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ABSTRACT 

 

Large dams cause extensive inundation of terrestrial habitats, whereby hilltops become land-bridge 

islands: habitat is fragmented and isolated, inducing local extinctions and degradation of remnant 

biological communities. “Good practice” dam development guidelines propose using reservoir islands 15 

for species conservation, mitigating some of the detrimental impacts associated with flooding 

terrestrial habitats. The degree of species retention on islands, and hence, whether they are effective 

for long-term conservation is currently unknown. Here, we quantitatively review species’ responses to 

isolation on reservoir islands. We specifically investigate island species richness in relation to 

neighbouring continuous habitat, and relationships between species richness and island area, isolation 20 

time, distance to mainland and other islands. Species’ responses to isolation on reservoir islands have 

been investigated in only 15 of the >58 000 large-dam reservoirs (dam height >15 m) operating 

globally. Research predominantly originates from wet tropical forest habitats and focuses on 

mammals, with species richness being the most widely-reported ecological metric. Terrestrial taxa 

are, overall, negatively impacted by isolation on reservoir islands. Reservoir island species richness 25 

declines with isolation time, and though it increases with area, all islands exhibit depauperate species 

richness <100 years after isolation compared to continuous mainland habitats. Such a pattern of 
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sustained and delayed species loss following large-scale habitat disturbance is indicative of an 

extinction debt existing for reservoir island species, and is evident across all taxonomic groups and 

dams studied. Thus, reservoir islands cannot reliably be used for species conservation as part of 30 

impact mitigation measures, and should instead be included in area calculations for land impacted by 

dam creation. Environmental licensing assessments as a precondition for future dam development 

should explicitly consider the long-term fate of island communities when assessing biodiversity loss 

vs energy output. 

 35 

1. INTRODUCTION 

 

There are 58 402 large dams (dam height >15 m) operating globally, constructed predominantly for 

irrigation and hydropower generation (ICOLD, 2016). A growing human population is predicted to 

increase the demand for water by 2-3% per year, and the demand for energy by >56% globally, and 40 

by 90% in increasingly industrialised countries with emerging economies between 2010-2040 (EIA, 

2013; WCD, 2000). Concurrently, changing climatic and precipitation patterns, including severe 

droughts, will likely further increase demand for water and reduce hydropower generation from large 

reservoirs (Oki and Kanae, 2006). 

 45 

Hydropower is regarded as a renewable “green” energy source, and dams constructed in areas with 

steep topography and high rainfall produce the most energy per unit area (Finer and Jenkins, 2012). 

However dams are often constructed in low-lying high conservation value areas: for example 154 

dams operate in the Amazon basin with a further 277 planned (Castello et al., 2013; Lees et al., 2016).  

The construction of dams directly impacts both terrestrial and freshwater ecosystems through 50 

inundation of habitat, compositional changes in aquatic communities, and the loss of structural and 

functional connectivity between upper and lower reaches of watersheds (Finer et al., 2008; Nilsson et 

al., 2005; Lees et al., 2016; Palmeirim et al., 2014; Sá-Oliveira et al., 2015).  
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Over 50% of the world’s large river systems and >60% of the combined habitat area of tropical, 55 

subtropical and boreal forests, tropical and subtropical grasslands, savannahs and shrublands have 

been estimated to be impacted by dams (Nilsson et al., 2005). Inundation of terrestrial habitats, and 

tropical forests in particular, can also result in significant carbon emissions from reservoirs in the 

form of CO2 and CH4, which can persist for many years after inundation and often over the lifetime of 

the reservoir (Abril et al., 2005; Demarty & Bastien, 2011; Fearnside, 2002; Fearnside & Pueyo, 60 

2012). Direct social impacts arise from the loss of indigenous lands, displacement of communities, 

and disruption to local economies reliant on fisheries often concurrently affected by heavy metal 

accumulation (Boudou et al., 2005; Fearnside, 1999). Additionally, increased access to previously 

undisturbed habitat can elevate levels of  hunting and deforestation in areas surrounding reservoirs 

(Kirby et al., 2006; Peres and Lake, 2003).  65 

 

When dams are built, habitat is lost through inundation, with remnants of previously continuous 

terrestrial habitat confined to highly fragmented land-bridge island archipelagos comprised of former 

hilltops. “Good practice” guidelines (International Energy Agency, 2006) for dam developers to 

mitigate ecological impacts from dam construction include implementing protected areas covering 70 

land-bridge islands and habitat surrounding reservoirs. For example, the REBIO Uatumã (the largest 

