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Abstract 

Purpose: Quantitative diffusion MRI has frequently been studied as a means of grading 

prostate cancer. Interpretation of results is complicated by the nature of prostate tissue which 

consists of four distinct compartments: vascular, ductal lumen, epithelium and stroma. 

Current diffusion measurements are an ill-defined weighted average of these compartments. 

Here prostate diffusion is analyzed in terms of a model that takes explicit account of tissue 

compartmentalization, exchange effects and the non-Gaussian behaviour of tissue diffusion.  

Methods: The model assumes exchange between the cellular (i.e., stromal plus epithelial) 

and the vascular and ductal compartments is slow. Ductal and cellular diffusion 

characteristics are estimated by Monte Carlo simulation and a two-compartment exchange 

model respectively. Vascular pseudo-diffusion is represented by an additional signal at b = 0. 

Most model parameters are obtained either from published data or by comparing model 

predictions with published results from 41 studies. Model prediction error is estimated using 

10-fold cross-validation. 

Results: Agreement between model predictions and published results is good. The model 

satisfactorily explains the variability of ADC estimates found in the literature. 

Conclusions: A reliable model that predicts the diffusion behaviour of benign and cancerous 

prostate tissue of different Gleason scores has been developed. 
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Introduction 

Prostate cancer is the second most common cancer in men worldwide [1] and the most 

common cancer in US men [2]. It is the fifth leading cause of death from cancer in men 

worldwide [1] and the second leading cause of death in US men [2]. Despite these mortality 

statistics, most prostate tumours are indolent, low-grade tumours that will have no clinical 

consequences. The best assessment of tumour aggressiveness is the Gleason score obtained 

from whole-mount histology of the surgically excised prostate [3-5]. However, pre-surgical 

Gleason scores obtained from trans-rectal biopsy samples are much less reliable due to the 

inability to sample the whole prostate (sampling error) [6-9]. As a result prostate cancer is 

over-treated and it is currently estimated that as many as 37 men undergo prostatectomy for 

every cancer death prevented [10]. This not only entails great unnecessary expense and 

suffering, but the incidence of morbidity associated with the procedure (principally urinary 

and sexual dysfunction) is very high (up to 90%) [11]. Improved methods of assessing 

prostate tumours could greatly reduce the expense, anxiety and morbidity associated with 

excessive treatment. 

Histology: Gleason score and grade 

Histologically, the prostate consists of four distinct compartments or cell types: vascular (i.e., 

capillaries), fibro-muscular stroma, epithelium and glandular lumen. Vascular volume in the 

normal peripheral zone of the prostate is about 2% [12]. Of the remaining tissue 

approximately 39.5% is stroma, 31.5% epithelium and 29% ductal lumen [13]. The epithelial 

cells form the walls of the glandular ducts and separate them from the stroma. In tumours, the 

stromal and lumenal fractions decrease and the vascular and epithelial fractions increase; 

these changes are progressive with tumour aggressiveness. 

Tumours are assigned a Gleason score as follows: each tumour is given two Gleason grades 

based on histological pattern of the two dominant tumour areas and these are then summed to 

give the Gleason score. Scores of less than 6 are considered low grade. It is thus most 

important to distinguish between Gleason grades 3, 4 and 5 [3]. Lumen volume decreases 

with grade by ~12% for Gleason 3, ~16% for Gleason 4 and ~21% for Gleason 5 [13]. The 

ratio of epithelial to stromal volumes doubles between grades 3 and 5 (~1.4 for Gleason 3, 

~2.8 for Gleason 5). Furthermore, the density of epithelial cells also increases. Thus 

measurements of lumenal volume and cellular composition have great potential to provide a 

reliable means of identifying grade. 



Quantitative Diffusion MRI 

The use of quantitative diffusion magnetic resonance imaging (MRI) for assessment of 

prostate cancer has been investigated by many groups [14-43].  However, although there are 

clear differences in MRI parameters between tumours and normal prostate, differences 

between high and low grade tumours are small with considerable overlap. Quantitative 

measurements in the prostate are complicated by the complex nature of prostate tissue 

described above. In addition, blood flow in tortuous capillaries can lead to a “pseudo-

diffusion” signal such as seen in intra-voxel, incoherent motion (IVIM) experiments. 

