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Assortative Mating on Educational Attainment Leads to Genetic Spousal 

Resemblance for Causal Alleles 

 
 

Abstract: 

We examined whether assortative mating for educational attainment (“like marries like”) 

can be detected in the genomes of ~1,600 UK spouse pairs of European descent. Assortative 

mating on heritable traits like educational attainment increases the genetic variance and 

heritability of the trait in the population, which may increase social inequalities. We test for 

genetic assortative mating in the UK on educational attainment, a phenotype that is indicative of 

socio-economic status and has shown substantial levels of assortative mating. We use genome- 

wide allelic effect sizes from a large genome-wide association study on educational attainment 

(N~300k) to create polygenic scores that are predictive of educational attainment in our 

independent sample (r=.23, p<2×10-16). The polygenic scores significantly predict partners' 

educational outcome (r=.14, p=4×10-8 and r=.19, p=2×10-14 for prediction from males to females 

and vice versa, respectively), and are themselves significantly correlated between spouses (r=.11, 

p=7×10-6). Our findings provide molecular genetic evidence for genetic assortative mating on 

education in the UK. 
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1. Introduction 

Humans generally do not choose their mates randomly. In search for a suitable mate, 

among the highest-ranking qualities people look for in a potential partner are intelligence and 

educational attainment (Buss & Barnes, 1986; Zietsch, Verweij, & Burri, 2012). Previous work 

consistently shows substantial assortative mating for intelligence and educational  attainment, 

with spousal correlations for intelligence ranging between .33 and .72 (Bouchard & McGue, 

1981; Gualtieri, 2013; Mascie-Taylor & Vandenberg, 1988; Watson, et al., 2004) and for 

educational attainment between .45 and .66 (Abdellaoui, et al., 2015; Conley, et al., 2016; 

Watson, et al., 2004; Zietsch, Verweij, Heath, & Martin, 2011). Assortative mating can occur via 

different mechanisms (which are not always mutually exclusive). Partners can become more 

similar to each other over the course of their relationship (i.e., convergence); however, there is no 

evidence for convergence for cognitive abilities and educational attainment (Mascie-Taylor & 

Vandenberg, 1988; Watson, et al., 2004; Zietsch, et al., 2011). This suggests that assortative 

mating for educational attainment is due to initial partner choice. This can happen because of 

social homogamy, where similar people find themselves in similar social environments because 

of their social background, and/or because of phenotypic matching, where people select their 

partner based on similarity in characteristics. 

The consequences of assortative mating on education and cognitive abilities are relevant 

for society and for the genetic make-up and therefore the evolutionary development of  

subsequent generations (Thiessen & Gregg, 1980). Assortative mating increases the variance of 

characteristics in the population, and may increase social inequality with respect to education or 

income (Schwartz, 2013). Greenwood et al. (2014) for instance reported a rise in assortative 

mating for educational attainment in the United States between 1960 and 2005 and showed that 

this clustering of academic success may have caused an increase in income inequality. It is a 

priori very plausible that phenotypic similarity between partners on heritable traits is reflected in 

their genomic similarities, and thus in the genetic composition of their offspring. Assortative 

mating on a heritable trait increases the additive genetic variance for genetic loci associated with 

that trait, as well as for other traits that are genetically correlated with it (Crow & Felsenstein, 

1968; Fisher, 1918; Lande, 1977), as assortative mating generates phenotypes with more extreme 

genetic values. Consistent with the increase in assortment for educational attainment 

(Greenwood, et al., 2014; Schwartz, 2013), this may explain why heritability estimates for 

educational attainment have risen over time (Branigan, McCallum, & Freese, 2013), although 

there may also be other explanations for this increase, such as the recently increased equality in 

educational opportunities (Colodro-Conde, Rijsdijk, Tornero-Gómez, Sánchez-Romera, & 

Ordoñana, 2015). Another genetic consequence of assortative mating on education is the 

influence on genome-wide ancestral variation and homozygosity. Abdellaoui et al. (2015) 

showed that more educated individuals are more likely to migrate, which increases their chance 

of meeting a spouse with a different ancestral background. Accordingly, assortment on 

educational attainment can result in greater ancestral variation and lower levels of  genome-wide 
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homozygosity, a genetic signature used to study effects of inbreeding, within the offspring of 

higher educated spouse pairs. 

