Gibbs sampler

algorithm is applied to sample b. Because the sampling algorithm is efficient

and the computational cost of having numerous grids is small, we set the grid

number as 1500. From table 1, all absolute convergence diagnostic (CD) values

are smaller than 1.96. Therefore, we do not find evidence that the chain does not

converge. Because there is not much difference in the estimated results when a

flat prior or a tight prior is used, the algorithm is not sensitive to elicited priors.

Figure 1 plots the posterior draws and histogram plots. The results from

the Bayesian MCMC approach indicate that a is close to unity and that the

bilinearity term b is non-negligible. A positive value of b indicates that a positive

shock in period t−1 will lead to higher inflation persistence in period t. In other

words, inflation is unlikely to be anchored if a sequence of positive idiosyncratic

shocks occur.

Figure 2 and figure 3 plot the filtered shocks, and estimated persistence with
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Table 1: Estimation results from the SB model applied to monthly U.K. inflation data.
The elicited prior a is a ∼ N

(
µa, V a

)
I[|a|<1] (a), where µa = 0.98. For prior sensitivity

analysis, V a = 104 and V a = 0.01 are elicited for comparison. The prior for hε is

hε ∼ Γε
(
αε, βε

)
, where αε = 1 and β

ε
= 0.01. The table reports posterior means,

modes, and medians together with standard deviations. CD represents convergence
diagnostic values.

a ∼ N
(
µ
a
, V

a

)
I[|a|<1] with µ

a
= 0.98, V

a
= 104

α
ε
= 1, β

ε
= 0.01 Mean Mode Median St.Dev CD

a 0.9943 0.9951 0.9946 0.0032 −0.4163
b 0.0196 0.0202 0.0196 0.0021 0.6814
σ2
ε

0.3219 0.3227 0.3214 0.0172 1.6185

a ∼ N
(
µ
a
, V

a

)
I[|a|<1] with µ

a
= 0.98, V

a
= 0.01

α
ε
= 1, β

ε
= 0.01 Mean Mode Median St.Dev CD

a 0.9943 0.9944 0.9945 0.0031 −0.4739
b 0.0196 0.0201 0.0197 0.0022 −1.3336
σ2
ε

0.3217 0.3191 0.3213 0.0170 −0.8262

corresponding inflation, respectively. Not surprisingly, both large positive and

negative shocks occurred in the 1970s and early 1980s. As a result, there is a

large variation in the inflation persistence between 1975 and 1985. The changes

in inflation persistence after 1991 are smaller relative to those before the early

1980s, which correspond to the smaller size of shocks. These results indicate that

inflation has been more anchored in the last two decades. Figure 4 plots the

filtered shocks, inflation persistence, and data in two sub-sample periods. This

figure illustrates that the level of inflation persistence fell during the 2000s, and

there was less variation compared with the 1980s. Watson (2014) has obtained

similar findings using U.S. data.

Model Comparison

In a Bayesian framework, a non-nested model comparison can be achieved by

quantifying the uncertainty associated with each competing model. An initial

analysis suggests a unit root in the U.K. inflation series after an application to

the Phillips - Perron (PP) and augmented Dickey - Fuller (ADF) tests. However,

we wish to establish whether the underlying process can be better modelled with

an SB process.

In this study, three methods are applied to compare the RW, AR(1), ARMA(1,1)
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Figure 1: Plots of the MCMC draws. The top panel plots the posterior draws
(from left to right) for a, b, and σ2

ε . The bottom panel plots the simulated posterior
distributions (from left to right) of a, b, and σ2

ε .
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Figure 2: Inflation data with corresponding filtered shocks ε̂t; The entire sample
period is from January 1956 to July 2014; t = 2, · · · , 703. Inflation is on left scale and
filtered shocks are on right scale.
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and SB models. The first method is to calculate the log-likelihood using the fitted

parameter estimates. The second method is to calculate the marginal likelihood
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Figure 3: Inflation data and time-varying persistence parameter
(
â+ b̂ε̂t−1

)
. The

entire sample period is from January 1956 to July 2014; t = 2, · · · , 703. Inflation is on
left scale and persistence is on right scale.
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Figure 4: From top to bottom: Filtered shocks ε̂t; Time-varying persistence

parameter
(
â+ b̂ε̂t−1

)
; Inflation data. The left panels plot the sample period January

1975 – December 1984. The right panels plot the sample period January 2004 –
December 2013.
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using a Gelfand–Dey method; see Gelfand and Dey (1994). The third method is

to calculate the predictive likelihood proposed by Geweke (2001), which is less

sensitive to the choice of priors relative to the second method using the marginal

likelihood.

