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Abstract In this paper, an analysis of the accuracy-enhancement for the discontin-
uous Galerkin (DG) method applied to one-dimensional scalar nonlinear hyperbolic
conservation laws is carried out. This requires analyzing the divided difference of the
errors for the DG solution.We therefore first prove that the α-th order (1 ≤ α ≤ k + 1)
divided difference of the DG error in the L2 norm is of order k + 3

2 − α
2 when upwind

fluxes are used, under the condition that | f ′(u)| possesses a uniform positive lower
bound. By the duality argument, we then derive superconvergence results of order
2k + 3

2 − α
2 in the negative-order norm, demonstrating that it is possible to extend the

Smoothness-Increasing Accuracy-Conserving filter to nonlinear conservation laws to
obtain at least ( 32k + 1)th order superconvergence for post-processed solutions. As a
by-product, for variable coefficient hyperbolic equations, we provide an explicit proof
for optimal convergence results of order k + 1 in the L2 norm for the divided dif-
ferences of DG errors and thus (2k + 1)th order superconvergence in negative-order
norm holds. Numerical experiments are given that confirm the theoretical results.
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1 Introduction

In this paper, we study the accuracy-enhancement of semi-discrete discontinuous
Galerkin (DG) methods for solving one-dimensional scalar conservation laws

ut + f (u)x = 0, (x, t) ∈ (a, b) × (0, T ], (1.1a)

u(x, 0) = u0(x), x ∈ � = (a, b), (1.1b)

where u0(x) is a given smooth function. We assume that the nonlinear flux function
f (u) is sufficiently smooth with respect to the variable u and the exact solution is
also smooth. For the sake of simplicity and ease in presentation, we only consider
periodic boundary conditions. We show that the α-th order (1 ≤ α ≤ k + 1) divided
difference of the DG error in the L2 norm achieves (k + 3

2 − α
2 )th order when upwind

fluxes are used, under the condition that | f ′(u)| possesses a uniform positive lower
bound. By using a duality argument, we then derive superconvergence results of order
2k + 3

2 − α
2 in the negative-order norm. This allows us to demonstrate that it is possible

to extend the post-processing technique to nonlinear conservation laws to obtain at
least ( 32k + 1)th order of accuracy. In addition, for variable coefficient hyperbolic
equations that have been discussed in [19], we provide an explicit proof for optimal
error estimates of order k + 1 in the L2 norm for the divided differences of the DG
errors and thus 2k + 1 in the negative-order norm.

Various superconvergence properties of DG methods have been studied in the past
two decades, which not only provide a deeper understanding about DG solutions but
are useful for practitioners. According to different measurements of the error, the
superconvergence of DG methods is mainly divided into three categories. The first
one is superconvergence of the DG error at Radau points, which is typically measured
in the discrete L2 norm and is useful to resolve waves. The second one is super-
convergence of the DG solution towards a particular projection of the exact solution
(supercloseness)measured in the standard L2 norm,which lays a firm theoretical foun-
dation for the excellent behaviour of DGmethods for long-time simulations as well as
adaptive computations. The last one is the superconvergence of post-processed solu-
tion by establishing negative-order norm error estimates, which enables us to obtain
a higher order approximation by simply post-processing the DG solution with a spe-
cially designed kernel at the very end of the computation. In what follows, we shall
review some superconvergence results for the aforementioned three properties and
restrict ourselves to hyperbolic equations to save space. For superconvergence of DG
methods for other types of PDEs, we refer to [21].

Let us briefly mention some superconvergence results related to the Radau points
and supercloseness of DG methods for hyperbolic equations. Adjerid and Baccouch
[1–3] studied the superconvergence property as well as the a posteriori error esti-
mates of the DGmethods for one- and two-dimensional linear steady-state hyperbolic
equations, in which superconvergence of order k + 2 and 2k + 1 are obtained at
downwind-biased Radau points and downwind points, respectively. Here and below,
k is the highest polynomial degree of the discontinuous finite element space. For time-
dependent linear hyperbolic equations, Cheng and Shu [9] investigated supercloseness
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DG Divided Difference estimates for nonlinear conservation laws

for linear hyperbolic equations, and they obtained superconvergence of order k + 3
2

towards a particular projection of the exact solution, by virtue of construction and
analysis of the so-called generalized slopes. Later, by using a duality argument, Yang
and Shu [24] proved superconvergence results of order k + 2 of the DG error at
downwind-biased points as well as cell averages, which imply a sharp (k + 2)th order
supercloseness result. By constructing a special correction function and choosing a
suitable initial discretization, Cao et al. [7] established a supercloseness result towards
a newly designed interpolation function. Further, based on this supercloseness result,
for the DG error they proved the (2k + 1)th order superconvergence at the down-
wind points as well as domain average, (k + 2)-th order superconvergence at the
downwind-biased Radau points, and superconvergent rate k + 1 for the derivative at
interior Radau points. We would like to remark that the work of [7,24] somewhat
indicates the possible link between supercloseness and superconvergence at Radau
points. For time-dependent nonlinear hyperbolic equations, Meng et al. [18] proved a
supercloseness result of order k + 3

2 . For superconvergent posteriori error estimates
of spatial derivative of DG error for nonlinear hyperbolic equations, see [4].

Let us now mention in particular some superconvergence results of DG methods
regarding negative-order normestimates and post-processing for hyperbolic equations.
The basic idea of post-processing is to convolve the numerical solution by a local
averaging operator with the goal of obtaining a better approximation and typically
of a higher order. Motivated by the work of Bramble and Schatz in the framework of
continuousGalerkinmethods for elliptic equations [5], Cockburn et al. [11] established
the theory of post-processing techniques for DG methods for hyperbolic equations
by the aid of negative-order norm estimates. The extension of this post-processing
techniquewas later fully studied byRyan et al. in different aspects of problems, e.g. for
general boundary condition [20], for nonuniform meshes [13] and for applications in
improving the visualization of streamlines [22] in which it is labeled as a Smoothness-
Increasing Accuracy-Conserving (SIAC) filter. For the extension of the SIAC filter to
linear convection-diffusion equations, see [15].

By the post-processing theory [5,11], it is well known that negative-order norm
estimates of divided differences of the DG error are important tools to derive super-
convergent error estimates of the post-processed solution in the L2 norm. Note that
for purely linear equations [11,15], once negative-order norm estimates of the DG
error itself are obtained, they trivially imply negative-order norm estimates for the
divided differences of the DG error. However, the above framework is no longer
valid for variable coefficient or nonlinear equations. In this case, in order to derive
superconvergent estimates about the post-processed solution, both the L2 norm and
negative-order norm error estimates of divided differences should be established. In
particular, for variable coefficient hyperbolic equations, although negative-order norm
error estimates of divided differences are given in [19], the corresponding L2 norm
estimates are not provided. For nonlinear hyperbolic conservation laws, Ji et al. [16]
showed negative-order norm estimates for the DG error itself, leaving the estimates
of divided differences for future work.

For nonlinear hyperbolic equations under consideration in this paper, it is therefore
important and interesting to address the above issues by establishing both the L2 norm
and negative-order norm error estimates for the divided differences. The major part
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of this paper is to show L2 norm error estimates for divided differences, which are
helpful for us to obtain a higher order of accuracy in the negative-order norm and
thus the superconvergence of the post-processed solutions. We remark that it requires
| f ′(u)| having a uniform positive lower bound due to the technicality of the proof. The
generalization from purely linear problems [11,15] to nonlinear hyperbolic equations
in this paper involves several technical difficulties. One of these is how to establish
important relations between the spatial derivatives and time derivatives of a partic-
ular projection of divided differences of DG errors. Even if the spatial derivatives
of the error are switched to their time derivatives, it is still difficult to analyze the
time derivatives of the error; for more details, see Sect. 3.2 and also the appendix.
Another important technicality is how to construct a suitable dual problem for the
divided difference of the nonlinear hyperbolic equations. However, it seems that it is
not trivial for the two-dimensional extension, especially for establishing the relations
between spatial derivatives and time derivatives of the errors. The main tool employed
in deriving L2 norm error estimates for the divided differences is an energy analysis.
To deal with the nonlinearity of the flux functions, Taylor expansion is used following
a standard technique in error estimates for nonlinear problems [25]. We would like
to remark that the superconvergence analysis in this paper indicates a possible link
between supercloseness and negative-order norm estimates.

This paper is organized as follows. In Sect. 2, we give the DG scheme for divided
differences of nonlinear hyperbolic equations, and present some preliminaries about
the discontinuousfinite element space. InSect. 3,we state anddiscuss the L2 normerror
estimates for divided differences of nonlinear hyperbolic equations, and then display
the main proofs followed by discussion of variable coefficient hyperbolic equations.
Section 4 is devoted to the accuracy-enhancement superconvergence analysis based
on negative-order norm error estimates of divided differences. In Sect. 5, numerical
experiments are shown to demonstrate the theoretical results. Concluding remarks and
comments on future work are given in Sect. 6. Finally, in the appendix we provide the
proofs for some of the more technical lemmas.

2 The DG scheme and some preliminaries

2.1 The DG scheme

In this section, we follow [11,12] and present the DG scheme for divided differences
of the problem (1.1).

Let a = x 1
2

< x 3
2

< · · · < xN+ 1
2

= b be a partition of � = (a, b), and set

x j = (x j− 1
2
+x j+ 1

2
)/2. Sincewe are focused on error analysis of both the L2 norm and

the negative-order norm for divided differences of the DG solution and the problem
under consideration is assumed to be periodic, we shall introduce two overlapping
uniform (translation invariant) meshes for �, namely I j = (x j− 1

2
, x j+ 1

2
) and I j+ 1

2
=

(x j , x j+1)with mesh size h = x j+ 1
2
−x j− 1

2
. Associated with these meshes, we define

the discontinuous finite element space
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DG Divided Difference estimates for nonlinear conservation laws

V α
h =

{
v : v|I j ′ ∈ Pk(I j ′), ∀ j ′ = j + �

2
, � = α mod 2, j = 1, . . . , N

}
,

where Pk(I j ′) denotes the set of polynomials of degree up to k defined on the cell
I j ′ := (x j ′− 1

2
, x j ′+ 1

2
). Here and below, α represents the α-th order divided difference

of a given function, whose definition is given in (2.6a). Clearly, V α
h is a piecewise

polynomial space on mesh I j ′ = I j for even α (including α = 0) and a piecewise
polynomial space on mesh I j ′ = I j+ 1

2
for odd α of the DG scheme. For simplicity,

for even α, we would like to use Vh to denote the standard finite element space of
degree k defined on the cell I j , if there is no confusion. Since functions in V α

h may
have discontinuities across element interfaces, we denote by w−

i and w+
i the values

of w(x) at the discontinuity point xi from the left cell and the right cell, respectively.
Moreover, we use [[w]] = w+ − w− and {{w}} = 1

2 (w
+ + w−) to represent the jump

and the mean of w(x) at each element boundary point.
The α-th order divided difference of the nonlinear hyperbolic conservation law is

∂α
h ut + ∂α

h f (u)x = 0, (x, t) ∈ �α × (0, T ], (2.1a)

∂α
h u(x, 0) = ∂α

h u0(x), x ∈ �α, (2.1b)

where �α = (a + �
2h, b + �

2h) with � = α mod 2. Clearly, (2.1) reduces to (1.1)
when α = 0. Then the approximation of the semi-discrete DG method for solving
(2.1) becomes: find the unique function uh = uh(t) ∈ Vh (and thus ∂α

h uh ∈ V α
h ) such

that the weak formulation

((∂α
h uh)t , vh) j ′ = H j ′(∂

α
h f (uh), vh) (2.2)

holds for all vh ∈ V α
h and all j = 1, . . . , N . Note that, by (2.6a), for any x ∈ I j ′ and

t , ∂α
h uh(x, t) is a linear combination of the values of uh at α +1 equally spaced points

of length h, namely x − α
2 h, . . . , x + α

2 h. Here and in what follows, (·, ·) j ′ denotes the
usual inner product in L2(I j ′), and H j ′ (·, ·) is the DG spatial discretization operator
defined on each cell I j ′ = (x j ′− 1

2
, x j ′+ 1

2
), namely

H j ′ (w, v) = (w, vx ) j ′ − ŵv−
∣∣∣ j ′+ 1

2
+ ŵv+

∣∣∣
j ′− 1

2

.

We point out that in order to obtain a useful bound for the L2 norm error estimates
of divided differences, the numerical flux f̂ j+ 1

2
is chosen to be an upwind flux, for

example, the well-known Godunov flux. Moreover, the analysis requires a condition
that | f ′(u)| has a uniform positive lower bound.Without loss of generality, throughout
the paper, we only consider f ′(u) ≥ δ > 0, and thus ŵ = w−. Therefore,

H j ′ (w, v) = (w, vx ) j ′ − w−v−| j ′+ 1
2

+ w−v+| j ′− 1
2

(2.3a)

= − (wx , v) j ′ − ([[w]]v+) j ′− 1
2
. (2.3b)
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For periodic boundary conditions under consideration in this paper, we use H to
denote the summation of H j ′ with respect to cell I j ′ , that is

H(w, v) = (w, vx ) +
N∑
j=1

(w−[[v]]) j ′+ 1
2

(2.4a)

= − (wx , v) −
N∑
j=1

([[w]]v+) j ′− 1
2
, (2.4b)

where (w, v) = ∑N
j=1 (w, v) j ′ represents the inner product in L2(�α). Note that we

have used the summation with respect to j instead of j ′ to distinguish two overlapping
meshes, since j ′ = j for even α and j ′ = j + 1

2 for odd α.