Biological Reserve in Brazil) encompasses approximately half of the Balbina hydroelectric reservoir, 

including all islands east of the former left bank of the Uatumã river and mainland areas extending 

away from the eastern edge of the reservoir. Strictly-protected area status has largely deterred small-

scale slash-and-burn agriculture and extraction of resources within the REBIO Uatumã, on both 75 

islands and within surrounding continuous forest (Benchimol & Peres, 2015a, 2015b). However, we 

do not know whether protecting reservoir islands is effective for biodiversity conservation, due to a 

lack of long-term monitoring. The International Energy Agency highlights the dearth of systematic 

evaluation of any mitigation, enhancement, and compensation measures currently being 

recommended to developers (International Energy Agency, 2000; Trussart et al., 2002). 80 
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Fragmentation of habitat causes a number of impacts to species, such as population reductions and 

local extinctions; the strength of fragmentation impacts differ depending on the taxonomic group and 

life-history traits of species (Bender et al., 1998; Fahrig 2003; Forman, 1995). Previous studies of 

reservoir island archipelagos have shown that island taxa typically experience a novel hyper-85 

disturbance regime, resulting in drastic shifts in species diversity and community composition through 

species turnover and altered carrying capacity of remaining habitat (Benchimol & Peres, 2015a; 

Cosson et al., 1999a; Ferreira et al., 2012; Hanski & Ovaskainen, 2000; Terborgh et al., 2001). Local 

species extinctions on reservoir islands have been observed for plants (Benchimol & Peres, 2015a; Yu 

et al., 2012), invertebrates (Emer et al., 2013; Feer & Hingrat, 2005), birds (Yu et al., 2012), bats 90 

(Cosson et al., 1999b), small-mammals (Gibson et al., 2013; Lambert et al., 2003), and midsized to 

large-bodied vertebrates (Benchimol & Peres, 2015b, 2015c). In contrast, populations of some species 

can become hyper-abundant on islands, further impacting other taxa (Chauvet & Forget, 2005; Feeley 

& Terborgh, 2006; Lopez & Terborgh, 2007), as can the establishment of invasive species (Gibson et 

al., 2013). 95 

 

Changes in island communities may not occur immediately after inundation; instead, species may be 

subject to an “extinction debt” whereby a portion of species are initially lost, followed, potentially 

multiple generations later, by further species extinctions (Halley et al., 2014; Kitzes and Harte, 2015; 

Kuussaari et al., 2009; Tilman et. al., 1994). Thus, the effects of fragmentation and isolation can 100 

persist for years after initial habitat loss, as communities undergo “relaxation” towards a new 

equilibrium community (Diamond, 1972; Diamond, 2001; Ewers and Didham, 2006; Feeley et al., 

2007; Terborgh et al., 1997; Wang et al., 2009). The “relaxation” process is likely mediated by island 

area, with species losses faster on smaller islands, and a greater time-lag for species loss on larger 

islands (Diamond, 1972; Gonzalez, 2000). There are a number of empirical methods for calculating 105 

extinction debt (Kitzes and Harte, 2015; Wearn et al., 2012), and here we consider a decline in species 

richness on islands over time, compared to continuous mainland habitat, as evidence of extinction 

debt. In the absence of extinction debt, we assume that all species extinctions would happen 
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immediately, with no evidence of further degradation of insular biological communities through time 

(Kitzes and Harte, 2015). 110 

 

In the long-term it is unknown how island communities will continue to respond with increasing 

island isolation time, as the creation of artificial archipelagos from dam construction has only 

occurred over the past century. Our present knowledge of ecological communities within artificial 

archipelagos comes from multiple snapshot studies from different countries, dams, habitats and taxa, 115 

at different time points since the originally continuous habitat was fragmented. Bringing these 

snapshots together enables identification of general trends across disparate studies, aiding develop of 

policy-relevant recommendations in terms of the conservation value of reservoir islands.  

 

Here, we quantitatively review peer-reviewed research detailing responses of terrestrial taxa to habitat 120 

fragmentation, and subsequent isolation, on reservoir land-bridge islands. We then analyse species 

richness data from 249 islands and adjacent continuous habitats through time. In particular, we ask: 

(1) is there evidence of an extinction debt existing for reservoir island species; i.e. compared to 

continuous habitat, does island species richness decrease with increasing island isolation time? and (2) 

how does island size, distance to continuous habitat and distance to other islands relate to patterns of 125 

species richness and rates of species loss?  