Several studies have tried to detect assortative mating on a molecular genetic level by 

estimating spousal resemblance on genome-wide single nucleotide polymorphisms (SNPs) 

(Domingue, Fletcher, Conley, & Boardman, 2014; Guo, Wang, Liu, & Randall, 2014; Sebro, 

Hoffman, Lange, Rogus, & Risch, 2010). These studies report spouses to be more similar on 

genome-wide SNPs than expected under random mating. However, these reported spousal 

resemblances are more likely to be explained by population stratification, i.e., spouse pairs 

sharing more ancestry than random male-female pairs (Abdellaoui, Verweij, & Zietsch, 2014; 

Sebro, et al., 2010), than by phenotypic assortative mating. Assortative mating on complex 

phenotypes, such as education, intelligence, personality, psychiatry, or height, is expected to lead 

to genetic spousal resemblance. However, these traits are influenced by many genetic variants 

throughout the genome with very small individual effects that require exceptionally large sample 

sizes to detect. The largest patterns of genome-wide variation, which can be captured with 

principal component analyses (PCA) in much smaller datasets, reflect ancestry  differences 

(Price, et al., 2006), correlate strongly with geography and show significant spouse correlations 

(Abdellaoui, Hottenga, de Knijff, et al., 2013). Geographic proximity is a strong predictor of 

shared ancestry and a major determinant of potential spouse pairs meeting, especially in the 

presence of social catalysts that narrow mate choice and correlate with geography, such as 

religion (Abdellaoui, Hottenga, Xiao, et al., 2013; Haber, et al., 2013). We therefore expect 

spousal resemblance on a genome-wide level to be dominated by shared ancestry, and indeed the 

above studies do not show a significant genetic spousal resemblance once ancestry is 

appropriately accounted for. A trait-based approach is more powerful, less susceptible to 

population stratification, and thus more informative in detecting genetic assortative mating than 

estimating allelic spousal resemblance in a hypothesis-free manner. With the advent of large- 

scale genome-wide association studies (GWASs), we can now quantify significant portions of a 

person’s genetic predisposition for a wide range of traits with polygenic scores by summing their 

individual alleles weighted by their estimated effect sizes. Polygenic scores can have significant 

predictive power and generally improve for complex traits when adding SNPs that individually 

did not reach genome-wide significance (Dudbridge, 2013). 

The highly polygenic trait educational attainment is well suited for a study on genetic 

assortative mating because the phenotype itself is subject to high levels of assortment and 

genome-wide estimates of allelic effect sizes are available from large GWASs. Conley et al. 

(2016) show that polygenic scores based on results from a GWAS on educational attainment of 

~126,000 subjects (Rietveld, et al., 2013) significantly correlate between spouse pairs born 

between 1920 and 1950 in the US. We use genome-wide effect sizes from a GWAS on 

educational attainment of ~300,000 subjects (Okbay, et al., 2016) to create polygenic scores for 

couples born between 1919 and 1994 from the UK Household Longitudinal Study (UKHLS), a 

survey that aims to be representative of the UK population. Given similar levels of phenotypic 
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assortative mating in the US and the UK, we expect to replicate that there is genetic assortative 

mating for educational attainment and find higher levels of genetic assortative mating than 

Conley et al. (2016) given the more powerful summary statistics and a novel and more powerful 

polygenic score approach (Vilhjálmsson, et al., 2015). We test whether individuals’ polygenic 

risk scores for educational attainment can predict their partners’ educational attainment, and their 

partners’ polygenic scores. We control for similarities in ancestral background by taking into 

account ancestry-informative principal components (PCs). 
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2. Materials and Methods 

 

 
2.1. Phenotypes 

The sample is derived from the UK Household Longitudinal Study: Understanding 

Society (UKHLS) (Buck & McFall, 2011), a representative sample of the UK population. 9,944 

individuals were genotyped, including 1,699 pairs who were living together either as husband  

and wife or as a couple. Individuals under 25 years of age were removed from the analyses, 

because they are likely to not have reached their final education level; this resulted in an N of 

8,989. For the cross-spouse analyses we also removed all pairs where either partner was under 

25, resulting in a sample of 1,616 spouse pairs. 