However, to date the heterogeneity of prostate tissue has not generally been taken into 

account and MRI parameter estimates represent a weighted average of the contributions of 

the different compartments.  

In this paper we propose a model of prostate tissue diffusion that takes tissue 

compartmentalisation explicitly into account. By doing so, not only are ambiguities in 

previous measurements resolved, but also estimates of ductal, stromal and endothelial 

volumes become possible. Since these are the most important factors determining Gleason 

grade, this approach could provide an equivalent MRI score that might distinguish aggressive 

and indolent tumours. Furthermore, since this is an imaging method that can cover the whole 

prostate it avoids sampling error and could therefore provide greatly improved pre-operative 

assessment. 

Tissue Model 

The model is based on measured or estimated values for the different tissue volumes and 

diffusion coefficients in normal prostate and cancer. The net signal arising from the tissue 

will depend on these parameters and on the exchange of water between different 

compartments. If exchange is slow relative to the time over which the signal is acquired 

(typically 50–100 ms), then each water molecule will effectively be confined to a single 

compartment and will contribute a signal characteristic of that compartment alone. 

Conversely, if water exchange is very fast between two compartments they are well mixed 

and cannot be distinguished. At intermediate exchange rates, water molecules will spend time 

in both compartments and will contribute a signal that represents an average between them. 

In normal prostate the glandular lumen is 300μm in radius [44] compared with typical water 

diffusion distances of ~20 μm (assuming a total diffusion time of 80ms, typical of clinical 

scanners, and diffusion coefficient of 3 μm2ms-1, similar to that of water [45, 46]). Thus 



exchange of water between the lumen and the cellular (i.e., epithelial plus stromal) 

compartments is expected to be small. With increasing Gleason grade the lumenal volume 

decreases. Nonetheless, exchange between the two is likely to remain slow [44]. Similarly, 

the observation of an IVIM signal in most tissues suggests that exchange between the intra- 

and extra-vascular compartments is also slow [47]. Stromal and epithelial layers are relatively 

thin so that exchange will be significant but the two cannot be considered well mixed. The 

validity of these assumptions is confirmed by the finding of biexponential, but not 

triexponential T2s in the prostate [48]. Our model (Fig. 1) is based on these assumptions, i.e., 

slow exchange between intra- and extravascular compartments; slow exchange between 

ductal and cellular compartments; moderate exchange between stroma and epithelium. 

With this model, the total signal, S, is the sum of the signals from each slow-exchanging 

compartment, i.e.: 
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where Si is the signal from compartment i and the subscripts v, d and c indicate the vascular, 

ductal lumen and cellular compartments respectively.  

Vascular Signal 

The vascular fraction is small and becomes rapidly dephased at even low b values due to the 

relative rapidity of capillary flow [49]. Sv can thus be approximated by a delta function at b = 

0. 

Ductal signal 

Both cellular and ductal compartments will display non-Gaussian diffusion (i.e., the 

probability density function describing diffusional motion is non-Gaussian) and so in 

principle should include a kurtosis term. The signal Si from compartment i  (i = d or c) is then 
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where Si0 is the signal in the absence of diffusion weighting, Di is the apparent diffusion 

coefficient (ADC), Ki is the apparent kurtosis and O(b3) indicates terms on the order of b3. In 

this report we use ADC to refer to any measured diffusion coefficient since all expressions 

relating signal to b value involve approximations. However, Monte Carlo simulations of 

semi-permeable cavities suggest that the ductal kurtosis term will contribute no more than 1% 

of the total ductal signal [44]. Consequently, although ductal kurtosis measurements might 



provide useful information in principle, it is unlikely that the SNR of measurements will be 

sufficient for their accurate measurement. We have therefore assumed Gaussian ductal 

diffusion in our model. 

