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A user-centric method for fast, interactive, robust and high-quality shadow removal is presented. Our 
algorithm can perform detection and removal in a range of difficult cases: such as highly textured and col- 
ored shadows. To perform detection an on-the-fly learning approach is adopted guided by two rough user 
inputs for the pixels of the shadow and the lit area. After detection, shadow removal is performed by reg- 
istering the penumbra to a normalized frame which allows us efficient estimation of non-uniform shadow 
illumination changes, resulting in accurate and robust removal. Another major contribution of this work 
is the first validated and multi-scene category ground truth for shadow removal algorithms. This data set 
containing 186 images eliminates inconsistencies between shadow and shadow-free images and provides 
a range of different shadow types such as soft, textured, colored and broken shadow. Using this data, the 
most thorough comparison of state-of-the-art shadow removal methods to date is performed, showing our 
proposed new algorithm to outperform the state-of-the-art across several measures and shadow category. 
To complement our dataset, an online shadow removal benchmark website is also presented to encourage 
future open comparisons in this challenging field of research. 

 

 
 

1. INTRODUCTION 

Shadows are ubiquitous in image and video data, and their 
removal is of interest in both computer vision and graphics. Al- 
though shadows can be useful cues, e.g. shape from shading, 
they can also affect the performance of algorithms (e.g. in seg- 
mentation and tracking). Their removal and editing is also often 
the pain-staking task of graphical artists. A successful shadow re- 
moval method should seamlessly relight the shadow area while 
keeping the lit area unchanged. The umbra is the darkest part 
of the shadow whilst the penumbra is the transitional shadow 
boundary with a non-linear intensity change between the umbra 
and lit area. The textures in shadowed surface generally become 
weaker that contrast artifacts can appear in shadow areas due to 
image post-processing [1]. 

One of the difficulties in detecting and removing shadows 
is the large variability in different shadow types. In particular, 
the following common attributes (e.g. Fig.10) of shadows can 
significantly increase the difficulty of their removal: 

• Texture of cast surface Strong texture causes higher inten- 
sity variation which makes it difficult to extract illumination 
change from intensity changes. In addition, dark textures 
can appear similar to shadows,  which can often   confuse 

shadow detection algorithms. 
 

• Shadow softness Softness generally relates to the size of  
a shadows penumbra. Higher softness brings challenges 
in preserving penumbra texture when removing shadow. 
When the illumination change becomes much weaker than 
the intensity change caused by texture, it can be difficult to 
extract the component of illumination change. 

 

• Broken shadow Broken shadows contain variable illumi- 
nation attributes such as irregular shape, highly varying 
penumbra size, and overlapping penumbra. Fixed illumi- 
nation models can find such irregular illumination changes 
difficult to process. 

 

• Shadow color When shadows are not conventionally black 
but instead colorful, it is not only difficult for machines to 
detect this appearance change but even humans. Also, even 
when shadows of this kind are detected, their removal is 
still difficult as the color in the umbra could be related to 
the surfaces’ reflection. 

Given sufficient training data, automatic approaches can ro- 
bustly remove common shadows,  however there are   difficul- 
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ties in dealing with difficult shadow scenes. User-aided ap- 
proaches give users more control over difficult shadow removal. 
In this paper, an interactive, high-quality and robust method for 
fast shadow removal is proposed using two rough user-defined 
strokes indicating the shadow and lit image areas. The approach 
sacrifices full autonomy [2, 3] for very broad and simple user 
input – contrasting with existing manual approaches that re- 
quire fine-scale input (accurate shadow contours [4, 5]) or highly 
simplistic inputs (single pixel [6]) that can result in shadow detec- 
tion artifacts. This on-the-fly learning approach is robust to large 
variations in user input, and can remove shadows with difficult 
attributes such as colored and broken shadow. Given detection, 
reliable shadow removal is delivered – verified with thorough 
quantitative tests for different types of shadow (for the first time 
in this area) comparing to previous state of the art approaches. A 
large high-quality and multi-scene-category ground-truth data 
set for the evaluation of shadow removal is also presented – con- 
sisting of 186 images with reliable ground truth. This overcomes 
issues with previous data sets – such as inconsistencies between 
shadow and shadow-free images – the results of which are also 
quantitatively verified and compared against previous data sets. 
The approach presented represents what the authors believe  
to be a state-of-the-art method for shadow removal, with the 
most robust evaluation of such methods to date across a range 
of difficult shadow cases. 

 
Table 1. Feature comparison of shadow removal methods: 
“Illumination Preserving” refers to the ability to preserve   
the original illumination in the lit area. “Texture Preserving” 
refers to the preservation of the correct surface texture un- 
der the penumbra after removal.  “Color Correction” refers  
to the ability to correct color artifacts caused by image post- 
processing after removal. 

a) Automatic Shadow Removal 

 Preservation 
 

Illum. Text. 

 

Color 
Correction 

 

Special 
Setup 

Finlayson [8] No No No None 

Fredembach [9] No No No None 

Yang [10] No Yes No None 

Guo [2] Yes Yes No None 

Drew [11] No Yes No Flash 

Salamati [12] Yes Yes No NIR/RGB 

Khan [3] Yes Yes No None 

 
b) User-Aided Shadow Removal 

 

Preservation Color 
User Input 

Correction 

 

1.A.Related work 

A shadow is generally defined as having an umbra and penum- 
bra area – denoted by the central shadow region and its border 
(penumbra) transitioning illumination between the fully   dark 
and lit area. A shadow image I+ can be considered to be a 
Hadamard product [7] of a shadow scale layer Sc and a shadow- 

free image Ic
∗  as follows: 

 
Wu [13] multiple    strokes   for 

each shadow 

Liu [5] precise boundary mark 
for each shadow 

Shor [6] single   click  for  each 
shadow 

Su [4] rough boundary mark 
for each shadow 

Illum. Text. 

Yes Yes No 

 
Yes Yes Yes 

 
Yes No No 

 
No Yes No 

I+ ∗ 

c   = Ic  ◦ Sc (1) 

where c is a RGB channel. For a lit pixel, the illumination is 
constant in both shadow and shadow-free images. For a shadow 
pixel, its intensity in a shadow image is lower than its intensity 

in the shadow-free image. Therefore, the scales Sc of the lit area 
are 1 and other areas’ scales are between 0 and 1. 

Approaches to shadow removal can be categorized as either 
automated or user-aided. The differentiation between fully au- 
tomated or user-aided relates to initial detection of the shadow 
– with removal itself (after detection) being a largely automatic 
task. In any case, both removal and detection are ill-posed prob- 
lems and difficult to reliably achieve. We summarize the features 

Arbel [1] multiple clicks for each 
shadow 

Gong [14] single  stroke for each 
shadow 

Xiao [15] two types of  scribbles 
for sampling shadow 
and lit intensities 

Zhang [16] two types scribbles for 
sampling shadow and 
lit intensities 

Yes Yes Yes 

 
Yes Yes Yes 

 
Yes Yes Yes 

 

 
Yes Yes Yes 

and requirements of the recent shadow removal methods in Ta- 
ble1. 

