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Abstract 

One of the main focuses in Huntington’s disease (HD) research, as well as in most of 

the neurodegenerative diseases, is the development of new therapeutic strategies, as 

currently there is no treatment to delay or prevent the progression of the disease. 

Neuronal dysfunction and neuronal death in HD are caused by a combination of 

interrelated pathogenic processes that lead to motor, cognitive and psychiatric 

symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular 

functions could help to identify new molecular targets. Although HD has been 

classically classified as a neurodegenerative disease affecting voluntary movement, 

lately cognitive dysfunction is receiving increased attention as it is very invalidating for 

patients. Thus, an ambitious goal in HD research is to find altered molecular 

mechanisms that contribute to cognitive decline. In this review we have focused on 

those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, 

as well as on the underlying molecular mechanisms, which constitute potential 

therapeutic targets. These include alterations in synaptic plasticity, transcriptional 

machinery, and neurotrophic and neurotransmitter signaling.  
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INTRODUCTION 

In Huntington’s disease (HD), the trinucleotide (CAG) repeat expansion in the 

huntingtin gene results in an extended polyglutamine (polyQ) tract in the huntingtin 

protein which induces a cascade of pathological changes leading to neuronal 

dysfunction and neurodegeneration. HD is characterized by degeneration of the 

striatum and cortical atrophy (1,2), but other brain areas such as the hippocampus, 

thalamus, globus pallidus, and substantia nigra are also affected (2-9). Importantly, 

evidence from both patients (10) and mouse models (11,12) indicates that cell death 

does not occur until late stages of the disease, indicating that neuronal dysfunction, 

including abnormal synaptic plasticity, is an early pathogenic event that precedes 

neuronal death and leads to HD symptoms. Having this in mind, research is focused on 

finding common molecular targets to prevent cognitive impairment by 

preserving/restoring neuronal function at early disease stages, which hopefully will 

help to avoid subsequent neuronal death. Thus, the identification of these early 

cellular and molecular pathogenic events in HD represents an important milestone in 

the design of new therapeutic approaches to cure or delay disease progression. To 

achieve this goal it is mandatory to build from data obtained by analyzing HD mouse 

models, as new therapeutic strategies can be developed based on those altered 

molecular mechanisms found to contribute to cognitive impairment in HD. 

 

Cognitive dysfunction in HD patients  

The first paper on cognitive function in HD was published in 1974 (13), and relevant 

publications on this issue have emerged at an accelerating rate since then (reviewed in 

(14)), so that the nature and variety of cognitive decline in HD patients are well 

documented and have been the focus of recent reviews (15-19). 

 

Corticostriatal dysfunction 

Although HD is characterized by a progressive degeneration of medium-sized striatal 

spiny neurons (MSNs) (20,21), functional and morphological changes in the neocortex 

have been proposed as the initial triggers of striatal pathology, and it has been put 

forward that cortical changes are fundamental for the onset and progression of the HD 
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phenotype, in both humans and animal models (reviewed in (22)). In this context, HD 

patients at pre-symptomatic stages exhibit alterations in tasks related to the 

neocortical function, like those that require strategy shift (23,24), and also in executive 

function, in verbal fluency (25,26), in procedural learning, in planning, and in explicit 

motor learning (25,27-29). Moreover, early corticostriatal alterations in HD patients 

have been further attested by neuroimaging studies showing impaired corticostriatal 

functional connectivity in pre-symptomatic HD subjects (30-32). These corticostriatal 

alterations correlate with decreased activity in the frontal cortex and putamen (33). In 

mid-stage clinically symptomatic HD patients, executive function, verbal fluency, 

perceptual speed and reasoning are strongly affected (34,35), while at more advanced 

disease stages, a sub-cortical dementia gradually develops, with alterations in several 

simple and complex cognitive functions involving slow information processing, 

decreased motivation, depression, apathy and personality changes (36,37). 

Marked nuclear and cytoplasmic accumulation of mutant huntingtin has been 

reported in cortical pyramidal neurons, which overlaps with cortical dendritic 

abnormalities in postmortem brain of patients with low-grade striatal pathology 

(38,39). Indeed, abundant mutant huntingtin is evident in numerous cortical 

dystrophic axons that project to the striatum (40). It has also been reported that stage 

I and II HD patients exhibit specific thinning of the neocortex (5,41). Overall, these 

findings indicate that cortical changes are fundamental to the onset and progression of 

the HD phenotype, evidencing a central role of the cortex at early stages of HD.  

 

Hippocampal dysfunction 

The hippocampus, together with the amygdala and the nucleus accumbens, forms the 

central axis of the limbic system that plays a key role in the formation of declarative 

memory, spatial learning and awareness, navigation, object recognition and visual 

memory, as well as in executive functions (42-49). Studies in HD patients have mainly 

focused on the cognitive functions involving the corticostriatal circuitry, whereas those 

related to hippocampal connectivity are still poorly analyzed. Nevertheless, there is 

clear evidence of hippocampal morphological alterations in HD patients such as a 

reduction in hippocampal volume (4,8,9) and the presence of mutant huntingtin 

aggregates (3,6). Moreover, some cognitive tasks analyzed in human studies such as 
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the evaluation of spatial working memory, spatial recognition memory, object 

recognition memory, episodic memories and some forms of associative learning, can 

involve the participation of the hippocampus and temporal lobe structures 

(43,45,48,50-52). Thus, although no severe deficits in spatial working memory have 

been shown in pre-symptomatic HD patients, their latency in performing these tasks is 

higher than in control individuals (24,27), whereas recognition memory has been 

shown to be affected in pre-symptomatic HD-gene carriers (53). A recent study using 

tests analogous to those employed in HD mouse models describes hippocampal-

dependent impairments in patients in early HD stage, ahead of motor symptoms. 

Patients are unable to learn the location of the platform in the virtual Morris water 

maze and performance correlates to the estimated years to disease onset (54). In 

early-mild symptomatic HD patients, alterations in associative learning, spatial short-

term memory, spatial working memory and recognition memory have been described 

(55,56). Importantly, in middle and more advanced disease stages, a global cognitive 

decline is observed in HD patients (34-37). These alterations involve both 

corticostriatal and hippocampal dysfunction. However, it seems that declarative 

memories more related to hippocampal and corticotemporal functions are not as 

altered as procedural learning, more related to corticostriatal integrity. Actually, in HD 

patients, the hippocampus compensates for gradual dysfunction of the caudate 

nucleus, helping to maintain route recognition close to normal performance (57,58).  

 

Impaired synaptic plasticity and cognitive dysfunction in HD mouse models 

The discovery of the gene mutation responsible for HD occurred in 1993 (59), and this 

allowed for the generation of several HD genetic models. Although the disease has 

been reproduced in diverse species, mouse models are the most extensively used. The 

different genetic mouse models differ in their phenotypes as a result of the way 

mutant huntingtin is inserted into the murine genome: 1) exon-1 transgenic mice: R6, 

N171-82Q and the conditional HD94Q-tet off mice, and 2) full-length transgenic mice: 

Yeast artificial chromosome (YAC), bacteria artificial chromosome (BAC)HD and knock-

in mice (Table 1). HD mouse models display alterations in synaptic plasticity (Table 2) 

and replicate the cognitive impairment observed in HD patients (Table 3), thus 
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providing an excellent opportunity to study the underlying molecular mechanisms and 

to test potential treatments for transfer to patients (for review see (60-63)).  