Total signal is therefore given by 
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where S0 is the signal without diffusion weighting, fi is the signal fraction of compartment i, 

(so that fv + fd + fc = 1), Di is the apparent diffusion coefficient of compartment i, δ is the 

Dirac delta function, and b is the diffusion weighting constant. 

We have previously shown that the reductions in lumenal diameter found in prostate cancer 

reduce Dd [44]. Values can be described approximately by the following biexponential 

function 

  
D

d
= D

d

free 1- 0.46 ×e-0.0459b - 0.54e-0.4024b( )
 
 [4] 

where 
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rd is the lumenal radius (μm), TTD is the total diffusion time and 
 
D

d

free  is the diffusion 

coefficient in the absence of barriers. (See below for a discussion of the distinction between 

total diffusion time and diffusion time.) 

Cellular Signal 

The cellular compartment consists of the stroma and epithelial sub-compartments. Exchange 

between these sub-compartments is intermediate between fast and slow. In such 

circumstances diffusion behaviour is complex. Jensen et al. [50] have shown that the 

behaviour can be approximated by monoexponential diffusion with a kurtosis term (Eq. [2]).  

The cellular diffusion and kurtosis are then [50-52] 
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where Dc
nox and Kc

nox are the diffusion coefficient and kurtosis with no exchange, TD is the 

diffusion time, and τ is the exchange time between stromal and epithelial sub-compartments. 

Dc
nox and Kc

nox are the given by 
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where vi is the water volume fraction of compartment i and subscripts s and e refer to the 

stromal and epithelial sub-compartments respectively. The exchange time, τ, is given by 
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where τs and τe are the stromal and epithelial residence times respectively. 

Thus, the diffusion coefficient of the cellular compartment is the average of the individual 

stromal and epithelial diffusion coefficients weighted by the relative amounts of water in 

each; the kurtosis is similarly a weighted measure of the variance of the diffusion 

coefficients. When TD >> τ, the compartments are effectively in fast exchange, are well 

mixed and behave as a single monoexponential compartment with Kc close to zero. 

Diffusion Time 

Note the distinction between the total diffusion time, TTD, and diffusion time, TD, as normally 

defined in the MRI literature. TTD is the total period over which diffusion affects the outcome 

of the experiment 

 
T
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where δ is the length of the diffusion gradients and Δ is the interval between their centers. TD 

is a convenient constant that arises when calculating gradient b values 
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Diffusion time also occurs in other MRI diffusion equations, such as that for kurtosis, Eq. [7]. 

However, these expressions often only strictly apply when δ << Δ. In most in vivo imaging 

sequences the diffusion gradients are applied for as long as possible to maximize b for a 



given echo time. It has recently been suggested [53] that in these circumstances TD is better 

approximated by  

 
T

D
= D +d . [13] 

Diffusion time is not in any case generally available (and is usually unknown to all but the 

sequence designers). In developing the model we have therefore used the same 

approximation for TD (in Eq. [7]) and TDF (in Eq. [5])   
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This is based on the assumption that echo times have been minimized to improve SNR and a 

few milliseconds are required for the EPI imaging gradients following diffusion weighting.  

Model Parameters 

The parameters that define the model are of two types. First, there are a priori parameters that 

are derived from literature values. Second are parameters for which no reliable estimates can 

be found. These are optimized by minimization of the mean square error (MSE) between 

model predictions and measured values. 

The vascular, stromal, epithelial and ductal fractional volumes, and ductal radius of benign 

and cancerous prostate tissue were defined a priori using literature values [13, 44]  (Table 1). 

Vascular volumes are based on the measurements of Schlemmer at al.[12] who found 

vascular volumes of 2% in normal peripheral zone, rising to 4% in prostate cancer. Gleason 

score was not specified so the value of 4% was assumed to correspond to Gleason 7 and other 

values derived using linear interpolation and extrapolation.  