 
1.A.1. Shadow detection 

As for automated shadow detection, intrinsic image [ 10] based 
methods and illumination-invariant image [8, 9, 17] based meth- 
ods are one such popular approach to the problem. The decom- 
position of intrinsic images provides shading and reflectance in- 
formation but can be unreliable leading to over-processed results. 
Intrinsic image based methods generally assume that the illumi- 
nation change leads to smooth intensity change and the neigh- 
boring pixels have similar chromaticities. Illumination-invariant 
image is fast to compute but it only provides reflectance infor- 
mation. The derivation of illumination-invariant image assumes 
that the image is linear (not rendered). However, most of the 
images found on the Internet are rendered, e.g., compressed and 

gamma corrected. The non-linearity caused by image render- 
ing can break the algorithm. Besides, their shadow detection 
relies on comparing the difference between the edge detection 
results of a shadow image and its illumination-invariant image. 
This property makes these methods incapable of removing soft 
or light shadows. Shadow detection can also be achieved by 
shadow features learning [2, 3, 18–23]. However, shadow detec- 
tion is constrained by the range of training data and quality of 
classifier, image edge detection and segmentation there-in. [18– 
22] detect shadows by classifying edges in an image according 
to shadow edge features such as changes in intensity, texture, 
and color ratio.  Guo et al. [2] adopt similar features but de-  
tect shadows by classifying segments in an image and pairing 
shadow and lit segments globally. This method is more robust 
because segment pairing correlates both neighboring and non- 
neighboring surfaces. Some recent methods [3, 23] adopted Con- 



 

 

volution Neural Network (CNN) for detecting shadows from 
single images. Based on training from massive data, CNN-based 
shadow detection provides fast speed and high accuracy. How- 
ever, the science behind a CNN remains unexplainable. Some 
methods require additional controllable light sources to capture 
shadow-less objects, e.g., by comparing flash and no-flash image 
pairs [11]. However, active lighting restricts the applicable type 
of scenes - as moving lights around and using special lighting 
setups outdoors is often not practical. Some methods adopt 
optical filters to obtain multi-spectral images for illumination 
detection, e.g. by comparing NIR and RGB images [12] and by 
comparing RGB and single-color-filtered image [24], but these 
methods assume some special scenarios, e.g. sunlight and non- 
black surfaces. They are thus not applicable to the removal of 
normal single RGB images. 

User-aided methods generally achieve higher accuracy in 
shadow detection at the practical expense of varying degrees of 
manual assistance. Wu et al. [13] require extensive user input 
where the user needs to define multiple regions of shadow, lit 
area, uncertainty and exclusion. They estimate the probability 
that a pixel is part of a shadow according to a 3D Gaussian 
Mixture Model (GMM) [25] generated from the supplied pixel 
samples. Liu and Gleicher [5] require fine input defining the 
accurate shadow boundary. Su and Chen [4] require a rougher 
shadow boundary as input and align the shadow boundary 
according to intensity gradient. However, it is cumbersome to 
define the boundaries of broken shadows in [5] and [4]. Arbel 
and Hel-Or [1] require users to specify multiple texture anchor 
points to detect a shadow mask but the number of user input 
can significantly increase when shadow regions are multiple 
and scattered. Xiao et al. [15] and Zhang et al. [16] require two 
types of user scribbles for sampling shadow and lit intensities. 
Given enough scribbles, their detection methods can robustly 
produce shadow masks.  However, their methods also require 
a shadow matte (guided by the scribbles) to identify shadows, 
which is sensitive to user-scribbles because their image matting 
is affected by pixel location. Shorl and Lischinski [6] only require 
one shadow pixel as input. The algorithm detects shadow using 
image matting from a grown shadow seed. But it has limitations 
in cases where the other shadowed surfaces are not surrounded 
by the initially detected surface or when the penumbra is too 
wide. 

 
1.A.2. Shadow relighting 

Shadow relighting is another difficult problem, especially for the 
recovery of penumbra. Some methods apply zero-penumbra- 
gradient-filling [26] or native in-painting [6, 9, 17] for penumbra 
recovery which result in penumbra texture loss. Finlayson et  
al. [8,27] apply an iterative diffusion process to smoothly fill in 
the derivatives in penumbra which but can still cause texture 
loss in penumbra. Liu and Gleicher [5] apply a curve fitting 
method and a global alignment of gradients to acquire shadow 
scales but has issues when relighting the umbra and can intro- 
duce artifacts at uneven boundaries. Arbel and Hel-Or [1] apply 
a thin-plate model to fit the intensity surface and the algorithm 
is designed for removing shadows from curved surfaces. Guo et 
al. [2] remove shadows by image matting which treats shadows 
as the foreground. Their approach can usually introduce penum- 
bra artifacts. Gong et al. [14] also apply a curve fitting model 
and they adopt an intelligent sampling scheme to improve the 
quality of intensity samples for illumination estimation. Su  
and Chen [4] estimate shadow scales by using dynamic pro- 
gramming. These data fitting based methods [1, 5, 14]  assume 

highly-constrained curve or surface functions for illumination 
change which limit their range of removable shadows. Xiao et 
al. [15] apply a multi-scale adaptive illumination transfer which 
performs well for removing shadows cast on strong texture sur- 
faces. Zhang et al. [16] remove shadows by aligning the texture 
and illumination details between corresponding shadow and 
lit patches. However, both [15] and [16] are very sensitive to 
variable user inputs. Khan et al. [3] apply a Bayesian formulation 
to robustly remove common shadows. However, this method 
is unable to process difficult shadows such as non-uniform (or 
broken) shadows. It is also computationally expensive due to a 
large number of unknown parameters. 

 

1.A.3. Shadow removal ground truth 

To date, most shadow removal methods (e.g. [1, 4, 13–16]) have 
been evaluated by visual inspection on some selected images – 
with only a few exceptions performing quantitative evaluation. 
This is in part due to a lack of high-quality, varied, and public 
ground truth data. Shorl and Lischinski[6] perform a quanti- 
tative test but comparison is difficult due to the their data not 
being publicly available. Guo et al. [2] provide the first public 
ground truth data set for shadow removal and perform quantita- 
tive testing. However, the difficulty of collecting such a data set 
is highlighted in their work, with the appearance of some global 
illumination changes and mis-registration between the shadow 
and shadow-free images being a difficult factor to control. This 
can make quantitative testing on such data somewhat difficult, 
as these errors can influence shadow removal results. 

Another desirable property as yet not explored by existing 
data sets or fully explored in work on detection and removal   
is the categorization of shadows. Such attributes are important 
to consider as these different shadow types can present their 
own unique challenges, e.g. removal of colored shadows (i.e. 
through a glass bottle) are more difficult than consistent un- 
broken shadows (i.e. a human silhouette). Universal shadow 
removal approaches should therefore be capable of handling 
these multiple cases. In addition, having such categories in a 
ground truth data set is also important – if only to allow us to 
evaluate different algorithm performance in a range of scenarios 
and scene types. 