2.2 Preliminaries

We will adopt the following convention for different constants. We denote by C a
positive constant independent ofh butmaydependon the exact solutionof theEq. (2.1),
which could have a different value in each occurrence. To emphasize the nonlinearity
of the flux f (u), we employ C� to denote a nonnegative constant depending solely on
the maximum of a high order derivative | f m | (m ≥ 2). We remark that C� = 0 for a
linear flux function f (u) = cu or a variable coefficient flux function f (u) = a(x)u,
where c is a constant and a(x) is a given smooth function.

Prior to analyzing the L2 norm and the negative-order norm error estimates of
divided differences, let us present some notation, definitions, properties of DG dis-
cretization operator, and basic properties about SIAC filters. These preliminary results
will be used later in the proof of superconvergence property.

2.2.1 Sobolev spaces and norms

We adopt standard notation for Sobolev spaces. For any integer s ≥ 0, we denote by
Ws,p(D) the Sobolev space on subdomain D ⊂ � equipped with the norm ‖·‖s,p,D .
In particular, if p = 2, we set Ws,p(D) = Hs(D), and ‖·‖s,p,D = ‖·‖s,D , and
further if s = 0, we set ‖·‖s,D = ‖·‖D . Throughout the paper, when D = �, we
will omit the index D for convenience. Furthermore, the norms of the broken Sobolev
spaces Ws,p(�h) := {u ∈ L2(�) : u|D ∈ Ws,p(D), ∀D ⊂ �} with �h being
the union of all cells can be defined analogously. The Bochner space can also be
easily defined. For example, the space L1([0, T ]; Hs(D)) is equipped with the norm
‖·‖L1([0,T ];Hs (D)) = ∫ T

0 ‖·‖s,Ddt .
Additionally, we denote by ‖·‖�h the standard L2 norm on the cell interfaces of

the mesh I j ′ . Specifically, for the one-dimensional case under consideration in this

paper, ‖v‖2�h = ∑N
j=1‖v‖2∂ I j ′ with ‖v‖∂ I j ′ = ((v+

j ′−1/2)
2 + (v−

j ′+1/2)
2)

1
2 . To simplify

notation in our later analysis, following [23], we would like to introduce the so-called

jump seminorm |[v]| = (
∑N

j=1[[v]]2
j ′− 1

2
)
1
2 for v ∈ H1(�h).
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In the post-processing framework, it is useful to consider the negative-order norm,
defined as: Given � > 0 and domain �,

‖v‖−�,� = sup
	∈C∞

0 (�)

(v,	)

‖	‖�

. (2.5)

2.2.2 Properties for divided differences

For any function w and integer γ , the following standard notation of central divided
difference is used

∂
γ

h w(x) = 1

hγ

γ∑
i=0

(−1)i
(

γ

i

)
w

(
x +

(γ

2
− i

)
h
)

. (2.6a)

Note that the above notation is still valid even ifw is a piecewise functionwith possible
discontinuities at cell interfaces. In later analysis, we will repeatedly use the properties
about divided differences, which are given as follows. For any functions w and v

∂
γ

h (w(x)v(x)) =
γ∑

i=0

(
γ

i

)
∂ ihw

(
x + γ − i

2
h

)
∂

γ−i
h v

(
x − i

2
h

)
, (2.6b)

which is the so-called Leibniz rule for the divided difference.Moreover, for sufficiently
smooth functionsw(x), by using Taylor expansionwith integral form of the remainder,
we can easily verify that ∂γ

h w is a second order approximation to ∂
γ
x w, namely

∂
γ

h w(x) = ∂
γ
x w(x) + Cγ h2ψγ (x), (2.6c)

where Cγ is a positive constant and ψγ is a smooth function; for example, Cγ =
1/8, 1, 3/32 for γ = 1, 2, 3, and

ψγ (x) = 1

(γ + 1)!
∫ 1

0

(
∂

γ+2
x w

(
x + γ

2
hs

)
+ ∂

γ+2
x w

(
x − γ

2
hs

))
(1 − s)γ+1 ds.

Here and below, ∂
γ
x (·) denotes the γ -th order partial derivative of a function with

respect to the variable x ; likewise for ∂γ
t (·). The last identity is the so-called summation

by parts, namely

(
∂

γ

h w(x), v(x)
) = (−1)γ

(
w(x), ∂γ

h v(x)
)
. (2.6d)

In addition to the properties of divided differences for a single function w(x),
the properties of divided differences for a composition of two or more functions are
also needed. However, we would like to emphasize that properties (2.6a), (2.6b),
(2.6d) are always valid whether w is a single function or w is a composition of two

123



X. Meng, J. K. Ryan

or more functions. As an extension from the single function case in (2.6c) to the
composite function case, the following property (2.6e) is subtle, it requires a more
delicate argument for composite functions. Without loss of generality, if w is the
composition of two smooth functions r and u, i.e.,w(x) := r(u(x)), we can prove the
following identity

∂
γ

h r(u(x)) = ∂
γ
x r(u(x)) + Cγ h �γ (x), (2.6e)

where Cγ is a positive constant and �γ is a smooth function. We can see that, unlike
(2.6c), the divided difference of a composite function is a first order approximation
to its derivative of the same order. This finding, however, is sufficient in our analysis;
see Corollary 1.

It is worth pointing out that in (2.6e), ∂γ
x r(u(x)) and ∂

γ

h r(u(x)) should be under-
stood in the sense of the chain rule for high order derivatives and divided differences
of composite functions, respectively. In what follows, we use f [x0, . . . , xγ ] to denote
the standard γ -th order Newton divided difference, that is

f [xν] := f (xν), 0 ≤ ν ≤ γ,

f [xν, . . . , xν+μ] := f [xν+1, . . . , xν+μ] − f [xν, . . . , xν+μ−1]
xν+μ − xν

,

0 ≤ ν ≤ γ − μ, 1 ≤ μ ≤ γ.

It is easy to verify that
∂

γ

h r(u(x)) = γ ! r [x0, . . . , xγ ], (2.7)

where xi = x + 2i−γ
2 h (0 ≤ i ≤ γ ).

For completeness, we shall list the chain rule for the derivatives (the well-known
Faà di Bruno’s Formula) and also for the divided differences [14]; it reads

∂
γ
x r(u(x)) =

∑ γ !
b1! · · · bγ !r

(�)(u(x))

(
∂xu(x)

1!
)b1

· · ·
(

∂
γ
x u(x)

γ !
)bγ

,

r [x0, . . . , xγ ] =
γ∑

�=1

r [u0, . . . , u�] A�,γ u,

where ui = u(xi ), and the sum is over all � = 1, . . . , γ and non-negative integer
solutions b1, . . . , bγ to

b1 + 2b2 + · · · + γ bγ = γ, b1 + · · · + bγ = �,

and

A�,γ u =
∑

�=α0≤α1≤···≤α�=γ

�−1∏
β=0

u[xβ, xαβ , . . . , xαβ+1 ]

with the sum being over integers α1, . . . , α�−1 such that � ≤ α1 ≤ · · · ≤ α�−1 ≤ γ .
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It follows from the mean value theorem for divided differences that

lim
h→0

r [x0, . . . , xγ ] = ∂
γ
x r(u(x))

γ ! .

Consequently, by (2.7),

lim
h→0

∂
γ

h r(u(x)) = ∂
γ
x r(u(x)).

We are now ready to prove (2.6e) for the relation between the divided difference
and the derivative of composite functions. Using a similar argument as that in the proof
of (2.6c) for A�,γ u and the relation that

r [u0, . . . , uγ ] =
r (γ )(u γ

2
)

γ ! + Cγ h ψ(u0, u1, . . . , uγ ),

due to the smoothness of ui and the fact that ui may not necessarily be equally spaced,
with u γ

2
= u(x) and ψ(u0, u1, . . . , uγ ) being smooth functions, we can obtain the

relation (2.6e).

2.2.3 The inverse and projection properties

Now we list some inverse properties of the finite element space V α
h . For any p ∈ V α

h ,
there exists a positive constant C independent of p and h, such that

(i) ‖∂x p‖ ≤ Ch−1‖p‖; (ii) ‖p‖�h ≤ Ch−1/2‖p‖; (iii) ‖p‖∞ ≤ Ch−1/2‖p‖.

Next, we introduce the standard L2 projection of a function q ∈ L2(�) into the
finite element space V k

h , denoted by Pkq, which is a unique function in V k
h satisfying

(q − Pkq, vh) = 0, ∀vh ∈ V k
h . (2.8)

Note that the proof of accuracy-enhancement of DG solutions for linear equations
relies only on an L2 projection of the initial condition [11,15]. However, for variable
coefficient and nonlinear hyperbolic equations, a suitable choice of the initial condition
and a superconvergence relation between the spatial derivative and time derivative of
a particular projection of the error should be established, since both the L2 norm and
negative-order norm error estimates of divided differences need to be analyzed. In
what follows, we recall two kinds of Gauss–Radau projections P±

h into Vh following
a standard technique in DG analysis [8,25]. For any given function q ∈ H1(�h) and
an arbitrary element I j ′ = (x j ′− 1

2
, x j ′+ 1

2
), the special Gauss–Radau projection of q,

denoted by P±
h q, is the unique function in V k

h satisfying, for each j ′,

(q − P+
h q, vh) j ′ = 0, ∀vh ∈ Pk−1(I j ′), (q − P+

h q)+
j ′− 1

2
= 0; (2.9a)
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(q − P−
h q, vh) j ′ = 0, ∀vh ∈ Pk−1(I j ′), (q − P−

h q)−
j ′+ 1

2
= 0. (2.9b)

We would like to remark that the exact collocation at one of the end points on each cell
plus the orthogonality property for polynomials of degree up to k − 1 of the Gauss–
Radau projections P±

h play an important role and are used repeatedly in the proof.
We denote by η = q(x) − Qhq(x) (Qh = Pk or P

±
h ) the projection error, then by a

standard scaling argument [6,10], it is easy to obtain, for smooth enough q(x), that,

‖η‖ + h‖ηx‖ + h1/2‖η‖�h ≤ Chk+1‖q‖k+1. (2.10a)

Moreover,
‖η‖∞ ≤ Chk+1‖q‖k+1,∞. (2.10b)

2.2.4 The properties of the DG spatial discretization

To perform the L2 error estimates of divided differences, several properties of the DG
operator H are helpful, which are used repeatedly in our proof; see Sect. 3.

Lemma 1 Suppose that r(u(x, t)) (r = f ′(u), ∂t f ′(u) etc) is smooth with respect to
each variable. Then, for any w, v ∈ V α

h , there holds the following inequality

H(rw, v) ≤ C�

(
‖w‖ + ‖wx‖ + h− 1

2 |[w]|
)

‖v‖, (2.11a)

and in particular, if r = f ′(u) ≥ δ > 0, there holds

H(rw,w) ≤ C�‖w‖2 − δ

2
|[w]|2. (2.11b)

Proof Let us first prove (2.11b), which is a straightforward consequence of the defi-
nition of H, since, after a simple integration by parts

H(rw,w) = −1

2
(∂xr , w

2) +
N∑
j=1

(r(w− − {{w}})[[w]]) j ′− 1
2

= −1

2
(∂xr , w

2) − 1

2

N∑
j=1

(r [[w]]2) j ′− 1
2

≤ C�‖w‖2 − δ

2
|[w]|2.

We would like to emphasize that (2.11b) is still valid even if the smooth function r
and w ∈ V α

h depend on different x , e.g. x, x + h
2 etc, as only integration by parts as

well as the boundedness of r is used here.
To prove (2.11a),we consider the equivalent strong formofH (2.4b).An application

of Cauchy–Schwarz inequality and inverse inequality (ii) leads to
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H(rw, v) = − (rxw, v) − (rwx , v) −
N∑
j=1

(r [[w]]v+) j ′− 1
2

≤ C�(‖w‖ + ‖wx‖)‖v‖ + C |[w]|‖v‖�h

≤ C�

(
‖w‖ + ‖wx‖ + h− 1

2 |[w]|
)

‖v‖.

This completes the proof of Lemma 1. ��
Corollary 1 Under the same conditions as in Lemma 1, we have, for small enough h,

H((∂α
h r)w, v) ≤ C�

(
‖w‖ + ‖wx‖ + h− 1

2 |[w]|
)

‖v‖, ∀α ≥ 0. (2.12)

Proof The case α = 0 has been proved in Lemma 1. For general α ≥ 1, let us start
by using the relation (2.6e) for ∂α

h r to obtain

H((∂α
h r)w, v) = H((∂α

x r)w, v) + ChH(�αw, v)

withC a positive constant and�α a smooth function. Next, applying (2.11a) in Lemma
1 toH((∂α

x r)w, v) and H(�αw, v), we have for small enough h

H((∂α
h r)w, v) ≤ C�(1 + Ch)

(
‖w‖ + ‖wx‖ + h− 1

2 |[w]|
)

‖v‖
≤ C�

(
‖w‖ + ‖wx‖ + h− 1

2 |[w]|
)

‖v‖.

