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Emergence of terpene cyclization in Artemisia annua
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The emergence of terpene cyclization was critical to the evolutionary expansion of chemical

diversity yet remains unexplored. Here we report the first discovery of an epistatic network of

residues that controls the onset of terpene cyclization in Artemisia annua. We begin with

amorpha-4,11-diene synthase (ADS) and (E)-b-farnesene synthase (BFS), a pair of terpene

synthases that produce cyclic or linear terpenes, respectively. A library of B27,000 enzymes

is generated by breeding combinations of natural amino-acid substitutions from the cyclic

into the linear producer. We discover one dominant mutation is sufficient to activate

cyclization, and together with two additional residues comprise a network of strongly epistatic

interactions that activate, suppress or reactivate cyclization. Remarkably, this epistatic

network of equivalent residues also controls cyclization in a BFS homologue from Citrus junos.

Fitness landscape analysis of mutational trajectories provides quantitative insights into a

major epoch in specialized metabolism.
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T
he emergence of novel catalytic function underlies the
evolutionary expansion of metabolism with profound
biological implications1. Ring-forming reactions

(cyclization) catalysed by terpene synthases (TPSs) were central
to this expansion, giving rise to cyclic terpenes, the most diverse
family of specialized (secondary) metabolites. Cyclic terpenes
mediate essential interactions between organisms, enabling plants
to attract pollinators2 and natural enemies of herbivores3, repel
microbial pathogens4, and to conduct symbiotic relations5. They
also provide a rich source of bioactive compounds for human
uses ranging from flavours and fragrances to medicinal
compounds such as artemisinin, a naturally occurring terpenoid
extracted from Artemisia annua, the most effective treatment for
malaria6. However, despite the intensive study of the TPS enzyme
family, little is known about the evolutionary emergence of the
cyclization mechanism.

Cyclization is the major gateway to chemical diversity in
isoprenoid specialized metabolism; TPSs convert a few universal
substrates into hundreds of often stereochemically complex
mono- and polycyclic hydrocarbons7, which seed the
biosynthesis of thousands of derivatives through downstream
metabolic pathways. The conserved class I terpenoid synthase
fold, as revealed from the first crystal structures8,9, has evolved
the unique catalytic function of cyclization, converting C-10,
C-15 and C-20 isoprenyl diphosphate substrates into mono-,
sesqui- and diterpenes, respectively. TPS-catalysed reactions can
achieve extraordinary mechanistic complexity, often involving
numerous electrophilic cyclizations and rearrangements
according to well-established chemical rules10,11, stemming
from intrinsic and induced chemical reactivity12. In A. annua,
amorpha-4,11-diene synthase (ADS) catalyses a multi-step
electrophilic reaction that converts the C-15 sesquiterpene
substrate farnesyl pyrophosphate (FPP) into amorpha-4,11-
diene, the bicyclic hydrocarbon precursor of artemisinin. By
contrast, (E)-b-farnesene synthase (BFS) catalyses one of the
simplest TPS reactions where the linear carbocation is quenched
before cyclization can happen; formally, this involves release of
pyrophosphate followed by proton elimination from either a
transoid or cisoid farnesyl carbocation to produce the linear
hydrocarbon (E)-b-farnesene, an aphid alarm pheromone13.
Isotope labelling studies suggest that isomerization via a tertiary
diphosphate intermediate (nerolidyl diphosphate) may be a more
general feature of all 1,4-conjugate elimination reactions catalysed
by terpene synthases like BFS14,15.

From an evolutionary perspective, the emergence of the
cyclization mechanism was a critical and defining step of the
TPS family, essential for the biogenesis of structurally complex
metabolites. While the activities of the earliest TPSs are unknown,
the modern TPSs (both linear and cyclic terpene producers) likely
arose by numerous distinct paths. According to one possible
scenario, a ‘minimalist’ class of enzymes like BFS preceded
the more ‘complex’ functions of ADS, thereby involving a gain
of cyclization function mutation(s) to unlock ring-forming
catalytic activities. To a first approximation, natural variation at
positions within the active site and surrounding regions of the
protein structure would most strongly influence the onset of
cyclization. Thus, identification of key substitutions that unlock
cyclization may provide fundamental structural insights and
mechanistic clues about how ring formation evolved and hence a
basis to explore this phenomenon in the greater TPS family from
plants to microbes.

To investigate the emergence of terpene cyclization, we initially
focus on the TPS enzymes of A. annua. We use structure-based
combinatorial protein engineering (SCOPE)16 to breed natural
variation from ADS into the background of BFS, two related
enzymes that share 49% amino-acid identity. Through successive

rounds of screening, we identify a dominant mutation that
activates cyclization in BFS, and uncover additional mutations
that form an extended epistatic network that is able to activate,
suppress or reactivate cyclization. We further demonstrate this
residue network is able to activate cyclization in a BFS homologue
from Citrus junos. Finally, we calculate the fitness landscapes of
A. annua and C. junos to directly measure how the protein
background shapes the functional roles and pattern of epistatic
interactions among residues in the network. These results provide
unique insights into the emergence of cyclization across distinct
plant lineages that underlie the evolutionary expansion of
specialized metabolism.