 

2. METHODS 

 

2.1. Literature summary 130 

 

2.1.1 Dataset collation 

We conducted a literature search using Web of Knowledge and Google Scholar search engines 

between January 2014 and June 2015 using the key words: hydropower or hydroelectric, reservoir or 

dam, and island or land-bridge, forest islands or fragments. Only full-text, peer-reviewed articles in 135 

English were retained; unpublished or grey literature was not included. Studies researching terrestrial 
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species, guilds, taxonomic groups or communities on reservoir islands, attributing ecological 

responses observed to reservoir creation were retained. Experimental studies or those not explicitly 

stating an aspect of reservoir creation as a causal factor for the response observed were excluded. 

Studies which met the inclusion criteria were entered into a dataset (henceforth referred to as “dataset 140 

studies”). Literature cited in dataset studies was also screened for inclusion, and searches for names of 

dams in dataset studies performed. A total of 129 studies were assessed for inclusion in our study, 100 

of which met the criteria to be retained. 

 

2.1.2 Data extraction 145 

Data such as the number of islands surveyed and island area, taxonomic groups investigated, and time 

since island isolation were extracted from studies (see Database A).  Each study was assigned a broad 

habitat type (wet tropical forest, tropical grassland e.g. cerrado, subtropical forest, Mediterranean 

forest, boreal forest). Taxa investigated were broadly grouped into mammals, birds, invertebrates, 

herptiles, plants, and fungi.  If multiple taxa were included within a study, data were extracted for 150 

each group separately due to the potential for different responses. The precise isolation time of islands 

is seldom reported, thus we estimated island isolation time as the year of dam closure minus the year 

of field data collection. In six studies field data collection dates were not reported, thus, data 

collection date was conservatively estimated as two years prior to publication date. 

 155 

2.1.3. Assigning study response directions 

For each study the authors’ key results and conclusions were used to assign an overall response of the 

study taxa to isolation on islands (response: positive, negative, variable, or neutral; see column ‘L’, 

Database A). For example, a study reporting declining species richness on islands would be assigned 

an overall negative response. An overall positive response would be assigned if, for example, 160 

recorded sightings (e.g. presence/absence data) were higher on islands. Overall variable responses 

could result from research involving different species within the same taxon, e.g. two species of bat 

exhibiting divergent responses to isolation. Neutral responses would result if no differences or 

alterations in taxa on islands compared to mainland sites were reported.  If authors did not draw a 
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conclusion as to the response directions observed, we examined the data reported and assigned a 165 

response direction accordingly. If multiple response directions for the same taxa were observed over 

time, the predominant response direction (i.e. over most years) was used as the overall direction.  

 

To account for within-study complexity i.e. inclusion of multiple taxonomic groups and/or ecological 

metrics, response directions were derived for each taxonomic group and ecological metric 170 

investigated (see columns ‘M-P’, Database A). Ecological metrics included species richness, 

population density, behaviour (e.g. foraging behaviour), community composition, presence/absence, 

fitness/recruitment (e.g. breeding output), genetic diversity, and functional diversity. 

 

2.2 Species richness analysis 175 

 

Estimates of species richness were the most widely-reported and accessible data available in the 

collated studies, and therefore we selected this ecological metric for in-depth analysis.  

 

2.2.1. Data collection 180 

Dataset studies presenting species richness data for islands and nearby continuous (control) habitat, as 

well as island areas and isolation time, were used to assess variation in species richness on reservoir 

islands compared to control habitat (Table B1). These data also allowed investigation of the 

relationship between species richness and island area, isolation time, distance to mainland and 

distance to nearest island. Of the 100 dataset studies, 17 presented species richness data for islands (n 185 

= 249; size range <1-1690 ha; isolation time <1-92 years) and control sites (n = 84), and were used for 

the in-depth analysis of species richness data (Table B1; Database B). If data for the distance to 

mainland or nearest island were not presented, then if possible these data were calculated from 

satellite imagery using Google Earth Pro (Google, 2015). Geographically, the 17 studies suitable for 

species richness analysis originated from nine dams, located on three continents in three broad habitat 190 

types (wet tropical forest, subtropical forest, and tropical grassland). 
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2.2.2. Data analysis 

For each study the ratio of island species richness to average control species richness (SRICH) was 

calculated (see Database B . If a study contained data over multiple years, and thus, multiple isolation 195 

times, then species richness for control sites over the same isolation time period was averaged. If a 

study had multiple species richness values for the same island size, taxon, and isolation time, species 

richness values were averaged to avoid pseudo-replication. 