The difference in water density between the vascular, ductal and cellular compartments and 

differences in transverse relaxation time must also be taken into account when calculating 

signal fractions from volume fractions. In the absence of diffusion weighting, the signal from 

compartment i, is  
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where k is a constant describing system gain, ρi is water spin density (water hydrogen atoms 

per unit volume), vi is the volume fraction, TE is the echo time of the diffusion sequence and 

T2i is the transverse relaxation time. The fractional signal from compartment i, fi, is therefore 

the ratio of Si0 to the sum of the signals from all compartments, i.e., 
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The glandular fluid contains few solids so that water content is ~100% whereas most soft 

tissues have a water content of about 75% [54, 55] and blood is about 80% water [56]. Long 

and short T2s, which we assume correspond to the ductal and cellular (i.e., stromal plus 

epithelial) fractions respectively, have been measured to be about 450 ms and 60 ms [48, 57]. 

The T2 of blood is about 280ms and largely independent of field strength [58]. Signal 

fractions calculated from Eq. [16] using the above figures are given in Table 1. 

It is not simple to obtain independent estimates of ductal, stromal and epithelial diffusion 

coefficients in vivo. Ex vivo MRI measurements in formalin fixed tissue at 22°C give 

diffusion coefficients of 2.0-2.2, 0.7-0.9 and 0.3-0.5 μm2ms-1 for ducts, stroma and 

epithelium respectively [59, 60]. However, changes in diffusion characteristics due to cell 

death, fixation and temperature differences make these measurements difficult to interpret 

[61-63]. Several studies have reported biexponential diffusion measurements in normal PZ 

[64-66]. However, the fast and slow diffusion coefficients (presumably corresponding to 

glandular and cellular diffusion respectively) covered very large ranges: 2.5 – 8.8 and 0.2 – 

1.2 μm2ms-1 respectively. The fast diffusion coefficient is difficult to interpret because it 

includes perfusion signals (the IVIM effect) and variations in this measurement will also 

affect the slow diffusion estimate. The values of Ds and De that gave the best agreement 

between the model and experimental results were therefore found empirically (see below). 

Cellular kurtosis depends on the ratio of diffusion time to the exchange time between stroma 

and epithelium. Exchange time is also unknown but can be estimated from the average 

diffusion distance [67]: 
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If we assume that τ is approximately the time it takes to diffuse from the centre of the stromal 

or epithelial layer to its edge, then 
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where rc is half the thickness of either the epithelial or stromal layer. 



Diffusion coefficients are inversely correlated with cell density [68, 69] and consequently 

reduced in tumours. The precise relationship between ADC and cancer grade is unknown but 

ADC values typically decrease with increasing grade, dropping to about 50% of normal 

values in high-grade tumors [70-72]. We therefore assumed that the epithelial diffusion 

coefficient De drops linearly with Gleason score from a value De
norm at Gleason 0 (i.e., 

normal) to 0.5De
norm

 at Gleason 10, i.e.,  

  
D

e
= D

e

norm 1- 0.05g( )   [19]
 

where g is the Gleason score.  

Finally, as prostate tumours primarily involve epithelial cells, we assumed that the stromal 

diffusion coefficient is independent of grade, 
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where Ds
norm

 is the diffusion coefficient of normal stroma. 

The model is thus Eq. [3] with Dd given by Eq. [4], Dc by Eq. [6], and Kc by Eq. [7], with 

signal fractions given by Eq. [16]. 

Materials and Methods 

Only published data was used for this study so no ethical consent was sought. 

Epithelial Thickness 

To obtain the estimate of stromal/epithelial exchange times, for use in Eq. [7], the average 

thickness of epithelial cells was estimated by making measurements from histology images of 

normal and cancerous prostate [73] using ImageJ [74].  

Optimum Compartmental Diffusion Coefficients, Di 

Forty-three papers were identified that presented diffusion measurements with associated 

Gleason scores [14-43, 75-87] and included b values. (No attempt was made to perform an 

exhaustive search and this does not represent a complete list of prostate diffusion studies.) In 

three studies, field strength was not reported and was assumed to be 3T [14, 17, 41]. Studies 

were divided into two categories according to the precision with which Gleason score was 

specified: 

I ADC recorded for individual Gleason scores. 

II ADCs recorded for groups with an average (mean or median) Gleason score. 



