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Abstract 

Environmental factors and lifestyle can alter the way our genes are expressed 

influencing a network of chemical switches within our cells collectively known as the 

Epigenome. Among the epigenetic mechanisms orchestrating the gene expression, 

methylation is of foremost importance and probably fair to say, still incompletely 

decoded. Dysregulations of histone methylation patterns lead to the repression or 

activation of signalling pathways that often promote the genesis and progression of 

disease states.  

Lysine specific demethylase 1 (LSD1) oxidatively removes methyl groups from histone 

H3 and its aberrant activity has been correlated with the development of a broad range 

of pathologies. Therefore, specific inhibitors of LSD1 have potential in pharmacological 

applications. Research into LSD1 and its functions in normal and abnormal cells has 

been hindered by the lack of a specific and potent suppressor. The development of a 

selective inhibitor could not only foster the understanding of the biological roles of 

LSD1 but also represent a breakthrough for the design of novel drugs for a range of 

burdensome diseases. Here we investigate on reversible and irreversible inhibitors of 

LSD1, with the hope of broadening the current knowledge on this epigenetic target. By 

analysing the LSD1 interaction with the transcription factor Snail-1, we generated a 

series of small peptides as potential reversible inhibitors. The synthetic peptides were 

then evaluated in cellular assays. In search of novel non-covalent LSD1 blockers, we 

next explored Phage Display technology. Thereafter, we targeted LSD1 covalently by 

synthesising multiple structural analogues of the clinically used antidepressant TCP 

(Parnate®), which is a known irreversible suppressor of LSD1 activity. We evaluated 

their ability of inhibiting LSD1 in a cell-free assay and the compounds showing 

enzymatic inhibition were tested as potential anti-proliferative and differentiating agents 

in leukaemia cell lines. Finally, we generated activity-based probes to fluorescently 

label LSD1 for biological applications.  
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Chapter 1 - Introduction 

1.1. Epigenetics 

Natural selection has been for a long time considered the main evolutionary mechanism 

of adaptation. Accordingly, the variations in the DNA sequences that confer a fitness 

advantage for a specific environment would be copied and inherited while the less 

adequate are left out.1 Whether there are instead mechanisms that translate adult 

experience into inherited phenotypes without altering the genotype, has been for long 

time an important question among the scientific community.1–4 The potential of 

environmental exposure to orchestrate the transgenerational phenotypic adaptation 

without genetic selection was implied in the theories of the biologist J.B. Lamarck in 

the 18th century.5 However, given the lack of evidence correlating the environment and 

alterations of gene expression, which could be inherited through the germ line, such 

theories have been rejected. On the other hand, the natural selection theories are unable 

to explain the adaptive features that an organism acquires during lifetime.6 The cells 

constituting the human body, for example, are all derived from the same fertilised egg. 

In the path from embryo to fully developed organism, the initial cell undergoes several 

modifications that devote the embryo-derived cells to specific functions.6,7 Another 

well-described example of environmentally driven adaptation, is the caste polyphenism 

in social insects. In honeybees’ societies, from the same genotype, distinct caste 

phenotypes are generated, namely fertile queens, sterile female workers and male 

drones.8 No genetic differences underlie the caste differentiation between queens and 

worker bees. In contrast, social environment and nutrition of the larvae are determinant 

as queens-to be larvae are only nourished with royal jelly.8 If the honeybee colony loses 

its queen, sterile females develop ovaries8 and such phenomenon evidentiate further that 

the caste differentiation is not decided only by genetic pre-determination. 

In these examples, the diversity in phenotypes is achieved without changes in the DNA 

bases (i.e. the genetic code). The establishment of a functional identity, inherited 

through generations without altering the DNA sequence is defined epigenetics (ἐπί, epi: 

Greek for upon). Through epigenetic modifications, the environment drives cells to tag 
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the DNA and such acquired modifications can be transmitted to the offspring.2 These 

inherited changes consist of chemical alterations to cytosine, histone tails and non-

coding RNAs. Methylations, acetylations, ubiquitylation and sumoylation, are among an 

ever-growing list of histone tail modifications that modulate gene expression during 

developmental stages, tissue differentiation and diseases states.9,10 Their presence or 

absence can alter the state of compaction of chromatin, regulating the way the genes are 

expressed. These tags have been termed epigenetic marks, as they do not modify the 

primary DNA sequence like base mutations do, while acting upon them.5  

The salient roles of epigenetics have been described in all aspects of biology and 

epigenetic dysregulations have been associated with all major human diseases11 such as 

cancers, Alzheimer, diabetes and viral infections.12–14 Mutations in genes encoding for 

crucial epigenetic regulators have been found in several solid cancers and blood 

malignancies as for example the gene encoding for the histone acetyltransferase 

CREBBP and EP300,15 or the DNA methyltransferase DNMT3A.16 Furthermore, 

biological studies have revealed the presence in neoplastic tissues of unusual areas of 

chromatin, termed epigenetic lesions.6,17–19 One example is the translocation of MLL 

oncoprotein in the human mixed-lineage leukaemia (MLL), where genes bound to MLL 

display an aberrant distribution of methylation marks on histone 3 (H3).20,21 

Unlike genetic mutations, epigenetic modifications are reversible and “resetting” the 

abnormal epigenome to the normal state represents a revolutionary new strategy for 

therapy.11 High-risk myelodysplasia patients are already receiving benefits from epi-

drugs with the demethylating agent azacitidine (Vidaza®).22 

Given the growing scientific evidence for the roles of epigenetic dysfunctions in the 

onset of diseases together with the tangible advantages of employing epigenetic 

therapeutics, current research is focusing on whether epigenetic modulators can be 

targeted for novel pharmacological approaches.  
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1.2. Chromatin 

Chromatin remodeling is of foremost importance in the epigenetic regulation of gene 

expression. It defines the state in which eukaryotic DNA is packaged with histone 

proteins to form DNA-histone complexes within cells.23 The basic unit of chromatin is 

the nucleosome (Figure 1.1), composed of 147 base pairs (bp) of DNA packed around 

two copies of four core histone proteins: H2A, H2B, H3 and H4, and a linker histone 

H1. The latter allows the compaction of chromatin single units into higher-order 

structures.24 The core histones are globularly packaged, while their N-terminal tails are 

unshaped and protrude from the globular region. This feature makes them accessible to 

histone modifying enzymes.23  

 

 
 

Figure 1.1: Chromatin and histone structure. 

(A) High resolution structure of the nucleosome core particle; DNA strand is beige and bases are shown in blue. H3 

dimer is shown in red, H4 in magenta, H2A in green and H2B in blue. (B) Nucleosome core particle and histones, 

plus histone linker (H1). (C) Beads on string representation (left) and packaged nucleosome representation (right). 

The nucleosome particles are shown as yellow cylinders. The black strands represent the DNA and the red lines the 

N-terminal histone tails. 

A B

Nucleosome particle

Histone Tail

Histone3 tail

“Beads on a string” form of chromatin Packaged nucleosomes

C
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Chromatin in non-dividing cells is classified in two different functional states: 

heterochromatin, transcriptionally silent and euchromatin, transcriptionally active.25 

Euchromatin, representing 4% of the genome, is characterised by the presence of active 

and inactive genes, which are accessible to the transcriptional machinery.26 Meanwhile 

in heterochromatin, representing the 95% of the genome, the DNA is tightly asSTDbled 

in a conformation that is inaccessible to the transcription factors. Heterochromatin 

mainly consists of repetitive non-coding sequences and repressed genes that contribute 

to the maintenance of chromosomal stability by preventing mutations or translocations 

of the DNA bases.27 

The histone tails, protruding from the nucleosome, undergo several chemical 

modifications leading to chromatin remodeling, altered gene expression and ultimately 

to phenotypic changes. Such modifications are DNA methylation and histone post-

translational modifications.14 
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1.3.  Epigenetic modifications: DNA methylation and histone 

post-translational modifications 

DNA methyltransferases (DNMTs) are a class of enzymes that promote the cytosine 

methylation at the 5’ position of the cytosine ring within cytosine-phosphate-guanine 

(CpG) dinucleotide and this modification leads to 5-methylcytosine (m5C).18 DNMTs 

are a well characterised class of epigenetic modifiers and are involved in the regulation 

of embryonic development, chromatin structure and chromosome stability. Hence, 

aberrant DNA methylation patterns correlate with a huge variety of diseases.28,29 The 

mammalian DNA methylations are orchestrated by three classes of DNMTs: DNMT1, 

DNMT2 and DNMT3. DNMT1 is the most abundant class and acts as a “maintenance 

methyltransferase”, specific for hemi-methylated CpGs: it copies DNA methylation 

patterns to a newly synthesised DNA strand, promoting the inheritance of the DNA 

methylation patterns.30–33 DNMT2 class is devoted mostly to the methylation of transfer 

RNA; however, its functions have not yet been understood fully.34 DNMT3A and 

DNMT3B act as de novo methyltransferases, targeting unmethylated CpGs and initiate 

the methylation process.35  

In euchromatin, most housekeeping genes and the ones that need regulation are 

frequently unmethylated, remaining accessible to transcription factors that bind to their 

gene promoter and initiate the transcriptional process.31,36 Conversely, the non-coding 

regions are enriched in methylated DNA and associated with transcriptional silencing 

and heterochromatin formation.37–39 As both hypomethylation and hypermethylation 

states of CpG islands have been described in cancers, DNMT inhibitors (DNMTi) are 

currently evaluated as therapeutic agents.40 DNMTi can be classified into two groups: 

nucleoside and non-nucleoside inhibitors. Nucleoside inhibitors consist of modified 

cytosine-like molecules that are incorporated into the newly synthesised DNA strand, 

impeding the methylation by DNMTs.29  

The Food and Drug Administration (FDA) has approved two nucleosides DNMTi for 

the therapy of myelodisplastic syndrome (MSD) and chronic myelomonocytic 

leukaemia (CML). These are 5-azacytidine and 5-aza-2’-deoxycytidine (1.1 and 1.2, 

Figure 1.2).29 
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Although having pharmacokinetic liabilities, the molecules are effective at low doses 

and are generally well tolerated by MSD and CML patients.29  

 

 
Figure 1.2: Nucleoside based DNMTi. 

1.1 5-azacytidine; 1.25-aza-2’ deoxycytidine. 

 

Non-nucleoside agents are investigated to overcome the possible side effects associated 

with the incorporation of external nucleotides into the DNA, such as the potential to 

induce mutations.29,41 These agents inhibit the enzymatic activity by binding to the 

DNMT’s catalytic site (1.3 and 1.4, Figure 1.3).29 

 

 
 

Figure 1.3: Non-nucleoside based DNMTi. 

1.3 SGI-1027, a quinolone based compound; 1.4 RG108, a tryptamine based compound.  

 

The DNA methylation strikingly correlates with histone modifications and their 

cooperation tightly regulates the genome by promoting chromatin remodeling.14,31 

Three categories of proteins promote the histone N-terminal tail modifications and 

based on their functions, these are termed as “writers”, “erasers” and “readers” (Figure 

1.4).42,43  
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Figure 1.4: Cross talk between epigenetic regulators: writers, erasers and readers. 

The writers, like histone acetyltransferases (HATs), histone methyltransferases (HMTs) and arginine 

methyltransferases, promote the addition of epigenetic marks onto histone tails. The erasers such as histone 

deacetylases (HDAC) and lysine demethylases (KDMs) families (LSDs and JmjC) remove the epigenetic marks from 

the histone tails. Readers of the epigenetic marks, like bromodomains and chromodomains, have specialised protein 

domains that recognise the epigenetic modifications. All together these epigenetic regulators contribute to DNA-

dependent processes such as chromatin remodeling, gene transcription and ultimately phenotypic changes. Moreover 

these actively participate in DNA replication and DNA repair.  

Adapted from Falkenberg et al.43 

 

The “writers ”  lay down epigenetic marks on lysine (Lys or K) and arginine (Arg or R) 

residues of histone substrates.43 The histone acetyltransferases (HATs) for example, 

transfer acetyl groups to lysines residues of H2A and H2B, H3 and H4.44 Being 

positively charged, lysine side chains of histones keep chromatin compaction by 

binding the histone core proteins to the negatively charged chains of DNA. By masking 

such positive charge, acetylation via HATs elicit euchromatin formation and the access 

of the transcriptional machinery to DNA gene promoters.39,44 HATs also promote the 
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acetylation of non-histone proteins such as p53.44 The histone methyltransferases 

(HMTs) are responsible instead for the addition of methyl groups to histones’ lysine and 

arginine residues using S-adenosylmethionine as a methyl group donor.45 As opposite to 

acetylation, an epigenetic mark exclusively associated with euchromatin and therefore, 

transcriptional activity, histone methylation conveys either an activating or a repressive 

mark to genes. The HMTs can add up to three methyl groups on H3 and H4 lysine 

residues (H3K4, H3K9, H3K27, H3K36 and H4K20). Both the methylation position 

and the degree of methylation (mono, di or tri- methylation) determine the 

consequences of such epigenetic modification leading to euchromatin or 

heterochromatin formation.42,46 Transcriptionally active regions possess enriched H3K4, 

H3K36 and H3K79 mono-methyllysine residues, whereas inactive regions display 

H3K9 H3K29 and H4K27 mono, di-methylation marks.47,48 Tri-methyl marks at K9 and 

K27 of H3 are associated with heterochromatin formation and gene silencing whereas 

H3K9 and H3K27 mono-methylation marks are linked with gene activation. Thus, even 

at the same lysine residue, different degrees of methylation promote divergent 

effects.47,48 Unlike to HATs and HMTs, the epigenetic “ erasers”  remove chemical 

modifications from histone substrates. The histone deacetylases classes (HDACs) 

remove the acetyl marks from lysine residues of H3 and by re-establishing the presence 

of the positive charge on the Lys residues, favour the histone protein binding to the 

DNA chains and heterochromatin formation (Figure 1.5).18,43 
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Figure 1.5: Transcriptional consequences of acetylation and deacetylation on histone tails. 

Acetylation decreases the affinity of histones for DNA by masking the positive charge on the lysine residues. 

Deacetylation promotes the removal of acetyl group re-establishing the histone-DNA affinity and thus transcriptional 

repression.  

 

There are 18 known HDACs, classified into five subclasses based on the activity and 

phylogenesis (Table 1.1). 

 

Table 1.1: Classes of HDACs. 

 

 

Classes I and II reveal a high enzymatic preference towards histone substrates and are 

characterised by the presence of a HDAC-Zinc binding domain.43 The activity of these 

classes has been successfully inhibited with the use of chelating agents such as 

hydroxamic acid derivatives.49 The Sirtuin family of HDACs constitutes class III and 

several works indicate their importance in human cell development and disease.49 Seven 

Sirtuins have been described so far and among them, the SIRT1 group regulates 

acetylation levels in both histone (H4K16 and H3K9) and non-histone proteins like 

Class Enzymes Zn2+ Localization Expression 

I HDAC 1,2,3,8 Yes Nucleus Ubiquitous 

IIa HDAC 4,5,7,9 Yes Nucleus and Cytoplasm Tissue specific 

IIb HDAC 6 and 10 Yes Cytoplasm Tissue specific 

III Sirtuins 1-7 No Variable Variable 

IV HDAC 11 Yes Nucleus and Cytoplasm Ubiquitous 



  Chapter 1 

  10

p53.43,46,49 HDAC 11 constitutes class IV and members of this group have been 

localised in different tissues such as brain, kidney and testis but their activity is still 

poorly characterised.49 

Although associated mostly with transcriptional repression, recent studies showed that 

the HDACs activities can also promote transcriptional activation of specific genes.50 

HDACs are often found as stable subunits of transcriptional repressor complexes, as for 

example the NuRD complex.51 Abnormal HDACs activity and expression have been 

observed in cancer tissues and scientific evidence has proven that the use of HDAC 

inhibitors (HDACi) is likely to have therapeutic effect in wide range of diseases, such as 

anti-neoplastic potential by inducing cell-cycle arrest, apoptosis and immunomodulatory 

effects.43,49,51 However, it is still not clear how HDACi exert their anti-cancer activity. It 

has been proposed that they could bind to the HDACs catalytic pocket, chelating Zn2+ 

ion.43,51  

HDACi have generally a defined pharmacophore, composed of three regions (Figure 

1.6):  

1. a cap region or surface recognition domain that is able to occlude the entrance of 

the HDAC catalytic pocket;  

2. a zinc binding domain, which chelates the zinc ion; 

3. a linker region that connects the cap region to the zinc binding domain; 

 

 
 

Figure 1.6: Domains of HDACi pharmacophore showed in Vorinostat®. 

 

The most important classes of HDACi are:43 

1. Hydroxamic acids, generally inhibiting several classes of HDAC; 

2. Cyclic tetrapeptides and despipeptides; 

3. Benzamides, generally targeting class I HDAC; 

4. Epoxides; 

5. Aliphatic acids; 
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The most important drugs belongings to the above-mentioned classes of HDACi are 

reported in Figure 1.7. 

 
Figure 1.7: Important classes of HDACi and relative compounds and relative active concentrations. 

(A) Hydroxamates: 1.5 SAHA (Vorinostat®, Zolinza®), pan-HDACi, µM; 1.6 Givinostat, pan-HDACi, µM; 1.7 

Trichostatin , pan-HDACi, nM; 1.8 Belinostat, pan-HDACi, µM. (B) Benzamides: 1.8 Etinostat, HDACi I, II, II, 

µM; 1.9 Mocetinostat, HDACi class I, µM. (C) Cyclic peptide: 1.10 Depsipeptide (FK228, Romidepsin): HDACi 1 

and 2, nM. (D) Aliphatic acids: 1.11 Valproic acid, HDACi class I and II, mM; 1.11 Sodium Phenylbutyrate, 

HDACi Class I and II, mM. 
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Lysine demethylases (KDMs) are another class of epigenetic erasers devoted to the 

removal of methyl groups from lysine residues of H3 and H4. Two classes of KDMs 

have been identified: Lysine specific demethylase 1 and 2 (LSD1/2) and JumonjiC 

(JmjC) containing domain family of KDMs.  

LSD1/LSD2 are the first discovered human demethylases and catalyse the post-

translational demethylation of H3K4me1/me2 and H3K9me1/me2 side chains of histone 

protein and peptides (see below).52  

The JmjC proteins are the most recently discovered family of KDMs, comprising 

approximately twenty human demethylases and classified in five subgroups (KDM2/7, 

KDM3, KDM4, KDM5 and KDM6).53 The JmjC KDMs are able to promote the 

demethylation of mono-di and tri-methylated lysines using 2-oxoglutarate and dioxygen 

species as co-substrates.53,54 The demethylation involves five steps and starts with the 2-

oxoglutarate binding to the Fe(II) in the enzymatic pocket; the substrate binding 

promotes the destabilisation of the coordinate water molecule-Fe(II), eliciting the 

binding of a dioxygen species; subsequently, the dioxygen reacts with 2-oxoglutarate 

leading to succinate, release of carbon dioxide and formation of an oxoferryl species 

(Fe(IV)=O). The Fe(IV)=O hydroxylates the methyl-lysine that undergoes hemiaminal 

hydrolysis loosing the methyl-group (Scheme 1.1).54  
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Scheme 1.1: JmjC mechanism of lysine demethylation.  

 

Through this mechanism, the enzymes are able to demethylate lysine residues in all the 

three methylations states (mono, di and tri-methyllysine). Every sub-class of JmjC 

KDMs contains in the catalytic site specific amino acids that correlate with the 

preference for a specific methylation state of lysine.54,55 The JmjC containing proteins 

are involved in neural development and their activities are associated with autism, 

midline defects and mental retardation.53 Since their discovery, many JmjC inhibitors 

have been developed and the majority of them antagonise the catalytic activity by 

binding to the 2-oxoglutarate cofactor in a competitive fashion.53,56 For example, several 

8-hydroxyquinolines have been identified as low micromolar pan-JmjC KDMs 

inhibitors.54,57 One derivative of such class, (1.14, Figure 1.8), was prepared and 

evaluated successfully in blocking the reactivation of Herpes simplex virus (HSV) in a 

mouse model.58  
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The most promising compound for the JmjC inhibition is GSK-J1 from 

GlaxoSmithKline (1.15, Figure 1.8). The compound displays remarkable selectivity for 

KDM6 class and inhibit the enzymatic activity at sub-micromolar concentrations (60 

nM).59 GSKJ-1 binds to 2-oxoglutarate cofactor and chelates the Fe(II) in the active 

JmjC catalytic pocket. GSKJ-1 is also effective in modulating the pro-inflammatory 

macrophagic response.59 

 

 
 

Figure 1.8: Molecular structure of potent JmjC inhibitors. 

1.14 N-(3- (dimethylamino) propyl)-4-(8-hydroxyquinolin-6-yl) benzamide, was tested against HSV in mouse 

models; 1.15 GSK-J1 effective in inhibition JMJD3 enzymatic activity and reduces pro-inflammatory response. 

 

The “readers”  represent the last category of epigenetic effectors and actively recognise 

the chromatin associated histone modifications. Such epigenetic effectors bind directly 

to post-translational marks on histones via their specialised proteins domains.60 For 

example, lysine side chain modifications are recognised by chromobarrel, 

chromodomain, tandem Tudor domain, whereas acetylation marks are recognised by 

bromodomains.60 Proteins containing bromodomains have been identified to be 

involved in oncogenic rearrangement and control of salient elements for the regulation 

of the nuclear factor kB, a mediator of the inflammatory response pathway.61 Recently, 

several small molecules targeting bromodomains and specifically, the bromodamain ex-

terminal (BET), have been patented as anti-neoplastic agents.62 
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1.4. LSD1 biology and therapeutic potential 

Since its discovery almost 11 years ago, Lysine specific demethylase 1 (LSD1) has 

intrigued the scientific community because of its multiple biological functions.  

To date, research has only partially disentangled LSD1 activity in cell homeostasis in 

health and disease. As a result, the consequences of LSD1 inhibition are far from being 

fully understood. The overall information gathered suggests that it tightly regulates 

chromatin remodeling processes, cell development, cell differentiation, cancer 

proliferation and metastasis.55,63–70 On that account, molecules targeting LSD1 have 

been widely researched for pharmacological interventions and currently, four clinical 

trials are investigating LSD1 inhibitors for leukaemia and small cell lung cancer.56,71  

LSD1 has salient roles in cell development and cell differentiation programs: its 

knockdown or pharmacological inhibition results in impaired development of embryos72 

and precludes the correct differentiation of hematopoietic,73,74 pituitary,75 osteogenic76 

and neuronal stem cells.77–79 Yet LSD1 overexpression correlates with poor outcome of 

cancers and LSD1 suppression effectively arrests cancer cell proliferation.80–83 LSD1 is 

among the most frequent proteins found in human primary acute myeloid leukaemia 

tissues and an ever-growing body of evidence from pre-clinical and clinical studies, is 

designing LSD1 as a suitable target in blood-related malignancies.84–86 High levels of 

LSD1 are also associated with the invasive behaviour of solid tumours such as 

colorectal,87–89 bladder,90 prostate81,91 and breast cancers.92 LSD1 overexpression in 

prostate carcinomas predicts aggressive biology and correlates with an increased risk of 

relapses after prostatectomy.93 Accordingly, treatments with anti-LSD1 agents decrease 

cell growth of androgen dependent and independent prostate carcinomas in in vitro and 

in vivo models.93–95 In breast cancer biopsies, the presence of LSD1 is a prognostic 

marker of tumorigenesis and tumour aggressiveness.92,96–98 In addition, its abnormal 

expression has been found in receptor negative (ER−) breast cancers, characterised by a 

rapid growth, loss of cell differentiation capacity, metastatic potential and insensitivity 

to estrogen suppressors.92 It is also reported that the pharmacological inhibition of 

LSD1 sensitises the breast cancer to HDACi treatments and to hormonal therapy in 

drug-resistant carcinomas cellular models.85,99 Furthermore, LSD1 activity is associated 

with HSV infection and reactivation from latency, broadening the potential applications 

of LSD1 inhibitors as anti-viral agents.65,100 
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1.4.1. LSD1 structure and enzymatic catalysis on H3K4 

LSD1 is a large protein (93 kDa), highly conserved among eukaryotes and belongs to 

the family of flavin adenine dinucleotide (FAD) -dependent amino oxidase enzyme.52 It 

is characterised by three major protein domains:52 an N-terminal SWIRM domain  

(Swi3p/Rsc8p/Moira, residues 172-270), an amine oxidase-like domain (AOL, 

residues 271-417) and a Tower domain (residues 428-533).77,101 The SWIRM domain 

is important for binding chromatin and forms, together with the AOL domain, a large 

hydrophobic pocket containing FAD (Figure 1.9).102 The AOL domain constitutes the 

catalytic site of the enzyme and reveals a high homology in amino acid sequence to 

other FAD-dependent enzymes, including mono- and polyamine oxidases.102,103 The 

inner surface of the catalytic site is characterised by two different areas, defined by the 

presence of amino acid residues with different chemical natures. The entrance of the 

catalytic channel, accommodating the N-methyl-Lys of H3, shows a flat surface lined 

mainly with hydrophobic residues. The opposite side instead presents mostly acidic side 

chains and backbones of carbonyl oxygen atoms and therefore, it is more 

hydrophilic.103,104 

The tower domain protrudes away from the AOL domain and serves as a platform to 

link LSD1 to its binding partners, such as co-repressor element silencing factor 

CoREST.26 LSD1 is able by itself to remove methyl and dimethyl groups on H3K4 in 

vitro, whereas for nucleosomal demethylation it requires CoREST.105 Through the 

SANT2 domain of CoREST, LSD1-CoREST binds the DNA and exerts its demethylase 

activity on chromatin. In addition to this function, CoREST potentiates the demethylase 

activity on targeted histones and diminishes LSD1 proteosomal inactivation.77,106,107 
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Figure 1.9: X-ray crystal structure of LSD1 with H3 and LSD1 domains.  

(A) LSD1-CoREST X-ray structure, (PDB code: 2XUU); (B) Linear representation and surface structure of LSD1. 

Image B adapted from Lynch et al.84 
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The demethylation mechanism via LSD1 involves the reduction of FAD to FADH2 and 

oxidation of the methyl ε-amine of the methylated lysine, generating an iminium cation 

(Figure 1.10).108,109 This is next hydrolysed to a carbinolamine that spontaneously 

degrades to formaldehyde and demethylated amine. The reaction results in a hydride 

transfer with the simultaneous reduction of FAD to FADH2 that is regenerated to its 

oxidised form by molecular oxygen, producing hydrogen peroxide (H2O2) as a side 

product. The requirement of protonated hydrogen for the electron transfer and imine 

intermediate formation, limits the LSD1 activity to mono and di-methylated 

lysine.104,109,110  

 
Figure 1.10: LSD1 demethylation mechanism on H3 substrate. 

 

Although possessing high homology with other FAD-dependent enzymes, no catalytic 

cross-reactivity has been reported concerning LSD1, implying a high degree of 

specificity.101 Furthermore, LSD1 does not show catalytic preferences for H3K4 mono 

or di-methyl-lysines, while the rates of demethylation are affected by the presence of 
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other PTMs along the H3.104,108 For example, acetylation of H3K9 increases the LSD1 

Km by 6-fold, phosphorylation on H3S9 abolishes the demethylase activity in vitro and 

methylation at the H3K9 does not affect the catalysis rate.104 

Beyond LSD1, a second isoform of lysine-specific demethylase belongs to this family 

of FAD-dependent KDMs and is termed LSD2. LSD2 (KDM2 of KDM1b or AOF1), is 

the only known mammalian homologue of LSD1.70,111 Both proteins share a similar 

catalytic domain (around 31% homology) but differ at the N-terminal region. Like 

LSD1, LSD2 can only remove methyl groups on mono and di-methylated H3K4; 

differently from LSD1, it is found associated with coding region of the genome. 

Moreover, it does not require CoREST for its nucleosomal activity70 and this could 

imply that LSD2 is involved in different transcriptional programs by associating with 

other coregulators.98 

The hydrogen peroxide generated by the activity of the two flavoenzymes represents an 

important feature, as the reactive oxygen species are potentially dangerous for 

chromatin environment.112 An intriguing hypothesis is that they might have a signalling 

role in cellular processes, retrieving other chromatin remodeling factors.108,112,113  
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1.4.2. Important LSD1 functions as a catalytic subunit in multi-

component systems and its association with transcription factors 

LSD1 is commonly found complexed with biomolecules or enzymes, taking part in 

multi-component systems that function coordinately as whole catalytic unit. Such 

protein complexes contain the essential elements for gene targeting and the 

simultaneous regulation of multiple epigenetic modifications. By influencing the 

substrate specificity, the localisation as well as the degree of activity of LSD1 within 

chromatin, these interactions confer to LSD1 catalysis on H3 diverse biological 

effects.72,98  

As aforementioned, one of the critical binding partners for LSD1 nucleosomal 

demethylation is C-terminal domain of repressor element-1 silencing transcription 

factor (CoREST) and this is commonly found cooperating with LSD1 within multi-

component systems.106,110,114 CoREST consists of three major protein domains, which 

are the N-terminal domain ELM2, two SANT domains (SANT1 and SANT2) and a 

linker domain.114 The region that encompasses ELM2 and SANT1 functions as a 

platform to link LSD1 to the HDAC family of deacetylases.115 Hence CoREST 

asSTDbles deacetylases and demethylases enzymes, bridging together two epigenetic 

effectors to nucleosomal substrates. The LSD1-CoREST-HDAC complex operates as a 

double-blade razor eliminating first the acetyl groups from lysine residues via HDAC 

and then, the methyl groups from H3K4 via LSD1. The complex associates with several 

transcription factors and regulates important biological pathways.97,98,116–121  

For example, it participates in hematopoietic differentiation by associating with B 

lymphocyte-induced maturation protein 1 (Blimp-1). Blimp-1 is a transcription factor 

with a pivotal role in embryo development and homeostasis of plasma cells. LSD1-

HDAC-CoREST is recruited by Blimp-1 to silence the mature B-cell gene expression at 

the end of cell differentiation programs. In addition to Blimp-1, LSD1-CoREST-HDAC 

complex regulates erythropoiesis by associating with the transcription factor TAL1 

(Figure 1.11).119 Depending on the context, TAL1 acts as a transcriptional repressor or 

activator: while in normal cell physiology regulates the formation of B and T cells 

lineages, its aberrant activation is linked to T-cell lymphoblastic leukaemia onset and 

progression.122 In erythroid stem cells progenitors, the transcriptional factor is engaged 

with LSD1 in maintaining cells in an undifferentiated state. When the cells became 
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differentiation-competent, LSD1 dissociates from TAL1 promoter and such event is 

accompanied by the activation of other PTMs, such as the phosphorylation of S173 and 

the recruitment of HMTs and HATs.119,123 This translates in an increment of H3K4me2 

and AcH3K9/K4 marks in mature cells.123 The TAL1-LSD1 association is recovered at 

a later stage of cell-maturation and the activity of LSD1 on H3K4me1/me2 represses 

TAL1, contributing in arresting cell differentiation and proliferation programs.119,122 

Undoubtedly, eventual perturbations along the processes can result in abnormal cell 

growth or impaired cell differentiation that could lead to blood-related malignancies. 

 

 
Figure 1.11: Association of LSD1-CoREST HDAC with TAL1. 

TAL1 recruits LSD1 during different stages of erythropoiesis. 

 

LSD1-CoREST-HDAC activity is involved in the regulation of the nervous system as 

demonstrated by its cooperation with nuclear receptor 2 (NR2E1-TLX, Figure 1.12).79 

TLX controls the metabolism and development of neuronal tissues118,124 and LSD1, by 

associating with TLX, becomes a downstream target of the micro RNA miR-137: TLX 

in neuronal stem cells recruits LSD1 to the miR-137 genomic region to repress miR-137 

primary precursor expression. Simultaneously, miR-137 antagonises LSD1 activity by 

removing it from its genomic loci, sustaining this way the miR-137 expression, which is 

associated with neuronal stem cells proliferation, neuronal and glial differentiation and 

migration.125 In addition, co-immunoprecipitation of the TLX-LSD1 complex revealed 

that other proteins are likely to associate with the TLX-LSD1 as for example ZMYM2, 

GSE1 and ZMYM3.118 Although the biological relevance of such proteins in neuronal 

maturation programs is unclear, it has been observed that ZMYM3 proteins also 

associates with Snail-1, which is another LSD1 binding partner and a master regulator 
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of the epithelial-to-mesenchymal transition (EMT).98 Recently, Yokoyama and 

colleagues demonstrated that LSD1-CoREST-HDAC complex associates with TLX in 

retinoblastoma cells.118 The complex was found responsible for the onset and the 

progression of the carcinoma by controlling the expression of genes linked to cell 

proliferation, as for example the tumour suppressor gene PTEN. As the retina is 

considered part of the central nervous system,126 this work further evidentiate the 

importance of LSD1 for neuronal tissues homeostasis and pathogenesis.118,127  

 

 
Figure 1.12: Association of LSD1-CoREST-HDAC with TLX. 

The complex is recruited by TLX transcription factor and forms a negative feedback loop with microRNA in miR-

137 in the control of neuronal differentiation. 

 

LSD1 is found to take part in the NuRD (Mi-2) complex (Figure 1.13).97 HDAC1, 

HDAC2, several histone-binding proteins, metastasis associated proteins MTA1, MTA2 

and MTA3, methyl CpG binding domain protein and the chromodomain DNA-binding 

helicase CHD3 form the NuRD complex.120 The MTA proteins display both ELM2 and 

SANT domains, sharing strikingly structural similarities with CoREST.97 In a similar 

fashion as with CoREST, the LSD1 tower domain binds to the NuRD MTA (1-3) 

subunits. By exploiting the LSD1 demethylase activity on H3K4, NuRD amplifies its 

silencing activities on target genes promoters. The genes repressed by the LSD1-NurD 

complex are critically implicated in cell growth, survival and invasion.97 One of the 

downregulated elements is TGFβ1, a key modulator of EMT in epithelial tumours.97,128 

By reducing the levels of TGFβ1, the LSD1-NuRD complex was shown to suppress 

breast cancer potential in vivo.97 Notably, a subsequent study in HeLa cell extracts did 
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not identify LSD1 as a permanent subunit of NuRD, suggesting that such cooperation is 

potentially context-dependent.129 Furthermore, the LSD1-NuRD complex was found to 

interact with KDM5B (JmjC KDMs). Within this complex, both the epigenetic erasers 

concertedly the demethylation on H3K4 and delete the chemokine CCL14 signalling 

pathway, which is linked to metastasis and angiogenesis.130 

 
Figure 1.13: Association of LSD1 with NuRD complex. 

LSD1 is recruited by the MTA subunit of the NuRD complex to enhance epigenetic silencing activities on target 

genes. In this context LSD1 suppresses EMT in breast cancer.  

 

The C-terminal binding protein CtBP is heavily implicated in tumorigenesis and acts as 

repressor of mammalian genes by associating with several binding partners.121,131–133 

Many repressive functions of CtBP have been linked with LSD1-containing 

complexes.121,134,135 The earliest and of foremost importance involves LSD1 as well as 

other PTMs as for example H3K9 methyltransferase and deacetylases; together the 

chromatin remodellers synchronise their activities for the repression of the E-cadherin 

gene, conferring to cells mesenchymal phenotype.121  

Recently, it has been discovered that several SNAG-containing proteins are regulated 

by LSD1.136,137 The SNAG domain consists of a pattern of conserved amino acids at the 

N-terminal, which reSTDbles H3.117 This feature enables the SNAG-containing proteins 

to physically interact with LSD1 AOL domain. Among the SNAG-containing proteins, 

the zinc finger protein Snail-1 is the most studied for its salient roles in metastasis and 

cell migration roles in epithelial tumours by controlling the EMT.117,137–141 By recruiting 

LSD1, Snail-1 reduces the level of mono-di-methylated H3K4 at its target genes, 
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promoting transcriptional repression (see Chapter 2). Hence LSD1 by associating with 

Snail-1, has a salient role in the control of the EMT.117 Accordingly, it has been 

demonstrated that the inhibition of the LSD1-Snail-1 interaction reverts the status of 

silenced genes and re-establishes the epithelial phenotype in neuroblastoma and colon 

cancers cells without impairing cell proliferation.117,142  

Long non-coding RNAs (lncRNAs) are an emergent class of LSD1 binding partners. 

LncRNAs are composed of non-coding genetic material and lack of a defined biological 

function.143 The most studied lncRNA is the HOX antisense intergenic lncRNA 

(HOTAIR) and its overexpression in breast tumours is a marker of tumour 

aggressiveness.143,144 It is characterised by two binding domains: one for the Polycomb 

repressive complexes 2 (PRC2) and one for LSD1 complexes.27 PRC2 is a member of 

the PcG family proteins and has histone methyltransferase activity and primarily 

trimethylates histone H3K27 (an epigenetic mark associated with gene silencing). The 

binding of LSD1 complexes and PCR2 to the HOTAIR enables their coordinative 

activity in silencing tumour suppressor signalling pathways (Figure 1.14).143 

 
Figure 1.14: LSD1-CoREST association with lncRNA HOTAIR. 

 

Unlike the LSD1 associations described so far, which correlate with transcriptional 

repression and gene silencing, LSD1 acts instead as a transcriptional activator in 

association with nuclear receptors (androgen and estrogen receptors, Figure 1.15).145,146  
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Figure 1.15: LSD1 in association with protein complexes and the repressive or activation effects on target 

genes when acting on H3K4me1/me2 or H3K9me1/me2. 

By changing substrate specificity, the enzymatic activity of LSD1 can lead to transcriptional repression or activation. 

Adapted from Lynch et al.84 

 

Nuclear receptors are transcription factors regulated by steroid hormones (estrogen and 

androgen) ligands.147 The transcriptional activity of the nuclear receptor androgen 

receptor (AR) regulates the prostate functions by providing instructions for androgen 

hormones in both physiological and pathological conditions.148 After hormonal binding, 

LSD1 forms a complex with the AR and translocates to the nucleus to co-localise at the 

androgen response elements promoters (AREs) (Figure 1.16). Through its catalytic 

activity on H3K9me1/me2, LSD1 promotes the transcriptional activation of targeted 

genes such as the prostate specific antigen (PSA).93,149 Androgen regulated genes, such 

as PSA and TMPRSS2:ERG fusion gene, are expressed in hormone independent 

cancers, indicating that AR transcriptional activity has been reactivated despite castrate 

serum androgen levels.81,150 These phenomena have been correlated to AR mutations or 

alternative splicing, increased intra-tumoural androgen synthesis, increased co-activator 

expression and activation of several kinases that may directly or indirectly sensitise AR 

to low levels of androgens. LSD1 pharmacological inhibition with pargyline or TCP in 

prostate cancer cells has shown a decrease of PSA and Tmprss2 expression and 
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suppression of growth in hormone dependent and independent prostate cancer cell 

lines.91,146,149–151 Additionally, it has been shown that LSD1 is per se able to induce AR-

dependent transcription by regulating H3K9me1/me2 even in the absence of androgen.91 

Therefore, the LSD1-AR association constitutes a potential target for therapeutic effects 

in prostate cancers.  

The reason why the association of LSD1 with AR induces changes in substrate 

specificity from H3K4 to H3K9 leading to gene activation instead of repression has not 

been fully understood. Metzger and colleagues proposed that the key event contributing 

to this switch is the association to LSD1-AR of kinase PKCβ1. Upon hormone binding, 

the kinase phosphorylates the H3T6 and such modification prevents the demethylation 

on H3K4.152 On the other hand, high levels of androgen promote in post-castration 

models of prostate malignancies a negative feedback loop whereby AR recruits LSD1 at 

target promoters to mediate instead AR repression via H3K4me1-me2 demethylation.81 

Hence the dual roles of LSD1 in AR regulation, involving both transcriptional activities, 

mediated by demethylation of H3K9me1/me2 and transcriptional silencing, through 

H3K4me1/me2, still remains enigmatic. 
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Figure 1.16: Effects of LSD1 activity in association with nuclear hormone receptor AR. 

After hormonal stimuli, LSD1 demethylates H3K9me1 and H3K9me2, promoting gene transcription. Conversely, at 

high levels of circulating hormones, the AR recruits LSD1 to its promoter regions to repress transcription by 

demethylating H3K4me1/2.  

 

Similarly to AR, the estrogen nuclear receptor ERα controls cellular processes in tissues 

targeted by estrogenic hormones and its dysregulation is implicated in the genesis and 

progression of tumours.153 ERα is associated with LSD1 constitutively and in absence 

of estrogenic stimuli, LSD1 demethylates H3K4.112 Upon hormonal induction, ERα 

recruits LSD1 to its target gene promoters to enable the transcription of signalling 

pathways regulated instead by H3K9 demethylation. In addition, also the ERα 

corepressor CAC1, the aberrant expression of which associates with resistance to 

paclitaxel, is found to interact with LSD1-ERα.154 When CAC1 binds to LSD1-ERα, it 

decreases the occupancy of the complex to target genes loci and, by accumulating 

H3K9me1/2, decreases gene transcription (Figure 1.17).154 
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Noteworthily, the X-ray crystal structure of LSD1-CoREST bound to an H3 peptide, 

suggested that only the N-terminal residues 1-7 are capable to enter into the LSD1 

enzymatic pocket, positioning the K4 in front of FAD for demethylation.155 Therefore, 

according to this structural study, the demethylation on K9 is structurally incompatible 

and it is likely that nuclear hormone receptors AR and ERα are directly or indirectly 

involved in a transient structural modification to the LSD1 catalytic pocket that enables 

switching substrate specificity. In keeping with this, PELP1, a co-regulator of ERα with 

unknown activities, associates with LSD1-ERα and alters the demethylase substrate 

specificity from H3K4me2 to H3K9me2.156 Moreover, a recent report from Cortez and 

coworkers implies that targeting LSD1-PELP1 partnership could be of therapeutic 

interest in breast cancer.99 Similarly to PELP1 interaction, it has been revealed that the 

JmjC KDMs subfamily KDM4C cooperates with LSD1-AR complex, participating in 

the sequential removal of H3K9me3 residues and this might also contribute in changing 

substrate specificity.157  
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Figure 1.17: Effects of LSD1 activity in association with nuclear hormone receptor ERα. 

LSD1 is constitutively associated with ERα. In the absence of estrogenic stimuli, the enzyme demethylates H3K4. 

After estrogenic stimulation, LSD1 initiates gene transcription following the removal of H3K9me1/2. When the 

protein CAC1 binds to LSD1-ERα, it prompts the removal of the complex from the target gene promoters silencing 

the LSD1-dependent activity by increasing the H3K9me1/2. 
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1.5. Reversible and irreversible inhibitors of LSD1 

Given the multiple roles of LSD1 in pathobiology, several drug design efforts, including 

from our group, have focused on the development of LSD1 inhibitors. 

These can be grouped into irreversible (covalent) and reversible inhibitors. 

1.5.1. Irreversible inhibitors of LSD1 

Initial attempts to target LSD1 were performed with known inhibitors of monoamine 

oxidases (MAO). LSD1 and MAO belong to the same FAD-dependent oxidase family 

and share a high level of sequence homology at their catalytic sites. Based on this 

information, initial studies of lead discovery were focused on the known monoamine 

oxidase inhibitors (MAOIs) and identified clorgyline and deprenyl as active molecules 

against LSD1.158–160 Following the initial reports, irreversible MAOIs nialamide, 

clorgyline, deprenyl and pargyline were tested but failed to show inhibitory activity 

against LSD1. Simultaneously, phenelzine and tranylcypromine (TCP) were found to 

inhibit H3K4 demethylation of LSD1 at 200 µM and 100 nM concentrations 

respectively (Figure 1.18).159 
 

 
Figure 1.18: MAO inhibitors first tested against LSD1. 
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1.5.1.1. Mechanisms of irreversible inhibition 

The first developed MAOIs covalently bind to the MAO enzymes or FAD, causing 

irreversible inhibition. Due to their role in the catabolism of dietary amines, the 

irreversible blockage of MAOIs might cause hypertensive problems (cf. cheese-effect*) 

if the diet is not controlled during their use.161 The simplest example of irreversible 

inhibition is phenelzine, a member of hydrazine class of MAOIs. The hydrazine moiety 

was shown to form a covalent complex with FAD.160  

TCP shows a more complicated irreversible binding that can occur by several different 

mechanistic pathways.103,155,162  

Schmidt and coworkers initially proposed the C-C bond formation between TCP and 

FAD (Scheme 1.2, A), would occur through a single electron transfer (SET) to the 

C(4a) of the FAD.162 Subsequent cleavage of one of the C-C bonds of the cyclopropyl 

ring would lead to the formation of a cinnamaldehyde adduct (b4, Scheme 1.2) through 

the formation of a benzylic radical. Alternatively, this could proceed through the radical 

intermediate attack on the flavin ring followed by ring opening and formation of an 

atropaldehyde adduct (c3, Scheme 1.2).162 

  

                                                 

 
*  The cheese effect refers to a hypertensive crisis that the individual subject to MAOIs treatment 

experiments with the concomitant consumption of foods containing tyramine (i.e. cheese).161 
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Scheme 1.2: Proposed models for TCP-FAD adduct formation, by Schmidt and colleagues.  

 (A) FAD ; (B) cinnamaldehyde adduct (b4) (C) atropaldehyde adduct formation (c3). 

 

Later Yang and coworkers, suggested a SET mechanism from TCP to FAD that would 
159 first generate an amine radical cation; ring opening of the cyclopropane would result 

in a stabilised benzylic radical and an iminium cation followed by C-C bond formation 

and imine hydrolysis that would lead to a 5-membered ring fused to C(4a) and N(5) of 

FAD.  

 

 



  Introduction 

 33

 
Scheme 1.3: Proposed models for TCP-FAD adduct formation in LSD1, known as five membered ring model, 

by Yang and colleagues. 

 R = ribityl-ADP.  

 

Mimasu and coworkers resolved another crystal structure with improved resolution and 

suggested that the TCP-FAD adduct not only contains the C(4a) complex, which is the 

major adduct formed, but also incorporates an intermediate such as N5 adduct (Scheme 

1.4).163  

 

 
Scheme 1.4: N5 adduct postulated by Mimasu and colleagues. 

R=ribityl-ADP. 

1.5.1.2. Phenelzine analogues 

Phenelzine is one of the first compounds identified to inhibit LSD1 but only a few 

groups developed analogues due to their unselective inhibition.160 A recent report 

describes a para-phenylbutyrylamide substituted phenelzine derivative termed bizine 

(1.22, Figure 1.19), as an active inhibitor of recombinant LSD1 (Ki 59 nM).164 
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Biological investigations on 1.22 demonstrated fluctuating levels of H3K4me2 at 0.4 

µM (determined by Western blot) and moderate anti-proliferative activity in LNCaP 

cells (androgen dependent adenocarcinoma cell line) (IC50>50 µM). Bizine was also 

evaluated successfully in protecting neurons from oxidative stress induced by 

homocysteic acid.164,165  

 
Figure 1.19: Bizine structure. 
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1.5.1.3. Tranylcypromine analogues 

Tranylcypromine (trans-2-phenyl-cyclopropyl-1-amine, TCP) was firstly synthesised 

by Burger and Yost in 1948166 and commercialized as an antidepressant (Parnate®).167 

Having a primary amine and a phenyl ring, it contains two stereocenters corresponding 

to the carbons at the cyclopropyl ring. It is clinically administered as a racemic mixture 

of two trans enantiomers 1S,2R-(+)-1 and 1R,2S-(−)-1.167 The 1S,2R-(+)-1 enantiomer 

is identified to be ten times more potent than the (−)-enantiomer in vivo.168 However, 

the oral intake of only the single (+)-1 enantiomer of TCP caused severe side effects 

including weight loss, gastrointestinal disorders and agitation.168 TCP inhibits LSD1 

enzymatic activity in vitro with a Ki spanning from 477 µM to 2 µM.66 Huge variations 

in the reported values highlights the variability of the assay conditions, detection 

methods and the constructs used for LSD1 expression.66,169,170  

TCP is the most used scaffold for the synthesis of novel covalent inhibitors of LSD1. 

The development of more selective inhibitors was focused on the functionalization of 

the different elements of the TCP core and specifically the phenyl ring, amine group and 

the cyclopropane ring.  

 

I)  Tranylcypromine analogues with substitutions at the phenyl ring  

A pioneering work from Gooden and colleagues revealed that TCP derivatives bearing a 

para-substituted aromatic rings were slightly more potent than the correspondent 

unsubstituted compound.171 Within the series, 4-bromo and 4-methoxy TCP analogues 

displayed four to five-fold decrease of Ki compared to TCP. Following this study, 

Benelkebir et al. completed the enantioselective synthesis of a series of para-substituted 

TCP adducts (1.23 and derivatives, Figure 1.20), with increased potency against LSD1 

(Ki 3.7 µM) and anti-proliferative activity on LNCaP cells.170  

Ueda and coworkers designed TCP-lysine hybrid structures (NCL1 and NCL2, 1.24 and 

1.25 respectively, Figure 1.20), based on the X-ray crystal structure of FAD-propargyl-

lysine adduct. In 1.24 and 1.25, the Lys side chain was derivatised with the TCP phenyl 

ring via an ether bond; the amino and carbonyl group were substituted with benzyl and 

benzoyl structures to increase selectivity over MAO (the latter possess a smaller 

catalytic site), enhance potency (favour stronger interaction with the hydrophobic 

residues on the LSD1 catalytic cleft) and increase cellular uptake. The compounds were 
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active LSD1 blockers (Ki=2.5 µM and 1.5 µM respectively) and were also able to arrest 

cancer cell proliferation at µM concentration (6-67 µM range).172 The effect of 1.24 was 

further examined in LNCaP cells, where the suppression of cell proliferation was 

associated with apoptosis and autophagy induction.95 Additionally, in a xenograft model 

of prostate adenocarcinoma, the systemic administration of 1.24 (0.5-1.0 mg/kg), 

promoted the decrease of tumour volume without associated side effects.95 The same 

research group also investigated on the activity of the single enantiomers of 1.24 and the 

separation via chiral chromatography led to compounds 1.27 and 1.28, (Figure 1.20).173 

Enzymatic and biological evaluations revealed that 1.27 (1S, 2R)-NCL1 was four times 

more potent than 1.28 (1R, 2S)-NCL1 in enzymatic assays, whereas equal anti-

proliferative activities were reported for both structures in neuroblastoma and kidney 

tumours cell lines.172,173  

The library of TCP-Lys compounds was expanded further with the synthesis of 1.26, 

which displays a supplementary modification at the TCP nitrogen and specifically, 1-

acetyl-4-methyl-piperazine. The N-substitution promoted an enhanced enzymatic 

activity and increased the selectivity versus LSD1. The N-alkylated structure was in fact 

six times more potent (Ki=0.38 µM) compared to 1.25 (non-alkylated). Strangely, the 

increment in enzymatic potency did not translate into increased pharmacological effects, 

as 1.26 was equally potent to 1.25 in arresting the proliferation of SHSY5Y cells 

(neuroblastoma), but less active in HeLa (cervical) cells.  
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Figure 1.20: TCP based irreversible inhibitors substituted at the phenyl ring. 

TCP core is highlighted in red.  

 

A structure-based design led to the synthesis of trans-2-pentafluoro- 

phenylcyclopropylamine (2-PFPA) and a series of fluorinated TCP analogues.174 The X-

ray crystal structure of 1.29 (Figure 1.21) bound to the LSD1 catalytic site (PDB code: 

2Z5U) revealed the presence of a large hydrophobic pocket. Such observations led to 

1.30, which has an additional phenyl ring in ortho position. The molecule 1.30 

displayed enhanced enzymatic activity  (Ki 0.99 µM) compared to 1.29, supporting the 

crystallography data.  