In Geweke (2001), the predictive likelihood is calculated by integrating the

likelihood function over the posterior distribution of the unobservable at the

time the prediction is made. In line with the idea that a model is as good as its

predictions, the predictive likelihood provides an intuitive tool to compare across

models within the Bayesian approach.

Denote as MSB the SB model, denote as θSB the parameters in MSB and

denote as yo
t−1 all observations available up to t−1. The one-step-ahead predictive

likelihood, evaluated at time t, is defined as

PLSB (t) = p
(
yot | yo

t−1,MSB

)
=

ˆ

⊖A

p
(
yot | yo

t−1, θSB
)
p
(
θSB | yo

t−1

)
dθSB,

which can be approximated by

S−1
S∑

s=1

p
(
yot | yo

t−1, θ
(s)
SB

)

where θ
(s)
SB are the MCMC draws from the posterior of θSB given data up to t−1.

The predictive likelihood for all observations from t = 2 up to T is equal to the

marginal likelihood and is defined as

p (yo
t | MSB) =

T∏

t=2

p
(
yot | yo

t−1,MSB

)
,

which implies the additive decomposition:

log p (yo
t | MSB) =

T∑

t=2

logPLSB (t) .

Because one of the competing models is the RW model, denoted by MRW , the

log Bayes factor can then be decomposed as

log

[
p (yo

t | MSB)

p (yo
t | MRW )

]
=

T∑

t=2

log

[
PLSB (t)

PLRW (t)

]
.

As stated in Geweke and Amisano (2010), the decomposition shows how individ-

ual observations contribute to the evidence in favour of the nonlinear SB model

versus the linear RW model, the ARMA(1,1) model or the AR(1) model.
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Figure 5: 243 observations from May 1994 to July 2014 are reserved to calculate the
predictive likelihood. Top left figure plots the predictive likelihoods of the RW model,
SB model, AR(1) model and ARMA(1,1) over this reserved sample period. The other
three figures separately plot the predictive likelihoods of the SB model against the
AR(1) model, ARMA(1,1), and RW over the period from April 2007 to July 2014.
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If we calculate logPLSB (t) from t = k+ 1 rather than from t = 2, the initial

k observations are then used as a training sample. The predictive likelihood for

the last T − k observations is

log p (yo
t | yo

k,MSB) = log p
(
yo
(k+1):T | yo

k,MSB

)
=

T∑

t=k+1

logPLSB (t) .

In this study, the initial k = 460 observations are chosen as the training

sample, and the log predictive likelihood for the last 243 observations (May 1994-

July 2007) is used for model comparison. Furthermore, we plot the contribution

of each data point in the log predictive likelihood. In this way, we can identify the

observations that contribute to the evidence in favour of the SB model versus the

RW model, the ARMA(1,1) or an AR(1) model. In table 2, the log likelihoods

are calculated by evaluating the log likelihood function at the posterior means of

the parameters. We can see that the SB model has the highest likelihood value.

Furthermore, the log marginal likelihood of the SB model, calculated using the

Gelfand-Dey method, is the highest among the competing models.
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Table 2: Model Comparison Results: Log likelihood and log marginal likelihood are
calculated using the whole sample of 703 observations. Log predictive likelihood is calcu-
lated using the last 243 observations. The competing models are SB, RW, ARMA(1,1),
and AR(1). In order to calculate the log marginal likelihood using the Gelfand-Dey
method (Gelfand and Dey, 1994), we have to calculate the densities of a truncated nor-
mal distribution at posterior draws. An arbitrarily selected value of p determines the
size of the truncated tails. The bigger p is, the more posterior draws are dropped and
the less number of draws can be used to calculate the log marginal likelihood. We se-
lected p = 0.01 in this case. This value of p means the tails of normal distribution are
truncated, which has 0.01 probability in them.

log likelihood log marginal likelihood log predictive likelihood

p = 0.01 460 training sample

SB flat prior −597.1195 −315.0464 −126.1173

RW −631.4283 −635.2478 −138.4045

AR(1) with intercept −632.7988 −637.6467 −167.4863

ARMA(1,1) with intercept −598.5505 −516.7798 −130.1119

The predictive likelihood of the last 243 observations also indicates that the

SB model outperforms the RW model, the ARMA(1,1) model and the AR(1)

model. At the top left of figure 5, how each observation contributes to the

predictive likelihood for each of the four competing models is plotted. Comparing

the predictive likelihood over multiple horizons for observed data using the four

competing models, we can see that the SB model consistently obtains the highest

predictive likelihood , specifically, in 208 out of 243 observations compared with

AR(1), 242 out of 243 compared with RW, and in 156 out of 243 compared with

ARMA(1,1).

