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Abstract

Background: Recent literature on the comparison of machine learning methods has raised questions

about the neutrality, unbiasedness and utility of many comparative studies. Reporting of results on

favourable datasets and sampling error in the estimated performance measures based on single

samples are thought to be the major sources of bias in such comparisons. Better performance in one

or a few instances does not necessarily imply so on an average or on a population level and simulation

studies may be a better alternative for objectively comparing the performances of machine learning

algorithms.

Methods: We compare the classification performance of a number of important and widely used machine

learning algorithms, namely the Random Forests (RF), Support Vector Machines (SVM), Linear

Discriminant Analysis (LDA) and k-Nearest Neighbour (kNN). Using massively parallel processing on

high-performance supercomputers, we compare the generalisation errors at various combinations of

levels of several factors: number of features, training sample size, biological variation, experimental

variation, effect size, replication and correlation between features.

1King’s College London, Institute of Psychiatry, Department of Biostatistics, London, UK
2King’s College London, Institute of Psychiatry, NIHR Biomedical Research Centre for Mental Health at the South London and

Maudsley NHS Foundation Trust, London, UK
3King’s College London, Institute of Psychiatry, NIHR Biomedical Research Unit for Dementia at the South London and Maudsley

NHS Foundation Trust, London, UK
4King’s College London, Institute of Psychiatry, MRC Social, Genetic and Developmental Psychiatry Centre, UK

*One of the example datasets used in preparation of this article was obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of

ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can

be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Corresponding author:

Mizanur Khondoker, Department of Biostatistics, Institute of Psychiatry, King’s College London, London, UK.

Email: mizanur.khondoker@kcl.ac.uk

Statistical Methods in Medical Research

0(0) 1–20

! The Author(s) 2013

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0962280213502437

smm.sagepub.com

 at University of East Anglia on September 5, 2016smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2013) [5.9.2013–2:22pm] [1–20]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/130216/APPFile/SG-SMMJ130216.3d (SMM) [PREPRINTER stage]

Results: For smaller number of correlated features, number of features not exceeding approximately half

the sample size, LDA was found to be the method of choice in terms of average generalisation errors as

well as stability (precision) of error estimates. SVM (with RBF kernel) outperforms LDA as well as RF and

kNN by a clear margin as the feature set gets larger provided the sample size is not too small (at least 20).

The performance of kNN also improves as the number of features grows and outplays that of LDA and RF

unless the data variability is too high and/or effect sizes are too small. RF was found to outperform only

kNN in some instances where the data are more variable and have smaller effect sizes, in which cases it

also provide more stable error estimates than kNN and LDA. Applications to a number of real datasets

supported the findings from the simulation study.

Keywords

machine learning, cross-validation, generalisation error, truncated distribution, microarrays,

electroencephalogram (EEG), magnetic resonance imaging (MRI)

1 Background

Recent advances in genomic, proteomic, neuroimaging and other high-throughput technologies
have led to an explosion of high-dimensional data requiring development of novel methods or
modification of existing statistical and machine learning techniques to maximise the information
gain from such data. An increase in the number of available methods has logically necessitated
method comparisons in order to find the best one in a particular situation resulting in numerous
publications focusing on comparative studies in the recent bioinformatics and computational
biology literature. A large body of such studies have compared supervised statistical and machine
learning methods for subject classification predominantly based on microarray gene expression or
high-dimensional mass spectrometry data.1–10

Recent literature11–15 on the subject has raised questions about the neutrality, unbiasedness,
utility and the ways most of these comparisons are performed as there is little consensus between
the findings of such studies. A review by Boulesteix et al.11 indicated a tendency in some comparative
studies to demonstrate the superiority of a particular method using datasets favouring the chosen
method. Similar concerns were echoed in a recent Bioinformatics paper by Yousefi et al.15 suggesting
(i) reporting of results on favourable datasets and (ii) the so-called multiple-rule bias where multiple
classification rules are compared on datasets purporting to show the advantage of a certain method,
as the major sources of bias in such comparisons.

There are comparative studies where the objectives are not to demonstrate one particular method
as better than the others. Several such studies, the so-called neutral comparisons, are cited by
Boulesteix et al.11 One limitation of these studies is that the comparisons are mainly based on
real datasets, and a problem with comparing classification performance estimated on real datasets
is the sampling error or noise in the estimated performance measures. Due to the fact that
performance estimates are subject to sampling variability,12,15 the best performance in one or a
few instances does not necessarily imply so on an average or on a population level.

Three alternative routes can potentially be explored for a more robust and objective comparison:
(i) using statistical test to take account of the sampling variability or noise in the performance
estimates, (ii) comparing analytically based on the distribution theory of the performance
estimates and (iii) repeatedly estimating the performance measure on a large number of
simulated/synthetic data to average out the sampling variability or noise from the estimated
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performance criterion. Hanczar and Dougherty14 investigated the possibility of using statistical tests
for performance comparison and concluded that direct comparison based on statistical test is
unreliable and can often lead to wrong conclusions. Analytic comparison would be an elegant
approach but requires finding the sampling distribution of the performance estimates based on
the joint distribution of feature and class variables. Due to the fact that many of the modern
machine learning algorithms are complex (the so-called black-box techniques) and often are not
based on any underlying statistical model, working out the analytic distributional properties of
performance estimates is not possible except for some classical statistically motivated
discrimination methods such as the Linear Discriminant Analysis (LDA16). As indicated by Hua
et al.,17 this leaves open the simulation route as a feasible and viable means of objectively studying
the characteristics of performance measures based on learning algorithms of a wide range of
complexities and forms. This has been realised in other studies in the literature such as Hanczar
and Dougherty,14 which concluded that ‘the classification rule comparison in real data is worse than
in the artificial data experiments. . . . strongly suggest that researchers make their comparative studies
on synthetic datasets’.