Electrophysiology is one of the best characterized methods to evaluate synaptic 

plasticity. Long-term potentiation (LTP) and long-term depression (LTD) are commonly 

used paradigms to assess synaptic properties (42,64-66). Several studies indicate that 

excitatory synapses exhibit the most important alterations in HD (67-69), and 

numerous reports have concluded that corticostriatal and hippocampal synaptic 

plasticity are impaired (Table 2). These studies suggest that synaptic deficits, including 

alterations in synaptic transmission, plasticity and aberrant spine density/morphology, 

may be the initial triggers of the cognitive deficits observed in HD (70). Interestingly, a 

recent study using a corticostriatal co-culture cell model from wild-type and YAC128 

mice demonstrated impaired development of excitatory synaptic connectivity and 

reduced dendritic complexity in YAC128 MSNs. Moreover, a number of other HD-

associated synaptopathy features previously reported in the striatum of HD mice at 

mid-to-late stages (71) were also observed (72). Remarkably, mutant huntingtin is 

required pre- and post-synaptically to elicit these effects, which is in agreement with 

previous findings showing that its expression selectively in either striatal or cortical 

neurons is insufficient to fully recapitulate HD behavioral and neuropathological 

phenotype (73-75). In the same line, the absence of mutant huntingtin in cortical 

afferents partially improves striatal neuronal activity and behavior in a conditional 

mouse model of HD (76). Altogether, these studies point to the existence of cell-cell 

pathogenic interactions that shape the progression of striatal deficits. 

 

Altered mechanisms underlying synaptic dysfunction and cognitive 

impairment in HD 

Neuronal dysfunction and cognitive impairment precede motor symptoms and 

neuronal death in HD patients, and they occur long before (or in the absence) of cell 

death in HD mouse models, suggesting that the early cognitive deficits may be a 

consequence of synaptic dysfunction rather than of cell loss (126,155-158). In fact, 

huntingtin binds to a wide range of intracellular proteins, many of them responsible 

for synaptic transmission (159), and mutant huntingtin is present in pre-synaptic 

(160,161) and post-synaptic terminals (162), where it interacts with several synapse-
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related proteins impairing synaptic function in HD mice (161,163,164). Moreover, the 

presence of mutant huntingtin alters numerous cellular and molecular mechanisms 

including protein aggregation, protein-protein interaction, calcium signaling, 

mitochondrial function, transcriptional regulation and chromatin remodeling, vesicle 

transport, neurotransmitter release and receptor activity (163-165). Potentially, all 

these alterations can impact on neuronal functioning, synaptic plasticity and, 

ultimately, cognitive function. Nevertheless, in the following sections we will mainly 

focus on those altered mechanisms that have been demonstrated to participate in 

neuronal dysfunction leading to synaptic plasticity deficits and/or cognitive 

impairment. 

 

Spine loss 

Dendritic spines play critical roles in synaptic transmission and plasticity because 

changes in their morphology and density modulate the formation and maintenance of 

the synapses, enabling the dynamics of neural circuitry (166-168). Several studies 

demonstrate synaptic alterations in MSNs neurons (20,169) and in prefrontal cortical 

pyramidal neurons (170) from HD post-mortem brain samples. Furthermore, studies in 

HD mouse models also provide evidence for altered dendritic morphology (Table 2). 

Here, we describe the mechanisms that contribute to these alterations.  

 

RhoGEF/GAP signaling: Kalirin-7  

Kalirin-7, a postsynaptic brain-specific guanine exchange factor protein for Rho-like 

small GTPases (171), has emerged as a key regulator of excitatory synapses. 

Overexpression of Kalirin-7 causes an increase in dendritic spine density, spine size and 

synapse number, while Kalirin-7 knockdown promotes spine shrinkage and loss in 

cultured hippocampal and cortical neurons (172-175). Importantly, and consistent with 

in vitro experiments, these alterations in excitatory synapses correlate with a decline in 

the magnitude of the hippocampal LTP and reduced glutamatergic synaptic 

transmission in the cortex, and impaired cognitive function (173-177), thus supporting 

a role for Kalirin-7 in learning and memory processes through the modulation of 

structural plasticity. Interestingly, Kalirin interacts with huntingtin-associated protein 1 

(178), and alterations in excitatory synapses occur at early disease stages in HD animal 
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models (67,68,134). These synaptic alterations have been suggested as contributing to 

cognitive symptoms in both HD patients and animal models (56,120,147,149). In a 

recent study, and following a broad analysis of synaptic-related proteins such as NMDA 

(GluN1 and GluN2B) and AMPA (GluA1) receptor subunits, presynaptic (VGlut1 and 

synaptophysin) and postsynaptic (Kalirin-7, PSD95, Shank3 and CaMKII) scaffolding and 

signaling proteins, only Kalirin-7 showed an early and specific reduction in the cortex of 

Hdh
Q7/Q111

 and R6/1 mice, which correlates with cortical dendritic spine alteration, 

impaired corticostriatal synaptic plasticity and motor and procedural learning 

behavioral deficits in 2- and 6-month-old Hdh
Q7/Q111

 mice (136). Supporting the 

hypothesis that loss of Kalirin-7 in the cortex of young HD mice could be associated 

with the early loss of excitatory synapses in HD, Kalirin-7 overexpression restores the 

number of cortical glutamatergic synapses in mature cultured HD cortical neurons 

(136).  

 

GluN3A 

NMDARs play crucial roles in remodeling and maintaining excitatory synapses, and 

their activity is altered in MSNs from HD mice (179). NMDAR hyper-function can be 

detected in HD MSNs at early stages (180,181), well before synapse and spine loss, 

behavioral deficits and neuronal death, pointing to signaling through these receptors 

as a key player in the HD pathogenic cascade. 

PACSIN1 controls the endocytic removal of GluN3A-containing NMDARs (182). 

GluN3A is highly expressed in the brain during early postnatal development to prevent 

premature synapse plasticity and stabilization, but its expression declines afterwards 

(130,183-185). Nevertheless, a recent study found that mutant huntingtin binds to and 

sequesters PACSIN1, causing its subcellular redistribution away from the synapse and 

promoting accumulation of GluN3A-containing NMDARs at the surface of striatal 

neurons. In agreement, GluN3A levels are increased in human HD striatum and in 

striatal membrane fractions obtained from distinct HD mouse models including R6/1, 

YAC128 and Hdh
Q111

 knock-in mice (130), suggesting that this redistribution of GluN3A 

has a pathological role. The contribution of GluN3A reactivation in MSNs as an 

important factor in HD pathogenesis receives support from the finding that 

overexpression of GluN3A replicates the reduced synaptic connectivity observed in 
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MSNs from YAC128 mice, whereas lack of GluN3A corrects the early enhancement of 

NMDAR currents and prevents both early and progressive dendritic spine pathology in 

MSNs from YAC128 mice. Importantly, it also ameliorates striatum-dependent motor 

and cognitive decline (130). Thus, these studies reveal a novel early disease 

mechanism that mediates NMDAR dysfunction and synapse loss in HD MSNs. 

