@’PLOS | PATHOGENS

CrossMark

click for updates

E OPEN ACCESS

Citation: Bidula S, Schelenz S (2016) A Sweet
Response to a Sour Situation: The Role of Soluble
Pattern Recognition Receptors in the Innate Immune
Response to Invasive Aspergillus fumigatus
Infections. PLoS Pathog 12(7): €1005637.
doi:10.1371/journal.ppat.1005637

Editor: Deborah A. Hogan, Geisel School of
Medicine at Dartmouth, UNITED STATES

Published: July 14,2016

Copyright: © 2016 Bidula, Schelenz. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding: This work was supported by a Faculty of
Health, University of East Anglia, UK PhD
studentship FMH 04.4.66 C4. The funders had no
role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

PEARLS

A Sweet Response to a Sour Situation: The
Role of Soluble Pattern Recognition
Receptors in the Innate Immune Response to
Invasive Aspergillus fumigatus Infections

Stefan Bidula', Silke Schelenz?*

1 Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of
Aberdeen, Aberdeen, United Kingdom, 2 Department of Microbiology, Royal Brompton Hospital, London,
United Kingdom

* sschelenz@doctors.org.uk

Introduction

Aspergillus spp. infect around 11,000,000 patients, resulting in about 600,000 deaths per year,
but these numbers are on the rise due to the emergence of antifungal-resistant strains and a
lack of sensitive diagnostic tests [1].

It is increasingly acknowledged that soluble pattern recognition receptors (PRRs), such as
the complement component Clgq, the collectins (MBL, SP, and CL-11), PTX3, and the ficolins
(ficolin-1, 2, 3 and A), are important within anti-Aspergillus immunity [2]. Moreover, studies
have highlighted that they may be used as a possible alternative to current antifungal drugs or
used in combination to increase efficacy [3].

Binding of pathogen-associated molecular patterns (PAMPs) on the pathogen surface by
soluble PRRs often results in opsonisation. This enhances interactions with membrane-associ-
ated PRRs on phagocytes, such as the important B-glucan receptor Dectin-1, Toll-like receptors
(TLRs), complement receptors (CR1), and Fc receptors; ultimately augmenting phagocytosis,
which is essential in controlling the infection [2].

Alternatively, opsonins can promote fungal damage directly or further promote opsonisa-
tion by C3b deposition via activation of the conserved complement system [4]. There are three
main arms of the complement system, which are the classical, alternative, and lectin pathways.
Clq primarily activates the classical antibody-mediated pathway, whereas MBL, CL-11, and
the ficolins are known to activate the lectin complement pathway via activation of the man-
nose-binding lectin-associated serine proteases (MASPs). However, SP-A and SP-D are not
involved in complement activation, and the role of CL-11 in Aspergillus immunity is yet to be
explored. Furthermore, PTX3 can interact with complement activators and inhibitory compo-
nents to modulate all three pathways [5]. The role of each of these PRRs in anti-Aspergillus
immunity will be discussed further.

PTX3 Plays a Non-redundant Role in Aspergillus fumigatus
Immunity
PTX3 is a globally expressed acute-phase protein that is synthesised locally at inflammatory

sites by several cell types, particularly mononuclear phagocytes, dendritic cells (DCs), epithe-
lial, and endothelial cells. Furthermore, PTX3 is stored within neutrophil granules containing
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lactoferrin and once secreted, associates with neutrophil extracellular traps (NETs), acting as a
focal point for antimicrobial effector molecules [6].

PTX3 primarily functions as an opsonin in A. fumigatus immune responses, whereby it
binds to galactomannan residues of dormant spores, facilitating recognition and phagocytosis
[7]. PTX3 can also interact with numerous important opsonins, complement proteins, and
membrane-associated PRRs to enhance antifungal immunity, including MBL, ficolin-2, Clgq,
Factor H, and Dectin-1, and more recently has been shown to exert its antifungal effects
through TLR4/MD-2 mediated signalling [8,9]. Moreover, PTX3 can modulate all three com-
plement pathways [5]. Current evidence indicates that PTX3 activates complement on the
Aspergillus conidial surface and interacts with FcyRIIa, which mediates activation of the com-
plement receptor CR3, leading to recognition and internalization of conidia [10].

There have been several human studies reporting single nucleotide polymorphisms (SNPs)
in the PTX3 gene that are associated with susceptibility to A. fumigatus infections in haemato-
poietic stem cell and whole organ transplant patients [11,12].