Results
Breeding natural mutations from ADS into BFS. The A. annua
TPSs provide an ideal starting point to experimentally examine
the critical structural features underlying the emergence of
cyclization, given the contrasting mechanisms of BFS and ADS
(Fig. 1). To identify candidate amino-acid substitutions to
incorporate into BFS, we mapped the variable sequence positions
between ADS and BFS onto structural models. Through
sequence-structure analysis, we localized 24 substitutions within a
6-angstrom radius of the active site centre, which included
5 second-tier positions and 3 positions in a flexible loop that caps
the active site (Fig. 2a,b). A complete library encoding this
combinatorial complexity would total 224 mutants (that is,
16,777,216). We anticipated that the active site would potentially
require significant remodelling to accommodate cyclization;
therefore, we designed our library to sample multiple mutational
combinations simultaneously in the active site. Given technical
limitations to screening throughput (discussed below), we
designed oligonucleotides to encode a subset of combinations
yielding 27,524 theoretically possible mutations (Supplementary
Figs 1 and 2; Supplementary Tables 1 and 2). We used structure-
based combinatorial protein engineering (SCOPE)16,17 to breed
this diversity into BFS and create a gene library as nine discrete
collections (B3,000 distinct variants each). Each collection
contained varying numbers of mutations, ranging from 2–5 to
7–11 positions mutated simultaneously. We conducted three
rounds of screening, sampling individual mutants from each
collection (totalling 754 mutants). By synthesizing the library as
unique subsets, we significantly enhanced screening
probabilities16, which also gave us flexibility to shift sampling
intensity among different collections and further partition our
library into subpopulations in response to screening results
(described below).

Discovery of a dominant mutation that activates cyclization.
To identify cyclization activities in our libraries, we used gas
chromatography-mass spectrometry (GC–MS). While GC–MS is
a low-throughput analytical technique, which imposed limitations
on the numbers of mutants we were able to characterize in our
screening efforts (B20 min per run), it enables resolution of
hydrocarbon products and unambiguous identification of cyclic
terpenes. To biochemically characterize mutant enzymes, we
sampled B32 mutants from each of the nine mutant pools (282
mutants), expressed recombinant proteins in E. coli and assayed
purified enzymes by GC–MS (Fig. 2c and Supplementary Fig. 3).
Finally, we sequenced selected clones, verified activities and
measured the kinetic properties of the encoded proteins18

(Supplementary Table 3).
From our initial screen of 282 BFS mutants, most clones

produced soluble protein. However, 94% of mutants were
inactive, while 5% retained BFS WT-like farnesene synthase
activity (Supplementary Fig. 4). Significantly, we identified three

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7143

2 NATURE COMMUNICATIONS | 6:6143 | DOI: 10.1038/ncomms7143 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


mutants (1%) that produced multiple cyclic terpene products
(Supplementary Table 4a). Following sequence analysis, further
mutagenesis and screening we identified Y402L as a single
common substitution among cyclic terpene-producing enzymes.
Incorporating the single Y402L substitution into wild-type
BFS was sufficient to induce the production of 15 distinct
cyclic terpenes comprising B75% of enzyme-catalysed products,
including 1.3% of a putative amorphane sesquiterpene (Fig. 3b,f).
We further characterized Y402L by steady-state kinetic measure-
ments, revealing that catalytic efficiency was only slightly reduced
(kcat/KM¼ 10.5� 10� 3 versus 5.9� 10� 3 mM� 1 s� 1 for BFS
WT and Y402L, respectively) (Table 1). Consequently, removing
the Y402L mutation abolished cyclization and the three cyclic
terpene-producing mutants reverted to enzymes with BFS WT-
like product specificity. This result demonstrates that the single
Y402L is a dominant natural mutation that provides a viable
gateway to cyclization in A. annua BFS.

Our discovery of the Y402L mutation prompted us to screen
for more functionally diverse cyclases in the Y402L background
and to search for an alternative position(s) that may activate
cyclization in the wild-type (Y402) background. We also
identified a deleterious mutation G296C prevalent among inactive
mutants in our initial screen. Therefore, we removed G296C and
split our libraries into subsets containing either the Y402L
mutation or the wild-type (Y402) background and conducted a
second round of screening (Supplementary Table 4a). Through-
out our screening, we shifted sampling intensity to library subsets
that yielded the highest number of active clones. In total, we
sampled 142 mutants from the wild-type background (Y402)
group, where all 25 active mutants (18%) maintained wild-type
BFS product specificity. This result suggests that cyclization was
Y402L-dependent among the diversity that we screened. In the
Y402L group (321 mutants), we found a similar percentage (15%)
of active mutants (47) with 37 unique mutants that produced
multiple (8 to 15) cyclic products. While the vast majority of
cyclases were promiscuous, (Supplementary Figs 5 and 6; and
Supplementary Tables 5 and 6a), we discovered three mutants

with moderate product specificity (B50% single product)—an a-
bisabolol synthase (BOS), a b-bisabolene synthase and a cis-a-
bergamotene synthase (Supplementary Fig. 7).

To further test the dominance of position 402, we added or
removed Y402L from a set of 18 mutants identified in our second
screen (Supplementary Table 6). Y402L consistently activated
cyclization (by increasing cyclic products by 15-fold from an
average of 4 to 58%) across different BFS mutants, each mutant
enzyme producing a wide distribution of cyclic products.
Conversely, removing Y402L reverted all cyclases to non-
cyclizing variants of BFS. Enzyme turnover (kcat apparent) was
also minimally affected by the addition of Y402L (with an average
reduction of 1.5%), which indicates that this mutation is well
tolerated in the context of other mutations and primarily affects
product specificity (Supplementary Table 8). Taken together,
these results suggest a potential role for Y402L as a dominant
mutation in the functional divergence of TPSs in A. annua.