 
1.B.Contributions 

Given our review of previous work, 4 main contributions are 
proposed: 
1) A rigorous, highly-varied and categorized shadow removal 
ground truth data set: Our quantitatively verified high qual- 
ity data set contains 186 ground truth images organized into 
common shadow categories.  Based on this data, our method   
is quantitatively evaluated against other state-of-the-art algo- 
rithms on different shadow category types. 
2) Simple and robust user input based shadow detection: Our 
shadow detection component requires only two rough user 
scribbles marking samples of lit and shadow pixels. Our ap- 
proach differs from previous work requiring more complex user- 
inputs [1, 4, 5, 13] or simpler inputs [6] that compromise robust- 
ness and quality. 
3) High quality and fast shadow removal: Unlike existing 
methods requiring slow pixel-wise optimization [2–4, 6, 13] or 
an inflexible fitting model [1–5, 15, 16], penumbra unwrapping 
is introduced upon which multi-scale smoothing is performed to 
derive sparse shadow scales across the penumbra. This allows 
robust and efficient estimation of illumination changes without 
requiring prior training and any assumed illumination change 



 

 

models. This method is simple and fast yet offers state-of-the-art 
shadow removal quality. 
4) Robust color correction: Post-processing effects may cause 
inconsistency in shadow corrected areas compared with the lit 
areas both in tone and contrast. A robust multi-scale color cor- 
rection is proposed to amend these artifacts. 

To summarize, the authors believe these contributions to  
be important to this area of research due to their significant 
improvements over the state-of-the-art in shadow removal in a 
wide range of repeatable tests. 

 
2. SHADOW REMOVAL GROUND TRUTH 

A thorough quantitative evaluation of shadow removal perfor- 
mance requires a high-quality, diverse shadow-free ground truth. 
The first public data set was supplied by [2]. However, while this 
is a valuable resource for evaluating shadow removal and the 
first of its kind, there are many opportunities for expansion and 
several improvements are presented in our new data set. Firstly, 
the concept of shadow categories is introduced for the first time 
in our proposed data set, and a wide range of new types pro- 
posed. Secondly, ground truth is constructed and verified in a 
careful manner so as to remove irregularities between test and 
validation images. In terms of the latter, we note environmental 
illumination and registration errors between some shadow and 
ground truth images in existing data sets. An example of com- 
parison is shown in Fig.1. Our new data set avoids these issues 
and represents, we believe, the most stable and thorough data 
set for shadow removal evaluation available today. In order to 
highlight the benefits of our rigorous data protocol, in §4the 
quality of our ground truth data is quantitatively compared to 
another state-of-the-art dataset [2]. 

Shadow images and their ground truth are captured using a 
camera with a tripod and a remote trigger. This rig minimizes 
misalignment due to camera shake. To minimize illumination 
variance, images are captured within a very short interval of 
time using a manual capture mode with fixed ISO and exposure 
settings. When collecting data, environmental effects are often 
unavoidable, e.g., wind can cause camera shake or the sun might 
move behind the clouds. Such failed acquisitions are rejected 
from our data set using a quantitative assessment outlined in §4. 
For evaluation, our shadow data is also categorized according 
to 4 different attributes: degree of texture, shadow softness, 
brokenness of shadow, and color variation. All the validated 
shadow images are manually categorized according to 4 shadow 
categories and 3 intensity degrees. The labeling was performed 
by 5 users and their average responses are rounded to the nearest 
intensity degree numbers (e.g. 1 for “weak” and 3 for “strong”). 
In total, our final data set after rejection consists of 186 test cases. 
For comparison, the previous state of the art from [2] consists 
only of 28 test cases after applying our strict rejection measure. 
Examples of images in each category are shown in §4.E. 

 
3. INTERACTIVE SHADOW REMOVAL 

In this section, our algorithm is first explained in brief. Technical 
details for each of its components are then expanded upon in 
following sections. Our algorithm consists of 4 steps (see Fig.2): 
1) Pre-processing (§3.A) An initial shadow mask (Fig.2(b)) is 
detected using a KNN classifier trained from data from two 
rough user inputs (e.g. Fig.2(a)). A fusion image, which magnifies 
illumination discontinuities around shadow boundaries, is gen- 

texture (Fig.2(c)). 
2) Penumbra Unwrapping (§3.B) Based on the detected shadow 
mask and fusion image, pixel intensities of sampling lines are 
sampled perpendicular to the shadow boundary (Fig.2(d)). 
Noisy samples are removed and remaining columns stored as 
the initial penumbra strip (Fig.2(e)). The initial columns’ il- 
lumination changes are also aligned (Fig.2(f)) by a fine-scale 
alignment. 
3) Relighting (§3.C) From the penumbra strip, a multi-scale 
shadow scale estimation is applied to quickly and robustly esti- 
mate the illumination change along sampling lines and derive 
the sparse scales for all sampled sites (Fig.2(g)) which are prop- 
agated to form a dense scale field (Fig.2(h)). Shadows are re- 
moved by inverse scaling using this non-uniform field (Fig.2(i)). 
4) Color Correction (§3.D) Post-processing effects may cause in- 
consistent tone and contrast in shadow removed areas compared 
with the lit areas’. Without introducing additional artifacts, a 
multi-scale color correction is proposed to remove these incon- 
sistencies (Fig.2(j)). 

Our shadow removal approach includes some standard algo- 
rithms which require parameters. These required parameters are 
denoted throughout the paper and are determined by genetic 
optimization based parameter learning in §3.E. In this paper, we 
denote 6 undetermined parameters as h1, h2, . . . , h6. 

 
3.A.Pre-Processing 

Pre-processing provides a detected shadow mask and a fusion 
image to assist penumbra unwrapping. Although there have 
been automatic methods for shadow detection ( e.g. [2, 3, 18–20, 
28]), results are dependent on training data quality and variation. 
Instead, our method requires no prior training or learning – 
only two user-supplied rough inputs indicating sample lit and 
shadow pixels (Fig.2(a)).  Highlighted pixels’ RGB intensities  
in the Log domain are supplied as training features and used  
to construct a KNN classifier (K = 3). Euclidean distance is  
used as the distance measure and the majority rule with nearest 
point tie-break as the classification measure.   Spatial   filtering 

with a Gaussian kernel (size = h1, standard deviation = 
,
h1/2

,
) 

is applied to the obtained image of posterior probability and 
binarize the filtered image using a threshold of 0.5 (e.g. Fig.2(b)). 

Although detection errors along the boundary, as well as post-
filtering, can result in intensity samples with unaligned 

illumination changes at sharp boundaries, our penumbra un- 
wrapping and alignment step (§3.B) can compensate for this. 

Thus, our shadow removal method is somewhat robust to noise 
in the initially detected shadow mask, and would also be appli- 
cable to alternative (e.g. automatic) detection methods. While 
our user input format is identical to the two types of scribbles 
adopted in [15, 16], our method is found more robust to rougher 
(or fewer) user inputs since our method does require an image 
matting process that is also guided by sampled pixel location 
(see §4.Afor a test example). 