We also think that simulation studies are a viable and practical way of figuring out ‘which method
performs better in what circumstances’. The truth is always known in simulated data and therefore it
is easy to investigate bias, the closeness of an estimate to the truth, which is not easy with real data.
Synthetic data also make it possible to study the properties of an estimator at varying levels of
different data characteristics such as variability, sample size, effect size, correlation, etc. However,
the role of real data is also important and should be used to complement the simulation-based
investigation as the patterns and structures in real data are generally much more complex and no
simulation model can fully capture the patterns, dimensions and sources of variability in data
generated from a real biological system.

In this study, we undertake an extensive simulation experiment to compare the classification
performance of a number of important and widely used machine learning algorithms ranging
from the most classical LDA16 to modern methods such as the Support Vector Machines
(SVM18–20). Although comparisons in the literature have mostly been on real data, synthetic data
have also been considered to some extent previously.3,6,7,14 However, simulation studies previously
used were limited in terms of the number of data characteristics and their coverage (parameter
space) considered. The utilities of multi-factorial designs for simulation experiments were
discussed by Skrondal21 in the context of Monte Carlo experiments. Simultaneous investigation
of multiple factors each at multiple levels helps improve the external validity, the extent to which
the results can be gerneralised to other situations and to the population, of the conclusions from the
simulation study. Using massively parallel processing on high-performance supercomputers
(Edinburgh Compute and Data Facility, ECDF, and NIHR Biomedical Research Centre for
Mental Health Linux Cluster), we evaluate and compare generalisation errors (leave-one-out
cross-validation (CV) errors) for a large number of combinations of the following seven factors:
number of variables (p), training sample size (n), biological (or, between-subjects) variation (�b),
within-subject variation (�e), effect size (fold-change, �), replication (r) and correlation (�) between
variables. We believe that there is no one-size-fits-all type method in machine learning, which was
realised long ago by Wolpert22 and reiterated in a recent Bioinformatics editorial paper by Rocke
et al.12 suggesting that there is no classification method that outperforms all others in all
circumstances. The motivation of considering such a wide range of factors is to provide some
guideline about ‘which method performs better in what circumstances’. We also complement our
findings on simulated data by evaluating the performance on a number of real life experimental
datasets generated from a range of high-throughput platforms such as gene expression data from

Khondoker et al. 3

 at University of East Anglia on September 5, 2016smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2013) [5.9.2013–2:22pm] [1–20]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/130216/APPFile/SG-SMMJ130216.3d (SMM) [PREPRINTER stage]

DNA microarrays, neuroimaging data from high-resolution magnetic resonance imaging (MRI)
system, and event-related potential (ERP) data measuring brain activity derived from
electroencephalogram (EEG) system. The simulation program (simData) and performance
estimation program (classificationError) are provided as part of the R package optBiomarker
available from the Comprehensive R Archive Network (http://www.cran.r-project.org/web/
packages/optBiomarker/)

2 Methods

2.1 Classification methods

We compare classification performance of a number of widely used classification methods based on
a diverse range of algorithms and architecture, namely the decision tree and resampling based
method, Random Forests, RF23; kernel-based learning algorithm, SVM18–20; statistically
motivated classical method, LDA24–26; and instance-based (closest training examples) algorithm
k-Nearest Neighbour, kNN.27,28

2.2 Optimising tuning parameters

Most classification algorithms have their own tuning parameters, which ideally require optimisation
on each dataset the methods are applied to. We optimise important user customisable parameters for
each method on every simulated dataset using a grid search over supplied parameter spaces. Our
search spaces for tuning parameters always included the software default values for the respective
parameters to ensure that the performance estimates at optimised parameters are at least as good as
that at the default choices.

The RF method is suggested to be quite robust with respect to the variation of its tuning
parameters. Leo Breiman (in the manual of original FORTRAN program of RF) suggested that
mtry (number of variables to be used as candidates at each node) is the only parameter that requires
some judgment to set. We optimise mtry using a grid search over a random sample of size 5, inclusive
of the default value (mtry ¼ ½

ffiffiffi
p
p
�), from the sequence f1, . . . , ½ p=2�g where the notation [x] represents

the floor function, giving the greatest integer not greater than x. For p5 10, the sequence
f1, . . . , ½ p=2�g will have less than five elements in which case we run the grid search over the
sequence itself. It has been suggested in the literature (e.g., Dı́az-Uriarte and Alvarez de
Andrés29) that there is little need to fine-tune the other parameters of RF for excellent
performance. We however considered optimising nodesize (minimum size of terminal nodes) and
ntree (number of trees to grow) in addition to the mtry parameter. The parameter nodesize controls
the length of the trees as no node with fewer cases than the nodesize will be split. Smaller node sizes
generally give better accuracy and larger node size gives computational advantage for larger datasets
typically at the cost of little loss in accuracy. We however run the grid search over the parameter
space f1ð¼ defaultÞ, 2, . . . , 5g for each simulated dataset to find the optimal nodesize. The parameter
ntree controls the number of trees to be grown in the forest. Intuitively larger forest (more trees)
should be better for stability. Here, we tune ntree for optimal accuracy over the parameter space
f50, 100, 500, 1000g which includes the randomForest default value (500).