An epistatic network controls cyclization. Though Y402L was
essential to activate cyclization, we discovered 10 WT-like BFS
enzymes in the Y402L background from our second screen,
indicating the presence of substitutions that suppress cyclization.
Among these, we identified a single common substitution
(V467G) that was sufficient to revert cyclase mutants to
farnesene-producing synthases (Fig. 3c). The V467G mutation
also had deleterious effects on catalytic efficiency (B10-fold
reduction in the Y402L/V467G double mutant; Table 1). To
evaluate the strength of suppression, we incorporated the V467G
mutation into a collection of 10 cyclases (Y402L background)
from our second screen. All mutants showed a 4.5-fold decrease
in cyclization from an average of 59 to 13% cyclic products.
Consequently, removing the V467G mutation from a set of five
linear terpene-producing mutants in the Y402L background
resulted in a sixfold increase in cyclization from an average of 9 to
55% cyclic products (Supplementary Table 9). Therefore, the
V467G mutation displays an epistatic (masking) effect on the
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Figure 1 | Catalytic mechanisms of TPS enzymes. Terpene synthases are carbon-oxygen lyases as illustrated by the core sesquiterpene synthase

mechanism (overview inset). TPSs catalyse the metal-dependent cleavage (ionization) of the carbon-oxygen bond of isoprenoid pyrophosphate substrates,

such as the 15-carbon farnesyl pyrophosphate (FPP) leading to numerous potential outcomes. In the BFS-catalysed mechanism, deprotonation of the

either the transoid or cisoid farnesyl cation can yield (E)-b-farnesene, although BFS from Mentha x piperita has been demonstrated to involve isomerization

via the tertiary diphosphate intermediate nerolidyl diphosphate (NPP)14. Of note, additional linear terpene alcohol products may also form from quenching
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often followed by further electrophilic rearrangements including hydride shifts, alkyl shifts, and/or ring closures before quenching (as shown for ADS).
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by an isomerization step of the intermediate nerolidyl pyrophosphate (green spheres). The ADS reaction mechanism illustrates transit through

isomerization, where either 1,6 or 1,10 cyclization pathways (light yellow spheres) lead to energetically viable rearrangement pathways49 before converging

on the amorpha-4,11-diene final product.
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Y402L cyclization phenotype according to the classical definition
introduced by Bateson19.

To identify additional layers of epistatic interactions, we
examined our data set and found a natural substitution (Y430A),
which overcame second-site suppression by V467G. While the
single Y430A substitution alone was unable to activate cyclization
in the parent BFS, incorporation of Y430A into the suppressed
background (Y402L/V467G) restored cyclization to a total of 55%
without impacting catalytic efficiency (kcat/KM¼ 0.9� 10� 3

mM� 1 s� 1) relative to the Y402L/V467G double mutant
(Fig. 3d and Table 1). Introduction of the Y430A substitution
into seven different Y402L/V467G mutant backgrounds repeatedly
stimulated cyclization fourfold from an average of 9 to 37% cyclic
products (Supplementary Table 10). Interestingly, pairing Y430A
with Y402L both stimulated production of cyclic products to 87%
and enhanced catalytic efficiency relative to the single Y402L
mutation (kcat/KM¼ 7.1� 10� 3 mM� 1 s� 1) (Fig. 3e and Table 1).
This result suggests that the Y402L/Y430A pair of substitutions
may have been early critical steps in the emergence of robust
cyclase activity in A. annua. While previous investigations have
shown that epistatic interactions modulate downstream cyclization

rearrangements20, the current work reveals that positions 402-467-
430 form a strongly epistatic residue network that coordinately
controls the onset of cyclization, the defining catalytic function of
the TPS enzyme family.

The order of mutational steps can have a profound effect on
the acquisition or disappearance of novel or existing traits, as
exemplified by studies of protein evolution in antibiotic
resistance21. To consider the functional consequences of
alternative mutational pathways, we constructed the genotypic
space formed by the 402-467-430 epistatic network, represented
as a cube of 23¼ 8 genotypic states (Fig. 4a). While farnesene
synthase specificity persists along the top plane, one can trace a
hypothetical path from wild-type BFS to the triple mutant where
activity oscillates between linear and cyclic products; cyclization
can be activated by the dominant mutation (Y402L), suppressed
by addition of a second-site suppressor mutation (Y402L, V467G)
and reactivated from a suppressed state (Y402L, V467G, Y430A).
Under alternative scenarios, early acquisition of V467G blocks
cyclization while initial drift to Y430A primes BFS to become a
catalytically robust cyclase on subsequent acquisition of the
Y402L mutation.
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Grouping nodes of the genotype space according to shared
phenotypes suggests that this network forms a ‘fracture plane’ in
sequence space at the boundary of emergent catalytic function

(Fig. 4a). To assess the catalytic efficiency along the fracture
plane, we measured the turnover number (kcat apparent) of 98
mutant enzymes from our collective screening and mutagenesis
studies (Fig. 4b and Supplementary Table 3). A considerable
fraction of mutants (15%) had catalytic properties comparable to
native enzymes from other species (defined as the activity of
Citrus junos BFS with a kcat apparent of 0.075 s� 1), particularly in
the Y402L background. More generally, however, accumulating
numbers of mutations led to an exponential decline in catalytic
efficiency (Supplementary Fig. 8), indicating that a restricted
subset of viable mutational pathways extend from the Y402L
mutation to diverse cyclase activities.