Where separate ADC estimates were made for, e.g., Gleason 3+4 and 4+3, each measurement 

was included separately with a grade of 7. Similarly, when measurements for multiple readers 

were reported, each was treated as a separate measurement. In one case tertiary Gleason 

grades were given [21] but were ignored.  

In all studies, measurements were made at two or more b values and ADCs were estimated 

assuming a single compartment displaying Gaussian diffusion so that signals were assumed 

to be given by 

. [21] 

These data were used to find the values of the compartmental diffusion coefficients (i.e., 

Dd
free, De

norm
, and Ds

norm), that maximise agreement with the model predictions. Fig. 2 gives a 

flow chart outlining the process. The initial data is derived from the published data. Gleason 

score and b values were passed to the model and used to generate a set of signals, S(b) using 

Eq. [3], with trial values of Di. Eq. [21] is then fitted to the model signal to obtain model 

estimates of ADC, Dmodel. Non-linear least squares fitting (Matlab function lsqcurvefit) is 

then used to find the set of Di that minimize mean-square error, MSE, 
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where ΔD is the difference between measured and model ADC and the sum is over each 

measurement in the published data sets. 

The above procedure was initially performed over all data sets to find an initial set of 

optimum Di. The difference, ΔD, was calculated for all measurements and the mean and 

standard deviation of the differences found. Differences that were greater than 1.96 standard 

deviations away from the mean were considered outliers. Any data sets containing more than 

one outlier was removed from the analysis set since this suggested the possibility of a 

systematic error such as incorrectly calibrated b values. The optimization procedure was then 

repeated with the reduced set to generate the final results. 

Cross-validation 

Cross-validation was performed using 10-fold cross-validation [88]. Briefly, all tissue 

measurements from the 43 studies were collected into a single set of N measurements. This 

set was split into 10 folds, each with a group of ~N/10 test points used for testing with the 
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remaining points used for training. Each training group is used to find a set of optimum Di. 

The differences between Dmeasured and Dmodel were then found for all points in the test group 

using these parameters. The process was repeated for each fold and the MSE found over all 

test points in all folds. This method provides a moderately conservative estimate of the true 

MSE. 

Results 

Epithelial Thickness 

Average epithelial thickness was 8.2±1.3 µm (12 measurements) and 18.3±5.4 µm (7 

measurements) for healthy prostate and Gleason score 7, respectively. This gives an estimate 

of τ = 50ms from Eq. [18], assuming rc (half thickness of the cellular layer) is ~10µm, and 

the cellular diffusion coefficient is 1 μm2ms-1
. 

Compartmental Diffusion Coefficients 

Two of the 43 papers produced more than one outlier each and were removed leaving 41 

papers and a total of 140 different diffusion measurements. Optimum values of Dd
free, Ds

norm 

and De
norm for this reduced set were 2.368, 1.222 and 0.571 μm2ms-1 respectively.  

Figs. 3 and 4 gives plots comparing measured values of diffusion coefficient with values 

predicted by the model. Fig. 3 is plot of Dmeasured vs. Dmodel; Fig. 4 is a Bland-Altman plot of 

ADC difference vs. mean ADC. As might be expected field strength shows little or no 

influence on the measurements. There appears to be a slight suggestion that the scatter is 

greater for Category II than Category I as might be expected. Overall agreement is very good 

and the 10-fold cross-validation gave an MSE of 0.046 equivalent to a root MSE of 0.21 

μm2ms-1  

Fig. 5 gives plots of Dd, Ds, De, Dc and Kc vs. Gleason score. (Diagnostically the most 

important distinction is between scores of less than and greater than six.) 

Fig. 6 gives a plot of signal intensity predicated by the model vs. b value for normal prostate 

and Gleason scores 5 – 9.  

Discussion 

The value of an accurate model of tissue diffusion is fourfold. First, it allows association of 

diffusion measurements with specific cellular changes, which may have valuable diagnostic 

implications. In this case, diffusion changes are direct consequences of changes in the relative 



volumes of ductal lumen, stroma and epithelium. These volumes are a key aspect of 

histopathological analysis and largely determine Gleason score. Hence estimates from 

diffusion measurements may allow calculation of an “MR Gleason Score” that predicts 

tumour aggressiveness. Second, knowing how changes in individual tissue compartments 

influence signal changes allows optimization of acquisitions (specifically choice of b values) 

to minimize errors in tissue estimates. Thirdly, a model simplifies fitting procedures. 