This finishes the proof of Corollary 1. ��
Lemma 2 Suppose that r(u(x, t)) is smooth with respect to each variable. Then, for
any w ∈ Hk+1(�h) and v ∈ V α

h , there holds

H(r(w − P−
h w), v) ≤ C�h

k+1‖v‖. (2.13)

Proof Using the definition of the projection P−
h (2.9a),we have that (w−P−

h w)−
j ′+ 1

2
=

0, and thus

H(r(w − P−
h w), v) = (r(w − P−

h w), vx ).

Next, on each cell I j ′ , we rewrite r(u(x, t)) as r(u) = r(u j ′) + (
r(u) − r(u j ′)

)
with u j ′ = u(x j ′ , t). Clearly, on each element I j ′ , |r(u) − r(u j ′)| ≤ C�h due to the
smoothness of r and u. Using the orthogonality property of P−

h again (2.9b), we arrive
at

H(r(w − P−
h w), v) = (

(r(u) − r(u j ′))(w − P−
h w), vx

) ≤ C�h
k+1‖v‖,

wherewe have usedCauchy–Schwarz inequality, inverse inequality (i) and the approx-
imation property (2.10a) consecutively. ��
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Corollary 2 Suppose that r(u(x, t)) is smooth with respect to each variable. Then,
for any w ∈ Hk+1(�h), v ∈ V α

h , there holds

H(∂α
h (r(w − P−

h w)), v) ≤ C�h
k+1‖v‖, ∀α ≥ 0. (2.14)

Proof The case α = 0 has been proved in Lemma 2. For α ≥ 1, by the Leibniz rule
(2.6b) and taking into account the fact that both the divided difference operator ∂h and
the projection operator P−

h are linear, we rewrite ∂α
h (r(w − P−

h w)) as

∂α
h (r(w − P−

h w)) =
α∑

�=0

(
α

�

)
∂�
hr

(
x + α − �

2
h

)
∂α−�
h (w − P−

h w)

(
x − �

2
h

)

�
α∑

�=0

(
α

�

)
ř
(
w̌ − P−

h w̌
)

with

ř = ∂�
hr

(
x + α − �

2
h

)
, w̌ = ∂α−�

h w

(
x − �

2
h

)
.

Thus,

H(∂α
h (r(w − P−

h w)), v) =
α∑

�=0

(
α

�

)
H(ř

(
w̌ − P−

h w̌
)
, v). (2.15)

Clearly, by (2.6e), ř is also a smooth functionwith respect to each variable with leading
term ∂�

xr
(
x + α−�

2 h
)
. To complete the proof, we need only apply the same procedure

as that in the proof of Lemma 2 to each H term on the right side of (2.15). ��

2.2.5 Regularity for the variable coefficient hyperbolic equations

Since the dual problem for the nonlinear hyperbolic equation is a variable coefficient
equation, we need to recall a regularity result.

Lemma 3 [16] Consider the variable coefficient hyperbolic equation with a periodic
boundary condition for all t ∈ [0, T ]

ϕt (x, t) + a(x, t)ϕx (x, t) = 0, (2.16a)

ϕ(x, 0) = ϕ0(x), (2.16b)

where a(x, t) is a given smooth periodic function. For any � ≥ 0, fix time t and
a(x, t) ∈ L∞([0, T ];W 2�+1,∞(�)), then the solution of (2.16) satisfies the following
regularity property

‖ϕ(x, t)‖� ≤ C‖ϕ(x, 0)‖�,

where C is a constant depending on ‖a‖L∞([0,T ];W 2�+1,∞(�)).
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2.2.6 SIAC filters

The SIAC filters are used to extract the hidden accuracy of DG methods, by means of
a post-processing technique, which enhances the accuracy and reduces oscillations of
the DG errors. The post-processing is a convolution with a kernel function K ν,k+1

h that
is of compact support and is a linear combination of B-splines, scaled by the uniform
mesh size,

K ν,k+1
h (x) = 1

h

∑
γ∈Z

cν,k+1
γ ψ(k+1)

( x
h

− γ
)

,

where ψ(k+1) is the B-spline of order k + 1 obtained by convolving the characteristic
function ψ(1) = χ of the interval (−1/2, 1/2) with itself k times. Additionally, the
kernel function K ν,k+1

h should reproduce polynomials of degree ν −1 by convolution,
which is used to determine the weights cν,k+1

γ . For more details, see [11].
The post-processing theory of SIAC filters is given in the following theorem.

Theorem 1 (Bramble and Schatz [5]) For 0 < T < T �, where T � is the maximal time
of existence of the smooth solution, let u ∈ L∞([0, T ]; H ν(�)) be the exact solution
of (1.1). Let �0 + 2supp(K ν,k+1

h (x)) � � and U be any approximation to u, then

‖u − K ν,k+1
h �U‖

�0
≤ hν

ν! C1|u|ν + C1C2

∑
α≤k+1

‖∂α
h (u −U )‖−(k+1),�,

where C1 and C2 depend on �0, k, but is independent of h.

3 L2 norm error estimates for divided differences

By the post-processing theory [5,11] (also see Theorem 1), it is essential to derive
negative-order norm error estimates for divided differences, which depend heavily
on their L2 norm estimates. However, for both variable coefficient equations and
nonlinear equations, it is highly nontrivial to derive L2 norm error estimates for divided
differences, and the technique used to prove convergence results for the DG error itself
needs to be significantly changed.

3.1 The main results in L2 norm

Let us begin by denoting e = u − uh to be the error between the exact solution
and numerical solution. Next, we split it into two parts; one is the projection error,
denoted by η = u − Qhu, and the other is the projection of the error, denoted by
ξ = Qhu − uh := Qhe ∈ V α

h . Here the projection Qh is defined at each time level
t corresponding to the sign variation of f ′(u); specifically, for any t ∈ [0, T ] and
x ∈ �, if f ′(u(x, t)) > 0 we choose Qh = P−

h , and if f ′(u(x, t)) < 0, we take
Qh = P+

h .
We are now ready to state the main theorem for the L2 norm error estimates.
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Theorem 2 For any 0 ≤ α ≤ k+1, let ∂α
h u be the exact solution of Eq. (2.1), which is

assumed to be sufficiently smooth with bounded derivatives, and assume that | f ′(u)|
is uniformly lower bounded by a positive constant. Let ∂α

h uh be the numerical solution
of scheme (2.2) with initial condition ∂α

h uh(0) = Qh(∂
α
h u0) when the upwind flux is

used. For a uniform mesh of � = (a, b), if the finite element space V α
h of piecewise

polynomials with arbitrary degree k ≥ 1 is used, then for small enough h and any
T > 0 there holds the following error estimate

‖∂α
h ξ(T )‖2 +

∫ T

0
|[∂α

h ξ ]|2dt ≤ C�h
2k+3−α, (3.1)

where the positive constant C� depends on the u, δ, T and f , but is independent of h.

Corollary 3 Under the same conditions as in Theorem 2, if in addition α ≥ 1 we
have the following error estimates:

‖∂α
h (u − uh)(T )‖ ≤ C�h

k+ 3
2− α

2 . (3.2)

Proof As shown in Corollary 2, we have that ∂α
h η = ∂α

h u − P−
h (∂α

h u), and thus

‖∂α
h η‖ ≤ Chk+1‖∂α

h u‖k+1 (3.3)

by the approximation error estimate (2.10a). Now, the error estimate (3.2) follows by
combining the triangle inequality and (3.1). ��
Remark 1 Clearly, the L2 error estimates for the divided differences in Theorem 2 and
Corollary 3 also hold for the variable coefficient equation (2.1) with f (u) = a(x)u
and |a(x)| ≥ δ > 0. In fact, for variable coefficient equations, we can obtain optimal
(k + 1)th order in the L2 norm and thus (2k + 1)th order in the negative-order norm;
see Sect. 3.3.

Remark 2 The result with α = 0 in Theorem 2 is indeed a superconvergence result
towards a particular projection of the exact solution (supercloseness) that has been
established in [18], which is a starting point for proving ‖∂α

h ξ‖ with α ≥ 1. For com-
pleteness, we list the superconvergence result for ξ (zeroth order divided difference)
as follows

‖ξ‖2 +
∫ T

0
|[ξ ]|2dt ≤ C�h

2k+3, (3.4a)

‖ξx‖ ≤ Ch−1‖S‖ ≤ C�(‖ξt‖ + hk+1), (3.4b)

‖ξt‖2 +
∫ T

0
|[ξt ]|2dt ≤ C�h

2k+2, (3.4c)

where, on each element I j , we have used ξ = r j + S(x)(x − x j )/h j with r j = ξ(x j )
being a constant and S(x) ∈ Pk−1(I j ). Note that the proof of such superconvergence
results requires that | f ′(u)| is uniformly lower bounded by a positive constant; for
more details, see [18].
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In the proof of Theorem 2, we have also obtained a generalized version about the
L2 norm estimates of ξ in terms of the divided differences, their time derivatives, and
spatial derivatives. To simplify notation, for an arbitrary multi-index β = (β1, β2), we
denote by ∂

β

M(·) themixed operator containing divided differences and timederivatives
of a given function, namely

∂
β

M(·) = ∂
β1
h ∂

β2
t (·). (3.5)

Corollary 4 Under the same conditions as in Theorem 2, for β0 = 0, 1 and a multi-
index β = (β1, β2) with |β| = β1 + β2 ≤ k + 1, we have the following unified error
estimate:

‖∂β0
x ∂

β

Mξ(T )‖ ≤ C�h
k+ 3

2− |β′ |
2 ,

where |β ′| = β0 + |β|.

3.2 Proof of the main results in the L2 norm

Similar to the discussion of the DG discretization operator properties in Sect. 2.2.4,
without loss of generality, we will only consider the case f ′(u(x, t)) ≥ δ > 0 for all
(x, t) ∈ � × [0, T ]; the case of f ′(u(x, t)) ≤ −δ < 0 is analogous. Therefore, we
take the upwind numerical flux as f̂ = f (u−

h ) on each cell interface and choose the
projection asQh = P−

h on each cell, and the initial condition is chosen as ∂α
h uh(0) =

P−
h (∂α

h u0). Since the case α = 0 has already been proven in [18] (see (3.4a)), we
need only to consider 1 ≤ α ≤ k + 1. In order to clearly display the main ideas of
how to perform the L2 norm error estimates for divided differences, in the following
two sections we present the detailed proof for Theorem 2 with α = 1 and α = 2,
respectively; the general cases with 3 ≤ α ≤ k + 1 (k ≥ 2) can be proven by
induction, which are omitted to save space.

3.2.1 Analysis for the first order divided difference

For α = 1, the DG scheme (2.2) becomes

((∂huh)t , vh) j ′ = H j ′ (∂h f (uh), vh)

with j ′ = j + 1
2 , which holds for any vh ∈ V α

h and j = 1, . . . , N . By Galerkin
orthogonality and summing over all j ′, we have the error equation

(∂het , vh) = H(∂h( f (u) − f (uh)), vh) (3.6)

for all vh ∈ V α
h . To simplify notation, we would like to denote ∂he := ē = η̄ + ξ̄ with

η̄ = ∂hη, ξ̄ = ∂hξ . If we now take vh = ξ̄ , we get the following identity

1

2

d

dt
‖ξ̄‖2 + (

η̄t , ξ̄
) = H(∂h( f (u) − f (uh)), ξ̄ ). (3.7)
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The estimate for the right side of (3.7) is complicated, since it contains some integral
terms involving mixed order divided differences of ξ , namely ξ and ξ̄ , which is given
in the following lemma.

Lemma 4 Suppose that the conditions in Theorem 2 hold. Then we have

H(∂h( f (u) − f (uh)), ξ̄ ) ≤ C�‖ξ̄‖2 − δ

2
|[ξ̄ ]|2 + h−1|[ξ ]|2 + Ch2k+2, (3.8)

where the positive constants C and C� are independent of h and uh .

Proof Let us start by using the second order Taylor expansion with respect to the
variable u to write out the nonlinear terms, namely f (u) − f (uh) and f (u) − f (u−

h ),
as

f (u) − f (uh) = f ′(u)ξ + f ′(u)η − R1e
2, (3.9a)

f (u) − f (u−
h ) = f ′(u)ξ− + f ′(u)η− − R2(e

−)2, (3.9b)

where R1 = ∫ 1
0 (1−μ) f ′′(u+μ(uh−u))dμ and R2 = ∫ 1

0 (1−ν) f ′′(u+ν(u−
h −u))dν

are the integral form of the remainders of the second order Taylor expansion.Wewould
like to emphasize that the various order spatial derivatives, time derivatives and divided
differences of R1 are all bounded uniformly due to the smoothness of f and u. Thus,

H(∂h( f (u) − f (uh)), ξ̄ ) = H(∂h( f
′(u)ξ), ξ̄ )+H(∂h( f

′(u)η), ξ̄ ) −H(∂h(R1e
2), ξ̄ )

� J + K − L,

which will be estimated separately below.
To estimate J , we employ the Leibniz rule (2.6b), and rewrite ∂h( f ′(u)ξ) as

∂h( f
′(u)ξ) = f ′(u(x + h/2))ξ̄ (x) + (∂h f

′(u(x)))ξ(x − h/2),

and thus,

J = H( f ′(u)ξ̄ , ξ̄ ) + H((∂h f
′(u))ξ, ξ̄ ) � J1 + J2,

where we have omitted the dependence of x for convenience if there is no confusion,
since the proof of (2.11b) is still valid even if f ′(u) and ξ̄ are evaluated at different x ;
see proof of (2.11b) in Sect. 2.2.4. A direct application of Lemma 1 together with the
assumption that f ′(u) ≥ δ > 0, (2.11b), leads to the estimate for J1:

J1 ≤ C�‖ξ̄‖2 − δ

2
|[ξ̄ ]|2. (3.10a)

By Corollary 1, we arrive at the estimate for J2:

J2 ≤ C�

(
‖ξ‖ + ‖ξx‖ + h− 1

2 |[ξ ]|
)

‖ξ̄‖. (3.10b)
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Substituting (3.4a)–(3.4c) into (3.10b), and combining with (3.10a), we have, after a
straightforward application of Young’s inequality, that

J ≤ C�‖ξ̄‖2 − δ

2
|[ξ̄ ]|2 + h−1|[ξ ]|2 + Ch2k+2. (3.11)

Let us now move on to the estimate of K. By Corollary 2, we have

K ≤ C�h
k+1‖ξ̄‖. (3.12)

To estimate L, let us first employ the identity (2.6b) and rewrite ∂h(R1e2) as

∂h(R1e
2) = R1(u(x + h/2))∂he

2 + ∂h R1(u(x))e2(x − h/2)

= R1(u(x + h/2))ē(x)(e(x + h/2) + e(x − h/2))

+ ∂h R1(u(x))e2(x − h/2)

� D1 + D2.