We evaluated SVM with linear, polynomial and radial basis function (RBF) kernels and chose
RBF for all calculations as it was found to be less biased than the polynomial kernel in our
simulation and also because it is more general than the linear kernel. This is chosen by using the
kernel argument (kernel¼ ’’radial’’) of the R function svm. The performance of SVM with RBF
kernel may depend on the cost (the C-constant of the penalty term in the Lagrange multipliers) and
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gamma (the inverse-width parameter of RBF kernel function). The cost parameter controls the
margin of the support vectors – a smaller value relaxes the penalty on margin errors (ignores
penalising points close to the boundary) and hence increases the margin of classification. The
value of gamma controls the curvature of the decision boundary – higher values make the
decision boundary more flexible (non-linear). We optimise the cost and gamma parameters using
grid search over the spaces consisting of uniform samples of size 5 (inclusive of the default values)
from the ranges (1/10, 10) and (1=10p, 10=p), respectively. It may be noted that the parameter spaces
are chosen to span between ð1=10Þ � default and 10� default where the default values for the cost
and gamma parameters are 1 and 1/p, respectively. The kNN requires tuning only k (the number of
nearest neighbours) which we optimise over the range f1, 2, . . . ,

ffiffiffi
n
p
g. We use 10-fold cross-

validation, which is computationally less demanding than the leave-one-out cross-validation for
optimising all parameters.

2.3 Performance estimators

We compare performance of the methods in terms of classification error, sensitivity and specificity.
We use leave-one-out cross-validation for estimating these performance measures. This choice was
based on evaluation and comparison of several estimators, namely the leave-one-out CV, 10-fold
CV, bootstrap and 0.632 plus bootstrap30 estimators. The estimators were compared in terms of
bias and variability using simulations for training samples of various sizes. We consider training
sample sizes (n) ranging from 10 to 250, but all four estimators could not be compared for the
entire range as bootstrap and 0.632 plus bootstrap estimators often lead to computational
problems for smaller n due to the extremely unbalanced nature of resampled data. In order to
keep bootstrap-based estimators in the comparison, we restricted the sample size to be at least
50 and a comparison based on average performance over 10 different training sample sizes
(n ¼ 50, 60, . . . , 140) shows bootstrap-based estimators to be less biased, but highly unstable
even for moderate (n � 50) training sample sizes (data not shown). As we plan to compare
methods for a wide range (with n as small as 10) of sample sizes, we make a choice between
leave-one-out and 10-fold CV estimators. Leave-one-out estimators are supposed to be less biased
but more variable for smaller samples than the corresponding 10-fold CV estimators. Our
comparison on simulated data shows that leave-one-out estimator has very similar variability to
10-fold CV estimator (see supplementary Figure S1). We finally choose leave-one-out estimator for
all comparisons as it is applicable to data of any size and is less biased than the 10-fold
CV estimator.

2.4 Example datasets

We evaluated the performance of the methods on a number of real datasets generated from a range
of high-throughput platforms such as gene expression data from DNA microarrays, neuroimaging
data from high-resolution MRI system and ERP data measuring brain activity derived from
EEG system.

2.4.1 Bipolar gene expression data

This dataset is based on a microarray gene expression study31 of adult postmortem brain tissue
(dorsolateral prefrontal cortex) from subjects with bipolar disorder and healthy controls. Affymetrix
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HG-U133A GeneChips platform was used to determine the expression of approximately
22,000mRNA transcripts of 61 subjects (30 bipolar and 31 controls). Preprocessed RMA
normalised data of this experiment are obtained from GEO (http://www.ncbi.nlm.nih.gov/geo/),
accession number GSE5388.

2.4.2 MRI brain imaging data

The brain imaging data were downloaded from the Alzheimer’s disease Neuroimaging Initiative
(ADNI) database (www.loni.ucla.edu/ADNI, PI Michael M Weiner). ADNI was launched in 2003
by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organisations, as a $60 million, five-year public–private partnership.
The primary goal of ADNI has been to test whether serial MRI, PET and other biological
markers are useful in clinical trials of MCI and early Alzheimer’s Disease (AD). Determination
of sensitive and specific markers of very early AD progression is intended to aid researchers and
clinicians to develop new treatments and monitor their effectiveness, as well as lessen the time and
cost of clinical trials. ADNI subjects aged 55 to 90 from over 50 sites across the United States and
Canada participated in the research and more detailed information is available at www.adni-
info.org. 1.5-T MRI data were downloaded from the ADNI website (www.loni.ucla.edu/
ADNI). The description of the data acquisition of the ADNI study can be found at
www.loni.ucla.edu/ADNI/research/Cores/index.shtml. Briefly, data from 1.5-T scanners were
used with data collected from a variety of MR systems with protocols optimised for each type
of scanner. Full brain and skull coverage was required for the MRI datasets and detailed quality
control carried out on all MR images according to previously published quality control
criteria.32,33 We applied the Freesurfer pipeline (version 5.1.0) to the MRI images to produce
regional cortical thickness and volumetric measures. All volumetric measures from each subject
were normalised by the subject’s intracranial volume, while cortical thickness measures were not
normalised and were used in their raw form.34