Increasing the number of parameters in a model will inevitably reduce the size of the 

residuals but increases the risk of overfitting (i.e., fitting to noise). Moreover, multiple 

parameters which have similar effects on the signal can lead to instabilities when two entirely 

different parameters sets can produce similar fits. This is a notorious problem in fitting 

biexponential signals. However, the model we propose has only a single free parameter – the 

Gleason score. Finally, the model explains the contradictions and ambiguities found in the 

literature. For example, a number of studies have described the b value dependence of 

measured ADCs [18, 27, 38, 75]. However, this is entirely to be expected as a linear 

relationship between ln(S) and b will only be found for diffusion in a single Gaussian 

compartment. In any more complex system, the ln(S) vs. b is non-linear and cannot be 

described by a single ADC (i.e., a single value for the slope). The problem is particularly 

acute in the prostate since the two main compartments, ductal and cellular, have markedly 

different diffusion coefficients. The optimum prostate diffusion protocol is not then a simple 

matter of finding a single optimum b value [89] but of acquiring images at a sufficiently large 

number of b values to fully describe the data. Similarly, the model explains the finding of a 

lowered IVIM “perfusion fraction” in tumours [64, 90]. This finding is not only 

counterintuitive since tumour angiogenesis generally increase blood volume, it is also 

contradictory to DCE perfusion measurements [90]. However, changes in signal at low b 

values are determined by two components: flowing blood displaying pseudo-diffusion and 

signal from the rapidly diffusing ductal compartment. The latter is reduced in cancer resulting 

in a reduction in the signal labelled perfusion fraction in IVIM experiments. 

Others have previously investigated multi-exponential diffusion in the prostate. The Mulkern 

group observed bi-exponential diffusion behaviour in both normal prostate [65] and cancer 

[84] but offered no explanation of its origin. Bourne and colleagues [91] also observed bi-

exponential diffusion in fixed samples. Panagiotaki et al. [29] previously proposed a three 

compartment model consisting of vascular (i.e., IVIM), intracellular and extracellular 

compartments. However, previous attributions of biexponential behaviour to intra- and 



extracellular compartments in the brain have been questioned for a number of reasons. First, 

it is unnecessary since non-Gaussian diffusion will always occur in the presence of hindered 

diffusion [50]. Second the signal fractions do not agree with known intra- and extracellular 

volumes obtained by other means [92, 93]. Third, magnetization transfer rates are similar for 

both components which would not be expected for intra- and extracellular water [94]. 

Furthermore, if the two non-vascular diffusion components are assigned to intra- and 

extracellular spaces in the prostate then the cellular and ductal signals must be well mixed. 

This is biophysically difficult to explain and we believe that ductal/cellular 

compartmentalization is a more plausible explanation of bi-exponential diffusion behaviour.  

Several groups have also used non-Gaussian fits, either with a kurtosis term or using a 

stretched exponential equation to describe diffusion in the prostate [32, 34, 91]. These 

methods will naturally provide better fits than simpler models. However, without explicitly 

taking into account the multi-compartment nature of the prostate, these models provide little 

biophysical insight into the relationship between diffusion measurements and the changes 

that occur in cancer.  

The IVIM signal in this model is described by a delta function at b = 0. I.e., it is assumed that 

any diffusion weighting effectively eliminates the perfusion signal. This is a simplification 

and it might be possible to develop a more accurate model with a pseudo-diffusion term that 

would help in diagnosis. However, there are a number of problems with this approach. First, 

the perfusion signal is very sensitive to low b values. However, the “b = 0” signal includes a 

small amount of diffusion weighting due to the imaging gradients. This is especially true with 

the large, repeated gradient pulses that are used in the EPI sequences. This introduces errors 

into estimates of the pseudo-diffusion parameters. Second, although blood volume is 

increased with tumour angiogenesis, it is not certain that blood flow is also increased since 

increased interstitial pressure caused by hyperpermeable vessels can retard flow decreasing 

the IVIM signal [95-97]. Given the difficulty in interpretation we think it preferable to use b 

~150smm-2 for the “b = 0” signal.  