Consequently,

L = H(D1, ξ̄ ) + H(D2, ξ̄ ).

It is easy to show, for the high order nonlinear termH(D1, ξ̄ ), that

H(D1, ξ̄ ) ≤ C�‖e‖∞
(‖ē‖‖ξ̄x‖ + ‖ē‖�h‖ξ̄‖�h

)
≤ C�h

−1‖e‖∞
(
‖ξ̄‖ + ‖η̄‖ + h

1
2 ‖η̄‖�h

)
‖ξ̄‖

≤ C�h
−1‖e‖∞

(
‖ξ̄‖ + hk+1

)
‖ξ̄‖, (3.13)

where in the first step we have used the Cauchy–Schwarz inequality, in the second step
we have used the inverse properties (i) and (ii), and in the last step we have employed
the interpolation properties (3.3). We see that in order to deal with the nonlinearity of
f we still need to have a bound for ‖e‖∞. Due to the superconvergence result (3.4a),
we conclude, by combining inverse inequality (iii) and the approximation property
(2.10b), that

‖e‖∞ ≤ Chk+1. (3.14)

Therefore, for small enough h, we have

H(D1, ξ̄ ) ≤ C�‖ξ̄‖2 + C�h
k+1‖ξ̄‖. (3.15a)

By using analysis similar to that in the proof of (3.13), we have, for H(D2, ξ̄ ), that

H(D2, ξ̄ ) ≤ C�h
−1‖e‖∞

(
‖ξ‖ + hk+1

)
‖ξ̄‖.
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As a consequence, by (3.14) and (3.4a)

H(D2, ξ̄ ) ≤ C�h
k+1‖ξ̄‖. (3.15b)

A combination of (3.15a) and (3.15b) produces a bound for L:

L ≤ C�‖ξ̄‖2 + C�h
k+1‖ξ̄‖. (3.16)

To complete the proof of Lemma 4, we need only combine (3.11), (3.12), (3.16) and
use Young’s inequality. ��

We are now ready to derive the L2 norm estimate for ξ̄ . To do this, let us begin by
inserting the estimate (3.8) into (3.7) and taking into account the bound for η̄ in (3.3)
and thus η̄t to get, after an application of Cauchy–Schwarz inequality and Young’s
inequality, that

1

2

d

dt
‖ξ̄‖2 + δ

2
|[ξ̄ ]|2 ≤ C�‖ξ̄‖2 + h−1|[ξ ]|2 + Ch2k+2.

Next, we integrate the above inequality with respect to time between 0 and T and note
the fact that ξ̄ (0) = 0 due to ξ(0) = 0 to obtain

1

2
‖ξ̄‖2 + δ

2

∫ T

0
|[ξ̄ ]|2dt ≤ C�

∫ T

0
‖ξ̄‖2dt + h−1

∫ T

0
|[ξ ]|2dt + Ch2k+2

≤ C�

∫ T

0
‖ξ̄‖2dt + Ch2k+2,

where we have used the superconvergence result (3.4a). An application of Gronwall’s
inequality leads to the desired result

‖ξ̄‖2 +
∫ T

0
|[ξ̄ ]|2dt ≤ C�h

2k+2. (3.17)

This finishes the proof of Theorem 2 for α = 1.

Remark 3 Wecan see that the estimates (3.17) for the L2 norm and the jump seminorm
of ξ̄ are based on the corresponding results for ξ in Remark 2, which are half an
order lower than that of ξ . This is mainly due to the hybrid of different order divided
differences of ξ , namely ξ and ξ̄ , and thus the application of inverse property (ii). It
is natural that the proof for the high order divided difference of ξ , say ∂2h ξ , should be
based on the corresponding lower order divided difference results of ξ (ξ and ξ̄ ) that
have already been established; see Sect. 3.2.2 below.
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3.2.2 Analysis for the second order divided difference

For α = 2, the DG scheme (2.2) becomes

(
(∂2huh)t , vh

)
j ′

= H j ′
(
∂2h f (uh), vh

)

with j ′ = j , which holds for any vh ∈ V α
h and j = 1, . . . , N . By Galerkin orthogo-

nality and summing over all j , we have the error equation

(
∂2h et , vh

)
= H(∂2h ( f (u) − f (uh)), vh) (3.18)

for all vh ∈ V α
h . To simplify notation, we would like to denote ∂2h e := ẽ = η̃ + ξ̃ with

η̃ = ∂2hη, ξ̃ = ∂2h ξ . If we now take vh = ξ̃ , we get the following identity

1

2

d

dt
‖ξ̃‖2 +

(
η̃t , ξ̃

)
= H(∂2h ( f (u) − f (uh)), ξ̃ ). (3.19)

The estimate for right side of (3.19) is rather complicated, since it contains some
integral terms involving mixed order divided differences of ξ , namely ξ , ξ̄ and ξ̃ ,
which is given in the following Proposition.

Proposition 1 Suppose that the conditions in Theorem 2 hold. Then we have

H(∂2h ( f (u) − f (uh)), ξ̃ ) ≤ C�‖ξ̃‖2− δ

2
|[ξ̃ ]|2+h−1(|[ξ ]|2+|[ξ̄ ]|2)+Ch2k+1, (3.20)

where the positive constants C and C� are independent of h and uh .

Proof By the second order Taylor expansion (3.9), we have

H(∂2h ( f (u) − f (uh)), ξ̃ ) = H(∂2h ( f
′(u)ξ), ξ̃ ) + H(∂2h ( f

′(u)η), ξ̃ )

− H(∂2h (R1e
2), ξ̃ )

� P + Q − S, (3.21)

which will be estimated one by one below.
To estimate P , we use the Leibniz rule (2.6b), to rewrite ∂2h ( f

′(u)ξ) as

∂2h ( f
′(u)ξ) = f ′(u(x + h))ξ̃ (x) + 2∂h f

′(u(x + h/2))ξ̄ (x − h/2)

+ ∂2h f ′(u(x))ξ(x − h),

and thus,

P = H( f ′(u)ξ̃ , ξ̃ ) + 2H((∂h f
′(u))ξ̄ , ξ̃ ) + H((∂2h f ′(u))ξ, ξ̃ ) � P1 + P2 + P3,
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where we have omitted the dependence of x for convenience if there is no confusion.
A direct application of Lemma 1 together with the assumption that f ′(u) ≥ δ > 0,
(2.11b), produces the estimate for P1:

P1 ≤ C�‖ξ̃‖2 − δ

2
|[ξ̃ ]|2. (3.22a)

By Corollary 1, we arrive at the estimates for P2 and P3:

P2 ≤ C�

(
‖ξ̄‖ + ‖ξ̄x‖ + h− 1

2 |[ξ̄ ]|
)

‖ξ̃‖, (3.22b)

P3 ≤ C�

(
‖ξ‖ + ‖ξx‖ + h− 1

2 |[ξ ]|
)

‖ξ̃‖. (3.22c)

Substituting (3.4a)–(3.4c), (3.17) into (3.22b), (3.22c), and combining with (3.22a),
we have, after a straightforward application of Young’s inequality, that

P ≤ C�‖ξ̃‖2 − δ

2
|[ξ̃ ]|2 + h−1

(
|[ξ ]|2 + |[ξ̄ ]|2

)
+ ‖ξ̄x‖2 + Ch2k+2. (3.23)

For terms on the right side of (3.23), although we have information about |[ξ ]|2 and
|[ξ̄ ]|2 as shown in (3.4a) and (3.17), we still need a suitable bound for ‖ξ̄x‖, which is
given in the following lemma.

Lemma 5 Suppose that the conditions in Theorem 2 hold. Then we have

‖ξ̄x‖ ≤ C�(‖ξ̄t‖ + hk+1), (3.24)

where C� depends on u and δ but is independent of h and uh.

The proof of this lemma is given in the appendix. Up to now, we see that we still need
to have a bound for ‖ξ̄t‖. In fact, the proof for ‖ξ̄t‖ would require additional bounds
for ‖(ξt )x‖ and ‖ξt t‖, whose results are shown in Lemmas 6 and 7.

Lemma 6 Suppose that the conditions in Theorem 2 hold. Then we have

‖(ξt )x‖ ≤ C�(‖ξt t‖ + hk+1). (3.25)

The proof of Lemma 6 follows along a similar argument as that in the proof of Lemma
5, so we omit the details here.

Lemma 7 Suppose that the conditions in Theorem 2 hold. Then we have

‖ξt t‖2 +
∫ T

0
|[ξt t ]|2dt ≤ C�h

2k+1. (3.26)

The proof of this lemma is deferred to the appendix. Based on the above two lemmas,
we are able to prove the bound for ‖ξ̄t‖ in Lemma 8, whose proof is deferred to the
appendix.
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Lemma 8 Suppose that the conditions in Theorem 2 hold. Then we have

‖ξ̄t‖2 +
∫ T

0
|[ξ̄t ]|2dt ≤ C�h

2k+1, (3.27)

where C� depends on u and δ but is independent of h and uh.

We now collect the estimates in Lemmas 5 and 8 into (3.23) to get

P ≤ C�‖ξ̃‖2 − δ

2
|[ξ̃ ]|2 + h−1

(
|[ξ ]|2 + |[ξ̄ ]|2

)
+ Ch2k+1. (3.28)

Let us now move on to the estimate of Q. By Corollary 2, we have

Q ≤ C�h
k+1‖ξ̃‖. (3.29)

To estimate S, let us first employ the identity (2.6b) and rewrite ∂2h (R1e2) as

∂2h (R1e
2) = R1(u(x + h))∂2h e

2 + 2∂h R1(u(x + h/2))∂he
2(x − h/2)

+ ∂2h R1(u(x))e2(x − h)

� E1 + E2 + E3,

where

E1 = R1(u(x + h)) (e(x + h)ẽ(x) + 2ē(x + h/2)ē(x − h/2) + ẽ(x)e(x − h)) ,

E2 = 2∂h R1(u(x + h/2))ē(x − h/2) (e(x) + e(x − h)) ,

E3 = ∂2h R1(u(x))e2(x − h).

Thus,

S = H(E1, ξ̃ ) + H(E2, ξ̃ ) + H(E3, ξ̃ ) � S1 + S2 + S3.

By using analysis similar to that in the proof of (3.13), we get

S1 ≤ C�h
−1(‖e‖∞ + ‖ē‖∞)

(
‖ξ̃‖ + ‖ξ̄‖ + hk+1

)
‖ξ̃‖

≤ C
(
‖ξ̃‖ + ‖ξ̄‖ + hk+1

)
‖ξ̃‖,

S2 ≤ C�h
−1‖e‖∞

(
‖ξ̄‖ + hk+1

)
‖ξ̃‖ ≤ C

(
‖ξ̄‖ + hk+1

)
‖ξ̃‖,

S3 ≤ C�h
−1‖e‖∞

(
‖ξ‖ + hk+1

)
‖ξ̃‖ ≤ C

(
‖ξ‖ + hk+1

)
‖ξ̃‖,

where we have used the fact that for k ≥ 1 and small enough h, C�h−1(‖e‖∞ +
‖ē‖∞) ≤ C ; for more details, see the appendix. Consequently

S ≤ C
(
‖ξ̃‖ + ‖ξ̄‖ + ‖ξ‖ + hk+1

)
‖ξ̃‖. (3.30)
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Collecting the estimates (3.28)–(3.30) into (3.21) and taking into account (3.4a) and
(3.17), we get

H(∂2h ( f (u) − f (uh)), ξ̃ ) ≤ C�‖ξ̃‖2 − δ

2
|[ξ̃ ]|2 + h−1

(
|[ξ ]|2 + |[ξ̄ ]|2

)
+ Ch2k+1.

This finishes the proof of Proposition 1. ��
We are now ready to derive the L2 norm estimate for ξ̃ . To do this, we begin by

combining (3.19) and (3.20) to get

1

2

d

dt
‖ξ̃‖2 + δ

2
|[ξ̃ ]|2 ≤ C�‖ξ̃‖2 + h−1

(
|[ξ ]|2 + |[ξ̄ ]|2

)
+ Ch2k+1.

