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ABSTRACT 

Agriculture is a major contributor to environmental pollution. About quarter of water bodies in 

England are classified as being good ecological and chemical status. To tackle agricultural 

pollution, a range of on-farm mitigation measures are recommended. The overall aim of this 

study was to assess the effectiveness of cover cropping and reduced cultivation methods as in-

field mitigation measures to reduce diffuse water pollution, improve soil quality and reduce 

nitrous oxide greenhouse gas emissions. These mitigation measures were applied to seven 

fields within the intensive arable River Wensum catchment, eastern England, with a further 

two fields kept under conventional cultivation as a control. Soil and water chemistry, 

principally water discharging from subsurface agricultural field drains, were regularly sampled 

and analysed from these fields over a two-year period. 

The results revealed the mitigation measures had no positive impact on soil quality. The soil 

chemical condition, including soil organic carbon, phosphorus, magnesium and sulphate 

concentrations were not improved by the use of a cover crop or reduced cultivation, whilst soil 

physical condition deteriorated through increased compaction, as highlighted by increased bulk 

density, penetration resistance and lower infiltration rates. Conversely, field drain water quality 

improved markedly. The presence of a winter cover crop significantly reduced mean dissolved 

nitrate concentrations from 13.9 mg N L-1 to 2.5 mg N L-1, an 82% reduction. Different 

inversion intensity of the soil tended to have no effect on nitrate concentrations. Regarding 

dissolved N2O, a slightly higher N2O concentration was recorded in field drains under a cover 

crop than without cover crop. This finding suggests that whilst the use of a winter cover crop 

is highly effective at reducing soil nitrate losses to rivers, it does not represent an effective 

strategy for reducing N2O emissions. Indirect nitrous oxide emission factors (EF5g and EF5r) 

were calculated using two approaches (IPCC 2006 and the N2O-N/NO3̄-N ratio) for both field 

drain and stream water samples. Values for these two EFs obtained were found to be below the 

IPCC default value of 0.0025. If the IPCC were to revise EF5 values in future then, regardless 

of soil type, crop type, and land use practices, a value of 0.0009 (about one third of the current 

value) for EF5g and a value of 0.0002 (one order of magnitude lower than the current value) for 

EF5r may be a more reasonable estimates. Such radical downward revision would at least halve 

the current estimates of N2O emissions associated with N leaching and runoff from agriculture 

for both the UK and globally. 
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Chapter 1: INTRODUCTION 

1.1 Background to the study 

Environmental pollution is a major global concern. When sources of water, soil and air 

pollution are enumerated, agriculture is listed as a major contributor. To meet rising demand 

from a growing population, intensification of agriculture and food production has led to the 

export of a range of pollutants to both the atmosphere and adjacent freshwater in farming 

landscapes. The pollutants include nutrients (nitrogen and phosphorus), sediment, microbes, 

and both pesticides and herbicides. In England, for instance only 27% of water bodies are 

currently classified as being of good status under new standards set down by the European 

Union Water Framework Directive (WFD) (Defra, 2015). 

Pollution such as sewage and industrial effluent is normally easy to monitor and reduce as it 

generally arises from a single source. Diffuse pollution, however, arises from many sources 

when potential polluting substances leach into surface waters and groundwater as a result of 

rainfall, soil infiltration and surface runoff. Typical examples of diffuse pollution include the 

use of fertiliser, pesticides and atmospheric deposition. Thus, agriculture is a major source of 

diffuse pollution. Nitrogen and phosphorus are the two important nutrients associated with 

diffuse pollution. Diffuse agricultural pollution is estimated to account for approximately 25% 

of phosphorus, 60% of nitrate and 70% of sediment input into UK rivers nationally (Edwards 

and Withers, 1998; Cardenas et al., 2011). 

Agriculture is not only blamed for degrading water and soil quality, but also for being one of 

the major contributors to greenhouse gas emissions. According to Gilbert (2012), agriculture 

is responsible for up to one-third of all human-caused greenhouse gas emissions. One of these 

gases is nitrous oxide (N2O) which is a potent greenhouse gas in the atmosphere with 300 times 

more global warming potential than CO2 and accounts for about 5% of the total greenhouse 

effect (Omonode et al., 2011). N2O molecules also participate in photochemical reactions in 

the stratosphere which may lead to destruction of the Earth-protecting ozone (O3) layer 

(Jacinthe and Dick, 1997). Agriculture alone accounts for about 60% of the total N2O 

anthropogenic emissions and global agricultural N2O emissions have increased by nearly 17% 

from 1990 to 2005 (Smith et al., 2007). 

N2O emissions from agriculture include direct emissions from agricultural soils due to the 

application of animal manure and fertiliser nitrogen in arable farming and manure production 
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in grasslands. Also, indirect emissions result from the subsequent leaching of nitrogen to 

groundwater and surface waters. The Intergovernmental Panel on Climate Change (IPCC) 

provides guidelines on calculating national inventories of N2O emissions associated with 

agriculture. Indirect N2O emission factors (EFs) are a way for calculating N2O emissions from 

a water body as a fraction of the original N flux into the system (Well et al., 2005b). The IPCC 

(2006) lowered the default value for the emission factor assigned to indirect emissions, 

collectively known as EF5, from 0.025 in the 1997 IPCC report to 0.0075 in the 2006 IPCC 

report (Outram and Hiscock, 2012). The specific emission factor for groundwater (EF5g) was 

also decreased from 0.015 to 0.0025. Few studies, however, have examined EF5. Data from 

only six studies (published between 1979 and 1993) were used by the IPCC for the 

determination of the default value, causing large uncertainty (Sawamoto et al., 2005). 

Therefore, the EF5g has been calculated regardless of different topography, climate, land use, 

and seasonal change.  

In an attempt to protect and enhance aquatic ecosystems, the Water Framework Directive 

(WFD) was introduced in 2000 by the European Union (Cherry et al., 2008). Each member 

state is required to improve its all water bodies to reach ‘good’ and non-deteriorating status by 

2015. Surface waters must reach good ecological and chemical condition while groundwater 

must achieve a good chemical standard and pose no risk to the status of surface water into 

which they may flow (Cherry et al., 2008). In order to meet the WFD water body thresholds 

for good ecological and chemical condition in the UK, it will be necessary to reduce the losses 

of nitrogen, phosphorus and sediment to water bodies in places where agricultural land 

management is responsible for a significant contribution of diffuse pollution and where the 

magnitude of such losses from farming pose a challenge to meeting compliance targets. 

Achieving this reduction in agricultural pollutant losses will involve a combination of some 

changes to the way that farming is practiced and the implementation of mitigation measures to 

tackle the principle reason for failure. 

Newell Price et al. (2011) provided summary information on a range of recommended 

mitigation measures in the UK as a user guide to reduce diffuse water pollution, air pollution 

and greenhouse gas emissions. These measures involve changes in soil, livestock, manure and 

fertiliser management, farm infrastructure and farm practices. They target nutrient availability 

(source methods), the timing of agriculture practices (timing methods) and the delivery of 

nutrients from sources to receiving water bodies (transport methods) (Cherry et al., 2008). Plot-

scale experimental research has helped researchers to understand the mobilisation of pollutants, 
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and to test the mitigation measure effectiveness (Hutchins et al., 2009; Cardenas et al., 2011). 

However, these small scale studies are frequently highly generalised and uncertain, especially 

when applied at farm or catchment scale. Thus, on-farm rather than plot-scale mitigation 

measures are highly recommended to assess the real effectiveness of a particular measure in 

reducing pollutants.  