Structural interpretation of the cyclization mechanism. Struc-
tural models provide a basis to rationalize how the Y402L
mutation may control the cyclization mechanism (Fig. 5a). To
achieve the observed spectrum of cyclic products observed in BFS
mutant backgrounds (Fig. 3), Y402L must both delay proton
elimination and unlock the all trans FPP substrate to precisely
align the ligand for cyclization along the 1,6 cyclization pathway
(Fig. 5b). The close proximity of Y402L to the pyrophosphate and
the first isoprene unit of FPP—the site of these key chemical
transformations—suggests this residue is well-positioned to
influence proton elimination, pyrophosphate ionization/recapture
and 2,3 s-bond rotation in the neutral NPP intermediate of BFS-
catalysed reactions14 (Fig. 5a). Steric effects likely dominate, as
substitution of Y402 with other aromatic residues (Phe and Trp)
preserves farnesene synthase activity, while smaller aliphatic
residues (Leu, Ile, Val and Thr) activate cyclization, perhaps by
creating additional space for isomerization to happen more freely
(Supplementary Table 7).

The physical basis for the epistatic interactions among residues
of the 402-467-430 network is less obvious from models alone.
The close proximity of positions Y430 to V467 suggests that these
residues may interact directly, which accounts for Y430A
reactivating cyclization from the V467G-suppressed background.
Intriguingly, position V467 is B10 Å away from Y402 in our
structural model, adjacent to the last isoprene unit, yet exerts a
profound suppressive effect on cyclization. Ultimately, the
antagonistic interaction between position 402 and 467 must be
transmitted either through a network of intervening amino-acid
residues in the protein, through the isoprenoid chain of the
bound FPP ligand or both (Fig. 5a).

Phylogenetic context of the epistatic network. To interpret our
discoveries in an evolutionary context, we conducted a phyloge-
netic analysis of the plant TPSs family. Examination of the data
revealed that tyrosine is the ancestral state at position 402, con-
served across the plant TPS-a subgroup for which the A. annua
TPSs are cognate members (Supplementary Fig. 9). This obser-
vation suggests that the Y402L substitution was a recent event in
A. annua and implicates Y402L as a dominant mutation in the
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Figure 3 | Cyclic terpene product diversity synthesized by mutants of the

BFS 6 Å library. Total ion chromatograms of (a) the wild-type (WT);

(b) the dominant mutant Y402L, (c) the second-site revertant mutant

Y402L/V467G, (d) the re-activated cyclic mutant Y402L/V467G/Y430A

and (e) the super cyclase Y402L/Y430A are shown; linear products are

indicated with a yellow line, all other products are cyclic. (f) A reaction

scheme illustrates the cyclization pathways leading to product diversity

observed in BFS mutants (blue circles) from rearrangements (light yellow

circles) via the bisabolyl cation (orange circle). Mechanisms for linear

product formation (10, a-farnesene; 17, nerolidol; and 20, farnesol) are not

shown. (g) An annotated reference total ion chromatogram (Y402L).

Labelled peaks and chemical structures were identified either by MS

comparisons with authentic standards or matched to reference mass

spectral databases (Supplementary Fig. 5 and Supplementary Table 5).

Products of BFS mutants (blue circles, and also labelled in the total ion

chromatogram) are 1, sesquithujene; 2, a-exo-bergamotene; 3, Peak 1;

4, (E)-b-farnesene; 5, putative amorphadiene isomer; 6, g-curcumene;

7, ar-curcumene; 8, cis-a-bergamotene; 9, zingiberene; 10, a-farnesene; 11,

b-bisabolene; 12, b-curcumene; 13, Peak 2; 14, b-sesquiphelladrene; 15,

Peak 3; 16, a-bisabolene; 17, nerolidol; 18, Peak 4; 19, a-bisabolol; 20,

farnesol. Mechanistically related products from A. annua (green circles) are

21, a-cedrene; 22, acoradiene; 23, 8-epi-cedrol.

Table 1 | Steady-state kinetic parameters for selected
mutants along a mutation path of the epistatic cube.

Name Km (lM) kcat (s� 1) kcat/Km (lM� 1 s� 1)

BFS (WT) 16.19 0.170 10.5� 10� 3

Y402L 10.57 0.062 5.9� 10� 3

Y402L/V467G 5.99 0.005 0.8� 10� 3

Y402L/V467G/Y430A 4.27 0.004 0.9� 10� 3

Y402L/Y430A 5.22 0.037 7.1� 10� 3
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evolutionary emergence of amorpha-4,11-diene and a-bisabolol
biosynthesis, as both known dedicated TPSs contain this sub-
stitution. Consistent with this, most Y402L-contating BFS
mutants in our library produce detectable amounts (B3%) of a
putative amorphadiene isomer while one mutant produces a-
bisabolol as the main product (61%). Considering the opposite
scenario, we investigated the capacity of position 402 to suppress
cyclization in ADS. While incorporating the L402Y mutation into
ADS induced a broadening of cyclization products (from 94 to
82% amorpha-4,11-diene in the mutant), the more marked effect
was on catalytic efficiency that was reduced by 44%
(Supplementary Fig. 10). This result suggests that mutation back
to the ancestral state was blocked by epistatic constraints, as
numerous additional mutations undoubtedly contribute to the

high-fidelity synthesis of amorpha-4,11-diene by ADS. Similar
effects have been noted in evolving glucocorticoid receptors22 and
are likely due to incompatibility from additional accumulating
substitutions among divergent homologues23.