  Chapter 1 

  38

 
Figure 1.21: Fluorinated TCP derivatives. 

 

Binda and coworkers generated a library of derivatives displaying bulky-branched 

substituents to the aromatic ring of trans-TCP. The structures present a N-

carbobenzyloxy-(Z-) amino acid moiety in para at the TCP-phenyl ring and their 

biological evaluation revealed interesting properties (Figure 1.22).175 The compounds 

were capable of hindering the growth of a broad panel of cancer cells at low 

concentrations (1-6 µM).66,175 Moreover, compound 1.32 (Figure 1.22) induced 

differentiation in APL cells (acute promyelocytic leukaemia) as a single agent and 

synergistically with trans retinoic acid (ATRA).66,175 The authors investigated also how 

TCP stereoconfiguration influences the biology. The results revealed no significant 

differences between the enzymatic activities of the two enantiomers (Ki of 1.33 vs. 1.34, 

Figure 1.22) for LSD1 inhibition.175 Conversely, the configuration was crucial for MAO 

B activity suppression, as the (+)-trans isomer was 20-fold more potent compared to the 

(−)-trans isomer. TCP derivatives with cis configuration displayed less affinity towards 

LSD1, LSD2 and MAO B.175  
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Figure 1.22: TCP analogues synthesised by Binda and colleagues.  

 

Rotili et al. synthesised several pan-histone demethylase inhibitors by incorporating 

inhibitors of both the KDMs families in the same structure.176 To do so, the TCP core 

was coupled with 4-carboxy-4’-carbomethixy-2,2’-bypiridine or 5-carboxy-8-

hydroxyquinoline, which are known inhibitors of the JmjC KDMs.176 Enzymatic 

evaluations revealed that the bi-functional structures suppressed concurrently LSD1 and 

a panel of JmjC demethylases, with similar potencies as the reference compounds.176 

Compounds 1.36 and 1.37 (Figure 1.23) were among the most potent, displaying also 

selectivity towards LSD1 over MAOs. Immunoblotting measurements supported the 

effective demethylases inhibition, as µM treatments induced a dose-dependent 

hypermethylation at H3K9me3 and increased expression of H3K4me2 in LNCaP and 

HT116 cells (HT116 is a colon cancer cell line). Additionally, µM concentrations of 
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1.36 and 1.37 (10-100 µM range) were more efficient in inducing apoptosis in colon 

and prostate carcinoma cells compared to unconjugated single agents.176 

 

 
Figure 1.23: Pan-histone KDMs inhibitors. 

 

 

II)  Tranylcypromine analogues with substitutions at the phenyl ring and nitrogen  

Evidence of potency and selectivity achieved through para-substitution on the phenyl 

ring of TCP has been further evidentiated in several patents disclosed by Oryzon 

Genomics and GlaxoSmithKline. In the former, a series of N-substituted (hetero) aryl 

cyclopropylamines were prepared and among them, ORY-1001 (1.38, Figure 1.24) was 

licensed to Roche and entered clinical trials in early 2014 for the treatment of 

AML. 56,71,177 In addition, Takeda178 and GlaxoSmithKline179 also have filed patents 

focusing on LSD1 irreversible inhibition. GSK2879552 (1.41, Figure 1.24) has recently 

entered Phase I clinical trials targeting small cell lung cancer (SCLC).179  
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Figure 1.24: TCP derivatives with phenyl ring and nitrogen functionalisation. 

1.38 and 1.39 Oryzon compounds (ORY-1001 1.38); 1.40 Takeda compound; 1.41 GSK compound; 1.42 brain 

penetrating TCP-derivative. 

 

Compound 1.41 proved to be extremely powerful in a cell-free enzymatic assay (Ki 0.13 

nM) and able to arrest AML and SCLC in in vivo models. Interestingly, although the 

compounds’ activities are linked to LSD1 inhibition, GSK2879552 treatment was not 

associated with a cellular increase of H3K4me2.179  

Of note is a study built on the patented work of Guibourt et al., investigating the activity 

of N-alkylated compounds in nervous system and memory formation.33 Among them, 

RN-7 (1.42, Figure 1.24) was 300-fold more selective for LSD1 compared to TCP and 

systemic administration resulted in impaired memory consolidation in rodents, 

suggesting that LSD1 could also be involved in cognitive functions.33 
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III)  Tranylcypromine analogues with substitutions at the at the cyclopropyl ring 

Based on earlier reports of methyl-substituted cyclopropyl rings designed as MAOIs, 

Vianello and colleagues180,181 researched on a library of trans isomers with hydrophobic 

and hydrophilic substituents at the α-position of the cyclopropyl ring.180 Alkyl, benzyl 

and phenyl substitutions resulted in TCP analogues with increased LSD1 inhibition and 

selectivity over MAOs (Figure 1.25). Conversely, derivatives functionalised with 

hydrophilic substituents demonstrated reduced potency. The work also investigated how 

stereoconfiguration influences the binding of compounds bearing methyl, ethyl, phenyl 

and benzyl substituents. No substantial differences were reported among the structures 

(Figure 1.25).  

 

 

Figure 1.25: Cyclopropyl-substituted TCP-derivatives. 

 

Additional electron-donating or -withdrawing groups at the phenyl ring further extended 

the library (1.49 and 1.50, Figure 1.25). Within such modifications, the activity of 

compounds having electron-withdrawing groups at the phenyl was improved.182  
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1.5.1.4. Other irreversible inhibitors of LSD1  

In addition to the TCP-based compounds, several studies focused on the search for 

novel scaffolds. One of these scaffolds that is worth mentioning is the pargyline-lysine 

based analogues by Schmitt et al.151 Molecular modelling and chemical refinement led 

to compounds with higher activity on LSD1 than pargyline (1.51 and 1.52, Figure 1.26). 

Treatment of MCF7  (breast cancer) cells with compounds 1.51 and 1.52 (90 and 100 

µM respectively) prompted cell proliferation arrest and increased the levels of 

H3K4me2.151  

Several natural compounds are also reported as antagonists of LSD1 enzymatic activity. 

Abdulla et al.,183 proposed that resveratrol is able to prevent LSD1 enzymatic activity in 

a concentration dependent manner. Sakane et al.184 designed and tested a series of 

acyclic diterpenoids (1.54, Figure 1.26) based on the reported capacity of farnesol to 

suppress LSD1.  

 

 

Figure 1.26: Non-TCP based irreversible inhibitors of LSD1. 

1.51 and 1.52, pargyline-lysine based inhibitors; 1.53 and 1.54 natural product inhibitors of LSD1.  

 

Despite the scarce activity and lack of biochemical studies, the structures reported in 

these works are unrelated to known antagonists and their SAR could be further 

exploited for the synthesis of novel LSD1 inhibitors. 
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1.5.2. Reversible inhibitors of LSD1 

As reported in earlier sections, numerous covalent inhibitors of LSD1 were successfully 

discovered with potential therapeutic applications. In contrast, research of reversible 

inhibitors was not equally successful.  

The reversible inhibitors of LSD1 can be classified according to their chemical nature or 

discovery process. 

1.5.2.1. Polyamine analogues 

Polyamine oxidases constitute a family of FAD-dependent oxidoreductases that oxidase 

acetylated polyamines. Their metabolic pathway has been recently identified as a 

druggable target for neoplastic and infectious diseases.185–187 The polyamine oxidases 

N1-acetylpolyamine oxidase (APAO) and spermine oxidase (SMO) share 60% sequence 

homology with the LSD1 C-terminal domain and can be inhibited by molecules 

containing guanidine moieties, such as guazatine (1.55, Figure 1.27).101,188  

In 2006, Bi and coworkers generated a series of (bis)guanidines and (bis)biguanides as 

antitrypanosomal compounds, targeting the parasitic trypanothione-disufide 

reductase.189 Considering the high structural similarity of these compounds with 

guazatine, these were assessed as LSD1 inhibitors.190 The polyamines 1.56 and 1.57 

(Figure 1.27) were able to antagonise LSD1 activity in a non-competitive fashion at 

concentrations lower than 2.5 µM. The biological applications of such compounds were 

substantiated with cellular experiments and 1.56-1.57 were capable of modulating the 

expression of methylated histones (increase of H3K4me1 and H3K4me2, and decrease 

of H3K9me2 expression) as well as reverting silenced genes involved in tumour 

suppression of HCT116 cells. The synthesis of long chain oligoamines with rotational 

bond restrictions further extended this initial work and the decamines 1.58 and 1.59 

(cis-trans isomers) were able to suppress LSD1 activity at 10 µM concentration.191 

Cellular evaluations in HCT116 cells revealed in addition that µM treatments with such 

compounds induced the re-expression of multiple silent genes like Wnt signalling 

pathway, frizzled-related protein family RP, and the GATA family of transcription 

factors.191 In addition to these effects, 1.58 displayed synergy with DNMT inhibitor 5-
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azacytidine in arresting cancer cell proliferation in a xenograft model for colon cancer 

without associated toxicity.191  

 

 
Figure 1.27: Polyamine based reversible inhibitors. 

 

The repertoire of polyamine-based inhibitors of LSD1 was expanded with the insertion 

of (bis)urea and (bis)thiourea moieties.192 Derivatives 1.60 and 1.61 (Figure 1.27), 

exhibited excellent potency in non-small cells lung carcinoma cells (l10.3 µM and 9.4 

µM respectively), and selectivity for LSD1.192  

Despite the promising results and the possible application of such compounds to a wide 

array of diseases, no structural studies so far defined the precise mechanism and 

therefore, more evidence is needed to link the observed pharmacology with LSD1 

inhibition.193 
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1.5.2.2. Small molecule reversible inhibitors 

The availability of numerous LSD1 X-ray crystal structures paved the way for 

numerous virtual screening efforts to discover LSD1 reversible inhibitors. The first 

study was performed by Wang et al.194 and resulted in the identification of compound 

1.62 (Figure 1.28), which demonstrated in vitro inhibition of LSD1 at 5.3 µM with 

selectivity over LSD2 and JARID1A (a JmjC KDM). The compound displayed in 

addition anti-proliferative activity in HeLa cells at µM concentrations.194  

Another virtual screen led to the identification of N’-(1-phenylethylidene)-

benzohydrazide-based structures as potential suppressors of LSD1.195 Among them SP-

2509, also called HCI2509 (1.63, Figure 1.28), revealed an interesting biological 

profile, being able to inhibit LSD1 enzymatically at 13 nM and arresting the growth of 

diverse cancer cells (breast, colon, prostate, melanoma, pancreatic and glioblastoma) at 

low µM range (IC50s spanning from 0.3 to 3 µM).  

 

 

 
Figure 1.28: Reversible inhibitors discovered with bioinformatic tools. 

 

As reported by the authors, despite the surprising biology and the unconventional 

structure, 1.63 failed to demonstrate unambiguously target inhibition. The compound 

was unable to induce the expression of CD86, a cellular marker that correlates with 

LSD1 inhibition.195,196 Moreover, immunoblotting experiments reported the increased 

expression of H3K4me2 only at 10 µM dose. The reason for these incongruities, as 

noted by Mould et al,197 might arise from the interference of the hydrazide moiety with 

the biological assays.198 The N’-(2-hydroxybenzylidene) hydrazide motif has been 

identified among the pan-assay interference compounds (PAINS). The presence of this 

moiety can often lead to fallacious results, which are attributed to interferences with the 
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assay conditions.198 According to the mechanism shown in Scheme 1.6, such chemical 

entities hold a strong propensity for Michael addition reactivity via a quinoid tautomeric 

formation that is susceptible of nucleophilic attack from assay reagents or amino acid 

residues (i.e. cysteine).199,200 

 

 
Scheme 1.46: Mechanism of intramolecular proton transfer for N’-(2-hydroxybenzylidene) hydrazide-

containing compounds proposed for the formation of a quinoid tautomer form, which is susceptible of 

nucleophilic attack. 

 

In addition, it has also been observed that such moiety can form cytotoxic complexes 

with transition metal ions.201 Therefore the observed data for 1.63 could derive from an 

off-target pharmacology in lieu of LSD1 inhibition.198 Biological assays with SP-2509 

in AML lines further evidentiate the sub-micromolar anti-cancer potential of the 

compound. Moreover, 1 µM treatment was sufficient to trigger the expression of the 

differentiation markers CD14 and CD11b.202 In addition, the compound revealed a 

synergistic effect with HDACi in arresting AMLs growth and the treatment was non-

toxic for normal blast cells.202 Additional experiments with SP-2509 in Ewing showed 

that the compound reverts the growth of the tumour in both in vitro and in vivo 

models.203 

Fragment based screening on structure 1.64 (Figure 1.29), led to the identification of the 

aminothiazole core structure as a potential LSD1 antagonist. Consistently, the derived 

compounds 1.64a and 1.64b (Figure 1.29), revealed a 50-fold increase in activity in 

enzymatic assays compared to the initial fragment, displaying high selectivity for LSD1 

over other FAD-dependent oxidases.197,204 However, the enzymatic results did not 

correlate with cellular experiments and both 1.64a and 1.64b were devoid of cellular 

activities. 
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Figure 1.29: Reversible inhibitors discovered with bioinformatics tools or fragment based screen. 

 

Hazeldine and colleagues performed another virtual screening on LSD1 catalytic site 

(PDB code: 2V1D) and their results identified low molecular weight amidoximes as 

potential scaffolds for LSD1 suppression.205 Among them, compound 1.65 (Figure 1.29) 

showed anti-proliferative activity on Calu-6 cells and increased expression of silenced 

tumour suppressor genes.205  

Searching for LSD1 blockers, Willmann and coworkers explored an informatic 

approach termed “proteins structure similarities search clustering” (PSSC) that enables 

the detection of structural similarities among different binding pockets.93 Only the 

binding pocket of MAOs was found homologous to the LSD1 AOL domain. Thus, the 

group screened an extensive library of potent MAOIs206 based on γ-pyrones structures 

against LSD1. The study led to the discovery of 3-chloro-6-nitro-2-(tri-fluoromethyl)-

4H-chromen-4-one or namoline (1.66, Figure 1.29) that was able to suppress LSD1 

enzymatic activity via a reversible mechanism (Ki=50 µM). Mass spectrometry 

experiments with a histone substrate showed increase in H3K4me2 at 20 µM and 

cytotoxicity assays revealed that namoline was capable of arresting LNCaP cells 
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proliferation at 100 µM dose. Although the systemic administration of namoline (0.02 

g/kg) in prostate adenocarcinoma xenograft reduced the tumour volume, the treatment 

was associated with weight loss, which could be indicative of off-target toxicity.93  

Identification of XZ09 (1.67, Figure 1.29) was accomplished through a constructed 

pharmacophore combined with docking methods.207 The compound was capable of 

inhibiting selectively LSD1 at low µM concentrations (2.41 µM). 207 

Dulla et al., designed several 3-amino-guanidine substituted phenyl-oxazole structures 

(1.69-1.71, Figure 1.30) by merging the key chemical features characterising different 

classes of LSD1 inhibitors in the same molecular structure.208 Despite the low 

enzymatic potency (IC50 10-16 µM) the compounds were able to arrest cancer cell 

proliferation of HeLa and MDA-MB-213 cells (breast) at a concentration as low as 1 

nM. As noted by the authors, the exceptional cellular data might arise from a marked 

sensitivity to the treatment of the cancer lines tested or from off-target effects.208 

Noteworthy, treatment with 1.69-1.71 (10 µM, 72 h) induced apoptotic events in 

zebrafish (Danio rerio) embryos, without associated toxicity.208  

 

 

Figure 1.30: Phenyl-oxazole based reversible inhibitors. 
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In 2013 GlaxoSmithKline disclosed a reversible inhibitor of LSD1 with interesting 

biology (1.72, Figure 1.31). GSK 354 is able to block LSD1 at 90 nM and displays a 

remarkable selectivity for LSD1 over other flavin oxidases.197,204,209 Moreover, it 

suppresses cellular LSD1 at 1.4 µM, a determination based on the compound’s capacity 

to trigger the expression of the CD86 marker. Currently, the amount of information on 

GSK 354 is limited.  

 

 

 

Figure 1.31: GSK and triazole-dithiocarbamate based reversible inhibitors. 

 

Based on the pharmacological applications of heterocyclic azoles and thiocarbamate 

moieties as antimycotic, anti-neoplastic and antibacterial agents, Zhang et al. built a 

library of triazole-dithiocarbamate hybrids as potential LSD1 blockers (1.73-1.75, 

Figure 1.31).210 The 1,2,3 triazole scaffold was easily obtained via Huisgen 

cycloaddition employing alkynes and azides.211 The enzymatic activity, evaluated with 

a peroxidase coupled functional assay, revealed µM inhibition for selected structures.212 

In addition, compound 1.75 was evaluated successfully in a xenograft model of human 

gastric tumour. 
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1.5.2.3. Peptide based reversible inhibitors 

The first substrate inhibitors were designed by taking advantage of the homology 

between LSD1 and MAOs and introducing flavin-reactive warheads into peptides 

derived from N-terminal H3.158–160,213 The warheads included N-propargyl, cyclopropyl, 

aziridine, phenelzine, and TCP substituents (1.76-1.83, Figure 1.32). The peptide with a 

phenelzine moiety (1.83) was among the most potent LSD1 inhibitor (Ki 4.5 µM). The 

analogue 1.76, displaying a propargyl-lysine warhead inhibited LSD1 enzymatic 

activity at 16.6 µM in a time and concentration dependent fashion.213  

 

 
Figure 1.32: Structure of substrate analogues inhibitors of LSD1. 

Top: H3 N-terminal 21-mer. 

 

Our group reported recently a series of relatively low molecular weight peptides based 

on Snail-1 protein. As described in an earlier section, Snail-1 is found to bind LSD1-

CoREST by the N-terminal region, acting as a DNA binding motif and on that account, 

we designed small peptide analogues of the Snail-1 N-terminal domain. The hexamer 

PRSFLV showed a Ki of 28 µM as well as anti-proliferative activity on THP-1 cells. 

The non-covalent inhibition was supported by numerous crystal structures of the peptide 

bound to the catalytic pocket of LSD1 (see Chapter 2).214  
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1.6. AIMS 

 

Based on the evidence reviewed above, disentangling the functions of  LSD1  could 

lead to design novel drug for several diseases. 

In the research presented in this thesis, I aim to broaden the current knowledge on this 

important demethylase. In order to do so I firstly focused on the design reversible 

inhibitors of LSD1 by synthesising small peptides (MW < 600 Da) based on Snail-1 N-

terminal sequence. Recent scientific literature has in fact shown that the Snail family of 

transcription factors interact with LSD1 via the N-terminal domain impeding the LSD1 

demethylase function.  Secondly I used Phage Display technology to explore a library 

of peptides that could lead to reversible LSD1 inhibitors. 

The second part of the thesis focused on the search of irreversible inhibitors of LSD1, as 

they are potential antitumor therapeutic agents. I planned to investigate on the SAR of 

tranylcypromine: as a large hydrophobic pocket has been observed in the crystal 

structure of LSD1, analogues of TCP bearing substituents on the phenyl ring can 

represent an interesting target. To measure the efficacy of such analogues and 

enzymatic assay will be employed. Compounds that display a better activity will be 

tested on more complex biological system. I also aim to explore an activity based 

probes to label fluorescently LSD1. This will be achieved by synthesising a TCP 

analogue having an alkyne moiety. The molecule will be exploited as a bioorthogonal 

partner of an azide containing imaging tag.  

 

This thesis constitutes a methodological framework to target LSD1 pharmacologically, 

providing several approaches through which reversible and irreversible inhibitors can be 

designed.  
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Chapter 2 - Protein recognition by short peptides: 

reversible inhibitors of the LSD1-CoREST complex 

2.1. Introduction 

One of the main limitations of LSD1 inhibition is the lack of selectivity of the currently 

available blockers, which are mostly based on covalent FAD modifiers. Reversible 

inhibition could reduce possible side effects associated with a long half-life and non-

specific interactions. Some reversible inhibitors have been reported but possess low 

activity or are polycationic in nature.188,215 As mentioned in the previous Chapter, Snail-

1 is a recently discovered LSD1 binding partner and member of the SNAIL/SCRATCH 

family of transcription factors and is involved in cell differentiation and development 

processes. Here we report for the first time Snail-1-based short peptides (MW < 800 

Da) that are able to inhibit LSD1 reversibly and at micromolar concentrations. Studies 

of the crystal structure of diverse active peptides sequences bound to the LSD1 catalytic 

site give further insight into LSD1 biochemistry.214 Moreover, the findings shown here 

open further possibilities for the design of novel reversible inhibitors of LSD1.  

2.1.1. LSD1-Snail-1 interaction 

The interaction of LSD1 with the Snail family of transcription factors uncovered 

valuable information on the biology of this epigenetic target.216 The Snail family of 

proteins is devoted to the inhibition of cell-specific epithelial genes associated with 

apoptosis and cell cycle progression.140,141 Specifically, Snail-1 promotes the induction 

of the phenotypic change called epithelial-to-mesenchymal transition (EMT).138 The 

EMT allows the conversion of cells from a static state (epithelial) to a mesenchymal 

state, whereby they acquire stem cell properties. EMT takes place in tissue formation 

during embryonic development, wound healing and tissue remodeling processes. In 

contrast, its aberrant regulation in epithelial tumours is associated with the acquisition 

of motile and invasive properties.138,217,218 An exceptional characteristic of the EMT is 

its reversibility: when far away from the primary tumour, cells are not influenced by the 

initial chemical stimuli and can revert to the epithelial state through a process called 



 Protein recognition by short peptides: reversible inhibitors of the LSD1-CoREST complex 

  54

mesenchymal-to-epithelial transition (MET). The process of switching from EMT to 

MET is potentially regulated by epigenetic mechanisms.164 In both physiological and 

pathological events, EMT is accompanied by the direct repression of E-cadherin 

transcription.218 E-cadherin is a single span trans-membrane glycoprotein that sustains 

cell adhesion and polarity. Its down-regulation in epithelial tumours correlates with 

cancer metastasis and poor prognosis.139  

In 2010, Tandem Array Purification (TAP) coupled with mass spectrometry studies 

revealed that Snail-1 recruits LSD1 for repression and such interaction is found to be 

co-localised in the nucleus of a number of cancer cell models.117 Interestingly, the 

binding takes place through the N-terminal domain and particularly via a characteristic 

N-terminal sequence in Snail-1, termed SNAG (Figure 2.1 A). The alignment of the N-

terminal sequences of several evolutionary related C2H2 zinc finger transcription 

factors such as Gfi1, Slug, Scratch, insulinoma-associated protein IA-1 (INSM1) and 

Ovo-like 1 (OVOL1) revealed that the SNAG sequence is conserved. This feature 

predicts that probably, many other) transcription factors of the SNAIL/Scratch family 

can associate to LSD1 (and possibly LSD2) following the same molecular mechanism 

targeted by LSD1. The SNAG sequence is important for protein stability and protein 

repressive activities. For example, in Snail-1 the abrogation of SNAG generates mutants 

unable to interact with LSD1.219 In addition, it has been demonstrated that LSD1 is 

recruited at the E-cadherin gene promoters by Snail-1 where it demethylates H3K4me2 

and promotes transcriptional silencing effects.220 In human breast cancer cells, Snail-1 

mutants lacking the SNAG-LSD1 interaction do not suppress the E-cadherin gene, 

suggesting that SNAG domain and LSD1 are both responsible for the E-cadherin 

repression.221 
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Figure 2.1: Snail-1-LSD1 interaction. 

(A) Alignment of the N-terminal sequences of several evolutionary related CH2H2 zinc finger transcription factors. 

The conserved SNAG domain residues are in red and basic residues Arginine (R) and Lysine (K) in blue; (B) 

Alignment of Snail-1 and H3 N-terminal domain. R and K residues are shown in red and the conserved pattern of 

amino acid residues is highlighted in yellow. The blue dots  (top) and triangle (bottom) indicate the H3/Snail-1 amino 

acid residues involved in the interaction with LSD1 catalytic pocket; (C) Schematic diagram illustrating the 

mechanism of Snail-1 (SN-green) –LSD1/CoREST (cyan) interaction: SNAG domain of Snail-1 (red dot) functions 

as a molecular hook to recruit and bind to LSD1-CoREST complex; the newly formed ternary complex is stabilised 

from proteosomal degradation. The complex is recruited to E-boxes of Snail-1 target genes such as E-cadherin. Here 

the H3 substrate competes with the SNAG domain for LSD1.Adapted from Lin et al. 117 



 Protein recognition by short peptides: reversible inhibitors of the LSD1-CoREST complex 

  56

Single mutations at positions Pro1, Arg2, Ser3, Phe4, Arg7 and Lys8 are especially 

detrimental as they result in Snail-1 mutants that are unable to interact with LSD1. 

Interestingly, the amino acids Arg2, Arg7 and Lys9 are fundamental for H3 binding to 

the LSD1 catalytic pocket (Figure 2.1, B). Superimposition of H3 and Snail-1 sequences 

showed that in both the natural substrate and LSD1 binding partner, the side chains 

make the same interactions in the catalytic cleft.117,136 Another feature that the N-

terminal domains of H3 substrate and the Snail-1 have in common, resides in the α-

helical conformation adopted by their first four amino acids when interacting with 

LSD1.105 In addition, it has been shown that irreversible LSD1 suppressors, such as 

pargyline and H3 peptides bearing both methylated and unmethylated H3K4 sequences, 

are effective blockers of the SNAG-LSD1 interaction, implying that SNAG mimics the 

H3 sequence (Figure 2.1 B). Taken together, this information led to the hypothesis that 

Snail-1 binds to the LSD1 catalytic site and inhibits its enzymatic activity.117 Baron et 

al.111 showed that a 20-amino acid long peptide, corresponding to the N-terminus of 

Snail-1, effectively suppresses the LSD1-CoREST enzymatic activity at concentrations 

as low as 0.21 ± 0.07 µM. Likewise, also LSD2 binds the Snail-1 peptide, although with 

lower affinities.  

The crystal structure of the Snail-1-LSD1-CoREST complex revealed that only the first 

N-terminal 9 residues of Snail-1 within the 20 amino acid long tested sequence were 

critical for binding, while the later amino acid residues were found disordered. 

Therefore, shorter peptides mimicking the structure of the conserved SNAG pattern 

may be useful tools to arrest the Snail-1-mediated initiation of EMT and cancer 

propagation by modulating LSD1 enzymatic activity. Given their lower molecular 

weight compared to the full SNAG domain, these could be investigated as leads for the 

discovery of LSD1 antagonists via reversible inhibition. 
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2.2. Experimental strategy 

Following such preliminary data on Snail-1-LSD1 interaction, we decided to synthesise 

peptide sequences derived from the Snail-1 N-terminal domain and evaluate them as 

potential LSD1 binders. Three different strategies were followed: length scanning to 

probe the influence of chain length on binding affinity, alanine-scanning to evaluate the 

role of the side chains and single-point substitutions at the critical positions. The 

binding affinities of the synthetic peptides were measured in a competitive binding 

assay using recombinant human LSD1-CoREST complex and the histone H3 mono-

methylated K4 peptide as substrate. When possible, the three-dimensional crystal 

structures of the LSD1-CoREST-peptide complexes were determined. The 

conformational propensities of the unbound peptide enSTDbles were probed by 

molecular dynamics and finally, the in vitro efficacy of selected peptides were 

examined in cell-based assays. 

2.2.1. Synthesis of SNAG-like peptides 

Solid-Phase Peptide Synthesis (SPPS) was used to synthesise the truncated Snail-1 N-

terminal domain sequences.222 SPPS is a technique based on the sequential addition of 

amino acids protected at the side chain and α-amino group to a polymeric insoluble 

matrix. 

The synthesis requires:  

I. loading/attaching the first amino acid (from the C-terminal end) onto the solid 

support; 

II.  deprotection of the N-α protective group from the first amino acid; 

III.  coupling reaction between the first amino acid and α-carboxyl of a second 

amino acid with formation of the peptide bond; 

IV.  deprotection of the N-α protective group of the second amino acid;  

V. cleavage of the peptide from the resin (after the desired number of 

coupling/deprotection cycles) when the peptide is released from the solid 

support; 

The general protocol for SPPS synthesis of a peptide bearing a C-terminal amide is 

illustrated in Figure 2.2. 
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Figure 2.2: General procedure for SPPS using Rink Amide AM resin. 
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In SPPS, the peptide is asSTDbled from the C-terminal end to the N-terminal end with 

the α-carboxyl group of the last amino acid of the sequence anchored to the solid 

support. The use of a solid support is the main advantage of this technique as it enables 

the complete synthesis in a single reactor and facilitates the isolation of the product after 

each step (from excess of reagents or by-products). This results in reduced manipulation 

and waste material, together with a significant reduction of working times as the 

procedure can be automated.223 A limitation of the SPPS is the possible synthesis of 

incomplete sequences (missing one or more residues or synthesis of truncated 

sequences) in addition to the correct one. As such side products have similar 

characteristics to the desired peptide the resulting purification can be difficult. 

2.2.2. Loading step 

The loading consists of the anchorage of the first amino acid to the solid support. The 

procedures for this critical step are chosen according to the resin linker used.222,223 

The solid support for solid-phase consists of small beads of polystyrene (PS) 

copolymerized with 1% m-divinylbenzene or polyacrylamide. Other resins also contain 

up to 70% polyethylene glycol (PEG) attached through an ether link to the polymer. 

These materials swell abundantly in non-protic polar solvents such as N,N-

dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) reaching a volume 

equal to 10 times the initial one.224 Prior to the loading step, the resin is swollen in DMF 

for 1 h with constant agitation. Properly swollen resin allows for rapid diffusion of the 

reactants inside the granules and accommodation of the growing peptide chains.  

The beads are derivatised with a wide variety of linkers and in this project the following 

types were used:  

 

• Wang resin, possessing a hydroxybenzyl linker, which gives C-terminal 

acidic peptides (Figure 2.3, A); 

• Rink amide AM  and NovaPEG rink amide resin, possessing a 

trialkoxybenzhydrylamine linker, which produces C-terminal amide peptides (Figure 

2.3 B-C). 
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When using Wang resin, the first amino acid is loaded through esterification of the 

acidic group of the C-terminal amino acid and the resins’ alcohol. Specifically, in the 

peptide PRSFLV-COOH (2.8, Figure 2.11) the first amino acid Valine was loaded via 

symmetric anhydride formation, which involves two steps: 

 

1) Formation of the symmetric anhydride with N,N'-diisopropylcarbodiimide (DIC) 

(Figure 2.4 A) in dichloromethane (DCM). 

The mechanism involves the formation first of an O-acylurea intermediate (Scheme 2.1 

1a-b). Next a further carboxylic acid molecule (Scheme 2.1 1c) interacts with the 

intermediate, generating the highly reactive symmetric anhydride and the soluble N, N’-

diisopropylurea. 

2) Esterification of the symmetric anhydride with 4-dimethylaminopyridine 

(DMAP), (Figure 2.4 B) with the hydroxyl of Wang resin linker.  

 

The newly synthesized anhydride is quickly transferred to the reactor vessel that 

contains the resin. Here the anhydride (acyl donor) acetylates DMAP, forming an 

acylpyridinium cation (Scheme 2.1, 2a-b). The alcohol reacts with acetylated DMAP to 

form an ester (Scheme 2.1, 2b). The acetate from the anhydride acts as a base and 

removes the proton from the alcohol that subsequently functions as a nucleophile, 

forming a covalent bond with the acetyl group (Scheme 2.1, 2c). The acetyl on DMAP 

is then cleaved to regenerate the catalyst and newly formed ester (Scheme 2.1, 2d). In 

contrast, using Rink Amide AM, which provides amide-terminal peptides, the 

anchorage of the first amino acid to the resin beads is performed in the same way as the 

coupling step (see below), using an excess of reagents. 
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Figure 2.3: Structure of solid supports used in this project. 

(A) Wang Resin; (B) Rink amide resin; (C) NovaPEG Rink amide resin and detailed structure of the PEG polymer.  

 

 

 

 

Figure 2.4: Structures of DIC and DMAP. 

(A) DIC  N,N'-Diisopropylcarbodiimide; (B) DMAP , N,N-4-Dimethylaminopyridine. 
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Scheme 2.1: Mechanism of Wang resin loading steps. 

1. Symmetrical anhydride formation; 2. DMAP esterification. 
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2.2.3. Fmoc-deprotection step 

In SPPS, the protecting groups are either “permanent” or “temporary”. The “permanent” 

groups are removed only after the peptide is asSTDbled while the “temporary” ones are 

removed at intermediate stages. 

 

 
Figure 2.5: Structure of Fmoc protecting group.  

 

During the synthesis, the removal of the N-α “temporary” protective group cannot affect 

the stability of the side chain (“permanent” protecting groups). The N-α protection used 

in this project is 9-fluorenylmethyloxycarbonyl (Fmoc, Figure 2.5), which is cleaved 

with mildly basic conditions and specifically 20% (v/v) of piperidine in DMF. The 

amino acid side chain protecting groups, such as tert-butyloxycarbonyl (Boc) and 

benzyl protecting group are all acid labile and removed at the end of the synthesis.  
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Scheme 2.2: Mechanism of Fmoc deprotection with piperidine. 

 

The Fmoc deprotection mechanism involves the formation of dibenzocyclopentadienide 

by proton abstraction of piperidine (Scheme 2.2, a-b). The elimination reaction gives 

dibenzofulvene (Scheme 2.2, c) that is trapped by the excess of piperidine. The 

generated carbamic acid spontaneously decarboxylates and gives the N-terminal free 

amine (Scheme 2.2, d). To ensure the complete deprotection, 3 cycles of Fmoc 

deprotection were performed: one of 10 min and two of 5 min each, followed by 

multiple washes with DMF, DCM and MeOH in sequence, to remove side products and 

reagent excesses.  
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2.2.4. Coupling step 

Chain elongation in SPPS occurs by condensation between the N-terminal end of the 

first anchored amino acid (to the resin or to another amino acid) and the C-terminal of a 

new one, forming an amide bond. All couplings were performed for 45 min with 2.5 

equiv. (relative to resin loading) of coupling reagent, benzotriazo-1-yl-

oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP®) and 5 equiv. (relative to 

resin loading) of Hünig’s base (DIPEA, N,N-Diisopropylethylamine). When using Rink 

amide AM resin, the first coupling was performed with doubled amount of equivalents 

of coupling reagents and to improve yields, the coupling step was repeated twice for 

each amino acid. The general coupling mechanism with PyBOP® proceeds as shown in 

the Scheme 2.3. 

PyBOP® is a hydroxybenzotriazole-based phosphonium salt that reacts with the 

deprotonated acid (deprotonated by DIPEA) to generate an activated acylphosphonium 

specie (Scheme 2.3, a-b) and hydroxybenzotriazole (HOBt) (Scheme 2.3, c). Thereafter, 

HOBt reacts with the activated acid to produce a reactive benzotriazole (Bt) ester that 

undergoes aminolysis (Scheme 2.3, c-d) and formation of the amide bond. The excess 

of reagents is next removed at the end of coupling with repeated solvent washes (DMF, 

DCM).  
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Scheme 2.3: Mechanism of coupling reaction using PyBOP®. 

2.2.5. Cleavage step 

After chain elongation, the peptide is released from the resin with the concurrent 

removal of the amino acid side chain protecting groups. This is achieved by employing 

a cleavage cocktail composed of strong acids and other components such as scavengers. 

The deprotection of the side chains with highly acidic conditions generates highly 

reactive species (such as carbocations), which can cause covalent modifications to 

susceptible unprotected residues.225 The use in the cleavage cocktail of nucleophilic 

reagents, known as scavengers (reagents which have similar chemical properties to 

those of the species to be protected), together with the TFA (trifluoroacetic acid), 

greatly reduces such unwanted side reactions.  

The composition of the cleavage cocktail depends on the amino acids present in the 

sequence and the type of protecting groups used for side chains protection. In the 

present work, we used the following side chain protecting groups: Pbf for Arg, Trt  for 

Asn, Gln and His, O-tBu for Asp and Glu, Boc for Lys and t-Bu for Ser, Thr and Tyr. 

Triisopropylsilane (TIPS) was used as carbocation scavenger for the acid deblocking of 
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side chain (Figure 2.6) and specifically a solution of TFA/TIPS/H2O = 95 : 2.5 : 2.5.  

 

 

Figure 2.6: Structure of triisopropylsilane (TIPS). 

 

2.2.6. Monitoring coupling and deprotection steps 

Coupling and deprotection steps were monitored using Kaiser (or ninhydrin test) and 

chloranil test. 226–228 The ninhydrin test is a quantitative test that detects the presence of 

free primary amine groups by a reaction that gives a dark blue colour. If the couplings 

involved secondary amines, a chloranil test was used instead. This colorimetric test is 

based on the formation of dialkylaminovinyl derivatives of chloranil (tetrachloro-1,4-

benzoquinone). When unprotected secondary amines are present, the beads acquire a 

dark green colour after heating. 

 

2.2.7. Overcoming difficult sequences  

During the elongation of the peptides with sequences ARAFAA , LRSFLV , PKSFLV , 

PRLFLV , PLSFLV , PRAAAA and longer amino acids (above 8 amino acids 

residues), we observed shrinkage of resin volume associated with difficult or 

incomplete coupling/deprotection steps. These phenomena were indicative that 

aggregation had occurred. In fact, along the synthesis, the amino acids interact via 

hydrogen bond formation: growing peptides acquire a β-sheet conformation bringing 

together chains and acting as supplementary cross-linkers between the growing 

peptides.229 This makes it difficult for reagents to penetrate inside the beads and access 

the reactive groups. All the peptides mentioned contain Ala, Leu and Val amino acids 

that are known to have a higher propensity for aggregation.224,229 To overcome this 

issue, we first used a low loading (LL) Rink amide AM resin (loading 0.13 mmol/g). 

Such resin possesses a smaller number of substitutions, which reduce the potential 
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hindrance generated by growing peptides attached to beads and consequently, the 

chance of inter-chain interactions. However, for longer sequences the use of LL resin 

was not advantageous as we still faced aggregation-related synthetic problems. To 

overcome this, we employed NovaPEG resin (Figure 2.3 C), which is exclusively 

composed of PEG units. Being amphiphilic in nature, this material has better swelling 

and mechanical properties and it is stable in a variety of solvents, a feature that 

facilitates the polymer handling during the reaction steps and washes.224 In addition, for 

the synthesis of difficult sequences we employed a resin-capping procedure after 

systematic double coupling. Such step involves the acetylation (capping) of unreacted 

amino acids by reacting the resin for 10 min with a solution composed of 9:1 

pyridine:acetic acid.  
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2.3. Enzymatic and structural evaluation of the SNAG-like 

derivatives binding to LSD1  

The synthesis of SNAG-derivatives was followed up with the assessment of enzymatic 

activity performed by our collaborator Prof. Andrea Mattevi and his group at the 

Department of Biology and Biotechnology "Lazzaro Spallanzani" at the University of 

Pavia (Italy). They also carried out soaking experiments with the peptides and LSD1. 

When suitable diffraction quality crystals were obtained, X-ray structure determination 

of the protein-peptide ligand was done to gain insight into the binding interactions. The 

results from the enzymatic evaluation iteratively guided our synthesis and the 

succeeding modifications to the initial SNAG sequence. The peptides potency was 

assessed with an enzymatic assay monitoring hydrogen peroxide formation (a side 

product of LSD1 activity). The assay consisted in incubating recombinant LSD1-

CoREST (residues 308-440, 1 µM), with varying peptide ligands (0-200 µM) and 

dimethylated H3K4 peptide substrate (2-30 µM).  The absorbance changes were 

monitored at 515 nm and initial velocity values were fitted to equations describing 

competitive, uncompetitive and noncompetitive inhibition patterns. In all cases, the best 

fit was obtained with the equation describing a competitive inhibition and data are 

reported in the figures below as Ki ± STDV (n=5). 
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Table 2.1: Summary of SNAG-like peptides activity 

 

 

Sequence 

 

Ki  (µM ± STD, n=5) 

2.1 PRSF > 200 

2.2 PRSFLV 28.4 ± 4.8 

2.3 PRSFLVRK  2.0 ± 3.5 

2.4 PRSFLVRKP 0.1 ± 59 

2.5 RSFLV > 200 

2.6 PRSFL 120.0 ± 20 

2.7 Acetyl-PRSFLV 48.0 ± 13.0 

2.8 PRSFLV(COOH) 60.2 ± 12.7 

2.9 ARSFLV  157 ± 16.5 

2.10 PASFLV > 200 

2.11 PRAFLV  6.4 ± 1.3 

2.12 PRSALV 71.4 ± 15.1 

2.13 PRSFAV 18.0 ± 5.4 

2.14 PRSFLA 44.4 ± 5.5 

2.15 PLSFLV 55.0 ± 11.0 

2.16 PKSFLV 49.6 ± 8.2 
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2.17 PRSMLV  3.0 ± 2.7 

2.18 PRSYLV > 200 

2.19 PRLYLV  29.1 ± 3.9 

2.20 PRSK(Cbz)LV 12.4 ± 4.3 

2.21 LRSK(Cbz)LV  6.6 ± 1.5 

2.22 PRSK(me2)LV 19.7 ± 2.4 

2.23 PRSK(me2)VKRKP 3.3 ± 0.8 

2.24 PRSK(me2)L > 200 

2.25 PRSFAA 10.7 ± 1.1 

2.26 ARAFAA > 200 

2.27 PRAAAA 27.7 ± 4.0 

2.28 PRSFQTV 8.0 ± 0.32 
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Figure 2.7: Structure of the first synthesised SNAG-like peptides. 

 Ki are reported as µM ± STDV (n = 5). 

 

We first explored the activity of the 4-mer, 6-mer, 9-mer and 10-mer sequences 

corresponding to the N-terminal Snail-1 (Figure 2.7). According to the literature,104,110 

the first 4 residues (residues 1–4) of Snail-1 adopt a helical turn reSTDbling the histone 

3 substrate and therefore, these could be sufficient for LSD1 binding. However, the 

tetrapeptide PRSF by itself (2.1) was found inactive (Ki > 150 µM), whereas the 6-

amino peptide (2.2) exhibited a stronger binding (Ki of 28 µM). The sequence PRSFLV 

(2.2), resulted a weaker binder compared to the 9-mer 2.4, suggesting that residues 7-9 

(thought non-essential) contribute actively to bind the LSD1 catalytic site. The 9-mer 

PRSFLVRKP contains most of the conserved N-terminal residues of Snail-1 and 

revealed a strong binding affinity for LSD1-CoREST. Albeit the high activity, the 

increased length of 9 amino acids made it less appealing than the 6-mer PRSFLV for 

further exploration of structure-activity relationships.  

Crystallographic structures revealed that PRSFLV (PDB: 3ZMT) binds to the catalytic 

pocket of LSD1, indeed with an identical fashion to the first six amino acids of Snail-1. 

As shown in Figure 2.8, the PRSFLV sequence in complex with LSD1-CoREST 

perfectly overlaps the N-terminal end of Snail-1: the first four amino acids, retain the 

helical conformation with all backbone atoms bound in a solvent-inaccessible positions. 
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Furthermore, the side chains are mostly inaccessible to solvent with the exception of 

Arg2. In particular, Pro1 is fully encapsulated by the protein catalytic pocket. This is 

fully consistent with the observation that truncation of Pro1 drastically reduces activity, 

highlighting the significant almost essential contributions of this residue (see below). 

Longer truncated Snail-1 peptides did not seem to promote a greater inhibition 

compared to the 6-mer or 9-mer, suggesting that LSD1-CoREST can effectively bind 

the 6-amino acid Snail-1 sequence, whose helical conformation and N-terminal group 

are snugly embedded by the active site cleft. 

 

 
Figure 2.8: X-ray crystal structure of Snail-1 N-terminal 21-mer (light brown, PDB: 2Y48) and PRSFLV 

(cyan, PDB: 3ZMT) bound to LSD1-CoREST. 

Nitrogen atoms are shown in blue and oxygen atoms in red. The amino acid side chains of the peptides adopt the 

same conformation. Amino acids in PRSFLV are labelled with their one letter code. 

 

Intriguingly, the truncated N-terminal Snail-1 PRSFLV sequence and H3 bind to 

LSD1-CoREST in a helical conformation. Hence, the question whether peptides exist in 

nature already in this conformation or are shaped into secondary structure only after 

binding with the enzyme was raised. To address this inquiry, circular dichroism 

spectroscopy on four peptides corresponding to H3 21-mer, INSM1 20-mer, Snail-1 20-

mer, and Snail-1 9-mer was carried out at the University of Pavia. The data, supported 

at a later time by computational studies, show that all of the peptides fold into their 

secondary structure only upon binding to LSD1.  
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Figure 2.9: X-ray crystal structure of PRSFLV peptide bound to the LSD1 catalytic site. 

(A) Electron density map (contoured at the 1.2σ level) of PRSFLV in the catalytic site calculated previous to its 

inclusion (B) Three-dimensional view of PRSFLV (the N-terminal hexapeptide of human Snail-1). Protein carbons 

are shown in green, FAD carbons in yellow, and peptide carbons in brown. H-bonds are shown as dashed lines (C) 

Schematic representation of the peptide-protein interactions. The atomic accessible surface areas are shown. Adapted 

from Tortorici et al.214  
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2.3.2. Peptide length and influence of N- and C-terminal functional 

groups 

Further reductions in the number of amino acids to the active minimum length of 

PRSFLV scaffold were performed, to pursue the initial goal of reducing the molecular 

weight necessary for efficient reversible inhibition of LSD1. The peptide comprising the 

N-terminal 5-amino acids was found to retain binding but only with relatively low 

affinity (Ki of 120 µM). In contrast, RSFLV (2.5, Figure 2.10) turned out to be almost 

devoid of activity. 

 

 
Figure 2.10: Length determination of active SNAG-derived peptides. 

Ki are reported as  µM ± STDV (n = 5). 

 

 

Next, the C-terminal and N-terminal “states” were analysed to measure the importance 

of the free amine N-terminus and C-terminus amide. To this end, the activities of two 

PRSFLV-modified peptides (2.7 and 2.8, Figure 2.11) bearing respectively an 

acetylated N-terminus (Acetyl- PRSFLV) and a free C-terminal acid (PRSFLV-COOH) 

were prepared. Both 2.7 and 2.8 turned out to be weak inhibitors of LSD1 (Ki = 48.0 

µM and 60.0 µM respectively) compared to PRSFLV. 
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Figure 2.11: Modifications at the N- and C-termini of PRSFLV peptide. 

Ki are reported as value ± STDV. 

 

The identification of a minimal peptide length for efficient binding (µM range) guided 

us to ask the next logical questions: which side chains are important for peptide binding 

in the core of the cleft? Are there strict sequence restraints? 

Alanine-scan mutagenesis allowed the evaluation of each individual residue 

contribution in the PRSFLV peptide’s bioactivity. Each amino acid was substituted 

with alanine, the simplest residue after glycine, used in this technique given its small 

size and chemical stability.230 

From the results achieved, Pro1 substitution with Ala1 was unfavourable for binding 

(2.9, Figure 2.12). Proline acts as an alpha helix initiator in protein secondary structure 

and can promote the helical turn of the bound sequence into the hydrophobic cleft of 

LSD1.214 The observed crucial importance of Pro1 in our experiments substantiate the 

previous work of Saleque et al.,219 where abrogation or Ala substitution of Pro1 in the 

SNAG-containing protein Gfi-1 (a protein that controls haematopoietic differentiation, 

Figure 2.1) resulted in protein inactivation. 

The Ala substituted PASFLV, which lacks the polar residue Arg2 (2.10, Figure 2.12) 

was unable to bind LSD1, implying that polar residue in position 2 may establish 

favourable electrostatic interactions with the cluster of negatively charged residues in 

the LSD1 active site. The result was expected as all the related transcription factors and 

H3 present Arg in position 2 (Figure 2.1, A-B). In H3, Arg2 participates in intra-peptide 

hydrogen bonds with the carbonyl oxygens of Gly12, Gly13 and the side chain of 

Ser10. It also interacts with the carboxylate groups of Asp553, Asp556, and Glu379 of 

the LSD1 catalytic pocket.110 
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Figure 2.12: Ala-scanning on PRSFLV peptide. 

The mutated positions on PRSFLV peptide are highlighted in red. Ki are reported as  µM ± STDV (n = 5). 

 

Reduced binding affinity has also been reported with an H3 peptide bearing methylated 

Arg2. Similarly to the H3 natural substrate, crystal structure analysis of the 6-mer 

PRSFLV revealed that the Arg2 side chain also interacts with a ring of Asp556 and 

Glu379 side chains in the catalytic site. Its aliphatic portion is involved in intra-peptide 

contacts with Leu5 and both events favour the sequence helical conformation. 

To gain further insight on the importance of such position, we synthesised PLSFLV 

and PKSFLV (Figure 2.13), which have a hydrophobic residue and positively charged 

amino acid respectively, in position 2. Both the resulting compounds were less active 

than PRSFLV (Ki 55 and 49 µM, 2.15 and 2.16 Figure 2.13), further substantiating the 

importance of Arg2 presence. 
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Figure 2.13: Side chain substitutions at the 2nd position of PRSFLV peptide. 

Ki are reported as µM ± STDV (n = 5).  

 

Collectively, these data indicate that the combination of conformational propensity, van 

der Waals interactions by the aliphatic groups and the “diffuse” positive charge of the 

guanidinium group, render Pro1-Arg2 crucial elements for efficient binding, which are 

selectively recognised by the active site cleft.  

For PLSFLV  and PKSFLV  it was possible to obtain X-ray crystal structures 

(PLSFLV - PDB code: 3ZMV and PKSFLV PDB code: 3ZMU, Figure 2.14 and Figure 

2.15 respectively).  
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Figure 2.14: X-ray crystal structure of SNAG-derived PLSFLV peptide bound to the LSD1 catalytic site. 

 

 
 

Figure 2.15: X-ray crystal structure of SNAG-derived PKSFLV peptide bound to the LSD1 catalytic site. 

  

This image cannot currently be displayed.

This image cannot currently be displayed.
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Further analysis on PLSFLV peptide X-ray crystal structure revealed that this is also 

able to bind in an allosteric fashion to a different cleft of LSD1-CoREST (Figure 2.16). 

 

 
Figure 2.16: X-ray crystal structure of SNAG-derived PLSFLV peptide bound to LSD1 catalytic site and 

allosteric binding. 

The peptide is bound to the catalytic site (circled in blue) and to a different cleft. 

 

Based on this information, our collaborator Prof. Riccardo Baron and his group 

(University of Utah, Salt Lake City, Utah) explored other plausible druggable spaces in 

LSD1-CoREST. With computational studies and molecular dynamics simulation, five 

new possible binding regions were found (Figure 2.17).231 These regions have a strong 

propensity for molecular binding and correspond to: 

 

A. a region interfacing the SANT2/Tower domain (Figure 2.17 A); 

B. a region interfacing SWIRM/AOL domain (Figure 2.17 B); 

C. a region interfacing AOL/Tower interface (Figure 2.17 C); 

D. a region encompassing the back of AOL domain (Figure 2.17 D); 

E. a small pocket in the AOL domain (Figure 2.17 E); 

 

This image cannot currently be displayed.
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Figure 2.17: New druggable spaces of LSD1-CoREST. 

These were highlighted using colored spheres and named based on their location: SANT2/Tower interface (green, 

A), AOL/Tower interface (red, B), SWIRM/AOL interface  (blue, C), Peptide binding region (yellow, D), and 

small AOL pocket (grey, E). LSD1 (orange), CoREST (cyan), and the H3-histone N-terminal tail (purple) are shown 

as cartoons (B) Table shows the residues of the new binding sites. Adapted from Robertson et al. 231 

 

In this context of extended potential binding sites, the peptide PLSFLV  binds to the E 

region (Figure 2.17) and adopts an extended conformation enabling its backbone to 

interact with residues 317-323 of LSD1-CoREST (Figure 2.18), through hydrogen 

bonding. Phe4 and Val6 are also involved in van der Waals interactions with adjacent 

residues (Ala318, Thr319, Phe320 Leu329, Val747) of the LSD1 allosteric cleft.  