 

Store-operated Ca
2+ 

entry 

GluN3A deletion experiments suggest that GluN3A expression is necessary 

to/permissive of HD pathogenesis (130). Nevertheless, other parallel mechanisms 

seem to be set in motion by the presence of mutant huntingtin, leading to spine loss in 

HD MSNs. Dysregulation of intracellular neuronal Ca
2+

 signaling plays a role in HD 

progression (186-188). Mutant huntingtin interacts with type 1 inositol-1,4,5-

trisphosphate receptor (InsP3R1), a neuronal endoplasmic reticulum (ER) Ca
2+

 release 

channel, causing its overactivation and excessive Ca
2+

 release from the ER (189,190). 

Ca
2+

 release from the ER stimulates neuronal store-operated Ca
2+

 entry (nSOC) 

channels in the plasma membrane (191), and this pathway plays an important role in 

the maintenance of postsynaptic mushroom spines in hippocampal neurons (192-194). 

Interestingly, elevated nSOC was reported in cultured MSNs from YAC128 mice (195), 

suggesting that aberrant InsP3R1 function and disrupted ER Ca
2+

 homeostasis could 

contribute to spine loss in MSNs in HD. Interestingly, InsP3R1 knockdown suppresses 

Ca
2+

 leak from the ER, reduces nSOC levels in spines and is sufficient to prevent spine 

loss in YAC128 MSNs (131).  

 

Impaired neurotrophic signaling: TrkB/p75
NTR

 imbalance 

A deficit in neurotrophic support is considered a key player in HD neuropathology. In 

particular, a reduction in BDNF protein levels was reported in several brain regions of 

HD patients and mouse models (165,196-200). However, this general finding has not 

been replicated in a recent study where cortical BDNF mRNA levels were assessed in 

BACHD and heterozygous Q175 knock-in mice using multiple primers and reference 

genes (201), thus challenging the view that this neurotrophic deficit is a major 

pathogenic mechanism in HD. 
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BDNF exerts trophic effects by binding to its receptors TrkB and p75
NTR

. BDNF 

binding to TrkB receptor has been shown to promote neuronal survival (202,203), 

while BDNF binding to p75
NTR 

could either potentiate Trk function (204-207) or activate 

cell death cascades (208-210). Notably, whereas BDNF induces hippocampal LTP 

through TrkB (211), p75
NTR

 has been involved in regulating LTD without affecting LTP 

(212,213) (for review see (214)). These alterations in synaptic transmission are 

associated with structural changes. Thus, a deficiency in BDNF-mediated intracellular 

signaling causes dendritic abnormalities in the striatum and cerebral cortex (215,216), 

while activation of p75
NTR 

blocks axonal and dendritic elongation and arborization by 

activation of RhoA, a Rho GTPase that negatively regulates neurite elongation and 

actin assembly (213,217).  

Importantly, reduced TrkB levels have been reported in HD cellular and mouse 

models, as well as in HD patients (218-220). Moreover, there is increased p75
NTR

 mRNA 

expression in the caudate, but not in the cortex, of HD patients (220). Therefore, there 

is an imbalance between TrkB and p75
NTR

 expression in the caudate nucleus of HD 

patients, and in the striatum and hippocampus, but not in the cortex, of HD mouse 

models at early stages of the disease (135,221), suggesting that this imbalance 

contributes to early and progressive HD pathology. Interestingly, genetic normalization 

of p75
NTR 

in Hdh
Q7/Q111

 mice rescues hippocampal synaptic plasticity and memory 

function, and prevents hippocampal dendritic spine alterations, likely by normalization 

of RhoA GTPase activity (107,135). Reinforcing the role of p75
NTR

 in cognitive deficits in 

HD, overexpression of p75
NTR

 in the hippocampus of wild-type animals reproduces 

those memory deficits observed in HD mice (135,135), while specific hippocampal 

p75
NTR

 knockdown prevents the manifestation of cognitive impairment. Together, 

these findings demonstrate that p75
NTR

 upregulation plays a role in the synaptic and 

learning and memory deficits observed in HD mice. In agreement with these data, 

overexpression of p75
NTR 

in hippocampal neurons decreases spine density (222), while 

null p75
NTR

 mice exhibit increased hippocampal dendritic spine density, improved 

spatial learning and enhanced LTP (223,224). In addition, Plotkin and colleagues have 

shown that although cortical production of BDNF, its delivery to the striatum and 

activation of TrkB are normal in BACHD and heterozygous knock-in zQ175 HD mice, 

BDNF fails to support corticostriatal LTP specifically at corticostriatal synapses of the 
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indirect pathway. Importantly, this kind of plasticity can be rescued by knocking down 

p75
NTR

 or inhibiting its downstream targets RhoA, ROCK and phosphatase and tensin 

homolog deleted on chromosome 10 (PTEN), indicating that enhanced signaling 

through p75
NTR

 and PTEN antagonizes TrkB function and corticostriatal LTP (201). It 

remains to be determined whether this improvement in corticostriatal connectivity 

can be reproduced in other HD models, and whether it translates into an amelioration 

of corticostriatal-dependent learning and/or motor symptoms.  

 

Cognitive impairment  

Adenosine type 2A receptor 

HD mouse models display reduced reversal learning and working memory deficits 

(102,120,147-149,154,225-229) like early HD patients (230,231). This type of cognitive 

impairment, which significantly affects the patient's quality of life, represents a 

primary dysfunction of the corticostriatal pathway (67,232). In a recent study, Chen 

and colleagues (233) evaluated the ability of adenosine type 2A receptor (A2AR) 

inactivation to reverse the deficits in working memory and synaptic plasticity at early 

stages of HD. Their results show that genetic or pharmacological inactivation of A2AR 

prevents working memory deficits in R6/2 mice, without modifying motor dysfunction. 

Moreover, although wild-type and R6/2 mice display similar LTD and LTP at 

corticostriatal synapses, and pharmacological blockade of A2AR inhibits LTP to a similar 

extent in both genotypes, it selectively reduces LTD amplitude in mutant mice (233). 

Thus, striatal A2AR emerges as a novel target to fight against the cognitive inflexibility, 

namely working memory impairment, reported in the prodromal phase of HD (18,231).  

 

PKA overactivation  

Synaptic plasticity and learning and memory processes depend on an appropriate 

balance between kinase and phosphatase activities (234-236). Changes in the 

expression and activity of different phosphatases (237-246) and kinases 

(139,242,243,247-253) (and reviewed in (254)) have been reported in HD models and 

human brain, suggesting that aberrant function of these proteins likely contributes to 

HD pathogenesis. Although alterations in distinct phosphatases can potentially 

contribute, directly or indirectly, to synaptic plasticity deficits and cognitive decline in 
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HD, this issue remains to be directly addressed (230). Conversely, it has been 

demonstrated that adenosine 3’5’ cyclic-monophosphate (cAMP)-dependent protein 

kinase (PKA) overactivation contributes to hippocampal-dependent synaptic and 

cognitive deficits in exon-1 HD mice (110,139). 