2.4.3 Electroencephalographic data

EEG signals measure voltage fluctuations recorded from electrodes on the scalp, providing an
index of brain activity. These data were obtained from 41 adults with a current diagnosis of
ADHD (attention deficit hyperactivity disorder) and 47 individuals with no mental health
problems.35 EEG was recorded during a 3-min resting condition (eyes open) and a cued
continuous performance task (CPT-OX; described in detail in McLoughlin et al.36). EEG
montage and recording, as well as re-referencing, downsampling and ocular artefact rejection
procedures were equivalent to those outlined in Tye et al.37 Trials with artefacts exceeding
200�V peak-to-peak in any channel were rejected from the digitally low-pass filtered data
(0.1–30Hz, 50Hz notch filter, 12 dB/oct). Continuous EEG data were segmented into 2-s
intervals and then power spectra were computed using the Fast Fourier Transform with
Hanning window. Quantitative measures of EEG spectral power in the major EEG frequency
bands were averaged in the respective frequency intervals (�: 0.5–3.5Hz, �: 4–7.5Hz, �: 7.5–12.5
and �: 12.5–30Hz). Absolute power density (�V2=Hz), relative power density (the proportion of
each individual frequency domain contributing to the summed power density) and �=� ratios were
calculated across averaged frontal, central and parietal scalp electrode locations. ERPs were
extracted from the CPT-OX as described in McLoughlin et al.36
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2.5 Simulation

2.5.1 Main simulation

Classification problems based on high-dimensional data are predominantly demonstrated using
microarray gene expression data. We therefore design our simulation model to generate realistic
gene expression data where we can systematically vary different data characteristics (variability,
effect size, correlation, etc.) in order to investigate the effects of such data characteristics on the
performance of classification algorithms. To make our simulated data as realistic as possible, we
base our simulation study on a real microarray dataset. We define a set of base expressions (�) by
averaging normalised log2 expression data over 28 human blood samples taken from 28 healthy
individuals.38 The base expression set contains gene expressions for 54,359 markers assayed using
CodeLink human whole genome microarray gene expression platform. Systematic variability and
stochastic noise in the base expression set can be assumed minimal as the data are normalised and
averaged over many individuals. It is therefore reasonable to assume that the base expression levels
(�) are proportional to the true mRNA abundance signal of the corresponding markers. We then
use a random effects model to introduce pre-specified amount of stochastic noise in the data. We
consider two levels of stochastic variability: between-subjects and ^within-subject variations
which are more commonly known as biological and technical variations in the microarray
literature. For a given training sample size (n), we initially simulate data for each marker
independently according to

xij ¼ �þ bi þ 	ij, ð1Þ

where xij denotes the simulated log2 expression value for a marker in the jth replicate (j ¼ 1, 2, . . . , r)
of the ith subject (i ¼ 1, 2, . . . , n). We initially simulate each replicate of every feature as independent
(uncorrelated) variable which can be treated as univariate. Data on each marker are then averaged
over replicates and a multivariate structure is introduced to the data from multiple (p) markers by
imposing a p-dimensional covariance structure via Cholesky root transformation (see below). The
parameter � denotes the base expression (randomly taken from the base expression set), bi is the
random effect for the ith biological subject and 	ij is the random experimental noise. We assume that
bi and 	ij are independent random variables distributed according to Nð0, �2bÞ and Nð0, �2e Þ,
respectively. Model (1) allows generating independent or uncorrelated gene expression data with
different amount of stochastic noise controlled by the parameters �b and �e.

Independence is rarely a realistic assumption for any multidimensional data including gene
expressions where groups of genes operate together in an orchestrated fashion forming network
relationships to perform certain biological functions. Variables within such groups or networks are
generally highly correlated within themselves but are likely to exhibit negligible correlations with
variables from another group. We consider a block-diagonal correlation matrix to model such
network relationships using the hub-Toeplitz39 correlation structure for the hth block:

Rh ¼

1 �h,2 �h,3 �h,4 � � � �h,dh

�h,2 1 �h,2 �h,3 � � � �h,dh�1

�h,3 �h,2 1 �h,2 � � � �h,dh�2

�h,4 �h,3 �h,2 1 � � � �h,dh�3

..

. ..
. ..

. ..
. . .

. ..
.

�h,dh �h,dh�1 �h,dh�2 �h,dh�3 � � � 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

; h ¼ 1, 2, . . . ,H ð2Þ
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where

�h,l ¼ �max þ
l� 2

dh � 2

� �

ð�max � �minÞ, ð3Þ

which decreases from �max to �min for 2 � l � dh. The parameter 
 controls the decline rate which is
linear for 
 ¼ 1. The hub-Toeplitz correlation structure assumes a known correlation between a
network hub (typically the first variable) and each of the other variables within the block where the
correlation between the hub and the lth variable decays as l increases. This is a more realistic
assumption than a block-diagonal correlation matrix with exchangeable structure within blocks
considered by Hua et al.17

We set the number of blocks (H) to 1 for p5 5. For p � 5, the number of blocks is randomly
selected from the set f1, 2, . . . , ½ p=3�g where [x] represents the floor function (the largest integer not
greater than x). If p is a multiple of H, all blocks are considered to have the same dimension,
dh ¼ p=H. If p is not a multiple of H, one of the blocks (typically the first) is considered to have
dimension d1 ¼ ½ p=H� þmod ð p,HÞ and dh ¼ ½ p=H� for the rest (h ¼ 2, 3, . . . ,H) where mod ð p,HÞ
represents the reminder of the division p/H.