In a broader evolutionary context, the terpenoid synthase fold
remains constant and hence the spatial positions of the 402-467-
430 network residues remain essentially fixed. This raises an
intriguing question of how a changing protein background
influences interactions between positions within the network and
their capacity to activate the cyclization mechanism. To explore
this, we introduced substitutions into the equivalent positions of
C. junos BFS from the Rutaceae plant family, the closest related
homologue to A. annua BFS with 51% amino-acid sequence
identity. Strikingly, G467V is able to activate cyclization; in
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C. junos G467V induces production of 15 distinct cyclic terpenes
comprising 53% total product (Supplementary Fig. 11). Numer-
ous cyclic products of C. junos G467V match those we previously
identified for A. annua Y402L cyclases, indicating that cyclization
proceeds via a common cisoid cyclization pathway (Fig. 1 and
Fig. 3f). Importantly, G467V in C. junos maintains native-like
catalytic efficiency (kcat/KM¼ 2.4 versus 1.4 mM� 1 s� 1 for WT
and G467V, respectively), indicating a viable pathway to
cyclization (Fig. 4b). By contrast, position 402 alone has no
impact on cyclization in the C. junos homologue, although
pairing with position 430 promotes cyclization as seen in
A. annua BFS (Supplementary Table 11). This result clearly
demonstrates the capacity of the 402-467-430 network to control
the onset of cyclization in a BFS homologue, while the changing
protein background causes a marked shift in the functional
contribution of individual positions.

Though qualitatively evident, we sought to quantify epistasis in
A. annua and C. junos BFS backgrounds24,25. Therefore, we
calculated the roughness (degree of epistasis) of the minimal
fitness landscapes for the 402-467-430 network using %
cyclization activity as a proxy for fitness (Table 2,
Supplementary Table 12). Globally, the A. annua landscape was
smooth (r/s¼ 0.57) relative to other enzyme systems26, indicating
many accessible pathways to cyclization24–26. However, the
roughness of the C. junos landscape increased 1.5-fold
(r/s¼ 0.87), signifying a highly epistatic landscape and greater
constraint on the emergence of cyclization in this protein
background. To visualize epistasis, we plotted the relative
fitness of all possible mutational paths across each landscape
(Fig. 6). Immediately apparent is that both A. annua and C. junos
networks are severely distorted as compared with the idealized
additive (non epistatic) landscape, reflecting the strong epistatic
character. Further, the pattern of epistatic interactions is clearly
different among residues in the 402-467-430 network in each
protein, providing a measure of the unique contribution of the
protein background. Formally, mutations at positions 402-430
represent fitness maxima in both landscapes, appearing as global
or local maxima in A. annua and C. junos, respectively. Our
analysis thus reveals how interaction among residues in the 402-
467-430 network, particularly the 402-430 pair, likely made a
profound contribution to the emergence of cyclization in different
protein backgrounds.

Discussion
The implications of our findings paint a picture of epochal
evolution in TPSs. In one possible scenario, a simple primordial
BFS activity persisted while cyclization potential was continually
changing via neutral drift27 as genes spread across different plant
lineages, seeding chemodiversity to come. Then, at different times
and in distinct lineages, cyclization was activated by a dominant
mutation within a common epistatic network, analogous to driver
nodes controlling emergent properties in complex systems28. The
activities of the resulting, likely promiscuous, cyclase progenitor
could be further honed by natural selection or refined by protein
engineering29. The former, natural process, likely shaped a subset
of TPSs in A. annua giving rise to amorpha-4,11-diene and a-
bisabolol synthase specificities. Alternatively, one could envision a
convergent evolution scenario wherein different species acquired
a BFS activity via mutations that derail cyclization to linear
products, as observed in bacterial TPSs15,30. To a plant, this trait
may confer an advantage in warding off aphids given their highly
tuned chemoreceptor for the alarm pheromone (E)-b-
farnesene31, suggesting an antagonistic co-evolutionary link
between insects and plants. In either scenario, a dominant
mutation within an epistatic network of residues in the conserved
protein fold likely drove transitions between simple and complex
traits in TPSs, ultimately controlling the flow of chemical signals
between organisms.

An intriguing finding in this report is the strength of
interactions between distant positions in protein structure that
result in the masking and unmasking of the cyclization
mechanism. Distant effects have been observed in directed
evolution experiments23,32, consistent with energetically coupled
residues in protein structure33 and long range communication by

Table 2 | Fitness landscape properties for A. annua and
C. junos.

Landscape property A. annua C. junos

Roughness (r) 7.792 0.567
Mean slope(s) 13.64 0.651
Roughness to mean slope ratio (r/s) 0.571 0.871
Correlation coefficient 0.873 0.760
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Methods).
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allosteric interactions34. More interesting is the implication that
epistatic interactions may be transmitted through the ligand,
involving conformational re-organization of the isoprenoid chain
between locked and unlocked states—the first such suggestion to
our knowledge.

The preservation of epistatic linkage in the 402-467-430
network in distinct BFS backgrounds suggests that we have
uncovered an intrinsic feature of the terpene synthase fold. We
posit that such epistatic networks may be modular and serve as
discrete control elements in protein structure akin to protein
sectors35. Therefore, the approaches presented here could be
exploited to empirically define epistatic networks through
directed enzyme breeding guided by structural and phylogenetic
information. Extracted networks in turn could be exploited in
protein engineering applications. For example, the 402-467-430
network may activate isomerization in transoid TPS backgrounds
and thereby redirect major cyclization pathways to access
otherwise dormant cisoid cyclization pathways36 (Fig. 1). More
generally, we suggest that activating or suppressing a specific
catalytic function by transferring epistatic networks between
homologues could be exploited in protein engineering
applications to drive synthetic biology efforts for industrial and
pharmaceutical biotechnology applications.

Methods
Homology modelling of BFS and ADS protein structures. Homology models
were generated by submitting full-length amino-acid sequences to the I-TASSER
server37,38. Substrate docking was carried out using AutoDock Vina39.
Comparative sequence-structure analysis for the design of the BFS library
(24 amino-acid substitutions within a 6-angstrom radius of the active site) and
protein structure figures were generated using UCSF Chimera v.1.8.1 (ref. 40).