Our results primarily show that the diffusion properties of benign and cancerous prostate 

tissue can be described by a simple model. Most model parameters were defined a priori 

using non-MRI data. Three, Dd
free, Ds

norm, and De
norm

, were obtained by fitting the model to 

empirical data. The estimated values seem reasonable. Dd
free is somewhat lower than that of 

free water at 37°C (3.08 μm2ms-1) [45, 46] and is similar to the ex vivo estimate of Bourne et 



al. [60]. Ds
norm and De

norm are both of the same order as the slow ADCs found by Shinmoto et 

al. [84]. Furthermore, the relative sizes are similar to those found by Bourne et al. [59] in 

fixed tissue and are consistent with histological observations of greater cell density in 

epithelium than in stroma [20]. All the a priori parameters are subject to noise and could 

undoubtedly be improved with further experiment. 

One interesting implication of this study is that diffusion values are a product of the diffusion 

coefficients of the individual tissue types and Gleason score alone. Gleason score can, in 

principle, be determined by a diffusion measurement using only two b values provided the 

minimum is sufficient to completely dephase the IVIM signal (Fig. 6). However, as is well 

known, noise in these measurements is relatively large. Furthermore changes in Gleason 

score affect the shape of the signal curve, not just the overall decay rate so that multiple b 

values will help in accurately determining Gleason score. 

There are a number of limitations of this study. First, and most importantly, the data to 

construct and test the model were obtained from the literature. Our approach has the 

advantage that the model is tested against a very large body of data, acquired with multiple 

different protocols, thus demonstrating the generality of model predictions. Similarly, the 

success of model predictions demonstrates that it is capable of explaining many of the 

ambiguities and contradictions in the literature. However, it would be better to construct the 

model from measurements specifically designed for the purpose (i.e., to characterize Dd
free, 

Ds
norm and De

norm) and to test the model by comparing signal predictions against actual signal 

measurements. We are currently acquiring data for this purpose. Second, the histological 

diagnoses reported were derived from either biopsy samples or post-surgical whole-mount 

histology. It is well known that the former are much less reliable than the latter due to 

sampling error [6-9]. Similarly association between diffusion measurements and the 

corresponding histopathological assessments was by a variety of different methods (quadrant 

by quadrant, MRI visible abnormality vs. overall Gleason score, etc.). Optimally, 

comparisons should be made between co-registered histological and MRI images. Third, 

some model parameters were estimated by informed guesswork rather than direct 

measurement. In particular, diffusion in cancerous epithelium was assumed to decrease 

linearly with Gleason score to a minimum of 50% of normal. Neither linearity nor the 

magnitude of the effect can be fully justified. A more complex relationship is probable given 

the complexity of biological processes and certainly has the potential to improve agreement 

between model and measurement. However, we believe it is unlikely to provide substantial 



improvement given the noise levels involved, and runs the danger of over-fitting. The 

maximum reduction of 50% is also a guess but within the range reported in the literature for 

other tumours. However, all estimated parameters should be replaced, where possible, by 

direct measurement. (Some could also be made free parameters of the model but the 

advantage of this approach would be offset by the danger of overfitting.) Similarly, several 

model parameter estimates were obtained by linear interpolation between known 

measurements at particular Gleason scores. Although, replacement by direct measurements 

should improve the model, we believe the difference is likely to be a relatively small. Finally, 

there are limitations to the Jensen/Kärger exchange model that have been investigated in 

Fieremans et al. [98]. Although the model appears accurate for brain tissue, it is not clear that 

this is so in the cellular compartment of prostate. Additionally both stroma and epithelium 

consist of cellular and extra-cellular compartments potentially with a corresponding kurtosis 

term. Considerably more work is required to elucidate these issues. Nonetheless, the 

predicted range of Kc appears reasonable and, since Kc has only second order effects on 

diffusion signal, any errors are unlikely to be seriously detrimental to the model presented 

here. 