Cover crops and reduced tillage mitigation measures were implemented in this study. They 

were chosen because they are widely promoted as being useful for controlling diffuse pollution 

and greenhouse gases (Dabney et al., 2001; Lacas et al., 2005; Kaspar et al., 2012). One of the 

challenges, however, involving mitigation measures is pollution swapping which can occur 

when a mitigation option or best management practice is introduced to reduce the loss of one 

pollutant, but in doing so unintentionally leads to an increase in another pollutant, in effect one 

pollutant is swapped for another. Although pollution swapping has been identified for a number 

of years, there have been very few studies to examine the potential for pollution swapping 

across a range of diffuse pollution mitigation options in agricultural systems (Stevens and 

Quinton, 2009). Because N2O is produced from nitrification and denitrification processes in 

soils (Mosier et al., 1998), any change in nitrate concentration due to implementing mitigation 

measures may change N2O concentrations. While the majority of studies found that nitrate 

concentrations in water and soil are reduced significantly by these measures, particularly by 

cover crops (Staver and Brinsfield, 1998; Justes et al., 1999; Constantin et al., 2010; Singer et 

al., 2011), studies on the effects of these measures on N2O produced contradictory results 

(Petersen et al., 2011; Abdalla et al., 2014; Sanz-Cobena et al., 2014).  

1.2 Conservation agriculture 

A wide range of environmental impacts, including soil degradation, soil compaction, decrease 

in organic matter content, water and wind erosion and eutrophication are caused by 

conventional farming practices. One way of minimising these negative impacts on the 

agricultural environment is the promotion of conservation agriculture, defined by Jones et al. 

(2006) as an approach to growing crops which aims to maintain high and sustainable 

productivity for economic viability, while conserving the environment, in particular soil and 

water. This focus on improving natural biological processes above and below ground, mainly 

through minimising tillage, maintaining soil cover throughout the year and practicing effective 

crop rotation, aims to minimise inputs and loss of agrochemicals and fertilisers (Figure 1.1). 
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Figure 1.1 The three principles of conservation agriculture and the main practices and means needed to achieve 
each principle (Stagnari et al., 2010). 

Conservation agriculture has been practiced for three decades and has spread widely. Kassam 

et al. (2009) estimated that there are now some 106 million ha of arable permanent crops grown 

without tillage in conservation agriculture systems, accounting for an annual rate of increase 

globally since 1900 of 5.3 million ha. According to the FAO (2014), 150,000 ha of land were 

under conservation agriculture in 2011 in the United Kingdom, corresponding to 2.4 % of 

arable land area. The figure for the United States is over 35 million ha in 2009, representing 23 

% of arable land.  

1.2.1 Cover crops  

Cover crops, one of the main adoptions of conservation agriculture, are crops that are grown to 

provide soil cover during the winter season and fallow period in annual cropping systems and 

also to protect the soil from erosion and loss of plant nutrients through leaching and runoff. 

Cover crops were first mentioned over 3000 years ago from the Chou dynasty in China (Burket 

et al., 1997; Holland, 2004) and their soil improvement benefits are consistently addressed by 

agricultural literature. They have been used for thousands of years but their reduction in use 

comes after utilising inorganic N fertiliser during the past 60 years. More recently, there has 

been renewed interest in the use of cover crops in the application of mulches for organic 

farming (Mosjidis and Owsley, 2002).  

Traditionally, cover crops were turned-over and incorporated before planting of the cash crop; 

however, recent emphasis on residue management as a measure for reducing soil erosion has 

led to greater use of cover crops in conservation tillage systems. Some cover crops (e.g. small 

grain winter crop covers) can serve as a dual cash crop and cover crop (Reeves, 1994). In the 
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past, in addition to winter cover crops, summer annuals like cowpea and soybean were grown 

for soil improvement, however, currently only winter season cover crops are used in temperate 

and subtropical zones.  

There are two main types of cover crops: non-legume and legumes. Non-legume cover crops 

include annual or perennial forage grasses such as rye grass, warm-season grasses like sorghum 

Sudan grass, and brassicas and mustards. Their main purposes are for scavenging nutrients, 

especially N, left over from a previous crop, reducing or preventing erosion, producing large 

amounts of residue and adding organic matter to the soil and suppressing weeds. The higher 

carbon content in non-leguminous cover crops makes for slower break down, resulting in 

longer lasting residue. This has two results; the higher carbon residue is harder for soil microbes 

to break down, so the process takes longer, and the nutrients contained in the cover crops 

residue are usually less available to the next crop (Clark, 2008). On the other hand, leguminous 

cover crops include winter annuals, such as crimson clover, hairy vetch, field peas and 

subterranean clover; perennials such as red clover, white clover; biennials such as sweet clover; 

and summer annuals. Their main purposes are to fix atmospheric nitrogen for use by subsequent 

crops, reduce or prevent erosion, produce biomass and add organic matter to the soil, and attract 

beneficial insects. Winter season leguminous cover crops are essential elements of crop 

management practice in both conservation tillage and organic farming (Mosjidis and Owsley, 

2002). Legumes are generally lower in carbon and higher in nitrogen than grass, and this lower 

C: N ratio causes faster breakdown of legume residue. Hence, N and other nutrients contained 

in legume residue are usually released faster than grasses (Clark, 2008). 

1.2.1.1 Oilseed radish 

Oilseed radish, a winter annual brassica cover crop, is a distinctive cover crop that farmers are 

planting to enhance their soil quality for economic crop production (Stivers-Young, 1998). It 

has the capacity to recycle soil nutrients, suppress weeds and pathogens, break up compaction, 

reduce soil erosion, and produce large amounts of biomass. It establishes and grows quickly 

during cool weather and can be planted early in the autumn to provide fast cover and a green 

manure crop for cash crops planted in March. Also, it has a thick, deep root that can help break 

up compacted soil layers and scavenge nitrate that has leached beyond the rooting zone of other 

crops (Williams and Weil, 2004).  

Oilseed radish grows quickly and produces a large amount of biomass in a relatively short time 

whether it is planted in spring, late summer or early autumn. Four oilseed radish cultivars 
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(Adagio, Arena, Rimbo and Common), seeded in August, were tested in Michigan (Ngouajio 

and Mutch, 2004) over two years and produced similar amounts of dry biomass, of total 

biomass generally exceeding 9000 kg ha-1. The thick taproot of oilseed radish can penetrate 

compacted layers better than other cover crops such as rye (Williams and Weil, 2004). Deep 

and large holes left in the soil after the decomposition of roots in the spring facilitate water and 

air penetration, and primary crop roots can penetrate the soil in the summer better when the 

soil is dry and hard. Planting oilseed radish can be a no-till alternative to deep tilling or 

mechanical ripping (Williams and Weil, 2004). Because of its remarkably deep root system, 

rapid growth and high N uptake, oilseed radish cover crops can take up most of the soluble N 

left in the soil profile after summer crops have ceased their uptake. Many cover crop species 

are nitrogen scavengers, but the roots of oilseed radish are able to absorb nitrogen at greater 

depths, preventing it from leaching into groundwater with the ability of absorbing of between 

112 and 167 kg ha-1 of nitrogen (Weil et al., 2006). Oilseed radish takes up N from both the 

topsoil and from deep soil layers, storing the N in tissues near the soil surface. This trapped 

nitrogen becomes available to the next crop when the plant decomposes in the spring. Growing 

oilseed radish, therefore, can act as a fertiliser for the next crop in the rotation by recycling 

nitrogen that would otherwise be lost through leaching (Kristensen and Thorup-Kristensen, 

2004).  

