Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials

Zhao, Wenyu, Liu, Zhiyuan, Wei, Ping, Zhang, Qingjie, Zhu, Wanting, Su, Xianli, Tang, Xinfeng, Yang, Jihui, Liu, Yong, Shi, Jing, Chao, Yimin ORCID: https://orcid.org/0000-0002-8488-2690, Lin, Siqi and Pei, Yanzhong (2017) Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nature Nanotechnology, 12. pp. 55-60. ISSN 1748-3387

[thumbnail of Accepted manuscript]
Preview
PDF (Accepted manuscript) - Accepted Version
Download (946kB) | Preview

Abstract

How to suppress the performance deterioration of thermoelectric materials in the intrinsic excitation region remains a key challenge. The magnetic transition of permanent magnet nanoparticles from ferromagnetism to paramagnetism provides an effective approach to finding the solution to this challenge. Here, we have designed and prepared magnetic nanocomposite thermoelectric materials consisting of BaFe12O19 nanoparticles and Ba0.3In0.3Co4Sb12 matrix. It was found that the electrical transport behaviours of the nanocomposites are controlled by the magnetic transition of BaFe12O19 nanoparticles from ferromagnetism to paramagnetism. BaFe12O19 nanoparticles trap electrons below the Curie temperature (TC) and release the trapped electrons above the TC, playing an ‘electron repository’ role in maintaining high figure of merit ZT. BaFe12O19 nanoparticles produce two types of magnetoelectric effect—electron spiral motion and magnon-drag thermopower—as well as enhancing phonon scattering. Our work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles.

Item Type: Article
Uncontrolled Keywords: magnetic properties and materials,thermoelectric devices and materials,thermoelectrics
Faculty \ School: Faculty of Science > School of Chemistry (former - to 2024)
UEA Research Groups: Faculty of Science > Research Groups > Physical and Analytical Chemistry (former - to 2017)
Faculty of Science > Research Groups > Chemistry of Materials and Catalysis
Faculty of Science > Research Groups > Energy Materials Laboratory
Depositing User: Pure Connector
Date Deposited: 24 Sep 2016 00:26
Last Modified: 13 Sep 2024 23:56
URI: https://ueaeprints.uea.ac.uk/id/eprint/60044
DOI: 10.1038/nnano.2016.182

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item