 

This image cannot currently be displayed.
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Figure 2.18: X-ray crystal structure of SNAG-derived PLSFLV peptide bound to the AOL small pocket. 

PLSFLV (Green) and LSD1 (brown) are highlighted (nitrogen atoms: blue; oxygen atoms: red) in the new LSD1-

CoREST binding region (Figure 2.16, region D). The unbiased 2Fo-Fc electron density map (contoured at 1.2 σ 

level) was calculated prior to inclusion of the peptide in the refinement.  The electron density of Pro-1 was not clear 

for Pro1 of the bound peptide was not visible in the electron density and thus not included in the model. See also 

Table 1 and Figure 8, region D. From Robertson et al. 231 

 

Differently from positions 1 and 2, positions 3-6 of PRSFLV are not as essential for 

binding as throughout our studies, the affinities to LSD1 were not critically influenced 

by the replacement at such positions with other residues.  

The N-terminal alignment of Snail-1 with other transcription factors shows that the third 

position can accommodate various residues like Alanine (OVOL1) or Glycine (INSM1) 

(Figure 2.1 A). In addition, we reported that the mutation of Ser3 in PRSFLV was 

unable to affect the LSD1 suppression in the SNAG-derivative PRAFLV (2.12, Ki = 6.4 

± 1.3 µM, Figure 2.12). 

In both Snail-1 and H3, the N-terminal 4th residue represents a critical amino acid for 

LSD1 activity: in H3 it normally accommodates lysine mono-methylated or di-

methylated, whereas in Snail-1 wild type and truncated sequences, the phenyl ring of 

Phe4 points towards FAD, making direct contact with it. Accordingly, the substitution 

of Phe4 with Ala was disadvantageous for LSD1 inhibition (PRSALV, Ki = 71.4 ± 15.1 

µM). Forneris et al.110 reported a 30-fold increase in binding affinity for a H3 substrate 

bearing a methionine in position 4.  

Based upon this observation, we synthesised PRSMLV, which showed similarly to the 

H3 modified peptide an improved binding affinity towards LSD1 (Ki of 3 µM). The 

This image cannot currently be displayed.
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non-polar nature of methionine promotes possibly the interaction with FAD allowing a 

tighter binding to the demethylase.110,214 Methionine was next substituted with the 

bulkier hydrophobic residue tryptophan in PRSWLV. The change was however 

unfavourable for binding (Ki >100 µM).  

 

 
Figure 2.19: Side chain substitutions at the 4th position of PRSFLV peptide. 

Ki are reported as µM ± STDV (n = 5). 

 

 

As the 3rd position can accommodate different amino acids and the side chain of 

position 4 needs to establish interaction with the flavin ring, PRLYLV  was synthesised 

next. This sequence possesses a Leu residue in position 3 (a hydrophobic residue like 

Ala) and in position 4 tyrosine. X-ray crystal structure analyses (PDB code: 3ZN1) 

revealed that like Phe4, the phenyl ring of Tyr points towards the FAD cofactor and the 

sequence showed relative affinity towards LSD1 (Ki 29 µM, 2.21 Figure 2.20). 

 

This image cannot currently be displayed.
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Figure 2.20: Side chains substitutions to the 3rd and 4th positions of PRSFLV peptide. 

(A) Side chain similarities between Ala-Leu and Phe-Tyr; (B) PRLYLV  structure. 

Ki are reported as µM ± STDV (n = 5). 

 

 

 

This image cannot currently be displayed.
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Figure 2.21: X-ray crystal structure of SNAG-derived PRLYLV peptide bound to LSD1 catalytic site.  

The tyrosine residue in 4th position makes contact with Flavin ring similar to Phe4. 

 

We next developed sequences with a longer side chain in position 4, in order to examine 

the effects of structures having a residue with higher propensity of interaction with 

FAD. For this purpose, we chose to replace the Phe4 of PRSFLV scaffold with the 

commercially available N-ε-Cbz-L-Lys, a lysine residue bearing a carboxybenzyl 

protecting group (Cbz) and prepared PRSK(Cbz)LV.  

 

 

 
 

Figure 2.22: Chemical structure of carboxybenzyl (Cbz) protected lysine. 

 

 

This image cannot currently be displayed.

This image cannot currently be displayed.
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Figure 2.23: Side chain substitution at the 4th position of PRSFLV peptide with carboxybenzyl containing 

lysine. 

 Ki are reported as value ± STDV (n = 5). 

 

The mutated sequence PRSK(Cbz)LV also proved to be a good inhibitor of LSD1 (Ki = 

12.4 µM). To further evaluate the effects on the activity of the Cbz group, we 

synthesised LRSK(Cbz)LV . In that way, we would have gained a further insight if the 

improved activity generated by Cbz could balance the absence of Pro1. Such sequence 

showed a five-fold increase in inhibitory activity compared to PRSFLV peptide, 

balancing effectively the lack of Pro1.  

 

 
Figure 2.24: Side chain substitutions at the 1st and 4th positions of PRSFLV peptide. 

Ki are reported as µM ± STDV (n = 5). 

 

This image cannot currently be displayed.

This image cannot currently be displayed.
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As Phe4 occupies the same position as the mono and di-methylated Lys4 in the natural 

substrate, we hypothesised that a peptide containing this modification in position 4th, 

could act as a substrate. Interestingly, the sequence PRSK(me2)LV instead of being a 

substrate, resulted in an effective LSD1 inhibitor with high affinity towards the enzyme 

(Ki = 19.7 ± 2.4 µM).  

 

 
Figure 2.25: PRSFLV mutant possessing a di-methylated Lysine in 4th position. 

Ki are reported as µM ± STDV (n = 5). 

 

 

PRSK(me2)LV was also evaluated against LSD2, the human homologue of LSD1  and 

here it also acted as an inhibitor and not as substrate (Ki = 2.5 ± 0.4 µM). Intrigued by 

this result, we synthesised PRSK(me2)LVRKP as the unmethylated 9-mer of Snail-1 

binds tightly to the LSD1 catalytic cleft and thus it was possible that the di-methylated 

9-mer could act as an inhibitor. PRSK(me2)L sequences from the N-terminal of Snail-1 

was also synthesised to prove whether the di-methylated lysine could improve the 

binding affinity towards the enzyme. Surprisingly the di-methylated 9-mer also acted as 

an inhibitor and not a substrate as expected, whereas the di-methylated 5-mer was 

inactive. This implies that the environment of H3 is fundamental for the demethylase 

activity of LSD1. Unfortunately no crystal structures of the di-methylated peptides were 

achieved.  

 

This image cannot currently be displayed.
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Figure 2.26: 9-mer and 5-mer mutants of PRSFLV peptide bearing a methylated Lys in 4th position. 

Ki are reported as µM ± STDV (n = 5). 

 

 

The last two positions in PRSFLV peptide are occupied by leucine and valine and Ala-

scan mutagenesis generated two inhibitors of LSD1, PRSFAV and PRSFLA, which 

exhibited respectively two-fold increase and a slight decrease in activity (2.13 and 2.14, 

Figure 2.13). 

For PRAFAV  it was possible to obtain an X-ray crystal structure and the analysis 

showed that the hydrophobic amino acid Ala perfectly overlaps with the Val residue of 

the SNAG 6-mer PRSFLV (Figure 2.27).  

 

 

This image cannot currently be displayed.
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Figure 2.27: X-ray crystal structures of peptides PRSFLV and PRSFAV (PDB: 3ZMZ). 

PRSFLV is shown in white, PRSFAV mutant is shown in light brown, oxygen atoms in red and amines in blue. The 

sequences show the same binding mode as PRSFLV to the catalytic site of LSD1. 

 

 

 

 
 

Figure 2.28: Side chain substitutions at the 5th and 6th positions of PRSFLV peptide.  

Ki are reported as µM ± STDV (n = 5). 

 

 

To evaluate Val6 contribution to the binding, we generated a mutant possessing two 

Alanine residues at position 5 and 6, corresponding to PRSFAA (2.25, Figure 2.28). 

Analysis of the X-ray crystal structure revealed a perfect overlap between the Snail-1 

This image cannot currently be displayed.

This image cannot currently be displayed.
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native sequence and the 2.25 (Figure 2.29). In addition, the enzymatic evaluations 

confirmed the affinity for LSD1 catalytic site (Ki = 10.7 ± 1.1 µM). The data conveyed 

once more the little contribution of positions 3-6 to PRSFLV binding activity. 

 

 
Figure 2.29: X-ray crystal structures of peptides PRSFLV and PRSFAA (PDB: 3ZN0). 

PRSFLV is shown in white, PRSFAA mutant is showed in light brown, oxygen atoms in red and amines in blue. 

The sequences show the same binding mode into the catalytic site of LSD1. 

 

Thereafter, we examined further the importance of Pro1 and the ancillary roles of the 

side chains of residues 3-6 in binding LSD1, with the synthesis of two supplementary 

structures with multiple Ala residues and namely ARAFAA  and PRAAAA (2.26 and 

2.27, respectively, Figure 2.30). ARAFAA  was unable to block LSD1 while PRAAAA 

revealed to suppress LSD1 activity at 28.0 µM, displaying an almost identical affinity 

for LSD1 as PRSFLV. 

 

 

This image cannot currently be displayed.
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Figure 2.30: Poly-alanine sequences 

Ki are reported as µM ± STDV (n = 5). 

. 

2.3.3. Snail-1 and H3 binding modes compared 

Overall, the data suggested that Pro1 is the critical residue for binding to LSD1 as the 

various prepared mutants containing other residues at that position revealed weaker 

affinities for the epigenetic target. In contrast to this observation, H3 contains an Ala in 

the first position. This explains the poor binding of short H3 peptides to LSD1 (Table 

2.1). This notion finds further support from the properties exhibited by the Snail1-H3 

hybrid sequence (PRSFQTV). This molecule was designed with the idea that, in 

addition to the Pro1-Ala substitution, another main difference between the first amino 

acids (N-terminal) of Snail-1 (PRSFLVR) and H3 (ARTKQTAR)  is the insertion of 

Gln5-Thr6 of H3 in place of Leu5 of Snail-1. However, we found that PRSFQTV 

(2.27, Figure 2.31) binds to LSD1-CoREST with a Ki of 8.0 µM. This, combined with 

Ala-scanning experiments, indicates that Pro1-Ala substitution is indeed the main factor 

that weakens the binding of the N-terminal residues of H3 compared to Snail-1, making 

short H3 peptides of 8 or 12 amino acids able to only weakly associate to LSD1.104,110  

 

This image cannot currently be displayed.
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Figure 2.31: Peptide PRSFQTV, hybrid sequence Snail-1-H3. 

Ki are reported as µM ± STDV (n = 5). 

 

Another important aspect is that although the Snail-1 6-amino acid peptide can bind to 

LSD1 and exert biological activity, the additional residues 7-9 also contribute to 

binding. No further contribution is given by the subsequent amino acids of the N-

terminal portion of the protein (Table 2.1). This is entirely consistent with the sequence 

comparisons, because Snail-1-SCRATCH transcriptions factors are highly conserved 

sequences in their 9 N-terminal residues. Their sequences diverge after this initial 

strictly conserved segment.141 This is not the case of the H3 N-terminal tail, whose 

binding can take place (though weakly) also for peptides that lack the first 4 N-terminal 

amino acids and substantially depends also on residues after Arg8 (Table 2.1). 

Accordingly, mutations of Gly12 and Gly13 to Ala have been shown to essentially 

abolish peptide binding to LSD1-CoREST; such a Gly-Gly motif is absent in the Snail-

1 sequence and probably crucial to establish the folded conformation of the LSD1-

bound H3 peptide.104 Thus, on one hand the presence of Ala1 (instead of Pro1) 

diminishes the contribution to binding of the very first N-terminal stretch of the H3 

peptide but, on the other hand, this is partly compensated by the contribution given by 

the more distant residues in positions 10-20 along the sequence. Indeed, the crystal 

structure shows that the residues 9-16 are engaged in a network of intra- and inter-

molecular H-bond interactions, which critically depend on the amino acid sequence. 

 

  

This image cannot currently be displayed.
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Table 2.2: Histone 3 and Snail-1 N-terminal sequences and their enzymatic evaluation as inhibitors of LSD1 

enzymatic activity. 

From references104,110 

Peptide Sequence Ki (µM ± STDV, n = 3) 

H3 1−21 ARTKQTARKSTGGKAPRKQLA 1.8 ± 0.6 

H3 1−12 ARTKQTARKSTG 199.0 ± 22.0 

H3 6−21 TARKSTGGKAPRKQLA 87.0 ± 29.0 

SNAIL1 1−20 PRSFLVRKPSDPNRKPNYSE 0.2 ± 0.1 

INSM1 1−20 PRGFLVKRSKKSTPVSYRVR 0.2 ± 0.1 

 

2.4. Biological evaluation of SNAG-like sequences 

To investigate whether a live cell would uptake and/or respond to the SNAG-like 

peptides, we tested the cell viability in SK-MEL-28 (melanoma), A549 (lung) and HL-

60 and THP-1 (acute myeloid leukaemia) cells. Biological testing of similar peptides 

was unreported so far and we hoped to identify active sequences albeit the absence of a 

cell penetrating sequence, which could have enhanced the cellular uptake.  

The SK-MEL-28 cell line is a fast growing melanoma model, whereby Snail-1 is over-

expressed. The cells were treated with different concentrations of PRSFLV (10 µM, 25 

µM, 50 µM, 100 µM, 200 µM and 500 µM) and TCP (500 µM). 
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Figure 2.32: Effects of SNAG-like derivative PRSFLV on SK-MEL-28 cells proliferation (72 h) measured with 

MTT assay. 

Absorbance  (570 nm) results were normalised to pre-treatment levels. Statistical significance was determined with 

one-way ANOVA corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD (n=5); 

*p < 0.05, ** p < 0.01, *** p < 0.001. 

 

As reported in Figure 2.32, there is an evident trend linking peptide concentration to cell 

viability. At 500 and 200 µM the presence of PRSFLV hindered cell viability, while at 

100, 50, 25, 10 µM it seems that the peptide promotes instead SK-MEL-28 

proliferation. Yet 50 µM was inconsistent with the general observed trends. In addition, 

TCP treatments were unable to modulate cell viability at the tested concentrations. In 

order to verify whether these results depended upon the peptide or the cell line, we 

repeated the cell proliferation assay using A549 cells (small cell lung cancer). There is 

evidence that this cancer line is correlated to LSD1 overexpression.232 

In A549 cells we also tested the activity of PRSMLV, the potent SNAG-derivative 

bearing a methionine in position 4th that showed great binding affinity towards LSD1 

(Ki = 3.0 µM) and LRSK(CbZ)LV peptide. As shown in Figure 2.33, only the peptide 

LRSK(CbZ)LV was able to significantly modulate cell growth. 

 

This image cannot currently be displayed.
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Figure 2.33: Effects of SNAG-like derivatives on A549 cells proliferation (72 h) measured with MTT assay. 

(A) PRSFLV (B) PRSMLV (C) LRSK(Cbz)LV. Absorbance  (570 nm) results were normalised to pre-treatment 

levels. Statistical significance was determined with one-way ANOVA and corrected for multiple comparisons using 

Dunnett’s test. Data are shown as means ± STD (n=5); *p < 0.05, **p < 0.01, ***p < 0.001. 

  

This image cannot currently be displayed.
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To further explore the anti-proliferative activities of SNAG-derivatives, we tested 

selected sequences in AMLs (Acute myelocytic leukaemia) and specifically in THP-1 

and HL-60 cell lines. In this tests, we also used as a positive control the TCP analogue 

MC2584, (Figure 2.34)175 prepared by our collaborators in University La Sapienza, 

Rome, that showed anti-proliferative effects in APL cells (Acute promyelocytic 

leukaemia NB4 cells)   

 

 
 

Figure 2.34: A TCP analogue with marked anti- APL activity. 

 

 

 

Figure 2.35: Effects of SNAG-like derivatives PRLYLV, LRSK(Cbz)LV, PRSMLV and PLSFLV on HL-60 

and THP-1 cells proliferation (72 h) analysed with MTS assay 

The absorbance values were normalised to pre-treatment levels (vehicle control). Statistical significance was 

determined with one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as 

means ± STD (n=5); *p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Peptides PRLYLV , PRSMLV  and LRSK(Cbz)LV  significantly reduced cell 

proliferation at 1 mM concentration (72 h treatment). The cellular suppression of LSD1 

was also confirmed by Western blot. Data showed an increment of H3K4me2 after 4 h 

treatment with 1 mM of PRSMLV and PLSFLV  peptides.  

 

This image cannot currently be displayed.

This image cannot currently be displayed.
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Figure 2.36: Western bolt analysis of the effects of SNAG-derivatives PRSMLV and PLSFLV peptides on the 

expression of H3K4me2 in treated HL-60 total cell lysate.  

 

 

Taken together, these results suggest that targeted Snail-1/LSD-1 inhibition causes 

decreased proliferation in different cell lines and may provide novel therapeutics for a 

number of different cancers including leukaemia and prostate cancer. The biggest 

limitation to the biological evaluation is the high concentration at which the peptides 

activity is appreciable. In addition, their short length also implies that they may be 

nonspecific and it is not possible to conclude whether these peptides crossed the cell 

membrane or instead triggered cell surface receptors leading to activation of pro-

apoptotic or pro-survival signalling pathways. However, the peptides show downstream 

effects such as increased levels of H3K4me2 in leukaemia cell lines.  

2.5. Conclusions 

In this work we synthesised small LSD1 reversible inhibitors based on the previous 

observation of LSD1-Snail-1 interaction. The designed small ligands were µM 

inhibitors of LSD1 enzymatic activity and their effective binding was supported by 

numerous X-ray crystal structures. By targeting LSD1, the peptides were able to 

modulate the activity of AML cells. Since previous studies have shown how Snail-1 

recruits LSD1 for demethylation at its target genes via the SNAG domain, it could 

seem counterintuitive that Snail-1 also inhibits LSD1 enzymatic activity. The 

This image cannot currently be displayed.
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present study provides a possible explanation to this paradox: the SNAG domain 

recruits LSD1 but then releases it to the H3 tail. We found in fact that the first 6-

residues of Snail-1 are sufficient for binding to LSD1, whereas the residues 10-

20 do not contribute to enhance the affinity. On the other hand, the residues 10-

20 of H3 establish multiple interaction with LSD1, allowing H3 to displace the 

SNAG domain from the active site of LSD1.  

 

Hence the discovery of small LSD1/CoREST peptide ligands lays the foundation for a 

deeper understand of the LSD1 interaction with the Snail family of binding partners as 

well as the structure-based development of further analogues with improved drug-like 

properties.  
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Chapter 3 - Targeting LSD1 with Phage display 

technology 

3.1. Introduction 

The successful synthesis of small peptides acting as reversible inhibitors of LSD1 

prompted us to investigate other non-covalent LSD1 antagonists. Phage display 

technology was utilised to screen the binding affinities of a large number of peptides 

towards LSD1. This technique offers a powerful and highly specific alternative to 

rational design and virtual screening to explore peptide-LSD1 interactions.  

Many examples in the literature describe Phage display-derived peptides that interacted 

successfully with the surface of proteins,233 antibodies234 and receptors;235 such screens 

led to the discovery of peptide sequences and proteins that are at the later stages of drug 

development.236–238 

The widespread use of this technology for peptide selection is justified by its simplicity, 

its specificity and the stability of the phage particles.239 These characteristics enable the 

application of the phage display to a wide array of biological surfaces including in vivo 

screening for the isolation of peptides targeting specific cell-surface biomarkers.240 For 

example, Cwirla et al. demonstrated the specificity of peptide libraries by screening a 

library of 3×108 recombinant peptides, displayed on a phage vector, towards a well-

known antibody.234 Specifically, the authors screened the phage library against the 

antibody 3-E7, which binds to the N-terminal sequence of opioid peptides through the 

motif Tyr-Gly-Gly-Phe, crucial for antibody recognition. The sequencing of 51 clones 

derived from this study revealed that most of the isolated sequences presented a N-

terminal Tyr-Gly motif.234 The same authors identified peptides binding to 

thrombopoietin235 and erythropoietin241 receptors by screening libraries displayed on 

phage vectors and plasmids. These two studies led to the synthesis of extremely potent 

peptidomimetics with affinities for the receptors comparable to the natural substrates 

(0.5 nM). 

Mintz et al. utilised a library of peptides for panning towards antibodies produced in 

prostate cancer patient serum. Analysis of peptide sequences displayed by phage bound 

to purified immunoglobulins led to the identification of a recurrent sequence correlating 
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with poor prognosis patients. Subsequent molecular studies on such sequences 

identified a striking correlation of the displayed peptide with the expression protein 

Grp78.242 The study evidentiated the successful use of Phage display for systematic 

high-throughput fingerprinting of circulating proteins in cancer patients and the 

potential of the technique for the application in diagnostics. 

Besides the phage display, other displaying platforms have been used for protein-

protein interaction research.239,240 These are mRNA, ribosome, DNA and cell display 

(Figure 3.1). Among them Phage display is the most utilised screening platform.240 The 

distinct feature shared by all these molecular platforms resides in the ability of 

physically linking the genotype to the phenotype. This characteristic enables the rapid 

identification of the displayed peptide chains harboured on their surface.  

 

 

 
Figure 3.1: Peptide display platforms. 

Adapted from Sergeeva et al. 240 

  

This image cannot currently be displayed.
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Only one study so far describes the application of phage display libraries for the 

identification of peptides binding to epigenetic targets. In this work, Leurs et al. 

screened three phage displaying libraries, against both LSD1 and JmjC families of 

demethylases.243 The study led to the identification of six novel peptide sequences. 

Among them, the ones targeting LSD1 do not share similarities with LSD1 natural 

substrate H3 or any known LSD1-binding partner. The hits discovered, however, 

displayed only weak inhibition in vitro for the targeted demethylases. To optimise the 

peptide affinity for the cognate targets, the authors applied several modifications to the 

original phage-derived sequence, by removing and/or exchanging amino acid residues. 

The aspartate and asparagine residues, which are known to destabilise the peptides in 

solution, were substituted with alanine or glutamate residues and such modifications led 

to a dramatically increase of peptide binding affinities. The efforts of this research were 

next addressed mostly towards the JmjC KDMs. Subsequent studies on their binding 

mechanism were achieved by employing mass spectrometry techniques.244  

The current project explores the potential of Phage display technique using a library of 

12-mer peptides for the identification of new LSD1 ligands able to antagonise the 

demethylase activity. The data gathered from the selection could be eventually used to 

design additional drug-like molecules based on phage display-derived scaffolds.  
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3.2. Phage display 

3.2.1. The phage vector 

In Phage display, the “display” is achieved through association of short DNA 

sequences, encoding for oligopeptide chains, into viral DNA by common recombinant 

DNA techniques. Standard microbiological procedures are then used to maintain and 

propagate the phage.245 The viral recombinant vectors are bacteriophages, able to 

replicate in bacteria and present the ability of harbouring DNA sequences of foreign 

species, as for example human DNA or synthetic DNA fragments.239,245 

To propagate phages, the most commonly employed host is the bacterium Escherichia 

coli (E. coli).245 

Three types of bacteriophages have been described: filamentous, lambda and T7. The 

family of filamentous phage is composed by three genetically and phenotypically 

equivalent strains: M13, f1 and fd. M13 is the best characterised and the most used as 

phage display vector.246,247 

M13 possesses a single stranded DNA, composed of 6407 nucleotides. There are nine 

genes that encode for eleven proteins and these are grouped on the basis of their 

biological function:245,246 

- pII, pV, pX which are DNA replication proteins; 

- pIII, pVI, pVII, pVIII, pIX which are capsid proteins; 

- pI, pIV and pXI are proteins associated with phage asSTDbly; 
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Figure 3.2: Schematic representation of a phage vector. 

Adapted from Løset et al. 248 

 

At one tip of each virion particle there are five copies each of protein pVII and pIX 

(genes VII and IX), whereas at the other end there are 5 copies each of protein pIII 

(minor coat) and pVI (genes III and VI, respectively).239 Three domains, linked to each 

other through glycine rich spacers, compose the minor coat of pIII (N1, N2 and 

CT).249,250 The first domain is required during the infection as it allows the single strand 

DNA to accommodate into the bacterial cytoplasm; the second domain is responsible 

for binding the bacterial F-pilus by establishing disulfide bridges. The third domain, CT, 

is responsible for the terminal asSTDbly of the phage particle and the phage release 

from the host cells.249,250 

 

 
Figure 3.3: Ff-phage minor coat protein pIII scheme of organisation and sequence localisation.  

D stands for domain and in brackets are reported the number of amino acid contained in each domain. 

Adapted from Holliger et al. 251 

  

This image cannot currently be displayed.

This image cannot currently be displayed.
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When the virus replicates in the host, the inserted DNA also replicates. Therefore, each 

peptide-phage clone in the library carrying the foreign DNA sequence can multiply in 

the bacterial host, producing identical progeny phages.252,253 Such phage clones 

compose a phage-display “library”. Each clone, by carrying a unique foreign DNA 

insert, displays a different peptide on its surface.252  

The phage vector initiates the infection by attaching its N-terminal domain of pIII minor 

coat to the bacteria’s F-pilus and entering the host cell (Figure 3.3).251 The minor coat is 

then disasSTDbled and the single stranded DNA enters the bacterial cytoplasm. 

Successively, the E. coli machinery synthesises a virus’s complementary DNA strand 

and in this way, a double stranded replicative form of DNA is formed and used by the 

host machinery as a template to generate phage proteins. Conversely to the lytic phages 

such as T7, after infection and replication, filamentous phages do not lyse the cells, 

being able to be released without lysing the host cell membranes. This feature favours 

this class of phages for display technique applications as the isolation process do not 

requires purifications steps from the genetic material resulting from bacterial lysis.246  

The inserted DNA can be localised into the phage’s pIII, pVIII and pVI and the 

segments harboured into the first two proteins are synthesised with the N-terminal 

signal peptides attached and directing into the membrane.252 Being inserted in the inner 

membrane of the host cells, the signal peptide is cleaved, leaving the synthesised protein 

to span the cytoplasmic membranes: in this orientation the amino-terminal is found in 

the cytoplasm (outside the virion particle) whereas the C-terminal is encountered in the 

periplasm (inside the virion particle).239 This way, the peptide sequence is linked 

genetically to the endogenous amino acids of the coat protein making a hybrid “fusion” 

protein.253 The recombinant sequence at the N-terminal is followed by a short 

characteristic sequence at the C-terminal. For example, the library of phage used in the 

present study, corresponds to a combinatorial library of random dodecapeptide fused 

into pIII minor coat protein of the M13 phage (PhD-12TM from New England Biolabs) 

with a characteristic sequence (factor Xa protease cleavage). The factor Xa protease 

cleavage at the C-terminal is composed by the tetrapeptide Gly-Gly-Gly-Ser 

(X12GGGS, X=random sequences). The factor Xa protease cleavage sequence enables 

the recombinant peptides to be “dangled” off the pIII (Figure 3.4) and to interact with 

the target.  



 Chapter 3 

 105

 
 

Figure 3.4: Schematic representation of PhD-12TM  from New England Biolabs.  

X= randomised sequence (12 amino acids); GGGS corresponds to the linker sequence. 

 

Having a free N-terminus, the peptides displayed possess a considerable flexibility to 

interact with the target and have similar characteristics to peptides in solution. The 

choice for the library peptides’ length was determined on the basis of the results 

obtained in Chapter 2, where LSD1 inhibitors were found to vary from 6 to 20 amino 

acids in length.  

3.2.2. The phage display cycle and the selection process 

The main goal of any display technique is the progressive reduction of the initial 

number of phages contained in the library to a smaller one, in which only the “fittest” 

for the cognate target will be included.  

Screens with phage display technique involve several steps and after an initial selection, 

high affinity clones are amplified to achieve a library with phages with increased 

suitability for the target. The amplified phages are subjected to iterative rounds of 

panning to select further a pool of high affinity binding sequences. A general scheme of 

the panning procedure is shown in Figure 3.5.  

The selection process is governed by two factors: yield and stringency.239 The yield 

governs the population of phage that exhibits the desired target behaviour, sustaining 

the selection process, while stringency discriminates between high and low affinity 

clones. The yield is important for the first rounds of panning as high stringency in these 

steps could involve the risk of losing a wide phage population containing, potentially, 

high affinity binders. On the other hand, stringency can help throughout the selection 

process during the subsequent rounds of panning.  

 

This image cannot currently be displayed.



  Targeting LSD1 with Phage Display technology 

  106

 
 

Figure 3.5: Schematic representation of a biopanning cycle. 

Adapted from Ullman et al. 254 

  

This image cannot currently be displayed.
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3.2.3. Biopanning cycle 

The biopanning cycle starts with the incubation of the target with the phage library. This 

process, common to all display platforms, is controlled by the affinity of the 

oligopeptides displayed on the phage coat for a given target. 

Normally, polystyrene-based surfaces are employed to immobilise the target 

(protein/enzyme).255 Alternatively, in a two-step selection, the target displaying an 

affinity tag is firstly exposed to the oligopeptides library in solution; next, the target-

phage complex is captured by a surface enriched with elements with affinity for the 

target tag.  

In the described project, His-tagged LSD1 was incubated with the library in solution 

and nickel containing magnetic beads were employed to immobilise the target-phage 

complex by application of a magnetic.256 The solution panning has many advantages 

over the immobilised methods as it requires less amount of target to be used and avoids 

the target denaturation upon absorption onto the polystyrene beads. Moreover, this 

panning procedure enables the protein/enzyme target to maintain its natural 

orientation.257 It has been reported that the immobilisation on polystyrene-based 

surfaces can lead to unfavourable orientations to establish interactions with the 

displayed oligopeptides.257 During the panning, high affinity clones are captured by the 

target surface whereas low affinity or unbound phages are washed away with solutions 

containing detergent (Tween® 20). The bound phages are then recovered with specific 

elution strategies using high-salt acidic solutions or known ligands. The eluted phages 

are next amplified by infecting a low-density fresh E. coli culture to yield a large crop 

of progeny clones composed by affinity binders. After each panning/amplification step, 

the number of phages recovered is monitored with the blue plaque-forming assay (also 

called titering).258 In this assay, each virus is displayed in an agar plate as a small blue 

dot and each dot corresponds to one plaque-forming unit (pfu). The formation of the 

blue plaques is enabled by the presence in the M13 vector of the lacZ gene encoding for 

β-galactosidase (β–gal), and two reagents used for the preparation of the agar plate. 

These are 5-bromo-4-chloro-3-indolyl-p-D-galactoside (X-gal) and isopropyl-p-D-

thiogalactopyranoside (IPTG). Phage infected bacteria and IPTG prompt the production 

of the β–gal that hydrolyses the X-gal creating the blue plaques.  
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The panning and amplification cycles are repeated several times and the process leads to 

an enrichment of the phage library towards the target’s tightest bound sequences. After 

several biopanning cycles (normally 4-5), there will be a point when the entire phage 

population will have nearly the same binding affinity,239,245 and at this stage phage DNA 

is sequenced and the peptide harboured onto its surface identified. The binding affinities 

of each clone are then measured by enzyme-linked immunoassorbent assay (ELISA) or 

other tests.  

3.2.3.1. Elution 

In biopanning, the elution step is of high importance since it enables the recovery of 

high affinity binders. Commonly used elution buffers consist of solutions that weaken 

the receptor-phage interactions without impairing phage infectivity. These are high salt-

acidic buffers (0.1 M glycine-HCl, pH 2.2) or high affinity ligands, which competitively 

displace bound phages. The competitive elution is often used to reduce the background 

of non-specifically bound sequences.253,259 Since the elution with a competitive ligand is 

a two-stage process, the binding kinetics need to be taken into account. The competitive 

ligand elution requires first the natural dissociation of the clone from the catalytic site 

and secondly its re-occupation by the competitive inhibitor. Consequently, each step 

will have a specific association and dissociation rate constants (Kon/Koff).239 High 

affinity phages will have a reduced Koff and thus, with shorter elution time, these will 

not be eluted. On the other hand, prolonged exposures can potentially elute, without 

discrimination, both high affinity and low affinity clones.245 
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3.3. Expression and purification of full length human 

recombinant His-tag LSD1 

For the phage display experiments and the enzymatic evaluation of the phage display-

derived peptides, we used human recombinant His-tagged (full-length) LSD1. To 

measure the ability of phage display derived peptides to suppress LSD1 catalytic 

activity a hydrogen-peroxidase-coupled assay was performed (Amplex®Red).  

3.3.1. LSD1 expression and purification  

LSD1 was expressed and purified under direct supervision of Dr. Patrick Duriez at the 

University of Southampton Cancer Research UK centre.  

The process for His-tagged LSD1 expression and purification is common to standard 

protocols for protein expression. This involves the introduction of a plasmid promoter 

containing an expression vector into a host cell; the host cell then rapidly multiplies 

producing high quantities of DNA encoding for the target protein; the lysis of the host 

enables the release of the genetic material, which is next purified by chromatography.260 

After isolation, qualitative and quantitative tests are performed. All these steps were 

optimised for LSD1 and what follows is a description of the used protocol.  

3.3.1.1. Plasmid vector 

A plasmid is a DNA double stranded circular molecule that once incorporated into a 

host DNA acquires the ability of replicating independently from chromosomal DNA.260 

Plasmids are widely used in molecular biology as they can accommodate DNA 

fragments and such modified plasmids are called vectors. Plasmid vectors are 

commonly used in molecular biology techniques being applied in cloning, transferring 

and gene manipulation processes.260 Once the vectors have been inserted in the host cell 

they regulate the host machinery to replicate the inserted DNA fragments in large 

quantities. The vector used to insert the gene encoding for human-LSD1 is pET15b, a 

plasmid composed by 5708 bp carrying at the N-terminal a stretch of 6 histidine (His) 

residues. These N-terminal residues allow the purification of the target protein by nickel 

affinity chromatography. The vector having a gene encoding for antibiotic resistance, 



  Targeting LSD1 with Phage Display technology 

  110

restricts the propagation of only host cells carrying the plasmid encoding for LSD1. Dr. 

Yang Shi, from Harvard Medical School, Boston, donated the plasmid pET15b-LSD1 to 

the laboratory of Dr. Duriez. 

3.3.1.2. Induction and Growth 

The DNA fragment encoding for LSD1 expression in the engineered pET vector is a lac 

operon and its transcription is triggered by the presence in the culture media of 

isopropyl-β-D-thiogalactopyranoside (IPTG).261  

The DNA fragment encoding for LSD1 expression in the engineered pET vector is a lac 

operon and its transcription is triggered by the presence in the culture media of 

isopropyl-β-D-thiogalactopyranoside (IPTG).261  

The pET vector normally contains three elements: a gene that encodes for antibiotic 

resistance, a lacI gene from the lac operon that codes for the lac repressor (LacI) and the 

gene of interest. This is inserted just after the T7 promoter DNA sequence, the Lac 

operator DNA sequence and the ribosome-binding site (at the start of the mRNA 

transcript). The induction process begins with the LacI falling of the operator DNA 

sequence placed in front of the gene of interest; subsequently the T7 RNA polymerase 

is introduced and recognise the T7 promoter without the presence of the repressor 

(LacI). After these two events the transcription of the gene of interest can begin. 

Commercially available E.coli strains have been engineered to have a gene encoding for 

T7 RNA polymerase under a modified lac operon system. This is called DE3 or BL21 

and has instead of a T7 promoter sequence in front of the lac operator sequence, a lac 

promoter sequence that native E.coli RNA polymerase is able to bind. When the LacI 

falls of the lac operator sequence of DNA in the host chromosome, the T7 of the RNA 

polymerase of the gene of interest can be translated and transcribed.260,261 

LacI senses the presence of lactose and when lactose binds to LacI, induces a protein 

conformational change that renders the protein unable to bind to the operator DNA 

sequence. Being a mimic of lactose, IPTG also induce such conformational change, 

reducing the affinity for DNA; however, IPTG does not take part in any bacterial 

metabolic pathway and therefore, its concentration will remain constant for all the 

expression process. When LacI can no longer bind to the operator, native E.coli RNA 
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polymerase starts the transcription of the T7 RNA polymerase gene engineered into its 

chromosome and, when the protein is expressed binds to the T7 promoter sequence 

upstream to the gene of interest on the plasmid insert and the transcription of the protein 

of interest starts.  

E. coli (BL21 CodonPlus-RIPL) harbouring the pET15b-LSD1 was cultured for 16 h at 

37 ˚C and after that time cells were harvested by centrifugation and lysed. 

3.3.1.3. Lysis 

To extract the crude genetic material containing the protein of interest, a lysis step was 

performed. The pelleted bacteria cells were lysed with a solution containing detergents 

to enhance the bacterial lysis (Triton X), specific enzymes and protease inhibitors to 

prevent the LSD1 degradation by bacterial enzymes and DNase I, to break down the 

released double stranded DNA. The genetic material and cell debris were then discarded 

with a centrifugation step and the supernatant containing the target protein purified. 

3.3.1.4. Purification 

The purification of LSD1 was accomplished in three stages. In the first stage the crude 

extract was eluted through a nickel based column (affinity purification). This type of 

column exploits specific covalent binding interaction between the column material, 

decorated with Ni2+, and the 6-histidine residues in the protein N-terminal domain. The 

affinity interactions between the Ni2+-His, enable His-tagged LSD1 to be retained from 

the bacterial lysate. Gel electrophoresis (i.e. SDS-PAGE) was next used to separate the 

proteins recovered from this initial purification step and identify the fractions containing 

LSD1. Such fractions displayed a band at 80 kDa after Coomassie blue staining; these 

were combined and subjected to a second step of purification, which involved the use of 

gel filtration.260 This step separates soluble macromolecules from small molecules and 

removes remaining salts and buffer reagents derived from earlier purification steps. The 

fractions collected were re-assessed with gel electrophoresis and the ones in which 

LSD1 was detected asSTDbled and further purified with Q-SepharoseTM column (anion 

exchange column). The material composing such column displays negatively charged 



  Targeting LSD1 with Phage Display technology 

  112

anions (counter-ions). Negative charged molecules bind to the resin by displacing the 

resin’s counter-ion.262,263 The protein is eluted from the resin with increasing 

concentration of salted buffer (NaCl) and increased pH. The negative ions in the salt 

buffer displace the protein by competing with it for binding to the resin, whereas the 

decrease in pH enables an increased positive charge on the protein, allowing its elution 

from the column.262 When the pH of the elution buffer reached the LSD1 isoelectric 

point (~ 6), the fractions were collected and a last electrophoresis step was performed to 

isolate the pure fractions. LSD1 obtained was then concentrated and quantified. 

3.3.1.5. Analysis of the pure protein 

We quantified the pure LSD1 by Bradford assay. This spectroscopic quantitative assay 

is based on the absorbance shift of the dye Coomassie blue at acidic pH upon binding to 

specific protein amino acid residues (arginine, histidine, phenylalanine, tryptophan and 

tyrosine residues) and hydrophobic interactions.264 After quantitative evaluation, the 

protein was aliquoted and kept at -80 ˚C. Benelkebir et al. previously studied the 

kinetics of LSD1 and the Km (Michaelis constant) was determined to be 21 µM, using a 

peroxidase-coupled assay and as substrate the H3K4me2 peptide (21 amino acid long) 

at pH = 7.5.170 The Km, is defined as “the substrate concentration at which the reaction 

is half of the Vmax” (the system maximum velocity achieved at substrate saturating 

concentrations). The determination of this parameter is important to define the 

concentration of substrate (H3K4me2) to use in the enzymatic assays. The protein 

activity was measured with Amplex®Red by incubating LSD1 with TCP and measuring 

the residual enzymatic activity, which should fall in the range 30-15 µM. 

 

3.4. Amplex®Red assay 

The Amplex®Red assay was used to determine the ability of phage-derived sequences to 

inhibit LSD1 demethylase activity on H3K4me2.  
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Figure 3.6: Mechanism of demethylation and Amplex®Red assay. 

(A) LSD1 promotes the catalytic demethylation of di-or mono-methylated Lys 4 on Histone 3 (H3K4) through a 

Flavin dependent oxidative mechanism. The histone 3 binds to the FAD, which oxidizes the H3K4 side chain with its 

prosthetic group. Concurrently, reduction of oxygen to hydrogen peroxide takes place. The formed imine 

intermediate is then hydrolysed generating the demethylated H3 and formaldehyde. (B) FAD reduction and 

regeneration and peroxide release. (C) Peroxidase-base coupled assay: the horseradish peroxidase uses ADPH 

(Amplex®Red) as an electron donor during the reduction of hydrogen peroxide to oxygen. This leads to the 

conversion of ADPH to ADP (resorufin), which is highly coloured and its fluorescence is measurable. 

  

This image cannot currently be displayed.
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In such an assay, the purified LSD1 is combined with the test peptides derivatives (or 

other potential inhibitors) and then incubated with H3K4me2 peptide natural substrate 

(sequence ARTK(me2)QTARKSTGGKAPRKQLA) in the presence of FAD. The read 

out of the assay is the colorimetric reaction of Amplex®Red with hydrogen peroxide 

(H2O2), the by-product of LSD1 demethylation. The fluorescence is immediately 

detected (530 nm excitation and emission at 590 nm).  

The activity of the inhibitor is evaluated by comparing the fluorescence values obtained 

under test conditions (LSD1+substrate+inhibitor) with control conditions, which 

corresponds to the maximum catalytic activity (LSD1+substrate−inhibitor). The enzyme 

assay is normally repeated in triplicate using TCP or known LSD1 non-covalent 

inhibitors as positive controls. 

3.5. Phage display strategies used in panning against the 

LSD1 catalytic site 

To screen peptides displayed on a phage library against LSD1, a total of four rounds of 

solution biopanning were performed (Figures 3.7-3.9).  

To circumvent the selection of phages that are not specifically bound to the target, a 

pre-selection step or negative selection step was introduced after a first round.  

The first two rounds were performed while maintaining a low degree of stringency in 

order to enrich the library with specific LSD1 binders, without discriminating between 

high affinity (phages positioned near or inside the LSD1-AOD domain) and low affinity 

ones (bound to other surfaces). Following two rounds, a competitive elution was 

employed to improve the selection for peptides that were tightly bound to the LSD1 

catalytic site (Figure 3.9).  
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Figure 3.7: Scheme illustrating the different biopanning steps in ROUND 1.. 

This image cannot currently be displayed.
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Figure 3.8: Scheme illustrating the different panning steps in ROUND2. 

This image cannot currently be displayed.
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Figure 3.9: Scheme illustrating the different biopanning steps in ROUND 3-4 of. 

This image cannot currently be displayed.
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In these last two rounds, a solution of 1 mM of a known water-soluble LSD1 peptide 

ligand PRSFLVRKP (Figure 3.9) was used in order to elute LSD1-captured phages. 

The high affinity of PRSFLVRKP (Ki 0.136 µM) for LSD1 catalytic site and the 

saturating concentration of the specific ligand would enable the elution of phages 

therein localised. Three elutions of 10 min each were performed and the period of 

elution was selected according to the standard incubation times used to antagonise 

LSD1 in enzymatic evaluations.170  

After 4 rounds of selection to enrich for higher affinity peptides, a last step of phage 

propagation preceded individual phage characterization through DNA extraction and 

sequencing. The peptides obtained from the study were then synthesised by Solid Phase 

Peptide Synthesis and the activity of the native sequences evaluated with a peroxidase 

coupled assay (Amplex®Red). 

3.6. Results  

3.6.1. Protein expression 

The reported method for LSD1 expression was optimised in the laboratory of Dr. 

Duriez and has been shown to be reproducible. The full length human recombinant His-

tag LSD1 obtained with such described procedures has been used in all stages of 

panning experiments and enzymatic assays throughout the course of the PhD. 

The Figures 3.10 and 3.11 report two images of the electrophoresis showing the gradual 

purification of LSD1. 

Analysis of the target state was also carried out during the panning by electrophoresis to 

verify the LSD1 stability during the experiments. 
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Figure 3.10: Coomassie Blue stained polyacrylamide gel of affinity purified LSD1 protein. 

The image shows the SDS-PAGE results of first and second steps of purification after protein extraction. Bands 

identifying LSD1 are inside rectangle boundary (80 kDa). 

 
Figure 3.11: Coomassie Blue stained polyacrylamide gel of LSD1 after anion exclusion column. 

Bands identifying LSD1 are inside rectangle boundary (80 kDa). 

This image cannot currently be displayed.

This image cannot currently be displayed.
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3.6.2. Phage display results  

The number of phages yielded in each round of panning and amplification was 

determined with the blue plaque forming assay as described earlier.  

The selection process was monitored by calculating the output/input ratio (Table 3.1 and 

Figure 3.12). The output is the number of phages recovered after each amplification step 

per mL of solution used for the elution steps, while the input is the number of phages 

used for the panning step. 

 

Table 3.1: Output/input ratio obtained in the four rounds (R) of panning against LSD1 catalytic site. 

Ge1-2-3 represent the glycine eluates 1-2-3 whereas Pe1-2-3 the competitive elution. 

 

 

 

 
Figure 3.12: Enrichment of displaying peptides targeting LSD1. 

  

This image cannot currently be displayed.

 R 1 R 2 R 3 R4 

Input 

(pfu/mL) 
1×1011 1×1011 1×1011 1×1011 

Output /input 

(pfu/mL) 
Ge1 1.4×10-6 Ge1 4.6×10-6 Pe1 1.4×10-5 Pe1 2.4×10-5 

 Ge2 1.5×10-6 Ge2 1.27×10-5 Pe2 7.8×10-5 Pe2 3.5×10-5 

 Ge3 2.3×10-5 Ge3 1.23×10-4 Pe3 8.5×10-5 Pe3 1.5×10-4 
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The trends observed in the four rounds of panning revealed a progressive selection for 

higher affinity phage binders. As shown in Figure 3.12, after the first round we 

observed a surprising loss of peptide diversity, equal to 99%. The used PhD-12TM 

library contains in 10 µL (10×1011 pfu), 1.2 × 106 different peptides (10 copies of the 

same peptide) and by recovering only 23.000 peptides we removed the initial great 

heterogeneity of displayed sequences. This result could have been driven from the 

limited presence in the library of peptides capable to interact with LSD1. After a second 

round of panning, the input/output ratio increased, indicating an enrichment of affinity 

phage. A competitive elution was next used in round 3 and 4 and, after a slight decrease 

in yield (round 3 compared to round 2) we registered an increase in phage number. The 

decrease was proportional to the greater degree of stringency applied in round 3. 

Notably, the last elution step for each elution made, using either glycine or peptide in 

the process of elution, resulted in the highest titer of phages. A possible explanation 

could be a higher Koff  of peptides with affinities for LSD1 and as a consequence, these 

were released with a slower rate from the target. 

Following four rounds of panning, six clones from the amplified round 4 were harvested 

and their DNA sequenced (Table 3.2).  

 

Table 3.2: Peptide sequences displayed by the sequenced clones after cleavage. 

Clone Peptide sequence 

3.1 RKQHAIPLIWPA 

3.2 RKQHAIPLIWPA 

3.3 GGTKAPRLEHGP 

3.4 NPHTHTHGAFVS 

3.5 RKQHAIPLIWPA 

3.6 RKQHAIPLIWPA 

 

The sequencing revealed that four out of the six clones sequences displayed the same 

peptide. The enrichment for a specific sequence motif is a recurrent theme in phage 

display screening and often associated with the increase of fitness of the selected clones 

for the target.239 

None of the sequences showed homology with known non-covalent inhibitors of LSD1, 

reported in Chapter 2 and a search with Basic Local Alignment Search Tool (BLAST, 
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NCBI, Bethesda, USA) was unable to identify proteins with structural similarities to 

known LSD1 binding partners. These results were quite unexpected as commonly, 

screening combinatorial libraries by affinity selection leads to ligands with a certain 

grade of homology with primary structures interacting with the target.265 

Peptide 3.4 bears three His residues and the emergence of such amino acids is often 

correlated with the association of His-rich displayed peptides to the transition metal 

Ni2+, chelated on the beads employed to capture the protein-phage complex. As 

histidine-rich clones are not always generated by target-unrelated selection 

processes,266,267 peptide 3.4 along with peptides 3.1 and 3.3, was synthesised and 

screened. The peptides were prepared via Fmoc-SPPS on a Rink Amide resin to yield 

sequences with free N-terminus and a C-terminal amide, mimicking the peptides state 

displayed on the pIII phage protein. 

The ability of the purified synthetic peptides to inhibit LSD1 was next examined with 

Amplex®Red peroxidase-coupled assay. The concentrations used for the screening were 

the following: 800 µM, 400 µM, 200 µM, 100 µM, 50 µM, 25 µM, 12.5 µM, 6.25 µM 

and 3.13 µM. SNAG-derived PRSFLV peptide was used as a positive control (Table 

3.3 and Figure 3.13).  
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Figure 3.13: Dose-response curves generated with Amplex®Red enzymatic assay testing phage displayed 

derived peptides. 

X-axis is in logarithm of concentration (M, Molar); Y-axis is the % of relative fluorescent unit (RFU) compared to 

100% activity (LSD1+substrate, - inhibitor). Data were fitted with nonlinear regression model and are shown as mean  

± STD (n=3). 

 

Table 3.3: IC50s values obtained with enzymatic evaluation of phage derived peptides measured with 

Amplex®Red. 

Enzymatic results are expressed as % RFU normalised to pre-treatment level (LSD1 + Substrate, no inhibitor) ± STD 

(n=3). 

Peptide Sequence IC50 (µM ± STD, n = 3) 

3.0 PRSFLV 18.4±1.6 

3.1 RKQHAIPLIWPA 332.7±3.2 

3.3 GGTKAPRLEHGP > 800 

3.4 NPHTHTHGAFVS > 800 

 

  

This image cannot currently be displayed.
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The peptide RKQHAIPLIWPA (3.1)  inhibits LSD1 at high concentration and was the 

only peptide showing activity. Despite being inactive at the tested concentrations, the 

dose-response curve obtained with 3.3 revealed a dose-dependent decrease in 

demethylase activity. The same concentration-dependent trend was not observed in the 

case of 3.4. 

3.7. Discussion  

The present study was designed to discover non-covalent peptides with affinity to LSD1 

by phage display using a 12-mer linear library of random combinatorial peptides; a total 

of four rounds of panning were performed using full-length human recombinant His-

tagged LSD1 and six clones were sequenced. 

The selection process was monitored by the estimation of the output/input ratio. Results 

showed an initial drastic exclusion of the peptides originally present in the PhD-12TM 

library. In the subsequent rounds of panning we observed a substantial increase of 

recovered phages. To select for high binders (i.e. phage bound to LSD1 catalytic 

pocket), we inserted in the elution buffer of rounds 3 and 4, a known peptide ligand, 

capable of competitively displacing phage bound to the LSD1 active site.  

Sequencing results of six randomly selected clones revealed that four out of six clones 

displayed the same peptide sequence. As suggested by the literature, the recurrence of 

homologous peptides is either associated with the appropriate selection of affinity 

phage239 or it is attributed to propagation related events.267 Propagation related events 

occur when certain phages propagate at a faster rate than others and consequently 

predominate.267 It has been reported that some displayed sequences can decrease the 

phage infectivity and consequently, slowing down the phage release from the host cell; 

another factor contributing to a decrease in diversity is associated with the 

incompatibility of certain peptides to be displayed on the phage surface.268 

Nonetheless, within the isolated peptides, the sequence 3.1 was the only one promoting 

inhibition of LSD1 demethylase activity at 300 µM and normally, faster propagating 

clones are generally unlikely to have affinity to the target. 