The PKA pathway is known to regulate specific types of long-term synaptic 

plasticity (reviewed in (255)), and to play a critical role in hippocampal-dependent 

learning and memory formation (256,257), but persistent and aberrant activation of 

PKA can lead to memory impairment (240,256,258-260). Likewise, increased 

hippocampal PKA activity leads to cognitive dysfunction in R6/2 mice as demonstrated 

by the beneficial effect of intra-hippocampal injection of Rp-cAMPs, a PKA inhibitor, on 

recognition memory (139). Reinforcing these findings, cAMP levels are higher in 

hippocampal nerve terminals from R6/1 mice than in controls, and dopamine type 1 

(D1) and A2A receptors display increased response to their ligands in mutant mice. 

This leads to PKA overactivation in the hippocampus and participates in an occlusion 

mechanism (110). In fact, a combined chronic blockade of D1R and A2AR, but not a 

single acute or a chronic blockade of either receptor alone, normalizes PKA activity in 

the hippocampus and ameliorates cognitive dysfunction in R6/1 mice (110). Moreover, 

and in contrast to vehicle-injected mutant mice, R6/1 animals injected daily with 

SCH23390 (D1R antagonist) plus SCH58261 (A2AR antagonist) display a significant LTP 

induction in vivo. Overall these data show that D1R and A2AR blockade normalizes 

hippocampal PKA activity, enhances synaptic potentiation at the CA3-CA1 region and 

ameliorates cognitive dysfunction in R6/1 mice (110).  

In HD, non-motor symptoms include sleep and circadian disturbances (reviewed in 

(261)). Interestingly, pathological up-regulation of cAMP/PKA signaling has been 

implicated in sleep and activity abnormalities in fly HD models. Elevated PKA activity in 

healthy flies produces patterns of sleep and activity similar to those found in flies 

expressing mutant huntingtin, whereas genetic reduction of PKA abolishes 

sleep/activity deficits, restores the homeostatic response and extends lifespan in HD 

flies. Remarkably, decreasing PKA also prevents immediate memory impairment in HD 

model flies (262). 

Summing up, aberrant PKA activity may be a general consequence of mutant 

huntingtin expression, and may underlie neuronal dysfunction in distinct brain areas 
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and several HD phenotypes. For instance, abnormalities in sleep and circadian rhythms 

have a negative impact on cognitive, emotional and psychiatric function. 

 

Deficient cGMP signaling 

The nitric oxide/soluble guanylyl cyclase/3',5'-cyclic guanosine monophosphate 

/cGMP-dependent protein kinase (NO/sGC/cGMP/cGK) signaling pathway has been 

widely implicated in synaptic plasticity, and in learning and memory in several brain 

regions, including the hippocampus (reviewed in (263)). Interestingly, neuronal NOS 

(nNOS) mRNA levels are decreased in the caudate of HD patients (264), and changes in 

nNOS protein levels also occur in the striatum and cortex of HD mouse models (265-

269). The study of the integrity of the nNOS/cGMP pathway in the hippocampus of HD 

mice, and of its potential contribution to hippocampal learning and memory deficits, 

has shown that both nNOS and cGMP levels are significantly reduced in the 

hippocampus of R6/1 mice, and that an acute post-training injection with sildenafil, a 

selective inhibitor of the cGMP-specific phosphodiesterase (PDE) 5 (270), increases 

cGMP levels and improves novel object recognition memory and passive avoidance 

learning (271). These data support the idea that decreased hippocampal cGMP levels 

contribute to cognitive dysfunction in R6/1 mice. Another study performed in the rat 

3-nitropropionic acid toxic model of HD shows that sildenafil treatment improves 

memory performance in the Morris water maze (272). Importantly, cGMP levels are 

also reduced in the hippocampus of HD patients (271). Thus, PDE5 inhibition may 

prove to be beneficial in ameliorating hippocampal-dependent cognitive deficits in HD.  

 

Transcriptional dysregulation: CREB and its co-activator CBP 

Transcriptional dysregulation has been shown in HD human brain, as well as in in vivo 

and in vitro disease models (241,273-278). Mutant huntingtin can cause transcriptional 

dysregulation by 1) sequestration of positive transcriptional regulators such as TATA-

binding protein (279), specificity protein-1 (280) or cAMP-response element binding 

protein (CREB) binding protein (CBP) (279,281); 2) loss of interaction with negative 

transcriptional regulators, such as the repressor element-1 transcription/neuron 

restrictive silencer factor (NRSE), resulting in REST/NRSF complex nuclear translocation 

and transcriptional repression of several neuronal-specific genes (282); and 3) 
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increasing ubiquitination and histone methylation, and reducing histone acetylation 

(283). 

CREB is a transcription factor that mediates stimulus-dependent changes in the 

expression of genes critical for neuronal survival, plasticity and growth (284-287). CREB 

activity is regulated by phosphorylation at serine 133 (Ser133) and at additional sites, 

as well as by association with CREB co-activators (288). Indeed, CREB phosphorylation 

at Ser133 facilitates the binding of the transcriptional co-activator CBP (289-292). The 

interaction between CREB and CBP, or other members of the transcriptional 

machinery, facilitates gene expression (291,293). In fact, CBP has emerged as a key 

regulator of CREB-mediated transcription by acting as a CREB transcriptional co-

activator (289,294,295) and as a histone acetyltransferase (HAT) to disrupt repressive 

chromatin structure and allow gene transcription (296-299). Expression of CREB-

related target genes is downregulated in several in vitro and in vivo models of HD 

(197,300,301). Moreover, mutant huntingtin interacts with CBP and blocks its HAT 

activity (302). Importantly, hypoacetylation of histone H3 is associated with 

downregulation of genes in R6/2 mice and knock-in cell lines (303). 

Activity-induced gene transcription is required for normal hippocampal synaptic 

plasticity and memory consolidation (47,304), and compelling evidence indicates that 

CREB is essential for activity-induced memory gene expression (305,306). Additionally, 

several studies show reduced chromatin acetylation and hippocampal LTP and long-

term memory (LTM) deficits in mouse models with compromised CBP activity (307-

312). In line with these data, CBP levels are reduced in the hippocampus of HD patients 

and Hdh
Q7/Q111

 mice in close correlation with the presence of spatial and recognition 

memory deficits (150). Moreover, reduced CBP levels in Hdh
Q7/Q111

 mice are associated 

with selective dysregulation of CREB/CBP-target genes related to memory and synaptic 

plasticity (c-fos, Nr4a2 and Arc) (150). Reduced CBP expression and/or activity have 

been associated with diminished H3 acetylation in mouse models of cognitive 

dysfunction (308,313,314). Consistently, decreased hippocampal CBP levels are 

paralleled by diminished H3 acetylation in Hdh
Q7/Q111

 mice, suggesting that lower CBP 

levels and decreased histone acetylation are responsible, at least in part, for memory 

dysfunction in HD (150). In agreement with studies showing that CBP HAT activity plays 

a crucial role in memory consolidation processes (313), and that trichostatin A (TSA), a 
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general histone deacetylase inhibitor, enhances hippocampal-dependent memory 

consolidation by increasing the expression of specific genes during memory 

consolidation (315), TSA reverses LTM impairment in Hdh
Q7/Q111

 mice, accompanied by 

increased levels of c-fos and Arc (150).  