We derived a variable for individuals’ educational attainment as follows: 0=no 

educational qualifications; 1=GCSE (national exams taken at age 16) or “other qualifications”; 

2=A-level or equivalent (national exams taken at age 18, roughly equivalent to French 

Baccalaureate or US High School Diploma); 3=University degree or equivalent. Educational 

attainment was standardized to have a mean of 0 and a standard deviation of 1. 

The UKHLS is a stratified probability sample of the UK population. The dataset for the 

nurse visit sample (from which the SNP data are derived) includes response weights which are 

meant to account for ascertainment bias and non-response, including non-participation in the 

nurse visit and not donating blood. We used the cross-sectional weights, i.e., the reciprocal of the 

probability of blood measures to be present for a particular individual, predicted from a variety  

of socio-economic characteristics. Further details are given in reference (Benzeval, Davillas, 

Kumari, & Lynn, 2014). For analyses where each case represents a pair of partners, such as the 

main regressions on partner characteristics, we used the arithmetic mean of male and female 

partner’s weight. 

 

 
2.2. Genotyping, Quality Control (QC), and Principal Component Analysis (PCA) 

Genotyping was done on the Illumina HumanCoreExome chip for White/European 

participants of Waves 2 and 3 of the Understanding Society study. QC was performed on the 

entire set of 9,944 subjects in PLINK (Purcell, et al., 2007), and only autosomal SNPs were 

included. SNPs were excluded if they: 1) had a missing rate greater than 5%; 2) showed a minor 

allele frequency (MAF) smaller than 5%; 3) deviated from Hardy–Weinberg equilibrium (HWE) 

with a p-value smaller than 10-8. The QC resulted in 261,965 SNPs with a mean individual 

genotyping rate of >99.9% (ranging from 97.2% to 99.99%, with only 15 individuals having 

>1% missingness). There were no individuals detected with a non-European or non-British 

ancestry by projecting principal components (PCs) from the 1000 Genomes dataset (procedure 

described in more detail in the supplementary material of reference (Abdellaoui, Hottenga, de 

Knijff, et al., 2013)). To control for ancestry differences within the UK, we conducted a PCA  on 
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the genotype data in EIGENSTRAT (Price, et al., 2006). In order to detect the relatively small 

ancestry differences within the UK, we pruned for linkage disequilibrium (LD) (window size=50, 

number of SNPs to shift after each step=5, based on a variance inflation factor [VIF] of 2) and 

removed long-range LD regions, since LD can result in larger patterns of variation than ancestry 

differences within relatively homogeneous populations (Abdellaoui, Hottenga, de Knijff, et al., 

2013). After minimizing LD, 91,708 autosomal SNPs remained. The PCA was conducted on 

unrelated individuals (9,091 out of 9,944 subjects) and projected onto the rest. Unrelated 

individuals were chosen using GCTA (Yang, Lee, Goddard, & Visscher, 2011), by excluding one 

of each pair of individuals with an estimated genetic relationship of > .025 (i.e., closer related 

than third or fourth cousin). 

 

 
2.3. Polygenic Scores 

Polygenic scores were computed using LDpred (Vilhjálmsson, et al., 2015), a recently 

developed method that creates an unbiased predictor with increased accuracy by conditioning on 

a genetic architecture prior and linkage disequilibrium (LD) information from a reference  

sample. Risk scores in our sample were generated with effect sizes obtained from the latest 

educational attainment GWAS (Okbay, et al., 2016) and the LD information from the European 

populations in the 1000 Genomes reference set (in our case: Utah Residents (CEPH) with 

Northern and Western European Ancestry, Finnish, British, Iberian, and Toscani individuals, 

N=381). Vilhjalmsson et al. (2015) showed theoretically, with simulations, and empirically that 

this method outperforms the traditional pruning/thresholding approach. We varied the expected 

fraction of causal markers (.01%, .03%, .1%, .3%, 1%, 3%, 10%, 30%, 50%, 75%, 100%) in 

order to optimize the prediction accuracy (Vilhjálmsson, et al., 2015), similar to varying p-values 

in order to determine which SNPs are included in traditional polygenic score approaches. 