To assist unwrapping of the penumbra, an image is derived 
that magnifies illumination discontinuities around the shadow 
boundary – also assisting penumbra location – which is called 
the fusion image (e.g. Fig.2(c)). There are 2 steps in this process: 
1) Magnification of Illumination Discontinuity An initial fu- 
sion image F is derived that maximizes the contrast between 
shadow and lit areas by linearly fusing the three channels (Cl ) of 

YCbCr space as follows: 

3 3 
erated by fusing channels of YCrCb color space and suppressing F = ∑l=1 al Cl  subject to  ∑l=1 al = 1 (2) 



 

 

   
(a) mismatched illumination in the lit area (b) unregistered pixels of the circled area (c)  our data (no artifacts) 

Fig. 1. Issues of shadow-free ground truth in the previous data set [2]. To easily examine the ground truth artifacts, we extract one 
half from a shadow image and another half from a shadow-free ground truth image and merge these two halves. For each sub- 
figure: top left segment – shadow-free image; bottom right segment – shadow image.(a)and(b)are taken from [ 2] which reflect the 
two annotated issues. An example from our data – which rejects image pairs with these properties is shown in(c). 

 

 

1) Pre-Processing (§3.A) 2) Penumbra Unwrapping (§3.B) 3) Relighting (§3.C) 
4) Color Correc- 
tion (§3.D) 

 

Fig. 2. Our shadow removal pipeline. (a) input:   a shadow image and user strokes (blue for lit pixels and red for shadowed pixels); 
(b) detected shadow mask; (c) fusion image; (d) initial penumbra sampling (the actual density of samples are higher than the dis- 
played samples’); (e) initial penumbra unwrap (only the shadow edges of the largest shadow segment is shown); (f) further aligned 
penumbra unwrap; (g) sparse shadow scale; (h) dense shadow scale; (i) initial shadow removal result; (j) color corrected shadow 
removal result; (k) ground truth. 

 
where al is the positive fusing factor of Cl . The best fusing factors 

are derived by minimizing the following objective function Eb: 

Eb (a) = µ(FS )/µ(FL ) + (σ(FS ) + σ(FL ))/σ(FS∪L ) (3) 

where a is the vector of fusing factors and FS and FL are the 

two sets of shadow and lit pixels marked by user scribbles. In 
this paper, σ and µ are defined as functions that respectively 
compute the standard derivation and mean of a set of values. 
The first term ensures larger distinction between pixels of lit and 
shadow regions and the second term ensures smaller variation 
for pixels of the same lit or shadow regions. 
2) Suppression of Texture The noise due to image texture is re- 
duced by applying a median filter with a h2-by-h2 neighborhood 

to F . 
YCbCr color space offers perceptually meaningful informa- 

tion. Empirically, illumination information appears dominantly 
in one of its channels. The illumination information in RGB 
channels are usually affected by texture noise. An example of 
comparison between fusing channels using YCrCb color space 
and RGB color pace is shown in Fig.3. 

 

  
(a) RGB (b) YCrCb 

 

Fig. 3. Comparison of fusion image using different color 
spaces. The same optimization scheme is applied to the im- 
age in Fig.2(a) but using different color spaces. The YCrCb 
fusion image presents more clean illumination information. 

 

 
3.B.Penumbra Unwrapping 

A shadow boundary generally has a noisy profile with a vari- 
able penumbra width. This can lead to inaccurate estimation of 
shadow scales and resulting artifacts. The penumbra is therefore 
unwrapped into a strip and its sampled columns of illumination 
change are aligned (e.g. Fig.2(f)). This improves the detection of 

(a) (g) 

(d) 

(b) (h) (j) 

(e) 

(c) (f) (i) (k) 

invalid length 

minority group 

minority class 

valid samples 



 

 

outliers and allows linearization of processing along the penum- 
bra – leading to significant gains in efficiency and speed. 

 
Algorithm 1: Penumbra Sample End Point Selection 

input : boundary point (xb, yb ), fusion image F 

output : two ends (ps, pe) of a sampling line 
F̃ ← ∇F ; ps  ← (xb, yb ); pe  ← (xb, yb ); L ← |F̃(xb, yb )|; 

∆v ← F̃(xb, yb )/L; 
repeat 

vs  ← F̃([ps ]); ve  ← F̃([pe ]); 
Ls  ← vs · ∆v; Le  ← ve · ∆v; 
ps ← ps − ∆v; pe ← pe + ∆v; 

until ps or pe is not within the range of F or h5 Ls > L or 

   h5Le  < L;  

 
Similar to prior work [1, 3], the intensity of sampling lines 

perpendicular to the shadow boundary (Fig.2(d)) are sampled. 
The length of a sampling line is determined by locating suit- 

able start and end points guided by the fusion image  F .       A 
bi-directional search is initialized from each boundary point that 
extends the sampling line towards the lit area (end point) and 
the shadow area (start point) as described in Algorithm1. This 
extension is symmetric. The start and end points are initially 

set as the boundary point (xb, yb ) and the direction vector ∆v as 

the normalized gradient vector of (xb, yb ).  To  get the  position 
for a start point, ∆v is iteratively subtracted from the start point 
until its projected gradient is small enough (vice versa for the 
end point). Absolute gradient magnitude is not used in this al- 
gorithm because the gradient magnitudes of the soft penumbra 
edges can be very insignificant. The length of a sampling line 
thus depends on the starting gradient strength at the middle of 
penumbra. 

Instead of processing unaligned and unselected samples indi- 
vidually [1, 3], we transform these samples into unified columns 
of the initial penumbra strip to enable fast batch processing. And, 
only the good samples are kept for shadow scale estimation. To 
avoid outliers, e.g. sampling lines at occlusion boundaries, in- 
valid samples  are  filtered based  on an assumption  of similar 

shadow scales.  A scale vector Yc  = Tl  − Ts  is first    computed 
where Tl and  Ts  are the average Log-domain RGB intensities  

of the lit and shadow halves of a sampling line. Yc is then con- 
verted to spherical coordinates and considered as feature vector 
Ys. DBSCAN clustering [29] (radius: h3) is applied to Ys for all 
samples, and samples that belong to the largest cluster are stored 
as valid ones with valid illumination. For finer scale estimation, 
valid clusters are further divided into a few sub-groups using 
mean-shift [30] (band width: h4) and the samples of invalid sub- 
groups, whose total members are less than 10% of the largest 
sub-group’s, are discarded. Fig.2(d) shows an example of the 
above outlier detection. 