Gene deconstruction and 3-plasmid system cloning. The BFS gene was
deconstructed into three gene fragments for mutagenesis and library construction.
Gene fragments were amplified by PCR using a full-length cDNA clone BFS-
pH9GW as a template. PCR was carried out using Phusion High-Fidelity poly-
merase (New England Biolabs) for 30 cycles (program: 98 �C, 20 s, 50 �C, 30 s,
72 �C, 30 s and final extension at 72 �C, 10 min). The N-terminal, central and
C-terminal fragments were ligated into pBSK2, pVL1392 and pcDNA plasmids,
respectively, followed by transformation into DH5a Library Efficiency cells (Life
Technologies).

Mutagenesis of plasmid library and full-length genes. The 24 mutations were
localized in six regions (zones) of the protein sequence. Each gene fragment (N-
terminal, central and C-terminal) contained two zones and primers were designed
to incorporate mutational combinations into each zone (Supplementary Fig. 1).
Complementary primers were designed according to the QuikChange Site-Directed
Mutagenesis Kit Instruction Manual (Stratagene). Non-overlapping primers were
designed according to Liu and Naismith41 and synthesized by Sigma Aldrich;
forward and reverse primers were diluted to 10 mM and mixed in a 1:1 ratio. All
primers and their Tm, Tm no and Tm pp are detailed in Supplementary Table 1.
Mutagenesis reactions were designed to incorporate three increasing levels of
mutagenic variation (low, medium and high) into each of the three gene fragments.
Each mutagenesis reaction of 25 ml contained 10 ng of central plasmid, 0.4 mM
primer mixture, 400mM dNTPs, 4% DMSO and 0.5 units of Phusion High-Fidelity
polymerase. The PCR cycles were initiated at 98 �C for 3 min to denature the
template DNA, followed by 18 amplification cycles (program: 98 �C, 1 min; 50 �C,
1 min; 68 �C, 5 min (N- and C-terminal fragments)/11 min (central fragment); and
final extension at 68 �C, 10 min). Following mutagenesis, 5 ml of each PCR reaction
was analysed by agarose gel electrophoresis on a 1% TAE agarose gel containing
0.05% ethidium bromide. Reactions that contained a single band at the correct
size were treated with 10 units of DpnI at 37 �C for 2 h. An aliquot of 2 ml of
each PCR product was transformed into 20 ml E. coli XL-10 Gold Ultracompetent
cells (Agilent) by heat-shock. For individual mutants, the transformed cells
were spread on a Luria-Bertani (LB) plate containing antibiotics and incubated at
37 �C overnight. For mutant mixtures, the transformed cells were added directly to
liquid LB media containing antibiotics and incubated at 37 �C overnight with
shaking at 230 r.p.m. Positive mutants were identified by sequencing purified
plasmid DNA.

SCOPE fragment amplification. Before BFS gene reconstruction, mutagenized
N-terminal and C-terminal gene fragments were amplified by PCR using the
mutagenized N- and C-terminal plasmid library mixtures as a template. Specific

recombination primers and generic amplification primers were designed as
described in Dokarry et al.17 (Supplementary Table 1). PCR was carried out using
Phusion High-Fidelity polymerase (98 �C for 3 min, followed by 30 cycles of 98 �C
for 15 s, 50 �C for 30 s, 72 �C for 1 min and 72 �C for 10 min) Each reaction was
verified by agarose gel electrophoresis on a 2% TAE agarose gel, and fragments
were diluted 1:10 for use in the SCOPE recombination reaction.

SCOPE library recombination. To recombine the full-length BFS gene, diluted
N-terminal and C-terminal fragments were mixed together in a 1:1 ratio and
recombined with 1 nM of the central fragment plasmid. For the N- and C-terminal
fragments, there were three sets of fragment mixtures with increasing levels of
mutagenic variation. These were mixed in a 1:1 ratio in a grid, as shown in
Supplementary Table 4b. Then 1 nM of the central fragment plasmid mixture was
added to each of the N-terminal and C-terminal fragment mixtures. The reaction
was set up as described in Dokarry et al.17 Recombination PCR was carried out
using Phusion High-Fidelity polymerase (98 �C for 3 min, followed by 30 cycles of
98 �C for 15 s, 50–70 �C ramp (50 �C at cycle 1, then þ 1.5 �C per cycle) for 30 s,
72 �C for 30 s). Reactions were placed on ice and used directly in the SCOPE
amplification reaction.

SCOPE library amplification. Following gene recombination to assemble the BFS
gene, the full-length gene was amplified using 2.5ml of the recombination reaction as
a template for the SCOPE amplification reaction. The reaction was set up as
described in Dokarry et al.17 PCR was carried out using Phusion High-Fidelity
polymerase (98 �C for 3 min, followed by 30 cycles of 98 �C for 15 s, 65 �C for
15 s, 72 �C for 1 min and 72 �C for 10 min). Reaction products were PEG precipitated
into the same volume of Tris-EDTA buffer, pH 8.0 (TE buffer) before Gateway
cloning.

Cloning of individual mutants. For individual mutants, Gateway cloning was
carried out in 5 ml reactions. pDONR207 and pH9GW were used as the entry
vector and destination vector, respectively. A 1 ml portion of the BP or LR reaction
was transformed into 10ml E. coli DH5a Library Efficiency cells (Life Technologies)
by heat-shock. The transformed cells were spread on LB plates containing anti-
biotics and incubated at 37 �C overnight. Sequencing of BP clones was used to
identify correctly sequenced mutants to proceed to the LR reaction. For protein
expression, pH9GW plasmids were transformed into 5 ml E. coli BL21(DE3) cells
(NEB) by heat shock. Following cell recovery in 100 ml Super Optimal Broth (SOC),
10 ml of transformed cells were spread on LB plates containing antibiotics and
incubated at 37 �C overnight.