When oilseed radish is planted in late summer or early autumn, a good stand of cover crop can 

provide full canopy closure in three to four weeks. This canopy intercepts raindrops, preventing 

soil erosion. Even after oilseed radish is killed by a hard frost, a layer of decomposing residue 

remains on the soil surface through the winter and into the early spring providing protection 

from soil erosion. After surface residues have fully decomposed in spring, runoff and erosion 

are reduced because of the many holes left behind from the large taproots. Rainwater rapidly 

infiltrates into these holes, reducing runoff (Williams and Weil, 2004). Oilseed radish grows 

soon after planting and provides quick ground cover that restricts weeds. When planted in the 

autumn, oilseed radish prevents weed germination and, consequently, seed production. This 

action produces a virtually weed-free seedbed in early spring (Stivers-Young, 1998). The near-

complete weed suppression can be expected to last until early April, but does not extend into 

the summer cropping season. 

1.2.2 Conservation tillage 

Tillage has been practiced by farmers since the move from hunter gatherers to more settled 

food production systems ten thousand years ago. Tillage is the act of disturbing the soil through 
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use of an implement powered manually or by animals or tractors. Other names for tillage 

include ploughing and cultivation. Hobbs et al. (2008) listed some reasons for adopting tillage. 

Tillage was used to provide good uniform seed germination through softening the soil and 

preparing the seedbed to allow seeds to be positioned easily at a suitable depth in moist soil. 

Weeds grow alongside crops and compete for light, water and nutrients, so every gram of 

resource taken up by weeds is one less gram for the crop. Tillage, therefore, enables farmers to 

shift the advantage from the weed to the crop and allow the crop to grow without competition. 

Soil nutrients needed for crop growth are released by tillage through mineralisation and 

oxidation after exposure of soil organic matter to air. Crop residues from the previous year and 

soil amendments (fertilisers, organic or inorganic) are incorporated into the soil. Roots benefit 

more if soil amendments and their nutrients are incorporated into the soil; if nitrogen fertilisers 

are not incorporated they are lost to the atmosphere. Tillage provides temporary relief from 

compaction and it was found to be important management practice for controlling soil borne 

diseases and some insects. 

On the other hand, tillage also has some negative effects on both the environment and farm 

business as listed by Hobbs (2007). Greenhouse gas emissions from the combustion of diesel 

fuel add to global warming. Soil organic matter is oxidised and decreased when it is exposed 

to the air by tillage. It also causes disruption of the pores left by roots and microbial activity 

and it causes compaction of the soil below the tractor’s wheel surface. The bare surface exposed 

after tillage is vulnerable to breakdown of soil aggregates as the energy from raindrops is 

dissipated (Schuller et al., 2007). This process clogs soil pores and reduces infiltration of water 

and runoff, which subsequently leads to soil erosion. The bare surface exposed after the tillage 

is susceptible to wind erosion. 

Currently, tillage systems in the United Kingdom can be divided into two broad categories: 

inversion tillage, known as conventional tillage; and non-inversion tillage known, as 

conservation tillage. Table 1.1 compares conventional and conservation tillage systems. 

Conventional tillage systems typically comprise both primary and secondary cultivations. 

Primary tillage is the early main operation that involves inverting the soil using a mouldboard 

plough. Secondary cultivation creates a seedbed by using a single or double pass cultivator 

(Morris et al., 2010). Thus, this tillage system disturbs the soil completely through a sequence 

of operations to incorporate crop residues and additional cultivation to create a seedbed. 

Conservation tillage, on other hand, has been defined as any tillage that retains at least 30% of 

the soil surface covered by residues (Lal, 1997). This tillage involves soil management 
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practices that minimise the disruption of the soil’s structure, composition and natural 

biodiversity, thereby minimising erosion and degradation and also water contamination 

(Holland, 2004).  

Table 1.1 Summary of cultivation systems (Morris, 2009) 
System System category Typical field operation Advantages Disadvantages 

Conventional 
tillage 

Inversion 

Primary cultivation with 
mouldboard plough. 
Secondary cultivation 
with power harrow disc 
or one or two passes of a 
heavy press. Cultivator 
drill roll 

Suited for poorly 
drained and true 
sand soil.  
Excellent of 
incorporation of 
crop residues. 
Good control of 
weeds. 
Well-tilled seed 
bed 

Higher soil erosion 
risk. 
High soil moisture 
loss. 
Timeliness 
consideration. 
Potentially higher 
fuel and labour 
costs. 
Low work rates 

Minimum 
tillage 

Non-Inversion 

Cultivation to create 
stale seedbed. 
Spray off weeds in stale 
seedbed. 
Shallow tine or disc, 
press. 
Cultivator drill roll 

Some erosion 
control. 
Well adapted to 
light or medium 
soil. 
Good residue 
incorporation 

Risk of soil 
moisture loss with 
deeper cultivation. 
Soil compaction 
concerns 

Strip tillage Non-Inversion 

Autumn to spring 
cultivation to create 
strips. 
Drill into strips. 
Post emergence spray as 
needed. 

Clears residue from 
within row to allow 
pre-drilling soil 
warming and 
drying. 
Can allow injection 
of nutrients in strip 
area. 
Well suited for 
poorly drained soil 

Strip may dry too 
much, crust or 
erode without straw 
residue. 

Direct 
drilling 

Non-Inversion 

Spray of weeds in 
stubble. 
Drill into undisturbed 
surface. 
Post emergence spray as 
needed 

Maximum erosion 
control. 
Soil moisture 
conservation. 
Few passes. 
Minimum fuel and 
labour costs 

No incorporation of 
residues. 
Increased 
dependence on 
herbicides. 
Slow soil warming. 
Soil compaction 
concerns 

 

Direct drilling, one of the non-inversion methods, refers to the sowing of crops directly into 

the previous crop stubble with no cultivation taking place since harvesting the previous crop, 

and with all crop residues left on the soil surface (Cunningham et al., 2004). In this tillage 

system, a narrow band of soil is cultivated that creates an environment suitable for the seed 

which is then placed behind the coulter and firmed by a rear roller. No significant change occurs 

in the soil profile from year to year and dead and decaying crop residues cover the soil surface 

that change the microenvironment influencing crop growth patterns (Sprague and Triplett, 

1986). In this method of tillage, maximum soil erosion control and conservation of soil 

moisture are achieved. However, some drawbacks of this system include the incomplete 
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incorporation of crop residues and increased dependence on herbicide due to increased 

volunteer weed growth.  

Currently, it has been estimated that approximately 46% of arable land in the UK is under some 

degree of  conservation tillage management (Jones et al., 2006) . It is projected that by the year 

2020, conservation tillage may be adopted on 75% of cropland in the USA, 50% in other 

developed countries and 25% in developing countries. The change in tillage practice has been 

the readily researched and reported of the conservation agriculture principles, to the extent that 

frequently the terms conservation tillage and conservation agriculture appear interchangeable 

(Lal, 1997). 

 

1.3 Aim and objectives 

The overall aim of this study was to assess the effectiveness of cover cropping and reduced 

cultivation methods as in-field mitigation measures to reduce diffuse water pollution, nitrous 

oxide greenhouse gas emissions and to improve soil quality. The specific objectives of this 

study can be summarized as follows: 

• To evaluate the effect of cover cropping, reduced tillage and direct drilling on soil 

properties including soil mineral nitrogen, soil macronutrients and on soil physical 

properties. 

•  To examine the effectiveness of cover cropping and reduced cultivation methods to 

decrease nitrate concentrations and losses in drainage water. 

• To assess the impact of direct drilling, reduced tillage and cover cropping on nitrous 

oxide concentrations in drainage water. 

• To calculate the indirect nitrous oxide emission factor (EF5) for river and drain water 

based on a (long) two-year dataset and compare this value with the current IPCC (2006) 

default value. 