 

Therapeutic strategies 

Currently, there is no known effective treatment for cognitive dysfunction in HD as so 

far clinical trials have tested traditional cognitive enhancers and anti-depressants 

without signs of efficacy (reviewed in (316)).  

The fact that in HD neuronal death does not occur until late stages of the disease 

suggests that neuronal dysfunction and abnormal synaptic plasticity occur earlier and 

are responsible for cognitive decline, which opens a window for therapeutic 

interventions. Moreover, targeting those early pathophysiological events is likely to 

provide better therapeutic outcomes than trying to prevent cell death once neurons 

are severely affected. As explained above, the presence of mutant huntingtin alters 

distinct cellular and molecular mechanisms, all of which can directly or indirectly 

impact on neuronal functioning, leading to synaptic and cognitive impairment. In this 

line, several genetic, pharmacological and non-pharmacological approaches have 

proved beneficial in HD models, not necessarily because they specifically target an 

altered mechanism or signaling cascade that participates in neuronal dysfunction 

leading to cognitive impairment, but because they improve the expression of receptor 

subunits, neurotrophic factors or other molecules involved in plasticity processes, 

and/or because they reduce the level of detrimental effectors. Next, we provide one 

such example. PDEs are the enzymes responsible for cAMP/cGMP degradation that 

through their different subcellular distribution allow compartmentalization and tight 

temporal and spatial control of cyclic nucleotide signaling (317). PDE inhibitors are 

increasingly being considered as cognitive enhancers (318-321), and the cognitive-

enhancing properties of a PDE10A inhibitor were recently examined in R6/1 mice. 

PDE10A, a cAMP/cGMP dual-substrate PDE, is enriched in nuclear fractions both in 

wild-type and R6/1 mouse hippocampus, without differences in its levels or 

intracellular distribution between genotypes. Chronic treatment with papaverine, a 

PDE10A inhibitor, improves spatial and object recognition memory in R6/1 mice, and 
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likely works through the activation of the PKA pathway, as the phosphorylation level of 

distinct cGK substrates is not modified in either genotype (322). These results appear 

to contradict the finding that increased PKA signaling in R6 mice hippocampus leads to 

hyperphosphorylation of PKA membrane targets implicated in synaptic plasticity and 

learning and memory, and to impairment of object recognition and spatial memory 

(139), while targeting aberrant PKA signaling improves hippocampal-dependent 

synaptic and cognitive function (110,139). Overall, these studies support the idea that 

hyperactivity of hippocampal PKA in HD mice is not a global event, but rather 

restricted to specific subcellular domains (139,322). In fact, the memory-enhancing 

effect of papaverine in R6/1 mice likely involves a partial, but significant, recovery of 

GluA1 phosphorylation levels together with increased CREB phosphorylation in the 

hippocampus (322). Thus, PDE10 might be a good therapeutic target to improve 

hippocampal cognitive impairment in HD. Remarkably, although striatal PDE10A levels 

are reduced well before motor symptom onset in HD (323), as confirmed by a study 

with the radioligand [18F] MNI-659A (324), PDE10 is being targeted for striatal 

dysfunction. Indeed, PDE10A inhibitors have attracted interest as potential novel 

pharmacotherapies for HD (325-329), with ongoing clinical trials (329). Nevertheless, in 

this section we chose to focus on those strategies with therapeutic potential for 

treating cognitive dysfunction in HD whose choice is justified by the identification of an 

affected pathway. 

Functional and morphological changes in the neocortex have been proposed as 

initial triggers of striatal pathology in HD. In this context, there is an early and specific 

reduction in cortical Kalirin-7 levels in HD mice, paralleled by early cortical dendritic 

spine alteration, impaired corticostriatal LTP and cognitive deficits (136). It is 

noteworthy that the number of cortical glutamatergic synapses in cultured HD neurons 

can be restored upon Kalirin-7 overexpression (136). Although the study of the impact 

of Kalirin-7 overexpression in adult HD mice is hampered by methodological 

limitations, the early loss of Kalirin-7 could contribute not only to decreased spine 

density, but probably also to altered corticostriatal synaptic transmission and cognitive 

deficits. In summary, the identification of Kalirin-7 downregulation at early HD stages 

and its role in modulating HD cortical excitatory synapses (136) allows us to 

hypothesize that cortical function could be restored by increasing the levels of Kalirin-
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7. Such increase could be the first step to prevent subsequent loss of corticostriatal 

connectivity, striatal dysfunction and, later, striatal neuronal degeneration.  

Concerning spine loss in MSNs, two mechanisms have been elucidated. One 

involves aberrant reactivation of juvenile GluN3A subunits, which promotes early and 

progressive dendritic spine pathology that likely underlies cognitive and motor 

impairment, and ultimately, neuronal death. In fact, lack of GluN3A ameliorates 

striatum-dependent cognitive and motor decline, and reduces striatal cell death in 

YAC128 mice (130), which has led to the proposal that GluN3A might be a good target 

for therapeutic approaches in HD (325). The other mechanism is associated with 

dysregulation of intracellular neuronal Ca
2+

 signaling, as enhanced nSOC has been 

shown to cause synaptic loss in HD MSNs (131). Interestingly, inhibition of nSOC with 

EVP4593 not only prevents spine loss in YAC128 MSNs, in vitro and in vivo (131), but 

also protects cultured HD MSNs against glutamate toxicity and improves motor 

symptoms in a fly model of HD (195), thus supporting the possibility that targeting 

nSOC could have a beneficial impact on HD. 

Another crucial regulator of synaptic plasticity and neuronal survival proposed as 

an excellent therapeutic target for treating the clinical hallmarks of HD is BDNF 

(164,165,330). However, BDNF administration has shown important methodological 

drawbacks in HD models (200), and several studies indicate that increasing BDNF levels 

only partially improves HD phenotype (129,141,331-333). Previous studies conducted 

by our group and others demonstrate reduced TrkB levels in patients and in different 

HD models (218-220). Together with the emerging evidence of imbalanced TrkB and 

p75
NTR

 expression/signaling in HD (135,201,220,221), this could contribute to the 

incomplete reversion of HD pathology by the administration of the neurotrophin.  