To achieve an efficient batch shadow scale estimation, we 
need to cancel out the affection of variable penumbra width. 
The lengths of samples are normalized by re-sizing all the sam- 
ples to a unique length na which is the maximum length of all 
valid samples. The normalized samples are then concatenated 
as columns to form the initial penumbra strip. Although our pre- 
vious adaptive sampling already provides the intensity profiles 
with roughly aligned illumination changes, some minor errors 
may still exist. It is assumed that, after the previous intensity 
outlier filtering and the sample length normalization, the trends 
of intensity changes are similar and the dissimilarity only    ap- 

pears on the level of noise (e.g. background texture) and some 
minor alignment errors. This is resolved by a fine-scale align- 
ment by optimization. For each column (intensity profile), the 
alignment process vertically shifts the column’s center and then 
stretches the column about its center by shifting its two ends. An 
illustration of this alignment is shown in Fig.4. The parameters 

 

Fig. 4. Alignment of penumbra strip: The orange circles are  
the centers of columns in the penumbra strip. The orange 
dashed lines indicate the desired column length for a strip.  
The blue and green lines indicate the shifts required. In each it- 
eration of the optimization, the alignment is in two steps: (left 
to middle) alignment of center; (middle to right) alignment of 
illumination change. 

 
of this fine-scale alignment for each column are estimated by 
minimizing the following energy function Ea: 

Ln = Γ(As, Ak , Lo ) (4) 

Ea  = MSE(Ln − La ) (5) 

where As and Ak are the stretching shift and the center shift in 
the fine-scale alignment respectively, Lo is the scales of original 
column, La is the reference of alignment which is the average 
scale values of all valid columns (i.e. column-wise mean of the 
penumbra unwrap), Ln is the aligned unwrap, Γ is a function 
that aligns Lo according to the estimated alignment parameters, 
MSE is a function that computes mean squared error. The mini- 
mization is solved using a sequential quadratic programming 
algorithm [31]. 

 
3.C.Relighting 

Using the aligned penumbra unwrap, a fast multi-scale shadow 
scale estimation is adopted for each shadow boundary. Com- 
pared with [4, 5, 14], our shadow scale estimation is fast and 
adaptive, which neither requires computational-costly pixel- 
wise optimization nor assumes any constrained data fitting mod- 
els of illumination change, e.g. cubic curves or surface models. 
The non-linear image post-processing can significantly distort 
the original shadow scale change. Also, complex lighting condi- 
tions make the penumbra shadow scale change unpredictable. 
Instead, we only assume that illumination change is smooth and 
surface material change causes sharp intensity variation. Our re- 
covery does not constrain the shape of the smooth shadow scale 
change of a sampling line. This means that our penumbra recov- 
ery is compatible with a wider range of shadow scale changes 
(e.g. ours can remove unconventional colored shadows) as long 
as the shadow scale changes of neighboring sampling lines are 
not too dissimilar. Our previous sample length normalization 
and alignment make it possible to estimate the shadow scale 
change by a simple and adaptive horizontal smoothing. 

A pyramid (e.g. Fig.5(b)) of horizontally filtered penumbra 
unwraps using 5 averaging kernels in different sizes are com- 
puted so that texture noise can be canceled. The sizes of averag- 

ing kernels are specified as 1-by-2ñ  where ñ  ∈ {2, 3, 4, 5, 6}. The 
filtered intensities of the pyramid are then converted to shadow 
scales.  For each RGB channel layer of each pyramid layer,  the 
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Fig. 5. Pipeline of multi-scale shadow scale estimation. The 
aligned penumbra unwrap (a) is filtered using average kernels 
in exponentially increasing sizes to build a pyramid of shadow 
scales (b). The roughness of each column of each pyramid 
layer is measured and visualized in (c). Brighter colors indi- 
cate higher roughness. The horizontal and vertical dimensions 
in (c) refer to column index and layer index respectively. (d) is 
the visualized corresponding selections of layer index for each 
column (in white) after thresholding. (e) is the finale shadow 
scale composed by the shadow scales from the different layers 
of (b). (f) is the relit penumbra unwrap using (e). 

estimated scales can be computed by dividing the intensities of 
each column by the intensity of the last element of each column 
(i.e. lit end). The optimum shadow scales for each column are 
selected from different layers of the pyramid. Column inten- 
sity with higher localness (i.e. filtered by a smaller kernel) and 
lower roughness are preferred. However, higher localness leads 
to higher roughness, so an optimum solution should balance 

these two properties. The roughness of intensity change Es (c̃, ñ ) 
(visualized in Fig.5(c)) is measured as follows: 

¸  . 
∂2U(r̃, c̃, ñ ) 

.2
 

steps apply non-linear operations which break the linearity prop- 
erty that the intensity of a pixel is proportional to the amount 
of photons a sensor has received. A robust multi-scale color 
correction method is therefore proposed to address this issue. 
The improvement will only be significant for images which are 
over post-processed. Previous work has proposed global adjust- 
ments to align the intensity characteristics of the umbra and lit 
area [5, 14]. These assume that the surface around the penumbra 
has a similar texture and color but may lead to significant unnat- 
ural artifacts when they are dissimilar. To address this, we adopt 
an image detail alignment similar to Xiao et al. [15] that equates 
the spatially dependent variance of RGB intensities between 
the shadow and lit sides at different scales. Unlike [15], our 
method does not require a shadow removal for each filtered im- 
age level (which is computationally expensive). Instead, based 
on an initial shadow removal result, we only iteratively align 
the variances around shadow boundary on each scale. It is as- 
sumed that the average intensity of both sides of the shadow are 
accurate and that artifacts are due to the differences in intensity 
variance. Statistics are collected from the lit side pixels Pl and the 
umbra side pixels Pu both near the penumbra as the reference 
and source of color correction respectively. The algorithm for 
alignment is described in Algorithm2. where s is a scale, β is the 
maximum image dimensional of Ira, b f ilter is an operation that 
bilaterally filters [33] the input image (first parameter) using a 
standard deviation of the space (second parameter) and a range 
Gaussian (third parameter), Ih is an image of intensity variation, 
where c is the channel index, ς is a function which computes the 
median absolute deviation. 

Finally, to smooth the color correction result, alpha blending 
is applied in RGB color space according to the shadow scale as 

Es (c̃, ñ ) = ∂r̃2 
dr˜ (6) shown in Eq.7. 

where U is the penumbra unwrap, ñ is the layer index of pyra- 
mid, c̃  and r̃  are the column and row coordinates of the penum- 

I 
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c  = Ic ◦  ˙  + Ic   ◦ (1 − ̇  ) (7) 

bra unwrap respectively. The optimum scales for each column 
are selected using a threshold of roughness Ts which is com- 
puted as the mean of all values in Es. The column of one of 
the layers which has the lowest roughness above Ts is selected 
(visualized in Fig.5(d)). A shadow scale image of the penumbra 
unwrap (e.g. Fig.5(e)) can thus be formed by picking columns 
from different pyramid layers according to the selected layer in- 
dex of each column. As the intensity samples, i.e. columns, have 
previously been aligned during the alignment of the unwrap, 
the estimated scales of each sampling are mapped back by using 
an reverse operation of Γ so that the estimated shadow scales 
are corresponding to the original unaligned intensities of the 
penumbra unwrap. The mapped-back shadow scales are then 
registered to the their 2D positions in the image that a sparse 
shadow scale field is formed (e.g. Fig.2(g)). To obtain a dense 
scale field (e.g. Fig.2(h)), we propagate the sparse scales in the 
penumbra region by smoothly interpolating and extrapolating 
the scales in other regions using image in-painting [32]. The 
shadow-free image can be obtained by inverse scaling according 
to Eq.1. 