  



Table 1. Tissue fractional volumes, vi, signals, fi, and ductal radii, rd, used in the model for 

benign peripheral zone (PZ) and different Gleason scores. Fractional vascular volumes are 

interpolated from Schlemmer assuming that the measured value of vv for cancer refers to 

Gleason 7. Other fractional volumes are derived from measurements made by Chatterjee et 

al.[13] for different Gleason grades. The value for Gleason score 7, for example, was 

obtained by averaging measurements for Gleason grades 3 and 4. Lumenal radius was 

obtained from Gilani et al. [44]. Interpolation was used when measurements were missing for 

individual scores. 

Tissue 

Fractional Volumes (Signals) Ductal 

radius, 

rd / μm Vascular Ductal lumen Stroma Epithelium 

Normal PZ 0.020 (0.031) 0.284 (0.614) 0.382 (0.195) 0.314 (0.160) 300 

Gleason 1 0.023 (0.037) 0.264 (0.588) 0.365 (0.192) 0.349 (0.184) 258 

Gleason 2 0.026 (0.043) 0.244 (0.561) 0.357 (0.194) 0.373 (0.202) 216 

Gleason 3 0.029 (0.050) 0.223 (0.530) 0.350 (0.197) 0.398 (0.224) 173 

Gleason 4 0.031 (0.055) 0.203 (0.500) 0.333 (0.194) 0.433 (0.252) 135 

Gleason 5 0.034 (0.062) 0.183 (0.467) 0.325 (0.196) 0.457 (0.275) 95 

Gleason 6 0.037 (0.070) 0.164 (0.432) 0.318 (0.198) 0.481 (0.300) 65 

Gleason 7 0.040 (0.079) 0.144 (0.394) 0.298 (0.193) 0.518 (0.335) 45 

Gleason 8 0.043 (0.088) 0.124 (0.353) 0.278 (0.187) 0.555 (0.373) 32 

Gleason 9 0.046 (0.099) 0.100 (0.299) 0.253 (0.179) 0.601 (0.424) 25 

Gleason 10 0.049 (0.111) 0.076 (0.239) 0.228 (0.169) 0.647 (0.481) 20 

  



Figure Captions 

Fig. 1 Block diagram of the model for prostate diffusion. The model consists of four 

compartments, vascular, fluid filled ductal lumen, stroma and epithelium. Water 

exchange between both the vascular space and the ductal lumen and the other 

compartments is assumed to be negligible. Exchange between stroma and epithelium 

occurs but the two are not well mixed. 

Fig. 2 Flow chart of the method used to determine empirical parameters of the diffusion 

model. 

Fig. 3 Plot comparing measured values of measured ADC (Dmeasured) with values predicted 

by the model (Dmodel). Measurements made at 1.5T and 3T respectively are in blue 

and red respectively. Triangles and circles represent Category I (measurements 

represent a single Gleason score) and II (measurements represent an average Gleason 

score) papers respectively. The solid line is the line of identity.  

Fig. 4 Bland-Altman plot of ADC difference, Dmodel – Dmeasured, vs. mean, (Dmodel + D-

measured)/2. Measurements made at 1.5T and 3T respectively are in blue and red 

respectively. Triangles and circles represent Category I (measurements represent a 

single Gleason score) and II (measurements represent an average Gleason score) 

papers respectively. The solid, dotted and dashed lines represent the mean difference, 

and the mean ± 1.96 standard deviations (i.e., the 95% confidence limits) respectively.  

Fig. 5 Plot of ductal, epithelial, stromal and cellular (stromal and epithelial combined) ADC 

and cellular kurtosis vs. Gleason score. A score of 0 corresponds to normal peripheral 

zone tissue. 

Fig. 6 Plot of signal vs. b value for normal peripheral zone (PZ) and Gleason scores 5 – 9. 

Note the discontinuity near b = 0 due to the delta function in Eq. [3]. 
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