We use Cholesky root transformation to impose the block-diagonal hub-Toeplitz structure
R ¼ diagfR1,R2, . . . ,RHg to the uncorrelated data. Suppose �X ¼ ðX1, . . . ,XpÞ is a p-vector of
random variables representing the averages of the markers over their respective replicates. Then
the covariance matrix of �X is given by

V ¼ ð�2b þ �
2
e=rÞIp, ð4Þ

where Ip is a p-dimensional identity matrix. We then compute the Cholesky root C of V
1
2RV

1
2, and the

transformed data with the desired covariance structure is obtained as �Y ¼ �XC.
In order to introduce a systematic source of variation (namely the group difference), we divide the

training sample into two groups, G1 and G2, of sizes n1 ¼ ½n=2� and n2 ¼ n� n1, respectively. The
groups are then made different by an effect size �, where � represents the unstandardised group
difference (log2ðfoldchangeÞ). That is, we add a quantity z� to the simulated expression values in G2
to make the data in G2 to be up- or down-regulated depending on the value of z randomly selected
from f�1, 1g. We generate � from a truncated normal distribution with support A ¼ ½�,1Þ,� � 0.
That is, � follows a truncated normal distribution given by,

f ð�jAÞ ¼

1

�
�
�

�

� �

1��
�

�

� � , � � �51: ð5Þ

where �ð:Þ and �ð:Þ denote the density and distribution function, respectively, of a standard normal
variate and � is the scale of the original (untruncated) zero mean normal variate. The threshold �
ensures that markers we include in the analysis have non-zero effect sizes. We term �min ¼ 2� as the
minimum fold change of the markers to be considered in classification. The expected value of � in
equation (5) is given by

E½�jA� ¼ �
�ð�Þ

1��ð�Þ
: ð6Þ
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The average fold change (�) of the biomarkers included in the classification can be calculated

from � ¼ 2�
�ð�Þ

1��ð�Þ as a function of ð�, �Þ. We intend to investigate the effects of training sample size (n),
feature set size (p), biological variation (�b), experimental variation (�e), effect size (�), replication (r)
and correlation (�) between variables. We consider feature sets of sizes 5, 25, 50, 75 and 100. This
should be a reasonable range to understand the patterns of the effect of feature set size on the
classification performance. Although high-throughput data can have many more variables, typical
goal in classification with such data would be to achieve a good class prediction performance with
the smallest possible number of features, termed the optimal number.40 The preventing factor for
considering larger feature set is the computing cost which increases considerably for every additional
variable in the feature set. The values of other factors considered in our simulation are summarised
in Table 1. We randomly select �max and �min from the uniform distributions Uð0:6, 0:8Þ and
Uð0:2, 0:4Þ, respectively, and set 
 ¼ 1 for each simulated dataset. We use � ¼ 1 in all simulations
and the biomarkers are added in descending order of effect size. All simulations were repeated
500 times, and average error rates were calculated over these 500 datasets for each combination
of the levels of the factors.

2.5.2 Non-normal data

We perform a sensitivity analysis to investigate possible consequences of departure from normally
distributed data. We simulated data from the Poisson family for this sensitivity analysis. Poisson
data differ from its Gaussian counterpart in several respects: (i) Poisson is a discrete distribution
which generates integer valued data rather than interval scaled (Gaussian like) data, (ii) mean–
variance relationship for Poisson data is more restricted than that for Gaussian data as they are
identical to the intensity rate parameter () and (iii) Poisson data are generally positively skewed,
particularly for smaller . It is not possible to exactly match the mean and variance of Poisson data
with their Gaussian counterparts, but we maintained similar (hub-Toeplitz) block diagonal
covariance structure between variables as that for the Gaussian data and conducted the
simulation at various combinations of training sample and feature set sizes
(n ¼ 10, 20, 30, 40, 50, 75, 100, 150, 200; p ¼ 5, 25, 50, 75, 100). We set  ¼ 4 for simulating a single
replicate of each variable and introduce systematic group difference (�) in the same way as that for

Table 1. The values of training sample size (n), biological variation (�b),

experimental variation (�e), minimum fold change (�min), and replication (r)

considered in simulation.

Data characteristics (factors)

n �b �e �minð�Þ r

10 0.1 0.1 1.0 (1.74) 1

20 0.5 0.5 1.5 (2.30) 3

30 1.0 1.0 2.0 (2.88) 5

40 1.5 1.5 2.5 (3.45) 7

50 2.0 2.0 3.0 (4.03) 9

75 2.5 2.5 3.5 (4.61) 11

100 3.0 3.0 4.0 (5.18) 13

150 3.5 3.5 4.5 (5.75) 15

200 4.0 4.4 5.0 (6.33) 17
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Gaussian data. The choice of  was made as a compromise between asymmetry and data variability:
 ¼ 4 is large enough to ensure reasonable data variability and at the same time small enough to
ensure skewness of the distribution.

3 Results and discussion

3.1 Results on main simulation

Average leave-one-out cross-validation estimate of classification error over the 500 replications of
simulated datasets for all the four methods (RF, SVM, LDA and kNN) are plotted against the
values of the various data characteristics in Figures 1 and 2. Top and bottom panels in Figure 1 are
based on (n ¼ 100, p ¼ 25) and (n ¼ 100, p ¼ 75), respectively. Error rates for various combinations
of these two factors (training sample size and feature set size) are displayed in Figure 2. Results in
Figure 1 and the additional plots in the supplementary file (Figure S2) suggest that optimal
performance conditions for LDA, in which case it outperforms all the other methods studied
here, are smaller feature set size (relative to training sample size) and higher correlation. The
region of strength of this method appears to be p=n5 0:5 (number of features smaller than
approximately half the sample size) and higher than moderate correlation (�4 0:6) between
features. As the feature set gets larger (p=n4 0:5), SVM outplays LDA and also performs better
than RF and kNN. The bottom panel of Figure 1 compares the average leave-one-out error for
n¼ 100 and p¼ 75, i.e., p=n ¼ 0:75 showing SVM outperforming the other methods by a clear
margin. The margin of performance differences is higher at higher data variability, smaller effect
size and smaller correlation. The performance of kNN also improves as the feature set size grows
and outperforms LDA and RF unless the data variability is too high and/or effect size is too small.
RF was found to outperform only kNN in some instances where the data are more variable and
have smaller effect sizes, in which cases it also provides more stable error estimates than kNN and
LDA (see supplementary Figure S3).