 
3.D.Color Correction 

Images captured from popular imaging devices are often post- 
processed, e.g. gamma correction and JPEG compression, such 
that the linearity of photon intensity is not maintained. When 
the degree of post-processing is high, visible artifacts, e.g. differ- 
ences in tone and contrast, may appear in shadow corrected ar- 
eas as Eq.1does not hold. This is because these post-processing 

where c is the channel index,   ˙   is the normalized scale    field 

of S , Ic is the final shadow-free image. An illustration of the 

intermediate steps of color correction is shown in Fig6. 

 
3.E.Parameter Learning 

Our shadow removal approach includes the use of some stan- 
dard algorithms that require the specification of parameters.  
To determine an appropriate set of parameters, we apply an 
optimization to learn these parameters from a subset of our 
ground truth data set. These parameters contain both integers 
and real numbers. It is therefore not possible to apply a gradient- 
based optimization method that requires the objective and con- 
straint functions to be both continuous and have continuous 
first derivatives. To determine these parameters, we apply a 
mixed-integer genetic optimization method [34]. Let us define 

H = h1, h2, . . . , h6 as a vector of the shadow removal parame- 

ters denoted throughout the paper. Our objective function Ep 

minimizes the sum of all error measurements as the follows: 
 

Ep (H) = ∑ ekwk (8) 
k 

 
where ek is the kth  error measurement,  and wk  is the weight  
for ek . We assume that the weights for all error measurements 

are the same (i.e. equally important), e.g., wk = 1. These error 
measurements are later introduced in §4.C(in Table4) and only 
all-pixel-error is used in our learning. Table2shows the details 
of these parameters and their optimization configuration. In our 
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Fig. 6. Multi-scale color correction pipeline. The inconsistency in the initial shadow-free image (b) is fixed in the final output (f). 
The multi-scale color correction aligns the color variance at different scales from coarse to fine. On each single scale, the initial input 
image (c1) exhibits inconsistency of local variance between lit and shadow areas. The higher-frequency variation (c3) of shadow 
and lit areas are aligned in (c4). The corrected output (c5) can be obtained by adding (c4) to (c2). 

 
Algorithm 2: Multi-Scale Color Correction 

 

input : shadow removed image Ir , reference lit pixels Pl , source shadow pixels Pu, all shadow pixels Ps 

output : color corrected image Ira 

Ira  ← Ir ; 
for s = 1 to 3 do for each scale, e.g., Fig.6 

Il ← b f ilter(Ira, β/2s+1, h6) //apply bilateral filtering ( e.g. Fig.6(c2)) 

Ih  ← Ir − I l  //get  local  intensity  variation  image  (  e.g. Fig.6(c3)) 
for c = 1 to 3 do for each RGB channels 

rσ ← ς(Ih (P ))/ς(Ih (Pu )) //get overall ratio of intensity  variation 
c l c 

Ire h 

c  ← rσ I  (Ps ) //get aligned  intensity  variation image  ( e.g. Fig.6(c4)) 

c    ← Ir //copy  intensities  of  lit pixels 
Ira l re 

 

end 

end 

c   (Ps ) ← Ic (Ps ) + Ic   //add  aligned  intensity  variation  back  (  e.g. Fig.6(c5)) 

 
 

 
 

Table 2. Parameter learning specification for the optimization. 

 

sible to learn an optimum set of shadow removal parameters 
from a ground truth data set. However, the learned parameters 

ID  Description Value 
Range 

Initial Type 
Value 

are also dependent on the amount and quality of training data. 
We further discover the choice of parameters for different types 

   of shadows.  An individual parameter learning process is  per- 
formed for each shadow category measurement, i.e., Ep (H) = ek 

where k indicates the kth error measurement. Table3shows our 
parameter learning results for the individual shadow categories 
(error measurement). These individual parameter learning re- 
sults show that the optimum parameters can vary depending 
on type of shadow. It is therefore practical to provide some 
predefined parameter sets for different shadow removal tasks 
or a single parameter set that balances the shadow removal 
performance for all types of shadows. 

 

experiment, 5 test cases are randomly selected for computing 
each error measurement. 

 
The optimum parameters for all error measurements are 

learned  as  
.

14     10     0.1124     0.0333     8.5195     0.2228
.
. Our 

evaluation results in §4are reported using these learned op- 
timum parameters. Our experiment demonstrates that it is pos- 

4. EVALUATION 

In this section, we first describe experiments that highlight our 
algorithms behavior given variable user inputs. The quality of 
our new ground truth versus existing state-of-the-art ground 
truth is then quantitatively evaluated. Finally, our algorithm is 
evaluated versus other state-of-the-art shadow removal methods 
based on our new dataset. 
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(f) Corrected Result 

(c5) Output 

h1 Gaussian filter Kernel size (§3.A) [2, 15] 5 Int. 

h2 medium filter Kernel size (§3.A) [2, 15] 10 Int. 

h3 DBScan Radius (§3.B) [0.01, 0.5] 0.2 Real 

h4 meanshift Radius (§3.B) [0.01, 0.5] 0.06 Real 

h5 gradient advance scale (Alg.1) [2, 20] 10 Real 

h6 bilateral filter sampling spatial 
(Alg.2) 

[0.1, 0.3] 0.2 Real 

 



 

 
Table 3. Parameter learning results for individual error measurement. 

Texture Softness Brokeness Colorfulness 
    

 
 
 
 
 
 
 
 
 
 

4.A.P erformance Stability Given Different User Inputs 
 
 
 
 
 
 

(a) single pair of strokes test (b)  single pair of strokes test 
 

 
(c)  result with less strokes (d) result with more strokes 

 

Fig. 7. Variable input behaviors: The top row shows two ex- 
amples using single pairs of strokes. 10 examples of single 
strokes placed in different locations are supplied as input (red 
for lit and blue for shadow). The 2 gray-level images show the 
visualized probability of each pixel being marked in these 10 
independent tests. Fewer gray pixels indicate higher  stability, 
i.e. the image should only show black (0% probability) and 
white (100% probability) pixels when it is absolutely stable. 
The bottom row shows examples highlighting how additional 
strokes can improve the detection result (binary mask). 

 
Given user-supplied single pairs of strokes of lit and shadow 

pixel samples, our shadow detection generates stable results in 
different conditions (e.g. Fig.7(a)and Fig.7(b)). In some  cases, 
e.g. where the surface color is very shadow-like, the detection 
results can be improved by supplying more than one pair of 
strokes (e.g. Fig.7(c)and Fig.7(d)). 

While our user input format is the same as the input format 
adopted in [15, 16], our method is found more robust to rougher 
(or fewer) scribbles since ours does not require an image matting 
process that is affected by sampled pixel location. Fig.8shows 
an example. 