Literature evidence reports that moderate affinity peptides are more likely to be selected 

than high affinity ones.233,246,269 The strongest affinity peptides can be underrepresented 

or absent in the chosen library, factors that probably have driven the selection to weaker 
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binders. Screening other displaying libraries of phage like Ph.D.™-7, can be suggested 

to exploit further the potential of this technique for the discovery of non-covalent LSD1 

inhibitors with more desired characteristics. In keeping with this, the Ph.D.™-12 library 

manual reports that the increased length of the randomised sequence in the 12-mer 

library, may enable the target to select sequences via multiple weak binding contacts 

instead of a few strong contacts; this could have been the case for LSD1 and therefore it 

would be useful to assess shorter length libraries.  

It has been shown that, besides the interaction with the active site, selected peptides can 

also interact with the target via allosteric modulation.265 In keeping with this, it has been 

reported that LSD1 displays supplementary druggable spaces.231 Therefore these could 

have been targeted by the displayed peptides and 3.1 could have interacted with other 

surfaces of LSD1, binding away from the catalytic domain. 

The poor activity exerted by 3.1 can also be attributed to the loss of multivalency in the 

synthetic peptide compared to the corresponding phage. Each phage displays in fact 

from 3 to 5 copies of each peptide in the pIII protein.270 Thus the interactions with 

LSD1 exerted by the multimers during the panning could have differed from the 

monomeric activity promoted by the synthetic peptides.271 

Despite the inability to inhibit LSD1 at low concentrations, the dose-response curves of 

3.3 indicate a dose-dependent decrease in demethylation, implying that higher 

concentrations could have contributed potentially to a greater effect.  

Peptide 3.4 showed a histidine motif and such sequences, as previously mentioned, are 

considered target-unrelated hits.266 Histidine can form a strong coordination bond 

through the nitrogen of the imidazole ring (electron donor) and the positive Ni2+. During 

the panning steps, nickel-containing beads have been used for affinity purification and a 

negative selection step has been introduced in the second round of panning to avoid the 

selection of such clones.266,267 Thus, the presence of the motif was considered a 

coincidence and the peptide was synthesised and tested. However, among all the 

screened sequences, it is the one that impairs LSD1 demethylase activity the least. The 

selection of such a clone that most likely derives from the presence of nickel-coated-

beads could be avoided by the addition of a preventive pre-selection-step at the 

beginning of round 3 and 4. Furthermore, it has been estimated that displayed peptides 

need to have a Koff  > 50 µM to sustain the vigorous washing steps prior to the elution.272 
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Although this is likely to increase the selectivity towards the target, it can equally 

decrease the number of high affinity binders from the other. A possible strategy to 

weaken the selection pressure and particularly in targeting LSD1, could have been the 

reduction in the amount of Tween® (detergent) used during the washing steps in the first 

rounds of panning. This foresight could have potentially contributed to a less marked 

loss of phage diversity in round 1.  

In rounds 3 and 4 we used a competitive elution in order to increase the selectivity for 

phages that interact with the LSD catalytic site. As explained before, in this type of 

elution the rates of association and dissociation from the catalytic site may affect the 

outcome of the selection process. The elution process is governed by the exposure time 

of phage-LSD1 complex to the competitor and therefore, shorter exposure could not 

elute all phages localised in the catalytic site, while longer exposures may elute all 

phages without discriminating between high and low affinity ones. For this project, we 

have chosen only one time point (10 min), based on the standard time-course used for 

enzymatic inhibition of LSD1 antagonist. Perhaps, we should have used different 

incubation times (5-20 min for example) along round 3 and round 4, to better manage 

the association and dissociation rate constants (Kon/Koff) and monitor the selection 

process by determining the number of recovered phages during each time interval.  

To increase peptide-binding efficiency in the post-selected sequences, a strategy 

reported by some authors is the inclusion of the C-terminal linker sequence GGGS the 

synthetic peptides.243,273 However, as the known LSD1 binders interact with the 

catalytic site via the N-terminal domain, adding residues to the C-terminal domain is 

unlikely to lead to any improvement to the binding affinities of the synthetic peptides 

towards LSD1. 
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3.8. Conclusions 

The present study was designed to determine if a peptide screen on a Phage display 

system could unravel potent, non-competitive inhibitors of LSD1. It represents the first 

study, which used as eluent a soluble peptide ligand for LSD1. Three peptides were 

identified from this study and among them the sequence RKQHAIPLIWPA displayed 

some activity against LSD1 demethylase. This pioneering work can be considered a 

starting point for the use of this potent technique to explore new non-covalent LSD1 

inhibitors. 
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Chapter 4 - Synthesis of irreversible inhibitors of 

LSD1 targeting acute myeloid leukaemia 

4.1. Introduction 

Acute myeloid leukaemia (AML) is a tumour of the myeloid line of blood cell. The 

genesis of the diseases is still unclear and recently the pathology onset has been 

associated with epigenetic dysregulations.84,274 Given the reversibility of the epigenetic 

modifications, epigenetic modulators have been identified as possible strategic targets 

for AML therapy, whereby therapeutic interventions are still limited.67,84,197 LSD1 has 

crucial roles in both normal hematopoiesis and myeloproliferative disorders via its 

activity on mono- and di-methylated H3K4 residues and its association with multiple 

protein complexes such as CoREST,77 Blimp-1116 and TAL1.119  

The activity of LSD1 is usually suppressed irreversibly and several research groups, 

starting with TCP as a lead, have generated potent and selective molecules (reviewed in 

Chapter 1). The majority of the drug design efforts have been based on the 

functionalisation of the TCP scaffold and specifically, on the addition of bulky branched 

side chains to the phenyl ring.275 The X-ray crystal structure of the TCP-FAD adduct159 

suggests that the phenyl ring is positioned in a large hydrophobic pocket and besides the 

contacts with the methyl groups of T335 and T810 through van der Waals interactions, 

it establishes poor connections with the surrounding surface. This implies that LSD1 

catalytic site can accommodate large groups at this position and consequently, these can 

influence the drugs’ final effects.  

Moreover, as the MAO catalytic site is smaller compared to that of LSD1, this type of 

substitution has also shown to increase selectivity versus LSD1 over MAO.162 
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Figure 4.1: TCP-FAD adduct in the hydrophobic catalytic pocket of LSD1. 

PDB code: 2XUN; red areas represent hydrophobic surfaces whereas blue areas represent hydrophilic surfaces. 

 

Therefore, TCP analogues presenting large branched groups at the phenyl ring of the 

TCP scaffold could act as LSD1 inhibitors with increased potency and selectivity. An 

opposing approach to decorating the phenyl ring is the functionalisation of the TCP 

nitrogen atom. This strategy has led to the generation of two potent LSD1 inhibitors that 

recently entered Phase I clinical trials, namely GSK2879552 by GlaxoSmithKline276 

and ORY-1001 by Oryzon56 (Figure 4.2). The former used for the treatment of 

relapsed/refractory small cell lung cancers and the latter, for relapsed or refractory acute 

leukaemia. 

 

 

Figure 4.2: TCP, GSK2879552 and ORY-1001 molecular structures. 

  

This image cannot currently be displayed.

This image cannot currently be displayed.
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In this study, we aimed to develop a new series of LSD1 covalent inhibitors.  

Since TCP is clinically used as a racemic mixture of the two trans enantiomers that bind 

equally well to LSD1, we preferred a non-enantioselective route to our inhibitors. The 

phenyl ring was decorated with bulky substituents via an efficient synthetic method to 

increase the enzymatic potency of the lead TCP (Ki 21 µM). Given the recent findings 

correlating LSD1 with myeloproliferative disorders and the limited therapies for such 

disease, the enzymatically active compounds were evaluated in leukaemia cell models.  

 

 
Figure 4.3: General structure of our novel TCP analogues. 

  

This image cannot currently be displayed.
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4.1.1. Roles of LSD1 in normal hematopoiesis and leukaemia  

AML accounts for 34% of adult leukaemia in the UK and long-term survival rates 

continue to be poor (approximately 30-40%). Although complete remission is achieved 

after standard chemotherapies employing high doses of anthracycline and cytarabine, 

patients suffer from frequent relapses of treatment-refractory disease.277,278 As a 

consequence, 20% of AML patients do not survive more than 5 years279,280 and 

according to the National Cancer Intelligence Network, no improvements on these 

survival rates in the last two decades have been registered. This unfavourable situation 

implies a strong need for new therapeutics.  

AML is caused by impaired hematopoiesis, which is a complex process whereby 

hematopoietic stem cells (HSC) differentiate into mature blood cells. The differentiation 

process ensures a constant blood production during lifetime, giving rise to all the 

lymphoid and myeloid lineage. The latter give rise to neutrophils, eosinophils, 

basophils, monocytes and macrophages, megakaryocites, platelets and erythrocytes. 

Ineffective hematopoiesis leads to an excessive production of immature blood cells, 

termed blasts, that accumulate in the bone marrow.281 Such situation is characteristic of 

myeloproliferative tumours and suppression of hematopoiesis and bone marrow failure 

are the major consequences of the pathology.197,278 

In the differentiation process, both methylation and acetylation patterns determine the 

cell fate decisions by influencing the expression of specific genes in specific cell types. 

Such patterns are, at least in part, controlled by LSD1 activity.29,49,281 Given the LSD1 

association with multiple protein complexes, the molecular roles of LSD1 in normal 

hematopoiesis are far for being fully understood.84 LSD1 is highly expressed in 

hematopoietic stem cells and participates in normal hematopoiesis.84 This has been 

demonstrated by examining the effects of LSD1 knockdown. The lack of LSD1 in 

murine models has been associated with disruption of granulocytes and red blood cells 

terminal differentiation, which correlated with the reduction of platelets number and 

lethal anaemia.282,283 Similar effects were observed after LSD1 pharmacological 

suppression67 and LSD1 deletion in cell lines experiments.219 Dent et al. demonstrated 

that bone marrow transplantation in a murine model with LSD1 deficient cells was 

ineffective in producing T and B cells in the recipient mice, emphasising its role also in 

lymphocytes developement.69  
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At the molecular level, LSD1 participates in hematopoiesis via its association with 

multiple transcription factors. For example, it cooperates with the transcriptional 

repressor Blimp-1 to mediate the repression of genes leading to mature B cells.116 

Disruption of the interaction between LSD1 and the growth factors Gfi1 and Gfi1b 

perturbs hematopoietic differentiation of both normal progenitors and leukaemogenic 

cells.219 The LSD1-TAL1 association was also described to regulate cell differentiation 

programs in both physiological and pathological contexts.119  

While LSD1 plays a critical role in the normal hematopoiesis, its over-expression is 

linked to the genesis and the fatal prognosis of AML patients.84,284 In pre-clinical 

studies, LSD1 was shown to sustain the oncogenic potential of leukaemic stem cells in a 

murine model of human myeloid leukaemia (MLL-AF9). Moreover, in the same study, 

TCP derivatives triggered the differentiation process.67 Accordingly, Schenk and 

coworkers showed that the exposure of HL-60 and U937 AML cell lines (which are 

insensitive to the differentiation therapy with trans retinoic acid-ATRA) to TCP-ATRA 

combined treatments retrieved the cells expression of the differentiation markers CD11b 

and CD14. Additionally, the treatment was proven to be non-toxic for normal, fast 

reproducing HSC cells.86 Therefore, LSD1 inhibitors could be employed as 

differentiating agents for leukaemia treatment.  

As LSD1 has simultaneous roles in normal blood cell development and 

myeloproliferative disorders, one of the majors concerns with the pharmacological 

interventions using LSD1 suppressors remains the possible disruption of terminal 

differentiation of normal blood stem cells.285 Nevertheless, the current therapies for 

leukaemia also promote transient cytopenia and anaemia and these consequences are 

managed efficiently.197 In addition, cytopenia induced by LSD1 inhibition appears to be 

reversible, supporting LSD1 as a promising therapeutic target for AML.67 
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Synthetic approach  

Several methods have been reported for the generation of the TCP core.171,172,174,175 

Generally, these procedures involve the formation of the cyclopropyl ring by either 

ylide initiated Michael addition or transition metal catalysed cyclopropanation with 

diazo-compounds as sources of carbenes.  

For the synthesis of our library of TCP analogues we adopted the procedures shown in 

Scheme 4.1.  

 

 
 

Scheme 4.1: Synthetic strategy adopted for the generation of novel TCP derivatives. 

  

This image cannot currently be displayed.
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In this approach, commercially sourced 4-formyl benzaldehyde 4.1 was esterified with 

anhydrous MeOH and acetyl chloride to give 4.2. As we expected to decorate at a later 

stage of the synthesis the phenyl ring of TCP with bulky groups, we carefully chose the 

protective groups so that the conditions used for the removal of these to get the TCP 

core were compatible with the stability of the initial methyl ester protection.  

To achieve a stereoconfiguration equivalent to TCP, corresponding to the trans isomers 

of 2- phenylcyclopropylamine (racemate of (−) and (+) enantiomers, 50:50 mixture of 

1S,2R (+) and 1R,2S (−)), we followed two steps from one of the recent Oryzon patents 

by Guibourt and colleagues.177 Firstly, we converted the aldehyde of 4.2 to olefin via 

Horner-Wadsworth-Emmons reaction to obtain the (E) tert-butyl acrylate derivative 4.3. 

Secondly, to achieve the trans tert-butyl cyclopropanecarboxylate derivative, of formula 

4.4, we performed Johnson-Corey-Chaykovsky cyclopropanation.  

The Horner–Wadsworth–Emmons reaction is a variant of the Wittig reaction and one of 

the most used methods for the preparation of alkenes.286 It involves the use of 

phosphonate-stabilised ylides (phosphonate carbanions) generated by deprotonation 

with moderately strong bases, such as potassium tert-butoxide (KOt-Bu). The formed 

ylide is a strong nucleophile and attacks the electrophilic C-atom of the aldehyde 

generating an oxyanion ring. The intermediate creates an unstable four-membered 

oxaphosphetane intermediate. Decomposition of the oxaphosphetane ring by disruption 

of the C-P and C-O σ bonds leads to the formation of the C=C π bond of the alkene and 

a phosphate ester as a side product (Scheme 4.2).286 The use of a stabilised ylide ensures 

the E-selectivity of the resultant olefin.286  
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Scheme 4.2: Horner–Wadsworth–Emmons mechanism. 

  

This image cannot currently be displayed.
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The analysis of the NMR spectrum of 4.3 confirmed the successful E-olefination. The 

calculated J-coupling for the hydrogen at 6.43 ppm is 16 Hz, which is typical of vicinal 

trans hydrogens. 

 

 

 
Figure 4.4: NMR spectrum of 4.3 (1H NMR, CDCl 3). 

The doublet at 6.43 ppm has a J value of 16.0 Hz, typical of vicinal trans hydrogens. 

 

In the Oryzon patent is reported the use of triethyl phosphonoacetate for the conversion 

to the acrylate, leading to the formation of an ethyl acrylate derivative. Instead, we 

employed tert-butyl diethyl phosphonoacetate to achieve the tert-butyl protected 

acrylate. This is because we protected the carboxylic acid in para position at phenyl 

ring with a methyl ester. The use of tert-butyl diethyl phosphonoacetate enabled the 

removal of the tert-butyl-protected acrylate in acidic conditions, in which the methyl 

ester protection is stable. In contrast, using triethyl phosphonoacetate would have 

required deprotection in basic conditions in the following synthetic steps (see below), 

with inevitable removal of the initial methyl ester protection. 

The cyclopropanation following the Johnson-Corey-Chaykovsky method was used in 

both the works of Guibourt et al.177 and Ueda et al.172 

After deprotonation of trimethylsulfoxonium iodide (Me3S(O)+I−, the methyl donor) 

with sodium hydride (NaH) in DMSO, the generated ylide (dimethyloxosulfonium 

methylide, Corey-Chaykovsky reagent) was added to the alkene to form the cyclopropyl 

ring of the TCP core (4.4). 

 

This image cannot currently be displayed.



 Synthesis of irreversible inhibitors of LSD1 targeting acute myeloid leukaemia 

 137

 

 

Scheme 4.3: Ylide-initiated Michael addition. 

 

Johnson-Corey-Chaykovsky cyclopropanation is usually non-specific and both (E) and 

(Z) olefins give trans-cyclopropanes.287 The trans configuration of 4-methyl 

arylcyclopropyl-tert-butyl ester 4.4 was confirmed by the 1H–1H coupling constants of 

the cyclopropyl moiety (Jab=4.2-4.5 Hz).  

We next hydrolysed tert-butyl protecting group of 4.4 with TFA and triethylsilane in 

DCM and achieved the carboxylic acid with formula 4.5. The acid was converted to 

acyl azide with diphenylphosphoryl azide (DPPA) and the acyl azide rearranged to 

isocyanate by Curtius rearrangement. The formed isocyanate intermediate can further 

react with nucleophiles in solution and in this case, the product was scavenged with tert-

butanol, being the reaction solvent. This afforded the tert-butyloxy (Boc) carbamate 

derivative with formula 4.6. The Curtius rearrangement was utilised successfully by 

Ueda and colleagues and by our group for the generation of several TCP 

analogues.170,172  

The methyl ester protection at the para position of the TCP core was next removed with 

basic conditions using LiOH in water-THF and the obtained Boc-amino-phenyl 

cyclopropyl benzoic acid 4.7 was coupled to several substituted amines using 1-Ethyl-3-

(3-dimethylaminopropyl) carbodiimide (EDCI) and HOBt as coupling reagents with 

Hünig’s base (Scheme 4.4).288 The coupling step afforded the amide intermediates 4.8a-

s (Scheme 4.1). Final hydrolysis of the Boc protecting group in acidic conditions (HCl 6 

N) completed the synthesis of the targeted compounds 4.9-4.27.  

 

This image cannot currently be displayed.
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Scheme 4.4: Coupling reaction mechanism. 

This image cannot currently be displayed.



 Synthesis of irreversible inhibitors of LSD1 targeting acute myeloid leukaemia 

 139

 

 
Figure 4.5: Library of new TCP derivatives. 

 

  

This image cannot currently be displayed.
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The Boc-protected precursors of 4.22, 4.23, 4.24, 4.25 and 4.27 were very difficult to 

purify. Particularly, the use of HCl (6 N) for the deprotection of intermediates 4.8-n and 

4.8-o substituted in para with 1-(2-pyridyl) piperazine and 1-(2-pyrimidyl) piperazine 

was unsuccessful and only deprotection with weaker acidic conditions enabled the 

amine albeit in a very low yield (13%). During the course of this study, a Takeda patent 

was published with similar amide analogues of TCP and these were obtained with an 

equivalent synthetic procedure.178 Among them, compound 4.10 features in the 

company work; all the other compounds represent instead novel chemical entities. 

4.2. Enzymatic evaluation of novel LSD1 inhibitors 

To measure the ability of 4.9-4.27 in inhibiting LSD1 enzymatic activity, we performed 

a peroxidase-coupled assay (Amplex®Red). 

The compounds activity was firstly measured at 50 and 10 µM and if such treatment 

produced detectable inhibition, a dose-response experiment was carried out in order to 

determine the half maximal inhibitory concentration (IC50). To this end, five to nine 

concentration points for each compound were evaluated in triplicate and the 

fluorescence results fitted in a sigmoid dose-response curve (Table 4.1).  
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Table 4.1: Results obtained with the enzymatic evaluation of TCP derivatives 4.9-4.27. 

Results are expressed as % RFU normalised to pre-treatment level (LSD1 + Substrate, no inhibitor) ± STD (n=3). 

Compound IC50 (µM±STD, n=3) 

TCP 21 

4.9 20.0±0.3 

4.10 0.3±0.01 

4.11 0.4 ± 0.04 

4.12 0.7±0.01 

4.13 17.4±0.9 

4.14 0.6±0.01 

4.15 2.4±0.1 

4.16 5.8±0.5 

4.17 1.3±0.3 

4.18 0.9±0.2 

4.19 > 50 

4.20 32.0±0.3 

4.21 21.4±0.7 

4.22 1.5±0.2 

4.23 1.8±0.5 

4.24 0.5±0.1 

4.25 0.9±0.1 

4.26 0.5±0.04 

4.27 1.8±0.3 

 

Selected examples of the sigmoidal dose-response curves obtained with the enzymatic 

evaluations are shown in Figure 4.6. 
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Figure 4.6: Dose-response curves showing the effects of TCP derivatives on LSD1 enzymatic activity.  

(A) TCP; (B) 4.10; (C) 4.11; (D) 4.14 (E) 4.26; (F) 4.27. 

The X-axis is in logarithm of concentration (M, Molar); the Y-axis is the % of relative fluorescent unit (RFU) 

compared to 100% activity (LSD1 + substrate, no inhibitor). Data were fitted with nonlinear regression and are 

shown as means ± STD (n=3).  

 

Overall, enzymatic evaluations revealed an increased ability of the substituted 

analogues to inhibit LSD1 demethylase activity compared to TCP scaffold, being 4.10, 

4.11 and 4.14 among the most potent analogues. 

Compounds that were more potent than TCP (IC50 enzymatic assay < 21 µM, namely 

4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.21, 4.23, 4.24, 4.25, 4.26 and 4.27) 

were further evaluated in biological assays. 

  

This image cannot currently be displayed.
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4.3. Biological evaluation of novel LSD1 inhibitors in cell 

models of leukaemia 

4.3.1. Cell viability 

To test weather the inhibition of the enzymatic activity of LSD1 in a cell-free assay 

could be translated in pharmacological effects in cells, active compounds were tested in 

six AML cellular models and namely HL-60, MV4-11, KASUMI, U937, OCI-AML3 

and THP-1 cell lines. These AML lines are representative of three AML subtypes 

according to the FAB classification, which ranks AMLs based on their differentiation 

status, being M1 the least and M6 the most differentiated class.289  

 

Table 4.2: FAB classification of the AML cell lines used. 

M2 M4  M5 

KASUMI1 OCI-AML3 MV4-11 

HL-60  THP-1 

  U937 

 

After incubation with the LSD1 inhibitors, cell survival was quantified using CellTiter-

Glo®, a luminescent reagent that detects the presence of metabolically active cells by 

measuring the quantity of adenosine triphosphate (ATP) in the system (Figure 4.7).  

 

 

 
 

Figure 4.7: CellTiter-Glo ® luminescence. 

The luciferase contained in Ultra-GloTM uses the luciferin as substrate in the presence of ATP, releasing 

bioluminescence. Adapted from the manufacturer manual.290
 

  

This image cannot currently be displayed.
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The first set of experiments was performed to estimate the anti-proliferative activity of 

TCP in the AML cell lines and define the appropriate experimental conditions 

(concentrations and course of treatment) to evaluate the activities of the novel TCP-

derived analogues. To do so, cells were treated with five concentrations (1 µM, 3 µM, 

10 µM, 30 µM and 100 µM) and cultured for 48 h and 72 h (Figure 4.8). 

 
Figure 4.8: Effects of TCP on the proliferation of AMLs (48 h and 72 h). 

Survival (RLU) was normalised to pre-treatment levels (untreated cells). Statistical significance was determined with 

two-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.  

This image cannot currently be displayed.
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TCP treatments revealed to hinder the viability of KASUMI, HL-60, MV4-11 and OCI-

AML3 cells at 3-10 µM, while U937 and THP-1 were not significantly affected. 

Generally, marked effects were registered following 72 h exposure.  

The anti-proliferative activities of 4.10 and 4.11, which demonstrated exceptional 

abilities in suppressing LSD1 enzymatically, were next evaluated. The compounds were 

first tested at two concentrations (1 µM and 100 nM). As the enzymatic inhibition of 

such compounds increased by 50-fold compared to TCP, cellular activity was predicted 

to fall in this range of concentrations. Viable numbers were measured after 24 h, 48 h, 

72 h and 120 h with CellTiter-Glo® (Figure 4.9 and 4.10).  

 

 

Figure 4.9: Effects of TCP analogue 4.10 (100 nM and 1 µM; 24 h, 48 h, 72 h and 120 h) on the proliferation of 

AMLs.  

Survival (RLU) was normalised to pre-treatment levels for each cell line. Statistical significance was determined with 

one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).  

This image cannot currently be displayed.
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Figure 4.10: Effects of TCP analogue 4.11 (100 nM and 1 µM; 24 h, 48 h, 72 h and 120 h) on the proliferation 

of AMLs. 

Survival (RLU) was normalised to pre-treatment levels for each cell line. Statistical significance was determined with 

one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). 

 

This preliminary evaluation confirmed the enhanced anti-proliferative activity of the 

novel compounds compared to the scaffold TCP. The effects exerted by 4.10 and 4.11 

resulted similar. A substantial drop in cell proliferation was generated after prolonged 

exposures (48-120 h) and the most significant effects were detected in HL-60, THP-1, 

KASUMI and MV4-11 cells, whereby survival was significantly decreased at 1 µM. 

Interestingly, after short-time incubation (24 h and 48 h) an increment in cell 

proliferation was observed, mostly evident in OCI-AML3. The registered data are in 

agreement with the increased expression of LSD1 in poorly differentiated AMLs 

reported in the literature. LSD1 is greatly expressed in cells ranked in the FAB-M1 

subtype84 and HL-60 and KASUMI belong to the FAB-M2 subtype, also characterised 

by poor differentiated blasts. A high reduction in cell viability was also reported for 

This image cannot currently be displayed.
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MV4-11 cells, ranked in the M5 subtype and characterised in contrast, by cells with a 

more differentiated status.  

After assessment of 4.10 and 4.11, the anti-leukaemic activity of the remaining 

compounds, belonging to the new library of TCP derivatives, was examined in similar 

experimental conditions. Although the most evident decrease in cell proliferation was 

recorded at 120 h, prolonged incubation can lead to cell stress and depletion of medium 

nutrients. For these reasons, the effects of 4.12-4.25 were evaluated following 72 h 

treatment and at the previously reported concentrations (1 µM and 100 nM, Figures 

4.11-4.21). As compounds 4.26 and 4.27 have been synthesised later on to further 

extend the library, these were not included in the first tests. 
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Figure 4.11: Effects of TCP analogue 4.12 (100 nM and 1 µM, 72 h) on the proliferation of AMLs. 

Survival (RLU) was normalised to pre-treatment levels for each cell line. Statistical significance was determined with 

one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.  

 

This image cannot currently be displayed.
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Figure 4.12: Effects of TCP analogue 4.13 (100 nM and 1 µM, 72 h) on the proliferation of AMLs. 

Survival (RLU) was normalised to pre-treatment levels for each cell line. Statistical significance was determined with 

one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, ** p < 0.01, ***p < 0.001, ****p < 0.0001.  

This image cannot currently be displayed.
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Figure 4.13: Effects of TCP analogue 4.14 (100 nM and 1 µM, 72 h) on the proliferation of AMLs.  

Survival (RLU) is normalised to pre-treatment levels for each cell line. Statistical significance was determined with 

one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.  

This image cannot currently be displayed.
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Figure 4.14: Effects of TCP analogue 4.15 (100 nM and 1 µM, 72 h) on the proliferation of AMLs. 

Survival (RLU) was normalised to pre-treatment levels for each cell line. Statistical significance was determined with 

one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.  

 

This image cannot currently be displayed.
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Figure 4.15: Effects of TCP analogue 4.16 (100 nM and 1 µM, 72 h) on the proliferation of AMLs. 

Survival (RLU) was normalised to pre-treatment levels for each cell line. Statistical significance was determined with 

one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.  

This image cannot currently be displayed.
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Figure 4.16: Effects of TCP analogue 4.17 (100 nM and 1 µM, 72 h) on the proliferation of AMLs.  

Survival (RLU) was normalised to pre-treatment levels for each cell line. Statistical significance was determined with 

one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001.  

This image cannot currently be displayed.
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Figure 4.17: Effects of TCP analogue 4.18 (100 nM and 1 µM, 72 h) on the proliferation of AMLs. 

Survival (RLU) was normalised to pre-treatment levels for each cell line. Statistical significance was determined with 

one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001.  

This image cannot currently be displayed.
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Figure 4.18: Effects of TCP analogue 4.21 (100 nM and 1 µM, 72 h) on the proliferation of AMLs. 

Survival (RLU) was normalised to pre-treatment levels for each cell line. Statistical significance was determined with 

one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001.  

This image cannot currently be displayed.



  Chapter 4 

  156

 
Figure 4.19: Effects of TCP analogue 4.23 (100 nM and 1 µM, 72 h) on the proliferation of AMLs. 

Survival (RLU) was normalised to pre-treatment levels for each cell line. Statistical significance was determined with 

one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, ** p < 0.01, ***p < 0.001, ****p < 0.0001.  

This image cannot currently be displayed.
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Figure 4.20: Effects of TCP analogue 4.24 (100 nM and 1 µM, 72 h) on the proliferation of AMLs.  

Survival (RLU) was normalised to pre-treatment levels for each cell line. Statistical significance was determined with 

one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001.  

This image cannot currently be displayed.
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Figure 4.21: Effects of TCP analogue 4.12 (100 nM and 1 µM, 72 h) on the proliferation of AMLs.  

Survival (RLU) was normalised to pre-treatment levels for each cell line. Statistical significance was determined with 

one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD 

(n=5); *p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001.  

  

This image cannot currently be displayed.
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With the exception of compound 4.21, which was devoid of activity, all the tested 

compounds caused a significant decrease of AMLs viability at the selected 

concentrations. In accordance with the data obtained with the previous evaluations of 

TCP, 4.10 and 4.11 the cell lines resulting most sensitive to anti-LSD1 treatments were 

KASUMI, HL-60, THP-1 and MV4-11 cells. 

To further characterise the active new compounds, IC50s were determined by exposing 

AMLs to a broader range of concentrations (10 µM, 3 µM, 1 µM, 0.3 µM, 0.1 µM, 0.03 

µM, 0.01 µM, 0.003 µM and 0.001 µM) and the survival rates measured after 72 h 

incubation. 
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Figure 4.22: Dose-response curves showing the effects of 4.10 on AMLs proliferation (72 h).  

The X-axis is in logarithm of concentration (M, Molar); Y-axis is the % of RLU (relative luminescence unit) 

compared to 100% activity (vehicle control, DMSO). Data are shown as means ± STD (n=5). 

This image cannot currently be displayed.
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Figure 4.23: Dose-response curves showing the effects of 4.11 on AMLs proliferation (72 h).  

The X-axis is in logarithm of concentration (M, Molar); Y-axis is the % of RLU (relative luminescence unit) 

compared to 100% activity (vehicle control, DMSO). Data are shown as means ± STD (n=5).  

 

This image cannot currently be displayed.
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Figure 4.24: Dose-response curves showing the effects of novel TCP-derivatives on AMLs proliferation (72 h). 

The X-axis is in logarithm of concentration (M, Molar); Y-axis is the % of RLU (relative luminescence unit) 

compared to 100% activity (vehicle control, DMSO). Data are shown as means ± STD (n=5). 

This image cannot currently be displayed.
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Figure 4.25: Dose-response curves showing the effects of novel TCP-derivatives on AMLs proliferation (72 h). 

The X-axis is in logarithm of concentration (M, Molar), Y-axis is the % of RLU (relative luminescence unit) 

compared to 100% activity (vehicle control, DMSO). Data are shown as means ± STD (n=5). 

  

This image cannot currently be displayed.
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Table 4.3: In vitro  anti-proliferative results of novel TCP-analogues on AMLs. 

Values are reported in µM ± STD (n=5).  

 

 

Results revealed that after 72 h treatment, the new TCP derivatives were able to arrest 

cell proliferation and particularly, 4.10 and 4.11 were active in the entire panel of 

analysed AMLs. Interestingly, the dose-response curves revealed that none of the new 

analogues produced a 100% inhibition of cells proliferation.  

  

IC50 (µM ± STD, n=5) 

Compound 

 

 
KASUMI U937 HL-60 OCI-AML3 THP-1 MV4-11 

TCP 32±1.8 > 100 84±15.0 89±13.0 81±3.9 63±8.4 

4.10 0.03±0.03 1.6±0.09 1.7±0.14 1.8±0.08 0.1±0.08 0.18±0.07 

4.11 0.7±0.03 1.2±0.02 0.09±0.01 0.06±0.04 0.2±0.02 0.19±0.4 

4.14 0.4±0.01 0.6±0.01 0.6±0.01  1.0±0.10 0.1 ± 0.08 

4.15 0.4±0.27 0.6±0.08    1.2±0.01 

4.16 0.3±0.01     0.1±0.02 

4.17 0.06±0.008    0.4±0.1 0.2±0.07 

4.18 0.02±0.001     0.2±0.02 

4.23 2.3±0.4  0.6±0.3    

4.25      0.2 ± 0.07 

4.26   0.1±0.02 0.2±0.01   

4.27   0.3±0.01    
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4.3.2. Evaluations of activity persistence 

A washout experiment was carried out next to verify the covalent inhibition.291 This 

consists of cells/protein/enzymes being treated with the tested inhibitor for a short 

period of time and then in clearing the inhibitor from the system by washout. The 

residual activity of the washed-out treatment is measured and compared to a continuous 

treatment (without washout). For covalent blockers, the washed out samples should 

demonstrate the persistence of the activity.291 In such experiments cells were treated 

with 100 µL of media containing 200 nM of analogues 4.10, 4.11 and 4.14 or left 

untreated for a period of 6 hours. After the short exposure, medium containing the drug 

was removed (washout) and replaced by inhibitor-free medium. Following 72 h 

culturing, survival rates in washout samples were measured and the values obtained 

compared with the survivals rates of continuous treatment (72 h treatment without a pre-

exposure followed by drug-containing medium removal).  

The direct comparison between pulsed (washout) versus continuous treatment (Figure 

4.26), confirmed that compounds 4.10, 4.11 and 4.14 indeed act in an irreversible 

fashion as the anti-proliferative effects were maintained despite the washout. 

 



  Chapter 4 

  166

 
Figure 4.26: Washout experiments with TCP derivatives 4.10, 4.11 and 4.14. 

Results were obtained with CellTiter-Glo® and RLU was normalised to control (untreated). Statistical significance 

was determined with one-way ANOVA and corrected for multiple comparisons using Dunnett’s test. Data are shown 

as means ± STD (n=5). 

This image cannot currently be displayed.
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4.3.3. Evaluation of post-treatment H3K4me2 expression levels by 

immunoblotting 

We next evaluated the H3K4me2 expression levels in KASUMI cells treated with TCP 

derivative 4.11 by immunoblotting. 

Treated cells (200 nM concentration) were cultured for 2 h, 4 h, 6 h, 48 h and 72 h. Cell 

lysates were separated by 14% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

and blotted membranes were probed for H3K4me2 and H3 (total).  

 

 

 
Figure 4.27: Western blot analysis of the methylation state of H3 after treatment of KASUMI cells with 

compound 4.11 (200 nM) for different time points.  The blots indicated the H3K4me2 levels (top) compared to 

H3 (total, loading control - bottom). 

 

Data revealed that 200 nM treatment with 4.11 were sufficient to promote an increase of 

H3K4me2 over time, strikingly correlating the compounds activities with LSD1 

inhibition. The highest levels of expression were detected after 48 and 72 h of 

incubation, while shorter exposures were in contrast unable to produce significant 

modulation of H3K4me2 expression. The result evidentiated the slow course of action 

of the new TCP analogues, which was already observed in cell viability assays. 

  

This image cannot currently be displayed.



  Chapter 4 

  168

4.3.4. CD86 evaluations 

By RNA sequencing and analysis of the THP-1 cell line upon treatment with an 

inhibitor of LSD1, Somervaille’s group has recently described the transcriptome that 

correlates with LSD1 inhibition.196 The group found that one of the most up-regulated 

genes was CD86. This cluster of differentiation belongs to the immunoglobulin family 

and operates as a linker for the co-inhibitory immune response of the CTL4 and CD28 

receptors.292,293 The CD86 marker is expressed by antigen-holding property cells, such 

as macrophages, dendritic cells and monocytes.292 It is currently used as a biological 

marker to demonstrate cellular LSD1 inhibition.196  

To evaluate a potential increase of CD86 expression triggered by the novel LSD1 

inhibitors, THP-1 cells were incubated with 4.10 and 4.11 (200 nM) and after the 

appropriate treatment course (24 h, 48 h, and 72 h) the cells surface was stained with 

CD86 antibody (Ab) conjugated with a fluorophore (fluorescein isothiocyanate FITC). 

Cells were next analysed by flow cytometry (Figures 4.28 and 4.29). 
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Figure 4.28: Effects of 4.10 (200 nM, 24 h, 48 h and 72 h) on the expression of CD86 in THP-1 cells. 

(A) 24 h treatment; (B) 48 h treatment; (C) 72 h treatment; (D) statistical analysis. Cells were gated based on forward 

scatter (FSC) and side scatter (SSC) parameters. In the X-axis are reported the mean fluorescence increase of treated 

cells stained with CD86-FITC conjugated Ab and the fluorescent increase of the control (untreated cells- IgG 

Isotype-FITC). In the Y-axis is reported the cell count. Graphs D-E shows the results graphically summarised for 

three independent experiments. Statistical significance was determined with two-way ANOVA and corrected for 

multiple comparisons with Bonferroni’s test. Values are expressed as means % of increase ± STD (n=3); ****p < 

0.0001. 

This image cannot currently be displayed.
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Figure 4.29: Effects of 4.11 (200 nM, 24 h, 48 h and 72 h) on the expression of CD86 in THP-1 cells. 

(A) 24 h treatment; (B) 48 h treatment; (C) 72 h treatment; (D) statistical analysis. Cells were gated based on FSC 

and SSC parameters. In the X-axis are reported the mean fluorescence increase of treated cells stained with CD86-

FITC conjugated Ab and the fluorescent increase of control (untreated cells- IgG Isotype-FITC). In the Y-axis is 

reported the cell count. Graphs D-E shows the results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of increase ± STD (n=3); ****p < 0.0001. 

  

This image cannot currently be displayed.
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Following 24 h treatment, only a small percentage of cells incremented the CD86 

expression. The effects become more evident with time as after 48 h and 72 h 

incubation with 4.10 and 4.11, the CD86 expression increased by 70-90% in all the 

analysed samples (Table 4.4). The data prompted us to investigate if 4.10 and 4.11 were 

capable to induce CD86 expression in other cell lines (MV4-11, OCI-AML3 and 

KASUMI cells, Figure 4.30-4.31). 

 

 
Figure 4.30: Effects of 4.10 and 4.11 (200 nM, 48 h and 72 h) on the expression of CD86 in MV4-11 cells. 

(A-B) Results following 48 h and 72 h treatments with 4.10; (D-E) results following 48 h and 72 h treatments with 

4.11; (C-F) statistical analysis; cells were gated based on FSC and SSC parameters. In the X-axis are reported both 

the mean fluorescence increase of treated cells stained with CD86-FITC conjugated Ab and the fluorescent increase 

of control (untreated cells- IgG Isotype-FITC). In the Y-axis is reported the cell count. Statistical significance was 

determined with two-way ANOVA and corrected for multiple comparisons with Bonferroni’s test. Values are 

expressed as means % of increase (compared to control) ± STD (n=3); **p < 0.01; ****p < 0.0001. 

 

This image cannot currently be displayed.
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Figure 4.31: Effects of 4.10 and 4.11 (200 nM, 48 h and 72 h) on the expression of CD86 in OCI-AML3 and 

KASUMI cells. 

(A-B) Results following 48 h and 72 h treatments with 4.10 in OCI-AML3 (A) and KASUMI (B); (D-E) Results 

following 48 and 72 h treatment with 4.11 in OCI-AML3 (D) and KASUMI (E); (C-F) statistical analysis; cells were 

gated based on FSC and SSC parameters. In the X-axis are reported both the mean fluorescence increase of treated 

cells, stained with CD86-FITC conjugated Ab and the fluorescent increase of control (untreated cells- IgG Isotype-

FITC). In the Y-axis is reported the cell count. Statistical significance was determined with two-way ANOVA and 

corrected for multiple comparisons with Bonferroni’s test. Values are expressed as means % of increase (compared to 

control) ± STD (n=3); ****p < 0.0001.  

 

Given that also 4.14 revealed interesting biological results in enzymatic and cellular 

evaluations, we decided to test whether the 2-thiophenethylamine substituted analogue 

was equally able to induce the CD86 expression in MV4-11, THP-1, KASUMI and 

OCI-AML3 cells at nM concentrations (200 nM). 

 

This image cannot currently be displayed.
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Figure 4.32: Effects of 4.14 (200 nM, 72 h) on the expression of CD86 in THP-1, MV4-11, KASUMI and OCI-

AML3 cells. 

Cells were gated based on FSC and SSC parameters. In the X-axis are reported both the mean fluorescence increase 

of treated cells stained with CD86-FITC conjugated Ab and the fluorescent increase of control (untreated cells-IgG 

Isotype-FITC). The Y-axis is the cell count. Statistical significance (plot E) was determined with two-way ANOVA 

and corrected for multiple comparisons with Bonferroni’s test. Values are expressed as means % of increase 

(compared to control) ± STD (n=3); ****p < 0.0001.  

 

This image cannot currently be displayed.
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Table 4.4 summarises the data gathered with CD86 evaluations in THP-1, MV4-11, 

OCI-AML3 and KASUMI cell lines with 4.10, 4.11, and 4.14 following 24 h, 48 h and 

72 h treatments (200 nM). 

 

Table 4.4: Increase (%) of CD86 expression induced by TCP derivatives 4.10, 4.11 and 4.14 in AML cell lines 

(200 nM, 24 h, 48 h, 72 h).  

Results are expressed as % of increase normalised to pre-treatment level (DMSO-vehicle control) ± STD (n=3); nt: 

not tested. 

Compound 

(200 nM) 

Cell line 
24 h 48 h 72 h 

4.10  

THP-1 

29.0±5.7% 80.3±4.2% 92.9±1.2% 

4.11 18.5±1.7 % 70.3±8.2% 92.4±3.3% 

4.14  nt nt 40.3±1.9% 

4.10  

MV4-11 nt 

41.8±0.7% 79.5±3.2% 

4.11  38.9±1.7% 81.2±2.5% 

4.14  nt 94.1±0.3% 

4.10  

OCI-AML3 nt 

65.5±4.3% 

4.11  69.8±5.7% 

4.14  78.3±3.7% 

4.10  

KASUMI nt 

81.7 ± 3.1% 

4.11  73.8±3.4% 

4.14  69.0±1.7% 

 

The overall analyses imply that the novel inhibitors 4.10, 4.11 and 4.14 are capable to 

induce the expression of the CD86 marker in AML cell lines. Specifically, treatment 

with 4.10 and 4.11 showed a marked effect on THP-1 and MV4-11 cells, while 4.14 

promoted only a 40% increase THP-1 and pronounced effects in MV4-11 cells. Similar 

results were observed for the three TCP-analogues in OCI-AML3 and KASUMI cells. 

The registered induction of CD86 expression substantiate further that the biological 

effects of the compounds correlate with LSD1 inhibition. Moreover, as the CD86 is 

present in the surface of macrophages, dendritic cells and monocytes, the post-treatment 

induction of such marker in tumorigenic cells is likely to correlate with a potential 

differentiating mechanism of action. To verify this initial information, the levels of 

CD11b and CD14 were analysed in AMLs treated with nM concentrations of 4.10 and 

4.11. 
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4.3.5. CD11b and CD14 evaluations 

CD11b and CD14 are glycoproteins situated on the myeloid cell surface with antigen 

properties. They are exclusively expressed in mature leucocytes and undifferentiated 

cells lack their expression.86,294 Consequently their expression levels are examined to 

estimate the differentiating properties of pharmacological agents.295–297  

In the following experiments, AMLs (U937, MV4-11, KASUMI, HL-60, THP-1, OCI-

AML3) were treated with 200 nM of 4.10 or 4.11 and following 48 h incubation, the 

levels of CD11b and CD14 were examined by flow cytometry (Figures 4.33-4.44). 
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Figure 4.33: Effects of 4.10 (200 nM, 48 h) on the expression of differentiation markers CD14 and CD11b in 

U937 cells. 

FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3); ****p < 0.0001. 

This image cannot currently be displayed.
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Figure 4.34: Effects of 4.11 (200 nM, 48 h) on the expression of differentiation markers CD14 and CD11b in 

U937 cells. 
FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3);***p < 0.01;****p < 

0.0001. 

This image cannot currently be displayed.
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Figure 4.35: Effects of 4.10 (200 nM, 48 h) on the expression of differentiation markers CD14 and CD11b in 

HL-60 cells. 

FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3); *** p < 0.001. 

This image cannot currently be displayed.
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Figure 4.36: Effects of 4.11 (200 nM, 48 h) on the expression of differentiation markers CD14 and CD11b in 

HL-60 cells. 

FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3); *p < 0.05, ***p < 0.001. 

This image cannot currently be displayed.
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Figure 4.37: Effects of 4.10 (200 nM, 48 h) on the expression of differentiation markers CD14 and CD11b in 

THP-1 cells. 

FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3); ****p < 0.0001. 

This image cannot currently be displayed.
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Figure 4.38: Effects of 4.11 (200 nM, 48 h) on the expression of differentiation markers CD14 and CD11b in 

THP-1 cells. 

FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3); **p < 0.01. 

This image cannot currently be displayed.
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Figure 4.39: Effects of 4.10 (200 nM, 48 h) on the expression of differentiation markers CD14 and CD11b in 

OCI-AML3 cells. 

FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3); **p < 0.01. 

This image cannot currently be displayed.
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Figure 4.40: Effects of 4.11 (200 nM, 48 h) on the expression of differentiation markers CD14 and CD11b in 

OCI-AML3 cells. 

FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3); ****p < 0.0001. 

This image cannot currently be displayed.
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Figure 4.41: Effects of 4.10 (200 nM, 48 h) on the expression of differentiation markers CD14 and CD11b in 

KASUMI cells. 

FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3); **p < 0.01. 

This image cannot currently be displayed.



 Synthesis of irreversible inhibitors of LSD1 targeting acute myeloid leukaemia 

 185

 
Figure 4.42: Effects of 4.11 (200 nM, 48 h) on the expression of differentiation markers CD14 and CD11b in 

KASUMI cells. 

FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3); **p < 0.01, ****p < 

0.0001. 

This image cannot currently be displayed.
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Figure 4.43: Effects of 4.10 (200 nM, 48 h) on the expression of differentiation markers CD14 and CD11b in 

MV4-11 cells. 

FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3); ****p < 0.0001. 

This image cannot currently be displayed.
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Figure 4.44: Effects of 4.11 (200 nM, 48 h) on the expression of differentiation markers CD14 and CD11b in 

MV4-11 cells. 

FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3); ****p < 0.0001. 

This image cannot currently be displayed.
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Table 4.5: Increase (%) of CD14 and CD11b expression induced by TCP derivative 4.10 in AMLs (200 nM, 48 

h).  

Results are expressed as % of increase normalised to pre-treatment level (DMSO-vehicle control) ± STD (n=3).  

Cells line treated with 

4.10 (200 nM) 48h 

CD14 increase 

(% ± STD, n=3) 

CD11b increase 

(% ± STD, n=3) 

U937 24.2±1.5 94.2±1.2 

HL-60 20.8±3.0 68.3±11.8 

OCI-AML3 69.7±12.3 70.4±13.9 

MV4-11 83.0±1.51 70.4±1.5 

KASUMI 2.7±0.7 17.9±3.5 

THP-1 97.0±0.9 93.6±5.3 

 

 

Table 4.6: Increase (%) of CD14 and CD11b expression induced by TCP derivative 4.11 in AMLs (200 nM, 48 

h). 

Results are expressed as % of increase normalised to pre-treatment level (DMSO-vehicle control) ± STD (n=3).  

Cell lines treated with 

4.11 (200nM, 48 h) 

CD14 increase 

(% ± STD, n=3) 

CD11b increase (% ± 

STD, n=3) 

U937 14.1±0.9 90.6±2.6 

HL-60 29.1±4.7 66.1±11.0 

OCI-AML3 84.4±5.6 72.5±9.3 

MV4-11 80.5±2.8 72.9±4.4 

KASUMI 3.8±0.1 23.4±0.9 

THP-1 97.1±1.2 98.4±0.4 

 

 

As anticipated with the examination of CD86 expression, the compounds’ ability to 

trigger cell differentiation was confirmed by the effects registered with CD14 and 

CD11b experiments. The compounds were able to increase CD14 and CD11b 

expression in leukaemia after 48 h and at a dose of 200 nM. Equal activities were 
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obtained with 4.10 and 4.11. However, results revealed that 4.10 was unable to promote 

a significant increment of the monocytic marker CD14 in KASUMI and HL-60 line, 

whereas a moderate increase was registered after treatment with 4.11 in the same cells. 

Therefore such data imply an incomplete differentiation for HL-60 and KASUMI cells. 

In the case of KASUMI, the lack of CD14 expression was accompanied with a drop in 

cell count (Figure 4.41 and 4.42). Notably, the post-treatment induction of the 

differentiation markers was significant also in U937 and OCI-AML3 cells, which 

demonstrated a lower sensitivity to 4.10 and 4.11 treatments in cytotoxicity assays.  

4.3.6.  Effects on normal hematopoietic stem cells 

The CD34 marker is a differentiation stage-specific leucocyte antigen present in 

immature hematopoietic cells.298,299 Leukaemic blasts or differentiating cells do not 

express such markers and the CD34 expression decreases during the maturation process. 

Because of its features, this marker is commonly used in leukaemia studies to determine 

the toxicity of anti-AML agents.86,300 If the treatment results in toxicity, cells cease to 

express CD34.86,300  

As previously mentioned, the pharmacological deletion of LSD1 has been correlated 

with toxic effects for normal dividing blood cells.67,84 Therefore, to examine the 

potential toxicity associated with 4.10 and 4.11, post-treatment expression CD34+ was 

evaluated by flow cytometry. In order to do so, CD34+ expressing blasts derived from 

patient bone marrow biopsies were exposed to increasing concentrations of 4.10 and 

4.11 (0.001 µM-10 µM concentrations range) or left untreated, and cultured for 48 and 

72 h. Cells stained with CD34 Ab were analysed by flow cytometry (Figure 4.45). 
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Figure 4.45: Healthy CD34+ HSC counts after treatment with increasing concentrations of 4.10 and 4.11 for 48 

h and 72 h. 

Statistical significance was determined with one-way ANOVA and corrected for multiple comparisons with 

Dunnett’s test. Data are shown as means ± STD (n=3). 

 

Results revealed that the numbers of CD34+ cells remained unchanged in treated 

samples (compared to untreated) during all the time courses. Even at high dose (10 

µM), CD34 expressing cells were insensitive to the treatment. Hence, based on this 

result, the LSD1 pharmacological suppression exerted by 4.10 and 4.11 is not associated 

with toxicity for normal dividing cells nor induced differentiation in non-leukaemic 

stem cells; the results confirm the specificity and pre-clinical safety of the examined 

TCP-derivatives. 

  

This image cannot currently be displayed.
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4.4. Evaluation in human prostate adenocarcinoma cells  

Further investigations were carried out on LNCaP prostate adenocarcinoma lines by our 

collaborators in Southampton, by Dr. Simon Crabb’s group. As said before, LSD1 is 

able to associate with AR to demethylate the repressive marks of mono- and 

dimethyllysine on H3K9.146,149,150 

For cell viability experiments, cells were exposed to increasing concentrations of the 

TCP derivatives and the cell viability measured after 72 h (Table 4.7). 

 

Table 4.7: Results of enzymatic assay and viability preliminary experiments in LNCaP cells. 