From the top plot in figure 5, the observations from May 1994 to April 2007

contribute almost equally well to the predictive likelihood using either RW or SB

model. The AR(1) and ARMA(1,1) models also receive high predictive likeli-

hoods with observations from this sample period. However, the RWmodel and SB

model often receive higher predictive likelihoods than the AR(1) or ARMA(1,1)

models with observations from April 2007 to December 2011. This result sug-

gests that an SB model is better in predictions compared with an AR(1) model,

especially over the crisis period and immediately after.
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Forecasting Exercise

Regarding inflation forecasting, a considerable section of the literature focuses

on investigating the forecasting performance of linear and nonlinear econometric

models in both a univariate and multivariate time series framework, e.g., Stock

and Watson (1999, 2014), Barnett et al. (2014), Maheu and Song (2014). In

Canova (2007), the bivariate and trivariate models suggested by the economic

theory add marginal predictive accuracy compared with the univariate model

after a horse race between multivariate models and univariate models. Based on

the forecasting comparison results, it turns out that the random walk (RW) model

or a lower order AR model often provides the smallest RMSFE, and therefore,

are hard to beat, see Atkeson and Ohanian (2001).

In this section, with an application to monthly U.K. inflation, we simulate

forecast densities by taking advantage of the Bayesian framework. We then com-

pare the forecasting capacity of the SB model with other leading forecasting

models, such as the AR(1) model, ARMA(1,1) and the RW model.

Granger and Andersen (1978a, p. 74) discussed the invertibility conditions of

the bilinear models. Additionally, in Subba Rao (1981), the invertibility condi-

tions for a generalized bilinear time series model are provided. Using the defini-

tion of invertibility in Granger and Andersen (1978b), the SB process is invertible

if |bσε| < 0.606. Limiting ourselves to a simple case, based on the estimation re-

sults from table 1, this nonlinear SB model is not subject to a non-invertibility

problem. Therefore, the SB forecasting model can be used to associate the present

events with past events in a unique manner.

Denoting At−1 = a + bεt−1, the SB data generating process can be rewritten

as

yt = (a + bεt−1) yt−1 + εt = At−1yt−1 + εt.

Therefore, we can write yt+1 = Atyt + εt+1, where At = a + bεt. The one-step-

ahead point forecast of yt+1 conditional on the current observation yt, denoted

ỹSBt+1|t is

ỹSBt+1|t = Et [yt+1 | yt] = Et [Atyt + εt+1 | yt]
= Âtyt + E (εt+1 | yt) = Âtyt,
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where Ât = â + b̂ε̂t. The estimates of all past shocks ε̂i with i = 2, ..., t can be

retrieved using ε̂t = yt −
(
â+ b̂ε̂t−1

)
yt−1, where the initial shock ε1 is assumed

to be 0.

If we denote the two-step-ahead point forecast of yt+2 conditional on the

current observation yt as ỹSBt+2|t, given εt+1 ∼ N (0, σ2
ε), then the two-step-ahead

forecast ỹSBt+2|t is

ỹSBt+2|t = Et [yt+2 | yt] = EtEt+1 [yt+2 | yt] = EtEt+1 [At+1yt+1 + εt+2 | yt]
= EtEt+1 [At+1 (Atyt + εt+1) | yt] = â

(
â+ b̂ε̂t

)
yt + b̂σ̂2

ε .

According to the law of iterated expectations, an h-step-ahead point forecast can

be summarized as

ỹSBt+h|t = Et [yt+h | yt] = EtEt+1 . . . Et+h−1 [yt+h | yt] (9)

= âh−1
(
â+ b̂ε̂t

)
yt +

âh−1 − 1

â− 1
b̂σ̂2

ε .