 
4.B.Evaluation of Ground Truth Quality 

Ideal pairs of ground truth images should have a minimum 
intensity difference in the common lit area – which will also 
indicate whether registration is poor (due to camera shake or 
scene movement – which should be rejected). This is utilized to 
assess the quality of ground truth candidates. The error image 

∆I = Is − Ig  and the ratio image Ir  = Φ(Is ) ø Φ(Ig ) are first 
computed, where Is  and Ig  are the original shadow image and 
its shadow-free ground truth image (which differs from the 
processed shadow-free outputs  I f   in Eq.7) respectively,   ø is 

element-wise division and Φ is a function that converts RGB 
image to gray-scale image. The set of pixels Pr of Ir that satisfies 
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Fig. 8. Rougher stroke requirement: To generate a reasonable 
shadow removal result, our method requires less input strokes 
(in the same format) compared with [16]. 

Ir (Pr ) ≥ 1 are regarded as lit pixels. Due to some unavoidable 
minor global illumination changes and the inaccuracy in camera 
exposure control, the lit intensities in the shadow image can be 
higher than those in the shadow-free ground truth image. Ir 

can therefore be greater than 1. The ground truth error Qd is 
computed as follows: 

Qd = µ(|∆I(Pr )|) + σ(∆I(Pr )) (9) 

Ground truth pairs in our data set with Qd > 0.05 are removed. 
Using this measure, our initial data capture of 195 test cases 
results in 186 test cases with stable illumination changes between 
the shadow and ground truth images. Comparing to the quality 
of other ground truth data sets, [2] (state of the art) results in 
mean error of 0.18 (leaving 28 out of 79 test cases) while ours is 
0.02. 

 

4.C.Quantitative evaluation of shadow removal 

In previous work [2, 6], the quality of shadow removal is mea- 
sured by directly using the per-pixel error between the shadow 
removal result and shadow-free ground truth. However, a 
shadow in a smaller size or a lighter shadow can result in a 
smaller initial error between the original shadow image and  
its shadow-free ground truth. It is thus unfair to judge that a 
method is better only because the error between the shadow- 
removed image and its shadow-free ground truth is smaller. In 
our work, we cancel out the affects of the size and darkness    
of the shadow. We therefore compute the error ratio Er as our 
quality measurement: 

Er  = En /Eo (10) 

where En is the error between the ground truth (no shadow) and 
shadow removal result, and Eo is the error between the ground 

ID  
Weak 

 
Medium 

 
Strong 

 
Weak 

 
Medium 

 
Strong 

 
Weak 

 
Medium 

 
Strong 

 
Weak 

 
Medium 

 
Strong 

Other 

h1 13 14 15 13 12 15 14 15 3 9 14 14 14 

h2 3 7 12 3 15 15 7 3 10 12 15 15 6 

h3 0.0269 0.3644 0.4418 0.1124 0.0193 0.0304 0.1815 0.0319 0.2733 0.2317 0.0304 0.0352 0.2775 

h4 0.0680 0.0193 0.0149 0.1049 0.1359 0.017 0.0426 0.0291 0.0203 0.0330 0.3464 0.0382 0.0307 

h5 5.3380 6.1115 2.2695 11.1833 9.5072 18.2173 8.5195 8.2637 5.0299 19.6150 19.8436 10.4065 7.6485 

h6 0.2274 0.1582 0.1547 0.2496 0.2392 0.2199 0.2204 0.2367 0.1658 0.2457 0.1612 0.2228 0.2360 

 



 

 

truth (no shadow) and the original shadow image. This normal- 
ized measure better reflects removal improvements towards the 
ground truth independent of original shadow intensity and size. 
We assess En and Eo using Root-Mean-Square-Error (RMSE) of 
RGB intensity. To test robustness, the standard deviation for each 
measurement is also computed. Unlike previous un-categorized 
test [2, 6], our removal test is based on our data set of 186 cases, 
which contains challenging soft, broken and color shadows and 
shadows cast on strong textured surfaces as well as simpler 
shadows, plus 28 remaining cases from [2] – resulting in 214 
test cases in total. Each case is rated according to 4 attributes, 
which are texture, brokenness, colorfulness and softness, in 3 per- 
ceptual degrees from weak to strong which were aggregated by 
5 users. In Table4(left side), the combined shadow removal 
error results from both automatic and semi-automatic shadow 
removal algorithms (all 214 cases) are shown. We separate the 
error measurement for all pixels and only shadow pixels. In  
our experiments, our method shows significant leading perfor- 
mance across all metrics. According to Eq.10, Eo for all pixels is 
lower than Eo for the shadow pixels only because the intensity 
errors of the lit pixels are close to 0 and Eo measures the RMSE. 
In addition, the new RMSE En for both all pixels and shadow 
pixels only are very close after shadow removal, the error ratio 
Er  for the shadow pixels only is therefore generally lower. 

To encourage open comparison in the community, we provide 
an online benchmark1 for quantitative evaluation of shadow 
removal. 

 
4.D.Analysis of Shadow Categories and Attributes 

 
1.2 

 

1 
 

0.8 
 

0.6 
 

0.4 
 

0.2 
zhang15 guo12 gong13 su10 ours 

(a)  all pixel error 

 

1.5 
 

 
1 

 

 
0.5 

 

 
0 

zhang15 guo12 gong13 su10 ours 

(b)  shadow pixel error 
 

Fig. 9. Parallel coordinate charts of the quantitative results in 
Table4. The ticks zhang15, guo12, gong13, and su10 refer to 
[16], [2], [14], and [4] accordingly. The scores presented here 
are the average scores of all three degrees for each attribute. 

 
To investigate the affects of different shadow categories and 

attributes, the quantitative result in Table4is summarized by vi- 
 

 

1   http://cs.bath.ac.uk/%7Ehg299/shadow_eval/ 

sualizing the result using the parallel coordinate charts in Fig.9. 
Such a visualization is insightful as strong performance of one 
method could direct practitioners to favor one algorithm over 
another in some problem cases. Overall, colored shadows are 
shown to be significantly the most difficult shadows to remove 
and shadows cast on high texture the easiest challenge. Broken 
shadows are slightly more difficult to process than soft shadows, 
although both of them are in the range of medium difficulty. [2] 
and [14] show relatively significant disadvantages in processing 
color shadows, while [4] demonstrates obvious difficulty in pro- 
cessing broken shadows. The trend of the other methods and 
attributes are otherwise similar. In our tests, our method over- 
all demonstrates the best performance for all types of shadows 
analyzed. 

 
4.E.Visual Comparison 

Fig.10shows some typical visual results of shadow removal on 
various scenarios from our data set. 

 
4.F.Efficiency Comparison 

Table5shows the required time for processing 0.3 mega-pixel 
color images shown in Figure10on a 3.1GHz machine. Our 
MATLAB implementation generally requires less system pro- 
cessing time than  the  other  two  MATLAB  implementations 
of [2, 14], one MATLAB+C implementation [16] and one C++ 
implementation [4]. Compared with the other user-assisted 
methods [4, 14], our method also generally requires less time 
for user-interaction. The slower performance of [16] is majorly 
caused by its slow image matting pre-processing step. 