 

To normalise data, all data were logged (natural logarithm) prior to analysis. SRICH values were 200 

modelled using linear mixed effects models (lmer using lme4; Bates et al., 2014), as a function of 

island isolation time (TISO), island area (AREA), distance to mainland (DMAIN) and distance to nearest 

island (DISLAND) as fixed effects, with taxonomic group (TAXA), dam identity (DAM; a surrogate for 

location), and study (STUDY; to account for differing survey methods and survey intensity between 

studies) as random effects (Bunnefeld and Phillimore, 2012; see Database B). Interaction terms were 205 

included between AREA, TISO, DMAIN and DISLAND, as well as between TAXA, DAM and STUDY; 

quadratic terms were also tested for.  

 

Due to missing values for DMAIN and  DISLAND we reduced the dataset to only those data rows 

containing values for all variables being tested (n islands = 178) and used this dataset for linear 210 

regression and model selection in R (R Core Team, 2015). Models were simplified following stepwise 

deletion of non-significant terms i.e. those with a t-value <2 and models compared using Chi-square 

tests in ANOVA (Crawley, 2005; Table B2). Following model simplification, the final model did not 

include variables with missing values, thus, the final model was fitted to the whole dataset (n islands 

= 249). The best linear unbiased predictors (BLUPs) for each dam were extracted using the ‘ranef’ 215 

function within the lme4 R package (Pinheiro and Bates, 2000). Each dam has a different intercept, 

which can fall above or below that of the overall model: positive BLUPs indicate that the dam has 

higher than expected levels of species richness estimated from the fixed effects, and those falling 

below the model average indicate that species richness is lower than expected. A variance components 

analysis was carried out for the random effects (Crawley, 2005). 220 
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3. RESULTS 

 

3.1. Literature summary 

 225 

The 100 dataset studies examined here were predominantly from Neotropical wet tropical forest 

habitats (Fig. 1; 2a). Mammals were the best-studied taxonomic group (Fig. 2b); responses of 

terrestrial taxa isolated on reservoir islands were most often expressed in terms of species richness and 

presence/absence, and rarely with regards to behaviour, genetic or functional diversity (Fig. 2c). An 

overall negative response of terrestrial taxa to dam creation was reported in >75% of studies, and 230 

these negative responses were seen across all habitat types, ecological metrics, and taxonomic groups 

investigated (Fig. 2a-c). Overall positive responses were confined to only two of the 100 studies (Fig. 

2a), of which one reported increased and more stable population densities of small mammals (Adler, 

1996), and the second, increased food resources for a raptor due to prey being ‘captive’ on isolated 

islands (Benchimol and Venticinque, 2010). Studies report results for islands isolated from <1 to 92 235 

years, with the mean island isolation age of ~33 years (Fig. 2d). 

 

3.2. Species richness analysis 

 

The final model for analysis of SRICH included TISO and AREA as fixed effects, and TAXA, DAM and 240 

STUDY as random effects (Table 1); DMAIN and DISLAND had no significant effect on island SRICH, and 

no interaction terms were significant (Table B2). Of the fixed effects, 36% of variation was explained 

by STUDY, 17% explained by DAM, with 47% residual variance; TAXA did not explain any variance.  

 

For all taxonomic groups and dams, species richness declined with island isolation time, with larger 245 

islands retaining more species than smaller islands (Fig. 3): predicted SRICH on the largest island (1690 

ha, Balbina hydroelectric dam, Brazilian Amazon) is predicted to be 3.2 at the mean isolation time of 

islands in the analysis compared to a predicted SRICH of 1.2 on the smallest island (0.17 ha, Cabra 
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Corral, Argentina). Even the largest island (1690 ha) exhibits reduced species richness compared to 

mainland continuous habitat in less than 30 years of isolation; Barro Colorado Island (~1500 ha, 250 

Gatun Lake, Panama) isolated for the longest period in our study (~92 years) similarly shows 

sustained species richness declines.  

 

The estimates for the random effect of DAM (BLUPs) showed for the majority of dams (66%) lower 

species richness levels than the overall intercept estimated by the fixed effects; only islands in Gatun 255 

Lake, Balbina, and Thousand Island Lake maintain higher species richness than the modelled fixed 

effects intercept (Fig. 3; Table B3). Using our model we can predict SRICH values for islands of mean 

area at a given isolation time, and islands of different areas at the mean isolation time for each 

reservoir. For example the SRICH for mean island size within Gatun Lake reduces from 2.24 at five 

years of isolation to 1.49 after 90 years of isolation; in Lake Kenyir, which maintains the lowest 260 

expected species richness values, a small island of 5ha (at mean island isolation time) has a predicted 

SRICH value of 1.35, with is increased to just 2.23 on an island of 1000 ha. There was no evidence that 

islands located nearer other terrestrial habitat or mainland continuous habitat had reduced levels of 

species loss. 