Values are expressed in µM ± STD (n=3 for enzymatic evaluations, n=2 for LNCaP evaluations). 

Compound IC50 enzymatic (%RFU ± STD µM, n= 3) IC50 LNCaP inhibition  

TCP 21 µM 2.5 mM 

4.10 0.3±0.01 515.2±112.2 µM 

4.11 0.4±0.04 520.3±60.4 µM 

4.14 0.6±0.01 206.3±12.3 µM 

4.15 2.4±0.1 162.2±3.7 µM 

4.17 1.3±0.2 543.7±132.4 µM 

4.18 0.9±0.1 94.0±110.9 µM 

 

The preliminary evaluation of LSD1 inhibitors revealed an enhanced activity of the new 

analogues in hindering LNCaP cell proliferation compared to TCP. Surprisingly, 

compounds 4.10 and 4.11 were among the least active in the prostate cell line, inhibiting 

cell proliferation at 500 µM, whereas 4.18 presenting a bromine substituent on the 

benzylamine ring, revealed a higher anti-proliferative activity. Compounds 4.14 and 

4.15 were also relatively good inhibitors in arresting cell proliferation (206.3 µM and 

162.2 µM) compared to TCP. Further experiments are being performed with 4.10, 4.11, 

4.14, 4.18, 4.22 and 4.23 to examine the downstream molecular markers of LSD1 

inhibition in prostate cell lines. 
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4.5. Discussion 

The aim of the present study was to synthesise irreversible inhibitors of LSD1 based on 

TCP molecular structure. By using a simple synthetic approach, we generated a total of 

eighteen new compounds, decorated at the phenyl ring with bulky substituents all with 

interesting biology. Cell-free enzymatic evaluation confirmed the enhanced potency of 

the new analogues, as these were 50-fold more potent compared to TCP. The enzymatic 

evaluations were strengthened by cellular experiments, whereby the compounds 

produced intriguing effects. 

The simplest compound, the amino-oxoethyl substituted analogue 4.19, showed similar 

enzymatic activities to TCP. The benzylamine (4.10) and the phenethylamine (4.11) 

derivatives were the strongest LSD1 inhibitors. 

The addition of further hindering substituents, in 4.12 (dibenzylamine substituted) and 

4.13 (4-phenylbenzylamine substituted), also positively contributed to improve LSD1 

inhibition. Despite the strong similarity between 4.12 and 4.13, the former is 40-fold 

more potent than the latter; this may arise from the presence of one more rotatable bond 

in 4.12 that can potentially confer an increased mobility to the benzyl rings that can 

adjust in the catalytic cleft of LSD1. 

Bioisosteric substitution of the phenethyl ring of 4.11 with thiophenethyl, leads to 

compound 4.14. Given that the vinylene (-CH=CH-) group is a ring equivalent of the 

divalent sulfur in the thiophene ring, compound 4.14 displayed a similar biological 

profile to 4.11. 

Replacement of benzyl and phenethyl with non-aromatic rings was less favourable for 

the activity. Cyclohexanemethyl (4.15) and cylohexaneethyl (4.16) substituted 

analogues suppressed LSD1 enzymatic activity at higher concentrations (2.5 µM and 

5.4 µM respectively) compared to the aromatic 4.10 and 4.11. The result emphasises the 

importance of the aromatic rings at that position, which can potentially promote 

stronger interactions with the flat hydrophobic LSD1 catalytic site. Cellular experiments 

with 4.15 and 4.16 revealed similar anti-proliferative effects in KASUMI, U937 and 

MV4-11 cells.  

Thereafter, we decorated the benzyl ring of 4.10 with different substituents in para 

position and specifically with bromine (4.17), fluorine (4.18), chlorine, (4.19), methoxy 

(4.20) and nitro (4.21) groups. In some cases, the presence of such substituents critically 
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influenced the binding activity of the small molecules. The fluorine substituted 4.17 

retained both enzymatic (1.3 µM) and cellular activities. Also the bromine substitution 

did not alter the drug’s pharmacology, as 4.18 blocked LSD1 demethylase at nM 

concentrations and hindered the proliferation of KASUMI and MV4-11 cell lines 

equally well. Moreover, additional cell viability assays performed in prostate 

adenocarcinoma LNCaP cells revealed that 4.18 was able to arrest cancer cell 

proliferation at lower concentrations compared to the potent anti-leukaemia agents 4.10 

and 4.11. Bromine substitution increases the molecule lipophilicity and the greater 

effects in LNCaP cells of such analogue could be related to the electronic changes 

conferred by the halogen.  

Substitution with chlorine (4.29) resulted instead in a reduced anti-LSD1 effect, as no 

enzymatic inhibition was detected at 50 µM. Chlorine is an electron-withdrawing 

substituent and it increases the molecule’s global acidity and lipophilicity by decreasing 

the pKa. Consequently, this modification can compromise the original non-substituted 

benzyl ring interactions with the target cleft.  

The strong electron-donating methoxy, annexed at the benzyl ring in 4.20, displayed an 

unfavourable binding profile with its enzymatic activity fading to 32 µM. The NO2 

para-substitution in 4.21 also exerted an unfavourable effect towards the LSD1 

inhibition. The nitro group is a strong electron-withdrawing group and its presence 

dramatically decreases the lipophilicity. This change in properties have potentially led 

the molecule to interact with less hydrophobic regions of the LSD1 cleft. Although 

some enzymatic potency was maintained, 4.21 failed to impair cell proliferation. Hence, 

collectively these data suggest that marked electron-withdrawing and electron-donating 

groups are unfavourable for the interactions with LSD1 catalytic pocket. 

Nitrogen containing aryl moieties are commonly found in drugs301 and to direct further 

SAR, the effects of pyridyl-piperazine (4.22) and pyrimidyl-piperazine (4.23) 

substitutions were analysed. The biological profile was found to be similar for both 

substitutions as 4.22 and 4.23 were equally able to impede LSD1 demethylation at ~1 

µM concentration. AMLs viability was also effectively reduced with nM treatments 

with such compounds. These results prompted us to further exploit such structural 

modification and we expanded the library with molecules 4.24-4.27. Compounds 4.24 

and 4.25 have, in addition to piperazine, a sulfonamide component. Sulfonamides are 
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known to have anti-cancer potential,302,303 hence their insertion in the library. The 

evaluation of 4.24 and 4.25 demonstrated that sulfonyl-containing molecules are 

suitable to fit the LSD1 enzymatic cleft.  

The piperazine component was further investigated with compounds 4.26 and 4.27, 

which have a supplementary ortho substituted phenyl ring with a fluorine or nitrile 

group, introduced to maximise the structural diversity of the library. Both modifications 

generated potent LSD1 inhibitors with strong anti-proliferative properties in all the 

tested cell lines.  

To fully characterise the biological behaviour of the new TCP derivatives, compounds 

4.10, 4.11 and 4.14 were selected for further analyses given their high enzymatic 

potential in contrasting LSD1 demethylase, the high synthetic yield and the easy 

purification compared to other compounds. The cellular evaluations started with the 

examination of TCP in MV4-11, HL-60, THP-11, U937, KASUMI and OCI-AML3 

cells. TCP was able to hinder cell proliferation after 72 h of incubation and marked 

decrease in cell viability was registered at 30 µM. Compounds 4.10 and 4.11 were next 

analysed in the leukaemia cells at lower concentrations (1-100 nM) and four different 

time courses (24 h, 48 h and 72 h). After 24 h, treatments were ineffective in arresting 

cell growth whereas marked decrease of cell viability was observed after 48 h, 72 h and 

120 h in all the analysed cell lines. This delayed effect might be partially due to the 

positive charge present in the molecules. Positive charges may hinder the penetration of 

these compounds inside the cell membrane. However, this slow activity could also 

represent a physiological effect of pharmacological action on cellular LSD1. In keeping 

with this, other studies reported similar treatment course to achieve significant reduction 

of cell proliferation via LSD1 inhibition.174,175,304 

To verify that the observed activities were driven by an irreversible mechanism, a 

washout experiment was employed with compounds 4.10, 4.11 and 4.14.291,305 Results 

confirmed that the biological data are promoted by covalent inhibition as after washout, 

4.10, 4.11 and 4.14 retained the anti-proliferative behaviour.  

Immunoblotting evaluations in KASUMI cells treated with 200 nM of 4.11 for different 

time courses (2 h, 4 h, 6 h, 48 h and 72 h), showed a time dependent accumulation of 

the H3K4me2 expression, which was most marked following 48 h and 72 h. As several 

studies indicate that LSD1 inhibition promotes the reactivation of myeloid-
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differentiation associated genes,86 the induction of differentiation markers was assessed 

by flow cytometry.  

The marker CD86, for which the induced expression is directly linked with the LSD1196 

inhibition, was evaluated first. Treatments with 200 nM of 4.10, 4.11 or 4.14 for 24 h, 

48 h and 72 h demonstrated a marked increase in CD86 expression in THP-1, MV4-11, 

OCI-AML3, HL-60, KASUMI and U937 cells. Once more, the compounds biological 

effects were time-dependent as short exposures (24 h) were unable to increase 

significantly the CD86 expression. In contrast, prolonged incubations (48-72 h) 

promoted a marked induction of the examined parameter.  

To further characterise the differentiating potential of the drugs, the cellular levels of 

CD11b and CD14 expression were measured after treatments with 4.10 and 4.11. 

Results revealed that 48 h incubation with 200 nM of benzyl and phenethyl substituted 

TCP derivatives strongly induced the expression of CD11b and CD14 markers in 

leukaemia cell lines. The expression of the maturation-associated myeloid surface 

marker CD11b implies that treated cells are differentiating along the 

monocytic/macrophagic pathways. In addition, cells that demonstrated less sensitivity to 

the LSD1 inhibitors in cytotoxicity assays, such as U937 and OCI-AML3, also 

displayed a marked increase of CD11b. The strong increase in differentiation markers 

justifies the initial results observed during cytotoxicity evaluations in OCI-AML3, 

whereby following 24 h exposure a significant increase in cell growth was registered. 

Moreover, none of the tested derivatives revealed a 100% inhibition of cell survival 

rates. In the light of these data, a possible explanation for the partial inhibition is that 

the compounds did not cause cell death, but differentiation instead. Therefore the CD 

data clarify why the dose-response curves were not reaching zero proliferation even at 

high concentrations. Noteworthly, the reagent used to measure cell survival (CellTiter-

Glo®) quantifies cellular ATP production and does not discriminate between 

differentiating and tumorigenic cells.  

The treatment with 4.10 (200 nM, 48 h) resulted only in a moderate increase of human 

monocytic endotoxin receptor CD14 in U937 and low response in HL-60 and KASUMI 

cells. This implies a partial differentiation of the analysed samples. KASUMI and HL-

60 cells belong to the M2 class and are myeloblastic leukaemia models characterised by 

a very poorly differentiated status.296,306 Likely, increased exposure time and drug 
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concentrations could have led to a significant CD14 increase. Also, several studies 

reported a special pathway for HL-60 cells terminal differentiation in regard to CD14 

expression. It is in fact showed that HL-60 cells, after exposure to maturation inducer 

agents, were less able to express CD14 compared to other AML lines.296,306 

Additionally, Palis et al. reported that HL-60’s ability to differentiate can be affected by 

the number of passages during cell culture procedures.307 Taken together, the data 

obtained for HL-60 cells could depend on the cell line rather than solely being an effect 

of 4.10. Unlike HL-60 cells, in KASUMI the limited response concurs with a reduction 

in cells count and such effect was observed in three independent replicates. 

To evaluate the haematological toxicity associated with LSD1 suppression, the effects 

of 4.10 and 4.11 were examined in normal hematopoietic stem cells expressing CD34+. 

Human hematopoietic non-malignant CD34+ exposed for 48 h and 72 h with 

concentrations up to 10 µM of 4.10 and 4.11, did not show sensitivity to the treatment, 

accrediting the specificity of such LSD1 inhibitors for tumorigenic cells and their safety 

for normal HSC.  

An interesting observation resulting from this study was the great effect of TCP 

derivatives on MV4-11 cell line. Genetically, MV4-11 cells are characterised by 

overexpression of the Fms-like tyrosine kinase 3 mutation (FLT-3).308 In normal 

hematopoietic cells, FLT-3 acts as a growth factor by stimulating the hematopoietic cell 

progenitors to differentiate and increase the number of B and T cells. In AML context, 

FLT-3 suffers two types of mutations; one is the internal tandem mutation of the 

juxtamembrane region (ITD) and the other is point mutation tyrosine kinase (TKD). 

FLT-3, ITD and TKD mutations concur to promote ligand independent activation of the 

receptor, leading to the blast cell survival over their normal counterpart.309 Thus, 

accordingly to the results obtained in MV4-11, it is conceivable to hypothesise that 

LSD1 is somehow linked with the FLT-3 mutation and its pharmacological inhibition 

could revert the sustenance of blast cell survival through the disruption of FLT-3-ITD-

TKD activity. Although until now there is no scientific evidence reporting LSD1 direct 

involvement wit FLT-3, Shih et al. associated the reduced methylation marks with FLT-

3 ITD mutation.309 
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Derivatives were also evaluated in LNCaPs. The compounds presented an enhanced 

anti-proliferative activity compared to TCP, which arrested cell proliferation only at 2.5 

mM.  

Unfortunately, during the course of this work, the company Takeda filed a patent for 

LSD1 inhibitors with similar structures to the ones reported here and structure 4.10 is 

included in such work.  

4.6. Conclusions and future work 

In this project a series of TCP analogues containing a substituted cyclopropyl core have 

been designed and synthesised. The used synthetic route enabled the generation of 

nineteen new analogues in seven steps. 

A fluorometric assay was used to test the enzymatic activity and eight compounds 

proved to antagonise LSD1 demethylation at nM concentrations. The data confirmed 

that analogues with bulkier substituents at the TCP core greatly impair the LSD1 

catalytic activity and the substituents nature critically influences the drugs final effects. 

Strong electron withdrawing and electron-donating groups generated weak analogues, 

whereas sulfonyl-containing moieties resulted in favourable substitutions for the 

interaction with the target. 

The link between the compounds activity and LSD1 inhibition was strongly supported 

by the analyses of downstream molecular markers for LSD1 inhibition, as the 

accumulation of H3K4me2 and CD86 expression.  

Biological evaluations were carried out in an extended panel of leukaemia cell models 

and the analogues showed a 1000-fold enhanced biological activity compared to TCP 

scaffold. Compound 4.10 and 4.11 have proved to trigger cell differentiation at nM 

concentrations as demonstrated by the analysis of CD14 and CD11b post-treatment 

expression levels in six in vitro models of AML. The compounds have also been 

evaluated in LNCaP cells showing enhanced activity compared to TCP in arresting the 

cancer proliferation. In addition, the compounds were non-toxic for fast-reproducing 

normal cells, hence selective for cancer cells.  

Being drug-like analogues, the compounds could be assessed in in vivo models for 

leukaemia as single agents or in combination with other AML inhibitors or other 

epigenetic drugs.  
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Chapter 5 - Evaluation of synthetic intermediates as 

potential inhibitors of LSD1 

5.1. Introduction 

The established mechanism for the LSD1 inactivation with TCP-like compounds rely on 

the formation of a covalent adduct between the NH2 group of TCP and the FAD 

isoalloxazine ring. This irreversible modification impedes the FAD-dependent LSD1 

demethylase activity on targeted histones.175 Accordingly, compounds bearing a 

protected amine group are prevented to form the covalent adduct with the FAD ring. 

The primary amine is necessary for the covalent modification, involving electron 

reduction of LSD1-bound-FAD complex and homolytic cleavage of the cyclopropyl 

ring with the formation of a five-membered ring stable adduct.98,159,175 During the 

evaluation of TCP derivatives reported in Chapter 4, two synthetic tert-

butyloxycarbonyl protected (Boc-NH2) intermediates revealed, surprisingly, potent anti-

proliferative activities.  

Compounds 5.1 and 5.2 (Figure 5.1 A) were synthesised through the Horner-

Wadsworth-Emmons reaction of 4-methyl formylbenzoate, Johnson-Corey-Chaykovsky 

cyclopropanation, Curtius rearrangement and amide formation following the procedures 

described in Chapter 4. These correspond to the protected precursors of TCP analogues 

4.11 and 4.14. In a cell viability experiment with LNCaP cells, 5.1 and 5.2 showed an 

exceptional ability to hinder cell proliferation at nM concentrations (IC50 5.1 = 260 nM, 

and IC50 5.2 = 650 nM, Figure 5.1). Notably, a much lower activity in the same cell 

lines was observed for the free amine counterparts 4.11 and 4.14 (Chapter 4 and Figure 

5.1 B). 
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Figure 5.1: Effects of TCP derivatives 4.11 and 4.14 and their Boc-protected precursors 5.1 and 5.2 on LNCaP 

cells proliferation. 

(A) Molecular structure of 5.1, 5.2 (Boc-protected compounds) and 4.11, 4.14 (free amines); (B) IC50s values 

determined with cellular evaluation of 5.1 and 5.2 in LNCaP cells. Results are expressed as means (µM) ± STD 

(n=2); (C) Dose- response curves showing the effects of 5.1 (left) and 5.2 (right) in LNCaP cells. The X-axis is in 

logarithm of concentration (M, Molar); Y-axis is the % of RLU (relative luminescence unit) normalised to baseline 

(100 % activity, vehicle control - DMSO). Data were fitted by nonlinear regression analysis. 

This image cannot currently be displayed.
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To test whether the results obtained with 5.1 and 5.2 were linked to LSD1 inhibition, we 

evaluated their enzymatic ability in arresting LSD1 demethylase activity with 

Amplex®Red peroxidase-coupled assay. However, the compounds were enzymatically 

inactive in the cell-free assay (data not shown).  

The experiment was repeated with the following conditions: 1) increasing the 

concentration of inhibitors (up to 250 µM); 2) increasing the incubation time of 

LSD1+inhibitor (overnight, 72 h and 96 h). In all the cases, 5.1 and 5.2 were unable to 

arrest the substrate demethylation.  

To support the data obtained in prostate cancer cells, the anti-proliferative activities of 

5.1 and 5.2 were evaluated in AML cell lines. Cell viability of KASUMI, MV4-11, 

OCI-AML3, HL-60, THP-1 and U937 cells, treated with increasing concentrations of 

5.1 and 5.2 (10 µM, 3 µM, 1 µM, 0.3 µM, 0.1 µM, 0.03 µM, 0.01 µM, 0.003 µM and 

0.001 µM, 72 h) was measured with CellTiter-Glo®.  

High anticancer potency was revealed for both the compounds in the AMLs (Figure 5.2, 

Figure 5.3 and Table 5.1).  

 

 
Figure 5.2: Dose-response curves showing the effects of N-protected TCP derivative 5.1 on AMLs proliferation 

(72 h). 

The X-axis is in logarithm of concentration (M, Molar); Y-axis is the % of RLU (relative luminescence unit) 

normalised to baseline (100 % activity, vehicle control - DMSO). Data were fitted by nonlinear regression analysis. 

Data are shown as mean ± STD (n=5). 

 

This image cannot currently be displayed.
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Figure 5.3: Dose-response curves showing the effects of N-protected TCP derivative 5.2 on AMLs proliferation 

(72 h). 

The X-axis is in logarithm of concentration (M, Molar); Y-axis is the % of RLU (relative luminescence unit) 

normalised to baseline (100 % activity; vehicle control- DMSO). Data were fitted by nonlinear regression analysis. 

Data are shown as means ± STD (n=5). 

 

 

Table 5.1: Enzymatic and anti-proliferative activity (IC50 values) of TCP analogues 4.11 and 4.14 and their 

respective N-protected precursors 5.1 and 5.2. 

Values obtained in enzymatic and cell viability experiments are reported in µM ± STD (n=3 for enzymatic, n=5 for 

cellular evaluations); ** Tested at two concentrations (100 nM and 1 µM).  

Assay 4.11 4.14 5.1 5.2 

     

Enzymatic 0.5±0.42 0.6±0.83 > 250 > 250 

 

Cell viability 

MV4-11 0.2±0.1 0.1±0.8 0.5±1.1 0.6±0.7 

HL-60 0.06±4.2 0.2±3.6 0.4±1.2 0.5±0.4 

THP-1 0.2±2.1 1.0±0.1 0.2±4.3 0.6±0.5 

U937 1.2±2.1 0.6±0.1 0.4±0.4 0.6±0.2 

OCI-AML3 0.06±4.2 -** 0.4±1.7 0.5±0.7 

KASUMI 0.7±0.3 0.6±8.2 0.5±1.3 0.7±0.1 

 

 

This image cannot currently be displayed.
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As shown in Figures 5.2-5.3 and Table 5.1, Boc-protective intermediates 5.1 and 5.2 

were able to arrest AMLs proliferation at low µM range, mirroring the cellular results 

obtained with the free amine counterparts. Interestingly, unlike the latter, the treatments 

with 5.1 and 5.2 produced a 100% inhibition of cell survival. 

Given the compounds unusual structural feature and their capacity to act as potent anti-

proliferative agents in both prostate and AMLs, we decided to explore further the N-

protected TCP analogues. 

At the beginning of the study, three mechanisms were hypothesised to justify the 

biological data for 5.1 and 5.2:  

I. The Boc-compounds function as pro-drugs. The N-protecting group could 

facilitate the compounds cellular uptake by masking the positively charged free amine 

and increasing lipophilicity. Once inside the cells membrane, these could be possibly 

converted to the irreversible inhibitors by the cells metabolic machinery.  

II.  The observed activity is based on an LSD1-unrelated mechanism. 

III.  The compounds act through an LSD1-dependent mechanism without impairing 

LSD1 demethylase activity. 

In order to establish which of the three hypothesised mechanisms is more likely to 

occur, we took the following steps.  

First, we assessed the compounds in other cancer cell lines to investigate on their anti-

proliferative potential. 

Second, to verify if the biological observations depend exclusively on the N-protection 

or if other structural features contribute to the drugs’ effects, other TCP-related 

compounds bearing a Boc-protecting group were evaluated. Additionally we 

investigated the activities of similar N-protecting groups.  

Third, we employed biological experiments (time-course, washout and downstream 

evaluation of LSD1-dependent biological markers) to fully profile the compounds in 

leukaemia cells and eventually confirm or revoke the LSD1 implication in the 

compounds’ pharmacology. 
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5.2. Towards the molecular mechanism of action of Boc-

protected TCP derivatives  

5.2.1. Further cytotoxicity assays in prostate and haematological 

cancer cell lines 

To further research on the abilities of 5.1 and 5.2 to suppress tumour growth, we 

performed supplementary evaluations on prostate and haematological cancers cell lines. 

Prostate cell lines PC3 and DU145 which possess moderate (DU145) and high (PC3) 

metastatic potential compared to LNCaP line, were exposed to increasing 

concentrations of 5.1, its free amine derivative 4.11 and 5.3, corresponding to GSK-

LSD1 (Figure 5.4).179 The latter is one of the most potent and selective inhibitors of 

LSD1 reported to date with a Ki of 16 nM and proved capacity of arresting small cell 

lung cancer (a solid tumour) proliferation at nM concentrations (2-240 nM). As GSK-

LSD1 is currently used as a positive control for LSD1 studies, we decided to include the 

molecule in the cytotoxicity assays to compare its activity with our anticancer agents in 

prostate adenocarcinoma cells.179 

 

 
Figure 5.4: Molecular structure of GSK-LSD1. 

 

  

This image cannot currently be displayed.
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Figure 5.5: Cell viability results in PC3 (A) and DU145 (B) cells, assessed by MTT assay (72 h). 

Cells were treated for 72 h with different concentrations of GSK-LSD1 (black bars), 4.11 (orange bars) 

and 5.1 (white bars). Results are expressed as a % of cell viability (compared to control - untreated cells). 

Data are shown as means ± SD (n=6). 

 

The results (Figure 5.5) obtained, further proved the anti-proliferative activity of 5.1. In 

both PC3 and DU145 cells, 5.1 treatments (5 µM, 72 h) reduced cell viability by 80%. 

Remarkably, the compound displayed increased efficacy compared to its free amine 

counterpart 4.11, (orange bars) and GSK-LSD1 (5.3, black bars).  

Compounds 5.1 and 5.2 were next evaluated in multiple myeloma (MM) cell lines, a 

type of haematological cancer interesting the plasma cells of the bone marrow.310 In 

MM cells, U266, LP-1, RPMI-8266 and H929 cells, the compounds were tested only at 

a single dose (500 nM) for 24 h, 48 h and 72 h. The concentration was decided based on 

This image cannot currently be displayed.
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the results obtained in AML cell lines (IC50s falling in the range 200-700 nM, Table 

5.1). The chosen concentration however, was unable to cause significant effects.  

Despite the negative results, the data imply that the compounds’ pharmacology is not 

simply associated with a non-specific toxic mechanism.  

Having gained supplementary evidence that 5.1 and 5.2 promoted the arrest of cell 

proliferation and apparently, without correlating with unspecified harmful effects, we 

prepared additional compounds to establish the structural features that are determinant 

for the biological data. 

5.2.2. Synthesis of diverse N-protected TCP-like compounds and their 

biological evaluation 

To verify whether the tert-butyloxycarbonyl protection is the key element for the 

marked anti-proliferative behaviours of 5.1 and 5.2, we synthesised Boc-protected TCP 

and the precursor of the TCP amide analogue 4.10, for which we report potent 

biological activities in AMLs (5.4 and 5.5, respectively, Figure 5.6). The compounds 

were then tested on AMLs and LNCaPs. If the Boc protection was solely responsible for 

the increase in cytotoxicity, especially in the prostate tumour cells, both 5.4 and 5.5 

would be able to suppress tumour proliferation.  

The concentration used for testing 5.4 and 5.5 were selected in accordance to the results 

reported for the respective free amines (TCP and 4.10). To test 5.4, we used a range of 

3 mM-1 µM whereas to test 5.5, we used a range of 10-0.001 µM for AMLs 

experiments and a range of 1 mM - 1 µM for LNCaPs experiments. Post-treatment 

viable numbers were measured after 24 h, 48 h and 72 h treatment. 

 

 
Figure 5.6: Boc-protected compounds 5.4 and 5.5 molecular structure. 

5.4 Boc-protected-TCP, 5.5 Boc-protected TCP-derivative substituted with benzylamine.  

This image cannot currently be displayed.
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Surprisingly, neither 5.4 nor 5.5 showed activity, suggesting that the presence of Boc-

protection is not the only element defining the anti-tumour properties. Such evidence 

also partially refutes the first hypothesised mechanism. Namely, if the activities 

observed with 5.1 and 5.2 were generated by a pro-drug-like mechanism, 5.4 and 5.5 

would have exhibited the same biological properties as their free amine homologues 

TCP and 4.10.  

Besides that, compounds 5.1 and 5.5 share a high structural similarity, which makes the 

data even more interesting. The contrasting results could be attributed to the different 

para substitutions at the TCP phenyl ring being a phenethylamine for 5.1 and 

benzylamine for 5.5 (Figure 5.7).  

 
Figure 5.7: Structures of N-protected TCP derivative 5.1, 5.2 (active) and 5.5 (inactive). 

 

Notably, both 5.1 and 5.2 contain the same ethyl carbon chain between the TCP-phenyl 

ring and the thiophenyl or phenyl moiety (Figure 5.7). To assess if the structural 

similarity between the active compounds correlates with the cellular effects, a 

supplementary structure was generated by coupling the 4-(tert-butoxycarbonyl) amino) 

cyclopropyl) benzoic acid (4.16, Chapter 4) with tryptamine (Scheme 5.1). The 

activities of 5.6 were then evaluated in HL-60 and THP-1 and LNCaPs.  

  

This image cannot currently be displayed.
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Scheme 5.1: Coupling of 4-(tert-butoxycarbonyl)- amino) cyclopropyl) benzoic acid 4.6 with tryptamine. 

 

 

 
Figure 5.8: Dose-response curves showing the effects of N-protected TCP derivative 5.6 on HL-60 and THP-1 

cells proliferation (72 h). 

The X-axis is in logarithm of concentration (M, molar); Y-axis is the % of RLU (relative luminescence unit) 

normalised to baseline (100 % activity = vehicle control, DMSO). Data were fitted by nonlinear regression analysis 

and are shown as means ± STD (n=5).  

 

Following 72 h treatment with 5.6, cell viability results revealed a dose-dependent 

decrease of cell proliferation in AMLs (IC50 HL-60 = 1.17 ± 0.2 µM and IC50 THP-1 = 

0.91 ± 0.1) and LNCaPs (0.45 ± 3.2 µM).  

In the light of these results, the presence of an ethyl carbon chain in the substituted 

amine is probably a key element to achieve biological activity with N-protected 

derivatives. However, this must be confirmed, given the small number of molecules 

tested.  

Thereafter, two further compounds bearing a similar N-protecting group, namely the N-

ethyl carbamate, were synthesised (5.7 and 5.8, Figure 5.9). 

 

This image cannot currently be displayed.

This image cannot currently be displayed.
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Figure 5.9: N-ethyl carbamate protected compounds 5.7 and 5.8. 

 

These were prepared by adapting the Curtius rearrangement311 protocol and scavenging 

the generated isocyanate with ethanol instead of tert-butanol. 

 

 

 
Scheme 5.2: Synthesis of N-ethyl carbamate TCP derivatives. 

 

The ability of the N-ethyl carbamate derivatives to interfere with LSD1 demethylase 

was evaluated with the Amplex®Red assay and, similarly to the Boc-compounds, 5.7 

and 5.8 were devoid of enzymatic activity. Notwithstanding, these prevented AMLs 

growth at concentrations similar to the ones observed for the Boc derivatives 5.1, 5.2 

and 5.6 (Figure 5.10-5.11 and Table 5.2).  

This image cannot currently be displayed.

This image cannot currently be displayed.
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Figure 5.10: Dose-response curves showing the effects of N-protected TCP derivative 5.7 on AMLs 

proliferation (72 h). 

The X-axis is in logarithm of concentration (M, Molar), Y-axis is the % of RLU (relative luminescence unit) 

normalised to baseline (100 % activity = vehicle control, DMSO). Data were fitted by nonlinear regression analysis 

and are shown as means ± STD (n=5).  

 

 

 
 

Figure 5.11: Dose-response curves showing the effects of N-protected TCP derivative 5.8 on AMLs 

proliferation (72 h). 

The X-axis is in logarithm of concentration (M, Molar); Y-axis is the % of RLU (relative luminescence unit) 

normalised to baseline (100 % activity = vehicle control, DMSO). Data were fitted by nonlinear regression analysis 

and are shown as means ± STD (n= 5).  

This image cannot currently be displayed.

This image cannot currently be displayed.
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Table 5.2: In vitro  cytotoxicity results of 5.7 and 5.8 in AMLs proliferation (72 h). 

Results are reported in µM ± STD (n=5); nt: not tested. 

Compound MV4-11 HL-60 OCI-AML3 U937 THP-1 

5.7 1.3±2.7 0.4±7.45 1.4±0.5 0.3±2.8 nt 

5.8 0.5±1.5 0.7±5.21 0.5±0.4 nt 0.3±1.2 

 

Therefore, the biological evaluations confirmed the lack of enzymatic activity for all the 

N-protected TCP derivatives and suggested that the presence of the N-protection is not 

the only putative factor for the pharmacological effects. Based on the preliminary 

observation, we selected 5.1 and 5.8 for supplementary studies as representatives for the 

N-protected class of compounds. What follows is the description of the supplementary 

biological evaluations we have made attempting to characterise the effects of the 

synthetic intermediates. 

5.3. Biological profiling of N-protected derivatives 

In order to refute or substantiate a correlation between the suppression of LSD1 activity 

and the cellular effects, and to further characterise the pharmacology of the N-protected 

compounds we conducted several experiments with leukaemia cells. These consisted in 

a study of the kinetics required for the activity, a washout experiment to define if the 

observed data derive from a covalent inhibition and evaluated the expression levels of 

downstream markers associated with LSD1 inhibition and differentiation (H3K4me2, 

CD86, CD11b and CD14).101,196 Finally, we examined the potential toxic effects of 5.1 

on non-malignant HSC cells expressing CD34+.86,312  
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5.3.1. Time-course evaluation 

To define the time-course required for the protected compounds to trigger effects, 5.1 

was incubated with THP-1 (100 nM and 1 µM) and cell viability was measured after 24 

h, 48 h and 72 h (Figure 5.12). The concentrations for the experiment were kept the 

same as for the free amine, to allow a directed comparison between the data of 5.1 and 

4.11. 

 

 
Figure 5.12: Effects of compound 5.1 (100 nM and 1 µM) on the proliferation of THP-1 cells (24 h, 48 h and 72 

h). 

Survival (RLU) is normalised to pre-treatment levels. Statistical significance was determined with one-way ANOVA 

and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD (n=5); *** p < 0.001 

**** p < 0.0001. 

  

This image cannot currently be displayed.
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The data indicate a fast course of action for 5.1 (Figure 5.12), as a significant decrease 

in cell survival was observed after only 24 h treatment. With prolonged exposures the 

reduction was even more pronounced, reaching nearly 100% inhibition at 72 h and 1 

µM concentration. 

The results differ from the time course observed with free amine, which required longer 

incubation time (72 h) to exhibit inhibitory effects. Compound 4.11, the free amine 

counterpart of 5.1 was unable to reduce significantly the cell viability after short 

incubation (Figure 5.13). 

 

 

 

Figure 5.13: Cytotoxicity effects of 4.11 and 5.1 (100 nM -1 µM) after 24 h treatment in THP-1 cells. 

Survival (RLU) is normalised to pre-treatment levels. Statistical significance was determined with one-way ANOVA 

and corrected for multiple comparisons using Dunnett’s test. Data are shown as means ± STD (n=5); *** p < 0.001 

**** p < 0.0001. 

  

This image cannot currently be displayed.
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5.3.2. Evaluation of activity persistence 

To determine if the reported effects are due to irreversible inhibition, the persistence of 

the anti-proliferative behaviour of 5.1 was evaluated with a washout experiment.305 

AMLs (MV4-11, THP-1, KASUMI, HL-60, U937 and OCI-AML3 were stimulated 

with 5.1 (200 nM) or left untreated for 6 h, followed by washout of inhibitor-containing 

medium. Compounds residual activity was next measured after 72 h. 

 

 
 

Figure 5.14: Washout experiments with 5.1 on AML cell lines. 

Results were obtained with CellTiter-Glo® and RLU was normalised to control (untreated). Statistical significance 

was determined with two-way ANOVA and corrected for multiple comparisons using Bonferroni’s test. Data are 

shown as means ± STD (n=5). 

 

Results indicate an irreversible binding as 5.1 was able to maintain over time the anti-

proliferative properties despite the washout. The direct comparison between continuous 

(black bars) and pulsed treatment (green bars), did not produce a significant variation in 

cell count. In contrast, if the activity was generated by a reversible mechanism, 5.1 after 

being cleared from the system, would not have been able to generate the observed anti-

tumorigenic activities.291  

  

This image cannot currently be displayed.
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5.3.3. Evaluation of H3K4me2 expression by immunoblotting 

A Western blot analysis of the H3K4me2 levels was next employed to establish whether 

the biological data are generated by an LSD1-dependent mechanism. KASUMI cells 

were incubated with 200 nM of 5.1 or left untreated and cultured for 2 h, 4 h, 6 h, 48 h 

and 72; blotting membranes of separated proteins were probed for H3K4me2 and H3 

(total). 

 

 
Figure 5.15: Western blot analysis of the methylation state of H3 after treatment of KASUMI cells with 

compound 5.1 (200 nM) for different time points.  The blots indicated the H3K4me2 levels (top) compared to 

H3 (total, loading control - bottom).. 

 

 

Data revealed a progressive increase of di-methylated H3 over time and, as the H3K4 

demethylation is directly linked with LSD1 inhibition, we cannot exclude the 

involvement of LSD1 in the pharmacological activities of 5.1.  

In addition, the increase of the methylation mark is significant after only 6 h of 

incubation; in contrast, at equivalent experimental conditions (same cell line and same 

concentrations), the free amine counterpart 4.11 promoted an increase of H3K4me2 

after 48 h of treatment. Therefore, the data further substantiate the faster onset of 

activity by 5.1. 

  

This image cannot currently be displayed.
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5.3.4. CD86 expression 

As previously mentioned, the increased expression of CD86 is a direct consequence of 

LSD1 inhibition.196 To corroborate the evidence designating a possible involvement of 

LSD1 in the observed activities, we evaluated the post-treatment induction of the CD86 

in THP-1 cells with both Boc and ethyl carbamate derivatives. The incubation time was 

selected according to the previous experiments. Given that 6 h were sufficient to induce 

H3K4me2 expression and 24 h were sufficient to arrest cell proliferation, CD86 

expression was measured after 24 h treatment with 5.1, 5.2 and 5.8. 

 

Figure 5.16: Effects of N-protected TCP-derivatives 5.1, 5.2 and 5.8 (200 nM, 24 h), on the expression of CD86 

in THP-1 cells. 

(A) 5.1, (B) 5.4 (C) 5.8, (D) statistical analyses of three independent experiments with similar results. 
Cells were gated based on FSC and SSC parameters. X-axis represents the fluorescence increase (compared to 

control) generated by cells expressing CD86. Statistical significance was determined with two-way ANOVA and 

corrected for multiple comparisons with Bonferroni’s test. Values are expressed as means % of increase (compared to 

control) ± STD (n=3); ****p < 0.0001.  

  

This image cannot currently be displayed.
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Table 5.3: Increase (%) of CD86 expression induced by N-protected TCP derivatives 5.1, 5.2 and 5.8 (200 nM, 

24 h) in THP-1 cells. 

Results are expressed as % of increase compared to pre-treatment level (vehicle control) ± STD (n=3). 

Compound 
CD86 (%) 

(Compared to control, ± STD, n=3) 

Control 8.7±2.1 

5.1 61.0±1.5 

5.2 72.5±8.2 

5.8 46.7±2.9 

 

After only 24 h treatments, the protected derivatives were able to trigger the expression 

of CD86. The registered augment was slightly less marked compared to the free amine 

counterparts. In addition, treatments with 5.8 (thiophenethylamine TCP-derivative N-

protected as the ethyl carbamate) promoted a less pronounced increase (46.7±2.9%) 

compared to Boc-protect compound. The CD86 evaluations further suggest that LSD1 

is the possible target of the N-protected compounds. 

5.3.5. CD14 and CD11b expression 

To determine whether the protected compounds affect the myelocytic differentiation 

markers, we measured the levels of CD14 and CD11b in AML cell lines after treatment 

with 5.1 and 5.8. THP-1 and MV4-11 cells treated with 200 nM of 5.1 or 5.8 were 

cultured for 24 h. Whole cells stained with fluorescent antibodies were then analysed by 

flow cytometry (Figure 5.17-5.18 and Table 5.4). 

 



 Evaluation of synthetic intermediates as potential inhibitors of LSD1 

 217

 
Figure 5.17: Effects of N-protected TCP derivative 5.1 (200 nM, 24 h) on the expression of differentiation 

markers CD14 and CD11b in THP-1 cells. 

FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3); *** p < 0.001, ****p < 

0.0001.  

This image cannot currently be displayed.
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Figure 5.18: Effects of N-protected TCP derivative 5.8 (200 nM, 24 h) on the expression of differentiation 

markers CD14 and CD11b in MV4-11 cells. 

FSC and SSC profiles were applied for the initial gating by selecting cell size and distribution and remove cell debris. 

Plots A, B, C show the Isotype controls. Plots D, E, F show the experimental conditions. Plots A and D show the 

gated population: in the X-axis is reported the mean fluorescence increase for FITC-CD14 Ab; in the Y-axis is 

reported the mean fluorescence increase for PE-CD11b Ab. Plots B and C (black histograms) report the fluorescence 

increase of Isotype controls (untreated cells); E shows the fluorescence increase of the monocytic marker CD14; F 

shows the fluorescence increase of the myeloid marker CD11b. Numbers shown in each box are the % of cells 

expressing CD14 or CD11b. (G) Shown are results graphically summarised for three independent experiments. 

Statistical significance was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. Values are expressed as means % of CD14-CD11b increase ± STD (n=3); ****p < 0.0001.  

This image cannot currently be displayed.
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Table 5.4: Increase (%) of CD14+ and CD11b+ expression induced by N-protected TCP derivatives 5.1 and 5.8 

(200 nM, 24 h) in THP-1 and MV4-11 cells.  

Results are expressed as % of increase compared to control Ab* ± STD (n= 3). 

Ab*: Human IgG-FITC and IgG-PE; Ab**: Human anti-CD14-fluorescein (FITC) and anti-CD11b-phycoerythrin 

(PE). 

 CD14-CD11b 

 (%) ±STD (n=3) 

Conditions CD14+ CD11b+ 

THP-1+Ab* 22.3±0.5 8.0±1.0 

THP-1+5.1+Ab** 78.5±10.2 91.5±4.4 

MV4-11+Ab* 8.5±1.4 7.7±1.4 

MV4-11+5.8+Ab** 67.7 ± 2.5 83.0±1.9 

 

Mirroring the results in both the AML cell lines, 5.1 and 5.8 equally promoted the 

expression of the monocytic and myeloid markers CD14 and CD11b. This implies that, 

N-protected compounds promote a fast differentiation, phenocopying the effect seen 

with their free amine counterparts. The differentiation is also associated with a decrease 

in cell count (plots E and F, Figures 5.17 and Figure 5.18) and such reduction is more 

noticeable after treatment with compound 5.8.  
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5.3.6. CD34+ evaluation 

To estimate the myelotoxicity, bone marrow cells expressing CD34 derived from AML 

patients, were exposed to increasing concentrations of 5.1 during 72 h. Subsequently, 

cells were stained with appropriate antibody-FITC conjugated (anti-CD34 mouse 

monoclonal antibody to human FITC conjugated) and cells expressing CD34 counted 

by flow cytometry. As previously described, the CD34 marker is a differentiation stage-

specific leucocyte antigen and examining the number of CD34 expressing cells upon 

pharmacological treatments can give an evaluation of a drug toxicity.298,299  

 
Figure 5.19: Healthy CD34+ expressing HSC treated with increasing concentrations of N-protected TCP 

derivatives 5.1 (72 h). 

Data are shown as means ± STD (n=3). Statistical significance was determined with one-way ANOVA and corrected 

for multiple comparisons with Dunnett’s test; *p < 0.05.  

 

 

As reported in Figure 5.19, normal HSC cells were less sensitive to 5.1 treatments than 

tumorigenic cells. A significant decrease of CD34+ expressing cells was registered only 

at 1 µM and 10 µM doses, while the compound is able to arrest cancer cell proliferation 

at concentrations < to 1 µM. Moreover the results are based on 72 h incubation and, as 

reported by previous experiments, 5.1 present a faster course of action in tumorigenic 

cells. 

  

This image cannot currently be displayed.
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5.4. Discussion 

The present study was designed to examine the effects of synthetic intermediates of 

TCP analogues with N-protected carbamates. The compounds showed remarkable 

biological effects in arresting human leukaemia and prostate adenocarcinoma cells 

despite lacking LSD1 inhibition in cell-free assay. At the beginning of the study, we 

hypothesised that the compounds could act as pro-drugs. However, results did not 

substantiate this supposition. Amides and carbamates are not labile in cells, and these 

have proven to possess a faster course of action than the free amines. Such kinetic is 

highly unlikely if metabolic activation is involved. Moreover, if a pro-drug mechanism 

was likely to occur, both 5.4 and 5.5, corresponding respectively to Boc-protected TCP 

and Boc-protect benzyl derivative 4.10, would have been able to inhibit AML and 

LNCaPs proliferation. However, the compounds were devoid of activity upon 

protection.  

A structural observation among the N-protected TCP synthetic intermediates revealed 

that all the active molecules show a common feature. In compounds 5.1 and 5.2, the 

TCP core has been substituted in para at the phenyl ring with an ethyl-containing 

amine, specifically phenethylamine and thiophenethylamine. This feature represents the 

only difference between the active 5.1 and inactive 5.5. Supplementary biological 

evaluation with the Boc protected 5.6, substituted with tryptamine at the phenyl ring 

(para), evidentiated the ability of the agents holding this characteristic to suppress cell 

proliferation at low µM range. Albeit the positive results with 5.6, the presence of the 

ethyl linker as a determinant factor for the activity cannot be confirmed without testing 

additional compounds. 

The N-ethyl carbamate protected compounds also decreased cell viability of AMLs lines 

and at similar concentrations as the N-tert-butyloxycarbonyl compounds. In addition, 

we proved that the affects of 5.1 are irreversible, as after a shorter exposure (6 h) 

followed by washout, the compound maintained the anti-cancer potential. 

To further profile the mechanism of action, Western blotting and flow cytometry 

experiments were employed. Western blot analyses of KASUMI cells treated during 6 h 

with 5.1, revealed a marked increase in H3K4me2, which is a direct cellular 

consequence of the LSD1 pharmacological inhibition. The data however, contrast with 

the lack of enzymatic activity measured by the Amplex®Red assay.  
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Treatment with nM concentrations of 5.1, 5.2 and 5.8 (200 nM, 24 h) induced an 

increment of CD86 marker in THP-1 cells, further correlating the pharmacological 

effects with LSD1 suppression. Similar concentrations were also able to trigger the 

differentiation marker CD11b and CD14 in MV4-11 and THP-1 cells, mirroring the 

effects of the free amine counterparts described in Chapter 4. Cytotoxic effects were 

evaluated next in HSC expressing CD34 and 5.1 treatments correlated with toxicity at 1 

µM and 10 µM. Yet, the concentrations generating the observed anti-cancer and 

differentiation activities were much lower (200-900 nM) and therefore, normal cells are 

less sensitive to the treatments compared to the tumorigenic counterparts.  

Overall results indicate a possible LSD1-dependent mechanism and in accordance with 

this, recent experiments by Lynch et al. suggest the phenotypic effects and therapeutic 

benefits of TCP and analogues are independent of their inhibition of histone 

demethylation.313 Instead, their key function is to block LSD1 binding to Gfi1 

transcriptional repressor. Gfi1 is a crucial regulator of the myeloid differentiation 

transcription programme and is required for maintaining stem cell competence.314 It is a 

transcription repressor involved in hematopoiesis and oncogenesis that regulates 

neutrophil differentiation, promotes proliferation of lymphoid cells, and it is required 

for granulocyte development.314,315 In both mice and humans with Gfi1 mutations, 

myeloid progenitor cells fail to differentiate to mature neutrophils, causing the 

accumulation of monocytes and abnormal cells that blend features of monocytes and 

granulocytes. As previously reported, Gfi1 contains a N-terminal SNAG domain137 that 

binds to LSD1 and functions as scaffolding for the asSTDbly of several complexes with 

histone-modifying enzymes like HDAC1 and HDAC2 and the corepressor CoREST to 

suppress the expression of target genes implicated in multi-lineage blood cell 

development.219 Interestingly, depletion of either Gfi1 or LSD1 (by silencing or 

pharmacological inhibition) has the same effect on haematopoiesis.67 These findings 

could suggest a similar mechanism for the Boc-compounds, which could disrupt the 

Gfi1-LSD1 interaction without affecting LSD1 demethylase activity. However, if on 

one hand the lack of enzymatic activity and the induction of the cell differentiation 

markers fit with Lynch and colleagues findings, on the other hand 5.1 proved to 

increase H3K4me2 expression in cellular context. 
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It must be considered that the activity of LSD1 demethylation is a multiple coordinate 

process involving the association of LSD1 with positive and negative regulatory factors 

like HDACs, CoREST and BHC80 partners.77 Unlike the cell-free enzyme assay, the 

high potency observed in cells could be an effect of LSD1 association with other 

regulatory protein complexes, whereby the demethylase activity of LSD1 could be 

regulated by other intracellular factors such as CoREST and HDACs for 

instance.114,120,316 

Whether the effects of compounds 5.1, 5.2, 5.6, 5.7 and 5.8 depend on transcriptional or 

post-transcriptional modifications, the N-protected compounds are linked with growth 

inhibition, loss of viability and differentiation process which are inversely correlated 

with LSD1 activity. 

These results raise many other questions and further biological assays are needed to 

characterise the mechanism of action.  

5.5. Conclusions and future work 

The experiments in this chapter were designed to elucidate the mechanism underlying 

the activity of a small series of Boc-protected TCP like compounds. Regardless of the 

exact mechanism of action, the compounds have proven to inhibit LSD1 mediated 

processes in cells.  

The increase of H3K4me2 confirms the involvement of LSD1 as controller of cell 

proliferation and the data suggest that the binding of LSD1 at its catalytic site is not the 

sole cause of cell proliferation inhibition. Future work will involve optimisation of the 

series and further biological experiments will be carried on to clarify their mechanism 

of action and advance one compound into an in vivo efficacy model for AML, either as 

a monotherapy or in combination with current standard of care chemotherapeutic 

agents.  
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Chapter 6 - Exploring activity based probes for LSD1 

labelling 

6.1. Introduction 

LSD1 activity tightly regulates gene transcription in both normal and diseases states. 

Due to its dynamic behaviour, it is difficult to monitor LSD1 within proteomes. 

Generally, the traditional genomic and proteomic profiling methods for the evaluation 

protein activities, such as the analyses of expression levels and examination of protein 

modifications, are indirect and unable to provide information about enzymes catalytic 

activity promoting the measured effects.317–319 Moreover, such molecular methods 

cannot identify protein post-translational modifications or protein association in 

complexes within the cellular environment.319–321 To overcome the limitations of 

traditional methods, activity-based protein profiling (ABPP) technique has been 

designed to provide a chemoproteomic tool for the characterisation of the 

protein/enzymes functional regulation in their natural context.319 ABPP utilises 

chemical and protein based molecules called activity based probes (ABP), which are 

able to bind covalently to target enzymes through the enzyme’s activity. These 

molecules consist generally of two elements (Figure 6.1): 1) a reactive group (warhead) 

which interacts specifically with the desired target and 2) a reporter tag, which enables 

the detection and isolation of the probe-labelled protein/enzyme (biotin and 

fluorophores).321,322  
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Figure 6.1: Traditional design of ABP. 

Adapted from Heal et al. 323 

 

Due to their high specificity, the probes can be applied to complex proteomes such as 

tissue lysates, whole cells or even organisms.317 

The use of activity based probes has been successfully applied to the characterisation 

and asSTDbly of functional understanding of proteins involved in cancer, signalling 

pathway and host-virus infection as well as many others.320 The use of these tools is still 

limited to proteins or enzymes with well-known activities as cysteine proteases, serine 

hydrolases320 and the potential application of ABP for the examination of epigenetic 

modifications has not been widely investigated. To analyse the proteins interacting with 

tri-methylated H3K4, Li et al. developed a modified peptide able to associate with 

proteins interacting with H3K4me3.324 Such peptide corresponds to a modified 

H3K4me3 N-terminal 15-mer, having a benzophenone replacing Ala-7 and a terminal 

alkyne moiety. Upon UV irradiation, the formed benzophenone radicals and the 

conjugation to the alkyne, via click chemistry, of an azide-rodhamine fluorophore, the 

proteins interacting with the tri-methylated histone 3 were visualised in complex 

proteomes.324 No studies so far addressed the design of ABP for LSD1 labelling. 

As LSD1’s functions still need to be fully characterised, it is worthwhile to explore a 

method to fluorescently label LSD1.  

A recent work reported on the use of ABP for studying MAO A and MAO B, the FAD 

dependent family oxidases homologous of LSD1.325 The MAOs have been labelled in 

situ by analogues of deprenyl (a known MAOI). These analogues displayed an alkyne 

This image cannot currently be displayed.