In support of these findings, studies utilising PTX3 knockout mice have indicated a non-
redundant role within immunity to A. fumigatus pulmonary infection [7]. Furthermore, PTX3
has been demonstrated to be protective against invasive aspergillosis (IA) in mice receiving
allogeneic bone marrow transplants, in chronic granulomatous disease mice (p47°"°*7), and
corticosteroid-treated rats [13].

Mannose-Binding Lectin (MBL) Is Essential for Defence Against A.
fumigatus

MBL is one of the best characterised lectins involved in innate antifungal immunity. It is found
predominantly within the serum, but, during inflammation, loss of vascular integrity can result
in leakage of MBL into alveola where it can interact with A. fumigatus (Fig 1) [14]. Binding
here is primarily achieved via selective and calcium-dependent binding to the carbohydrate
moieties D-mannose, L-fucose, and N-acetylglucosamine (GlcNAc) in the A. fumigatus cell
wall.

Neth et al. [15] were the first to show demonstrable binding of A. fummigatus by the MBL car-
bohydrate recognition domain (CRD). It wasn’t until much later that MBL was described to be
protective against Aspergillus infection via the activation of the lectin-complement pathway on
A. fumigatus conidia.

It has since been well established in humans that natural MBL deficiencies, or MBL deficien-
cies due to genetic polymorphisms, are significantly correlated with increased susceptibility to
acute IA and chronic necrotizing pulmonary aspergillosis (CPA), respectively [16,17].

This importance has been well documented in murine models by Kaur et al., [18] in which
they comprehensively demonstrated that MBL-deficiency was linked to significantly reduced
phagocytosis, diminished complement activation, impaired cytokine responses, and greater
mortality in a murine model of IA.

Furthermore, studies utilising serum obtained from transgenic animals have indicated that
only MBL-C, and not MBL-A, can recognise A. fumigatus and is essential for complement acti-
vation [19].

Conversely, a more recent study indicated that loss of MBL in a systemic model of aspergil-
losis resulted in a resistant phenotype and may play a deleterious role [20], suggesting an
importance within pulmonary infection rather than disseminated disease.
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Fig 1. The role of serum lectins within the alveolar space. (A) Upon entry into the alveolar space, resident
neutrophils and macrophages are essential in the recognition and effective removal of A. fumigatus. (B) In
the event that A. fumigatus evades removal, it can germinate into a filamentous hyphal form, which causes
damage to the lung epithelium and vasculature. This leads to the leakage of serum mannose-binding lectin
(MBL) into the alveolar space where it interacts with A. fumigatus. It has been demonstrated in vivo that MBL
is capable of modulating inflammatory cytokine production, enhancing phagocytosis, fungal killing, and
survival. Moreover, MBL activates the lectin complement pathway. (C and D) The surfactant proteins (SP)-A
and -D are both secreted directly into the alveolar space by type Il epithelial cells. SP-A can predominantly
be found within the pulmonary surfactant, whereas most of the SP-D can be found within the bronchoalveolar
lavage fluid (BAL). As for MBL, SP-A and SP-D have been demonstrated to modulate cytokines, increase
phagocytosis, and reduce fungal burden in vivo. However, SP-A appeared to be detrimental to survival
following A. fumigatus infection, and neither are capable of activating complement. (E) H-ficolin is the most
abundant ficolin in the serum, but it is also produced directly into the alveolar space by type Il epithelial and
bronchial cells. H-ficolin is capable of activating the lectin complement pathway on A. fumigatus conidia, and
H-ficolin opsonised conidia promote the secretion of IL-8 from type Il epithelial cells. However, the
interactions of H-ficolin opsonised A. fumigatus with other cells of the immune system (neutrophils and
macrophages) or in vivo (H-ficolin is a pseudogene in rodents) is unknown. (F) L-ficolin is found circulating in
the serum but can enter the alveolar space following fungal infection. L-ficolin opsonisation has been
demonstrated to lead to a reduction in inflammatory cytokine production by neutrophils and macrophages,
promote IL-8 production by type Il epithelial cells, increase host—fungal interactions, and activate the lectin
pathway of complement. However, the in vivo function of this protein is still unknown.

doi:10.1371/journal.ppat.1005637.9001

Surfactant Protein-D Is an Important Initiator of the Fungal Inmune
Response to A. fumigatus

The roles of SP-A and SP-D in Aspergillus defence have been extensively studied, with SP-D
exhibiting particular importance. SP-D is found in alveolar lung lining and primarily binds B-
1,6-glucan in the A. fumigatus cell wall. Interestingly, SP-D can also bind A. fumigatus hyphae
in a calcineurin-sensitive manner, hinting at an additional role in the later stages of infection
[21].