In the RW forecasting model, the one-step-ahead or multi-step-ahead point

forecasts will all be the same, conditional on current information:

ỹRW
t+1|t = Et (yt+1 | yt) = yt,

ỹRW
t+h|t = EtEt+1 . . . Et+h−1 [yt+h | yt] = yt.

To evaluate forecasting capacity, we used the conventional RMSFE for both

the one-step-ahead and multi-step-ahead forecasting exercises. Both the fixed

rolling window forecast and the expanding rolling window forecast are applied.

This ad-hoc rolling window approach then allows the estimated coefficients using

the AR model and the ARMA(1,1) model to vary over time.

To conduct the fixed rolling window forecast, we choose a window size con-

taining T (T = 460) observations for parameter estimations, where T is smaller

than the total number of observations N (N = 703). Iterated estimation is car-

ried out for periods N − T with a fixed number of observations T that is, a fixed

window size. Forecasting using an expanding rolling window allows the calibra-

tion sample to grow for each calibration period. The initial T observations are

17



Figure 6: SB: Forecast density fan
chart with a fixed rolling window; the
calibration sample size is 460.
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Figure 7: SB: Forecast density fan
chart with an expanding rolling window;
the calibration sample size is 460.
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Figure 8: AR(1): Forecast density fan
chart with a fixed rolling window; the
calibration sample size is 460.
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Figure 9: AR(1): Forecast density fan
chart with an expanding rolling window;
the calibration sample size is 460.
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used as the first calibration sample. Then, in each iteration with an expanding

rolling window, the window expands on adding one more observation.

Table 3 summarizes all RMSFE using the SB, RW, ARMA(1,1) and AR(1)

forecasting models, where the fixed rolling window size is chosen as 460, and the

first expanding rolling window also starts with the initial 460 observations. The

SB forecasting model outperforms the RW, ARMA(1,1) and AR(1) forecasting
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Table 3: Root mean squared forecast errors (RMSFE) calculated using the SB, RW, AR(1)and ARMA(1,1) forecasting models. The
forecast horizon extends from one-step-ahead forecasts to 24-step-ahead forecasts. The fixed rolling window and expanding rolling
window approaches are applied. The forecasting period covers from May 1994 to July 2014.

Fix460 1-step 2-step 3-step 4-step 5-step 6-step 7-step 8-step 9-step 10-step 11-step 12-step
SB 0.2722 0.4107 0.5330 0.6310 0.7110 0.7769 0.8262 0.8716 0.9080 0.9424 0.9720 0.9984

RW 0.2749 0.4157 0.5390 0.6385 0.7204 0.7883 0.8396 0.8870 0.9258 0.9625 0.9941 1.0216
AR(1) 0.2770 0.4160 0.5383 0.6370 0.7184 0.7858 0.8367 0.8839 0.9226 0.9592 0.9908 1.0183

ARMA(1,1) 0.2957 0.4157 0.5389 0.6384 0.7203 0.7882 0.8395 0.8870 0.9258 0.9625 0.9941 1.0216

13-step 14-step 15-step 16-step 17-step 18-step 19-step 20-step 21-step 22-step 23-step 24-step
SB 0.9951 0.9867 0.9674 0.9487 0.9356 0.9216 0.9270 0.9357 0.9529 0.9787 1.0024 1.0296

RW 1.0193 1.0115 0.9934 0.9759 0.9642 0.9526 0.9615 0.9740 0.9954 1.0261 1.0544 1.0862
AR(1) 1.0161 1.0084 0.9905 0.9734 0.9619 0.9506 0.9597 0.9723 0.9939 1.0245 1.0527 1.0844

ARMA(1,1) 1.0193 1.0115 0.9934 0.9759 0.9642 0.9526 0.9615 0.9740 0.9954 1.0261 1.0544 1.0862

Ex460 1-step 2-step 3-step 4-step 5-step 6-step 7-step 8-step 9-step 10-step 11-step 12-step
SB 0.2722 0.4108 0.5332 0.6313 0.7112 0.7772 0.8264 0.8717 0.9081 0.9422 0.9715 0.9977

RW 0.2749 0.4157 0.5390 0.6385 0.7204 0.7883 0.8396 0.8870 0.9258 0.9625 0.9941 1.0216
AR(1) 0.2763 0.4157 0.5380 0.6367 0.7182 0.7855 0.8363 0.8835 0.9221 0.9586 0.9901 1.0175