Corresponding plots for sensitivity and specificity are presented in supplementary Figures S4 and
S5. The performances of all the studied methods were found to be symmetric in terms of sensitivity
and specificity, which is expected to be the case for balanced and symmetrically distributed data. The
patterns and order of performance in terms of sensitivity and specificity were found to be similar to
that of overall classification error.

Figure 2 shows error rates plotted against nine different values of n as given in Table 1. The five
plots correspond to five different values of p (feature set size): 5, 25, 50, 75 and 100, respectively.
Although SVM was found to perform better than the other methods (see Figure 1) for larger
training samples and feature sets, the method does not perform well for smaller (n5 20) samples.
The plot suggests that the sample size should be at least 20 irrespective of the number of variables (p)
for SVM to have better performance. The error rates for LDA are not shown for sample sizes
smaller than the number of variables (p) as the method is degenerate for p4 n. Although LDA is
theoretically valid for any n4 p, it can perform poorly when the feature set size is very close to the
training sample size. The plot suggests that n should be at least as big as 2p for LDA to have
comparable performance. This finding is consistent with that we found earlier.40

To better understand the patterns of classification performance and for the ease of visual
comparisons, three-dimensional plots of average leave-one-out cross-validation error as a joint
function of feature set size and biological variation are displayed in Figure 3. All the plots
correspond to n¼ 100 and the feature set size (p) ranges between 5 and 100 inclusive. The figure
shows the error rate as a joint function of (�b, p) and suggests that the error rate declines as the
feature set size (p) grows for all methods except LDA. As seen previously in the two-dimensional
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Figure 1. Average leave-one-out cross-validation error at varying levels of different data characteristics: biological

variability (�bÞ, experimental noise (�e), lower bound of effect size (�), replication (r) and correlation between

variables (�). Top and bottom panels correspond to feature set sizes of 25 and 75 variables, respectively, and a

common training sample size (n¼ 100). Each plot compares error rates for the four methods at varying levels of a

particular parameter as shown on the x-axis for given values of the other parameters. The given values are selected

from the set (n ¼ 100, �b ¼ 2:5, �e ¼ 1:5, �min ¼ 2, r ¼ 3), the correlation structure being of the hub-Toeplitz form

(except for the plots against �, which are based on single-block exchangeable correlation matrix to make the plot

against � meaningful). For smaller feature set (p¼ 25) and higher correlation (�4 0:6), LDA seems to have performed

uniformly better across all levels of the data characteristics considered. SVM outperformed all other methods

including LDA for larger feature sets (p¼ 75) and kNN was found to be the second best at this level of feature set

size. RF was found to underperform in most scenario except for very noisy data (having high variability and smaller

effect size) in which cases it performed better than kNN.
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plots, performance of LDA starts to deteriorate as the number of variables p exceeds approximately
half the sample size (n=2). LDA, however, outperforms SVM for smaller (5 0:5) feature set to
sample size ratio and vice versa.

The standard errors (SE) of leave-one-out cross-validation error estimates at varying levels of
different data characteristics are plotted in supplementary Figure S3. The SEs of error estimates
appear to follow very similar patterns to that of average error estimates. For example, SVM
provides the most stable (lowest SE) estimates of leave-one-out error in situations where the
feature sets are larger than half the size of training samples (p=n4 0:5), whereas LDA was found
to give most precise estimates of error rates for p=n5 0:5 and higher correlations between features.
LDA however appears to be least stable for larger feature set size to sample size ratio (p=n4 0:5).
The strength of RF is visible in situations where data are more variable and have smaller effect sizes,
in which cases it provides more stable error estimates than kNN and LDA.
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Figure 2. Average leave-one-out cross-validation error at varying levels of training sample and feature set sizes.

Error rates are plotted against nine different values of n as given in Table 1. The five plots correspond to five different

values of p (feature set size): 5, 25, 50, 75 and 100, respectively. All other parameters are set to fixed values:

(�b ¼ 2:5, �e ¼ 1:5, �min ¼ 2, r ¼ 3, � ¼ 0). Although the performance of SVM was found to be better than the

other methods (see Figure 1) for larger training samples and feature sets, the method does not perform well for

smaller (n5 20) samples. The plot suggests that the sample size should be at least 20 for SVM to have its superior

performance. Error rates for LDA are not shown for sample sizes smaller than the number of variables (p) as the

method is degenerate for p4 n. Although LDA is theoretically valid for any n4 p, it can perform very poorly when

the feature set size is very close to the training sample size. The plot suggests that n should be at least as big as 2p for

LDA to have comparable performance.
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3.1.1 Results on non-normal data

This section presents the results for simulation based on non-normal (Poisson) distributions as
described in the simulation section. Supplementary Figure S6 shows average leave-one-out cross-
validation estimate of classification error over the 500 replications of simulated data for all the four
methods (RF, SVM, LDA and kNN) at various combinations of feature set and training sample
size. The patterns and order of performance for Poisson data look very similar to that we observed
for Gaussian data (Figure 2). For example, like Gaussian data, SVM is seen not to perform well for
smaller samples (n5 20) although it outperforms the other methods for larger feature sets with