Polygenic scores were standardized to have mean of 0 and a standard deviation of 1. 



 

 

 

Figure 1: The first three principal components (PCs) that show significant correlations with geography and significant spouse correlations. The 

mean PC value per county was computed, divided into 10 percentile groups, and plotted. 
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3. Results 

A PCA was conducted on the 261,965 SNPs that remain after QC. The top 3 PCs show 

significant and substantial spouse correlations as well as significant correlations with geography 

(Table 1 and Figure 1), implying that these three PCs capture ancestry differences within the UK 

population. The polygenic scores for education analyzed below are residualized by removing the 

effects of the first 10 PCs. 

 

 
Table 1: Spouse correlations for the top ten genetic principal components (PCs), and 

correlations between PCs and latitude, longitude, and the educational attainment (EA) polygenic 

score (p-values between brackets). 
 

PC 
Spouse 

Correlation 
Latitude Longitude 

EA Polygenic 

Score 

1 .33 (<2×10-16) -.49 (<2×10-16) .41 (<2×10-16) .04 (.02) 

2 .60 (<2×10-16) -.03 (.31) .14 (4×10-6) -.01 (.36) 

3 .30 (<2×10-16) .11 (1.4×10-6) .23 (<2×10-16) .005 (.80) 

4 .005 (.87) -.12 (6.6×10-8) .10 (2×10-6) .02 (.24) 

5 .01 (.66) -.01 (.66) .002 (.92) -.02 (.31) 

6 .01 (.58) -.06 (.01) .09 (2×10-5) .001 (.94) 

7 .01 (.57) -.02 (.26) .06 (.004) .003 (.87) 

8 .05 (.05) -.04 (.10) .03 (.15) .02 (.15) 

9 -.01 (.57) -.05 (.03) .05 (.03) .02 (.22) 

10 .01 (.58) -.02 (.40) -.02 (.40) .02 (.24) 

 

 

 

Consistent with previous studies, couples in our sample show significant assortative 

mating for educational attainment, with a Spearman's rank correlation between spouses of .45 

(p<2×10-16; N=1,604 pairs). Polygenic scores that assume the fraction of causal markers to be 

30% or higher show the strongest correlations with educational attainment (r=.22, p<2×10-16, N= 

8,982), consistent with education being a highly polygenic trait (Figure 2 and Figure 3). As 

Figure 3 shows, this polygenic score is highly predictive of educational attainment; subjects with 

polygenic scores in the highest quintile for instance were more than twice as likely to go to 

university as those with scores in the lowest quintile. We use the fraction of 30% for subsequent 

analyses. Polygenic scores for males significantly predict their partners' educational outcome 

(r=.14, p=4×10-8, N=1,608) and female polygenic scores significantly predict their partner’s 

education (r=.19, p=2×10-14
, N=1,609). Results are barely affected by controlling for partner’s 

age (males: r=.16, p=2×10-12; females: r=.18, p=5×10-14). The polygenic scores themselves also 

show significant spouse correlations (r=.11, p=7×10-6, N=1,616). Without residualizing 
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polygenic scores for the first 10 PCs, spousal correlations were practically unchanged 

(r=.11, p=7×10-6, N=1,616). When dropping the cross-sectional weights (see Materials and 

Methods), spouse correlations were slightly smaller but remained significant (male polygenic 

score with female education: r=.14, p=3×10-8, N=1,668; female polygenic score with male 

education: r=.18, p=5×10-14, N=1,668; male polygenic score with female polygenic score: r=.09, 

p=3×10-4, N=1,678). The spouse correlations of the polygenic scores were small and non- 

significant when assuming a lower fraction of causal markers (<30%), as would be expected 

when they are less accurate estimates of someone’s genetic predisposition for education (Figure 