 

1.4 Thesis structure 

This thesis is divided into seven chapters. The current Chapter 1 discusses the background of 

the study. Conservation tillage and cover cropping as mitigation measures and independent 

variables in this study are described and their advantages and challenges are also presented. 

Readers can also find the aim and objectives of this research.  
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Following this introduction, Chapter 2 describes the study area and methods of sampling and 

procedures used in this study. It describes the geology, hydrogeology, climate and topography 

of the study area. Methods and locations of collecting samples for nitrous oxide measurements, 

and water samples from drains and porous pots and soils are presented. The analytical 

procedures and statistical analysis methods are also presented in this chapter.  

Chapter 3 assesses the effects of cover cropping and reduced tillage on soil chemical and 

physical characteristics. It shows the effects of cover cropping and reduced tillage on chemical 

characteristics of soil including soil mineral nitrogen, organic matter, phosphorus, calcium and 

magnesium. In addition to chemical parameters, the effects of mitigation measures on soil 

physical characteristics including soil temperature, soil moisture, bulk density, penetration 

resistance and infiltration rate are also presented.  

Chapter 4 evaluates the effects of cover cropping and reduced tillage on water quality. Rainfall 

variation throughout the study period is presented and the response of nitrate concentrations in 

the experimental measures area to major rainfall events is discussed. Spatial and temporal 

variations of nitrate concentration in the field drains are illustrated. Effects of cover cropping 

and conservation tillage on nitrate concentrations in field drains are presented and are supported 

by porous pot data. By taking the area of field drainage and flow rates into account, fluxes of 

nitrate are presented. Also, an attempt is made to calculate approximate nitrogen losses 

compared to nitrogen input in the soil. The summary at the end of this chapter concludes if the 

measures are effective in improving water quality. 

Chapter 5 presents the results of dissolved nitrous oxide in field drainage and stream water 

samples. The production mechanisms of nitrous oxide and its different aquatic sources are 

introduced. Seasonal changes in the nitrous oxide concentrations of field drain and stream 

water samples are presented. Comparisons between nitrous oxide concentrations in stream and 

drain water are also shown. Spatial changes in nitrous oxide concentration along the length of 

the studied water course are presented. The approximate contribution of drains to the total 

nitrous oxide budget is determined. Finally, the effects of mitigation measures on dissolved 

nitrous oxide are discussed.  

Chapter 6 introduces the calculation of the indirect nitrous oxide emission factor. Theoretical 

and applicable equations to calculate this factor are presented. Emission factors for stream and 

drain samples are calculated by using two approaches and they are compared to other studies, 
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particularly to the IPCC (2006). Finally, indirect nitrous oxide emissions from both the UK and 

across the globe are estimated with the emission factors calculated from this study. 

Finally, Chapter 7 concludes the main findings of this research, together with recommendations 

for future work. 
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Chapter 2: DESCRIPTION OF STUDY AREA AND METHODS 

This chapter introduces the description of the study area including the geology, hydrogeology, 

climate, topography, soil and land use. The experimental design is presented together with field 

sampling and laboratory analytical methods. Statistical analysis methods for the treatment of 

data are introduced. 

2.1 Demonstration Test Catchment 

The UK Demonstration Test Catchment (DTC) programe is a Department for Environment, 

Food and Rural Affairs (DEFRA) funded initiative to evaluate the extent to which on-farm 

mitigation measures can cost-effectively reduce the impacts of diffuse agricultural pollution on 

river ecology whilst maintaining food production capacity (Wensum Alliance, 2015). Three 

DTC where established around the UK in 2010, each of which covers different landscape 

characteristics and farming systems. These catchments were the arable River Wensum in 

Norfolk, the livestock dominated River Eden in Cumbria, and the mixed farming system River 

Avon in Hampshire (Figure 2.1). The research presented here focused exclusively on the River 

Wensum Demonstration Test Catchment. 

 

Figure 2.1 Location map of the UK showing the three Demonstration Test Catchments: the Hampshire Avon, 
Wensum and Eden (Outram et al., 2014). 
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2.1.1 Wensum Demonstration Test Catchment 

The River Wensum is a low gradient groundwater (chalk aquifer) dominated river which flows 

for approximately 78 km through the country of Norfolk, from its source in South Raynham to 

its confluence with the River Yare in Norwich (Figure 2.2). It was selected by Natural England 

as one of the 31 rivers in England to be designated as a Site of Special Scientific Interest (SSSI) 

and it was also selected as a Special Area of Conservation (SAC) under the European Habitats 

Directive and as a part of the European Union’s Nature 2000 network (Sear et al., 2006). 

Although the Wensum is recognised as of importance, a condition assessment carried out by 

Natural England in 2002 showed that the river was in unfavourable ecological condition mainly 

due to water quality issues and physical modification which limit its ecological and 

hydrological potential to support a chalk river habitat (Dils et al., 2009). Cooper et al. (2014) 

mentioned that 99.4% of the River Wensum protected habitat is in a declining state, primarily 

due to excessive sediment and nutrient loadings from agriculture.  

 

Figure 2.2 The River Wensum catchment , Norfolk. 

2.1.1.1 Geology 

The Wensum catchment is underlain by Cretaceous Chalk, the dominant solid geology of 

Norfolk. The Chalk is a white, fine grained, fissured limestone of very high carbonate fraction, 

deposited during the Upper Cretaceous. To the east of the catchment the Chalk is overlain by 
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the Pleistocene Wroxham Crag formation of sands and gravels (Figure 2.3). A complex 

sequence of Quaternary strata over much of the catchment is formed of glacial tills, sands, 

gravel, alluvium, peat and river terrace deposits. Low-permeability tills in excess of 15 m in 

interfluve areas restrict infiltration to the underlying Chalk aquifer (Hiscock et al., 1996; Lewis, 

2011; Outram et al., 2014). The Chalk is separated unconformably from Lower Cretaceous and 

Jurassic deposits by Carstone, a ferruginous sandstone, overlain in south Norfolk by the Gault 

Formation comprising grey mudstone (Arthurton et al., 1994).  

 

Figure 2.3 Superficial geology of River Wensum catchment (BGS, 2016). 

2.1.1.2 Hydrogeology  

The regional hydrogeology of Norfolk is dominated by the White Chalk sub-group that forms 

a major aquifer and provides a valuable groundwater resource due to its high porosity and 

permeability. Groundwater arising from the chalk aquifer dominates the flow regime of the 

River Wensum with a high baseflow index (BFI) of 0.82 at Fakenham (Ceh, 2016). The Chalk 

bedrock in the western part of the catchment is close to the surface, so the flow is derived 

primarily by groundwater discharge from the chalk aquifer. As the river progresses towards the 

east in the catchment the thickness of glacial sediments overlying the chalk increases and the 

contribution of surface water to the river increases with a baseflow index of 0.75 at Costessey 

Mill Norwich (Dils et al., 2009; Ceh, 2016). There is high spatial variation in transmissivity 

and storage capacity of the Chalk resulting from the distribution of overlying Pleistocene 
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deposits (Hiscock et al., 1996). The transmissivity is less than 100 m2 day-1 when the Chalk is 

confined under the till due to poor fissure development, whereas fissuring is more prevalent in 

the valleys where the Chalk outcrops and transmissivities can reach 2000 m2/day. A very recent 

study by Outram et al. (2016) on the same catchment for the monitoring site F (Figure 2.5) 

summarized some farming and hydrological data for three years (Table 2.1). Total discharge 

volume into groundwater is between 134-234 mm with mean groundwater level (39.5-40.4 m) 

above sea level. 