Next, integrate the above inequality with respect to time between 0 and T and use
ξ(0) = 0 (and thus ξ̃ (0) = ∂2h ξ(0) = 0) to obtain

1

2
‖ξ̃‖2 + δ

2

∫ T

0
|[ξ̃ ]|2dt ≤ C�

∫ T

0
‖ξ̃‖2dt + h−1

∫ T

0

(
|[ξ ]|2 + |[ξ̄ ]|2

)
dt + Ch2k+1

≤ C�

∫ T

0
‖ξ̃‖2dt + Ch2k+1

by the estimates (3.4a) and (3.17). An application of Gronwall’s inequality leads to
the desired result

‖ξ̃‖2 +
∫ T

0
|[ξ̃ ]|2dt ≤ C�h

2k+1. (3.31)

This completes the proof of Theorem 2 with α = 2.

Remark 4 Through the proof of Theorem 2 with α = 2, ‖ξ̃‖, we can see that apart
from the bounds for ‖ξ‖, ‖ξx‖, ‖ξt‖ that have already been obtained for proving ‖ξ̄‖,
we require additional bounds for ‖ξ̄x‖, ‖ξ̄t‖, ‖(ξt )x‖, and ‖ξt t‖, as shown in Lemmas
5–8. The proof for the L2 norm estimates for higher order divided differences are more
technical and complicated, and it would require bounds regarding lower order divided
differences aswell as its corresponding spatial and time derivatives. For example,when
α = 3, in addition to the abounds aforementioned, we need to establish the bounds for
‖ξ̃x‖, ‖ξ̃t‖, ‖(ξ̄t )x‖, ‖ξ̄t t‖, ‖(ξt t )x‖ and ‖ξt t t‖. Thus, Theorem 2 can be proven along
the same lines for general α ≤ k + 1. Finally, we would like to point out that the
corresponding results on the jump seminorm for various order divided differences and
time derivatives of ξ are useful, which play an important role in deriving Theorem 2.

3.3 Variable coefficient case

3.3.1 The main results

In this sectionwe consider the L2 error estimates for divideddifferences for the variable
coefficient equation (1.1)with f (u) = a(x)u. Similar to the nonlinear hyperbolic case,
to obtain a suitable bound for the L2 norm the numerical flux should be chosen as
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an upwind flux. Moreover, the analysis requires a condition that |a(x)| is uniformly
lower bounded by a positive constant. Without loss of generality, we only consider
a(x) ≥ δ > 0, and thus the DG scheme is

(
(∂α

h uh)t , vh
) = H(∂α

h (auh), vh) (3.32)

for vh ∈ V α
h . We will use the same notation as before.

For nonlinear hyperbolic equations, the loss of order in Theorem 2 is mainly due
to the lack of control for the interface jump terms arising from (2.11a) in the super-
convergence relation, for example, (3.4b), (3.24) and (3.25). Fortunately, for variable
coefficient hyperbolic equations, we can establish a stronger superconvergence rela-
tion between the spatial derivative as well as interface jumps of the various order
divided difference of ξ and its time derivatives; see (3.37b) below. Thus, optimal L2

error estimates of order k + 1 are obtained.
Prior to stating our main theorem, we would like to present convergence results

for time derivatives of ξ , which is slightly different to those for nonlinear hyperbolic
equations.

Lemma 9 Let u be the exact solution of the variable coefficient hyperbolic Eq. (1.1)
with f (u) = a(x)u, which is assumed to be sufficiently smooth with bounded deriva-
tives. Let uh be the numerical solution of scheme (3.32) (α = 0) with initial condition
uh(0) = Qhu0, (Qh = P±

h ) when the upwind flux is used. For regular triangulations
of � = (a, b), if the finite element space V α

h of piecewise polynomials with arbitrary
degree k ≥ 0 is used, then for any m ≥ 0 and any T > 0 there holds the following
error estimate

‖∂mt ξ(T )‖ ≤ Chk+1, (3.33)

where the positive constant C depends on u, T and a, but is independent of h.

The proof of this lemma is postponed to the appendix.
We are now ready to state our main theorem.

Theorem 3 For any α ≥ 1, let ∂α
h u be the exact solution of the problem (2.1) with

f (u) = a(x)u, which is assumed to be sufficiently smooth with bounded derivatives,
and assume that |a(x)| is uniformly lower bounded by a positive constant. Let ∂α

h uh be
the numerical solution of scheme (3.32) with initial condition ∂α

h uh(0) = Qh(∂
α
h u0)

when the upwind flux is used. For a uniform mesh of � = (a, b), if the finite element
space V α

h of piecewise polynomials with arbitrary degree k ≥ 0 is used, then for any
T > 0 there holds the following error estimate

‖∂α
h ξ(T )‖ ≤ Chk+1, (3.34)

where the positive constant C depends on u, δ, T and a, but is independent of h.

Remark 5 Basedon the optimal error estimates for‖∂α
h ξ‖ togetherwith approximation

error estimates (3.3) and using the duality argument in [19], we can obtain the negative-
order norm estimates

‖∂α
h (u − uh)(T )‖−(k+1),� ≤ Ch2k+1, (3.35)
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and thus
‖u − K ν,k+1

h � uh‖ ≤ Ch2k+1. (3.36)

For more details, see [5,19] and also Sect. 4 below.

3.3.2 Proof of main results

We shall prove Theorem 3 for general α ≥ 1. First we claim that if we can prove the
following three inequalities

‖∂mh ξ‖ ≤ Chk+1, ∀ 0 ≤ m ≤ α − 1, (3.37a)

‖(∂β

Mξ)x‖ + h− 1
2 |[∂β

Mξ ]| ≤ C
(
‖∂β1

h ∂
β2+1
t ξ‖ + hk+1

)
, ∀ |β| = β1 + β2 ≤ α − 1,

(3.37b)

‖∂γ

Mξ‖ ≤ Chk+1, ∀ |γ | ≤ α and γ = (α, 0), (3.37c)

where ∂
β

Mξ = ∂
β1
h ∂

β2
t ξ represents the mixed operator containing divided differences

and time derivatives of ξ that has already been defined in (3.5), then ‖∂α
h ξ‖ ≤ Chk+1.

In what follows, we sketch the verification of this claim. To do that, we start by taking
vh = ∂α

h ξ in the following error equation

(
∂α
h et , vh

) = H(∂α
h (aξ), vh) + H(∂α

h (aη), vh),

which is

1

2

d

dt
‖∂α

h ξ‖2 + (
∂α
h ηt , ∂

α
h ξ

) = H(∂α
h (aξ), ∂α

h ξ) + H(∂α
h (aη), ∂α

h ξ). (3.38)

Next, consider the term H(∂α
h (aξ), ∂α

h ξ). Use Leibniz rule (2.6b) to rewrite ∂α
h (aξ)

and employ (2.11a), (2.11b) in Lemma 1 to get the bound

H(∂α
h (aξ), ∂α

h ξ) ≤ C‖∂α
h ξ‖2 + Chk+1‖∂α

h ξ‖,

where we have also used the relations (3.37a)–(3.37c). For the estimate of
H(∂α

h (aη), ∂α
h ξ), we need only use Corollary 2 to get

H(∂α
h (aη), ∂α

h ξ) ≤ Chk+1‖∂α
h ξ‖.

Collecting above two estimates into (3.38) and using Cauchy–Schwarz inequality as
well as Gronwall’s inequality, we finally get

‖∂α
h ξ‖ ≤ Chk+1.

The claim is thus verified.
In what follows, we will prove (3.37) by induction.
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Step 1 For α = 1, ‖ξ‖ ≤ Chk+1 is well known, and thus (3.37a) is valid for α = 1.
Moreover, (3.37c), namely ‖ξt‖ ≤ Chk+1 has been given in (3.4c); see [18]. To
complete the proof for α = 1, we need only to establish the following relation

‖ξx‖ + h− 1
2 |[ξ ]| ≤ C

(
‖ξt‖ + hk+1

)
. (3.39)

Proof Noting the relation (3.4b), we need only to prove

h− 1
2 |[ξ ]| ≤ C

(
‖ξt‖ + hk+1

)
. (3.40)

To do that, we consider the cell error equation

(et , vh) j = H j (ae, vh) = H j (aξ, vh) + H j (aη, vh) ,

which holds for any vh ∈ V α
h and j = 1, . . . , N . If we now take vh = 1 in the above

identity and use the strong form (2.3b) for H j (aξ, vh), we get

(et , 1) j = − ((aξ)x , 1) j − (a[[ξ ]]) j− 1
2

+ H j (aη, 1) � −W1 − W2 + W3.

It follows from the assumption |a(x)| ≥ δ > 0 that

δ|[[ξ ]] j− 1
2
| ≤ |W2| ≤ |W1| + |W3| + | (et , 1) j |. (3.41)

By Cauchy–Schwarz inequality, we have

|W1| + | (et , 1) j | ≤ Ch
1
2 (‖ξ‖I j + ‖ξx‖I j + ‖ξt‖I j + ‖ηt‖I j ).

By the definition of the projection P−
h , (2.9b)

|W3| = 0.

Inserting the above two estimates into (3.41), we arrive at

|[[ξ ]] j− 1
2
| ≤ Ch

1
2 (‖ξ‖I j + ‖ξx‖I j + ‖ξt‖I j + ‖ηt‖I j ),

which is

|[ξ ]|2 ≤ Ch
(
‖ξ‖2 + ‖ξx‖2 + ‖ξt‖2 + ‖ηt‖2

)

≤ Ch
(
‖ξt‖2 + h2k+2

)
,

where we have used the bound for ‖ξ‖, the relation (3.4b) and approximation error
estimates (2.10a), and thus (3.40) follows. Therefore, (3.37) is valid for α = 1. ��
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Step 2 Suppose that (3.37) is true for α = �. That is

‖∂mh ξ‖ ≤ Chk+1, ∀ 0 ≤ m ≤ � − 1, (3.42a)

‖(∂β

Mξ)x‖ + h− 1
2 |[∂β

Mξ ]| ≤ C(‖∂β1
h ∂

β2+1
t ξ‖ + hk+1), ∀ |β| = β1 + β2 ≤ � − 1,

(3.42b)

‖∂γ

Mξ‖ ≤ Chk+1, ∀ |γ | ≤ � and γ = (�, 0), (3.42c)

let us prove that it also holds for α = � + 1.
First, as shown in our claim, (3.42) implies that

‖∂�
hξ(T )‖ ≤ Chk+1.

The above estimate together with (3.42a) produces

‖∂mh ξ‖ ≤ Chk+1, ∀ 0 ≤ m ≤ �. (3.43)

Therefore, (3.37a) is valid for α = � + 1.
Next, by assumption (3.42b), we can see that to show (3.37b) for α = � + 1, we

need only to show

‖(∂β

Mξ)x‖ + h− 1
2 |[∂β

Mξ ]| ≤ C
(
‖∂β1

h ∂
β2+1
t ξ‖ + hk+1

)
, ∀ |β| = �.

Without loss of generality, let us take β = (�, 0) for example. To this end, we consider
the following error equation

(
∂�
het , vh

)
= H(∂�

h(aξ), vh) + H(∂�
h(aη), vh),

which holds for any vh ∈ V α
h . We use Leibniz rule (2.6b) to write out ∂�

h(aξ) as

∂�
h (aξ) =

�∑
i=0

(
�

i

)
∂ iha

(
x + � − i

2
h

)
∂�−i
h ξ

(
x − i

2
h

)
�

�∑
i=0

zi .

Therefore, the error equation becomes

(
∂�
het , vh

)
=

�∑
i=0

Zi + H(∂�
h(aη), vh), (3.44)

where Zi = H(zi , vh) for i = 0, . . . , �. Let us now work on Z0. By the strong form
of H, (2.4b), we have

Z0 = H(a∂�
hξ, vh) = −

(
(a∂�

hξ)x , vh

)
−

N∑
j=1

(
a[[∂�

hξ ]]v+
h

)
j ′− 1

2

.
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Denote Lk the standard Legendre polynomials of degree k in [−1, 1]. If we now
let vh = (∂�

hξ)x − dLk(s) with d = (−1)k
(
(∂�

hξ)x
)+
j ′− 1

2
being a constant and s =

2(x−x j ′ )
h , we get

Z0 = −
(
a(x j ′)(∂

�
hξ)x , vh

)
−

(
(a(x) − a(x j ′))(∂

�
hξ)x , vh

)
−

(
ax∂

�
hξ, vh

)

� −Z0,0 − Z0,1 − Z0,2,

since (vh)
+
j ′− 1

2
= 0. Substituting above expression into (3.44) and taking into account

the assumption that a(x) ≥ δ > 0, we have

δ‖(∂�
hξ)x‖2 ≤ Z0,0 =

�∑
i=1

Zi +H(∂�
h(aη), vh) − Z0,1 − Z0,2 −

(
∂�
het , vh

)
. (3.45)

It is easy to show by Corollary 1 that

∣∣∣∣∣
�∑

i=1

Zi

∣∣∣∣∣ ≤ C
�∑

i=1

(
‖∂�−i

h ξ‖ + ‖(∂�−i
h ξ)x‖ + h

1
2 |[∂�−i

h ξ ]|
)

‖vh‖ ≤ Chk+1‖vh‖,

(3.46a)

where we have used (3.42a)–(3.42c), since � − i ≤ � − 1 for i ≥ 1. By Corollary 2,
we have

H(∂�
h(aη), vh) ≤ Chk+1‖vh‖. (3.46b)

By (3.43) and inverse property (i), we arrive at a bound for Z0,1 and Z0,2

|Z0,1| + |Z0,2| ≤ C‖∂�
hξ‖‖vh‖ ≤ Chk+1‖vh‖. (3.46c)

The triangle inequality and the approximation error estimate (3.3) yield

∣∣∣(∂�
het , vh

)∣∣∣ ≤ C
(
‖∂�

h∂tξ‖ + hk+1
)

‖vh‖. (3.46d)

Collecting the estimates (3.46a)–(3.46d) into (3.45) and using the fact that ‖vh‖ ≤
C‖(∂�

hξ)x‖, we arrive at

‖(∂�
hξ)x‖ ≤ C(‖∂�

h∂tξ‖ + hk+1). (3.47)

If we take vh = 1 in the cell error equation and use an analysis similar to that in the
proof of (3.40), we will get the following relation

h− 1
2 |[∂�

hξ ]| ≤ C(‖∂�
h∂tξ‖ + hk+1). (3.48)
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A combination of (3.47) and (3.48) gives us

‖(∂�
hξ)x‖ + h− 1

2 |[∂�
hξ ]| ≤ C(‖∂�

h∂tξ‖ + hk+1).