ARMA(1,1) 0.2940 0.4157 0.5389 0.6384 0.7203 0.7882 0.8395 0.8870 0.9258 0.9625 0.9941 1.0216

13-step 14-step 15-step 16-step 17-step 18-step 19-step 20-step 21-step 22-step 23-step 24-step
SB 0.9943 0.9858 0.9668 0.9482 0.9353 0.9217 0.9279 0.9369 0.9544 0.9808 1.0047 1.0324

RW 1.0193 1.0115 0.9934 0.9759 0.9642 0.9526 0.9615 0.9740 0.9954 1.0261 1.0544 1.0862
AR(1) 1.0152 1.0074 0.9895 0.9723 0.9608 0.9495 0.9586 0.9713 0.9928 1.0236 1.0519 1.0838

ARMA(1,1) 1.0193 1.0115 0.9934 0.9759 0.9642 0.9526 0.9615 0.9740 0.9954 1.0261 1.0544 1.0862
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models on all occasions providing the smallest RMSFE. Comparing the fixed

rolling window method with the expanding rolling window method, both methods

provide very similar RMSFE.

Note that RMSFE in table 3 are obtained with a very large rolling window.

Therefore a linear model might have been potentially disadvantaged. It is intu-

itive that when the calibration period is big, rich dynamics in the data become

inevitable. Therefore, a nonlinear model, which allows for more dynamics, may

perform better than a simple linear model in forecasting.

Table 4 provides RMSFE of the competing forecasting models by using a

rolling window with a size of 48, i.e. four years of inflation data. The forecasting

period covers from October 2005 to July 2014.

Also table 4 shows that linear models perform no worse than the advocated

SB model. The linear AR(1) model becomes attractive by providing the smallest

RMSFE most of the time. The SB model only provides the smallest RMSFE for

two-step-ahead forecasts. However, the SB model provides the second smallest

RMSFE for all other multi-step-ahead forecasts.

Nonetheless, we have to address that it is not striking that AR(1) only fore-

casts marginally better than the SB model. Intuitively, a small sample with less

dynamics might be better modelled with a simple linear model.

In order to compare the forecasting accuracy of all linear forecasting mod-

els relative to the SB forecasting model, table 5 presents the Diebold-Mariano

test statistics. The forecasting errors are obtained from fixed rolling window

forecasting with sizes of 460 and 48, separately.

Table 5 shows that when a window size is big, i.e. 460, the SB model per-

forms better than the linear AR(1), RW(1) and ARMA(1,1) models with negative

Diebold-Mariano test statistics. However, the SB model’s forecasting accuracy

is only significantly better, at the 10 percent level, than the linear models with

one-step-ahead forecasting. When a fixed rolling window with a size of 48 is ap-

plied, the linear AR(1) model in general performs marginally better than the SB

model. Moreover, in no cases does the AR(1) predict significantly better than

the SB model.

Using the MCMC draws, it is straightforward to simulate the one-step-ahead

and multi-step-ahead predictive distributions. Because the calibrating sample

changes as the window rolls, the simulated forecast distributions would, therefore,
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Table 4: Root mean squared forecast errors (RMSFE) calculated using the SB, RW, AR(1) and ARMA(1,1) forecasting models. The
forecast horizon extends from one-step-ahead forecasts to 24-step-ahead forecasts. We applied a fixed rolling window approach with a
window size of 48. The forecasting period covers from October 2005 to July 2014.

Fix48 1-step 2-step 3-step 4-step 5-step 6-step 7-step 8-step 9-step 10-step 11-step 12-step
SB 0.3499 0.5630 0.7513 0.9026 1.0304 1.1412 1.2273 1.2956 1.3473 1.3873 1.4167 1.4476
RW 0.3495 0.5640 0.7522 0.9091 1.0405 1.1575 1.2500 1.3223 1.3832 1.4298 1.4684 1.4912

AR(1) 0.3851 0.5761 0.7466 0.8884 1.006 1.1107 1.1952 1.2608 1.3164 1.3573 1.3910 1.4107
ARMA(1,1) 0.3598 0.5639 0.7522 0.9090 1.0405 1.1575 1.2500 1.3223 1.3832 1.4298 1.4684 1.4912