Table 2.1 Annual summary of fertiliser, hydrological, metrological nitrate and total phosphorus data for three 
hydrological years (2012, 2013, and 2014) for monitoring site F (see Figure 2.5). Standard deviation in 

parentheses (Outram et al., 2016) 
 2012 2013 2014 
Total nitrogen fertiliser application (kg N) 2.16 × 105 2.05 × 105 1.70 × 105 
Total phosphorus fertiliser application (kg P) 2.48 × 104 3.63 × 104 2.16 × 104 
Mean nitrate concentration (mg N L-1) 5.9 (1.6) 6.2 (1.3) 6.1 (1.7) 
Total riverine nitrate-N load (kg N) 1.46 × 104 2.98 × 104 2.20 × 104 
Mean total phosphorus concentration (mg P L-1) 0.09 (0.04) 0.09 (0.03) 0.09 (0.04) 
Total riverine total phosphorus load (kg P) 2.29 × 102 4.10 × 102 3.33 × 10 
Nitrate export coefficient 0.07 0.15 0.13 
total phosphorus export coefficient 0.01 0.01 0.02 
Mean total rainfall (mm) 683 633 706 
Total discharge volume (m3) 2.64 × 106 4.61 × 106 3.44 × 106 
Total discharge volume (mm) 134 234 175 
Annual runoff coefficient 0.2 0.37 0.25 
Baseflow volume (m3) 1.95 × 106 3.19 × 106 2.49 × 106 
Baseflow index (BFI) 0.74 0.69 0.72 
Mean groundwater level above ground surface 1.8 (0.3) 1.7 (0.5) 1.8 (0.3) 

 

2.1.1.3 Climate 

East Anglia is one of the driest regions in Britain. The Wensum catchment has a temperate 

maritime climate with a mean annual temperature of 10.1 ˚C during 1981-2010 and a mean 

annual total precipitation of 674 mm in Coltishall weather station near Reepham. Over the same 

period, mean monthly precipitation totals were highest during October and November (68.2 

mm) and lowest during February (41.7 mm) (Meteorological Office, 2014), and moderate 

rainfall is maintained through the summer months with (55.5 mm) in July. Mean monthly 

minimum temperatures are lowest in February (1.3 ˚C) and August has the highest mean 

monthly maximum temperature (21.4 ˚C).  

2.1.1.4 Topography 

The topography of the Wensum catchment is relatively low with a maximum elevation above 

sea level of 95 m. The north and west of the catchment have the highest elevations. The 

majority of the catchment (78%) has a slope of 0-3 degrees, with only a small area of land area 
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with slopes of 3-7 degrees and greater (Dils et al., 2009). These low slope angles mean that the 

River Wensum possesses relatively low energy, typical of rivers in East Anglia. 

2.1.1.5 Soil 

The Wensum catchment is characterised by rich loams, silts and sandy peats, which have a 

high potential for cultivation (Sear et al., 2006). Loam soil offers ideal moisture retention and 

drainage, preventing waterlogging because of the presence of a good balance between sand, 

silt and clay fractions in the soil. In the middle part of the catchment, coarse loams overlie clay, 

whereas lighter sandy loam soil is present in the western catchment. Soil texture has great 

spatial variability: the soil can change from medium clay loam to light sandy loam within a few 

metres. In the north west of the catchment, the soil comprises freely draining loams, with an 

increasing clay fraction and lower permeability in the central catchment and interfluves. Areas 

of well drained sandy soil occur in the lower catchment. The upper river valley soils are free 

draining loam with sand, giving way to peat soils. Figure 2.4 shows the soil series in the 

catchment. The Adventurers series forms earthy peat soils with amorphous and semi-fibrous 

peat soils formed mainly in reed and sedge peat, often with wood fragments from carr. The 

Isleham series forms humic sandy gley soils which consist of sandy and peaty soils on low-

lying land affected by groundwater. The Gresham series is a stoneless slowly permeable 

seasonally waterlogged coarse loamy and silty over clayey soil. The Newmarket series forms 

a coarse loamy soil over chalk or chalk drift. The Wick series which is predominant in the 

Blackwater sub catchment (Figure 2.2) is a deep well drained coarse loamy typical brown earth, 

intermixed with gleyic brown earth (Barrow series) and typical brown sands.  
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Figure 2.4 Soil series of the Wensum catchment (NATMAP, 2009). 

2.1.1.6 Land use 

East Anglia contains some of England’s best agricultural land due to its loam soil and gentle 

topography. Over 85% of the land in Norfolk is used for farming, and of this 66% is used for 

growing crops or is left fallow. The largest land area, as it shown in Figure 2.5, is used for 

cereal crop production, followed by sugar beet and oilseed rape, horticulture and potatoes, 

whereas livestock, dairy, pig and poultry operations together account for 22% of farms (Defra, 

2006). There are few cities and towns in the catchment. The largest is Norwich with its urban 

population of 214,000, followed by Dereham with a population of approximately 19,000 and 

Fakenham with a population of over 7,000 (Office for National Statistics, 2012). 

2.1.1.7 Experimental Area 

Of the 20 sub-catchments in the Wensum, the lowland Blackwater sub-catchment in the north 

east of the catchment covers an area of 60 km2. The upper 20 km2 of this sub-catchment 

represents the area intensively monitored as a part of the River Wensum Demonstration Test 

Catchment project. In this experimental area, the Blackwater sub-catchment is divided into six 

mini-catchments A to F (Figure 2.5), each of which has a bankside kiosk at its outlet monitoring 

parameters including pH, turbidity, temperature, ammonium, dissolved oxygen and electrical 

conductivity at 30 minute resolution using ion selective electrode sensors on a YSI 6600 V2 

sonde. Each monitoring site also has a pressure transducer located in a stilling well which 
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records river stage every 30 minute. Two kiosks (E and F) are additionally equipped with Hach 

Lange nutrient analysers including a Nitratax Plus SC probe which measures nitrate 

concentrations via an optical sensor and Phosphax Sigma wet chemistry analyser in 

combination with a Sigmatax SC sampling and homogenisation unit to measure phosphorus 

(Outram et al., 2014). Each kiosk, including a seventh kiosk at site M nested within mini-

catchment A, also encompass an ISCO automatic water sampler (Teledyne ISCO, Lincoln, NE) 

containing 24, 1 L polypropylene sample bottles. Weather stations at A and D record 

precipitation at 15 min intervals via tipping-bucking rain gauges, alongside measurements of 

temperature, wind speed, humidity and solar radiation. Mini-catchment A, the focus area of 

this study, is ~40 m above sea level and covers an area of 5.4 km2 with a gentle slope of ~0.37˚. 

This arable area is under intensive farming with 92% for cropping (with wheat, barley, sugar 

beet, oilseed rape and spring beans in rotation), with 5% grassland, 2% woodland and 1% urban 

area.  

 

Figure 2.5 Land use across catchments the River Blackwater. It also shows the locations of mini kiosk (A B, D, 
and M) and kiosk (E and F). 