Therefore, (3.37b) still holds for α = � + 1.
Finally, let us verify that (3.37c) is valid for α = � + 1. Noting the assumption

(3.42c), we need only consider |γ | = � + 1 and γ = (� + 1, 0). To do that, we start
from the estimate for ‖∂γ

Mξ‖ with γ = (0, � + 1) that has already been established in
(3.33). By an analysis similar to that in the proof of Lemma 8 and taking into account
relations (3.37a) and (3.37b) for α = � + 1, we conclude that (3.37c) is valid for
γ = (1, �). Repeating the above procedure, we can easily verify that (3.37c) is also
valid for γ = (2, � − 1), . . . , (�, 1). Therefore, (3.37c) holds true for α = � + 1, and
thus (3.34) in Theorem 3 is valid for general α ≥ 1.

4 Superconvergent error estimates

For nonlinear hyperbolic equations, the negative-order norm estimate of the DG
error itself has been established in [16]. However, by post-processing theory [5,11],
negative-order norm estimates of divided differences of the DG error are also needed
to obtain superconvergent error estimates for the post-processed solution in the L2

norm. Using a duality argument together with L2 norm estimates established in Sect.
3, we show that for a given time T , the α-th order divided difference of the DG error
in the negative-order norm achieves

(
2k + 3

2 − α
2

)
th order superconvergence. As a

consequence, the DG solution uh(T ), converges with at least
( 3
2k + 1

)
th order in the

L2 norm when convolved with a particularly designed kernel.
We are now ready to state ourmain theoremabout the negative-order normestimates

of divided differences of the DG error.

Theorem 4 For any 1 ≤ α ≤ k+1, let ∂α
h u be the exact solution of the problem (2.1),

which is assumed to be sufficiently smooth with bounded derivatives, and assume that
| f ′(u)| is uniformly lower bounded by a positive constant. Let ∂α

h uh be the numerical
solution of scheme (2.2) with initial condition ∂α

h uh(0) = Qh(∂
α
h u0) when the upwind

flux is used. For a uniform mesh of � = (a, b), if the finite element space V α
h of

piecewise polynomials with arbitrary degree k ≥ 1 is used, then for small enough h
and any T > 0 there holds the following error estimate

‖∂α
h (u − uh)(T )‖−(k+1),� ≤ Ch2k+

3
2− α

2 , (4.1)

where the positive constant C depends on u, δ, T and f , but is independent of h.

Combining Theorems 4 and 1, we have

Corollary 5 Under the same conditions as in Theorem 4, if in addition K ν,k+1
h is a

convolution kernel consisting of ν = 2k+1+ω (ω ≥ �− k
2�) B-splines of order k+1

such that it reproduces polynomials of degree ν − 1, then we have
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‖u − u�
h‖ ≤ Ch

3
2 k+1, (4.2)

where u�
h = K ν,k+1

h � uh.

Remark 6 The ( 32k + 1)th order superconvergence is shown for the negative k + 1
norm, and thus is valid for B-splines of order k + 1 (by Theorem 1). For general order
of B-splines � and α ≤ �, using similar argument for the proof of the negative k + 1
norm estimates (see Sect. 4.1), we can prove the following superconvergent error
estimate

‖∂α
h (u − uh)(T )‖−�,� ≤ Chk+

3
2− α

2 +�−1 ≤ Chk+
�+1
2 .

Therefore, from the theoretical point of view, a higher order of B-splines �may lead to
a superconvergence result of higher order, for example � = k + 1 and thus ( 32k + 1)th
order in Corollary 5. However, from the practical point of view, changing the order of
B-splines does not affect the order of superconvergence; see Sect. 5 below and also
[17].

4.1 Proof of the main results in the negative-order norm

Similar to the proof for the L2 norm estimates of the divided differences in Sect. 3.2,
we will only consider the case f ′(u(x, t)) ≥ δ > 0 for all (x, t) ∈ � × [0, T ]. To
perform the analysis for the negative-order norm, by (2.5), we need to concentrate on
the estimate of (

∂α
h (u − uh)(T ),	

)
(4.3)

for 	 ∈ C∞
0 (�). To do that, we use the duality argument, following [16,19]. For the

nonlinear hyperbolic Eq. (2.1), we choose the dual equation as: Find a function ϕ such
that ϕ(·, t) is periodic for all t ∈ [0, T ] and

∂α
h ϕt + f ′(u)∂α

h ϕx = 0, (x, t) ∈ � × [0, T ), (4.4a)

ϕ(x, T ) = 	(x), x ∈ �. (4.4b)

Unlike the purely linear case [11,15] or the variable coefficient case [19], the dual
equations for nonlinear problems will no longer preserve the inner product of original
solution ∂α

h u and its dual solution ϕ, namely d
dt

(
∂α
h u, ϕ

) = 0. In fact, if we multiply
(2.1a) by ϕ and (4.4a) by (−1)αu and integrate over �, we get, after using integration
by parts and summation by parts (2.6d), that

d

dt

(
∂α
h u, ϕ

) + F(u;ϕ) = 0, (4.5)

where

F(u;ϕ) = (−1)α
(
f ′(u)u − f (u), ∂α

h ϕx
)
.

Note thatF(u;ϕ) is the same as that in [16] when α = 0. We now integrate (4.5) with
respect to time between 0 and T to obtain a relation

(
∂α
h u, ϕ

)
in different time level

123



X. Meng, J. K. Ryan

(
∂α
h u, ϕ

)
(T ) = (

∂α
h u, ϕ

)
(0) −

∫ T

0
F(u;ϕ)dt . (4.6)

In what follows, we work on the estimate of (4.3). To do that, let us begin by using
the relation (4.6) to get an equivalent form of (4.3). It reads, for any χ ∈ V α

h(
∂α
h (u − uh)(T ),	

)
= (

∂α
h (u − uh)(T ), ϕ(T )

)

= (
∂α
h u, ϕ

)
(0) −

∫ T

0
F(u;ϕ)dt − (

∂α
h uh, ϕ

)
(0) −

∫ T

0

d

dt

(
∂α
h uh, ϕ

)
dt

= (
∂α
h (u − uh), ϕ

)
(0) −

∫ T

0

((
(∂α

h uh)t , ϕ
) + (

∂α
h uh, ϕt

))
dt −

∫ T

0
F(u;ϕ)dt

= G1 + G2 + G3,

where

G1 = (
∂α
h (u − uh), ϕ

)
(0),

G2 = −
∫ T

0

((
∂α
h uht , ϕ − χ

) − H(∂α
h f (uh), ϕ − χ)

)
dt,

G3 = −
∫ T

0

((
∂α
h uh, ϕt

) + H(∂α
h f (uh), ϕ) + F(u, ϕ)

)
dt

will be estimated one by one below.
Note that in our analysis for ‖∂α

h (u − uh)(T )‖ in Theorem 2, we need to choose
a particular initial condition, namely ∂α

h uh(0) = P−
h (∂α

h u0) instead of ∂α
h uh(0) =

Pk(∂α
h u0) for purely linear equations [11,15]. Thus, we arrive at a slightly different

bound forG1, as shown in the following lemma. We note that using the L2 projection
in the numerical examples is still sufficient to obtain superconvergence.

Lemma 10 (Projection estimate) There exists a positive constant C, independent of
h, such that

|G1| ≤ Ch2k+1‖∂α
h u0‖k+1‖ϕ(0)‖k+1. (4.7)

Proof Since ∂α
h uh(0) = P−

h (∂α
h u0), we have the following identity

G1 = (
∂α
h (u − uh), ϕ

)
(0) = (

∂α
h u0 − P−

h (∂α
h u0), ϕ(0) − Pk−1ϕ(0)

)
,

where Pk−1 is the L2 projection into V k−1
h . A combination of Cauchy–Schwarz

inequality and approximation error estimates (2.10a) leads to the desired result (4.7).
��

The bound for G2 is given in the following lemma.

Lemma 11 (Residual) There exists a positive constant C, independent of h, such that

|G2| ≤ Ch2k+
3
2− α

2 ‖ϕ‖L1([0,T ];Hk+1). (4.8)
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Proof Denoting by G the term inside the time integral of G2, we get, by taking
χ = Pkϕ, the following expression for G,

G = −H(∂α
h f (uh), ϕ − Pkϕ),

which is equivalent to

G = − (
∂α
h ( f (uh) − f (u)), (ϕ − Pkϕ)x

) + (
∂α
h f (u)x , ϕ − Pkϕ

)

+
N∑
j=1

(
∂α
h ( f (u) − f (u−

h ))[[ϕ − Pkϕ]]) j ′− 1
2

� G1 + G2 + G3,

where we have added and subtracted the term
(
∂α
h f (u), (ϕ − Pkϕ)x

)
and used inte-

gration by parts.
Let us now consider the estimates ofG1,G2,G3. ForG1, by using the second order

Taylor expansion for f (u) − f (uh), (3.9), we get

G1 =
(
∂α
h

(
f ′(u)e − R1e

2
)

, (ϕ − Pkϕ)x

)

= (
∂α
h ( f ′(u)e), (ϕ − Pkϕ)x

) −
(
∂α
h (R1e

2), (ϕ − Pkϕ)x

)

� G lin
1 − Gnlr

1 ,

whereG lin
1 andGnlr

1 , respectively, represent the linear part and the nonlinear part ofG1.
It is easy to show, by using the Leibniz rule (2.6b) and Cauchy–Schwarz inequality,
that

|G lin
1 | ≤ C

α∑
�=0

‖∂α−�
h e‖‖(ϕ − Pkϕ)x‖

≤ C�h
2k+ 3

2− α
2 ‖ϕ‖k+1, (4.9a)

where we have used the estimate for ‖∂α−�
h e‖ in Corollary 3 and the approximation

error estimate (2.10a). Analogously, for high order nonlinear term Gnlr
1 , we have

|Gnlr
1 | ≤ C

α∑
�=0

‖∂α−�
h e2‖‖(ϕ − Pkϕ)x‖

≤ C
α∑

m=0

‖∂mh e‖∞‖∂α−m
h e‖‖(ϕ − Pkϕ)x‖

≤ C�h
3k+ 5

2− α
2 ‖ϕ‖k+1, (4.9b)
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where we have used the (2.6b) twice, the inverse property (iii), the L2 norm estimate
(3.2), and the approximation error estimate (2.10a). A combination of above two
estimates yields

|G1| ≤ C�h
2k+ 3

2− α
2 ‖ϕ‖k+1. (4.10)

To estimate G2, we use an analysis similar to that in the proof of G1 in Lemma 10
and make use of the orthogonal property of the L2 projection Pk to get

G2 = (
∂α
h f (u)x − Pk(∂

α
h f (u)x ), ϕ − Pkϕ

) ≤ Ch2k+2‖∂α
h f (u)x‖k+1‖ϕ‖k+1,

(4.11)
where we have used the approximation error estimate (2.10a).

We proceed to estimate G3. It follows from the Taylor expansion (3.9), the Leibniz
rule (2.6b), the Cauchy–Schwarz inequality and the inverse properties (ii), (iii) that

|G3| ≤ C
α∑

�=0

‖∂�
he‖�h‖ϕ − Pkϕ‖�h + C�

α∑
m=0

‖∂mh e‖∞‖∂α−m
h e‖�h‖ϕ − Pkϕ‖�h

≤ Ch2k+
3
2− α

2 ‖ϕ‖k+1 + C�h
3k+ 5

2− α
2 ‖ϕ‖k+1

≤ Ch2k+
3
2− α

2 ‖ϕ‖k+1, (4.12)

where we have also used (3.2) and (2.10a). Collecting the estimates (4.10)–(4.12), we
get

|G| ≤ Ch2k+
3
2− α

2 ‖ϕ‖k+1. (4.13)

Consequently, the estimate for G2 follows by integrating the above inequality with
respect to time. ��

We move on to the estimate of G3, which is given in the following lemma.