Figure 3. Three-dimensional plot of average leave-one-out cross-validation error as a joint function of feature set

size (number of variables) and biological variation. All the plots corresponds to n¼ 100 and the five different feature

set size (p ¼ 5,25,50,75,100) as shown on header of the plot. The remaining parameters are set to fixed values as

indicated in the two-dimensional plots. The plots suggest that the error rate declines as the feature set size (p) grows

for all methods except LDA. As seen previously in the two-dimensional plots, error rate for LDA starts to increase as

the number of variables p exceeds beyond n=2. Although SVM outperforms LDA for larger feature sets, LDA

performs better than SVM for smaller feature set size (p5 20).
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bigger samples. And although LDA can theoretically handle feature set size as large as the sample
size (p � n), its performance seem to deteriorate as the feature set size (p) exceeds beyond
approximately half the sample size (e.g., see the plot for p¼ 25). Of the four methods compared,
only LDA is based on normality assumption, but the others do not rely on any distributional
assumption. These results indicate that LDA is robust against some departure from normality
and the other methods perform similarly on normal and non-normal data.

3.2 Results on real data

Real life data are generally much more complex than the simulated data in terms of patterns and
sources of variability. In order to be able to generalise the conclusions, it is important to investigate
whether the findings on simulated data are supported by that from real data. We therefore compare
the performance of the methods on several real datasets generated from various high-throughput
technologies such as gene expression data from DNA microarrays, neuroimaging data from high-
resolution MRI system and ERP data measuring brain activity derived from EEG system. Our
example datasets are mainly from studies in mental health research, but the findings should be
generalisable to any other disease or condition.

3.2.1 Bipolar gene expression data

This dataset is based on a microarray gene expression study31 of adult postmortem brain tissue
(dorsolateral prefrontal cortex) from subjects with bipolar disorder and healthy controls. More
details can be found in the methods section. We select top 25 markers based on the p-values of
the Empirical Bayes test41 for differential expression between the bipolar and control groups for
classification analysis. This selection is made in order to avoid using variables that are just noise and
have no class discriminatory signals. The same approach is used for all other example datasets we
used in this paper. The summary characteristics of bipolar gene expression data based on the
selected markers are given in Table 2. Estimated leave-one-out cross validation errors for bipolar
versus control classification based on the top 25 markers are displayed in Figure 4.

Effect sizes are not that big for this dataset and the classification performance does not appear to
improve as the number of markers grows beyond around 5. However, in terms of comparative
performance SVM appears better (closely followed by LDA) in most instances which is consistent

Table 2. Summary of estimated data characteristics for a subset of top 25 markers from the bipolar gene expression

data [31].

Group Measure Min Mean Med Max

Bipolar Variation* (�̂) 0.14 0.36 0.32 0.91

Correlation (�̂) �0.68 0.27 0.40 0.90

Control Variation (�̂) 0.14 0.27 0.21 0.49

Correlation (�̂) �0.62 0.18 0.24 0.84

Combined Variation (�̂) 0.14 0.32 0.30 0.72

Correlation (�̂) �0.63 �0.18 0.23 0.84

Bipolar vs. Control Log-ratio (j�̂j) 0.16 0.34 0.30 0.85

*Biological variation (�b) and technical/experimental variation (�e) cannot be estimated separately for these data as there is no

replication (r¼ 1). Table shows the combined variability: �̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂2

b þ �̂
2
e

q
.
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with the findings on simulated data. It may be noted that the performance of LDA started to
deteriorate when the number of markers exceeded 18 which is much smaller than the threshold
(n=2 � 30) predicted from simulation studies. This may be due to smaller effect sizes of the markers
that can be easily dominated by noise, which is also supported by the fact that RF performed better
than kNN as we found with the simulated data of this type.

3.2.2 Brain imaging data of Alzheimer’s and control patients

Recent advances in neuroimaging technologies such as the high-resolution MRI system have made it
possible to effectively measure brain-wide regional cortical thickness and regional volume using
automated atlas-based neuroimage segmentation scheme. Such measures are commonly used for
linking Alzheimer’s disease to the physical changes in different brain regions, e.g., hippocampus and
entorhinal cortex. In this study, we consider brain imaging data from the US-based ADNI study
(www.loni.ucla.edu/ADNI) for classifying patients on the basis of their regional cortical thickness
and volume measures. Further information on the data and the protocols for generating such
measures can be found in the method section. We select the top 25 measures on a sample of 418
(186 AD, 222 Controls) patients based on the p-values of the Empirical Bayes test41 for difference in
means between the AD and control (CTR) groups for classification analysis. The summary
characteristics of imaging data based on the selected markers are given in Table 3. The
classification performances of the four methods (RF, SVM, LDA and kNN) for the AD versus
CTR classification are displayed in Figure 5. Effect sizes (�) are higher for this dataset and the
performances of the methods appear very close to each other. This is expected and supported by the
findings from simulation (e.g., Figure 1) indicating that the performance differences gets narrower as

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Number of markers

E
rr

or
 R

at
e 

(le
av

e−
on

e−
ou

t)

●

●

●
●

●
●

●
● ●

●
●

●

●
● ● ●

●
● ● ●

●
● ● ●

●

5 10 15 20 25

n = 61 (30 bipolar, 31 control)

●

RF
SVM
LDA
KNN

Figure 4. Leave-one-out CV errors for classifying 61 patients into Bipolar and Control groups based on top

differentially expressed genes from the bipolar gene expression data.31

Khondoker et al. 15

 at University of East Anglia on September 5, 2016smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


XML Template (2013) [5.9.2013–2:22pm] [1–20]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/SMMJ/Vol00000/130216/APPFile/SG-SMMJ130216.3d (SMM) [PREPRINTER stage]

the effect size increases. Overall, SVM and LDA seem to have performed better in most instances as
supported by the general patterns observed in simulation.