13-step 14-step 15-step 16-step 17-step 18-step 19-step 20-step 21-step 22-step 23-step 24-step
SB 1.4489 1.4548 1.4307 1.3961 1.3816 1.3876 1.3995 1.4226 1.4568 1.5076 1.5513 1.5850
RW 1.4792 1.4570 1.4177 1.3789 1.3484 1.3266 1.3277 1.3389 1.3644 1.4105 1.4517 1.5036

AR(1) 1.3999 1.3801 1.3462 1.3133 1.2906 1.2760 1.2805 1.2954 1.3221 1.3669 1.4073 1.4572
ARMA(1,1) 1.4792 1.4570 1.4177 1.3789 1.3484 1.3266 1.3277 1.3389 1.3644 1.4105 1.4517 1.5036
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change over time. We can use fan charts to illustrate the time-varying forecasting

distributions, as well as the time-varying forecasting uncertainty. Figures 6 – 9

plot the fan charts using the SB and AR(1) forecasting models. In figure 6,

the forecast uncertainties simulated using a fixed rolling window are very similar

to those in figure 7. This is probably because the fixed rolling window size

covers 460 observations, which is large. Therefore, the estimated σ̂2
ε from a fixed

rolling window method is not significantly different from the σ̂2
ε achieved from

an expanding rolling window method. As a result, the forecasting distributions

achieved from these two methods are similar. In particular, the training sample

covers from January 1956 to April 1994, which contains a period of high inflation.

Empirical results show that the level of inflation persistence fell during the 2000s,

and there is less variation compared with the 1980s. These results suggest that

inflation has been more anchored in the last two decades.

4 Conclusion

This study investigated the first order bilinear model with a single bilinear term

using a Bayesian approach. Upon application to monthly U.K. inflation data

from January 1956 to July 2014, we found that the SB model fits the underlying

process of U.K. inflation well.

The high persistence in the underlying process varies over time, and the es-

timated time-varying autoregressive coefficients are below one most of the time.

However, the coefficients are close to one (or exceed one) if the idiosyncratic

shock in the previous period is large and positive. Ignoring the bilinear term b

may lead to incorrect inferences, thereby inducing severely distorted forecasts.

Motivated by Brunner and Hess’s (1995) views regarding the potential problems

in estimating the bilinear model with the MLE, we developed an efficient MCMC

sampling algorithm to estimate the SB model where the moment conditions are

met.

Overall, the SB model outperforms the RW, ARMA(1,1) and AR(1) models

for both one-step-ahead and multi-step-ahead out-of-sample forecast when the

training data contains rich dynamics, or covers a long period of time. In terms

of predictive likelihood, the SB model is superior to the RW, ARMA(1,1) and

AR(1) models for the majority of forecast observations (May 1994 – July 2014).
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Table 5: We present Diebold—Mariano forecast accuracy comparison tests of our SB model forecasts against the RW, AR(1) and
ARMA(1,1). The null hypothesis is that the two forecasts have the same mean squared error. Negative values indicate superiority of
our SB model forecasts, and bold denote significance relative to the asymptotic null distribution at the 10 percent level.

Fix48 1-step 2-step 3-step 4-step 5-step 6-step 7-step 8-step 9-step 10-step 11-step 12-step
RW 0.0632 -0.0481 -0.0270 -0.1388 -0.1672 -0.2155 -0.2469 -0.2475 -0.2955 -0.3201 -0.3533 -0.2779

AR(1) -1.9161 -0.4448 0.1382 0.4011 0.5876 0.5775 0.5054 0.4612 0.3436 0.2952 0.2206 0.2902
ARMA(1,1) -0.8591 -0.0481 -0.0270 -0.1388 -0.1672 -0.2155 -0.2469 -0.2475 -0.2955 -0.3201 -0.3533 -0.2779

13-step 14-step 15-step 16-step 17-step 18-step 19-step 20-step 21-step 22-step 23-step 24-step
RW -0.1801 -0.0128 0.0754 0.0971 0.1915 0.3452 0.3896 0.4294 0.4555 0.4351 0.3966 0.3217

AR(1) 0.3491 0.5107 0.5519 0.5097 0.5687 0.6831 0.6929 0.7079 0.7276 0.6908 0.6371 0.5709
ARMA(1,1) -0.1801 -0.0128 0.0754 0.0971 0.1915 0.3452 0.3896 0.4294 0.4555 0.4351 0.3966 0.3217