Lemma 12 (Consistency) There exists a positive constant C, independent of h, such
that

|G3| ≤ Ch2k+3− α
2 ‖ϕ‖L1([0,T ];Hk+1). (4.14)

Proof To do that, let us denote by G4 the term inside the integral G3 and take into
account (2.6d) to obtain an equivalent form of G4

G4 = (−1)α
(
uh, ∂

α
h ϕt

) + (−1)α
(
f (uh), ∂

α
h ϕx

) + (−1)α
(
f ′(u)u − f (u), ∂α

h ϕx
)

+
N∑
j=1

(
∂α
h f (u−

h )[[ϕ]]) j ′+ 1
2

= (−1)α
(
f (uh) − f (u) − f ′(u)(uh − u), ∂α

h ϕx
)
,

where we have used the dual problem (4.4) and the fact that [[ϕ]] = 0 due to the
smoothness of ϕ. Next, by using the second order the Taylor expansion (3.9) and
(2.6d) again, we arrive at

G4 =
(
∂α
h (R1e

2), ϕx

)
.

123



DG Divided Difference estimates for nonlinear conservation laws

If we now use (2.6b) twice for ∂α
h (R1e2) and the Cauchy–Schwarz inequality together

with the error estimate (3.2), we get

|G4| ≤ C
α∑

�=0

�∑
m=0

‖∂mh e‖‖∂�−m
h e‖‖ϕx‖∞

≤ C�h
2k+3− α

2 ‖ϕ‖k+1, (4.15)

where we have also used the Sobolev inequality ‖ϕx‖∞ ≤ C‖ϕ‖k+1, under the con-
dition that k > 1/2. The bound for G3 follows immediately by integrating the above
inequality with respect to time. ��

We are now ready to obtain the final negative-order norm error estimates for the
divided differences. By collecting the results in Lemmas 10–12 and taking into account
the regularity result in Lemma 3, namely ‖ϕ‖k+1 ≤ C‖	‖k+1, we get a bound for(
∂α
h (u − uh)(T ),	

)
(
∂α
h (u − uh)(T ),	

) ≤ Ch2k+
3
2− α

2 ‖	‖k+1.

Thus, by (2.5), we have the bound for the negative-order norm

‖∂α
h (u − uh)(T )‖−(k+1),� ≤ Ch2k+

3
2− α

2 .

This finishes the proof of Theorem 4.

5 Numerical examples

For nonlinear hyperbolic equations, we proved L2 norm superconvergence results of
order 3

2k + 1 for post-processed errors, as shown inCorollary 5. The superconvergence
results together with the post-processing theory by Bramble and Schatz in Theorem
1 entail us to design a more compact kernel to achieve the desired superconvergence
order. We note that superconvergence of post-processed errors using the standard
kernel (a kernel function composed of a linear combination of 2k + 1 B-splines of
order k + 1) for nonlinear hyperbolic equations has been numerically studied in [11,
16]. Note that the order of B-splines does not have significant effect on the rate of
convergence numerically and that it is the number of B-splines that has greater effect
to the convergence order theoretically [11], wewill only focus on the effect of different
total numbers (denoted by ν = 2k + 1+ω with ω ≥ �− k

2�) of B-splines of the kernel
in our numerical experiments. For more numerical results using different orders of
B-splines, we refer the readers to [17].

We consider the DG method combined with the third-order Runge–Kutta method
in time. We take a small enough time step such that the spatial errors dominate. We
present the results for P2 and P3 polynomials only to save space, in which a specific
value of ω is chosen to match the orders given in Corollary 5. For the numerical
initial condition, we take the standard L2 projection of the initial condition and we
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Fig. 1 The errors in absolute value and in logarithmic scale for P2 (top) and P3 (bottom) polynomials
with N = 20, 40, 80 and 160 elements for Example 1 where f (u) = u2/2. Before post-processing (left),
after post-processing (middle) and post-processing with the more compact kernel (right). T = 0.3

have observed little difference if the Qh projection is used instead. Uniform meshes
are used in all experiments. Only one-dimensional scalar equations are tested, whose
theoretical results are covered in our main theorems.

Example 1 We consider the Burgers quation on the domain � = (0, 2π)

{
ut +

(
u2
2

)
x

= 0,

u(x, 0) = sin(x)
(5.1)

with periodic boundary conditions.

Noting that f ′(u) changes its sign in the computational domain,we use theGodunov
flux, which is an upwind flux. The errors at T = 0.3, when the solution is still
smooth, are given in Table 1. From the table, we can see that one can improve the
order of convergence from k + 1 to at least 2k + 1, which is similar to the results for
Burgers equations in [11]. Moreover, superconvergence of order 2k can be observed
for the compact kernel with ω = −2, as, in general, a symmetric kernel could yield
one additional order. This is why instead of ω = �− k

2� = −1, ω = −2 is chosen
in our kernel. The pointwise errors are plotted in Fig. 1, which show that the post-
processed errors are less oscillatory andmuch smaller in magnitude for a large number
of elements as observed in [11], and that the errors of our more compact kernel with
ω = −2 are less oscillatory than that for the standard kernel with ω = 0, although the
magnitudeof the errors increase. This example demonstrates that the superconvergence
result also holds for conservation laws with a general flux function.
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Fig. 2 The errors in absolute value and in logarithmic scale for P2 (top) and P3 (bottom) polynomials
with N = 20, 40, 80 and 160 elements for Example 2 where f (u) = eu . Before post-processing (left),
after post-processing (middle) and post-processing with the more compact kernel (right). T = 0.1

Example 2 In this example we consider the conservation laws with more general flux
functions on the domain � = (0, 2π)

{
ut + (eu)x = 0,

u(x, 0) = sin(x)
(5.2)

with periodic boundary conditions.

We test the Example 2 at T = 0.1 before the shock is developed. The orders
of convergence with different kernels are listed in Table 2 and pointwise errors are
plotted in Fig. 2. We can see that the post-processed errors are less oscillatory and
much smaller in magnitude for most of elements as observed in [16], and that the
errors of our more compact kernel with ω = −2 are slightly less oscillatory than
that for the standard kernel with ω = 0. This example demonstrates that the accuracy-
enhancement technique also holds true for conservation lawswith a strong nonlinearity
that is not a polynomial of u.

6 Concluding remarks

In this paper, the accuracy-enhancement of the DG method for nonlinear hyperbolic
conservation laws is studied.We first prove that the α-th order divided difference of the
DG error in the L2 norm is of order k + 3

2 − α
2 when piecewise polynomials of degree

k and upwind fluxes are used, provided that | f ′(u)| is uniformly lower bounded by a
positive constant. Then, by a duality argument, the corresponding negative-order norm
estimates of order 2k + 3

2 − α
2 are obtained, ensuring that the SIAC filter will achieve

at least ( 32k + 1)th order superconvergence. As a by-product, we show, for variable
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coefficient hyperbolic equations with f (u) = a(x)u, the optimal error estimates of
order k + 1 for the L2 norm of divided differences of the DG error, provided that
|a(x)| is uniformly lower bounded by a positive constant. Consequently, the super-
convergence result of order 2k + 1 is obtained for the negative-order norm. Numerical
experiments are givenwhich show that usingmore compact kernels are less oscillatory
and that the superconvergence property holds true for nonlinear conservation lawswith
general flux functions, indicating that the restriction on f (u) is artificial. Based on our
numerical results we can see that these estimates are not sharp. However, they indicate
that a more compact kernel can be used in obtaining superconvergence results.

Future work includes the study of accuracy-enhancement of the DG method for
one-dimensional nonlinear symmetric/symmetrizable systems and scalar nonlinear
conservation laws in multi-dimensional cases on structured as well as unstructured
meshes. Analysis of the superconvergence property of the local DG (LDG) method
for nonlinear diffusion equations is also on-going work.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

7 Appendix

7.1 The proof of Lemma 5

Let us prove the relation (3.24) in Lemma 5. Use the Taylor expansion (3.9) and the
identity (2.6b) to rewrite ∂h( f (u) − f (uh)) as

∂h( f (u) − f (uh)) = ∂h( f
′(u)ξ) + ∂h( f

′(u)η) − ∂h(R1e
2)

= f ′(u(x + h/2))ξ̄ + (∂h f
′(u))ξ(x − h/2) + ∂h( f

′(u)η)

− R1(u(x + h/2))(∂he
2) − (∂h R1)e

2(x − h/2)

� θ1 + · · · + θ5.

This allows the error Eq. (3.6) to be written as

(ēt , vh) = �1 + · · · + �5, (7.1)

with �i = H(θi , vh) (i = 1, . . . , 5). In what follows, we will estimate each term
above separately.

First consider �1. Begin by using the strong form of H, (2.4b), to get

�1 = H( f ′(u)ξ̄ , vh) = − (
( f ′(u)ξ̄ )x , vh

) −
N∑
j=1

(
f ′(u)[[ξ̄ ]]v+

h

)
j .
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Next, let Lk be the standard Legendre polynomial of degree k in [−1, 1], so Lk(−1) =
(−1)k , and Lk is orthogonal to any polynomials of degree at most k − 1. If we now

let vh = ξ̄x − bLk(s) with b = (−1)k(ξ̄x )
+
j being a constant and s = 2(x−x j+1/2)

h ∈
[−1, 1], we arrive at

�1 = − (
∂x f

′(u)ξ̄ , vh
) − (

f ′(u)ξ̄x , ξ̄x − bLk(s)
)

� −X − Y, (7.2)

since (vh)
+
j = 0. On each element I j ′ = I j+ 1

2
= (x j , x j+1), by the lineariza-

tion f ′(u) = f ′(u j+ 1
2
) + ( f ′(u) − f ′(u j+ 1

2
)) with u j+ 1

2
= u(x j+ 1

2
, t) and noting(

ξ̄x , Lk
)
j+ 1

2
= 0, we arrive at an equivalent form of Y

Y = Y1 + Y2, (7.3)

where

Y1 =
N∑
j=1

f ′(u j+ 1
2
)‖ξ̄x‖2I

j+ 1
2

,

Y2 =
(
( f ′(u) − f ′(u j+ 1

2
))ξ̄x , ξ̄x − bLk

)
.

By the inverse property (ii), it is easy to show, for vh = ξ̄x − bLk(s), that

‖vh‖ ≤ C‖ξ̄x‖.

Plugging above results into (7.1) and using the assumption that f ′(u(x, t)) ≥ δ > 0,
we get

δ‖ξ̄x‖2 ≤ Y1 =
5∑

i=2

�i − X − Y2 − (
ēt , ξ̄x − bLk

)
. (7.4)

We shall estimate the terms on the right side of (7.4) one by one below.
For �2, by the strong form of H, (2.4b), we have

�2 = − (
(∂h f

′(u)ξ)x , vh
) −

N∑
j=1

(
∂h f

′(u)[[ξ ]]v+
h

)
j = − (

(∂h f
′(u)ξ)x , vh

)
,

since (vh)
+
j = 0. Thus, by Cauchy–Schwarz inequality, we arrive at a bound for �2

|�2| ≤ C�(‖ξ‖ + ‖ξx‖)‖ξ̄x‖. (7.5a)

A direct application of Corollary 2 leads to a bound for �3

|�3| ≤ C�h
k+1‖ξ̄x‖. (7.5b)
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By using analysis similar to that in the proof of (3.13), we get

|�4| ≤ C�h
−1‖e‖∞(‖ξ̄‖ + hk+1)‖ξ̄x‖, (7.5c)

|�5| ≤ C�h
−1‖e‖∞(‖ξ‖ + hk+1)‖ξ̄x‖. (7.5d)

By the Cauchy–Schwarz inequality, we have

|X | ≤ C�‖ξ̄‖‖ξ̄x‖. (7.5e)

Using the Cauchy–Schwarz inequality again together with the inverse property (i), and
taking into account the fact that | f ′(u)− f ′(u j+ 1

2
)| ≤ C�h on each element I j+ 1

2
, we

obtain
|Y2| ≤ C�‖ξ̄‖‖ξ̄x‖. (7.5f)

The triangle inequality and the approximation error estimate (3.3) yield that

| (ēt , vh) | ≤ C(‖ξ̄t‖ + hk+1)‖ξ̄x‖. (7.5g)

Finally, the error estimate (3.24) follows by collecting the estimates (7.5a)–(7.5g) into
(7.4) and by using the estimates (3.4a)–(3.4c), (3.17) and (3.14). This finishes the
proof of Lemma 5.

7.2 The proof of Lemma 7

To prove the error estimate (3.26), it is necessary to get a bound for the initial error
‖ξt t (0)‖. To do that, we start by noting that ξ(0) = 0, and that ‖ξt (0)‖ ≤ Chk+1,
which have already been proved in [18, Appendix A.2]. Next, note also that the first
order time derivative of the original error equation

(ett , vh) = H(∂t ( f (u) − f (uh)), vh)

still holds at t = 0 for any vh ∈ V α
h . If we now let vh = ξt t (0) and use a similar

argument for the proof of ‖ξt (0)‖ in [18], we arrive at a bound for ‖ξt t (0)‖

‖ξt t (0)‖ ≤ Chk+1. (7.6)

We then move on to the estimate of ‖ξt t (T )‖ for T > 0. To this end, we take the
second order derivative of the original error equation with respect to t and let vh = ξt t
to get

(ettt , ξt t ) = H(∂t t ( f (u) − f (uh)), ξt t ),

which is
1

2

d

dt
‖ξt t‖2 + (ηt t t , ξt t ) = H(∂t t ( f (u) − f (uh)), ξt t ). (7.7)
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To estimate the right-hand side of (7.7), we use the Taylor expansion (3.9) and the
Leibniz rule for partial derivatives to rewrite ∂t t ( f (u) − f (uh)) as

∂t t ( f (u) − f (uh)) = ∂t t ( f
′(u)ξ) + ∂t t ( f

′(u)η) − ∂t t (R1e
2)

= (∂t t f
′(u))ξ + 2(∂t f

′(u))ξt + f ′(u)ξt t + (∂t t f
′(u))η

+ 2(∂t f
′(u))ηt + f ′(u)ηt t − (∂t t R1)e

2

− 2(∂t R1)∂t e
2 − R1(∂t t e

2)

� λ1 + · · · + λ9.