Cloning of mutant mixtures. For mutant mixtures, Gateway cloning was carried
out in 5 ml reactions. The entire BP or LR reaction was transformed into 50 ml
E. coli DH5a Library Efficiency cells by heat-shock. The transformed cells were
added directly to liquid LB media containing antibiotics and incubated at 37 �C
overnight with shaking at 230 r.p.m. For protein expression, expression plasmids
were transformed into 25 ml E. coli BL21(DE3) cells by heat-shock. Following cell
recovery in 250 ml SOC, the transformed cells were added directly to liquid LB
media containing antibiotics and incubated at 37 �C overnight with shaking at
230 r.p.m.

Protein expression of mutants (library screening). Mutant mixtures in
BL21(DE3) cells from each of the nine pools were spread onto LB plates with
kanamycin, to isolate individual colonies each containing a single unique mutant.
Individual colonies were transferred to 2.5 ml liquid media (LB with kanamycin) in
24-well plates and incubated overnight with shaking at 37 �C at 230 r.p.m. A 0.5 ml
of each overnight culture was diluted to 5 ml with Terrific broth (TB) growth media
with kanamycin in 24-well round bottom plates covered with micro-porous tape,
followed by growth with shaking at 37 �C at 180 r.p.m. until cultures reached
OD600Z0.8. Protein expression was induced by addition of IPTG to 0.1 mM
followed by growth with shaking at 20 �C at 180 r.p.m. for 5 h. Cells were harvested
by centrifugation and cell pellets were frozen at � 20 �C.

Ni-NTA chromatography purification of library proteins. Pellets from 5 ml
expression cultures were re-suspended by adding 0.8 ml of lysis buffer (50 mM
Tris-HCl, 500 mM NaCl, 20 mM imidazole, 10% glycerol (v/v), 10 mM
b-mercaptoethanol, and 1% (v/v) Tween-20, pH 8) containing 1 mg ml� 1

lysozyme and 1 mM EDTA directly to frozen pellets followed by shaking at room
temperature at 250 r.p.m. for 30 min. Subsequently, 10 ml of benzonase solution
(850 mM MgCl2 and 3.78 U ml� 1 benzonase (Novagen) was added followed by
additional shaking at 250 r.p.m. for 15 min. The lysate was passed through a
Whatman unifilter 96-well plate and collected in another Whatman plate con-
taining 50ml bed-volume of superflow Ni-NTA resin (QIAgen), pre-equilibrated
with lysis buffer using a vacuum manifold. Each well was washed with 1.5 ml lysis
buffer (3� 500 ml), followed by 1.5 ml wash buffer (lysis buffer lacking Tween-20).
Resin was air-dried before addition of 150 ml elution buffer (wash buffer containing
250 mM imidazole), followed by centrifugation at 1,500 r.p.m. for 2 min to recover
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eluted protein. Protein concentration was measured using the Bradford Microassay
protocol.

Enzyme vial assay. The assay was performed as previously described42 in 2 ml
screw-top glass vials (Agilent) in 500 ml reaction volume. Each reaction consisted of
assay buffer at pH 7.0 [25 mM 2-(N-morpholino)ethanesulfonic acid (MES),
25 mM N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), 50 mM
Tris(hydroxymethyl)aminomethane (Tris)], 5 mM MgCl2, 100mM farnesyl
diphosphate (FPP) and enzyme (1.5–3 mM). Reactions were mixed and overlaid
with 500 ml hexane (Sigma), and the caps were affixed. After an overnight
incubation at room temperature, the hydrocarbon products were extracted by
vortexing for 10 s, followed by GC–MS analysis42.

Product identification and quantification by GC–MS. Reaction products were
analysed using a Hewlett–Packard 6890 gas chromatograph (GC) coupled to a 5973
mass selective detector (MSD) outfitted with a 7683B series injector and auto-
sampler and equipped with either an HP-5MS capillary column (5% diphenyl/95%
dimethyl siloxane) for standard separations or an HP-Chiral-20B column (20% b-
cyclodextrin) for chiral resolution (0.25 mm i.d.� 30 m; 0.25 mm film dimensions)
(Agilent). The GC was operated at a He flow rate of 0.8 ml min� 1, and the MSD
was operated at 70 eV. Splitless injections of 2 ml were performed with an injector
temperature of 250 �C. Initial oven temperature of the GC was 80 �C (1 min hold),
which was then increased 20 �C/min up to 140 �C (1 min hold), followed by a
5 �C min� 1 ramp until 170 �C (2 min hold), followed by a 100 �C min� 1 ramp
until 300 �C (1 min hold). A solvent delay of 6 min was allowed before the
acquisition of MS data. For chiral separations, GC was operated at a He flow rate of
1.5 ml min� 1 with an injector temperature of 200 �C. Initial oven temperature of
the GC was 50 �C (5 min hold), which was then increased 10 �C min� 1 up to
180 �C (4 min hold), followed by a 100 �C min� 1 ramp until 240 �C (1 min hold).
A solvent delay of 8.5 min was allowed before the acquisition of MS data. Product
peaks were quantified by integration of peak areas using Enhanced Chemstation
(version E.02.00, Agilent Technologies). Products were identified using Massfinder
4.25 (http://massfinder.com/). Identified products were compared with known
terpenes in A. annua43,44.