  Chapter 6 

  226

moiety that was conjugated with an azide containing a fluorophore. The probes were 

successfully employed to label both purified enzyme and complex proteomes as mouse 

and human-derived tissues.325  

As the enzymatic activity of LSD1 and MAOs are similar, this work inspired us to 

synthesise a water-soluble molecular probe for LSD1, to interrogate the biomolecular 

interactions and the effects associated with the enzyme activity and inhibition in both in 

vitro and in vivo assays.  
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6.2. Reporter tags 

Biotin and fluorophores are the most used reporter tags for labelling purposes. Biotin is 

crucial for protein isolation. An ABP carrying a Biotin tag, facilitates both the protein 

visualisation with streptavidin-conjugated reporters on protein blots, and the isolation 

by purification with immobilised streptavidin agarose beads.318 However, the use of 

Biotin has many inconvenience, including endogenous biotinylation of biomolecules, 

long blotting procedures for visualisation and incomplete cell penetration due to 

Biotin’s hydrophilic nature.326,327 Fluorophores are a valid alternative to Biotin and 

represent the current trend in ABP design. The commonly used fluorophores are 

rhodamine and boron-dipyrromethene (BODIPY).327 Protein labelled with fluorophores 

are readily visualised by direct in-gel scanning under a fluorescent scanner avoiding 

blotting procedures and purification steps. Furthermore, the hydrophobic character of 

fluorophores also makes the fluorescent ABP more cell permeable and their application 

in in vivo experiments.318 The choice of the reporter tag greatly influences the structure 

and the physico-chemical features of the irreversible inhibitor. Although the 

fluorophores are hydrophobic in nature and smaller than Biotin, these can hamper in 

some cases the cell distribution and the ABP selectivity for the target. To overcome 

these limitations, a “tag-free” (tandem) approach was established.321 By this method, the 

reporter tag is conjugated to the ABP after its covalent binding to the targeted 

enzyme.321 The most common procedure to connect the tag to the inhibitor, which was 

also used in this project, consists to the copper catalysed click reaction (CC, click 

chemistry). This procedure is enabled by the introduction of two bioorthogonal reactive 

partners: an azide and an alkyne, in both ABP warhead and tag, which react specifically 

to each other in aqueous media. Through CC, these two chemical species are conjugated 

via copper catalysed 1,3-dipolar cycloaddition to form a stable 1,4 substituted triazole. 

Since both azide and alkyne are unique, stable and unreactive chemical specie with 

natural occurring groups, they can be safely used in a biological context (Figure 6.2).  
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Figure 6.2: Illustration of tag-free ABPP approach. 

Specimens to be labelled (protein/enzyme/cells) are first treated with tag-free azide or alkynes modified probes, 

which are then conjugated in situ with complementary alkyne/azide tags via click chemistry. 

 

Other labelling methods that have been used to conjugate a fluorophore to the ABPs 

include strain promoted click chemistry,328 Staudinger ligation329 and Diels-Alder 

ligation.326 The first one is widely investigated as it excludes the use of cuprous ions to 

catalyse the conjugation that can result harmful to living systems. The copper ions can 

in fact catalyse atmospheric oxygen reaction forming reactive oxygen species (ROS).330  

6.2.1. Click chemistry mechanism 

The copper-catalysed click chemistry (Scheme 6.1) begins with the coordination of the 

alkyne to the Cu(I) species (1), forming Cu-acetylide specie (2). In the second step (B), 

the azide binds to the Cu+ through the nitrogen and replaces one of the ligands, forming 

the intermediate 3. The distant nitrogen of the azide (3) attacks then the C-2 of the 

acetylide, leading to the formation of a six-membered copper (III) metallocycle (4). 

Ring contraction (D) leads to the formation of the triazolyl-copper derivative that 

precede the protonolysis of 5, releasing the triazole product.211,331 

 

This image cannot currently be displayed.
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Scheme 6.1: Proposed mechanism for copper assisted CC.  

Adapted from Himo et al. 331
 

 

The copper catalyst is generally prepared in situ by reduction of Cu(II) salts. Copper 

sulphate pentahydrate (CuSO4.5H2O), is the most widespread source of cuprous ions for 

CC211 and is usually reduced by sodium ascorbate. Other reducing agents have been 

successfully employed. Tris(2-carboxyethyl)phosphine (TCEP) (Figure 6.3-A) is often 

used in bio-conjugation as it also protects cysteine residues of proteins from oxidative 

coupling.332 

 
Figure 6.3: (A) TCEP, (B) TBTA molecular structures. 

 

This image cannot currently be displayed.

This image cannot currently be displayed.
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Since copper ions can easily undergo redox reactions if not properly chelated, the click 

chemistry requires the presence of an accelerating ligand to maintain a sufficient 

quantity of Cu+ in solution and in the right oxidation state. Among the known ligands, 

tris-(benzyltriazolylmethyl) amine (TBTA), (Figure 6.2-B) has been successfully used 

in bioconjugation.321,325,333 TBTA has a tetradentate ability to bind copper, enveloping it 

in a way that no free binding sites are left for destabilising interactions.333  

6.3. ABPs investigated in this project 

In this study, we investigated two molecules as click chemistry reagents for labelling 

LSD1: (±)-trans-2-(4-(hex-5-yn-1-yloxy)phenyl)cyclopropanamine (6.7) and (±)-trans-

2-(4-(prop-2-yn-1-yloxy)phenyl)cyclopropanamine (6.8, Figure 6.4).  

 

 

 
Figure 6.4: Molecular structures of the probes investigated as ABPs for LSD1 labelling. 

 

Both molecules feature a TCP core, which is indispensable for LSD1 covalent 

inhibition. To the TCP structure, we introduced an alkyne appendix to allow the 

conjugation with an azide containing imaging tag via CC. The TCP core in 6.8 is 

connected to the alkyne moiety by a smaller carbon (propargyl) linker compared to 6.7 

(hexynyl) and was provided by a collaborator from Münster University. The probe was 

originally designed to generate a molecular probe for MAO’s labelling. 

The synthetic route adopted to obtain probe 6.7 (Scheme 6.2), consisted in the 

nucleophilic substitution of 4-hydroxybenzaldehyde (6.1), which was reacted in DMF at 

reflux with 6-chlorohexyne, for 3 days. The remaining steps (from structure 6.2 to 6.7), 

and specifically Horner-Wadsworth-Emmons reaction of 6.2, Johnson-Corey-

Chaykovsky cyclopropanation, Curtius rearrangement and amide formation, were 

performed according to the procedures described in Chapter 4. 

This image cannot currently be displayed.
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Scheme 6.2: Synthesis of ABP 6.7. 

 

Thereafter, 6.7 and 6.8 were reacted in both enzymatic and cells experiments with the 

red-fluorescent tetramethylrhodamine-azide (TAMRA-azide, Figure 6.5). 

 

 
Figure 6.5: Structure of TAMRA-azide.  

 

Given its ability to distribute evenly in cells cytoplasm and nucleus, the rhodamine 

fluorophore has been selected to label LSD1.324,325,334 

Labelling LSD1 with 6.7 and 6.8 would follow the sketch shown in Figure 6.6. The 

compounds would occupy the LSD1 catalytic site forming a covalent adduct with the 

FAD. The alkyne tail, protruding from the phenyl ring would conjugate with the 

This image cannot currently be displayed.

This image cannot currently be displayed.
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TAMRA-azide under the CC conditions using TCEP, TBTA and CuSO4 as source of 

copper. The labelled LSD1 would be then visualised with in-gel fluorescence scanning. 

 

 
Figure 6.6: Mechanism for fluorescently labelled LSD1 with ABPs 6.7 and 6.8. 

 

6.4. Biological evaluation 

Before embarking into labelling experiments, enzymatic evaluation of 6.7 and 6.8 was 

carried out to verify if the incorporation of the alkyne interfered with the anti-LSD1 

properties of TCP.  

To this end, nine points concentration of ABPs 6.7 and 6.8 (50 µM, 25 µM, 12.5 µM, 

6.13 µM, 3.1 µM, 1.6 µM, 0.8 µM, 0.4 µM and 0.2 µM) were incubated with purified 

recombinant LSD1 and the residual activity measured with Amplex®Red-peroxidase 

coupled assay using TCP as a positive control (Figure 6.7 and Table 6.1). 

 

This image cannot currently be displayed.



Exploring activity based probes for LSD1 labelling 

 233

 
Figure 6.7: Dose-response curves showing the enzymatic activity of probes 6.7 (A), 6.8 (B) and TCP (C). 

The X-axis is in logarithm of concentration (M, Molar); the Y-axis is the % of relative fluorescent unit (RFU) 

compared to 100% activity (LSD1 + substrate). Data were fitted with nonlinear regression and are shown as means ± 

STD (n=3). 

 

 

Table 6.1: IC50s values determined with enzymatic evaluation of 6.7 and 6.8 as LSD1 inhibitors. 

Enzymatic results are expressed as % RFU normalised to pre-treatment level (LSD1 + Substrate, no inhibitor) ± STD 

(n=3). 

Compound IC50 (µM ± STD, n=3) 

TCP 

6.7 

21±2.4 

1.3±1.0 

6.8 3.3±1.3 

 

Enzymatic results proved that the incorporation of the alkyne moiety in 6.7 and 6.8 did 

not interfere with LSD1 inhibition and actually enhanced the TCP potency. The probe 

6.7 was also assessed as anti-MAO A and B agent and similarly to what observed in 

LSD1, the introduction of the alkyne moiety in para to the TCP core promoted an 

increased potency, impeding MAO activities at µM range (Table 6.2). Therefore 6.7 

could be potentially employed as an ABP to fluorescently label LSD1 and MAO. 

 

This image cannot currently be displayed.
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Table 6.2: IC50s values determined with enzymatic evaluation of 6.7 as MAOI. 

Values are shown as means (µM) ± STD (n=3). 

Compound IC50 MAO A (µM±STD, n=3) IC50 MAO B (µM ±STD, n=3) 

TCP 

6.7 

14.4±0.7 

2.4±0.8 

1.9±0.6 

0.4±0.06 

 

Since the scope of this project included labelling cellular LSD1, the ability of the probe 

to modulate cell viability was also examined. Compounds were tested in HL-60 cells at 

eight different concentration points (30 µM, 10 µM, 3 µM, 1.0 µM, 3 µM, 0.1 µM, 0.03 

µM, 0.001 µM, and 0.0003 µM) and following 72 h treatment, viable numbers were 

measured with CellTiter-Glo® (Table 6.3). 

 

Table 6.3: IC50s values obtained with cytotoxicity evaluation of 6.7 and 6.8 in HL-60 cells. 

Values are shown as means (µM) ± STD (n=3). 

Compound IC50 HL-60 (µM±STD, n=5) 

TCP 84±15.0 

6.7 1.20±0.8 

6.8 1.74±0.3 

 

 

Cell viability results revealed the ability of both 6.7 and 6.8 to modulate cell growth of 

HL-60 cells at µM range. ABPs 6.7 and 6.8 were also tested in MV4-11 and THP-1 

cells at 10 µM and 1 µM, significantly decreasing the cell proliferation at 1 and 10 µM 

in both the cell lines. 
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6.5. LSD1 labelling experiments 

Given the favourable biological properties of 6.7 and 6.8, we proceeded to assess their 

ability to fluorescently label LSD1, following the two step labelling procedure reported 

by Krysiak et al.325 A preliminary proof-of-concept experiment was carried out to 

estimate the potency of the ABP, by examining the quantity of protein and probe 

required for CC and LSD1 visualisation. To this end, purified recombinant LSD1 (16.5 

µg and 3.5 µg concentration) was incubated with 6.7 and 6.8. The probes were used in 

excess compared to the IC50 in order to saturate the enzymatic pocket and enabling, 

potentially, a better visualisation of the labelled protein. ABPs 6.7 or 6.8 and LSD1 

were allowed to interact for 1 h at room temperature and next, TAMRA-azide was 

conjugated via CC. To visually detect the labelling events, SDS-PAGE and in-gel 

scanning were employed (Figure 6.8).  

 

 
Figure 6.8: In-gel fluorescent scanning results of LSD1 labelling with 6.7 and 6.8 conjugated via CC with 

TAMRA.  

Fluorescence was recorded with ImageQuantTM LAS 4000 Image Analyzer with a Fujinon VRF43LMD3 Lens and a 

575DF20 filter at 573 nm. 

  

This image cannot currently be displayed.
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Imaging results strikingly demonstrated the successful application of 6.7 and 6.8 as 

click reagents to label LSD1. However, the quantity of protein determined the quality of 

the labelling procedure as with reduced amount of enzyme (3.5 µg), lower intensity 

signals were detected. Additionally, no substantial differences were recorded between 

the two probes. 

Prompted by these results, we further evaluated the ability of the probes to compete for 

LSD1 catalytic site and labelling the enzyme with an in situ labelling competition 

experiment. To this end, ABP 6.7 (10 µM) was incubated with LSD1 (16.5 µg) for 1 h, 

along with the LSD1 inhibitors 4.10 or 4.11 (200 nM), whereby the activity was widely 

described in Chapter 4. After incubation, TAMRA-azide was introduced by click 

chemistry to the alkyne moiety of 6.7.  

 

 
Figure 6.9: Molecular structure of LSD1 inhibitors used in a competition assay with ABPs 6.7 and 6.8. 

 

 
Figure 6.10: Results of in situ competitive assay using in-gel fluorescent scanning of ABP 6.7 with LSD1 

inhibitors 4.10 and 4.11. 

(A) Experimental conditions; (B) Loading control (Comassie blue staining); (C) Fluorescence intensity evaluation 

with ImageJ (compared to control = recombinant LSD1  only); in the X-axis are reported the different conditions 

used and Y-axis are reported the measured fluorescent intensity. 

This image cannot currently be displayed.

This image cannot currently be displayed.
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In-gel scanning revealed that 6.7 competed with LSD1 inhibitors 4.10 and 4.11 for the 

enzyme catalytic site. The simultaneous incubation of the probe with the potent LSD1 

suppressors generated in fact a 20% decrease in signal (Figure 6.10) compared to the 

fluorescence intensity produced by 6.7 alone (corresponding to 100% fluorescence).  

Similar results were obtained competing 6.8 and 4.11 simultaneous incubation (Figure 

6.11). 

 
Figure 6.11: Results of in situ competitive assay using in-gel fluorescence scanning of ABP 6.8 with LSD1 

inhibitor 4.11. 

(A) Experimental conditions; (B) Loading control (Comassie blue staining); (C) Fluorescence intensity evaluation 

with ImageJ (compared to control = recombinant LSD1 only); in the X-axis are reported the different conditions used 

and Y-axis are reported the measured fluorescent intensity. 

 

We next assessed the ability of 6.7 and 6.8 to label the LSD1 in complex proteomes. For 

such experiments, we used AMLs lines. 

HL-60 cells were stimulated with 5 µM or 10 µM of probes 6.7 and 6.8 for 24 h and 72 

h. To avoid interference of lyses buffers components with the CC conditions, cells were 

lysed by sonication. The amount of protein was adjusted for each CC reaction to 2 

mg/mL and TAMRA-azide was added to the cells lysate along with ligand (TBTA) and 

the reducing agents (TCEP). The mixture was allowed to react for 1 h in the presence of 

This image cannot currently be displayed.
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catalytic amounts of Cu+. Electrophoresis of soluble and insoluble lysate fractions was 

next performed.325 However no fluorescent signal was detected with such procedure.  

After a first unsuccessful attempt, we next increased the CC reaction time in cell lysates 

from 1 h to 12 h and 24 h. Anyhow, even upon prolonged reaction times, we were 

unable to visualise the labelled enzyme. Similar conditions were also experimented 

using THP-1 and MV4-11, two AMLs lines whereby both 6.7 and 6.8 demonstrated 

anti-proliferative activities. Unfortunately, also in this occasion, the CC reaction did not 

yield a significant result. 

6.6. Discussion  

In this project, the aim of synthesising a molecular probe for LSD1 labelling has been 

partially achieved. The ABP 6.7 was successfully applied as a CC reagent to label 

purified LSD1 with a rhodamine chromophore. Another ABP, 6.8, containing a small 

tether (propargyl linker) between the TCP core and the bioorthogonal CC partner 

alkyne, was also able to efficiently label the LSD1. As the molecules demonstrated to 

interact with both LSD1 and MAO families of oxidases, the optimisation of the 

labelling protocols with such ABPs, could provide a valuable way for fluorescently 

visualise both families of enzymes. 

The fluorescently labelling abilities of 6.7 and 6.8 were next exploited in an in situ 

competitive assay. The probes were incubated with LSD1 along with the LSD1 

inhibitors 4.10 and 4.11. The results obtained proved the ability of the probes to 

compete for LSD1 catalytic site as a decrease in fluorescence was detected, suggesting 

that 4.10 and 4.11 occupation of the catalytic pocket, prevented the LSD1 interaction 

with the ABPs.  

 

Disappointingly, the probe failed to label LSD1 in a complex biological system as 

whole cells.  

These conclusions held true after adjusting the initial CC protocol used by Krysiak et al. 

for MAOs labelling with alkyne containing Deprenyl derivatives.325,334 However, with 

longer reaction times, longer time-course treatment with the ABPs as well as using 

different AMLs lines, the click chemistry reaction with TAMRA azide did not proceed 

in our case, to any visualising extent. The cell lines used express only endogenous 
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LSD1 and thus the amount present were probably not sufficient to be visualised with the 

used ABP’s. The inefficiency of the CC in cells specimens could reside in many factors 

and first of all the used chromophore. Although TAMRA-azide properties of evenly 

distribution in cells and efficiently diffuse into cytosol and nucleus have been widely 

proved in unpermebilised cells,327 the results reported here suggested a potential 

inability of the fluorophore to diffuse across the cells membranes and reach its click 

partner. The chromophore could have associate with different intracellular organelles 

and accumulate in other cell compartments,335–339 limiting the quantity needed to 

perform CC. The use of different commercially available fluorophores-azide and light 

microscopy observation of fixed cells could have been employed to evaluate the extent 

of these hypothesised events in influencing the ABP potency. To perform the CC we 

used TBTA as ligand and TCEP as a reducing agent. TBTA was used at 

substoichiometric amounts in relation to the Cu+ concentrations (0.1:1 mM), due to its 

poor solubility.321,325 Therefore to increase the CC yield and enable the fluorescence 

visualisation we could have increased the TBTA concentration or employed other 

available ligands, such as the water-soluble tris (3-hydroxypropyltriazolylmethyl) amine 

(THPTA).321,333 Furthermore, although TCEP is commonly used as a valuable reducing 

agent in bioconjugations,321,340 it can reduce the azide conjugated with the chromophore 

to amine and therefore interfere with the CC reaction yield.341  
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6.7. Conclusions and future work 

In conclusion, two molecular probes were evaluated as alkyne reactive partners in CC 

reaction for LSD1 labelling.  

Both the tested probes were able to inhibit LSD1 enzymatically at µM range and cell 

evaluations prove their ability to hinder cellular proliferation. Both probes were able to 

label pure His-tagged human recombinant LSD1 when conjugated with click chemistry 

with an azide containing reporter rag (TAMRA-azide), partially fulfilling the aims of 

the project. In situ labelling competitive experiments were also accomplished. 

Unfortunately, we were not able to visualise LSD1 in cell lysate and further work will 

be carried out to optimise these pioneering experiments. 

Using cells overexpressing exogenous LSD1 could increase the amount of LSD1 and 

increment the chance of successfully label the target protein. Light microscopy analysis 

of the fate of the reporter tag in cell lysate could help to identify more suitable 

fluorophores for LSD1 visualisation in AMLs. Using different ligands instead of TBTA 

and other reducing agents could also improve the CC yield and potentially enable a 

better visualisation of the labelled enzyme. 

Notwithstanding, these molecules are the first ABP specific for labelling LSD1, opening 

new venues for LSD1 labelling studies. 
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Chapter 7 - Towards the discovery of novel inhibitors 

of LSD1 

7.1. Introduction 

In this project, resulting from multiple collaborations, compounds of different natures 

were evaluated as potential inhibitors of LSD1. The molecules were first assessed in an 

enzymatic assay using Amplex®Red.170 Having LSD1 a salient role as an oncogene,342 

the anticancer potential of enzymatically active inhibitors was examined in cancer cells.  

 

7.2. Evaluation of TCP analogues from a library of active 

phenylcyclopropylamines  

A series of substituted phenylcyclopropylamines was the first series of compounds to be 

tested (Figure 7.1). These were synthesised by Prof. Günter Haufe group at the 

University of Münster and display substituents at the TCP core. The majority of them 

also have a fluoro group at the cyclopropyl ring. 
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Figure 7.1: Library of phenylcyclopropyl amines MAOIs tested as LSD1 inhibitors. 

 

The compounds were first tested with Amplex®Red at 50 µM and 10 µM and molecules 

proving to suppress LSD1 at such doses were tested in a broader range of 

concentrations in order to determine the IC50s from dose-response curves (Table 7.1).  

  

This image cannot currently be displayed.
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Table 7.1: IC50s values obtained with enzymatic evaluation of fluorinated TCP measured with Amplex®Red 

assay. 

Enzymatic results are expressed as % RFU normalised to pre-treatment level (LSD1 + Substrate, no inhibitor) ± STD 

(n=3). 

Structure 

LSD1 enzymatic activity 

 (IC50 µM±STD n=3) 

 

 

7.1 (TCP) 

 

21 

7.2 > 50 

7.3 6.8±1.3 

7.4 > 50 

7.5 >50 

7.6 > 50 

7.7 1.2±0.1 

7.8 > 50 

7.9 1.5±2.8 

7.10 > 50 

7.11 > 50 

7.12 > 50 

7.13 > 50 

7.14 > 50 

7.15 6.7±0.3 

7.16 4.1±0.03 

7.17 8.2±0.8 

7.18 9.2±0.05 

7.19 8.4±0.3 

7.20 >50 
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Figure 7.2: Dose-response curves determined with Amplex®Red assay. 

The X-axis is the logarithm of concentration (M, Molar); the Y-axis is the % of relative fluorescent unit (RFU) 

compared to 100% activity (LSD1 + substrate, no inhibitor). Data were fitted with nonlinear regression and are 

showed as means ± STD (n=3); TCP was used as a positive control. 

 

 
Figure 7.3: Dose-response curves determined with Amplex®Red assay. 

The X-axis is the logarithm of concentration (M, Molar); the Y-axis is the % of relative fluorescent unit (RFU) 

compared to 100% activity (LSD1 + substrate). Data were fitted with nonlinear regression and are data are showed as 

means ± STD (n=3). TCP was used as a positive control. 

  

This image cannot currently be displayed.
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Compounds 7.3, 7.5, 7.7, 7.15, 7.16, 7.18 and 7.19 were more active than TCP, 

implying that compounds with trans configuration and bearing fluoro at the cyclopropyl 

ring, have enhanced activity compared to phenylcyclopropylamines with cis 

configuration.  

Compound 7.2, with a hindering benzyl on the cyclopropyl nitrogen was devoid of 

activity. The substituents at TCP scaffold greatly influenced the drugs effect on LSD1 

enzymatic inhibition. Phenyl substitutions in meta potentiated the activity: the 

fluorinated phenylcyclopropylamines containing NO2 was able to inhibit LSD1 activity 

at low µM range (IC50s < 10 µM) and meta substituted molecules with strong donor 

groups (-OMe and -F) displayed the best activities within the series. Surprisingly, 7.16, 

albeit having a cis configuration, demonstrated to contrast the enzyme demethylation at 

low concentrations. Derivatives with CF3 and F5S substituents at the phenyl ring also 

revealed to actively suppress LSD1. 

Thereafter, the enzymatically active compounds 7.7, 7.9, 7.15, 7.16, 7.18 and 7.19 were 

selected for cellular evaluations. The time course and concentrations were chosen 

according to the biological results obtained with our LSD1 inhibitors. HL-60, THP-1, 

MV4-11, OCI-AML3 and KASUMI cells were treated with increasing concentration the 

inhibitors (0.001 µM, 0.003 µM, 0.1 µM, 0.3 µM, 1 µM, 3 µM, 10 µM and 30 µM). 

Following 72 h treatment, cell survival rates were detected with CellTiter-Glo®. 
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Figure 7.4: Dose-response curves showing the effects of fluorinated phenylcyclopropylamines 7.3 on AMLs 

proliferation (72 h). 

The X-axis is in logarithm of concentration (M, Molar), Y-axis is the % of RLU (relative luminescence unit) 

compared to 100% activity (vehicle control, DMSO). Data are shown as means ± STD (n=5). 

 

 
Figure 7.5: Dose-response curves showing the effects of fluorinated phenylcyclopropylamines 7.7 on AMLs 

proliferation (72 h). 

The X-axis is in logarithm of concentration (M, Molar), Y-axis is the % of RLU (relative luminescence unit) 

compared to 100% activity (vehicle control, DMSO). Error bars correspond to STD (n=5). 

  

This image cannot currently be displayed.

This image cannot currently be displayed.
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Figure 7.6: Dose-response curves showing the effects of fluorinated phenylcyclopropylamines 7.15 on AMLs 

proliferation (72 h). 

The X-axis is in logarithm of concentration (M, Molar), Y-axis is the % of RLU (relative luminescence unit) 

compared to 100% activity (vehicle control, DMSO). Data are shown as means ± STD (n=5). 

 

 

 

 
Figure 7.7: Dose-response curves showing the effects of fluorinated phenylcyclopropylamines 7.16 on AMLs 

proliferation (72 h). 

The X-axis is in logarithm of concentration (M, Molar), Y-axis is the % of RLU (relative luminescence unit) 

compared to 100% activity (vehicle control, DMSO). Data are shown as means ± STD (n=5). 

  

This image cannot currently be displayed.

This image cannot currently be displayed.
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Table 7.2: IC50s values obtained with cytotoxicity evaluation of fluorinated phenylcyclopropylamines on AMLs 

proliferation. 

Values are reported in µM ± STD (n=5); nt: not tested. 

 

The results obtained in cellular experiments strengthen the data observed with the 

enzymatic assay. Compounds 7.7, 7.15 and 7.16, which were able to suppress the 

activity of recombinant LSD1 at low concentrations were the most potent anti-AML 

agents. However, the Nitro substituted derivative 7.3, displayed only moderate activity 

in HL-60 cells, whereas fluorinated TCP derivative containing CF3 and F5S 7.17-19 

despite being more active than TCP in the cells-free assay, were unable to modulate 

cells growth at the tested concentrations.  

To verify whether the anti-proliferative effects were linked to LSD1 suppression, we 

examined the downstream expression levels of molecular markers associated with 

LSD1 pharmacological inhibition. We chose to perform the experiments with 7.7, 

which hindered MV4-11 cell line proliferation at low concentrations. This AML model 

is representative of the FLT-3 mutation, associated with poor prognosis of AML 

patients and drug-resistance.308,309 Immunoblotting of MV4-11 cells treated with 7.7 

(0.3 µM, 1 µM, 3 µM, and 6 µM) proved a concentration dependent accumulation of 

methylated histone (Figure 7.8). In addition, we measured the expression levels of 

CD86 and after 48 h incubation (3 µM), flow cytometry results revealed an increase in 

the analysed parameter by 98.4%, further substantiate that the pharmacological effects 

are LSD1-dependent. 

Compounds 

Cell line 7.3 7.7 7.15 7.16 7.17 7.18 7.19 

OCI-AML3 >30 nt 1.0±3.2 nt >30 nt >30 

MV4-11 >30 1.9±0.3 4.9±0.4 8.2±0.4 nt >30 nt 

KASUMI nt 3.4±0.2 nt nt >30 nt >30 

THP-1 >30 8.5±0.3 1.6±0.3 7.0±0.2 >30 nt >30 

HL-60 18.6±1.7 nt 3.9±0.4 nt nt >30 nt 
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Figure 7.8: Molecular effects of fluorinated tranylcypromine 7.7 on MV4-11 cells. 

 (A) Western blot: cells were treated with increasing concentrations of 7.7 and protein separated with 14% 

polyacrylamide gel. Blotting membranes were probed for anti-H3K4me2, H3 (total) and β-actin (control); (B) CD86 

induction: cells were gated based on FSC and SSC parameters. In the X-axis is reported the mean fluorescence 

increase of treated cells stained with CD86-FITC conjugated antibody and the fluorescent increase of the control 

(untreated cells). The Y-axis is the cell count. (C) Statistical significance for CD86 evaluations determined with 

Student’s t-test; values are expressed as means % of increase (compared to control) ± STD (n=3); ****p < 0.0001. 

This image cannot currently be displayed.
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7.3. Evaluation of Cis-cyclopropylamines 

A total of four cis-cyclopropylamines provided by Prof. Sven Mangelinckx group at the 

Ghent University, Belgium, were also tested as possible LSD1 inhibitors (Figure 7.9). 

The compounds were synthesised based on docking studies as potent MAO inhibitors 

and are racemic cis-cyclopropylamine with an alkoxy group at the 2-position of the 

cyclopropyl ring, replacing the more common phenyl substituent.343 

 

 

 
Figure 7.9: Cis-cyclopropylamines molecular structure. 

 

 

The compounds however were inactive at the maximum tested concentration (50 µM). 

Despite that, 7.21 and 7.24 proved to bind covalently to MAOs and hinder the 

monoamine oxidases activity at nM concentrations. In addition, the compounds 

inactivate preferentially MAO B. Enzymatic and computational studies revealed in fact 

that 7.24 is four times more selective towards MAO B (5 nM) and over 20-fold more 

potent than TCP. Lacking the activity on LSD1, the compound structure can be used as 

a lead to design selective MAO B inhibitors to be employed as antidepressant.343 

  

This image cannot currently be displayed.
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7.4. Evaluation of a library of pargyline analogues  

In 2005, pargyline, a known MAO inhibitor, was utilised in linking LSD1 activity to 

AR-dependent gene activation.146 Based on this study, Culhane et al. generated a 

peptide, corresponding to the N-terminal H3, having the Lys in position 4, modified 

with a propargyl moiety (Scheme 7.1).213 Such structures were extremely active as 

LSD1 inhibitor. Subsequent MS and NMR studies158 revealed the mechanism 

underlying the demethylase inhibition by the peptide; this would start with the oxidation 

of the amine to the propargylic iminium ion, which undergoes Michael addiction to the 

N5 of the flavin ring, forming a stable adduct.  

 

 
Scheme 7.1:  Mechanism based inhibition of modified H3 N-terminal peptide (7.25) containing a propargyl 

moiety.  

Adapted from Culhane et al.213 

 

In keeping with these works and with the goal of finding new suitable scaffolds for 

LSD1 inhibition, we tested a series of propargylamine derivatives (Figures 7.10).  

This image cannot currently be displayed.
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This image cannot currently be displayed.
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Figure 7.10: Pargyline analogues tested as LSD1 inhibitors. 

 

Within this series, only compound 7.33 displayed enzymatic activity at 30 µM. 

However, this was devoid of anti-proliferative potential in AML cell lines. 

  

This image cannot currently be displayed.



 Towards the discovery of novel inhibitors of LSD1  

  254

7.5. Conclusions 

In this project we evaluated 49 compounds with diverse chemical nature as LSD1 

inhibitor. Several compounds belonging to a series of TCP analogues designed as 

MAOIs efficiently suppress the LSD1 activity in a cell-free assay (µM concentrations) 

and actively inhibit the proliferation of AML cell lines. For this series, the 

stereochemistry appears to be crucial as the compounds with trans configurations were 

more efficient than the cis. Micromolar concentrations of compound 7.7 were able to 

increase cellular levels of H3K4me2 and induce the expression of CD86 in MV4-11, 

linking the pharmacological profile with the LSD1 inhibition. 

Cis-cyclopropylamines and pargyline analogues were in contrast unable to hinder LSD1 

enzymatic activity at the maximal dose of 50 µM. Nonetheless, the cis-

cyclopropylamine 7.4 revealed to be a potent MAOI and the structural features will be 

exploited for the design of novel antidepressant. 
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General conclusions and final remarks 

The research conducted here broadened the current knowledge on the epigenetic target 

LSD1. The study encompassed two phases: a first one where we researched on potential 

reversible inhibitors and a second one on irreversible inhibitors of LSD1.  

Based on previous studies on the SNAG-domain of Snail-1, we synthesised truncated 

peptide analogues of this LSD1 binding partner. By length scanning, ala-scanning and 

single-point mutations to the critical amino acid of SNAG we generated a series of 

peptides with interesting biological activity. The work extended the knowledge on 

LSD1 protein recognition and LSD1 binding mode with the SNAG-family of proteins. 

In addition, several X-ray tri-dimensional crystal structures of the synthetic peptides 

bound to the LSD1 catalytic pocket supported the work. This could be further exploited 

for virtual screening and docking studies. The peptides arrest cancer cell proliferation 

and modulate the LSD1-dependent transcriptional pathways such as H3K4me2 levels in 

AMLs and TMPRSS2, mimicking the activities of covalent inhibitors. The findings of 

the first part of the work were then combined to Phage display technology to research 

onto novel non-covalent-inhibitors based on PRSFLVRKP peptide. Such peptide 

demonstrated high affinity to the LSD1 catalytic site and therefore, it was used as a 

competitor of a Phage display library of peptides. Three peptides were identified with 

this technique and albeit these displayed poor activity in a cell-free assay, the 

information acquired could be used as a starting point to carry onto the application of 

Phage display technology to target LSD1.  

The second part focused on the search of novel irreversible inhibitors of LSD1. Based 

on the structure of TCP we developed an efficient synthetic method for the generation 

of multiple structural analogues. Eighteen new TCP derivatives were generated, 

displaying hindering elements at the phenyl ring. Their ability to suppress LSD1 was 

evaluated with a fluorometric assay and the results revealed an improved activity 

compared to the TCP scaffold. The active analogues were next evaluated in an extended 

panel of acute myeloid leukaemia cells where they showed nM potency in arresting 

cancer cells growth and promoting cell differentiation. In addition, selected molecules 

displayed enhanced potency compared to TCP in arresting the proliferation of prostate 

adenocarcinoma cells. Surprisingly, in the course of this study, synthetic intermediates 

of TCP analogues presented exceptional cellular effects. Being protected at the nitrogen 
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of TCP cyclopropyl ring, the compounds lacked the enzymatic activity but were potent 

anti-cancer agents in prostate and leukaemia tumours. From this initial observation, we 

made additional N-protected synthetic intermediates to have a further insight on such 

unexpected pharmacology. The data gathered substantiated an LSD1 mediated process 

involved in the observed effects; however, more research is required to further clarify 

the exact mechanism of action. 

We also explored activity based probes to label fluorescently LSD1 by synthesising a 

TCP analogue with an alkyne moiety. The molecule was exploited as a bioorthogonal 

partner of an azide containing imaging tag. We were pleased to verify that the ABP 

successfully labelled recombinant LSD1. However, we were unable to fluorescently 

label LSD1 in whole cells. Further work is needed in such area to optimise the 

visualisation of cellular LSD1. 

 

Collectively, this thesis constitutes a valuable methodological framework to target 

LSD1 pharmacologically, providing several approaches through which reversible and 

irreversible inhibitors can be designed. Additionally, it further supports the role of 

LSD1 in cell growth in a spectrum of cancer cell lines bolstering the hypothesis that 

selective LSD1 inhibitor might represent an effective therapeutic tool in the future. 
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Chapter 8 - Experimental procedures 

8.1. General procedures for Chemistry 

All chemicals were purchased from Sigma Aldrich, Lancaster Synthesis GmbH, Alfa 

Aesar, and Novabiochem. All Fmoc-amino acids, solvents and reagents for peptide 

synthesis were purchased from AGTC. 

Resins were purchased from Millipore AGTC. 

All anhydrous solvents were purchased as Aldrich®sure/seal bottles. All solvents were 

reagent grade and, when necessary, purified and dried by standard methods. TLC was 

used to monitor the reaction and performed on aluminium-backed silica gel coated 

plates (Merck DC, Alufolien Kieselgel 60 F254) with spots visualized by UV-light (λ 

254 nm) or stained with dyes (potassium permanganate solution or ninhydrin), followed 

by heating. Organic solutions were dried over anhydrous MgSO4 prior to product 

concentration. Product concentration after reactions and extractions involved the use of 

a rotary evaporator operating at reduced pressure of ca. 20 Torr and the term in vacuo 

refers to solvent concentration at reduced pressure. Products were normally purified 

with column flash chromatography using silica gel (MN Kieselgel 60, 40-63 µm, 230-

400 mesh ASTM).  

NMR spectra were recorded on a Bruker AC 400 spectrometer at 400 MHz for 1H NMR 

and 100 MHz for 13C NMR; Spectral data were reprocessed with Bruker Topspin 3.2 

software or MESTRENOVA. The spectra were calibrated to the residual deutereted 

solvent peak (CDCl3, CD3OD, DMSO-d6). The chemical shifts are reported in δ (ppm) 

units followed by brackets containing spectra details in this order: multiplicity (s: 

singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br: broad), coupling constants 

(reported in Hz), number of protons (from integration). 13C HNMR were reported with 

chemical shifts. 

High-resolution mass spectra (HRMS) were acquired through the EPSRC National 

Mass Spectrometry Service Centre, Swansea. Melting points were determined with a 

STUART Melting point SMP10. Infra-red (IR) spectra were determined with Perkin 

Elmer, Spectrum GX, FT-IR system. The spectra were analysed with Spekwin 32 and 

reported as absorptions as wavelengths in cm-1. 



 Experimental procedures 

  258

When necessary, gross purification was performed with Biotage Isolera Four using a 12 

g C18 cartridge and a gradient from 95:5 water: methanol → 5:95 water: methanol with 

0.05% TFA additive over 50 minutes and a flow rate of 50 mL/min. Collection was 

monitored by UV at 214 and 254 nm. 

RP-HPLC analyses were performed with an Agilent Technologies 1200 series 

chromatograph with an Agilent Technologies ZORBAX Eclipse XDB-C18 (5 µm, 

4.6×150 mm) column. Gradient used: 95:5 water: methanol with 0.05% TFA additive to 

5:95 water: methanol over 15 min returning to 95:5 water: methanol over 5 min at a 

flow rate of 1 mL/min. Small scale purification was achieved with STDi prep RP-HPLC 

on a Agilent Technologies 1200 series chromatograph using an Agilent Technologies 

ZORBAX Eclipse XDB-C18 (5 µm, 9.4×250 mm) column with a flow rate of 4 

mL/min (same gradient as above). 

MALDI-ToF was performed on a Shimadzu Biotech MALDI-TOF spectrometer 

(Kratos), using as a matrix composed α-cyano-4-hydroxycinnamic acid in HPLC-grade 

methanol (5 mg/500 µL) used in a proportion of 1:1 with the tested peptide. Automated 

synthesis was performed on a 24-reactor block SYRO Multiple Peptide Synthesizer 

(Syro I, Multisyntech GmbH), equipped with a vortexing unit (Multisyntech, Witten, 

Germany). 
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8.2. General procedures for Biology 

Unless otherwise stated, all the reagents were purchased from commercial sources as 

Sigma Aldrich (Poole, UK) and Fisher Scientific (Loughborough, UK). Centrifuge used 

were RC-M150 GC, RC-5B UltraPro80, Sorvall GmbH, Hamburg and 5451C Mini spin 

plus, Eppendorf AG, Hamburg. The raw data collected were normalised to controls and 

IC50s and statistical significance were determined using GraphPad Prism 6 software 

(San Diego, CA).  

8.2.1. Cell culturing  

The diverse AML cell lines used for the biological evaluations were obtained from 

DMSZ (German Collection of Microorganisms and Cell Cultures) and European 

Collection of Cell Cultures. They were authenticated by DNA-fingerprinting. Prof. 

Kristian Bowles, UEA Medical Centre, Norwich, UK, provided the library of AML cell 

lines. The cell lines were used at low passage number for a maximum of 6 months post-

resuscitation and tested regularly for mycoplasma infection. 

AML cell lines (THP-1, HL-60, MV4-11, KASUMI, OCI-AML3, and U937) were 

cultured in RPMI 1640 medium (GIBCO) supplemented with 10% Foetal Calf Serum 

(FCS, GIBCO) and 5% of 2 mM L-glutamine and penicillin/streptomycin (P/S, Fisher). 

Cells were grown at 37 ˚C with 5% CO2. Cells concentration was maintained at 25×104 

cells/mL. 
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8.3. Experimental procedures for Chapter 2 

8.3.1. Solid phase peptide synthesis (SPPS) 

8.3.1.1. Swelling resin (Wang, Rink AM, NOVA-peg) 

Dry resin (100-600 mg) was placed in a SPPS reactor with a sintered filter and covered 

with DMF. The resin was shaken in an orbital shaker for 45 min and if necessary 

deprotected with a solution of 20% pyridine in DMF (v/v%). 

8.3.1.2. Resin loading 

Wang resin was loaded with the symmetrical anhydride procedure followed capping of 

unreacted amino acids. To this end, the resin was reacted for 10 min with a solution 

composed of 9:1 pyridine:acetic acid. 

Rink Amide resin was loaded with the first amino acid (5 equiv.), PyBOP (5 equiv.) and 

DIPEA (10 equiv.), which were added to the deprotected resins and allowed to react in 

DMF for 45 min with constant agitation. The resin loading with rink amide was 

repeated twice to ensure complete loading.  

8.3.1.3. PyBOP® coupling and deprotection 

Chain elongation was achieved using 2.5 equiv. of protected amino acid with respect to 

resin loading. Amino acids were dissolved in DMF and PyBOP® (2.5 equiv.) DIPEA (5 

equiv.) were used as coupling agents. The reaction mixture was allowed to react for 45 

min 45 min followed by washing off the resin with DMF. The coupling reaction was 

repeated twice for each amino acid. Removal of Fmoc groups was achieved using 20% 

piperidine in DMF over 10 min followed by washing with DMF. The deprotection step 

was repeated to ensure completion (2 additional times, each one 5 min, for a total of 3 

times). Once chain elongation was completed, the resin was dried down using DCM 

followed by DCM:MeOH 1:1 and dried by application of vacuum. Coupling and 
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deprotection steps were monitored with colorimetric tests such as ninhydrin (Kaiser) or 

chloranil. 

8.3.1.4. Kaiser test and chloranil tests 

Kaiser test 

After 5 washes with EtOH, a small amount of resin beads were used to verify the 

absence of free amine by adding 3 drops of each Kaiser test solution to the beads, 

followed by heating. The blue colour appearance indicated the presence of free amine 

and therefore the incomplete coupling. 

 

Kaiser test solutions  

Solution A: 2% KCN/H2O (v/v);  

Solution B: 5% ninhydrin (w/v) 98% pyridine (v/v) in Ethanol;  

Solution C: 4:1 phenol (w/v) in EtOH; 

 

Chloranil test 

After 5 washes with DMF, a small amount of resin beads were used to verify the 

absence of free amine by adding 3 drops Chloranil test solution to the beads followed by 

heating. The green colour appearance indicated the presence of free amines. 

 

Chloranil test solutions 

Solution A: 2% Chloranil in DMF (w/v); 

Solution B: 2% acetaldehyde in DMF (v/v); 

8.3.1.5. Automated synthesis 

Automated peptide synthesis was employed for the generation of peptides 2.3, 2.4, 2.5, 

2.6 and 2.7 using Fmoc-tBu strategy and PyBOP/DIPEA as coupling reagents. Fmoc 

deprotection was achieved with 20% piperidine solution in DMF (v/v%). 

General scheme for automated peptide synthesis is shown in Table 8.1 
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After completion, the completed peptide was removed from the automated synthesiser 

and the resin beads washed from any residual DMF with multiple DCM washes. Global 

deprotection and purification were performed next as described below. 

 

 

Table 8.1: Protocol for automated peptide synthesis with Syro I. 

  

Cycle Steps Conditions Time 

1 Swelling DMF shaking (5 mL) 1 h 

2 

Loading 

First amino acid (5 equiv.) 

PyBOP (5 equiv.) 

DIPEA (10 equiv.) 

 

3 h; the loading is repeated twice 

Washing DMF (5 mL×3) 5 min; the washes are repeated three times 

Fmoc removal 

Piperidine (20%) Solution in DMF (2 

mL) 
15 min; the cleavage is repeated twice 

Washing DMF (5 mL) 5 min 

3 

Coupling 

Second amino acid 

PyBOP (2 equiv.) 

DIPEA (2.5 equiv.) 

DMF (2 mL) 

 

1 h; the coupling is repeated twice 

Washing DMF (5 mL) 5 min; the washes are repeated three times 

Fmoc removal 

Solution of piperidine (20% in DMF) 

 

15 min; the cleavage is repeated twice 

Washing DMF (5 mL) 5 min; the washes are repeated three times 

The Cycle 3 is repeated until the last amino acid of the desired sequence is loaded 

Manual 

washing 
DCM 4 min 
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8.3.1.6. Global deprotection and resin cleavage 

Global deprotection and resin cleavage were achieved by treating the resin with a 

cleavage cocktail composed by TFA:DCM:TIPS 95:2.5:2.5 for 3 h with constant 

agitation. The TFA solution containing the crude peptide was filtered off and the resin 

washed with neat TFA (2 mL). The TFA contained in the crude was removed by rotary 

evaporation and the residue precipitated in Et2O. The excess of Et2O was decanted and 

the peptide recovered by filtration. The peptide was dissolved in H2O with drops of 

acetic acid if necessary and lyophilised.  

8.3.1.7. Peptide purification 

Analytical RP-HPLC was employed to determine the purity of the product after 

synthesis and between purification steps. Gross purification was performed on a Biotage 

Isolera Four using a 12 g C18 cartridge and a gradient from 95:5 water:methanol → 

5:95 water:methanol with 0.05% TFA additive over 50 minutes and a flow rate of 20 

mL/min. Collection was monitored by UV at 214 and 254 nm. Fractions were then 

reassessed by analytical RP-HPLC. Fractions suspected of containing the target peptide 

were recovered by lyophilisation, their mass determined using MALDI-TOF and 

purified further using STDi-preparative RP-HPLC on a Agilent Technologies 1200 

series chromatograph using an Agilent Technologies ZORBAX Eclipse XDB-C18 (5 

µm, 9.42×50 mm) column with a flow rate of 4 mL/min. Final identity of peptides was 

confirmed by RP-HPLC and MALDI. 

8.3.1.8. Preparation of symmetric anhydride 

Fmoc-Valine-OH (0.404 g, 1.19 mmol, 10 equiv.) was dissolved in dry DCM and a 

minimum amount of DMF (drops). Subsequently, DIC (0.092 mL, 0.595 mmol, 5 

equiv.) was added dropwise at 0 ˚C. The mixture was allowed to stir for 30 min and 

then the solvents evaporated in vacuo. The symmetrical anhydride was then dissolved in 

DMF (minimum amount) and added to 70 mg of swollen Wang resin (in DMF) for 20 

min (loading 1.7 mmol/g). The mixture was allowed to shake for 4 h. After that time, 

the solution was drained and the resin transferred to a vessel for peptide synthesis. 
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8.3.1.9. Acetylation at the N-terminus 

 (Proline acetylation – structure 2.7) 

A solution of acetic anhydride (5 drops) and pyridine (100 µL) in DMF was added to 

the resin. The resin was shaken for 30 min and then washed several times to remove 

excess of reagents. 

8.3.1.10. Dimethylation of N,N Fmoc-lysine-OH344 

To a solution of Fmoc-lysine-OH (1 g, 2.3 mmol), 37 % formaldehyde solution (0.84 

mL, 21.71 mmol) and AcOH (0.36 mL) in 1,4-dioxane, NaBH4 (0.7 g, 18.62 mmol) was 

added in portions at 0 ˚C. After half of the NaBH4 was added, another portion of 37% 

formaldehyde (0.84 mL, 21.71 mmol) was added to the reaction mixture. The pH of the 

reaction mixture was maintained at 3-6 by the addition of AcOH (drops). The reaction 

mixture was then warmed to room temperature and stirred overnight. The mixture was 

diluted with H2O (6 mL) and the pH adjusted to 6. The organic solvents were removed 

in vacuo and the aqueous phase extracted with DCM 10 times. The combined organic 

phases were dried over MgSO4, filtered and concentrated in vacuum to give a yellow 

oil (0.87 g, 87% yield). The modified amino acid was purified by Biotage Isolera as 

described in the General procedures and then used in the synthesis of 2.22 and 2.23: 1H 

NMR (DMSO-d6) δ 7.87 (d, J=7.5 Hz, 2H CH), 7.72-7.67 (m, 2H), 7.40 (t, J=7.0 Hz, 

2H CH), 7.30 (t, 2H, J = 7.3 Hz, CH), 7.22 (d, 1H, J = 7.5 Hz, NH), 4.26-4.17 (m, 3H, 

OCH2, CH), 3.79-3.86 (m, 1H, Hα), 2,44 (t, 2H, J = 7.5 Hz, Hε) 2.30 (s, 6H, N(CH3)2), 

1.73-1.54 (m, 2H, Hβ), 1.50 -1.37 (m, 2H, Hδ), 1.33-1.27 (m, 2H, Hγ); 13C NMR 

(DMSO-d6) δ 173.7 (C=O), 156.2 (C=O), 143.8 (C), 140.7 (C), 127.6 (CH), 127.1 

(CH), 125.2 (CH), 120.1 (CH), 65.6 (CH2), 56.0 (CH), 53.7 (CH2), 46.6 (CH), 

41.8(CH3), 30.1 (CH2), 23.1 (CH2), 22.7 (CH2). 

The spectroscopic data are consistent with that344 reported in the literature. 
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8.3.1.11. Peptide characterization 

 

 Sequence Yield MALDI-TOF ( m/z) 

2.1 PRSF 32 % Expected 504.58, Found 505.35 [M+H] +, 527.34 [M+Na]+. 

2.2 PRSFLV 20 % Expected 717.87, Found 718.49 [M+H]+. 

2.3 PRSFLVRK 19 % Expected, 1001.63 Found 1002.06 [M+H]+, 1024.06 [M+Na]+. 

2.4 PRSFLVRKP 21 % Expected 1098.34, Found 1099.04 [M+H]+, 1121.03 [M+Na]+. 

2.5 RSFLV 35 % Expected 520.62, Found 520.59. 

2.6 PRSFL 34 % Expected 617.63, Found 618.50 [M+H]+. 

2.7 Acetyl-PRSFLV 21% Expected, 758.44, Found 760.43 [M+H]+. 

2.8 PRSFLV(COOH) 22% Expected 717.42, Found 719.06 [M+H]+. 

2.9 ARSFLV 34 % Expected 691.83, Found 691.40 [M+H]+. 

2.10 PASFLV 32 % Expected: 632.76, Found 654.09 [M+Na]+. 

2.11 PRAFLV 38 % Expected: 701.87, Found 702.12, 703.15 [M+H]+. 

2.12 PRSALV 44 % Expected 641.77, Found 641.19. 

2.13 PRSFAV 15 % Expected 675.79, Found 675.75. 

2.14 PRSFLA 21 % Expected 689.82, Found 689.4.1 

2.15 PLSFLV 14 % 

 

Expected found 673.83, Found 675 [M+H]+, 697 [M+Na]+, 712.99 

[M+K] +. 
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2.16 PKSFLV 31 % Found 712.16, Found 713.19 [M+ H]+. 

2.17 PRSMLV 38 % Expected 701.89, Found 701.97. 

2.18 PRSYLV 40% 

 

Expected 733.87, Found 733.76; 755.54 [M+Na]+; 771.73 

[M+K] +. 

2.19 PRLYLV 21 % Expected 759.95 Found 759.78, 781.78 [M+Na]; 797.81 [M+K]+. 

2.20 PRSK(Cbz)LV 36 % Expected 831.50, Found 832.70. 

2.21 LRSK(Cbz)LV 21% 

 

Expected 847.53, Found 848.75 [M+H]+, 870.93 [M+Na]+, 886. 94 

[M+K] +. 