Fix460 1-step 2-step 3-step 4-step 5-step 6-step 7-step 8-step 9-step 10-step 11-step 12-step
RW -1.6925 -1.2165 -1.0534 -0.9466 -0.8794 -0.8115 -0.7840 -0.7765 -0.8000 -0.8250 -0.8409 -0.8420

AR(1) -1.4618 -0.8113 -0.6144 -0.5423 -0.5330 -0.5151 -0.5153 -0.5318 -0.5706 -0.6133 -0.6435 -0.6549
ARMA(1,1) -2.9093 -1.2165 -1.0534 -0.9466 -0.8794 -0.8115 -0.7840 -0.7765 -0.8000 -0.8250 -0.8409 -0.8420

13-step 14-step 15-step 16-step 17-step 18-step 19-step 20-step 21-step 22-step 23-step 24-step
RW -0.8271 -0.8018 -0.7829 -0.7653 -0.7530 -0.7597 -0.8029 -0.8470 -0.8972 -0.9403 -0.9758 -0.9966

AR(1) -0.6523 -0.9836 -0.9788 -0.9744 -0.9758 -1.0040 -1.0785 -1.1505 -1.2282 -1.2937 -1.3465 -1.3795
ARMA(1,1) -0.8271 -0.8018 -0.7829 -0.7653 -0.7530 -0.7597 -0.8029 -0.8470 -0.8972 -0.9403 -0.9758 -0.9966
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Despite the simple specification of the SB model, the SB model that allows for

changing persistence in a series turns out to be an appealing model for inflation.

Compared with the AR(1) and ARMA(1,1) models, the SB model predicts better

during the period of and after the recent financial crisis, especially when a long

period of historical data is considered for analysis.

Appendix

A Derivation of the Full Posterior Conditionals

The likelihood function of the SB model can be derived recursively. The simplest

SB model is specified as

yt = (a + bεt−1) yt−1 + εt, t = 2, · · · , n,

where y1 is the initial observation and ε1 = 0. Denote y = (y2, · · · , yn)′ and
ε = (ε1, · · · , εn)′. With n ≥ 2,

yn = ayn−1 + byn−1εn−1 + εn,

yn−1 = ayn−2 + byn−2εn−2 + εn−1.

Therefore,

εn−1 = yn−1 − ayn−2 − byn−2εn−2,

and also

εn−2 = yn−2 − ayn−3 − byn−3εn−3.

If we take the substitute equations recursively,

yn = ayn−1 + byn−1 (yn−1 − ayn−2 − byn−2εn−2) + εn

= ayn−1 + byn−1yn−1 − abyn−1yn−2 − b2yn−1yn−2yn−2 + ab2yn−1yn−2yn−3

+b3yn−1yn−2yn−3εn−3 + εn. (10)
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The component with εn−3 can be further substituted. The last component with

error term ε2 is then

(−1)n−1
[
bn−2yn−1 · · · y2ε2

]
= (−1)n−1

[
bn−2yn−1 · · · y2 (y2 − ay1 − bε1y1)

]

= (−1)n−1bn−2yn−1 · · · y2y2 + a (−b)n−2 yn−1 · · · y1 + (−1)nbn−1yn−1 · · · y1ε1.

Because we assume ε1 = 0, equation (10) can be generalized for t = 3, · · · , n as

yt = a
t−1∑

i=1

[
(−b)i−1

i

Π
j=1

yt−j

]
+

t−2∑

i=1

[
(−1)i+1 biyt−i

i

Π
j=1

yt−j

]
+ εt.

If we denote

f1 (t, b) =
t−1∑

i=1

[
(−b)i−1

i

Π
j=1

yt−j

]
,

f2 (t, b) =
t−2∑
i=1

[
(−1)i+1 biyt−i

i

Π
j=1

yt−j

]
, t ≥ 3,

equation (10) can be summarized as

yt = af1 (t, b) + f2 (t, b) + εt,

where f2 (t, b) = 0 with t = 2.

Recall equation (8), the joint prior is

p (a, b, hε) = p (b | hε, a) p (hε | a) p (a) I[a2+b2h−1
ε <1] (a, b, hε) I[M ] (a, b, hε) ,

where M is the region in which the inequalities (4) and (5) are satisfied.