2.2 Experimental design  

In 2013, nine fields covering 143 ha of arable land were identified for trialling of winter cover 

crop and reduced tillage practices aimed at reducing diffuse nutrient losses into the River 

Blackwater (Figure 2.6, Table 2.2). These nine fields were divided into three mitigation 
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measures treatments, with each treatment sown with the same crop and same fertiliser 

application rate during the 2013/2014 (spring beans; 0 kg N ha-1, 30 kg P ha-1, 55 kg K ha-1) 

and 2014/2015 (winter wheat; 220 kg N ha-1, 22 kg P ha-1, 85 kg K ha-1) farm year (September 

to August). Two fields were kept as control and were cultivated by mouldboard ploughing to a 

25 cm depth prior to sowing. Oilseed radish (Raphanus sativus) cover crop (seed density = 18 

kg ha-1) was sown in treatment (cover crop & reduced tillage) and treatment (cover crop & 

direct drill) using a Lemken cultivator in late-August 2013. treatment (cover crop & reduced 

tillage) was then underwent reduced tillage to a depth of 10 cm using Väderstad Carrier and 

topdown cultivator prior to sowing with Rapid drill and treatment (cover crop & direct drill)  

underwent direct drilling with no inversion using Väderstad Seed Hawk. A winter crop (winter 

wheat) was grown in the second year (2014/2015) so cover crop was not sown in this year but 

reduced tillage and direct drilling practices continued in (cover crop & reduced tillage) and 

(cover crop & direct drill) treatments, respectively. 

 

Figure 2.6 Map of the study area and the experimental treatments.  
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Table 2.2 Description of the experimental treatments 

Treatment Field name 
Area  
(ha) 

 2013/2014 

 
Cover 
crop 

Tillage  Crop 
N 

kg N 
ha-1  

Yield 
t ha-1 

Cultivation 
systems 

No cover crop & 
conventional 

plough (control) 

Far Hempsky 13.8  No Plough SB 0 5.49 
Conventional 
agriculture Potash 26.8  No Plough SB 7 

5.40 

Cover crop & 
reduced tillage 

Gatehouse Hyrne 17.3  Yes Reduced SB 38 6.44 
Conservation 
agriculture 

Dunkirk 12.9  Yes Reduced SB 30 5.86 
Moor Hall Field 20.4  Yes Reduced SB 0 6.97 

Cover crop & 
direct drill 

Swanhills 10.4  Yes DD SB 26 5.19 
Conservation 
agriculture 

Sheds Field 14.9  Yes DD SB 28 6.24 
First Hempsky 14.1  Yes DD SB 34 5.99 

Middle Hempsky 11.8  Yes DD SB 7 6.55 

 

Treatment Field name 
Area  
(ha) 

 2014/2015 

 
Cover 
crop 

Tillage  Crop 
N 

kg N 
ha-1  

Yield 
t ha-1 

Cultivation 
systems 

No cover crop & 
conventional 

plough (control) 

Far Hempsky 13.8  No Plough WW 226 13.5 
Conventional 
agriculture Potash 26.8  No Plough 

WW 
228 

13.1 

Cover crop & 
reduced tillage 

Gatehouse Hyrne 17.3  No Reduced WW 221 11.5 
Conservation 
agriculture 

Dunkirk 12.9  No Reduced WW 219 12.8 
Moor Hall Field 20.4  No Reduced WW 229 13.5 

Cover crop & 
direct drill 

Swanhills 10.4  No DD WW 219 10.5 
Conservation 
agriculture 

Sheds Field 14.9  No DD WW 227 10.4 
First Hempsky 14.1  No DD WW 229 12.9 

Middle Hempsky 11.8  No DD WW 222 12.2 
Note: SB: spring beans, WW: winter wheat 

 

2.3 Methods 

2.3.1 Field techniques 

2.3.1.1 Soil sampling 

Soil sampling was carried out several times throughout this study. The first soil sampling was 

carried out in the nine fields from 13th to 22nd May 2013 by a team of UEA students (Table 

2.3). Soil samples were collected by Dutch auger at three soil depths (0-30 cm, 30-60 cm, 60-

90 cm) at 12 sites in each field in a ‘W’ layout as recommended by (Pennock et al., 2007). The 

soil samples were not bulked because the aim was to understand the variability of soils in the 

nine experimental fields. In total, 324 soil samples were collected (i.e. 9 fields x 12 sites x 3 

depths = 324) (Figure 2.7). Moist, well-mixed samples were placed into sealed plastic bags and 

transferred back to the university. The samples were then placed in a drying rack and allowed 

to air dry for 7 days. After removal of course stones, portions of each homogenised and dried 

sample was then put in sealed plastic bags for archiving, whilst the rest was gently ground with 

pestle and mortar and passed through a U.S. No.10 (2 mm opening) sieve (Gelderman and 
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Mallarino, 2012). These sieved soil samples were used for determining soil texture and soil 

organic matter. 

 

Table 2.3 Summary of soil samplings date and measurements during this study 

Time of sampling May 2013 Sep. 2013 Feb. 2014 May & Jul. 2014 Feb. 2015 Jun. & Jul. 2015 

Who conducted UEA Team ADAS ADAS UEA team UEA team UEA team 

SMN 
(NO3, NH4, Available N) 

 4 sites/field* 
3 depths 

4 sites/field* 
3 depths 

4 sites/field 4 sites/field 4 sites/field 

       

Top soil 
(pH, P, K, Mg, OM) 

 4 sites/field 4 sites/field  4 sites/field 4 sites/field 

       

Soil texture 12 sites/ field* 
3 depths 

4 sites/field     

       

Physical properties 
(BD, IR, PR) 

12 sites/field   4 sites/field  4 sites/field 

NOTE: SMN: Soil Mineral Nitrogen, OM: Organic Matter, BD: Bulk density, IR: Infiltration rate, PR: Penetration resistance 

A second round of soil sampling was carried out by ADAS after completion of the harvest 

between 27th August and 3rd September 2013. Using the farmer’s expertise, four different soil 

types were identified in each field. Samples were collected from each soil type in each field. 

The selected sampling points within each soil type were located in the same location as earlier 

soil sampling wherever possible. Samples were taken in two different ways according to the 

measurement of interest. Samples for pH, K, Mg, P, SO4 and organic matter measurement were 

taken in the topsoil (0-15 cm) by hand auger in 12 locations within 2 metres around each site. 

These 12 samples were then bulked together to provide one representative sample for a given 

site (i.e. 9 fields x 4 sites = 36 samples). Samples for soil mineral nitrogen (SMN) and soil 

texture were collected with a Hydrocare powered auger in two concentric circles at 12 locations 

within 10 metres around each site. The soil cores taken from the Hydrocare drill were divided 

into three depths: 0-30 cm, 30-60 cm and 60-90 cm. The 12 samples for a certain depth were 

also bulked to provide one representative sample at a given site (i.e. 9 fields x 4 sites x 3 depths 

= 108 samples for SMN and soil texture measurement).  
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Figure 2.7 Locations and dates of soil sampling that carried out during this study. 

The collected samples were placed in sealed plastic bags and sent to Natural Resource 

Management (NRM) laboratories for analysis. The total number of soil samples collected in 

the nine fields during both sampling rounds combined was 432 samples (i.e. 9 fields x 16 sites 

x 3 depths = 432 samples). On the 4th and 5th February 2014, soil samples were again collected 

by ADAS at four sites per field using the method described above. A further three soil sampling 

campaigns were carried out by a team of students from UEA in July 2014, February 2015 and 

July 2015, with these soil samples collected from the same four sites per field in topsoil (0-15 

cm) only. 

2.3.1.2 Field drain and stream water sampling 

Like most of the arable land in the Blackwater sub-catchment, the nine measures fields are 

extensively under-drained by a dense network of clay and plastic agricultural field drains (or 

tile drains) installed at depths of 100-150 cm during numerous phases of land drainage over 

the past 60-70 years. Water samples from 13 of these field drains as well as from four in-stream 

locations (A, B, E and M) (Figure 2.8) were collected at weekly intervals for water quality 

analysis (i.e. nutrients and major ions) between April 2013 and April 2015. The exception to 
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this was between April 2014 and September 2014 when drain samples were collected every 

two weeks and stream samples collected every month. Samples were collected in one litre 

polypropylene bottles after the bottles had been flushed repeatedly with water from the 

sampling site. Field drain water flow was measured in triplicate at each drain sampling site 

using a measuring cylinder and stopwatch. Rainfall data were obtained from a tipping bucket 

rain-gauge installed in the study area next to drain D05R. 