 265 

4. DISCUSSION 

 

Our study finds that terrestrial taxa isolated on reservoir islands experience significant reductions in 

species richness in less than a century of isolation. Such sustained local species losses since the initial 

loss of habitat indicates that reservoir island species are subject to an extinction debt, which is evident 270 

across all dams, habitats, and taxa. All islands showed depauperate levels of species richness 

compared to continuous habitats, with smaller islands maintaining lower species richness than larger 

islands. Island isolation time and area, but not distance from other terrestrial habitat or the mainland, 

were the drivers of species richness patterns observed.  

 275 
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More broadly, we show that the majority of taxa are negatively impacted by reservoir creation across 

a range of other ecological metrics including behaviour and genetic diversity. Our current knowledge 

of the impacts of reservoir creation is disproportionately focussed on mammals, and originates 

predominantly from evergreen Neotropical forest habitats. While not all dams create archipelagic 

landscapes, research within our synthesis covers just 15 of the >58 000 large dams operating globally, 280 

representing a small and potentially biased sample of possible island systems. However, even with 

such limited data we clearly demonstrate the negative impact of dam creation on island species 

richness. Furthermore, we highlight the shortfalls in current conservation and impact mitigation 

strategies for dam development, particularly in terms of long-term biological costs, in addition to the 

immediate direct loss of lowland habitat during flooding.   285 

 

4.1. Island species richness, area, and isolation time 

 

Classic island biogeography theory (IBT, MacArthur & Wilson, 1967) explains variation in island 

species richness through a balance of species immigration and distance from species source pools. In 290 

the artificial archipelagic systems we investigate in our analysis, rather than a process of species 

accumulation on islands, remnant communities of formerly continuous habitat undergo species loss 

(“relaxation”) until a new equilibrium community is reached (Diamond, 1972; Gonzalez, 2000; 

Lomolino, 2000).  

 295 

Area was a significant predictor of species richness on islands within our analysis as expected from 

the species-area relationship and IBT (Connor & McCoy, 1979; MacArthur & Wilson, 1967; Triantis 

et al., 2012). However distance, both to the mainland and other islands, was not a significant predictor 

of island species richness: this represents a departure from the IBT, and reduced importance of 

metapopulation dynamics (Hanski and Gilpin, 1991; With and King, 2001) and the “rescue effect” 300 

(Brown and Kodric-Brown, 1977) for maintaining insular populations in artificial archipelagic 

systems.  
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In the case of reservoir islands, remnant terrestrial habitat fragments are surrounded by a high-

contrast, inhospitable matrix, presenting a prohibitive dispersal barrier for certain taxa. Such an 305 

extreme dispersal barrier effectively renders all islands as too isolated for any “rescue effect” from 

wider species source pools to maintain island communities and species richness, and explains the lack 

of distance effects we find in our analysis (Watson, 2002). The evolutionary history and traits of 

species resident in continuous habitats make many incapable of dispersing through open habitats, 

across large distances, or through a high-contrast matrix such as land and water (see Fig. 2 in Ewers & 310 

Didham, 2006).  The ability of tropical understorey bird species to disperse across a water matrix 

between islands was tested in Gatun Lake, Panama, where some species were limited to <100m of 

flight (Moore et al., 2008). Species reliant on continuous habitats can be averse to crossing even small 

clearings, such as logging roads, even when the forest canopy is closed (Develey & Stouffer, 2001; 

Laurance et al., 2004).  315 

 

Habitat fragments surrounded by water therefore represent a worse-case scenario in terms of 

fragmentation effects: aside from extreme dispersal barriers preventing species migration,   

 islands are subject to extreme edge effects from increased UV and wind damage, often penetrating 

deep into islands leading to further degradation of island biota (Benchimol & Peres, 2015b; Laurance, 320 

2008; Murcia, 1995). Habitat fragments embedded within a more similar and potentially hospitable 

but low-quality terrestrial habitat matrix (e.g. forest fragments within an agricultural landscape) can 

retain higher levels of species diversity with reduced local extinction rates (Mendenhall et al., 2011), 

when compared to reservoir islands of a similar size  (Mendenhall et al.,2014).  