2.22 PRSK(me2)LV 18% Expected 752.49, Found 752.78. 

2.23 PRSK(me2)VKRKP 17% Expected 1106.74, Found 1100.16. 

2.24 PRSK(me2)L 28 % Expected 626.42, Found 627.53 [M+H]+. 

2.25 PRSFAA 24 % Expected 647.74, Found 648.02 [M+H]+. 

2.26 ARAFAA 12 % Expected 604.34, Found 605.19 [M+ H]+. 

2.27 PRAAAA 15 % Expected 554.33, Found 555.36 [M+H]+. 

2.28 PRSFQTV 25 % Expected 703.81, Found 703.77. 
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8.3.2. Biological studies 

Prof. Andrea Mattevi’s group at Biocristallography laboratory, Department of Biology 

and Biotechnology “Lazzaro Spallanzani” at University of Pavia, Italy performed the 

LSD1 inhibition assay. Compound MC2584 used for AML cell lines evaluation was 

provided by Prof. Antonello Mai at University La Sapienza, Rome, Italy. The LNCaP 

prostate cancer work was conducted at University of Southampton in the laboratory of 

Dr. Simon Crabb. The AMLs work was performed in the laboratory of Dr. Maria 

O’Connel, University of East Anglia, Pharmacy department. 

8.3.3. Enzymatic studies 

The LSD1 enzyme assay consists of a peroxidase-coupled assay, which monitors 

hydrogen peroxidase production (a side product of LSD1 demethylation) in the presence 

of different concentrations (2-100 µM range) of mono-methylated H3K4 peptide 

substrate with the inhibitor under analysis (global range 1-300 µM, depending on the 

inhibitors’ level of activity). The data gathered were fitted to a Michaelis-Menten model 

for competitive inhibition and a value for the dissociation constant Ki was calculated for 

each peptide 

Snail-1 analogues were soaked in solution with crystals of LSD1-CoREST complex for 

3 h, then instantly frozen at a temperature of 100 K. X-ray scanning and multiple 

computer software were employed to generate a crystal structure with a resolution of 

3.0 Å. 
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8.3.4. Cell-based studies 

Anti-proliferative activity on different cancer cell lines 

The anti-proliferative activity of SNAG-like peptides PRSFLV (2.2), PRSMLV  (2.17), 

PRLYLV  (2.19), LRSK(Cbz)LV  (2.21), and PLSFLV  (2.15) were assessed in SK-

MEL28, A549 and THP-1 and HL-60 cells. 

 

• SK-MEL28 and A549 

SK-MEL28 and A549 cells were cultured in RPMI1640 medium with 10% Foetal Calf 

Serum (FCS), 2 mM L-glutamine and penicillin/streptomycin (P/S) and grown at 37 ˚C 

in an atmosphere of 5% CO2.  Cells were seeded at a density of 4500 cells/well in a 96 

well plate with complete growth medium for 12 hours to achieve optimum cell 

adherence. The media was then removed and SKMEL-28 cells were treated with 

different concentrations of PRSFLV (500 µM, 200 µM, 100 µM, 50µM, 25 µM), 

dissolved in Phosphate buffered saline (PBS). PRSFLV, PRSMLV  and 

LRSK(Cbz)LV  were added to A549 cells, previously dissolved in growth media at 

different concentrations (2 mM, 1.5 mM, 1 mM, 750 µM, 500 µM, 250 µM, 125µM, 62 

µM, 31 µM and 15 µM). After 72 h, the medium containing the treatment was removed 

from the plates and 200 µL of fresh pre-warmed growth media was added to each well. 

A solution of MTT reagent (50 µL, 2 mg/mL) was added and after 2 hours incubation, 

removed and replaced with 200 µL of DMSO and 25 µL of Sorensen’s glycine buffer 

(0.1 M glycine, 0.1 M NaCl, pH 10.5). For each condition 5 experimental replicates 

were carried out. The absorbance of each well was read at 570 nm. Collected raw data 

were analysed using GraphPad Prism 6 to calculate means and the standard deviation. 

 

• THP-1 and HL-60  

THP-1 and HL-60 cell lines were cultured in RPMI 1640 medium (GIBCO) 

supplemented with 10% Foetal Calf Serum (FCS, GIBCO) and 5% of 2 mM L-

glutamine and penicillin/streptomycin (P/S, Fisher). Cells were grown at 37 ˚C with 5% 

CO2. Cells concentration was maintained at 25×104 cells/mL. 
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Anti-proliferation assay was carried out using MTS reagent (CellTiter96® Aqueous 

One Solution, Cell Proliferation Assay). THP-1 and HL-60 cells were plated in 96 well 

plates at a concentration of 5×104 cells/well and 3×104 cells/well respectively and 

immediately treated with 1 µL of peptide diluted in growth media at the following final 

concentrations: 2 mM, 1 mM, 500 µM, 250 µM, 125 µM, 62 µM, 31 µM and 15 µM. 

Peptides PRSMLV , LRSK(Cbz)LV , PRLYLV and compound MC2586 were 

evaluated in THP-1 cells. Peptides LRSK(Cbz)LV , PRLYLV  and PLSFLV  were 

evaluated in HL-60 cells. After 72 h of incubation with the compounds, 10 µL of pre-

warmed MTS reagent was added to each well and after 3 h of incubation, the 

absorbance was measured at 492 nm on a BMG PolaSTAR OPTIMA plate reader 

(BMG Labtech). Each experimental condition was repeated five times. Data were 

analysed using GraphPad Prism 6. Western blot analysis experimental methods are 

reported in the methods session of Chapter 4 (page 298). 
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8.4. Experimental procedures For Chapter 3  

All chemicals and reagents were of the highest quality and obtained from Sigma Aldrich 

(Poole, UK), Fisher Scientific (Loughborough, UK) unless stated otherwise. All 

procedures including biopanning, amplification and titration, were followed according 

to the procedures detailed in the manufacturer’s manual. 

8.4.1. Phage-Display 

8.4.1.1. Phage library  

The phage library Ph.D.™-12 was purchased from New England Biolabs (Ipswich, 

Massachusetts, USA). The combinatorial library of 1013 pfu per mL consists of 

approximately 1.28×109 random 12 amino acid sequences displayed on the pIII minor 

coat protein of the M13 filamentous phage. These were introduced to phage DNA by 

electroporation and once amplified can give raise to approximately 100 copies of each 

sequence. The general motif of a displayed peptide is X12GGGS where X represents any 

amino acid and GGGS is a short amino acid spacer that links the C-terminus of the 

peptide to the N-terminus of the pIII protein.  

8.4.1.2. Bacterial host maintenance for phage propagation 

M13 was supplied with New England Biolabs library kit. It is s a male specific 

coliphage that propagates in the ER2738 strain of E. coli (F+; TETR). M13 possess a 

mini transposon conferring antibiotic resistance and selectivity towards E. coli 

population bearing F-pilus. E. coli culture was prepared by streaking a small quantity of 

ER2738 glycerol stock in 10 mL of LB medium (10 g of Bacto-Tryptone, 5 g of yeast 

extract and 5 g NaCl per 1 L of ddH2O) and incubating overnight at 37 ˚C. For phage 

propagation, 2 mL of this culture were added to 18 mL of fresh LB broth in a sterile 250 
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mL erlenmeyer flask and further propagated for 4.5 h at 37 ˚C in an orbital shaker 

(Stuart S150, Staffordshire, UK, 150 rpm). 

8.4.1.3. Phage cycle – panning and purification  

Four rounds of biopanning were performed. In the first round of biopanning, 2 µL of 

magnetic beads (MagneticHisTMNi-Promega UK) were washed with TBST 0.1% 

(3×1mL, 50 mM Tris buffered saline, 150 mM NaCl, pH 7.5 + 0.1% Tween- Fisher 

Scientific UK). Blocking buffer (0.1 M NaHCO3 water solution, pH 8.6) was added and 

incubated on ice for 1 h with gentle rocking (Stuart STR6, London, UK). In the 

meantime, 20 µL of LSD1 protein full length (10 nM) in TBST 0.1% (170 µL) was 

incubated with 10 µL Ph.D.™-12 library for 20 min at rt. The blocking buffer was 

removed from beads with TBST 0.1% washes (1 mL×4). Protein and library were 

subsequently incubated with the washed beads for 20 min with gentle rocking. After 

that time, beads were washed 10 times with TBST 0.5% (1 mL×3, 50 mM Tris buffered 

saline, 150 mM NaCl, pH 7.5 + 0.5% Tween) and the phage-bound was eluted (1 mL, 

0.1 M glycine, pH 2.2, 10 min, × 3 times), and neutralised with 150 µL Tris-HCl (1 M, 

pH 9.1). The eluates were titered to quantify the phage on LB/IPTG/X-gal plates using 

the blue plaque-forming assay.  

The glycine eluate 3 was then amplified in 1:100 diluted E. coli ER2738 overnight. To 

purify the phage, the culture was centrifuged (Hermle Z326K, Wehingen, Germany, 

17320 ×g, 4 ˚C, 10 min) to pellet the ER2738 cells. The resulting supernatant was 

removed and centrifuged again (17320 ×g, 4 ˚C, 2 min), and 80% of the resulting 

supernatant was removed and treated with 1/6th of its volume with PEG/NaCl (20% 

(w/v) polyethylene glycol-8000, 2.5 M NaCl) then incubated at 4 ˚C overnight. After 

overnight precipitation the resulting suspension was centrifuged (17320 ×g, 4 ˚C, 10 

min) to pellet the phage. The supernatant was removed and discarded and the pellet was 

re-centrifuged briefly. Any residual supernatant removed. The phage pellet was then 

suspended in 1 mL of TBS (50 mM Tris-HCl (pH 7.5), 150 mM NaCl), transferred to a 

micro-centrifuge tube, and centrifuged (18620 ×g, 4 ˚C, 5 min). The supernatant was 

removed and 1/6th volume PEG-NaCl was added and precipitated on ice for 1 h. The 

resulting suspension was centrifuged (18620 ×g, 4 ˚C, 10 min) and any residual 
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supernatant removed. The resulting phage pellet was re-suspended in 0.2 mL TBS. The 

phage was again quantified by titering on LB/IPTG/X-gal plates.  

In the second round a negative selection was performed. The amplified phage 55,5 µL 

(1×1011 pfu) was pre-incubated with the beads in the absence of target. The supernatant 

from this step was then reacted with the target in a positive selection as above and beads 

changed. For the third and fourth round the phage was eluted with a specific LSD1 

binder, PRSFLVRKP (1 mg/mL solution 10 min×3). The remainder of the round was 

completed as before. 

8.4.1.4. Phage DNA extraction and sequencing 

Six individual, well-separated plaques were removed from a titering plate with a sterile 

pipette tip. The isolated plaque was added immediately to a tube of 10 mL overnight 

culture of E.coli ER2738, diluted 1:100. The tubes were incubated in an orbital shaker 

at 37 ˚C for 4.5 h. After amplification, the tubes were centrifuged (17320 ×g, 1 min), 

and 500 µL of the phage-containing supernatant was recovered. PEG-NaCl (200 µL, 

20% PEG-8000, 2.5 M NaCl) was added to the supernatant and incubated at rt for 20 

min. The resulting suspension was centrifuged to pellet the phage (18620 ×g, 4 ˚C, 10 

min). Any remaining supernatant was discarded. The pellet was next suspended in 100 

µL of Iodide buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA, 4 M NaI) and 250 µL of 

EtOH were added before incubation at rt to precipitate single stranded phage DNA. The 

resulting precipitate was centrifuged (14,000 rpm, 10 min, 4 ˚C) and the supernatant 

removed and discarded. The resulting DNA pellet was washed with EtOH (0.5 mL, 

70%, stored at -20 ˚C) re-centrifuged briefly and any residual supernatant discarded, 

then dried in vacuo. The pellet was suspended in ddH2O (30 µL). The ssDNA was then 

sent for sequencing to Source Biosciences (Cambridge UK). 4Peaks (A. Griekspoor and 

Tom Groothuis, mekentosj.com) was used to process the chromatograms. ExPASy 

translate tool was used to deduce the amino acid sequences of the phage displayed 

peptides. A BLAST search was performed for identification of homologies between the 

obtained peptides and known proteins. 
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8.4.1.5. Phage plaque formation assay 

Reagents 

• IPTG/X-gal Stock: To 25 mL DMF, 1.25 g of IPTG (isopropyl-β-D-

thiogalactoside) and 1 g X-gal (5-bromo-4-chloro-3- indolyl-β-D-galactoside) 

were added. The DMF solution was aliquoted and stored at -20 ˚C. 

• LB/IPTG/X-gal Plates: In 1 L of LB medium 15 g of agar were added and the 

solution autoclaved. After cooling, 1 mL of IPTG/X-gal was added and 20 mL 

of media dispensed in a petri dish. Plates were stored at 4 ˚C. 

• Top Agar: 10 g Bacto-Tryptone, 5 g yeast extract, 5 g NaCl and 7 g of 

electrophoresis grade agarose were mixed in 1 L of ddH2O and autoclaved. The 

agar was dispensed into aliquots and once solidified it was stored at rt and 

melted in a microwave as needed. 

Top agar was melted in a microwave until dissolved and 3 mL were dispensed in a 

sterile centrifuge tubes (as many as the phage dilutions). LB/IPTG/X-gal plates were 

warmed at 37 ˚C. Phages were next serially diluted (1:10) in LB broth (101-104 for 

eluates and 108-1011 for amplified eluates) and 10 µL added to sterile eppendorf tubes. 

To each tube of phage, 200 µL of an overnight culture of ER2738 were added. The 

infected cells were transferred one at the time to centrifuge tubes containing the melted 

Top agar cooled. After brief vortexing, these were poured onto the pre-warmed LB 

plates and spread evenly with a gentle rotation. The plates were incubated at 37 ˚C 

overnight. The day after, the formed single blue plaques were counted and the number 

obtained multiplied by the dilution factor for that plate, in order to achieve the phage 

titer in plaque-forming units (pfu) per 10 µL. 
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8.4.1.6. LSD1 expression and purification  

Cloning of LSD1 Protein expression and purification† 

The plasmid pet15b-His-tagged full length human LSD1 was kindly provided by Fei 

Lan in Dr. Yang Shi lab (Harvard University, Boston) and was expressed in E. coli 

BL21 RIPL Codon Plus (DE3) (Stratagene). The protein expression was induced with 

0.1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) for 16 h at 37 ˚C. Bacteria culture 

was then centrifuged at 6,500 rpm for 10 min at 4 ˚C. After discarding the supernatant, 

the bacteria pellet was lysed in 40 mM Tris-HCl pH 8.0, 300 mM NaCl, 0.2 % Triton 

X-100, 5% glycerol, 10 µg/mL DNase I and 10 mM MgCl2 in the presence of complete 

EDTA-free protease inhibitors (Roche). The lysate was sonicated on ice then 

centrifuged at 15,000 rpm for 20 min at 4 ˚C. The supernatant was applied to a 6.4 mL 

Ni2+ column (Sigma) in binding buffer (40 mM Tris-HCl pH 8.0, 300 mM NaCl and 5% 

glycerol) and eluted using a linear gradient up to 250 mM imidazole in binding buffer 

on an AKTA Prime FPLC system. To identify the fraction containing LSD1, SDS-

PAGE was performed with BIO-RAD electrophoresis system (12% polyacrylamide gel) 

stained with Coomassie Brilliant Blue (BIORAD). The fractions containing His-LSD1 

were pooled, concentrated on a 30 kDa MWCO Amicon filter. LSD1 was then applied 

to a size exclusion column (HiLoad 26/60 Superdex 200, GE HealthCare) equilibrated 

in 20 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.5 mM EDTA, 1 mM DTT and 5% 

glycerol.  The fractions containing LSD1 were pooled and diluted 1:5 into 20 mM Tris-

HCl (pH 8.0), 5% glycerol before being applied to a Q-sepharoseTM column (Sigma). 

LSD1 was eluted with a 5-30% linear gradient using 20 mM Tris-HCl pH 8.0, 5% 

glycerol and 1 M NaCl. The fractions containing purified LSD1 were pooled together. 

Protein concentration was determined by Bradford assay (BIORAD). Protein was 

aliquoted (100 µL) and stored at -80˚C. 

                                                 

 
† Protocol provided by Dr. Patrick Duriez, Cancer Research UK, University of Southampton. 
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8.4.2. Enzymatic assay 

8.4.2.1. Amplex®Red solutions  

- Preparation of Amplex®Red 

The reactive Amplex®Red was freshly made for each reaction well and the 50 µL added 

were composed of: 

• 1 µL of 10 U/mL of horseradish peroxidase reconstituted in Reagent Buffer 

(InVitrogen)  

• 48.5 µL of 50 mM Potassium Phosphate buffer  

• 0.5 µL of Amplex®Red (InVitrogen) previously reconstituted in DMSO 

For each reaction well, 50 µL of such solution were added. 

 

- Preparation of Amplex® Red Stop solution 

One vial of Amplex®Red Stop reagent (InVitrogen) was dissolved in 1.45 mL of EtOH 

and gently vortexed until dissolution. An equal amount of EtOH containing the stop 

solution and ddH2O were mixed together and 30 µL of such mixture were added to each 

reaction well.  

8.4.2.2. Protocol for Amplex®Red 

Inhibitor’s stocks were prepared in DMSO and then diluted in 50 mM Potassium 

phosphate buffer pH 7.5 (1:1 mix of monobasic and dibasic). The desired concentration 

(10 µL of drug 5× final concentration) was added to a GREINER 96 well non-binding 

white plate followed by 30 µL of pure human recombinant His-tag-LSD1 protein 

diluted in 50 mM Potassium phosphate buffer at 0.00461 mg/mL concentration. The 

protein and the tested inhibitor were incubated at rt with gentle rocking for 10 min. 

After that time, 10 µL of peptide substrate corresponding to the first 21 amino acid of 

human histone 3 di-methylated on lysine 4 (sequence 

ARTK(me2)QTARKSTGGKAPRKQLA, Peptide Synthetic, PPR Ltd) were then added 

at a concentration of 150 µM (30 µM final concentration) and incubated for 20 min at rt 

with gentle rocking. Subsequently, 50 µL of Amplex®Red/HRP mixture were added to 
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each reaction well and incubated at rt with gentle shaking. After 30 min of incubation, 

the reaction was quenched by adding 20 µL of Amplex®Red Stop Solution (InVitrogen) 

to each reaction well. The fluorescence was read on a BMG Cell star microplate reader 

(Ex: 530 nm; Em: at 590 nm). Raw data were collected and analysed with GraphPad 

Prism 6. The results were expressed as the relative fluorescence unit (RFU) compared to 

100% of enzymatic activity (LSD1 + substrate, no inhibitor). Data were fitted with 

nonlinear regression and are shown as means ± STD, n=3).  

8.4.3. Peptide synthesis 

To synthesise peptide 3.1, 3.3 and 3.4, SPPS was employed using Fmoc/t-Bu strategy 

and PyBOP/DIPEA as coupling reagents. Procedures for resin swelling, loading, 

coupling and deprotection, global deprotection and cleavage, purification steps are 

described in Chapter 2. 

8.4.4. Peptide characterisation 

3.1: RKQHAIPLIWPA, yield 37 % 

Maldi-TOF ( m/z): Expected 1428.728, Found: 1430.71, 1431.73 [M+H]+,1453.78 

[M+Na]+, 1468.81 [M+K]+. 
 

3.3: GGTKAPRLEHGP, yield: 35 % 

Maldi-TOF ( m/z): Expected: 1218.36; Found: [M+H]+1219.50.  

 

3.4: NPHTHTHGAFVS, yield: 42 % 

Maldi-ToF (m/z): Expected 1303.383, Found: 1304.1305.09 [M+H]+, 1326.15 

[M+Na]+, 1327.14 [M+H++Na+], 1342.13 [M+K]+, 1343.12 [M+H++K+]. 
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Maldi-TOF Spectra 

PRSFLVRKP 

 

 

Peptide 3.1 

 

Peptide 3.3 

 

 

 

 

This image cannot currently be displayed.

This image cannot currently be displayed.

This image cannot currently be displayed.
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Peptide 3.4 
This image cannot currently be displayed.
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8.5. Experimental procedures Chapter 4 

8.5.1. Synthesis of irreversible inhibitors TCP analogues 

4.2 

Methyl 4-formylbenzoate345  

 

 

4-Formylbenzoic acid (4.1) (10.0 g, 66.0 mol, 1.0 equiv.) was dissolved in anhydrous 

MeOH (100 mL) with cooling (-5 ˚C) and acetyl chloride (24.1 g, , 21.2 mL, 0.33 mol, 

5.0 equiv.) was added dropwise over a period of 10 min. After 30 min, the reaction 

mixture was warmed to rt and stirred overnight. The volatiles were removed in vacuo 

and the residue dissolved in EtOAc (70 mL), washed with 1 N NaOH, (100 mL×3) 

followed by sat. NaHCO3 (50 mL × 3), H2O (50 mL×3) and brine (50 mL×3). The 

organic phase was dried over MgSO4 and filtered. The solvent was removed in vacuo 

and the desired product 4.2 was obtained (9.8 g, 91%) as a crystalline white solid that 

was used without further purification: Rf
  = 0.4, (petroleum ether/EtOAc 3:7): mp 180 

˚C; IR 1716, 1684, 1428 cm-1; 1H NMR (CDCl3) δ 3.91 (s, 3H), 7.94 (d, J = 8.5 Hz, 

2H), 8.19 (d, J = 8.3 Hz, 2H), 10.00 (s, 1H); 13C NMR (CDCl3) δ 52.6, 129.6, 130.3, 

135.2, 139.3, 166.2, 191.7; HRMS (ESI) m/z calcd. for C9H9O3 [M+H] + 165.0546, 

found 165.0545.  

The spectroscopic data are consistent with that345 reported in the literature.  

  

This image cannot currently be displayed.
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4.3 

(E)-Methyl 4-(3-(tert-butoxy)-3-oxoprop-1-en-1-yl)benzoate  

 

 

To a solution of KOt-Bu (7.3 g, 64.6 mmol, 1.1 equiv.) in dry THF (100 mL) tert-butyl 

dietyl phosphonacetate (16.3 g, 15.4 mL, 64.6 mmol, 1.1 equiv.) was slowly added 

(dropwise) at -5 ˚C for a period of 15 min. The mixture was stirred for 1 h while 

mantaining the same temperature. Compound 4.2 (9.8 g, 58.7 mmol, 1 equiv.), 

dissolved in dry THF (40 mL), was then added dropwise to the mixture with vigorous 

stirring at -5 ˚C for a period of 20 min. Th reaction mixture was then warmed to rt and 

stirred overnight. After that time, the reaction mixture was poured into iced H2O (100 

mL) and extracted with EtOAc (100 mL×5). The organic phases were combined (500 

mL) and washed with sat. NaHCO3 (100 mL), H2O (100 mL) and brine (100 mL) and 

dried over MgSO4; evaporation of the solvent in vacuo released 4.3 (14.9 g, 98%) as a 

white crystalline solid that was used without further purification: Rf =0.64 (petroleum 

ether/ EtOAc 2:8); mp 64 ˚C; 1H NMR (CDCl3) δ 1.52 (s, 9H), 3.90 (s, 3H), 6.43 (d,J = 

16.0 Hz, 1H), 7.53-7.59 (m, 3H), 8.04 (d,J = 8.0 Hz, 2H). 13C NMR (CDCl3) δ 28.2, 

52.3, 80.9, 122.6, 127.8, 130.1, 131.2, 139.0, 142.1, 165.8, 166.5; HRMS (ESI) m/z 

calcd for C15H19O4 [M+H] + 263.1278, found 263.1278.  

The spectroscopic data are consistent with that346 reported in the literature.  

  

This image cannot currently be displayed.
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4.4 

(±)-trans-4-methyl[2-(tert-butoxycarbonyl) cyclopropyl)]benzoate178  

 

 

 

Trimethylsulfoxonium iodide (15 g, 68.1 mmol, 1.2 equiv.) was added in small portions 

to a suspension of NaH (2.27 g, 68.1 mmol, 60 wt% in mineral oil, 1.21 equiv.) in dry 

DMSO (60 mL). The solution was stirred for 45 min. The olefin 4.3 (14.9 g, 56.8 mmol, 

1 equiv.) dissolved in DMSO (60 mL), was then added dropwise to the formed ylide 

and the reaction stirred overnight at rt. After completion, the reaction mixture was 

poured into iced water (100 mL)  and extracted with EtOAc (70 mL×10). The organic 

phases (700 mL) were combined and washed with sat. NaHCO3 (200 mL), H2O (200 

mL) and brine (200 mL) and dried over MgSO4. Purification of the crude yellow oil by 

silica gel column chromatography (petroleum ether/ EtOAc 8.9:1.9) afforded 4.3 (3.7 g, 

23%) as a white crystalline solid; Rf =0.66 (petroleum ether /EtOAc 8:2); mp 40 ˚C; IR 

1715, 1609, cm-1; 1H NMR (CDCl3) δ 1.26 (ddd,J = 4.8, 6.4, 8.5 Hz, 1H), 1.46 (s, 9H), 

1.57 (m, 1H), 1.88 (ddd, J = 4.4, 5.5, 8.6 Hz, 1H), 2.4 (ddd, J = 4.1, 5.4, 9.5 Hz, 1H), 

3.9 (s, 3H), 7.1 (d, J = 8.3 Hz, 2H), 7.9 (d, J = 8.4 Hz, 2H); 13C NMR (CDCl3) δ 16.5, 

24.6, 24.8, 27.1, 50.9, 79.8, 124.9, 127.6, 128.7, 145.07, 165.8, 171.0; HRMS (ESI) m/z 

calcd. for C16H24O4N [M+NH4]+ 294.1700, found 294.1704.  

This compound is reported in the literature178 although characterisation data was not 

provided. 

  

This image cannot currently be displayed.
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4.5 

(±)-trans-[2-(4-(methoxycarbonyl)phenyl]cyclopropanecarboxylic acid178 

 

 

Trifluoroacetic acid (19.7 g, 13.2 mL, 0.17 mol, 13 equiv.) and triethylsilane (3.86 g, 

5.3 mL, 33.25 mmol, 2.5 equiv.) were added to a solution of 4.4 (3.7 g, 13.4 mmol, 1 

equiv.) in DCM (40 mL). The reaction mixture was stirred at rt and monitored by TLC. 

After completion, the reaction mixture was co-evaporated with acetonitrile (15 mL×3) 

to give 4.5 (2.1 g, 72%) as a white crystalline solid that was used without further 

purification: mp 123 ˚C; IR 3307, 1716, 1608, 1476.5, cm-1; 1H NMR (CD3OD) δ 1.43 

(ddd, J=4.6, 6.5, 8.5 Hz, 1H), 1.60 (ddd, J = 4.6, 5.3, 9.4 Hz, 1H), 1.92 (ddd, J = 4.1, 

5.4, 8.5 Hz, 1H), 2.51 (ddd, J = 4.0, 6.3, 9.2 Hz, 1H), 3.90 (s, 3H), 7.25 (d, J=8.4 Hz, 

2H), 7.93 (d, J = 8.44 Hz, 2H); 13C NMR (CD3OD) δ 17.9, 25.6, 26.9, 52.5, 127.1, 

129.4, 130.7, 147.6, 168.7, 176.4; HRMS (ESI) m/z calcd. for C12H11O4 [M−H] − 

219.0663, found 219.0659. 

This compound is reported in the literature178 although characterisation data was not 

provided. 

 

  

This image cannot currently be displayed.
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4.6 

(±)-trans-4-methyl-2-[(tert-butoxycarbonyl)amino]cyclopropyl benzoate178 

 

The acid 4.5 (2.1 g, 9.5 mmol, 1.0 equiv.), diphenylphosphoryl azide (2.86 g, 2.27 mL, 

10.5 mmol, 1.1 equiv.) and triethylamine (1.44 g, 1.98 mL, 14.3 mmol, 1.5 equiv.) were 

combined in tert-butanol (11 mL) under argon, heated at reflux and allowed to react for 

72 h. After that time, the reaction mixture was cooled to rt, diluted with EtOAc (20 mL) 

and washed with saturated Na2CO3 solution (20 mL×3). The organic layer was 

separated and the aqueous layer further extracted with EtOAc (20 mL). The organic 

layers were combined (40 mL), washed with sat. NaHCO3 (10 mL), H2O (10 mL) and 

brine (10 mL) and dried over MgSO4. Concentration in vacuo afforded a yellow oil 

which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) affording 

4.5 (1.6 mg, 42%) as a white crystalline solid: Rf =0.57 (Hexane /EtOAc 8:2); mp 45 ˚C; 
1H NMR (CDCl3) δ 1.20-1.24 (m, 2H), 1.43 (s, 9H), 2.07 (td, J = 3.1, 7.6 Hz, 1H), 

2.70-2.78 (m, 1H) 3.9, (s, 3H), 7.15 (d, J = 8.5 Hz, 2H), 7.9 (d, J = 8.4 Hz, 2H); 13C 

NMR (CDCl3) δ 14.8, 26.3, 28.0, 28.1, 28.4, 55.3, 113.8, 127.8, 130.6, 132.7, 157.9; 

168.7; HRMS (ESI) m/z calcd. for C15H18N1O4 [M−H] − 276.1241, found 276.1243.  

This compound is reported in the literature178 although characterisation data was not 

provided. 
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4.7 

(±)-trans-4-2-[(tert-butoxycarbonyl) amino)cyclopropyl]benzoic acid178 

 

To a suspension of 4.6 (1.6 g, 5.7 mmol, 1 equiv.) in THF:H2O: (3:1 ratio), LiOH (0.4 

g, 17.32 mmol, 3 equiv.) was added and the reaction heated to 50 ˚C and stirred for 3 h. 

The reaction progress was monitored by TLC and after completion, the reaction mixture 

was diluted with water (10 mL) and acidified to pH 1-2 with sat. KHSO4. The aqueous 

layer was extracted with EtOAc (20 mL×3) and the combined organic layers (60 mL) 

were washed with sat. NaHCO3 (10 mL), H2O (10 mL)  and brine H2O (10 mL) and 

dried over MgSO4. Solvent concentration in vacuo afforded 4.7 (1.3 g, 82%) as a white 

solid. The product was used in the following step without further purification: IR 3314, 

2873, 1681, 1453 cm-1; 1H NMR (CD3OD) δ 1.21-1.25 (m, 1H), 1.43 (s, 9H), 2.04 (td, J 

= 3.9, 7.9 Hz, 1H), 2.69-2.65 (m, 1H), 7.19 (d, J = 8.3 Hz, 2H), 7.91 (d, J = 8.3 Hz, 

2H); 13C NMR (CD3OD) δ 17.1, 25.8, 28.7, 35.0, 80.3, 126.9, 129.4, 130.7, 148.5, 

158.9, 169.9; HRMS (ESI) m/z calcd. for C17H25NO4 [M+H] + 273.1961, found 

273.1962. 

This compound is reported in the literature178 although characterisation data was not 

provided. 
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Coupling procedure (4.8a-s) 

To a stirring suspension of the acids 4.7 in DCM, 2 equiv. of DIPEA were added and 

the mixture stirred until obtaining a clear solution. Subsequently, HOBt (0.2 equiv.) and 

EDCI (1.5 equiv.) were added and stirred for 30 min. The desired amine (a-s, Table 4.8, 

1.2 equiv.) was added to the stirring mixture and the reaction further stirred at rt 

overnight. After that time, the reaction mixture was diluted with DCM and washed with 

2 N HCl and 1 N NaOH. The organic layers were combined, washed with sat. NaHCO3, 

H2O and brine and dried over MgSO4. Concentration in vacuo afforded amides 4.8a-s.  

 

Compound Amine Yield 

4.8-a Glycynamide hydrochloride 42% 

4.8-b benzylamine 67% 

4.8-c phenethylamine 63% 

4.8-d dibenzylamine 56% 

4.8-e 4-phenylbenzylamine 58% 

4.8-f 2-thiophenethylamine 51% 

4.8-g cyclohexanemethylamine 52% 

4.8-h cylohexaneethylamine 57% 

4.8-i 4-fluorobenzylamine 59% 

4.8-j 4-bromobenzylamine 61% 

4.8-k 4-chlorobenzylamine 56% 

4.8-l 4-methoxybenzylamine 51% 

4.8-m 4-nitrobenzylamine 56% 

4.8-n 1-(2-pyridyl) piperazine 36% 

4.8-o 1-(2-pyrimidyl )piperazine 43% 

4.8-p 1-tosylpiperazine 65% 

4.8-q 1-(methylsulfonyl)piperazine 56% 

4.8-r 1-(2-fluorophenyl)piperazine 45% 

4.8-s 2-(piperazin-1-yl)benzonitrile 53% 

 

Table 8.2: Amine used in the coupling reaction for the generation of intermediates 4.8-a-s. 
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Boc-deprotection (4.9-4.27)  

The amides (4.8a-s) were dissolved in HCl (6 N) in THF with cooling and the reaction 

monitored by TLC. Amides 4.8-b, 4.8-c, 4.8-e, 4.8-f were deprotected with 4 N HCl, 

whereas amide 4.8-m, 4.8-n, 4.8-o, 4.8-q, 4.8-r, 4.8-s were deprotected with 3 N HCl. 

After completion, the deprotected amines were diluted with acetonitrile and 

concentration in vacuo afforded the deprotected amines that were washed with diethyl 

ether. Compounds 4.9-4.27 were then analysed by HPLC and purified by RP-HPLC. 

Gross purification was performed on a preparative RP-HPLC gradient from 95:5 water: 

methanol → 5:95 methanol: water with 0.05% TFA additive over 30 minutes and a flow 

rate of 20 mL/min. Collection was monitored by UV at 214 and 254 nm. The collected 

fractions were assessed by analytical RP-HPLC and the ones suspected to have the 

desired compound diluted in water (5 mL), lyophilised and fully characterised. 

 
4.9 

4-(±)-trans-2-aminocyclopropyl)-N-(2-amino-2-oxoethyl)- benzamide hydrochloride 

 

 

Yield 15%, yellow oil; 1H NMR (CD3OD) δ 1.38-1.42 (m, 1H), 1.47-1.52 (m, 1H), 

2.43-2.48 (m, 1H), 2.91-2.94 (m, 1H), 3.74 (s, 1H), 4.02 (s, 1H), 4.08, (s, 1H), 7.31 (dd, 

J = 2.7, 8.0 Hz, 2H), 7.85 (t, J = 7.60 Hz, 2H); 13C NMR (CD3OD) δ 14.6, 22.3, 32.3, 

42.3, 127.5, 128.9, 133.5, 144.3, 169.2, 172.8; HRMS (ESI) m/z calcd. C12H16N3O2 

[M+H] + 234.1237, found 234.12068. Purity 96%. For this compound was not possible 

to achieve a good IR spectra due to the low yield. 

  

This image cannot currently be displayed.
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4.10 

4-((±)-trans-2- aminocyclopropyl)-N-benzylbenzamide hydrochloride178 

 

 

Yield 71%, yellow crystalline solid; mp 200 ˚C; IR 3336, 3289, 3075, 1674, 1437 cm-1; 
1H NMR (CD3OD) δ 1.36-1.42 (m, 1H), 1.46-1.51 (m, 1H), 2.46 (ddd, J = 3.3, 6.6, 9.9 

Hz, 1H), 2.90-2.92, (m, 1H), 4.6 (s, 2H), 7.11-7.19 (m, 3H), 7.22-7.35 (m, 4H), 7.81 (d, 

J = 8.2 Hz, 2H); 13C NMR (CD3OD) δ 14.3, 22.4, 32.2, 44.4, 127.5, 128.2, 128.5,129.7, 

129.5, 134.1, 140.2, 143.9, 169.6; HRMS (ESI) m/z calcd. for C17H19N2O1 [M+H]+ 

267.1492, found 267.1495; Purity 99%. 

This compound is reported in the literature178 although characterisation data was not 

provided. 

 

4.11  

4-(±)-trans -2-aminocyclopropyl)-N-phenethylbenzamide hydrochloride 

 

 

Yield 67%, yellow solid; mp 180 ˚C; IR 3283, 1637, 1545 cm- 1; 1HNMR (CD3OD) δ 

1.36-1.42 (m, 1H), 1.48 (ddd, J = 4.2, 6.7, 10.3 1H), 2.42 (ddd, J = 3.5, 6.3 Hz, 10.3 

1H), 2.90 (t, J = 7.7 Hz, 3H), 3.58 (t, J = 7.2 Hz, 2H), 7.17-7.20 (m, 1H), 7.24-7.29 (m, 

6H) 7.72 (d, J = 7.7 Hz, 2H); 13CNMR (CD3OD) δ 14.3, 22.4, 32.3, 36.3, 42.6, 

127.3,127.4, 128.6, 129.5, 129.9, 134.3, 140.6, 143.8, 169.7; HRMS (ESI) m/z calcd. 

for C18H21N2O [M+H]+ 281.1648, found 281.1648. Purity 96%. 

  

This image cannot currently be displayed.
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4.12 

4-(±)-trans-2-aminocyclopropyl)-N,N-dibenzylbenzamide hydrochloride 

 

 

Yield 52%, yellow solid; IR 3214, 1645.7, 1620, 1452 cm-1; 1HNMR (CD3OD) δ 1.37-

1.38 (m, 1H), 1.49-1.56 (m, 1H), 2.43 (ddd, J = 3.2, 6.4, 9.8 Hz, 1H), 2.96-2.90 (m, 

1H), 4.43 (br s, 2H), 4.66 (br s, 2H), 7.12 (br s, 2H), 7.24-7.30 (m, 7H), 7.32-7.39 (m, 

5H), 7.43-7.50 (m, 2H); 13CNMR (CD3OD) δ 14.1, 22.3, 32.3, 53.7, 127.6, 128.0, 

128.2, 128.7, 129.8, 129.9, 135.5, 142.2, 174.2; HRMS (ESI) m/z calcd. for C24H25N2O1 

[M+H] +, 357.1961, found 357.1960. Purity 99%. 

 
4.13 

N-([1,1'-biphenyl]-4-ylmethyl)-4- (± trans -2 -aminocyclopropyl) benzamide 

hydrochloride 

 

 

Yield 34% yellow solid; IR 3402, 3045, 1715, 1632, 1540 cm-1; 
1H NMR (CD3OD) δ 1.38-1.43 (m, 1H), 1.46-1.50 (m, 1H), 2.43 (ddd, J=3.5, 6.3, 10.2 

Hz, 1H), 2.92 (ddd, J = 3.7, 7.9, 11.6 Hz, 1H), 4.61 (s, 2H), 7.26-7.29 (m, 2H), 7.30-

7.34 (m, 1H), 7.39-7.45 (m, 4H), 7.56-7.60 (m, 4H), 7.83 (d, J = 8.4 Hz, 2H); 13C NMR 

(CD3OD) δ 14.3, 22.4, 32.2, 44.1, 127.4, 127.8, 128.0,128.2, 128.7, 128.9, 129.7, 134.0, 

139.2, 141.3, 142.0, 143.8, 169.6. Purity 95%. 
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4.14 

4-(±)-trans -2-aminocyclopropyl)-N-(2-(thiophen-2-yl)ethyl)benzamide hydrochloride 

 

 

 

Yield 47%, yellow solid; mp 218 ˚C; IR 3318, 2775, 2977, 1626, 1505 cm-1; 1H NMR 

(CD3OD) δ 1.37-1.42 (m, 1H), 1.48 (ddd, J = 4.56, 6.7, 10.2 Hz, 1H), 2.43 (ddd, J = 

3.6, 6.0, 9.0 Hz, 1H), 2.90-2.94 (m, 1H), 3.13 (t, J = 7.0 Hz, 2H), 3.61 (t, J=7.0 Hz, 

2H), 6.88 (dd, J = 1.0, 3.4 Hz, 1H), 6.91-6.94 (m, 1H) 7.20 (dd, J = 1.0, 4.8 Hz, 1H), 

7.25 (d, J=8.4 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H); 13C NMR (CD3OD) δ 14.3, 22.4, 30.1, 

32.2, 42.7, 124.7, 126.3, 127.4, 127.8, 128.6, 134.1, 142.5, 143.7, 169.7. Purity 97%. 

For this compound it was not possible to obtain HRMS data. 

 
4.15 

4-(±)-trans-2-aminocyclopropyl)-N-(cyclohexylmethyl)benzamide hydrochloride 

 

 

Yield 58%, yellow solid; mp 198 ˚C; IR 3335, 1712, 1696, 1459 cm-1; 1H NMR 

(CD3OD), δ 0.94-1.03 (m, 2H), 1.18-1.31 (m, 4H), 1.33-1.44 (m, 1H), 1.48-1.52 (m, 

1H), 1.58-1.69 (m, 2H), 1.71-1.82 (m, 3H), 2.41-2.49 (m, 1H), 2.88-2.92 (m, 1H) 3.20 

(d, J = 6.9 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H); 13C NMR 

(CD3OD) δ 14.3, 22.4, 26.9, 27.6, 32.3, 39.2, 39.4, 47.2, 127.4, 128.6, 134.3, 143.6, 

169.8; HRMS (ESI) m/z calcd. for C17H25N2O [M+H]+, 273.1961, found 273.1962. 

Purity 97%. 
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4.16  

4-(±)-trans-2-aminocyclopropyl)-N-(2-cyclohexylethyl)benzamide hydrochloride 

 

 

Yield 33%, yellow solid; mp 79 ˚C; IR 3318, 1632, 1539, 1449 cm-1; 1HNMR (DMSO-

d6) δ 0.84-0.96 (m, 2H), 1.08-1.31 (m, 5H), 1.36-1.44 (m, 2H), 1.45-1.51 (m, 1H), 1.64-

1.80 (m, 5H), 2.43 (ddd, J = 3.5, 5.5, 10.1 Hz, 1H), 2.81-2.89 (m, 1H), 3.22-3.29 (m, 

2H), 7.25 (d, J = 8.3 Hz, 2H), 7.75 (d, J = 8.3 Hz, 2H), 8.39 (t, J = 6.0 Hz, 1H), 8.64 (br 

s, 2H); 13CNMR (CD3OD) δ 14.3, 22.4, 27.4, 27.6, 32.2, 34.3, 36.8, 37.9, 38.8, 127.4, 

128.6, 134.3, 143.6, 169.6; HRMS (ESI) m/z calcd. for C18H27N2O [M+H]+ 287.2118, 

found 287.2119. Purity 98%. 

 
4.17 

4-((±)-trans-2-aminocyclopropyl)-N-(4-fluorobenzyl)benzamide hydrochloride 

 

 
Yield 45%, yellow solid; mp 98 ˚C; IR 335, 2486, 1620, 1516, 1458 cm-1; 1H NMR 

(CD3OD) δ 1.37-1.42 (m, 1H), 1.49 (ddd, J = 4.7, 7.0, 10.2 Hz, 1H), 2.43 (ddd, J = 3.6, 

6.5, 10.0 Hz, 1H), 2.89-2.96 (m, 1H), 4.53, (s, 2H), 7.0 (t, J=8.7 Hz, 2H), 7.26 (d, 

J=8.2, 2H), 7.36 (m, 2H), 7.81 (d, J=8.3 Hz, 2H); 13C NMR (CD3OD) δ 14.3, 22.4, 

32.3, 43.8, 116.2, 127.5, 128.5, 130.4, 133.9, 136.3, 143.9, 163.5 (d, JF-C=220 Hz), 

169.6; HRMS (ESI) m/z calcd. for C17H18F1N2O [M+H]+ 285.1398, found 285.1402. 

Purity 96%. 
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4.18 

4-((±)-trans -2-aminocyclopropyl)-N-(4-bromobenzyl)benzamide hydrochloride 

 

 

 

Yield 65 %, white solid; mp 97 ˚C; IR 3320, 3035, 2665, 1637, 1533, 14893 cm-1; 
1HNMR (CD3OD) δ 1.37-1.42 (m, 1H), 1.46-1.51 (m, 1H), 2.44 (ddd, J = 3.2, 6.3, 9.7 

Hz, 1H), 2.90-2.93 (m, 1H), 4.52 (s, 2H), 7.26 (d, J = 8.0 Hz, 4H), 7.47 (d, J = 8.3 Hz, 

2H), 7.83 (d, J = 8.3 Hz, 2H); 13CNMR (CD3OD) δ 14.4, 22.4, 32.3, 43.9, 121.8, 127.5, 

128.8, 130.5, 132.6, 133.9, 139.6, 144.00, 169.7; HRMS (ESI) m/z calcd. for 

C17H18BrN2O  [M+H] + 345.0597, found 345.0602. Purity 98%. 

 
4.19 

4-((±)-trans-2-aminocyclopropyl)-N-(4-chlorobenzyl)benzamide hydrochloride 

 

 
Yield 15%, yellow solid; mp 102 ˚C IR 3301, 2354, 1637, 1556, 1515 cm-1; 1HNMR 

(CD3OD) δ 1.36-1.41 (m, 1H), 1.48 (ddd, J = 4.2, 6.7, 10.2 Hz, 1H), 2.43 (ddd, J = 3.1, 

6.2, 9.9 Hz, 1H), 2.90-2.94 (m, 1H), 4.5 (s, 2H), 7.27 (d, J = 8.3 Hz, 2H), 7.32 (s, 4H), 

7.81 (d, J = 8.3 Hz, 2H); 13CNMR (CD3OD) δ 14.7, 22.8, 32.4, 43.9, 123.4, 127.4, 

128.8, 129.7, 130.2, 132.9, 139.0, 144.1, 172.1; HRMS (ESI) m/z calcd. for 

C17H18ClN2O [M+H]+ 301.1102, found 301.1102. Purity 94%. 
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4.20 

4-((±)-trans-2-aminocyclopropyl)-N-(4-methoxybenzyl)benzamide hydrochloride 

 

 
Yield 52%, yellow solid; mp 123 ˚C; IR 3364, 1672, 1528 cm-1; 1HNMR (CD3OD) δ 

1.36-1.41 (m, 1H), 1.49 (ddd, J = 4.6, 6.7, 10.5 Hz, 1H), 2.44 (ddd, J = 3.4, 6.3, 9.8 Hz, 

1H), 2.91, (ddd, J = 4.0, 7.9, 11.7 Hz, 1H), 3.76 (s, 3H), 4.48 (s, 2H), 6.87 (d, J = 8.6 

Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.1 Hz, 2H); 
13CNMR (CD3OD) δ 14.3, 22.4, 32.3, 43.9, 55.7, 114.9, 127.5, 128.7, 129.8, 132.2, 

134.1, 143.9, 160.4, 169.5; HRMS (ESI) m/z calcd. for C18H21N2O2 [M+H] + 297.1598, 

found 297.1595. Purity 98%. 

 
4.21 

4-((±)-trans-2-aminocyclopropyl)-N-(4-nitrobenzyl)benzamide hydrochloride 

 

 

 

Yield 17%, brown solid; IR 3283, 1643, 1591, 1516 cm-1; 1H NMR (CD3OD) δ: 1.38-

1.44 (m, 1H), 1.45-1.49 (m, 1H), 2.43 (ddd, J = 3.3, 6.5, 9.8 Hz, 1H), 2.91-2.95 (m, 

1H), 4.68 (s, 2H), 7.31 (d, J = 7.6 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.77 (d, J = 7.6 Hz, 

2H), 8.2 (d, J = 8.8 Hz, 2H); 13C NMR (CD3OD) δ 14.4, 22.4, 32.3, 43.9, 124.6, 127.6, 

128.8, 129.3, 133.6, 144.2, 148.1, 148.5, 169.7; HRMS (ESI) m/z calcd. for C17H18N3O3 

[M+H] + 312.1343, found 312.1343. Purity 94%. 
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4.22 

4-((±)-trans -2-aminocyclopropyl)phenyl)4-(pyridin-2-yl)piperazin-1-yl)methanone 

hydrochloride 

 

 

Yield 13%, orange oil; IR 3358, 1603, 1545, 1435 cm-1; 1HNMR (CD3OD) δ 1.37-1.43 

(m, 1H), 1.51 (ddd, J = 4.4, 6.6, 11.1 Hz, 1H), 2.48 (ddd, J = 3.5, 6.3, 10.0 Hz, 1H), 

2.93 (ddd, J = 4.4, 7.6, 11.2 Hz, 1H), 3.8 (br s, 8H), 7.06 (t, J = 6.5 Hz, 1H), 7.32 (d, J = 

8.0 Hz, 2H), 7.42 (d, J = 9.2 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 8.0 (dd, J = 1.24, 7.9 

Hz, 1H), 8.05 (dt, J = 1.6, 8.5 Hz, 1H); 13CNMR (CD3OD) δ 14.3, 22.4, 32.2, 44.8, 

47.2, 114.3, 127.8, 128.8, 131.1, 134.5, 137.5, 142.8, 145.7, 153.7, 172.6; HRMS (ESI) 

m/z calcd. for C19H23N4O [M+H]+ 323.1866, found 323.1869. Purity 95%. 

 
4.23 

4-(±)-trans-2-aminocyclopropyl-phenyl)-(4-(pyrimidin-2-yl)piperazin-1-yl)methanone 

hydrochloride 

 

 

 

Yield 22 %, red oil; IR 3353,1678, 1632, 1551 cm-1; 1H NMR (CD3OD) δ 1.39-1.45 (m, 

1H), 1.47 (ddd, J = 4.5, 6.9, 10.1 Hz, 1H), 2.44 (ddd, J = 3.6, 6.4, 10.2 Hz, 1H), 2.92-

2.96 (m, 1H), 3.53 (br s, 2H), 3.82 (br s, 4H), 3.94 (br s, 2H), 6.66 (t, J = 4.7, Hz, 1H), 

7.29 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 8.3 Hz, 2H), 8.35 (d, J = 4.8 Hz, 2H); 13C NMR 

(CD3OD) δ 14.2, 22.4, 32.1, 40.4, 41.7, 111.8, 127.7, 128.6, 135.2, 142.3, 159.1, 162.8, 

172.45; HRMS (ESI) m/z calcd. for C18H22N5O [M+H]+324.1819, found 324.1824. 

Purity 95%. 
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4.24 

4-((±)-trans-2-aminocyclopropyl)phenyl)(4-(phenylsulfonyl) piperazin-1-

yl)methanone hydrochloride 

 

 

Yield 25%, white solid; IR 3392, 1637, 1652, 1551 cm-1; 1H NMR (CD3OD) δ 1.33-

1.38 (m, 1H), 1.45-1.50 (m, 1H), 2.41-2.43 (m, 1H), 2.45 (s, 3H), 2.87-2.89 (m, 1H), 

3.00 (br s, 4H), 3.56 (br s, 2H), 3.77 (br s, 2H), 7.22 (d, J = 7.6 Hz, 2H), 7.30, (d, J = 

7.6 Hz, 2H), 7.44 (d, J = 7.8 Hz, 2H), 7.65 (d, J=7.9 Hz, 2H); 13C NMR (CD3OD) δ 

14.2, 21.5, 22.3, 32.2, 44.2, 47.2, 127.7, 128.6, 128.9, 130.9, 133.8, 134.5, 142.4, 145.6, 

172.2; HRMS (ESI) m/z calcd. for C21H26N3O3S [M+H]+ 400.1689, found 400.1687. 

Purity 97%. 