2). When only including spouse pairs with offspring (N=621), the spouse correlations become 

slightly stronger and remain significant (male polygenic score with female education: r=.17, 

p=4×10-6, N=620; female polygenic score with male education: r=.22, p=1×10-8, N=619; male 

polygenic score with female polygenic score: r=.15, p=1×10-4, N=621). Results are also robust  

to using alternative coding of educational attainment: 1) using a 5-level scoring whereby 

postgraduate degrees are coded as educational level 4: male polygenic score with female 

education r=.17, p=2×10-8, N=1605, female polygenic score with male education: r=.22, 

p=7.3×10-14, N=1594; 2) dropping subjects with vocational qualifications: male polygenic score 

with female education r=.14, p=3.5×10-8, N=1368, female polygenic score with male education: 

r=.20, p=2.1×10-14, N=1369. 

To test whether our data can be explained by random mating within specific 

subpopulations, we performed permutation tests within the whole sample, within educational 

levels, and within birth counties. We re-matched individuals with random "partners" 1000 times, 

creating a distribution of random test statistics (i.e., the coefficient of the spouse correlation of 

the polygenic scores) under the null hypothesis. We then compare the observed test statistic with 

respect to this distribution. Figure 4A shows the results within a permuted sample. Figure 4B 

shows the results within a permuted sample conditional on educational levels, i.e., partners were 

matched randomly within the same educational level. Figure 4C shows results within a permuted 

sample conditional on geographical location, i.e., partners were matched according to county of 

the UK. In all three cases the observed set of spouse pairs showed greater similarities in 

polygenic scores than 97.5% of the randomly generated sets of spouse pairs. Thus, there was 

significant genetic assortative mating for educational attainment irrespective of educational level 

and geographic location. 
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Figure 2: The correlations between the polygenic score (PRS) and educational attainment on the 

x-axis and the spouse correlations for PRS on the y-axis both increase as the fraction of causal 

markers for the polygenic score increases beyond .3. Labels show assumed fraction of causal 

markers.. 
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Figure 3: The proportion of each of the four educational levels (Univ = University degree or 

equivalent; A level = A-level or equivalent (national exams taken at age 18); GCSE = General 

Certificate of Secondary Education (national exams taken at age 16); None = no educational 

qualifications) per quintile of the polygenic scores (PRS) for educational attainment. 
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Figure 4: Three permutation procedures. Plots show the density of spousal PRS correlations 

under the null hypotheses that spouses are chosen randomly (A) within the whole sample, (B) 

among people of the same education level, and (C) among people of the same birth county. 
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4. Discussion 

This study provides empirical evidence for genetic assortative mating in the UK on a 

cognitive and behavioral trait. We show that this assortment has consequences on a genetic and 

thus a biological level. The polygenic scores significantly predicted partners' educational 

outcome (for both sexes), i.e., individuals with a stronger genetic predisposition for higher 

educational attainment have partners who are more educated. Also, the educational attainment 

polygenic scores themselves are correlated between spouses, which is strong evidence for the 

presence of genetic assortative mating for education in the UK. Within counties and within 

educational levels, spouse pairs still resembled each other with respect to their polygenic score. 

Polygenic scores for educational attainment explain 4.8% of the educational outcome in our 

sample, similar to the explained variance reported in the original GWAS (Okbay, et al., 2016). 