Although a general genetic reduction of p75
NTR

 levels in Hdh
Q7/Q111

 mouse brain 

does not prevent motor learning deficits or corticostriatal LTP abnormalities, the levels 

of DARPP-32, a striatal marker known to be reduced in HD mice from early stages 

(334), are reestablished (135). These results suggest that striatal neuronal dysfunction 

can be slightly ameliorated, but not prevented, by downregulation of aberrant p75
NTR

 

expression in Hdh
Q7/Q111

 brain. On the other hand, specific knockdown of striatal 

p75
NTR

 reverses corticostriatal LTP abnormalities in BACHD mice (201). In this context, 

it is important to note that p75
NTR

 levels are not altered in the cerebral cortex of HD 
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mice and patients (135,221), suggesting that decreased cortical p75
NTR

 levels in HD 

mice can be deleterious for synaptic plasticity and cognitive processes. Altered 

expression of TrkB and p75
NTR

 receptors disturbs BDNF-induced neuronal protection in 

a cellular HD model, and reduction of p75
NTR

 levels in corticostriatal slices of 

Hdh
Q111/Q111

 mice not only increases cell survival, but also prevents the cell death 

induced by BDNF (221). Therefore, targeting p75
NTR

 has the potential to improve 

corticostriatal plasticity and reduce cell death in HD. 

Besides impairment in corticostriatal connectivity, disturbances in hippocampal 

function contribute to HD memory deficits in middle disease stages. Thus, 

hippocampal dysfunction is an important hallmark of HD pathology, and 

preservation/restoration of hippocampal function could represent a promising 

alternative strategy to prevent memory loss in HD. In line with recent studies 

supporting a critical role for p75
NTR

 in hippocampal-dependent synaptic plasticity 

(223,224), normalization of hippocampal p75
NTR

 levels in distinct HD mouse models 

with genetic or pharmacological approaches rescues hippocampal synaptic plasticity, 

memory deficits and dendritic spine alterations, likely by normalization of the RhoA 

GTPase activity (107,135). Overall, this evidence suggests that antagonism of p75
NTR

 

could represent an excellent approach to restoring BDNF-mediated signaling in HD 

corticostriatal pathway, thereby restoring corticostriatal connectivity (201), 

ameliorating hippocampal synaptic dysfunction and memory deficits (135) and 

improving cell survival (221). An important consequence of these findings is that 

whereas TrkB is widely and robustly expressed in the adult brain, p75
NTR

 has a 

restricted tissue distribution, and its expression is developmentally downregulated in 

most parts of the brain, which makes the targeting of p75
NTR

 likely to have fewer side 

effects in HD patients. Remarkably, chronic administration of fingolimod (FTY720), an 

immunomodulatory drug used in the treatment of multiple sclerosis patients (335), 

ameliorates LTM deficits and dendritic spine loss in CA1 hippocampal neurons from 

R6/1 mice, and these effects are accompanied by normalization of p75
NTR

 levels and 

reduced astrogliosis in the hippocampus (107). Interestingly, chronic administration of 

FTY720 improves motor function, prolongs survival and reduces brain atrophy in R6/2 

mice, and these effects are accompanied by increased BDNF levels, strengthening of 

neuronal activity and connectivity, reduction of mutant huntingtin aggregates and 
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increased phosphorylation of mutant huntingtin in residues predicted to attenuate its 

toxicity (336). It would be useful to evaluate whether the normalization of p75
NTR

 

levels and reduction of astrogliosis reported in the hippocampus of FTY720-treated 

R6/1 mice (107) also occur in the striatum.  

Aberrant PKA signaling promotes hippocampal-dependent synaptic and memory 

impairment in HD mice (110,139). Notably, abnormal PKA signaling is also responsible 

for sleep disturbances in fly HD models, leading to the proposal of sleep and 

cAMP/PKA as prodromal indicators of disease, and therapeutic targets for intervention 

(262). Increased signaling through D1R and A2AR contributes to PKA overactivation 

and hippocampal-dependent synaptic and memory impairment in HD mice (110). 

Based on the finding that PKA activity is also increased in the hippocampus of HD 

patients (139), we propose that targeting D1R and A2AR might be a therapeutic 

approach to improve hippocampal-dependent cognitive function in HD. The combined 

antagonism of the two receptors normalizes striatal PKA activity, but does not 

ameliorate motor deficits (110), and inactivation of A2AR prevents working memory 

deficits in R6/2 mice, but does not modify motor dysfunction either (233). Actually, 

although striatal A2AR emerges as a novel target to fight against cognitive inflexibility, 

namely working memory impairment (233), this exciting therapeutic possibility needs 

to be carefully considered since targeting A2AR for HD motor symptoms remains 

largely controversial. Some studies demonstrate a neuroprotective effect of an A2AR 

antagonist in toxic models of HD, while others report no recovery from motor deficits 

or a delayed deterioration of motor performance after treatment with A2AR agonists 

in R6/2 mice (reviewed in (337-339)). Thus, targeting A2AR in HD is a puzzling issue, 

and the therapeutic window for A2AR antagonists might be restricted to the early 

phases of HD. Conversely, activation of A2AR normalizes synaptic activity in the 

striatum of symptomatic R6/2 mice, and may thus help to restore corticostriatal 

connectivity at later stages of the disease (232). 

In contrast to cAMP levels (110), hippocampal cGMP levels are reduced in HD mice 

(271). Since targeting the cGMP-specific PDE5 improves cGMP levels and ameliorates 

hippocampal-dependent learning and memory in R6/1 mice, and cGMP levels are also 

diminished in the hippocampus of HD patients (271), normalization of cGMP levels 

emerges as an approach to counteract deficits in hippocampal cognitive function in 
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HD. Given that the nNOS pathway is highly affected in the striatum and cortex too 

(265-269), it is tempting to speculate that targeting this pathway might also ameliorate 

corticostriatal dysfunction. So far, two studies have shown that the PDE5 inhibitor 

sildenafil protects against biochemical and behavioral abnormalities in the 3-

nitropropionic acid toxic model of HD (272,340), but whether sildenafil or other PDE5 

inhibitors improve corticostriatal connectivity, corticostriatal-dependent learning 

and/or motor dysfunction in genetic models of the disease remains to be addressed. It 

is noteworthy that cGMP can promote mitochondrial biogenesis and ATP synthesis 

(341), which is relevant because mitochondrial function is known to be compromised 

in HD (342). Furthermore, PDE5 inhibitors have emerged as a potential therapeutic 

strategy to improve not only cognitive function, but also to target neuroinflammation 

and neurodegeneration (reviewed in (343)), and thus they could be valuable multi-

purpose drugs in the context of HD. Moreover, it is expected that the use of PDE5 

inhibitors will prove to be of therapeutic interest because under physiological 

conditions transient elevations in striatal intracellular cGMP levels increase neuronal 

excitability and facilitate spontaneous and evoked corticostriatal transmission (344), 

which would improve connectivity in HD. Interestingly, intrastriatal infusion or 

systemic administration of the selective PDE10A inhibitor TP-10 increases the 

responsiveness of striatal MSNs to cortical input (345), and this effect depends on the 

NO-sGC-cGMP signaling cascade (346). Considering these findings and the reports on 

reduced nNOS mRNA in postmortem tissue from HD subjects (264) and in HD mouse 

models (265,269), it is likely that a combination of both PDE10A inhibitors and sGC 

activators will be useful to improve corticostriatal transmission in HD. 