 325 

We find a reduction in species richness on all islands with increasing time since initial habitat loss. 

Such a pattern of sustained and delayed species loss is indicative of extinction debt (Tilman et al., 

1994; Kitzes & Harte, 2015; Kuussaari et al., 2009). Extinction debts are especially high in areas 

subject to recent large-scale habitat loss, such as islands created by rapid flooding of terrestrial 

habitats (Hanski and Ovaskainen, 2002). Our analysis illustrates that reservoir islands are of limited 330 

long-term conservation value due to evidence of an extinction debt: species loss appears most rapid on 
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smaller islands and even the largest islands studied (~1690 ha) exhibited lowered species richness in 

under 30 years of isolation. Ongoing species losses have been reported on another large island in our 

synthesis: Barro Colorado Island (BCI, ~1500 ha) has been isolated for 92 years since the formation 

of the Gatun Lake, Panama. In less than a century of island isolation, and despite strict environmental 335 

protection of BCI and surrounding peninsulas,  65 bird species (Robinson, 1999) and 23 butterfly 

species (Basset et al., 2015) have become locally extinct, alongside long-term degradation of the tree 

community (Leigh et al., 1993).  In the Balbina hydroelectric megadam system in Amazonia, to 

conserve >80% of terrestrial and arboreal vertebrates on islands, a threshold island size of 475 ha was 

identified by Benchimol & Peres (2015b).  However, only 25 out of 3546 islands in the Balbina 340 

archipelago meet this size criterion. Balbina is protected by the largest biological reserve in Brazil, 

and thus represents a best case scenario for biodiversity conservation within an artificial archipelago 

system. Species inhabiting other such systems, without protection, will therefore likely suffer not only 

from direct habitat loss through flooding and potential extinction debt, but additional human-mediated 

impacts such as deforestation, agriculture, hunting, and fire (Laurance, 2008; Peres, 2001). 345 

 

The data we use for analysis of species richness on reservoir land-bridge islands originate from 249 

islands within 9 of the 15 dams presented in Fig. 1 and allow us to show patterns applicable to all 

dams and taxonomic groups, although we acknowledge that publication bias towards negative impacts 

of reservoir creation could influence the response patterns presented. While the data do not allow us to 350 

disentangle species richness patterns for individual taxonomic groups, dams and habitat types, we 

addressed this shortcoming by using random effects in linear mixed effects models (Bunnefeld and 

Phillimore, 2012).  Similarly we cannot calculate the magnitude of extinction debts for individual 

taxonomic groups and/or habitat types, and instead highlight evidence that all reservoir islands are 

subject to an extinction debt, and therefore cannot be relied upon for long-term species conservation.  355 

 

The observed patterns of depauperate island species richness could be shaped by landscape attributes 

prior to inundation and non-random loss of more species-rich lowland habitat during flooding 

(Seabloom et al., 2002). Mainland species richness levels may have been elevated through surveying 
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lowland habitats; such a potential sampling effect should be accounted for during survey site selection 360 

(e.g. Benchimol and Peres, 2015a). In continuous habitats the greater availability of resources allows 

more species to inhabit a given area, compared to the same area of isolated habitat (Ewers and 

Didham, 2006). Thus, sampling islands can inherently give lower species richness values than an 

equal area of continuous habitat (Crawley & Harral, 2001; Gonzalez, 2000; Halley et al., 2014; 

MacArthur & Wilson, 1963).  365 

 

Data for island taxa in artificial archipelagos come from snapshots of responses to isolation in <100 

years of reservoir lifetime, across multiple taxa and habitat types. In addition, no studies monitored 

changes in insular community dynamics over a significant post-isolation time. Consequently, we 

cannot currently determine if the rates of local species loss are predictable beyond the relatively short 370 

time frame analysed here. Nor can we accurately quantify extinction debt to predict the eventual 

number of species able to persist in the artificial archipelago systems created due to the assumptions 

that would be required to do so. Further long-term monitoring of reservoir island biota is needed to 

allow these more detailed assessments to be made, since at present only Gatun Lake, Panama, 

provides data for a reservoir >90 years of age. 375 

   

4.2. Conservation implications 

 

Our study strongly suggests that islands within reservoir systems do not sustain full complements of 

flora and fauna in the long term; larger islands retain species for longer than smaller islands, but all 380 

island communities likely face an extinction debt. Given that degradation of island communities can 

be predicted to occur in all artificial archipelagic systems created by dam development, we emphasise 

that reservoir islands cannot be used for species conservation as part of impact mitigation strategies. 