Since the polygenic scores only partly reflect the genetic predisposition for educational 

attainment, and yet show a relatively strong spouse correlation compared to the phenotypic 

spouse correlation, we can assume that a considerable part of assortative mating on educational 

attainment is genetic. The spouse correlations of the polygenic scores (~.11) are in a similar 

range to what Conley et al. (2016) reported (~.13), as were their phenotypic spouse correlations 

(.53). Conley et al. (2016) used summary statistics from a smaller GWAS (Rietveld, et al., 2013) 

that capture less of the individual differences for educational attainment (~2% in the original 

GWAS from Rietveld et al. (2013), 1.7% in our UK sample, and 3.2% in the Conley et al. (2016) 

study) and a more traditional polygenic score approach (i.e., an approach that did not take LD 

structure into account). When repeating the analysis in our UK sample using summary statistics 

from Rietveld et al. (2013), the spouse correlation decreases to .06 (p = .01). It is not certain 

whether the differences between the UK sample and the US sample are due sample fluctuation, 

other (statistical) artefacts, or actual differences in the degree of (genetic) assortative mating 

between the UK and the US, but our results do provide a solid replication of the presence of 

genetic assortative mating in contemporary Western societies. 

Assortative mating can result in biased heritability estimates in twin studies when not 

accounted for. Twin studies disentangle variance in traits into genetic, shared environmental, and 

residual factors by comparing similarities within identical and non-identical twins. The 

assumption of twin models is that identical twins share all their genes and non-identical twins 

share 50% of their segregated genes. Assortative mating increases the genetic similarity of non- 

identical twins above the assumed 50%. If assortative mating is not explicitly modelled in the 

twin model (which generally is not the case), the increased resemblance between non-identical 

twins due to assortative mating will result in an over-estimation of the shared environmental 

component of variance, and under-estimation of the heritable component. The substantial levels 

of assortative mating for educational attainment imply that the genetic influences may have been 

underestimated in many twin studies. In a meta-analysis of virtually all twin studies on 

educational attainment in the last 50 years (N=31), Polderman et al. (2015) reported a genetic 
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and shared environmental estimate for educational attainment of .52 and .27, respectively. 

However, assuming a spousal correlation of approximately .5, the shared environmental 

component can be entirely attributed to assortative mating. When correcting the variance 

component estimates for educational attainment with a procedure described by Martin (1978),  

the genetic component increases to ~80% while the shared environmental component drops to 

zero1. Interestingly, Polderman et al. observe the lowest heritability estimates for traits in the 

categories ‘environment’ (including education), reproduction, and social values domains. These 

include traits for which particularly high levels of assortative mating have been observed, 

suggesting that the lower heritability estimates for these domains may in part be explained by 

assortative mating that is not accounted for. 

Social inequality has been around in many historical and modern human societies, but is 

considered, as President Obama recently put it (Obama, 2013), as “the defining challenge of our 

time”. Assortative mating on heritable traits that are indicative of socio-economic status, such as 

educational attainment, increases genetic variance in such a way that the inequality in genetic 

capital grows. When growing social inequality is (partly) driven by a growing biological 

inequality, inequalities in society may be harder to overcome. Effects of assortative mating may 

accumulate with each generation. The increasing social mobility for females during the second 

half of the 20th century possibly also led to an increase in assortative mating as well as an  

increase in social inequality (Greenwood, et al., 2014; Schwartz, 2013). Conley et al. (2016) 

recently showed that phenotypic assortative mating for educational attainment has increased in 

the US for ~2,000 spouse pairs born between 1920 and 1955, but did not observe an increase in 

genetic assortative mating based on polygenic scores from a GWAS on ~126,000 individuals, 

likely due to a lack of power. 

The realization that assortative mating on talents may have genetic consequences is far 

beyond than a century old (Galton, 1869). Molecular genetics has progressed sufficiently to 

empirically reveal the presence of genetic assortative mating on a trait that reflects a collection of 

cognitive and behavioral talents. The presence of genetic assortative mating on a broad socio- 

economic related trait like educational attainment may have consequences for genetic studies as 

well as for society. 

 

 

 

 

 

 

 
 

1 Martin (1978) used the following formula to correct shared environmental influences (C) for assortative mating: 2   
=c

2 
−h

2 
∗A /(1− A ), where h

2  
and c

2 
are the genetic and shared environmental influences as estimated by 

cadj R R R R 

the twin model, and A is the correlation between additive genetic values of mates, which is a function of the 
2 2 

observed value for assortative mating (μ) and hR; A = 0.5 * [1 - √(1-4μhR)]. 
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