 
4.G.Limitation And Future Work 

As is the case with all current shadow removal methods, our 
algorithm has most difficulty in extreme cases, e.g. Fig.11, where 
shadows are highly soft, broken, colorful (mixed by at least two 
different colors). Although the shadow effects can be signifi- 
cantly reduced by our method, the artifacts are still noticeable. 
A shadow image may also contain a mixture of more than one 
strong shadow attributes (e.g. the last column of Fig.11). We 
have challenged the multi-category shadow removal for the first 
time in our community (with a leading performance), but have 
not resolved the extreme cases. This highlights a direction for 
future work. 

Our method requires users to supply reasonable inputs. We 
have not considered its tolerance for very careless user inputs 
(e.g. mistakenly marking many shadow pixels as lit samples). 
Besides, insufficient user inputs may result in a poor shadow 
detection. Since a sufficiently trained shadow classifier may be 
robust to this issue, another future work could be improving 
shadow detection by combining user inputs with the shadow 
masks generated from an automatic shadow classifier. 

 
5. CONCLUSIONS 

We have presented an interactive method for fast shadow re- 
moval together with a state-of-the-art ground truth. Our method 
balances the complexity of user input with robust shadow re- 
moval performance. Our quantitatively-verified ground truth 
data set overcomes issues of mismatched illumination and reg- 
istration in existing data sets. We have evaluated our method 
against several state-of-the-art methods using a thorough quan- 
titative test and shown leading state of the art performance. 
Besides the opportunities for improving shadow removal qual- 
ity for the categorized shadows in our dataset,  the    detection 
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Table 4. Shadow removal errors for test cases according to four attributes. The left and right sides of the table show the error scores 
where all pixels in the image are used, and just shadow area pixels respectively. For each score of each attribute, the images with 
other predominant attributes (strong) are not used. Hence, test cases have a strong single bias towards one of the attributes. “Other” 
refers to a set of shadow cases showing no markedly predominant attributes. “Mean” refers to the average score for each category. 
Standard derivations are shown in brackets. In our ordering, the average error is compared before comparing the standard deriva- 
tion. Method [2] is trained using a large shadow detection data set from [19]. The user input for Method [16] is a combination of   
the simple input for our method and some additional strokes for accommodating the sensitive shadow detection of [16]. The best 
scores are made bold. 

All Pixels Errors Shadow Pixels Errors 
Degree          

Zhang [16] Guo [2] Gong [14] Su [4] Ours Zhang [16] Guo [2] Gong [14] Su [4] Ours 

Textureness 

Weak 0.35 (0.17) 0.53 (0.50) 0.32 (0.19) 0.35 (0.24) 0.26 (0.16) 0.16 (0.20) 0.42 (0.57) 0.16 (0.18) 0.17 (0.34) 0.10 (0.09) 

Medium 0.39 (0.25) 0.59 (1.09) 0.38 (0.33) 0.36 (0.16) 0.26 (0.11) 0.28 (0.25) 0.47 (1.15) 0.27 (0.35) 0.21 (0.27) 0.12 (0.09) 

Strong 0.58 (0.38) 0.71 (0.60) 0.70 (0.42) 0.60 (0.41) 0.49 (0.40) 0.39 (0.50) 0.64 (1.03) 0.65 (0.55) 0.49 (0.60) 0.36 (0.44) 

Mean 0.44 (0.27) 0.61 (0.73) 0.47 (0.31) 0.43 (0.27) 0.34 (0.22) 0.27 (0.38) 0.51 (0.92) 0.36 (0.36) 0.29 (0.40) 0.19 (0.21) 

Softness 

Weak 0.37 (0.24) 0.52 (1.08) 0.33 (0.31) 0.33 (0.21) 0.23 (0.10) 0.24 (0.42) 0.39 (1.13) 0.21 (0.32) 0.18 (0.33) 0.10 (0.09) 

Medium 0.40 (0.20) 0.70 (0.36) 0.44 (0.21) 0.42 (0.11) 0.34 (0.15) 0.25 (0.26) 0.64 (0.43) 0.29 (0.25) 0.24 (0.14) 0.15 (0.10) 

Strong 0.69 (0.49) 1.09 (0.75) 0.76 (0.35) 0.72 (0.21) 0.60 (0.27) 0.49 (0.62) 1.01 (0.97) 0.71 (0.53) 0.69 (0.54) 0.40 (0.25) 

Mean 0.48 (0.31) 0.77 (0.73) 0.51 (0.29) 0.49 (0.18) 0.39 (0.18) 0.33 (0.43) 0.68 (0.84) 0.40 (0.37) 0.37 (0.34) 0.22 (0.15) 

Brokenness 

Weak 0.37 (0.23) 0.59 (0.98) 0.36 (0.29) 0.34 (0.15) 0.25 (0.13) 0.24 (0.40) 0.48 (1.04) 0.23 (0.31) 0.18 (0.24) 0.11 (0.09) 

Medium 0.43 (0.22) 0.42 (0.29) 0.44 (0.25) 0.49 (0.38) 0.29 (0.14) 0.27 (0.27) 0.27 (0.35) 0.29 (0.28) 0.38 (0.58) 0.14 (0.11) 

Strong 1.07 (0.47) 1.42 (1.06) 0.98 (0.31)) 0.85 (0.25) 0.69 (0.30) 0.88 (0.72) 1.55 (1.84) 1.05 (0.50) 0.86 (0.65) 0.52 (0.32) 

Mean 0.63 (0.31) 0.81 (0.78) 0.59 (0.29) 0.56 (0.26) 0.41 (0.19) 0.46 (0.46) 0.76 (1.08) 0.52 (0.36) 0.47 (0.49) 0.26 (0.17) 

Colorfulness 

Weak 0.36 (0.18) 0.48 (0.64) 0.32 (0.18) 0.34 (0.18) 0.24 (0.11) 0.21 (0.24) 0.36 (0.78) 0.19 (0.20) 0.18 (0.23) 0.10 (0.08) 

Medium 0.60 (0.50) 1.67 (2.29) 0.83 (0.67) 0.52 (0.24) 0.48 (0.18) 0.57 (1.06) 1.56 (2.07) 0.67 (0.73) 0.45 (0.65) 0.24 (0.14) 

Strong 0.78 (0.57) 1.20 (0.99) 1.10 (0.68) 0.63 (0.49) 0.56 (0.31) 0.72 (1.00) 1.34 (2.33) 1.20 (1.18) 0.54 (0.84) 0.46 (0.48) 

Mean 0.58 (0.41) 1.12 (1.31) 0.75 (0.51) 0.50 (0.30) 0.43 (0.20) 0.50 (0.77) 1.09 (1.73) 0.69 (0.70) 0.39 (0.57) 0.27 (0.23) 

Other 

0.35 (0.16) 0.38 (0.52) 0.27 (0.17) 0.26 (0.08) 0.19 (0.06) 0.16 (0.22) 0.25 (0.58) 0.14 (0.20) 0.09 (0.05) 0.06 (0.02) 

 

and removal for highly-complicated shadows, such as overlap- 
ping shadows caused multiple light sources with different light 
colors, and shadows caused by transparent objects with compli- 
cated inner structure and color, is still an open problem for the 
community. 
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