3.2.3 Electroencephalographic data

EEG signals measure voltage fluctuations recorded from electrodes on the scalp, providing an index
of brain activity. EEG data for this example were obtained from 41 adults with a current diagnosis
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Figure 5. Leave-one-out CV errors for classifying 408 patients into AD and Control groups based on top imaging

measures. There is very little differences between the performances of the methods, which is expected due to larger

effect sizes and is supported by the findings from simulation indicating that the performance differences gets narrower

as the effect size increases.

Table 3. Summary of estimated data characteristics for a subset of top 25 brain imaging

markers from the ADNI study.

Group Measure

Summary of estimates

Min Mean Med Max

AD Variation* (�̂) 0.78 1.01 1.01 1.17

Correlation (�̂) �0.54 0.16 0.21 0.78

Control Variation (�̂) 0.56 0.86 0.89 1.01

Correlation (�̂) �0.52 0.14 0.13 0.72

Combined Variation (�̂) 0.78 0.93 0.95 1.00

Correlation (�̂) �0.51 0.15 0.18 0.72

AD vs. Control j�̂j 0.76 0.97 0.92 1.26

*See footnote of Table 2.
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of ADHD (attention deficit hyperactivity disorder) and 47 individuals with no mental health
problems.35 More detail data description is in the method section. Out of 63 measures, only few
were significantly different between case and control groups. We, however, select the top
25 measures based on the p-values of the Empirical Bayes test41 for classification analysis.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of markers

E
rr

or
 R

at
e 

(le
av

e−
on

e−
ou

t)

●
●

●
●

●

●
● ●

●
●

● ●
●

●
●

● ● ●
● ● ● ● ● ● ●

5 10 15 20 25

n = 86 (39 cases, 47 Controls)

●

RF
SVM
LDA
KNN

Figure 6. Leave-one-out CV errors for classifying 86 patients into ADHD and Control groups based on top EEG

measures. This is an example where the effect size is very small and therefore the error rate does not show a steady

declining pattern as the number of variables grows. This however supports the observation from simulation regarding

the strengths of RF in dealing with data having weaker signal and higher noise as RF is seen to outperform LDA and

kNN in this example.

Table 4. Summary of estimated data characteristics for a subset of top 25 features from the

EEG data.

Group Measure

Summary of estimates

Min Mean Med Max

ADHD Variation* (�̂) 0.74 0.93 0.93 1.12

Correlation (�̂) �0.90 0.07 0.04 0.96

Control Variation (�̂) 0.88 1.05 1.06 1.17

Correlation (�̂) �0.91 0.11 0.04 0.97

Combined Variation (�̂) 0.98 0.99 0.99 1.00

Correlation (�̂) �0.87 0.09 0.03 0.95

ADHD vs. Control j�̂j 0.18 0.28 0.27 0.45

*See footnote of Table 2.
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The summary characteristics of EEG data based on the selected measures on 86 subjects (two
ADHD cases excluded due to missing values in some of the selected variables) are given in Table 4.
The classification performances of the four methods (RF, SVM, LDA and kNN) for the ADHD
versus Control classification are displayed in Figure 6.

Of the three example datasets, EEG data have the smallest signal (mean j�̂j ¼ 0.28) to discriminate
between the case and control groups. There are hardly any EEG measures that differ significantly
between the groups. This probably explains why the error curves do not show a steady decline as the
number of features grows. RF, however, is seen to outperform LDA and kNN supporting the
observation from simulation regarding the strengths of RF in dealing with data having weaker
signal and higher noise.

4 Conclusions

We performed an extensive simulation study in order to objectively compare classification
performance of a number of widely used machine learning or statistical algorithms in terms of
generalisation errors, sensitivity and specificity for supervised classification problems. The main
focus of our study was to investigate ‘which method performs better in what circumstances’ by
comparing performances at various combinations of levels of multiple factors (data characteristics).
Results of our simulation study and subsequent examples on multiple real datasets from various
high-throughput technology platforms led to the following conclusions:

. For smaller number of correlated features, number of features not exceeding approximately half
the sample size, LDA was found to be the method of choice in terms of average generalisation
errors as well as stability (precision) of error estimates. The region of strength of LDA appears to
be p=n5 0:5 (number of features smaller than approximately half the sample size) and higher
correlation (�4 0:6) between features.

. As the feature set gets larger (p=n � 0:5) SVM (with RBF kernel) outplays LDA and also
performs better than RF and kNN by a clear margin. The margin of performance differences
is higher at higher data variability, smaller effect size and smaller correlation. However, the
sample size should be at least 20 irrespective of the number of features (p) for SVM to achieve
its superior performance.

. The performance of kNN also improves as the feature set size grows and outplays that of LDA
and RF unless the data variability is too high and/or effect sizes are too small.

. RF was found to outperform only kNN in some instances where the data were more variable and
had smaller effect sizes, in which cases it also provided more stable error estimates than kNN
and LDA.

. All methods showed a tendency to perform better at higher correlation, but RF appears to have
comparatively worse performance when the variables are very highly correlated.

. Performances of all the studied methods were found to be symmetric in terms of sensitivity and
specificity, which is expected to be the case for balanced and symmetrically distributed data.

None of the methods studied (except LDA) require the data to follow any particular probability
distribution and the simulation results should be robust against departures from normality
assumption. We demonstrated this by simulating from non-normal (Poisson) distribution which
indicates that LDA is robust against some departure from normality and the other methods
perform similarly on normal and non-normal data.
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