The GC–MS data were inspected to identify the peaks (compounds) to be
quantified in the series of samples. The quantification was carried out automatically
and used the mass spectra to obtain chromatograms extracted for ions (m/z)
(usually 3–5) specific to each compound. First the intensities of each extracted
chromatogram were calculated using Met-Idea v2.05 (ref. 45), based on a collection
of [retention time, m/z] pairs (Supplementary Table 13). The rest of the steps were
carried out in Matlab 2013 (The MathWorks) using scripts written in-house. For
each extracted chromatogram, the intensities were corrected to take into account
the percentage signal that the ion represented in the mass spectrum, so that the
corrected intensities should be the same for all ions and represent the amount
compound present (relative quantitation). These intensities were averaged across
ions. The percentage signal represented by each compound was then calculated. In
addition a report, from scripts written in house, was generated that provided a
number of useful diagnostic tools, notably graphs showing the extracted
chromatograms over the relevant RT range, as well as the correlation between the
corrected intensities from different ions. These were used to detect systematic bias
resulting from non-specificity and/or interference between closely eluting
compounds. When necessary the list of ions was refined so as to limit such
occurrences.

Malachite green assay for kinetic measurements. Kinetic assays were per-
formed as described18 using 96-well flat-bottomed plates (Grenier). For kcat

apparent measurements, assays of 50 ml were conducted in malachite green assay
buffer (vial assay buffer containing 2.5 mU of the coupling enzyme inorganic
pyrophosphatase) from C. cerevisiae (Sigma) using six twofold serial dilutions of
purified protein. Monophosphate (Pi) and pyrophosphate (PPi) standard curves
(100 to 0.01 mM) were generated using a twofold serial dilution in malachite green
assay buffer without FPP. Reactions were set up in duplicate and incubated at room
temperature for 30, 90 and 180 min. Enzyme reactions were quenched by addition
of the malachite green development solution (prepared according to Pegan et al.46),
incubated for 15 min and then read at 623 nm on a Varioskan Flash plate reader18.

For steady-state kinetic measurements, assays of 50 ml were conducted in
malachite green assay buffer, and serial dilutions of FPP, with a starting
concentration of 100 mM. Enzyme was added to give a final concentration of
0.014 mM, unless otherwise stated. Standard curves of monophosphate (Pi) and
pyrophosphate (PPi) (50 to 0.01 mM) were generated as above. Reactions were set
up on ice in triplicate and incubated at 30 �C for 15 or 40 min, depending on the
mutant studied. Enzyme reactions were quenched and read at 623 nm as above.

Calculations of minimal fitness landscapes. We quantified the magnitude of
epistatic interactions between substitutions through a commonly used measure of
roughness24,47. A pure additive limit was calculated using a multidimensional
linear model26. A convenient measure of epistasis is a ratio of roughness to slope.
This ratio measures how well the landscape can be described by a linear model,
which corresponds to the purely additive (or non-epistatic) landscape. A

multidimensional linear model was fitted to our fitness landscapes by means of a
least-squares fit. The ruggedness was calculated via the roughness to slope ratio
(r/s), using the linear model as described by Szendro et al.26 Each mutant was
represented by a binary string b¼ (b1,b2,y,bL) of length L, where bi¼ 0(1) if the
mutation at the i-th position is absent or present. The model is:

f fit bð Þ ¼
XL

j¼1

ajbjþ c ð1Þ

where the fitting parameters are c and aj (coefficients). The mean slope,
equation (2), was found by averaging the absolute of the fitted coefficients aj’s:

s ¼ 1
L

XL

j¼1

aj

�� �� ð2Þ

and the roughness, equation (3), was defined as:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� L

X
b

f bð Þ� f fit bð Þ
� �2

s
ð3Þ

The higher the r/s ratio, the higher the roughness, which leads to more
deviation from the linear model and suggesting that more epistasis is present in the
landscape. For a purely additive smooth landscape, r/s¼ 0. We have used the scaled
values of cyclization percentage as a proxy for fitness. We compare the roughness
and the r/s ratio between A. annua BFS and C. junos BFS in Table 2.

Fourier analysis of fitness landscapes. Fourier analysis was performed using the
formulation by Szendro et al.26 and Zanini and Neher48. A function that maps a
binary string b to fitness can be written as an expansion in terms of main effects
and interaction between the three sites:

F bð Þ ¼ FWT þ
XL¼3

i¼1

að1Þi bi þ
X
ioj

bibja
ð2Þ
ij þ

X
iojok

bibjbkað3Þijk ð4Þ

where biA{0,1} denotes the mutation variant to indicate the absence or presence of
a mutation at a site. The first order coefficient a(1) in the expansion captures the
linear, non epistatic effects. The second order coefficient a(2) describes the pairwise
epistatic interaction and a(3) denotes three-way epistatic interaction. In total there
are 2L coefficients, we can simply find them by solving a system of linear equations.
We used the relative fitness values for the estimation of various epistatic measures
and to infer coefficients of the expansion (Supplementary Table 12). Coefficients
calculated in the biA{0,1} basis were used to find the epistatic free reference
landscape by summing-up only the constant and first order terms while predicting
the fitted landscape (Fig. 6), equivalent to setting the second and third order
coefficients to vanishingly small or zero. We also calculated the coefficients of the
transform in the biA{� 1,þ 1} basis to calculate quantities Fsum, F1, F2 and F3 as
defined in Szendro et al.26 For a purely additive, non-epistatic landscape we expect
that Fsum¼ 0 and F1¼ 1. The fitted Fourier coefficients and contribution of
epistasis orders are listed in Supplementary Table 12.
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