Therefore, the right side of (7.7) can be written as

H(∂t t ( f (u) − f (uh)), ξt t ) = �1 + · · · + �9 (7.8)

with �i = H(λi , ξt t ) (i = 1, . . . , 9), which will be estimated one by one below.
By (2.11a) in Lemma 1, it is easy to show for �1 that

|�1| ≤ C�

(
‖ξ‖ + ‖ξx‖ + h− 1

2 |[ξ ]|
)

‖ξt t‖
≤ C�

(
hk+1 + h− 1

2 |[ξ ]|
)

‖ξt t‖
≤ C�

(
‖ξt t‖2 + h−1|[ξ ]|2 + h2k+2

)
, (7.9a)

where we have used the estimates (3.4a)–(3.4c) and also Young’s inequality. Analo-
gously,

|�2| ≤ C�

(
‖ξt‖ + ‖(ξt )x‖ + h− 1

2 |[ξt ]|
)

‖ξt t‖
≤ C�

(
hk+1 + ‖ξt t‖ + h− 1

2 |[ξt ]|
)

‖ξt t‖
≤ C�

(
‖ξt t‖2 + h−1|[ξt ]|2 + h2k+2

)
, (7.9b)

wherewe have also used the estimate (3.4c) and the relation (3.25).A direct application
of (2.11b) in Lemma 1 together with the assumption that f ′(u) ≥ δ > 0 leads to the
estimate for �3:

|�3| ≤ C�‖ξt t‖2 − δ

2
|[ξt t ]|2. (7.9c)

Noting that ηt = ut − P−
h (ut ) and ηt t = utt − P−

h (utt ), we have, by Lemma 2

|�4| + |�5| + |�6| ≤ C�h
k+1‖ξt t‖. (7.9d)

By an analysis similar to that in the proof of (3.13), we get

|�7| ≤ C�h
−1‖e‖∞(‖ξ‖ + hk+1)‖ξt t‖,
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|�8| ≤ C�h
−1‖e‖∞(‖ξt‖ + hk+1)‖ξt t‖,

|�9| ≤ C�h
−1(‖e‖∞ + ‖et‖∞)(‖ξt‖ + ‖ξt t‖ + hk+1)‖ξt t‖.

Note that the result of Lemma 7 is used to prove the convergence result for the second
order divided difference of the DG error, which implies that k ≥ 1. Therefore, by
using the inverse property (iii), the superconvergence result (3.4a), (3.4c), and the
approximation error estimate (2.10b), we have for small enough h

C�h
−1‖e‖∞ ≤ C�h

−1(‖ξ‖∞ + ‖η‖∞) ≤ C�h
k ≤ C,

C�h
−1‖et‖∞ ≤ C�h

−1(‖ξt‖∞ + ‖ηt‖∞) ≤ C�h
k− 1

2 ≤ C,

where C is a positive constant independent of h. Consequently,

|�7| ≤ C(‖ξ‖ + hk+1)‖ξt t‖, (7.9e)

|�8| ≤ C(‖ξt‖ + hk+1)‖ξt t‖, (7.9f)

|�9| ≤ C(‖ξt‖ + ‖ξt t‖ + hk+1)‖ξt t‖. (7.9g)

Collecting the estimates (7.9a)–(7.9g) into (7.7) and (7.8), we get, after a straight-
forward application of Cauchy–Schwarz inequality and Young’s inequality, that

1

2

d

dt
‖ξt t‖2 + δ

2
|[ξt t ]|2 ≤ C�

(
‖ξ‖2 + ‖ξt‖2 + ‖ξt t‖2 + h−1|[ξ ]|2 + h−1|[ξt ]|2 + h2k+2

)

≤ C�

(
‖ξt t‖2 + h−1|[ξ ]|2 + h−1|[ξt ]|2 + h2k+2

)
,

where we have used the estimates (3.4a) and (3.4c) for the last step. Now, we integrate
the above inequality with respect to time between 0 and T and combine with the initial
error estimate (7.6) to obtain

1

2
‖ξt t‖2 + δ

2

∫ T

0
|[ξt t ]|2dt ≤ C�

∫ T

0
‖ξt t‖2dt + C�h

−1
∫ T

0

(
|[ξ ]|2 + |[ξt ]|2

)
dt

+Ch2k+2.

By the estimates (3.4a) and (3.4c) again, we arrive at

1

2
‖ξt t‖2 + δ

2

∫ T

0
|[ξt t ]|2dt ≤ C�

∫ T

0
‖ξt t‖2dt + Ch2k+1. (7.10)

Finally, using Gronwall’s inequality gives us

‖ξt t‖2 +
∫ T

0
|[ξt t ]|2dt ≤ C�h

2k+1, (7.11)

which completes the proof of Lemma 7.
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7.3 The proof of Lemma 8

To prove the error estimate (3.27), it is necessary to get a bound for the initial error
‖ξ̄t (0)‖. To do that, we start by noting that ξ(0) = 0, and thus ξ̄ (0) = 0, due to the
choice of the initial data. Next, note also that the error equation (3.6) still holds at
t = 0 for any vh ∈ V α

h . If we now let vh = ξ̄t (0) and use a similar argument for the
proof of ‖ξt (0)‖ in [18], we arrive at a bound for ‖ξ̄t (0)‖

‖ξ̄t (0)‖ ≤ Chk+1. (7.12)

We then move on to the estimate of ‖ξ̄t (T )‖ for T > 0. To obtain this, take the time
derivative of the error Eq. (3.6) and let vh = ξ̄t to get

(
ēt t , ξ̄t

) = H(∂t∂h( f (u) − f (uh)), ξ̄t ),

which is
1

2

d

dt
‖ξ̄t‖2 + (

η̄t t , ξ̄t
) = H(∂t∂h( f (u) − f (uh)), ξ̄t ). (7.13)

To estimate the right-hand side of (7.13), we use the Taylor expansion (3.9) and the
Leibniz rule (2.6b) to rewrite ∂t∂h( f (u) − f (uh)) as

∂t∂h( f (u) − f (uh))

= ∂h∂t ( f
′(u)ξ) + ∂h∂t ( f

′(u)η) − ∂h∂t (R1e
2)

= ∂h(∂t f
′(u)ξ) + ∂h( f

′(u)ξt ) + ∂h(∂t f
′(u)η) + ∂h( f

′(u)ηt )

− ∂h(R1∂t e
2) − ∂h(∂t R1e

2)

= ∂t f
′(u(x + h/2))ξ̄ (x) + ∂h(∂t f

′(u))ξ(x − h/2) + f ′(u(x + h/2))ξ̄t (x)

+ ∂h f
′(u)ξt (x − h/2) + ∂h(∂t f

′(u)η) + ∂h( f
′(u)ηt ) − R1(u(x + h/2))∂h(∂t e

2)

− ∂h R1∂t e
2(x − h/2) − ∂t R1(u(x + h/2))∂he

2 − ∂h(∂t R1)e
2(x − h/2)

� π1 + · · · + π10.

This allows the right side of (7.13) to be written as

H(∂t∂h( f (u) − f (uh)), ξ̄t ) = �1 + · · · + �10 (7.14)

with �i = H(πi , ξ̄t ) for i = 1, . . . , 10, which is estimated separately below.
By (2.11a) in Lemma 1, it is easy to show for �1 that

|�1| ≤ C�

(
‖ξ̄‖ + ‖ξ̄x‖ + h− 1

2 |[ξ̄ ]|
)

‖ξ̄t‖
≤ C�

(
hk+1 + ‖ξ̄t‖ + h− 1

2 |[ξ̄ ]|
)

‖ξ̄t‖
≤ C�

(
‖ξ̄t‖2 + h−1|[ξ̄ ]|2 + h2k+2

)
, (7.15a)
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where we have used the estimate (3.17), the relation (3.24), and also the Young’s
inequality. Analogously, for �2 and �4, we apply Corollary 1 to get

|�2| ≤ C�

(
‖ξ̄t‖2 + h−1|[ξ ]|2 + h2k+2

)
, (7.15b)

|�4| ≤ C�

(
‖ξ̄t‖2 + ‖ξt t‖2 + h−1|[ξt ]|2 + h2k+2

)
, (7.15c)

where we have also used the estimates (3.4a)–(3.4c), and the relation (3.25). A direct
application of (2.11b) in Lemma 1 together with the assumption that f ′(u) ≥ δ > 0
leads to the estimate for �3:

|�3| ≤ C�‖ξ̄t‖2 − δ

2
|[ξ̄t ]|2. (7.15d)

Noting that ηt = ut − P−
h (ut ), we have, by Corollary 2

|�5| + |�6| ≤ C�h
k+1‖ξ̄t‖. (7.15e)

By an analysis similar to that in the proof of (3.13), we get

|�7| ≤ C(‖ξt‖ + ‖ξ̄t‖ + hk+1)‖ξ̄t‖, (7.15f)

|�8| ≤ C(‖ξt‖ + hk+1)‖ξ̄t‖, (7.15g)

|�9| ≤ C(‖ξ̄‖ + hk+1)‖ξ̄t‖, (7.15h)

|�10| ≤ C(‖ξ‖ + hk+1)‖ξ̄t‖. (7.15i)

Collecting the estimates (7.15a)–(7.15i) into (7.13) and (7.14), we get, after a
straightforward application of Cauchy–Schwarz inequality and Young’s inequality,
that

1

2

d

dt
‖ξ̄t‖2 + δ

2
|[ξ̄t ]|2 ≤ C�

(
‖ξ̄t‖2 + ‖ξ‖2 + ‖ξt‖2 + ‖ξt t‖2 + ‖ξ̄‖2

+ h−1|[ξ ]|2 + h−1|[ξt ]|2 + h−1|[ξ̄ ]|2 + h2k+2
)

≤ C�

(
‖ξ̄t‖2 + h−1|[ξ ]|2 + h−1|[ξt ]|2 + h−1|[ξ̄ ]|2 + h2k+1

)
,

where we have used the estimates (3.4a), (3.4c), (3.17) and (3.26) in the last step. Now,
we integrate the above inequality with respect to time between 0 and T and combine
with the initial error estimate (7.12) to obtain

1

2
‖ξ̄t‖2 + δ

2

∫ T

0
|[ξ̄t ]|2dt ≤ C�

∫ T

0
‖ξ̄t‖2dt + C�h

−1
∫ T

0

(
|[ξ ]|2 + |[ξt ]|2 + |[ξ̄ ]|2

)
dt

+Ch2k+1.
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By the estimates (3.4a), (3.4c) and (3.17) again, we arrive at

1

2
‖ξ̄t‖2 + δ

2

∫ T

0
|[ξ̄t ]|2dt ≤ C�

∫ T

0
‖ξ̄t‖2dt + Ch2k+1.

Finally, Gronwall’s inequality gives

‖ξ̄t‖2 +
∫ T

0
|[ξ̄t ]|2dt ≤ C�h

2k+1. (7.16)

This completes the proof of Lemma 8.

7.4 The proof of Lemma 9

We will only give the proof for |a(x)| ≥ 0, for example a(x) > 0; the general case
follows by using linear linearization of a(x) at x j in each cell I j and the fact that
|a(x) − a(x j )| ≤ Ch. For a(x) > 0, by Galerkin orthogonality, we have the error
equation

(et , vh) = H(a e, vh),

which holds for any vh ∈ V α
h . If we now take m-th order time derivative of the above

equation and let vh = ∂mt ξ with ξ = P−
h u − uh , we arrive at

1

2

d

dt
‖∂mt ξ‖2 +

(
∂m+1
t η, ∂mt ξ

)
= H(a ∂mt ξ, ∂mt ξ) + H(a ∂mt η, ∂mt ξ). (7.17)

By (2.11b) and the assumption that a(x) > 0, we get

H(a∂mt ξ, ∂mt ξ) ≤ C‖∂mt ξ‖2 − δ

2
|[∂mt ξ ]|2.

It follows from Lemma 2 that

H(a∂mt η, ∂mt ξ) ≤ Chk+1‖∂mt ξ‖.
Inserting above two estimates into (7.17), we have

1

2

d

dt
‖∂mt ξ‖2 ≤ C‖∂mt ξ‖2 + Ch2k+2,

where we have used the approximation error estimates (2.10a) and Young’s inequality.
For the initial error estimate, we use an analysis similar to that in the proof of (7.6) to
get

‖∂mt ξ(0)‖ ≤ Chk+1.

To complete the proof of Lemma 9, we need only to combine above two estimates and
use Gronwall’s inequality.
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