The combined area of reservoir islands should be explicitly included in environmental impact 

assessments, in addition to the area of habitat directly lost through inundation. 385 
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Current policy to mitigate the negative impacts of dam creation on terrestrial environments consists of 

“good practice” guidelines with no statutory legislation requiring specific actions by developers 

(International Energy Agency, 2006). Environmental legislation is highly variable among countries, 

and there is no signatory international agreement on how to forecast, prevent or mitigate the effects of 390 

large dams. Mitigation measures can take a multitude of forms, ranging from conducting wildlife 

inventories and environmental impact assessments before reservoir filling, creating new habitats such 

as wetland zones within the reservoir system, and conservation offsets such as strictly protecting land 

both within and surrounding reservoirs. There is however no long-term monitoring of such practices 

to assess whether these mitigation measures are effective (International Energy Agency, 2000).  395 

 

A great many dams planned to meet future water and electricity needs, especially in developing 

countries. We call for better trade-off calculations (Kareiva, 2012) to be made for future dams, 

accounting for long-term species loss on islands created by flooding. In addition, enhanced protection 

of larger islands and surrounding non-fragmented habitats is essential to avoid biological collapse in 400 

artificial archipelagic systems. We highlight the potential for additional impacts from long-term 

degradation of high carbon-storing habitats such as tropical forests: erosion of island tree communities 

(Benchimol and Peres, 2015a) could lead to a future carbon loss from tropical dams, exacerbating the 

greenhouse gas emissions already documented from this “green” energy source (Demarty and Bastien, 

2011; Fearnside, 2009). 405 

 

4.3. Conclusions 

 

We have shown that there is an overall negative response of terrestrial species and communities to 

isolation on reservoir land-bridge islands. These trends are seen across a broad spectrum of taxonomic 410 

groups and ecological metrics. Species isolated on reservoir islands will likely experience extinction 

debt, and the rate of local extinctions is driven by island size and island isolation time, independently 

of distance from potential source populations within the landscape. Our synthesis of current literature 

allows broad conclusions about the ecological impacts of reservoirs through time, and highlights the 
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need for further research from a greater number of reservoirs over the duration of their lifetime. 415 

Building upon the findings that we present here, investigation of the many other direct and indirect 

ecological impacts of reservoirs such as loss of river habitats and connectivity, land tenure rights, and 

the impacts of wider infrastructure development on surrounding habitats, should be a priority for 

future research. 

 420 
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FIGURES 

 645 

Figure 1: Geography of research detailing responses of terrestrial taxa to isolation on 

reservoir land-bridge islands. Dam names and the percentage of total dataset studies (n = 100) 

originating from each are presented. Broad habitat type is indicated by colour: dark green = 

wet tropical forest; light green = subtropical forest; yellow = tropical grassland (e.g. cerrado); 

cream = Mediterranean forest; blue = boreal forest. 650 

[2 column fitting] 
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Figure 2: Overview of research presented within dataset studies (n=100). 2a-c) present the 

proportion of total studies (black bars) for habitat type, ecological metric and taxonomic 655 

group investigated respectively; pie charts represent overall response directions (red = 

negative; blue = positive; green = neutral; yellow = variable). 2d) presents the distribution of 

studies through island isolation time (red dashed line represents mean island isolation time, 

~33 years).   

[Single column fitting]    660 
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Figure 3: Analysis of species richness (SRICH) data from 249 islands and 84 control sites available 

from nine dams in three broad habitat types (wet tropical forest, subtropical forest, and tropical 

grassland), modelled with time since island isolation (TISO) and island area (AREA). Bold black lines 

represent the slope for the overall model, with individual lines for each dam fitted using the BLUPs 665 

extracted from random effects. Colour indicates dam identity: grey = Petit Saut; green = Chiew Larn; 

magenta = Lago Guri; brown = Randenigala; light pink = Cabra Corral; orange = Lake Kenyir; purple 

= Balbina; red = Thousand Island Lake; blue = Gatun Lake. Axes are on a natural log scale. 

[2 column fitting] 

 670 

Table 1: Coefficient estimates for fixed effects in the most parsimonious model used for 

species richness analysis, with TAXA, DAM and STUDY as random effects; t-values >2 were 

treated as significant. 