 

Figure 2.8 Location map of water samples for N species and dissolved N2O analysis. 

2.3.1.3 Porous pot sampling 

Based on information gained from both the soil survey (144 sampling sites in the experimental 

area, i.e. 16 sampling sites per field) and from an electrical conductivity scan (Appendix A2) 

of the study area, nine locations were chosen for installing porous pots to capture soil water. 

Three locations of different soil textures including sandy loam, sandy clay loam and clay loam 

in each treatment were selected to install porous pots (Figure 2.9, Table 2.4). Locations were 

chosen on the basis that soil texture did not change along the profile (90 cm) and high clay 

content soil should be located in a high electrical conductivity zone. This is because clay soils 

have numerous small water-filled pores that are quite continuous and usually conduct 

electricity better than sandier soils. Ten porous pots, all located on a straight line and one metre 

distance apart from each other, were installed in mid-December 2013 at each location at a depth 
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of 90 cm and at a 45 degree angle by ADAS using the hydrocare drill. Thus, 90 porous pots 

were installed in total for soil water sampling.  

 

Figure 2.9 Locations of installed porous pots. Each location had 10 porous pot installed in December 2013. 
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Table 2.4 Soil particle size distribution at three depths for locations of porous pots  

Sample name Depth (cm) Sand % Silt % Clay % Texture 

FAR10 0-30 58 33 9 Sandy Loam 

 30-60 73 21 6 Sandy Loam 

 60-90 78 12 10 Sandy Loam 

SF9 0-30 59 26 15 Sandy Loam 

 30-60 60 23 17 Sandy Loam 

 60-90 61 23 16 Sandy Loam 

MHF8 0-30 54 31 15 Sandy Loam 

 30-60 58 27 15 Sandy Loam 

 60-90 61 22 17 Sandy Loam 

FAR9 0-30 45 39 16 Sandy Silt Loam 

 30-60 49 34 17 Sandy Silt Loam 

 60-90 54 19 27 Sandy Clay Loam 

FH11 0-30 54 26 20 Sandy Clay Loam 

 30-60 49 20 31 Sandy Clay 

 60-90 51 19 30 Sandy Clay Loam 

MHF14 0-30 52 26 22 Sandy Clay Loam 

 30-60 56 22 22 Sandy Clay Loam 

 60-90 53 24 23 Sandy Clay Loam 

P8 0-30 44 31 25 Clay Loam 

 30-60 43 30 27 Clay Loam 

 60-90 41 29 30 Clay Loam 

MH14 0-30 46 30 24 Clay Loam 

 30-60 44 28 28 Clay Loam 

 60-90 40 27 33 Clay Loam 

GH6 0-30 36 34 30 Clay Loam 

 30-60 26 42 32 Clay Loam 

 60-90 28 39 33 Clay Loam 
Note: The soil textures were classified according to the UK Soil Survey of England and Wales texture triangle.  

The flexible sampling tubes of the porous pots were left exposed above the ground surface 

from mid-December 2013 to end of January 2014. After field capacity was reached at the end 

of January, the first sample batches from the porous pots were collected on the 4th & 5th 

February 2014. In order to obtain a fresh water sample, the pots were first flushed out with a 

vacuum pump. They were then left under vacuum for a few hours to drawn in water from the 

surrounding soil (Figure 2.10). To maximise the water volume provided by pots, each pot was 

pumped three times. However, some pots provided extremely low amounts of water 

insufficient for analysing all parameters. Second round of sampling took place on the 28th & 

29th April 2014. After sampling, the flexible tubes were buried to 50 cm depth to avoid damage 

by farm machinery during harvesting and cultivation. One final round of porous pots samples 
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were collected on the 25th & 26th February 2015. Thus, porous pots were sampled three times 

during this study.  

  

Figure 2.10 Photographs of porous pot sampling on 4th February 2014 at site FH11. 

2.3.1.4 N2O sampling 

Water samples for N2O analysis were collected weekly between April 2013 and April 2015 

from the same 13 field drains and four river locations (A, B, E and M) described in section 

2.3.1.2. Samples were obtained using 20 ml glass syringes (SAMCO) with a three-way 

stopcock attached to the syringes by Luer-Lock fittings (Figure 2.11). Syringes were flushed 

three times with water from the sampling point and any air bubbles contained in the syringes 

were expelled before the final sample was taken. No preserving mercury (II) chloride (HgCl2) 

was added to the sample, since it has potential to change the original N2O content of the water 

through the chemical reaction. Samples were returned to the laboratory and stored at 4oC prior 

to analysis. Samples were generally analysed within 48 hours of sampling, thus minimising the 

risk of sample degradation.  
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Figure 2.11 Sampling for N2O measurement from field drains (A) and stream (B). 

2.3.2  Lab measurement 

2.3.2.1 Soil Analysis  

Particle size distribution 

Particle size distributions for all 432 soil samples were determined by laser diffraction by NRM 

laboratories. The soil samples were suspended in water and passed through a flow cell. The 

flow cell is positioned in the path of a laser beam and the particles of soil passing through the 

cell causes the laser light to be diffracted. The amount of light that is diffracted is dependent 

upon the size of the particle in its path. Small particles cause greater diffraction than large 

particles. By measuring the diffraction pattern of the laser beam it is possible to predict the size 

and relative population of particles in the sample. Principles and details of determining particle 

size distribution by laser diffraction method can be found in (Ma et al., 2000; Wedd, 2003). 

Soil mineral nitrogen (SMN) 

The SMN content was also measured by NRM laboratories. The soil was chopped and mixed 

to obtain a homogeneous sample and stones were removed. Soil nitrate concentrations were 

determined calorimetrically after shaking a fresh portion of each samples with 2 mol potassium 

chloride (KCl) to extract the mineral N fractions and reacting with sulphanilamide 

(C6H8N2O2S) and n-(1-Naphthyl)ethylenediamine (C12H14N2). Once in solution the nitrate-N, 

nitrite-N and ammonium-N can be measured calorimetrically (NRM, 2013). 

Macronutrients  

A B 
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Soil organic carbon was determined for the first round of samples (324 samples) by a CHN 

instrument in the UEA laboratories. The soil sample was acidified with sulphurous acid to 

remove all inorganic carbon. After drying, a tiny portion (4 mg) was placed in a capsule and 

measured. Soil organic matter of subsequent samples was determined by loss-on-ignition (LOI) 

by NRM laboratories. The organic matter was destroyed by dry combustion at 430 °C and the 

loss in weight of the sample was reported as the percentage organic matter content. Organic 

matter can be determined by using the Van Bemmelen factor (1.724, which is based on the 

assumption that organic matter contains 58 percent organic carbon), so organic matter =organic 

carbon x 1.724 (Buol et al., 2011).  

Available phosphorus was determined by shaking the soil with 0.5 M of sodium bicarbonate 

solution at pH 8.5 and 20°C. Available potassium was determined by shaking the soil with 1 

M ammonium nitrate at 20 °C for 30 minutes. After filtration, the concentration of potassium 

in the extract is determined by flame photometry. Available magnesium was extracted from 

the soil by shaking with 1 M ammonium nitrate at 20 °C for 30 minutes. After filtration, the 

concentration of magnesium in the extract is determined by atomic absorption spectroscopy. 