To meet the stationarity condition in equation (3), a is restricted as |a| < 1

and the density of elicited prior for a is

p(a) ∝ 1

(2πV a)
1

2

exp




−

(
a− µ

a

)2

2V a





I[|a|<1] (a) , (11)

where µ
a
is the prior mean and V a is the prior variance. Because equation

(11) does not integrate up to 1, it is preferable to have a prior that allows p(a) to

integrate to 1 within the truncated region for model comparison reasons. Hence, a
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truncated prior of a can be obtained by dividing the unnormalized prior density by

a normalizing constant Pr (1 ||a| < 1|). Therefore, the prior of a is the following:

p(a) =
1

Pr (1 ||a| < 1|) (2πV a)
1

2

exp




−

(
a− µ

a

)2

2V a





I[|a|<1] (a) , (12)

where the normalizing constant Pr (1 ||a| < 1|) can be calculated as

Pr (1 ||a| < 1|) = ΦN

(
1− µ

a√
V a

)
− ΦN

(
−1− µ

a√
V a

)
.

ΦN is used to indicate the c.d.f of a normal distribution.

The joint prior of hε and b conditional on a can be expressed as

p (hε, b | a) ∝
1

βα
ε

ε
Γ (αε)

hα
ε
−1

ε exp

(
−hε

β
ε

)
I[a2+b2h−1

ε <1] (a, b, hε) . (13)

Note that hε and b are both random variables, and therefore the normalizing

constant in equation (13), that we omit for simplicity, does not depend on either

hε or b. The conditional prior for p (hε | a), then, can be obtained by marginalizing

over b in equation (13) as follows:

p (hε | a) ∝
ˆ

p (hε, b | a) db.

To meet the moment conditions, b is restricted as |b| <
√

(1− a2) hε in equa-

tion(2). The conditional prior of hε, p (hε | a), can then be obtained as the

following:

p (hε | a) ∝
ˆ

p (hε, b | a) I[|b|<√(1−a2)hε

] (a, b, hε) db

∝ p (hε, b | a)
ˆ

√
(1−a2)hε

−
√

(1−a2)hε

db

∝ 1

βα
ε

ε
Γ (αε)

hα
ε
−1

ε exp

(
−hε

β
ε

)
· 2
√
(1− a2)hε. (14)

Then, a conditional prior p (b | hε, a) for b is

p (b | hε, a) ∝
1

2
√

(1− a2)hε

I[
|b|<

√
(1−a2)hε

] (a, b, hε) I[M ] (a, b, hε) . (15)
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The full posterior conditionals can be derived by combining the elicited prior

in equation (12, 14, and 15) together with the derived likelihood in equation (7).

Therefore, the posterior conditional of a is a ∼ N
(
µa, V a

)
I[

|a|<
√

1−b2h−1
ε

] (a, b, hε),

a truncated normal distribution with variance V a:

V a =

[
1

σ2
ε

N∑

t=2

[f1 (t, b)]
2 +

1

V a

]−1

,

and mean µa:

µa = V a ·
[
hε

N∑

t=2

f1 (t, b) [yt − f2 (t, b)] +
µ
a

V a

]
. (16)

The posterior conditional for hε follows a truncated gamma distribution hε ∼

Γε
(
αε, βε

)
I[hε>b2/(1−a2)] (a, b, hε), where

αε = αε +
1

2
(N − 1) ,

and

βε =

[
1

β
ε

+
1

2

N∑

t=2

[yt − af1 (t, b)− f2(t, b)]
2

]−1

.

If the value of b2/ (1− a2) is extremely large, hε has to be sampled from the

upper tail of a gamma distribution. For simplicity, we can approximate the tail

with an exponential distribution,

fexp (x) = λ exp (−xλ) ,

where λ = b2/ (1− a2). The inverse c.d.f algorithm together with an exponential

rejection algorithm can be applied to generate random draws of hε.

The value of b depends on the values of a and hε. The posterior conditional

of b is

p (b|y, a, hε) ∝ exp

{
−hε

2

N∑

t=2

[yt − af1 (t, b)− f2(t, b)]
2

}

I[
|b|<

√
(1−a2)hε

] (a, b, hε) I[M ] (a, b, hε) .
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Because b does not follow a standard distribution from which we can generate ran-

dom samples, the Griddy–Gibbs sampling method proposed in Ritter and Tanner

(1992) is used to get random draws of b. Based on the above posterior condition-

als of a, b and hε, a Gibbs sampling incorporated with a Griddy–Gibbs sampling

algorithm can be carried out in a straightforward way to simulate the posterior

distributions of a, b and hε.
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