Recognition by SP-D has been observed to augment the immune response to Aspergillus in
vitro and in vivo. In particular, SP-D is essential in vivo, whereby it has been observed that
administration of SP-D can protect immunosuppressed mice against an otherwise fatal dose of
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Aspergillus, and SP-D-deficient mice are highly susceptible to IA [22,23]. Conversely, SP-A-
deficient mice become more resistant to invasive infection, indicating SP-A may even facilitate
pathology [23].

However, it appears that surfactant proteins may play a greater role within allergic broncho-
pulmonary aspergillosis (ABPA) rather than IA. Human studies have indicated a polymor-
phism in the collagen region of SP-A (SP-A2) that is correlated with increased risk of ABPA
and increased allergic responses, but no SNPs have so far been shown to enhance susceptibility
to IA [24].

Ficolins: The Emergence of a Novel Participant in the Host Fungal
Response

We and others have recently implicated ficolins within fungal host-microbe interactions. L-
ficolin and H-ficolin, in addition to rodent ficolin-A, bind avidly to A. fumigatus via a range of
carbohydrate moieties, including GIcNAc, N-aceytlgalactosamine, D-mannose, and L-fucose
[19,25-28]. Furthermore, ficolin-A also recognises the resting, swollen, and germinating mor-
photypes of A. fumigatus, in addition to the less pathogenic species: A. flavus, A. terreus, and A.
niger [19].

Following binding to A. fumigatus, both L- and H-ficolin activate the lectin-complement
pathway on A. fumigatus conidia, whereas ficolin-A was shown to play a redundant role to
MBL-C [19,26,27]. Consequently, opsonisation by L-ficolin, ficolin-A, and H-ficolin has been
demonstrated to enhance the phagocytosis of conidia by primary macrophages, neutrophils,
and the type II epithelial cell line (A549), but it is only following interaction with the macro-
phages and neutrophils where significant fungal killing is observed [25,26,29].

Furthermore the inflammatory response elicited by ficolin-opsonised conidia is dependent
upon the cell type involved. Following cell challenge with ficolin-opsonised conidia, a MAPK-
dependent increase in IL-8 production was observed from epithelial cells, whereas down-regu-
lation of IL-1B, IL-6, IL-8, IL-10, and TNF-a production was observed from macrophages and
neutrophils via currently uncharacterized mechanisms [25,26,29]. These observations have
raised some interesting questions; however, the implications of ficolins in disease models have
yet to be elucidated, and our understanding of the role of ficolins in antifungal immunity are in
their infant stages.

Diagnostic and Therapeutic Potential of Soluble PRRs

Antifungal drug resistance and a lack of conclusive diagnostics are two of the major challenges
limiting the cure of aspergillosis, and many opsonins demonstrate therapeutic potential.

It has been demonstrated that administration of recombinant MBL is protective in a murine
model of invasive A. fumigatus infection and can significantly reduce mortality [18]. The thera-
peutic potential of SP-D has also been explored in mice, and administration of native and
recombinant SP-D is associated with decreased fungal burden in the lungs and increased levels
of antifungal IFN-vy in IA [30].

Administration of recombinant PTX3 can ameliorate infection and increase survival in a
pulmonary model of A. fumigatus infection in mice [13]. An interesting caveat of PTX3 is its
ability to have an additive effect on the efficacy of commonly used antifungals such as ambi-
some and voriconazole [3]. Importantly, in combination with PTX3, the antifungal dose could
be lowered whilst maintaining efficacy, which could lead to the reduced risk of drug-related
side effects. This would be especially beneficial for severely immunocompromised patients [3].

Unlike MBL, PTX3, and SP-D, the therapeutic potential of ficolins is yet to be explored.
Unsurprisingly, H-ficolin BAL concentrations are increased during A. fumigatus infection, but
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as L-ficolin is not produced directly in the lung, it was hypothesised that it enters the alveolar
space following vascular damage and may be useful as a diagnostic marker in combination
with other fungal specific markers such as galactomannan [25,26]. As ficolins have been
observed to dampen pro-inflammatory cytokine production by phagocytic cells, it could be
hypothesised that they may have the potential to be exploited therapeutically [25,29].

To date, there has been no indication that soluble PRRs can be exploited for their diagnostic
potential, albeit the presence of PRRs such as L-ficolin and MBL in the lung during inflamma-
tion and infection highlights the necessity to investigate soluble PRRs as potential diagnostic
tools. Moreover, further larger-scale clinical trials are needed to assess the full diagnostic poten-
tial of ficolins and other PRRs in combination with current fungal and host biomarkers in
order to evaluate their role in diagnostics and possible impact on patient outcomes.
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