As an alternative, or complementary, strategy to restore hippocampal function in 

HD at middle and advanced disease stages, we propose the modulation of CBP levels 

and/or activity. CBP levels are reduced in the hippocampus of Hdh
Q7/Q111

 mice, where 

they are accompanied by diminished histone 3 acetylation and spatial and recognition 

memory deficits (150). Since treatment with a general HDAC inhibitor reverses LTM 

impairment in Hdh
Q7/Q111

 mice, CBP loss of function may result in decreased memory-

related gene transcription and be responsible, at least in part, for the spatial and 

recognition memory deficits observed in Hdh
Q7/Q111

 mice (150). Remarkably, several 

studies suggest an important role of CBP loss of function in polyQ-dependent striatal 
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neurodegeneration in HD models (265,300,347-349). It is noteworthy that restoration 

of CBP striatal function by overexpression of CBP or by using HDAC inhibitors improves 

striatal atrophy and survival, as well as motor symptoms in HD models (350,351). 

Therefore, therapies aimed at increasing CBP levels and/or activity by using HDAC 

inhibitors hold the promise to be a good approach to prevent corticostriatal- and 

hippocampal-dependent dysfunction, motor symptoms and, ultimately, 

neurodegeneration. Remarkably, recent studies have found that HDACi 4b, a HDAC1/3 

inhibitor, has beneficial transgenerational effects in HD mice through altered DNA and 

histone methylation (352), while RGFP966, an inhibitor of HDAC3, improves motor 

deficits on rotarod and open field, accompanied by neuroprotective effects on striatal 

volume and decreased glial fibrillary acidic protein immunoreactivity in the striatum of 

N171-82Q mice (353). Therapies targeting transcriptional dysregulation in HD include 

sodium phenylbutyrate (phase I) and HDACi 4b (preclinical) (354). Even though 

research in this area is still at a preliminary stage, and crucial issues need to be 

addressed, such as the development of new potent and more selective HDAC 

inhibitors, with excellent blood-brain-barrier permeability, less cytotoxicity and 

reduced side effects, HDAC inhibitors show promise as a new avenue for therapeutic 

interventions in HD.  

 

Concluding remarks 

In summary, we have reviewed new evidence for early cortical and corticostriatal 

dysfunction in HD followed by hippocampal dysfunction, prior to the manifestation of 

motor symptoms, driving the search for novel therapeutic approaches to improve HD 

pathology at different disease stages. In particular, we propose that a first therapeutic 

intervention has to be focused on preserving/restoring corticostriatal connectivity, 

which would impact on intrinsic striatal function. In this context, given that reduced 

levels of Kalirin-7 are responsible, at least in part, for the early altered corticostriatal 

function, we propose the preservation/restoration of Kalirin-7 levels as an early 

therapeutic intervention to maintain functional cortical excitatory synapses. In the 

case of MSNs, recent evidence indicates that spine loss in YAC128 neurons is 

associated with reactivation of juvenile GluN3A. Although the downstream events are 

not fully characterized, these findings support the development of GluN3A-selective 
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antagonists and/or alternative therapeutic approaches to block abnormal GluN3A 

expression. Aberrant InsP3R1 activity leading to reduced ER Ca
2+

 levels and increased 

spine SOC are also implicated in MSNs spine loss, suggesting that targeting nSOC in 

MSNs might prove to be useful. Targeting the PKA pathway may ameliorate 

hippocampal plasticity and cognitive function in HD. To improve not only corticostriatal 

dysfunction, but also hippocampal-dependent deficits in HD, we propose 1) genetic or 

pharmacological inhibition of p75
NTR

 to preserve synaptic plasticity and cognitive 

function, as well as prevent striatal neuronal death, and 2) treatment with HDAC 

inhibitors that exhibit promising therapeutic effects in restoring memory and 

improving striatal survival and motor coordination at more advanced disease stages. 

Data obtained so far indicate that inhibition of PDE5 ameliorates hippocampal-

dependent learning and memory, but further studies are needed to address the 

therapeutic potential of targeting cGMP signaling using PDE inhibitors to improve 

corticostriatal dysfunction in HD. The use of PDE10A inhibitors will likely prove to be 

beneficial by improving both hippocampal and corticostriatal deficits in HD.  
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Table 1. Genetically modified HD mouse models.  

 

Mouse model Construct Promoter CAG 

repeat size 

Lifespan References 

R6/1 Insertion of the exon 

1 of human HD gene 

into mouse genome 

Human 

huntingtin 

116 

 

32-40 w 

 

(12, 77-79) 

R6/2 

 

Insertion of the exon 

1 of human HD gene 

into mouse genome 

Human 

huntingtin 

144 13-16 w (12, 77-80) 

N171-82Q 

 

Insertion of the first 

171 aa from the N-

terminal fragment of 

the human HD gene 

into mouse genome 

Mouse 

prion 

protein 

 

82 

 

16-24 w 

 

(81) 

HD94- tet off 

 

Insertion of a 

chimeric 

mouse/human exon 

1 fragment with 

polyQ expansion into 

mouse genome 

CamKIIa- 

tTA 

 

94 

 

Normal 

 

(82) 

YAC72 

 

Yeast artificial 

chromosome 

expressing full-length 

human mutant 

huntingtin 

Human 

huntingtin 

 

72 

 

Normal 

 

(83-85) 

YAC128 

 

Yeast artificial 

chromosome 

expressing full-length 

human mutant 

huntingtin 

Human 

huntingtin 

 

128 

 

Normal 

 

(86-90) 

BACHD 

 

Bacterial artificial 

chromosome 

expressing  full-

length human 

mutant huntingtin 

Human 

huntingtin 

 

97 

CAG/CAA 

mixed 

repeats 

Normal 

 

(76, 87, 91, 92) 

Hdh92Q 

 

Replacing exon 1 of 

the mouse huntingtin 

gene with a mutant 

human exon 1 

Mouse 

huntingtin 

 

92 

 

Normal 

 

(93-95) 

Hdh111Q Replacing exon 1 of 

the mouse huntingtin 

gene with a mutant 

Mouse 

huntingtin 

111 Normal (94-97) 
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 human exon 1    

CAG140 

 

Inserting CAG 

repeats into the 

mouse huntingtin 

gene 

Mouse 

huntingtin 

 

140 

 

Normal 

 

(98) 

CAG150 

 

Inserting CAG 

repeats into the 

mouse huntingtin 

gene 

Mouse 

huntingtin 

 

150 

 

Normal 

 

(99-101) 

 

Information about construct insertion, the promoter used to express the mutation, the CAG 

repeat number and the lifespan. Weeks (w). 
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Table 2. Alterations in synaptic plasticity in HD mouse models.  