 

 675 

 

 

[Single column fitting]

 Estimate Standard Error t-value 

Intercept -0.514 0.237 -2.168 

AREA 0.185 0.015 11.944 

TISO -0.244 0.067 -3.641 
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APPENDIX B 954 

Table B1 955 

Summary of research articles used in the species richness analysis. For full references, see 956 

reference list below Table A1 957 

Reference Habitat type Region Country Dam Isolation 

time 

(years) 

Number 

of 

islands 

studied 

Number of 

control 

sites 

Island 

areas 

(ha) 

Badano et al. 

(2005) 

Subtropical 

forest 

South 

America 

Argentina Cabra 

Corral 

15 9 1 0.16-

62.5 

Benchimol & 

Peres (2015) 

Wet tropical 

forest 

South 

America 

Brazil Balbina 26 34 12 <1-1690 

Cosson et al. 

(1999)b 

Wet tropical 

forest 

South 

America 

French 

Guiana 

Petit Saut 1 6 3 2-40 

Estrada-

Villegas et al. 

(2010) 

Wet tropical 

forest 

Central 

America 

Panama Gatun 

Lake 

92 8 6 2.5-50 

Feer & 

Hingrat (2005) 

Wet tropical 

forest 

South 

America 

French 

Guiana 

Petit Saut 4 7 3 1.1-25.5 

Gibson et al. 

(2013) 

Wet tropical 

forest 

Asia Thailand Chiew 

Larn 

26 16 1 0.3-56.3 

Granjon et al. 

(1996) 

Wet tropical 

forest 

South 

America 

French 

Guiana 

Petit Saut 1 10 1 0.35-30 

Karr (1982)b Wet tropical 

forest 

Central 

America 

Panama Gatun 

Lake 

66 1 2 1500 

Leigh et al. 

(1993) 

Wet tropical 

forest 

Central 

America 

Panama Gatun 

Lake 

66 7 4 0.6-1500 

Meyer & 

Kalko (2008)a 

Wet tropical 

forest 

Central 

America 

Panama Gatun 

Lake 

91 11 6 2.5-50 

Pons & 

Cosson (2002) 

Wet tropical 

forest 

South 

America 

French 

Guiana 

Petit Saut 2 16 1 <6-28 

Qui et al. 

(2011) 

Wet tropical 

forest 

Asia Malaysia Lake 

Kenyir 

23 24 3 <1-383.3 

Terborgh et al. 

(1997) 

Wet tropical 

forest 

South 

America 

Venezuela Lago Guri 9 12 1 1-350 

Wang et al. 

(2009) 

Subtropical 

forest 

Asia China Thousand 

Island 

Lake 

49 42 7 0.67-

1289.23 

Weerakoon 

(2009) 

Subtropical 

forest 

Asia Sri Lanka Randeniga

la 

12 6 5 2-167 

Yong et al. 

(2010) 

Wet tropical 

forest 

Asia Malaysia Lake 

Kenyir 

22 6 2 <20-

>100 

Yong et al. 

(2012) 

Wet tropical 

forest 

Asia Malaysia Lake 

Kenyir 

22 6 2 <20-

>100 
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Table B2 960 

Coefficients for the fixed effects of models that treat study identity, dam, and taxonomic 961 

group as random effects. The Chi-square (x2) value and p-value from model comparison by 962 

ANOVA is given. The final model used in analysis only included significant fixed effects: 963 

AREA and TISO. Values presented in this table are from model comparisons using a reduced dataset (n 964 

islands = 148) to account for missing values. Following model comparison, the final model was used 965 

on the full dataset (n islands = 249) which did not have missing values for the variables included in 966 

the model. 967 

Fixed effects Estimate SE t-value df x2 p-value 

Intercept -0.514 0.237 -2.168    

AREA 0.237 0.02 11.958 1 94.744 <0.001 

TISO -0.328 0.069 -4.720 1 16.136 <0.001 

DMAIN -0.037 0.039 -0.951 1 0.894 0.344 

DISLAND -0.062 0.043 -1.434 1 1.991 0.158 

 968 

Table B3 969 

Intercepts for the best linear unbiased predictors (BLUPs) for each dam generated using the 970 

‘ranef’ function in lme4 (Bates et al., 2014). 971 

Dam Intercept (Dam) 

Balbina 0.0367 

Cabra Corral -0.131 

Chiew Larn -0.071 

Gatun Lake 0.361 

Lago Guri -0.059 

Lake Kenyir -0.247 

Petit Saut -0.079 

Randenigala -0.007 

Thousand Island Lake 0.196 

 972 