 
4.25 

4-(±)-trans-2-aminocyclopropyl)phenyl(4-(methylsulfonyl)piperazin-1-yl)methanone 

hydrochloride 

 

 

Yield 37%, white solid; IR 3387, 1614, 1562 cm-1; 1HNMR (CD3OD) δ 1.37-1.42 (m, 

1H), 1.47 (ddd, J = 4.5, 6.8, 10.3 Hz, 1H), 2.42 (ddd, J = 3.6, 6.6, 10.2 Hz, 1H), 2.87 (s, 

3H), 2.89-2.93 (m, 1H), 3.26 (br s, 4H), 3.57 (br s, 2H), 3.8, (br s, 2H), 7.28 (d, J = 8.2 

Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H); 13CNMR (CD3OD) δ 14.2, 22.4, 32.0, 34.8, 46.7, 

68.0, 127.8, 128.6, 134.7, 142.4, 172.3; HRMS (ESI) m/z calcd for C15H24N3O3S 

[M+H]+ 324.1380, found 324.1380. Purity 99%. 
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4.26 

4-((±)-trans-2-aminocyclopropyl) phenyl)4-(2-fluorophenyl)piperazin-1-yl)methanone 

hydrochloride 

 

 

Yield 44%, yellow solid; IR 3387, 1603, 1505, 1470 cm-1; 1H NMR (CD3OD) δ 1.37-

1.42 (m, 1H), 1.44 -1.49 (m, 1H), 2.42 (ddd, J = 3.2, 6.3, 9.7 Hz, 1H), 2.89-2.93 (m, 

1H), 3.16 (br s, 4H), 3.66 (br s 2H), 3.94 (br s 2H), 7.03-7.13 (m, 4H), 7.28 (d, J = 7.6 

Hz, 2H), 7.42 (d, J = 7.8 Hz, 2H); 13C NMR (CD3OD) δ 14.5, 22.4, 32.4, 54.9, 68.0, 

117.7, 122.3, 126.6, 127.9, 128.4, 128.9, 134.3, 135.9, 142.6, 156.6 (d, JF-C = 245.8 Hz), 

172.19; HRMS (ESI) m/z calcd. for C20H23F1N3O [M+H]+ 340.1820, found 340.1821. 

Purity 96%. 

 
4.27 

2-(4-(4-(±)-trans-2-aminocyclopropyl)benzoyl)piperazin-1-yl)benzonitrile 

hydrochloride 

 

 

Yield 39%, white solid; IR 3353, 2856, 2221, 1632, 1562 cm-1; 1H NMR (CD3OD) δ 

1.38-1.42 (m, 1H), 1.44-1.51 (m, 1H), 2.40-2.45 (m, 1H), 2.92 (ddd, J = 4.2, 8.0, 11.0 

Hz, 1H), 3.18 (br s, 2H), 3.56-3.59 (m, 1H), 3.64-3.68 (m, 3H), 3.71-3.74 (m, 2H), 3.95 

(br s, 1H), 7.14 (t, J = 7.4 Hz, 1H), 7.19 (d, J = 8.2 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 

7.43 (d, J = 8.0 Hz, 2H), 7.57-7.61 (m, 1H), 7.65 (dd, J = 2.07, 9.06 Hz, 1H); 13C NMR 

(CD3OD) δ 14.2, 22.4, 32.2, 43.7, 62.2, 107.7, 119.1, 120.6, 124.0, 127.7, 128.7, 135.1, 

135.3, 135.4, 142.3, 156.6, 172.3; HRMS (ESI) m/z calcd. for C21H23N4O [M+H]+, 

347.1866, found 347.1869. Purity 96%. 

This image cannot currently be displayed.

This image cannot currently be displayed.
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8.5.2. Biology evaluation Chapter 4 

All the AML work was conducted under supervision of Dr. Stuart Rushworth at the 

Biomedical Research Centre, University of East Anglia. Dr. Stuart conducted the 

CD34+ cells preparation whereas I performed the flow cytometry evaluations. LNCaP 

viability measurements following LSD1 inhibitors treatment was performed by Dr. 

Simon Crabb’s research group at the University of Southampton, Cancer Research UK. 

The procedures for LNCaP cells culturing and cell viability are reported in Chapter 2. 

8.5.2.1. Cell viability experiments 

For cytotoxicity assays, 100 µL of cells suspension was plated at a density of 

5×104 cells/mL in 96 well plates. Drugs (250 mM stock) were dissolved to the 

appropriate concentration in RPMI complete medium (10×final concentration) and 10 

µL of each concentration was immediately added to the plated cells. Each condition was 

repeated five times. After treatment, cells were cultured for the reported amount of time. 

Cell viability was then measured using CellTiter-Glo® (Promega, Southampton, UK) by 

adding 100 µL of the reagent to each well. After 10 min of incubation at rt, 100 µL of 

cell suspension + reagent were transferred into a white GREINER 96 well plate to 

eliminate stray light. Bioluminescence was recorded in a BMG Cellstar microplate 

reader. The raw data collected were normalised to control (vehicle control).  

For the initial evaluation with TCP, the concentrations used were:  

1 µM, 3 µM, 10 µM, 30 µM and 100 µM. Cells were cultured for 48 h and 72 h. After 

the appropriate interval, viable cells were analysed with CellTiter-Glo®. Luminescence 

values were normalised to pre-treatment levels and statistical significance was 

determined with two-way ANOVA and corrected for multiple comparisons using 

Dunnett’s test.  

For two-dose analyses, enzymatically active compounds were tested after 72 h 

treatment, while compounds 4.10 and 4.11 were tested at 24 h, 48 h, 72 h and 120 h. 

Cell viability was then measured using CellTiter-Glo®. Statistical significance was 

determined as above.  
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To obtain dose-response curves, cells were treated with the appropriate compounds at 

10 µM, 3 µM, 1 µM, 0.3 µM, 0.1µM, 0.03 µM, 0.01 µM, 0.003 µM and 0.001 µM 

concentrations. luminescence values were normalised to pre-treatment levels and data 

fitted with a nonlinear regression model using GraphPad Prism 6. 

8.5.2.2. Washout experiment 

In a 96 well plate, 100 µL of THP-1, HL-60, MV4-11, KASUMI, OCI-AML3 and 

U937 cells suspension were plated at a density of 5×104 cells/mL and treated with 10 

µL of LSD1 inhibitors (200 nM final concentration) 4.10, 4.11 and 4.14 or left 

untreated. Cells were allowed to grow for 6 h and after that time, inhibitor-containing 

medium was removed by centrifugation and replaced with fresh media (inhibitor-free). 

Cells were further cultured for 72 h and then viable numbers measured using CellTiter-

Glo®. Viability values obtained were normalised to pre-treatment levels (vehicle 

control) and data obtained during continuous and pulsed treatment were statistically 

analysed. Statistical significance was determined with one-way-ANOVA and corrected 

for multiple comparisons using Dunnett’s test. 
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8.5.2.3. SDS-PAGE and Immunoblotting 

Solutions and buffers 

•  10% APS: 23 mg ammonium persulfate crystal were dissolved in 230 µL 

ddH2O. The solution was stored at 4 ˚C. 

• 4% (w/v) SDS: 4 g of SDS were dissolved in 90 mL of ddH2O with gentle 

stirring and brought to a final volume of 100 mL with ddH2O. 

• 10% (w/v) SDS: 10 g of SDS were dissolved in 90 mL of ddH2O with gentle 

stirring and brought to a final volume of 100 mL with ddH2O. 

• 1.5 M Tris-HCl, pH 8.8: 27.23 g of Tris-base (18.15 g/100 mL) were dissolved 

in 80 mL of ddH2O. The pH was adjusted to 8.8 with 6 N HCl. Total volume was 

brought to 150 mL with ddH2O and the solution stored at 4 ˚C. 

• 0.5 M Tris-HCl, pH 6.8: 6 g of Tris-base were dissolved in 60 mL of ddH2O 

with gentle stirring. pH was adjusted to 6.8 with 6 N HCl. Total volume was brought to 

100 mL with ddH2O and the solution stored at 4 ˚C. 

• 1×TBS: 6.05 g of Tris Base and 8.76 g of NaCl were dissolved in 800 mL of 

ddH2O. The pH was adjusted to 7.5 with 1 M HCl. The volume was brought to 1 L with 

ddH2O. TBS was kept at 4 ˚C. 

• 20×TBST: 48.4 g of Tris-base, 160 g NaCl, 62 mL of 5 M HCl, 20 mL  

Tween® 20, were dissolved in 1 L of ddH2O (final volume). The pH was adjusted to 8.6 

with 6 N HCl and the solution was stored at rt. 

• 5×SDS running buffer (1 L): 30.0 g of Tris-base, 140 g of glycine and 5 g of 

SDS were dissolved in 1 L of ddH2O. The pH was adjusted to 8.3 and the solution 

stored at 4 ˚C. 

• 1×SDS transfer buffer (1 L): 3.0 g of Tris-base, 14.4 g of Glycine were 

dissolved in 900 mL of ddH2O. Then, 100 mL of MeOH were added before use. 

Transfer buffer was used at 4 ˚C and prepared fresh for each experiment. 

• 2×SDS loading buffer: 1.52 g of Tris-base, 20 mL of glycerol, 2.0 g SDS, 2.0 

mL β-mercaptoethanol and 1 mg Bromphenol Blue were added to 40 mL of ddH2O. 

The pH was adjusted to pH 6.8 with 1N HCl. After gentle stirring, the volume was 

brought to 100 mL. The solution was stored at 4 ˚C. 
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• 14% SDS polyacrylamide gel (resolving gel), recipe for two gels:  

4.2 mL ddH2O, 7.47 mL 30 % acrylamide (BIORAD), 160 µL of 10% SDS, 160 µL 

10% APS and 16 µL Tetramethylethylenediamine (TEMED) were mixed and gently 

vortexed. For each polyacrylamide gel we used ± 5 mL of gel mix. 

•  5% Stacking gel for each gel: 2 mL of 30% acrylamide mix, 3 mL of 0.5 M 

Tris-HCl (pH 6.8), 0.12 mL of 10% (w/v) SDS and 6.76 mL of ddH2O were mixed and 

gently vortexed. 

• Stripping buffer (1 L): 15 g of glycine, 1 g of SDS and10 mL of Tween 20® 

were disolved in 1 L of ddH2O. The pH was adjusted to 2.2 with 1 N HCl. 

Antibodies 

Antibodies for immunoblotting were purchased from Cell Signalling (anti-H3K4me2 

#9725) or Abcam (anti-H3 ab100938, and Goat anti-Rabbit IgG (HRP) ab97080). The 

antibodies from Cell signalling were diluted to 1:1000 in 3% Bovine serum albumin 

(BSA) dissolved in TBST (w/v); the antibodies from Abcam were diluted 1:5000 

(primary) or 1:10000 (secondary) in 3%BSA dissolved in TBST. 

Cell preparation 

KASUMI cells suspension was plated in a 24 well plate at a concentration of 25×105 

cells/mL (1 mL /well). Stock of 4.11 (1 µL, 200 µM), prepared in complete RPMI 

medium, was added to the plated cells for a final concentration of 200 nM. Cells were 

cultured for 2 h, 4 h, 6 h, 48 h and 72 h. After the appropriate time-course, the cell 

culture plate with the treated cells was placed on ice and cells harvested. The wells were 

washed repeated with cold PBS to ensure the collection of all the cells in the well. Cells 

were then centrifuged at 16,000 rpm for 20 min at 4 ˚C and maintained on ice through 

the procedure. The cells pellet was re-centrifuged briefly to discard any remaining 

supernatant. To each sample, 50 µL of 1×SDS loading buffer were added and after a 

gentle mix, the samples were sonicated 3 times for 10-15 seconds each at level 3 in an 

ultrasonic bath SW3H (Fisher). Cellular proteins were maintained at -20 ˚C until 

electrophoresis and heated in a heating block for 10 min at 95 ˚C prior to use. After 

heating, samples were centrifuged at 16,000 rpm in a microcentrifuge for 1 min.  
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Gel electrophoresis  

Protein lysates were separated by electrophoresis using a sodium dodecyl sulfate-

polyacrylamide gel (SDS-PAGE) on a mini (8.6×6.7 cm) format SDS-PAGE gel 

(BIORAD) along with 8 µL of molecular weight marker (Fisher) that served as the 

ladder. Gel electrophoresis was run at 80 V for 20 min for stacking gel and 150 V 

(constant) for the resolving gel (60-70 min).  

Immunoblotting 

After electrophoresis, gels were placed in 1×transfer buffer for 10 min and proteins 

were transferred from the gel to a polyvinylidene difluoride (PVDF) membrane (GE 

healthcare) with 0.2 µm pore size. Prior to the use, the membrane was soaked for 1 min 

in MeOH and then equilibrated for 5 min in transfer buffer. The protein transfer was 

carried out on ice at 300 mA for 100-120 min, in a BIORAD Trans-Blot® system with 

continuous stirring. After the transfer, the blotting membrane was washed briefly with 

TBST and blocked for 1 h at rt with 3% BSA (w/v%) in TBST and incubated overnight 

with the primary Ab. The membrane was washed with TBST repeatedly for a total of 

five washes (five minutes/wash) to remove excess primary Ab and this was followed by 

an  incubation with secondary Ab conjugated with horse-readish peroxidase. Detection 

was performed with Chemoluminescent substrate (Western Pico Super ECL reagent, 

Pierce) 2 mL per membrane and the bands of interest were visualised on an 

ImageQuantTM LAS 4000 Image Analyser. 

Stripping for re-probing 

For loading control, the membrane was re-probed for H3 (total), after a stripping 

procedure following Abcam protocol. 

Stripping procedure 

The stripping buffer (20 mL×membrane) was incubated with the memebrane for 10 min 

(twice). The membrane was then washed for 10 min with PBS (twice) and five minutes 

with TBST (twice). The membrane was blocked with 3% BSA and the remaining steps 

were performed as described above. 
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8.5.2.4. Flow-cytometry 

Flow cytometry was performed in a BD AccuriTM C6 Flow Cytometer and data 

analysed using BD AccuriTM C6 Software version 1.0.264.15. Antibodies for CD86, 

CD14, CD11b and CD34 or Isotype controls were purchased from Myltenyi Biotec. 

CD86 expression 

Cells were plated at a concentration of 25×104 cells/mL (1 mL) in a 24 well plate. The 

plated cells were treated with 1 µL of 200 µM stock of 4.10, 4.11 and 4.14 prepared in 

complete RPMI media to achieve a final concentration of 200 nM, or left untreated 

(vehicle control). Cells were further cultured for 24 h, 48 h and 72 h. After the 

appropriate time-course, 250 µL of treated and untreated cell samples were centrifuged 

for 4 min at 1000 rpm in a pre-cooled centrifuge (4 ˚C). The supernatant was discarded 

and cell pellet was washed twice with filtered PBS (0.2 µm filter), and re-centrifuged. 

Any remaining supernatant was discarded. To the treated samples, 2 µL of anti-CD86 

fluorescent isothiocyanate (FITC) conjugated Ab (clone FM95) diluted in 100 µL of 

PBS were added whereas to the untreated sample, 2 µL of FITC-conjugated human IgG 

diluted in 100 µL of PBS were added. Samples were incubated with the Abs for 20 min 

in the dark at 4 ˚C and washed with ice cold PBS to remove excess Abs. Samples were 

centrifuged at 1000 rpm for 4 min in a pre-cooled centrifuge (4 ˚C). Washing was 

repeated twice and any remaining supernatant discarded. To each pellet, 100 µL of 

filtered PBS were then added and the fluorescence examined by flow cytometry. The % 

of fluorescence increase compared to control (untreated cells, stained with , IgG1 

control) was recorded in three independent experiments and analysed using GraphPad 

Prism 6. Statistical significance was determined with two-way ANOVA and corrected 

for multiple comparisons with Bonferroni’s test. 
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CD11b-CD14 expression  

Cells were plated at a concentration of 25×104 cells/mL (1 mL) in a 24 well plate. The 

plated cells were treated with 1 µL of 200 µM stock of 4.10 or 4.11, prepared in 

complete RPMI media (final concentration of 200 nM) or left untreated. Cells were 

cultured for 48 h. Next, 250 µL of each sample was centrifuged for 4 min at 1000 rpm 

in a pre-cooled centrifuge (4 ˚C). The supernatant was discarded and the cell pellet was 

washed twice with filtered PBS and re-centrifuged. Cells were then co-stained with 2 

µL of anti-CD14 (FITC- conjugated) and 2 µL of anti-CD11b (phycoerythrin -PE 

conjugated) diluted in 100 µL of PBS. Untreated samples were co-stained with 

irrelevant antibodies (Isotype controls, FITC-conjugated mouse IgG or PE conjugated) 

also diluted in 100 µL of PBS. Samples were incubated for 20 min in the dark and 

excess Abs were washed with ice cold PBS. Samples were centrifuged at 1000 rpm for 

4 min in a pre-cooled centrifuge (4 ˚C). Washing was repeated twice and any residual 

supernatant discarded. To each sample, 100 µL of filtered PBS was added and the 

fluorescence analysed by flow cytometry. The % increase in fluorescence compared to 

control (untreated cells, stained with Isotype controls) was recorded in three 

independent experiments and analysed using GraphPad Prism 6. Statistical significance 

was determined with two-way ANOVA and corrected for multiple comparisons with 

Bonferroni’s test. 

CD34+ expression 

Hematopoietic CD34+ cells were isolated from AML patient’s volunteers following 

informed consent. CD34+ cells were isolated from bone marrow mononucleate cells 

using human CD34+ MicroBead selection kit (Miltenyi Biotec). CD34+ cells were 

incubated with increasing concentration of 4.10 and 4.11 and the cells were further 

cultured for 48 h and 72 h. CD34+ cells were treated as above and stained with anti 

CD34 FITC conjugated antibody (clone 8G12). The number of cells expressing the 

CD34 surface marker were counted using BD AccuriTM C6 Software. For CD34+ 

experiments, at least 3 different donor samples were used to obtain the results presented. 

Cell type was confirmed by microscopy and flow cytometry. Statistical significance was 

determined with one-way ANOVA and corrected for multiple comparisons with 

Dunnett’s test. 
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8.6. Experimental procedures Chapter 5 

Procedures for the synthesis of compounds are the same as the ones reported for 

Experimental procedures in Chapter 4. 

 

5.1 
tert-butyl-(±)-trans-2-(4-phenethyl carbamoyl)phenylcyclopropyl carbamate  

 

 

 

Yield: 63%, white solid; IR 3393, 3376, 1701, 1681, 1516 cm-1; 1HNMR (CDCl3) δ 

1.17-1.20 (m, 2H), 1.44 (s, 9H), 2.05 (td, J=3.0, 7.7 Hz, 1H), 2.68-2.77 (m, 1H), 2.92 (t, 

J=7.0 Hz, 2H), 6.73 (q, J=7.2 Hz, 2H), 4.87 (br s, 1H), 6.08 (br s, 1H), 7.13 (d, J=8.1 

Hz, 2H), 7.21-7.24 (m, 3H), 7.39-7.34 (m, 2H), 7.58 (d, J=8.4 Hz, 2H); 13CNMR 

(CDCl3) δ 16.8, 22.1, 28.5, 33.1, 35.8, 41.2, 80.8, 125.39, 125.5, 125.8, 127.6, 127,76, 

131.21, 137.9, 143.6, 156.7, 166.2; HRMS m/z calcd for C23H29N2O3 [M+H] + 381.2173, 

found 381.2173. Purity 98%. 

  

This image cannot currently be displayed.
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5.2 

tert-butyl (±)-trans-2-(4-(2-thiophenethyl carbamoyl)phenylcyclopropyl carbamate 

 

 

 

Yield 51%, white solid; mp; 94 ˚C; IR: 3358, 3334.72, 1685, 1448.65 cm-1;  
1HNMR (CDCl3) δ 1.61-1.19 (m, 2H), 1.43 (s, 9H), 2.02-2.05 (m, 1H), 2.68-2.76 (m, 

1H), 3.06 (t, J= 6.4 Hz, 2H), 3.62 (q, J=6.4 Hz, 2H), 4.93 (br s, 1H), 6.33 (br s, 1H), 

6.83-6.87 (m, 1H), 6.95 (dd, J=3.4, 4.9 Hz, 1H), 7.10-7.16 (m, 3H), 7.61 (d, J=8.3 Hz, 

2H); 13CNMR (CDCl3) δ 15.5, 23.9, 27.5, 28.9, 31.8, 40.12, 78.6, 122.9, 124.3, 125.3, 

125.8, 125.9, 131.0, 140.2, 143.6, 155.1, 166.13; HRMS m/z calcd C21H27N2O3S 

[M+H] + 387.1737, found 387.1737. Purity 99%. 

 

5.4 

tert-butyl-(±)-trans-2-phenylcyclopropyl) carbamate  

 

 

 

Yield 72%, white solid; 1HNMR (CDCl3) δ: 1.12-1.19 (m, 2H), 1.45 (s, 9H), 2.03 (ddd, 

J=2.9, 6.3, 9.4 Hz, 1H), 2.71-2.74 (m, 1H), 7.12 (d, J=8.04 Hz, 2H), 7.17 (d, J=7.2 Hz, 

2H), 7.23-7.27 (m, 1H). 

The spectroscopic data are consistent with that175 reported in the literature. 

  

This image cannot currently be displayed.

This image cannot currently be displayed.
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5.5 

tert-butyl-(±)-trans)-2-(4-(benzylcarbamoyl) phenyl)cyclopropyl carbamate) 

 

 

 

Yield 67%, white solid; 1HNMR (CDCl3) δ 1.20-1.24 (m, 2H), 1.46 (s, 9H), 2.06-2.11 

(m, 1H), 2.74-2.79 (m, 1H), 4.65 (d, J = 6.4 Hz, 2H), 6.40 (br s, 1H), 7.8 (d, J = 8.7 Hz, 

2H), 7.29-7.35 (m, 1H), 7.46-7.39 (m, 4H), 7.14 (d, J = 7.8 Hz, 2H); 13CNMR (CDCl3) 

δ 14.4, 16.9, 23.0, 28.7, 44.1, 68.0, 126.5, 127.0, 127.7, 128.0, 129.0, 132.0, 138.4, 

144.9, 156.2, 167.1. ES+ MS m/z 367 [M+H]+.  

The compound is reported in the literature,178 although characterisation data are not 

provided. For the compound was not possible to achieve the HRMS data. 

 
5.6 
tert-butyl (±)-trans-2-(4-(2-(1H-indol-3-yl) ethyl)carbamoyl)phenylcyclopropyl 

carbamate  

 

Yield 47%, pale yellow solid; mp 120 ˚C; IR 3372, 3314, 1528 cm-1; 
1HNMR (CDCl3) δ 1.14-1.19 (m, 2H), 1.45 (s, 9H), 2.00-2.06 (m, 1H), 2.65-2.66 (m, 

1H), 3.05 (t, J=7.04 Hz, 2H), 3.75 (q, J = 6.5 Hz, 2H), 6.31 (br s, 1H), 6.9 (br s, 1H), 

7.06 (d, J = 7.8 Hz, 2H), 7.11 (t, J = 7.0, 1H), 7.19 (t, J = 7.0, 1H), 7.36 (d, J = 8.3 Hz), 

7.5 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 7.8 Hz, 1H), 8.4 (br s, 1H); 13CNMR (CDCl3) δ 

14.5, 16.6, 21.0, 25.2, 28.5, 40.3, 80.0, 111.4, 112.9, 118.6, 119.6, 122.2, 122.4, 126.3, 

127.0, 127.4, 132.4, 136.5, 144.7, 156.3, 167.3; HRMS m/z calcd. C25H30N3O3 [M+H]+ 

420.2282, found 420.2284. Purity 98%. 

  

This image cannot currently be displayed.

This image cannot currently be displayed.
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4.6a 

Methyl 4-(±)-trans -2-((ethoxycarbonyl) amino)cyclopropyl)benzoate 

 

 

Yield 57%; white solid; IR 3324, 1718, 1684, 1614, 1522 cm-1; 1H NMR (CDCl3) δ 

1.22-1.29 (m, 5H), 2.11 (ddd, J = 3.2, 6.5, 9.4 Hz, 1H), 2.75-2.82 (m, 1H), 3.90 (s, 3H), 

4.13 (q, J = 7.0 Hz, 2H), 4.97 (br s, 1H), 7.17 (d, J = 8.3 Hz, 2H) 7.93 (d, J = 8.3, 2H); 
13C NMR (CDCl3) 14.6, 16.8, 33.3, 41.1, 52.2, 61.7, 126.3, 127.8, 129.5, 146.0, 155.8, 

166.7; ES+ MS m/z 264 [M+H]+. 

The compound is reported in the literature,178 although characterisation data are not 

provided. For this compound was not possible to achieve HRMS data. 

 

4.7a 

4-(±)-trans-2-(ethoxycarbonyl-amino) cyclopropyl)benzoic acid 

 

 

 

Yield 64%; white solid; IR 3318, 3012, 1730, 1533 cm-1; 1H NMR (CD3OD) δ 1.21-

1.28 (m, 5H), 2.1 (ddd, J = 3.2, 7.0, 10.8 Hz, 1H), 2.74-2.78 (m, 1H), 4.13 (q, J = 7.0 

Hz, 2H), 4.08 (q, J = 7.0 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H) 7.93 (d, J = 8.4 Hz, 2H); 13C 

NMR (CD3OD) δ 14.6, 16.8, 34.2, 42.1, 61.7, 127.2, 128.7, 129.7, 130.6, 148.6, 159.7, 

168.4; HRMS m/z calcd. for C13H16N1O4 [M+H] + 250.1074, found 250.1077. 

The compound is reported in the literature,178 although characterisation data are not 

provided. 

  

This image cannot currently be displayed.

This image cannot currently be displayed.
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5.7 

ethyl-(±)-trans-2-(4-(phenethylcarbamoyl)phenyl)cyclopropylcarbamate 

 

 

 

Yield: 54%, white solid; IR: 3312, 3191, 1689, 1637, 1545, 1510 cm-1; 1H NMR 

(CDCl3) δ 1.20-1.27 (m, 5H), 2.07-2.11 (m, 1H), 2.72-2.76 (m, 1H), 2.92 (t, J = 6.9 Hz, 

2H), 3.69 (q, J = 6.9, Hz, 2H), 4.12 (q, J = 6.9 Hz, 2H), 7.14 (d, J = 7.9 Hz, 2H), 7.19-

7.24 (m, 3H), 7.28-7.34 (m, 2H), 7.58 (d, J = 7.8 Hz, 2H); 13C NMR (CDCl3) δ 14.6, 

16.4, 25.2, 33.1, 35.7, 41.1, 61.0, 126.6, 126.7, 126.9, 128.7, 128.8, 132.4, 138.8, 144.4, 

157.1, 167.2; HRMS m/z calcd. for C21H25N2O3 [M+H] + 353.1860, found 353.1860. 

Purity 98%. 

 
5.8 

ethyl(±)-trans-2-(4-(2-(thiophenethyl)carbamoylphenyl)cyclopropyl carbamate 

 

 

 

Yield 49%; white solid; IR 3318, 3214, 1689, 1655, 1551, 1510 cm-1; 1H NMR (CDCl3) 

δ 1.20-1.23 (m, 5H), 2.06-2.10 (m, 1H), 2.70-2.74 (m, 1H), 3.13 (t, J = 6.5 Hz, 2H), 

3.69 (q, J = 7.04 Hz, 2H), 4.11 (q, J = 6.5 Hz, 2H), 6.85 (dd, J = 0.9, 3.3 Hz, 1H), 6.94 

(dd, J = 3.4, 5.1 Hz, 1H), 7.13-7.17 (m, 3H), 7.61 (d, J = 8.1 Hz, 2H); 13C NMR 

(CDCl3) δ 14.6, 16.4, 25.2, 29.9, 33.1, 41.3, 61.0, 124.1, 125.5, 126.6, 127.0, 127.1, 

132.3, 141.3, 141.5, 157.1, 167.2; HRMS m/z calcd. C19H23N2O3S [M+H]+ 359.1424, 

found 359.1425. Purity 98%. 

  

This image cannot currently be displayed.

This image cannot currently be displayed.
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8.6.1. Biological evaluation 

General procedures for biological experiments are reported in Chapter 4. 

Enzymatic assay protocol is reported in Chapter 3, whereas the procedures for cell 

viability using CellTiter-Glo®, washout, Western blot, CD11b-CD14, CD86 and CD34 

analyses are reported in Chapter 4.  

Cell viability on prostate cancer lines was performed in the laboratory of Dr. Wafa Al-

Jamal at University of East Anglia, Pharmacy department. Cell viability on myeloma 

cell lines were performed at Biomedical Research Centre, University of East Anglia in 

the laboratory of Prof. Kristian Bowles. 

8.6.1.1. Cell viability on prostate cancer lines (MTT assay) 

Briefly, LNCaP, PC3 and DU145 cells were trypsinised, stained with Trypan Blue (0.4 

%, 1:1) and counted using a hemocytometer. Cells were then seeded in 96-well plates 

(LNCaP 1.5×104 cells/well, PC3 and DU145 9×103 cells/well) in complete medium 24 

h prior incubation. The following day, 4.11 stock (100 mM) diluted in complete 

medium was added to the cells. Untreated cells were used as a 100 % viability control. 

After 72 incubation, cells were incubated with MTT solution at 0.84 mg/mL final 

concentration for 2 h. Formazan crystals were dissolved in 200 µL DMSO and 

absorbance was read at 560 nm using FLUOstar Omega [BMG Labtech (UK)] plate 

reader. Six replicates per condition were used. The results were expressed as the % of 

cell viability (average ± SD) and normalised to control cells (pre-treatment levels). 
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8.7. Experimental procedures Chapter 6 

6.2 

4-(hex-5-yn-1-yloxy) benzaldehyde347  

 

 

 

To solution of 4-hydroxybenzaldehyde 6.1 (5 g, 40.9 mmol, 1 equiv.) in anhydrous 

DMF (60 mL), 6-chloro-hex-1-yne (7.1 g, 7.4 mL, 61.4 mmol, 1.5 equiv.), KI (3.4 g, 

20.5 mmol, 0.5 equiv.) and K2CO3 (11.3 g, 81.8 moles, 2 equiv.) were added with 

stirring. The mixture was heated at 80 ˚C and stirred for 3 days. After cooling to rt, the 

reaction mixture was diluted in EtOAc (375 mL) washed with H2O (175 mL× 3) and 

brine (125 mL×3). The organic layers were combined and dried over MgSO4. After 

filtration, the organic layers were concentrated in vacuo and precipitated in diethyl ether 

and hexane to give 6.2 (7.2 g, 35.6 mmol, 87%) as a white crystalline solid: 1H NMR 

(CDCl3) δ 1.70-1.77 (m, 2H), 1.92-1.99 (m, 3H), 2.30 (td, J=2.5, 6.5 Hz 2H), 4.08 (t, J= 

6.7 Hz, 2H), 6.99 (d, J=8.5 Hz, 2H), 7.83 (d, J=8.6 Hz, 2H), 9.88 (s, 1H); HRMS (ESI) 

m/z calcd. for C13H15O2 [M+H] + 203.1067, found 203.1065; 

The spectroscopic data are consistent with that347 previously reported.  

 

6.3 

(E)-ethyl 3-(4-(hex-5-yn-1-yloxy) phenyl) acrylate177 

 
 

 
Triethyl phosphonoacetate (8.1 g, 7.2 mL, 36.2 mmol, 1.1 equiv.) was added dropwise 

over 15 min to a stirring suspension of KOt-Bu (4.06 g, 36.2 mmol, 1.1 equiv.) in 

anhydrous THF (100 mL) at -5 ˚C; the mixture was stirred for 45 min. After that time, 

6.2 (7.2 g, 33.2 mmol) previously dissolved in anhydrous THF (35 mL), was added 

dropwise to the stirring reaction. The reaction was warmed to rt and allow stirring for 

This image cannot currently be displayed.
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further 16 h. After completion, the reaction mixture was poured into iced H2O (100 mL) 

and extracted with EtOAc (100 mL×3). The organic layers were combined, and washed 

with sat. NaHCO3 (100 mL), H2O (100 mL) and brine (100 mL) and dried over MgSO4. 

Concentration in vacuo afforded 6.3 (9.7 g, 98%) as a white solid. The compound was 

used in the next step without further purification: 1H NMR (CDCl3) δ 1.33 (t, J=7.5 Hz, 

3H), 1.68-1.75 (m, 2H), 1.68-1.93 (m, 2H), 1.97 (t, J=2.48 Hz, 1H), 1.33 (td, J=2.1, 7.0 

Hz, 2H), 4.0 (t, J=6.3 Hz, 2H), 4.24 (q, J=7.2, 2H), 6.3 (d, J=16.4 Hz, 1H), 6.8 (d, J=8.7 

Hz, 2H), 7.45 (d, J=8.7 Hz, 2H), 7.63 (d, J=16.0 Hz, 1H); 13C NMR (CDCl3) δ 14.4, 

18.1, 24.9, 28.2, 60.3, 67.4, 68.7, 83.9, 115.4, 116.0, 127.1, 129.7, 144.3, 160.7, 167.4; 

HRMS (ESI) m/z calcd. for C17H21O3 [M+H] + 273.1485, found 273.1487. 

 

6.4 

(±)-trans-ethyl2-(4-(hex-5-yn-1-yloxy)phenyl)cyclopropanecarboxylate172 

 

 

 

Trimethyl sulfoxomium iodide (11.7 g, 53.3 mmol, 1.2 equiv.) was added in small 

portions to a suspension of NaH (2.13 g, 53.3 mmoles, 60% in mineral oil, 1.21 equiv), 

in dry DMSO (45 mL) and the stirred for 45 min. The olefin 6.3 (9.6 g, 44.4 mmol, 1 

equiv.) was then added dropwise with mixing and the reaction stirred at rt overnight. 

After completion, the reaction mixture was poured into iced H2O (70 mL) and extracted 

with EtOAc (70 mL×10). The organic phases (700 mL) were combined and washed 

with sat. NaHCO3 (200 mL) H2O (200 mL), brine (200 mL) and dried over MgSO4. 

Purification with silica gel column chromatography (Hexane/EtOAc, 8:2) afforded 6.3 

as a white solid (4.9 g, 39%):1H NMR (CDCl3) δ 1.23-1.29 (m, 3H), 1.52-1.57 (m, 1H), 

1.67-1.74 (m, 2H), 1.81 (ddd, J=4.1, 5.4, 8.1 Hz, 2H), 1.85-1.92 (m, 2 H), 1.96 (t, 

J=2.84 Hz, 1H), 2.27 (td, J=2.8, 7.4 Hz, 2H), 2.48 (ddd, J=4.3, 6.8, 9.5 Hz, 1H), 3.95 (t, 

J=6.0 Hz, 2H), 4.16 (q, J=7.1 Hz, 2H),6.80 (d, J=8.3 Hz, 2H), 7.0 (d, J=8.3 Hz, 2H); 
13C NMR (CDCl3) δ 14.3, 16.7, 18.1, 23.6, 25.0, 25.8, 28.2, 60.6, 67.3, 68.6, 84.0, 

This image cannot currently be displayed.
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114.5, 127.4, 131.8, 157.7, 174.02; HRMS (ESI) m/z calcd. for C18H23O3 [M+H]+ 

287.1642, found 287.1645. 

 
6.5 

(±)-trans-2-(4-(hex-5-yn-1-yloxy)phenyl)cyclopropanecarboxylic acid 

 

 

 

Compound 6.4 (4.9 g, 17.1 mmol) was taken up in aqueous NaOH (2 M, 8 mL) and 

MeOH (8 mL). The reaction was monitored by TLC and after 3 h, the solution was 

acidified with 2 N HCl and the salt filtration afforded compound 6.4 (4.3 g, 98%), as a 

white solid. The compound was used in the following step without purification: IR 

3283, 1701, 1513 cm-1; 1H NMR (CD3OD) δ 1.10-1.15 (m, 1H), 1.38-1.43 (m, 1H), 

1.63-1.61 (m, 3H), 1.82-1.90 (m, 1H), 2.19-2.27 (m, 3H), 2.32 (ddd, J=4.3, 6.1, 9.5 Hz, 

1H), 3.9 (t, J=6.4 Hz, 2H), 6.8 (d, J=8.5 Hz, 2H), 7.02 (d, J=8.5 Hz, 2H). 13C NMR 

(CD3OD) δ 16.8, 18.9, 25.9, 26.4, 26.9, 29.5, 68.5, 69.7, 84.7, 115.5, 120.3, 128.1, 

134.1, 143.2, 158.9; HRMS (ESI) m/z calcd. for C16H17O3 [M−H] − 257.1183, found 

257.1181. 

 

6.7 

(±)-trans-2-(4-(hex-5-yn-1-yloxy)phenyl)cyclopropanamine 

 

 

 

The acid 6.5 (4.3 g, 16.6 mmol, 1 equiv.), diphenylphosphoryl azide (5.0 g, 3.93 mL, 

16.6 mmol, 1.1 equiv.) and triethylamine (2.5 g, 3.5 mL, 24.9 mmol, 1.5 equiv.) were 

combined in tert-butanol (50 mL) under argon, heated at reflux (80 ˚C) and allowed to 

react for 72 h. After that time, the reaction was cooled to rt and then diluted with EtOAc 

(70 mL) and washed with saturated Na2CO3 solution (100 mL×2). The organic layer 

was separated and the aqueous layer further extracted with EtOAc (70 mL). The 

This image cannot currently be displayed.
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organics layers were combined (140 mL), washed with sat. NaHCO3, (100 mL), H2O 

(100 mL) and brine (100 mL) and dried over MgSO4. The crude product was 

concentrated in vacuo to afford a browm oil which was purified by colum 

chromatography (Hexane/EtOAc, 8:2). Intermediate 6.6 (2.6 g, 8 mmol, 49%) was 

obtained as a pale yellow solid and treated with 4 N HCl aqueous (7 mL) overnight with 

cooling. The deprotected amine was co-evaporated with acetonitrile and purified by 

preparative RP-HPLC. Purification afforded 6.7 as a pale yellow solid (1.6 g, 78%): IR 

3297, 2348,1600, 1512, 1454 cm-1; 1H NMR (CD3OD) δ 1.22-1.29 (m, 1H), 1.30-1.37 

(m, 1H), 1.63-1.71 (m, 2H), 1.82-1.90 (m, 2H), 2.20-2.26 (m, 3H), 2.30 (ddd, J=3.5, 

6.5, 10.2 Hz, 1H), 2.75 (ddd, J=3.5, 4.2, 7.1 Hz, 1H), 3.96 (t, J=6.3 Hz, 2H), 6.85 (d, 

J=8.5 Hz, 2H), 7.07 (d, J=8.5 Hz, 2H); 13C NMR (CD3OD) δ 13.5, 18.9, 22.1, 26.4, 

29.7, 31.8, 68.8, 70.4, 84.7, 115.7, 128.6, 131.6, 159.9; HRMS (ESI) m/z calcd. for 

C15H20NO [M+H]+ 230.1539, found 230.1539. Purity 95%. 

 

8.7.1. Biology and in vitro click chemistry 

The procedure for the enzymatic assay with Amplex®Red and cytotoxicity evaluation 

were performed according to the procedures described for Chapter 4 in this section. 

MAO enzymatic evaluation was performed in the laboratory of Prof. Haüfe at the 

University of Münster.  

8.7.2. In situ labelling of purified human recombinant His-LSD1 

8.7.2.1. Cycloaddition reaction, protein electrophoresis and in-gel 

fluorescence scanning325 

Human recombinant His-tagged LSD1 stock (0.38 mg/mL) was diluted to 16.5 µg, 3.5 

µg in 50 mM Potassium phosphate buffer pH 7.5 (1:1 mix of monobasic and dibasic) in 

a final volume of 44 µL. The protein was incubated with 10 µL of probe 6.7 or 6.8 

(dissolved in phosphate buffer pH 7.5) at concentration of 5 µM and 10 µM for 1 h at rt. 

After that time, TAMRA-azide (ThermoFisher) (1 µL/reaction, 5 mM stock in DMSO) 

was added to each sample, followed by 1 mM TCEP (1 µL/reaction, 50 mM stock in dd 



  Experimental procedure for Chapter 6 

 313

H2O), and 100 µM TBTA (3 µL/reaction, 1.7 mM stock in DMSO:tert-BuOH 1:4 

(v/v)). Samples were vortexed and 1 mM of CuSO4 (1 µL/reaction, 50 mM stock in 

H2O) was added to initiate the 1,3-cycloaddition reactions giving the total reaction 

volume of 50 µL. Samples were allowed to react at rt for 1 h in a centrifuge (350 rpm). 

The reaction was quenched with 50 µL 2 × SDS loading buffer and samples denaturated 

for 5 min at 95 ˚C on a heating block. Labelled protein samples (50 µL sample) were 

loaded on a 10% polyacrylamide gel along with 10 µL of ladder (PageRuler™ 

Prestained NIR Protein Ladder) and fluorescence was recorded with ImageQuantTM 

LAS 4000 Image Analyzer with a Fujinon VRF43LMD3 Lens and a 575DF20 filter. 

Gels were then subjected to Coomassie Brilliant Blue (Fisher) staining to verify 

equivalent protein loading.  

8.7.2.2. Competition assay 

Human recombinant His-tagged LSD1 stock (0.38 mg/mL) was diluted to 16.5 µg, in 50 

mM Potassium phosphate buffer pH 7.5 (1:1 mix of monobasic and dibasic) and 

incubated with probes 6.7 or 6.8 (10 µM) and 200 nM of LSD1 inhibitors 4.10 or 4.11.  

After that time, Cycloaddition reaction (using TAMRA-azide) protein electrophoresis 

and in-gel fluorescence scanning were performed as above.  

8.7.2.3. Labelling experiments with AML cells325 

THP-1, HL-60 and MV4-11 were plated at a concentration of 5×106 on Petri dishes 

(150×25 mm) with complete RPMI 1640 media, 10% FCS, 1% L-glutamine (2mM) and 

1% Pens/Strep. Probes 6.7 and 6.8 were diluted at a concentration of 5 µM or 10 µM 

and added to the plated cells. Cells were allowed to culture for 24 or 72 h (37˚ C, 5% 

CO2). After that time, cells were transferred on a centrifuge tube and centrifuged at 

15000 rpm for 4 min at 4 ˚C. The pellet was washed twice with PBS to remove the 

excess of probe and any supernatant remaining discarded. To the pelleted cells, 10 mL 

of PBS was added and cells centrifuged for 1 h at 4 ˚C. Cell pellet was suspended in 500 

µL of PBS and lysed by sonication. Soluble and insoluble fractions were separated by 

centrifugation at 15000 rpm 30 min 4 ˚C. Insoluble pellets were suspended in 500 µL 
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PBS by sonication under ice cooling. Protein concentration was measured (BCA kit, 

Thermo Fisher) and adjusted to 2 mg/mL with PBS. The samples (44 µL probe-bound 

cell lysate) were subjected to CC and SDS-PAGE as described above.  

Amplex®Red was used to measure the compounds activity. The details of the 

experiment are reported in Chapter 3. 

.
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8.8. Experimental procedures for Chapter 7 

The enzymatic evaluations and cell culturing procedures were performed according to 

the description reported in Chapter 3 and Chapter 4 sections. 

Cytotoxicity assay 

For cytotoxicity assays, 100 µL of AMLs suspension was plated at a density of 

5×104 cells/mL in 96 well plates. Drugs (250 mM stock) were dissolved to the 

appropriate concentration in RPMI complete medium (10× final concentration) and 10 

µL of each concentration (0.001 µM, 0.003 µM, 0.1 µM, 0.3 µM, 1 µM, 3 µM, 10 µM 

and 30 µM) was immediately added to the plated cells. Each condition was repeated 

five times. After 72 h treatment, cell viability was measured using CellTiter-Glo® 

(Promega, Southampton, UK) by adding 100 µL of the reagent to each well. After 10 

min of incubation at rt, 100 µL of cell suspension + reagent were transferred into a 

white GREINER 96 well plate to eliminate straight light. Bioluminescence was 

recorded in a BMG Cellstar microplate reader. The raw data collected were normalised 

to control (vehicle control) and dose-response curve determined with GraphPad 6.  

CD86 

1 mL of cell suspension (density 1×106 ) was plated in a 24 well plate and treated with 3 

µM of 7.2. Cells were stimulated for 48 h at 37 ˚C in an atmosphere of 5% CO2. After 

that time, cells were harvested in ice pelleted at 300 ×g for 10 min at 4 ˚C and the 

supernatant discarded. The pellet was re-suspended in 100 µL of cold PBS (Phosphate 

buffer saline, Fisher) and 10µL of CD86-FITC antibody (Miltenyi Biotec) was added. 

The cells incubated in the dark at 2 ˚C for 10 min. The antibody was then washed with 2 

mL of cold PBS and centrifuged at 300 ×g for 10 min at 4 ˚C. The supernatant was 

aspirated completely and then 1 mL of PBS was added. Samples were analysed by flow 

cytometry (Becton Dickinsons FACSCalibur I) 

Raw data were collected and standard deviation was measured. Result were expressed 

as the mean of the different experiments and analysed with GraphPad Prism 6. 
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Western blot  

MV4-11 cells suspension was plated in a 24 well plate at a concentration of 25×105 

cells/mL (1 mL /well). Stock of 7.7 was prepared in complete RPMI medium and was 

added to the plated cells for final concentrations of 0.3 µM, 1 µM, 3 µM and 6 µM. 

Cells were cultured for 72 h and then processed as described in Chapter 4. Blotting 

membranes were probed for H3K4me2, H3 (total) and β-actin (4 µL in 20 mL of 

3%BSA). Visualisation was performed as described in Chapter 4. 

 



 

  

 

 

Appendix 

1. NMR spectra 
 

1H NMR SPECTRUM of 4.2 
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1H NMR SPECTRUM of 4.3 
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1H NMR and 13C NMR SPECTRA of 4.4 
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1H NMR and 13C NMR SPECTRA of 4.5 
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1H NMR SPECTRUM of 4.6 
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1H NMR and 13C NMR SPECTRA of 4.7 
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1H NMR and 13C NMR SPECTRA of 4.9 
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1H NMR and 13C NMR SPECTRA of 4.10 
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1H NMR and 13C NMR SPECTRA of 4.11 
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1H NMR and 13C NMR SPECTRA of 4.12 
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1H NMR and 13C NMR SPECTRA of 4.13 
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1H NMR and 13C NMR SPECTRA of 4.14 
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1H NMR and 13C NMR SPECTRA of 4.15 
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1H NMR NMR and 13C NMR SPECTRA of 4.16 
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1H NMR and 13C NMR SPECTRA of 4.17 

 

 

 

 

 

 

 

  

This image cannot currently be displayed.

This image cannot currently be displayed.



   

 341

1H NMR and 13C NMR SPECTRA of 4.18 
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1H NMR and 13C NMR SPECTRA of 4.20 
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1H NMR and 13C NMR SPECTRA of 4.21 
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1H NMR and 13C NMR SPECTRA of 4.22 
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1H NMR and 13C NMR SPECTRA of 4.23 
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1H NMR and 13C NMR SPECTRA of 4.24 
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1H NMR and 13C NMR SPECTRA of 4.25 

 

 

 

 

This image cannot currently be displayed.

This image cannot currently be displayed.



   

 353

 

  

This image cannot currently be displayed.



  

  354

1H NMR and 13C NMR SPECTRA of 4.26 
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1H NMR and 13C NMR SPECTRA of 4.27 
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1H NMR SPECTRUM of 5.1 
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1H NMR and 13C NMR SPECTRA of 5.2 
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1H NMR SPECTRUM OF of 5.5 
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1H NMR and 13C NMR SPECTRA of 5.6 

 

 

 
  

This image cannot currently be displayed.

This image cannot currently be displayed.



   

 363

1H NMR SPECTRUM of 4.6a 
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1H NMR and 13C NMR SPECTRA of 5.7 
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1H NMR and 13C NMR SPECTRA of 5.8 
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1H NMR and 13C NMR SPECTRA 6.3 
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1H NMR AND 13C NMR SPECTRA 6.4 
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1H NMR and 13C NMR SPECTRA 6.5 
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1H NMR and 13C NMR SPECTRA 6.7 
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2. HPLC traces of final products 

Chapter 4 

4.9 

 

 Time Area % 

1 1.671 0.802 

2 10.213 1.316 

3 10.523 96.473 

4 15.009 0.511 

5 16.314 0.299 

6 16.652 0.599 

4.10 

 

 Time Area % 

1 1.658 0.027 

2 12.418 0.048 

3 12.729 0.107 

4 13.138 99.269 

5 14.320 0.021 

6 14.765 0.528 
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4.11 

 
 Time Area % 

1 5.918 0.097 

2 10.864 95.562 

3 11.317 1.291 

4 11.79 0.019 

5 12.829 0.048 

6 12.963 1.117 

7 13.612 1.308 

8 16.595 0.558 

4.12 

 

 Time Area % 

1 1.693 0.465 

2 1.834 0.112 

3 14.181 99.423 
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4.13 

 

 Time Area % 

1 1.624 0.301 

2 1.711 0.202 

3 14.714 95.295 

4 16.965 2.724 

5 19.289 1.487 

4.14 

 
 Time Area % 

1 1.672 0.018 

2 10.513 96.723 

3 11.741 1.098 

4 12.503 0.677 

5 19.144 0.384 
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4.15 

 

 Time Area % 

1 9.186 1.687 

2 13.625 96.963 

3 14.142 1.233 

4 23.731 0.117 

 

4.16 

 
 Time Area % 

1 12.228 97.504 

2 13.844 0.575 

3 15.481 0.281 

4 15.639 0.123 

5 16.293 0.127 

6 20.117 1.390 
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4.17 
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1 3.617e-2 0.032 

2 6.620 0.700 

3 9.322 1.192 

4 12.305 0.041 
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6 14.307 1.078 

7 15.756 1.041 

8 16.184 0.189 
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1 3.628e-2 0.010 

2 8.904 1.343 

3 11.988 97.936 

4 12.311 0.0865 
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4.19 

 
 Time Area % 

1 1.722 0.077 

2 1.786 0.040 

3 10.826 0.369 

4 10.976 0.579 

5 12.246 94.008 

6 14.002 1.026 

7 14.676 2.031 

8 15.201 0.914 

9 17.795 0.355 
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 Time Area % 

1 10.624 98.223 

2 13.832 1.343 

3 19.1 0.460 
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4.21 

 
 Time Area % 

1 1.568 0.196 

2 11.259 94.045 

3 11.484 2.064 

4 12.082 0.535 

5 13.72 2.499 

6 13.921 0.399 

7 16.354 0.262 

4.22 

 
 Time Area % 

1 10.277 3.273 

2 10.912 95.135 

3 11.232 1.592 
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4.23 

 
 Time Area % 

1 6.821 0.960 

2 10.913 94.617 

3 11.143 1.741 
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 Time Area % 

1 1.619 2.831 

2 13.618 97.169 

 

  

This image cannot currently be displayed.

This image cannot currently be displayed.



  

  384

4.25 

 
 Time Area % 

1 10.29 0.077 

2 11.469 98.531 

3 19.045 0.238 
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1 1.625 0.754 
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3 1.847 0.053 
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4.27 

 

 Time Area % 

1 5.878 0.467 

2 6.138 2.030 

3 10.104 95.501 

4 10.472 1.000 

5 12.308 1.002 

Chapter 5 

5.1 
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5.2 

 

 Time Area % 

1 12.003 0.040 

2 12.25 98.585 

3 12.685 0.258 

4 13.394 0.965 

5 13.576 0.151 

5.6 

 

 Time Area % 

1 5.669e-2 0.115 

2 14.723 1.1341 

3 15.379 97.758 

4 15.934 0.599 

5 18.326 0.188 
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5.7 

 
 Time Area % 

1 2.077 0.496 

2 14.699 1.696 

3 15.099 97.808 

5.8 

 
 Time Area % 

1 14.626 1.536 

2 15.068 98.464 
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Chapter 6 

6.7 

 
 Time Area % 

1 12.008 95.356% 

2 12.808 1.426 

3 12.944 2.047 

4 14.91 1.171 
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