 

Mouse 

model 

Cerebral cortex Striatum Hippocampus References 

R6/1 

 

Loss of cortical plasticity 

(8-10 w) 

Increased LTD (2 mo) 

followed by a reduction in 

LTD expression (5 mo) 

and loss of LTD (7-9 mo) 

at perirhinal synapses 

Decreased dendritic spine 

density and spine length 

(8 mo) 

Decreased 

spontaneous EPSCs 

in MSNs (9-13 mo) 

Increased 

spontaneous IPSCs 

(12-15 mo) 

Decreased dendritic 

spine density and 

spine length (8 mo) 

Decreased LTP in 

brain slices (5 w) 

Impaired LTP in vivo 

(13-14 w) 

Increased LTD at CA1 

synapses (12 w) 

Decreased dendritic 

spine density (20 w) 

(102-112) 

R6/2 Hyperexcitable cortex  

and greater susceptibility 

to seizures (3 w) 

Increased spontaneous 

IPSCs (3-4 w) 

Decreased spontaneous 

IPSCs and increased 

spontaneous EPSCs (13 w) 

Dendritic spine loss  

(3-4 w) 

 

Progressive 

decrease in 

spontaneous EPSCs 

in MSNs (5-7 w) 

No differences in 

the LF IPSCs 

Increased 

spontaneous IPSCs 

(5-7 w and 9-14 w) 

Progressive 

dendritic spine loss 

(4-10 w) 

Reduced LTP and 

aberrant LTD at CA1 

synapses (5 w) 

 

(67, 104, 113-

123) 

 Dysfunctional communication between 

cortex and striatum  

(7-9 w) 

   

YAC72 Increased NMDAR-mediated EPSCs in MSNs 

(21-31 d) after stimulation of cortical 

afferents in corticostriatal slices 

Altered early corticostriatal synaptic function 

(21-30 d), including presynaptic dysfunction 

and propensity towards synaptic depression 

 Increased LTP (6 mo) 

Reduced LTP (10 mo) 

 

(83, 124-126) 

YAC128 

 

Altered early corticostriatal synaptic function 

(21-30 d) 

Presynaptic dysfunction, propensity towards 

synaptic depression and altered AMPAR function 

Biphasic age-dependent changes in 

Reduced paired-pulse 

depression in the DG 

(3-6 mo) 

Enhanced post-

tetanic and short-

term potentiation 

(104, 115, 

127-131) 
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corticostriatal function:  

Increased synaptic currents and glutamate 

release (1 mo) 

Reduced evoked synaptic currents and glutamate 

release (7-12 mo) 

after HF stimulation 

(3-6 mo) 

 

 Increased spontaneous 

EPSCs (12 mo) 

Increase spontaneous 

IPSCs (6 and 12 mo) 

Reduced 

spontaneous EPSCs 

(6  and 12 mo) 

Reduced 

spontaneous LF 

IPSCs (6 and 12 mo)  

Increased 

spontaneous HF 

IPSCs (1, 2, 12 mo) 

Progressive 

dendritic spine 

density loss  

(3, 6, 12 mo) 

  

BACHD 

 

Progressive reduction of 

cortical excitation and 

inhibition of layer 2/3 

pyramidal cells (3-6 mo) 

 

Progressive 

reduction of 

excitation onto 

MSNs (3-6 mo) 

High excitability of 

MSNs (18 mo) 

Reduced dendritic 

spine density  

(18 mo) 

n.r. 

 

(87, 91, 92, 

132, 133) 

Hdh92Q n.r. n.r. Reduced LTP  

(4-6 mo) 

(134) 

Hdh111Q n.r. 

 

n.r. 

 

Reduced LTP (2 mo) 

Reduced actin 

polymerization in 

dendritic spines after 

TBS-induced LTP 

(134) 

Hdh 

7Q/111Q 

 

Impaired induction and maintenance of 

corticostriatal LTP (2 and 4 mo) 

 

 

Reduced LTP (6 mo) 

Decreased dendritic 

spine density and 

altered distribution 

with a specific 

reduction in the 

(135, 136) 
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proportion of thin 

spines (8 mo) 

 Decreased dendritic spine 

density and a shift in their 

distribution (2 mo) 

Progressive decrease of 

glutamatergic excitatory 

postsynaptic sites  

(2 and 8 mo) 

No alterations in 

dendritic spine 

density (2 mo) 

Decrease of 

glutamatergic 

excitatory 

postsynaptic sites  

(8 mo) 

  

CAG140 

 

Increased spontaneous 

EPSCs (12 mo) 

Increased spontaneous 

IPSCs (6 and 12 mo) 

 

Reduced 

spontaneous EPSCs 

(12 and 18 mo) 

Reduced 

spontaneous LF 

IPSCs  

(12 and 18 mo) 

 

Increased 

spontaneous HF 

IPSCs (12 mo) 

Reduced 

thalamostriatal 

axondendritic 

terminals (1 mo) 

Loss of 

corticostriatal 

terminals (12 mo) 

Reduced dendritic 

spines in MSNs  

(20-26 mo) 

n.r. 

 

(104, 115, 

137, 138) 

 

Alterations in synaptic plasticity (electrophysiological properties and dendritic spine 

density/morphology) of neuronal populations from the cerebral cortex, striatum and 

hippocampus of HD mouse models. Long-term depression (LTD); Long-term potentiation (LTP); 

Excitatory postsynaptic currents (EPSCs); Inhibitory postsynaptic currents (IPSCs); Cornus 

Ammonis 1 (CA1); Medium-sized spiny neurons (MSNs); N-methyl-D-aspartate receptor 

(NMDAR); α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR); Dentate 

gyrus (DG); low frequency (LF); high frequency (HF); Theta burst stimulation (TBS); Weeks (w); 

Months (mo); Not reported (n.r.). 
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Table 3. Cognitive, psychiatric and motor deficits in HD mouse models.  

 

Mouse model Cognitive and psychiatric 

deficits 

Motor deficits References 

R6/1 8-12 w 14 w 

8 w (AR) 

(79, 102, 106, 136, 

139) 

R6/2 4-8 w 6-8 w (79, 120, 140-142) 

N171-82Q 14 w 11 w (81, 143, 144) 

HD94- tet off n.r. 4 w (82, 145) 

YAC72 n.r. Hyperactivity (7-9 mo) 

16  mo 

(83) 

YAC128 

 

7-8.5 mo 

 

Hyperkinesia (3 mo) 

Hypokinesia (6 mo) 

2-12 mo (AR) 

(87, 88, 90, 146, 

147) 

BACHD 2-12 mo 2-12 mo (AR) (76, 87, 91, 92) 

Hdh92Q 4 mo 21 mo (148, 149) 

Hdh111Q n.r. 24 mo (96) 

Hdh7Q/111Q 6 mo 8 mo 

2-6 mo (AR) 

(135, 136, 150-152) 

CAG140 

 

4-6 mo 

 

Hyperkinesia (1-3 mo) 

Hypokinesia (from 3 mo) 

4-12 mo  

(98, 153) 

CAG150 4 mo 4-10 mo (100, 154) 

 

Information about the age at which HD models start to exhibit cognitive, psychiatric and motor 

deficits. Motor deficits include several parameters: 1) learning of new motor skills (evaluated 

with the accelerating rotarod (AR) task), 2) hypo/hyperactivity, and 3) motor coordination 

(evaluated using several motor tests). Specific information about each model can be found in 

the cited references. Weeks (w); Months (mo); Not reported (n.r.). 
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