The available sulphate was extracted from the soil under controlled conditions using a 

phosphate buffer extracting solution at a 1:2 ratio. The filtered extract of the sample was 

analysed by Inductively Coupled Plasma Emission Spectroscopy (ICP-ES) (NRM, 2013). 

Physical properties 

For soil bulk density measurement a core sampler was used to collect undisturbed cylindrical 

soil samples (7.6 cm long x 4.27 cm in diameter) from each soil sampling site at the ground 

surface. Bulk density (ρb) was measured as the mass of oven dried soil (105oC for 24 h) per 

volume of core (g cm-3) (Ward and Trimble, 2003). Each measurement was replicated three 

times. A Minidisk tension infiltrometer with a disk radius of 2.22 cm (Decagon, 2007) was 

used to measure the infiltration rate under unsaturated conditions created using a pressure head 

of -2 cm. Measurements were performed at the soil surface. The soil surface was carefully 

levelled before the tension disk infiltrometer tests. Detail of the procedure can be found in 

(Decagon, 2007). A hand-pushing penetrometer (Eijkelkamp) with a cone diameter of 11.28 

mm (cone number 1) was used for the measurement of soil compaction. The area of the cone 

base was 1 cm2 and the shaft diameter was 8 mm. The penetration resistance measurements 

were made by pushing the penetrometer vertically into the soil at an approximate speed of 2 

cm s-1. Penetration resistance measurement was replicated three times. Soil temperature and 
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soil moisture were both measured by the soil moisture probes AddIT series 4 (ADCON) that 

were installed in January 2013 close to the locations where porous pots installed (Figure 2.9). 

The probes record soil moisture every 15 minutes in nine soil depths (10-90 cm) and soil 

temperature every 15 minutes in three soil depths (15,45 and 75 cm).  

2.3.2.2 Soil solution analysis 

Field drain and porous pot nitrate concentration was determined by ion chromatography using 

a Dionex ISC 2000 instrument. A sodium nitrate (NaNO3) standard (0.50-7.50 mg L-1) was 

used for calibration. Instrument accuracy (±0.2 mg L-1) was determined by analysing a certified 

reference material (NO3̄ = 214 µmol L-1) with each sample batch with detection limit of 0.01 

mg N L-1. A continuous flow analyser (Skalar San++) was used for measuring ammonium with 

a detection limit and accuracy of 5.98 µg N L-1 and ± 4.57 µg N L-1, respectively. It was also 

used for measuring nitrite with detection limit and accuracy of 0.96 µg N L-1 and ± 1.52 µg N 

L-1, respectively. 

2.3.2.3 N2O measurement 

Figure 2.12 shows a schematic diagram of the gas chromatogram (GC) and sample preparation 

line used for N2O analysis. Samples are directly injected into a 100 cm3 glass purging column 

which is flushed with helium CP grade flowing at a rate 30 ml min-1 (Table 2.5). The purging 

gas stream is passed through various traps connected by ¼ inch stainless steel tubing and 

stainless steel fittings. Water vapour is removed from the purging gas by passing through a 

reverse-flow Nafion dryer (in-line after the purge tower). The drying gas, which flows around 

the membrane containing the purge gas flow and in the opposite direction (not shown in the 

schematic diagram), should be approximately 2-3 times the flow rate of the purge gas. This 

dryer was found to be extremely effective. Additionally, a 2.8 cm3 glass tube was filled with 

magnesium perchlorate Mg(ClO4)2 granules to trap any moisture that might pass through the 

reverse-flow Nafion dryer. Carbon dioxide (CO2) is taken out of the gas stream in a 2.8 cm3 

glass tube with Carbosorb. Both, water and CO2 are electronegative compounds and can 

potentially interfere with the nitrous oxide GC analysis, hence the need for them to be removed 

prior to sample injection. Detail of this method can also be found in (Mühlherr, 1997; Mühlherr 

and Hiscock, 1998; Outram and Hiscock, 2012). 

The water samples were purged for 20 minutes to ensure a nitrous oxide recovery rate of >99%. 

Nitrous oxide is captured on glass beads packed into a 1/8 inch stainless steel loop in a trap 

held above liquid nitrogen at -190oC. The N2O is then remobilised by submerging the loop in 
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a hot bath at approximately 95oC. The sequence of events for analysing a sample once it 

becomes trapped inside the sample loop is as follows: 1- Start data capture, 2- Throw nupro 

(from on - off) valve (in line before sample valve), 3- Throw 6-port Valco sample valve, 4- 

Replace liquid N2 flask with hot bath (turn off liquid N2 heater), 5- Re-throw nupro valve (from 

off – on), 6- Leave for 30 secs, 7- Re-throw Valco sample valve.  
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Figure 2.12 Schematic diagram of the gas chromatogram sample preparation line used for nitrous oxide (N2O) analysis. 
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Table 2.5 A summary of the type of gas, the regulator pressure and the approximate flow rate 
 

Gas type 
Regulator 
pressure (psi) 

Flow rate   
(mL min-1) 

Carrier gas 5% CH4/bal Ar 70 15 
Make-up gas Research Grade N2 3 20 
Purge gas CP He 10 30 
Dryer gas Zero N2 1 65 
Isotope storage CP He 1 n/a 

 

The volume of the analysed sample was determined gravimetrically. Syringes were weighed 

before and after sample injection with the difference in weight (g) being the volume of the 

analysed sample in ml. To flush the purging tube and clean it after each sample, an initial run 

of ~4 ml of sample water was injected into the purging tube and left for 4 minutes before being 

poured out. 

Sample chromatogram 

The chromatogram below (Figure 2.13) shows the typical the N2O peaks obtained from 

standard. The black, blue and green peaks are for 20 ml, 60 ml and 120 ml of a 1 ppm N2O 

standard, respectively. The fluctuation in the baseline between 1 and 2 minutes is due to the 

throwing of the sample valve. 

 

Figure 2.13 Typical chromatograms for three different volumes of N2O standard. 

 

 

20 mL  

60 mL  

120 mL  
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Calibration 

A nitrous oxide standard of 1 ppm (AIR LIQUIDE) was used to calibrate the analytical system. 

An aliquot of the standard (10 to 100 mL) was injected with a 10 ml airtight glass syringe 

(SGE) into the preparation line through a septum (Figure 2.14) prior to being trapped and then 

desorbed into the GC. The quality of the standard was checked by injecting about 10 mL of 

ambient air on several occasions. Nitrous oxide concentrations for these air samples ranged 

from 300 to 350 ppb according to the calibration line, which showed that the standard was of 

reliable quality. In each calibration, prior to injecting the standard, several blanks were 

analysed to ensure that there was no contamination or gas leaking in the preparation line in the 

GC prior to sample analysis.  

Table 2.6 shows how different volumes of the N2O standards can be used to generate a 

calibration model. Concentrations of nitrous oxide in the field drain samples changed over time, 

with generally lower N2O concentrations in the summer compared with autumn and winter. 

Hence, different volumes of standard were injected according to season.  

Table 2.6 An example of different standard volumes used to generate an N2O calibration 

Date 
Run 
no. 

(P)  
Air 

pressure 
(Pascal) 

Purge 
Time 
(min) 

Standard 
conc. 
(ppm) 

(T) 
Lab 
temp  
(oC) 

 

Volume 
of 

standard 
injected 

(ml) 

(V) 
Volume  

of  
standard 

 m3 

Number of 
molar 

injected 
(PV/RT) 

(M) 

Number 
of 

Injected 
(nM) 

Area 
(Arb. 
unit) 

Area-
Blank 
(Arb. 
unit) 

16.01.14 2814 101325 10 blank 18 0 0 0 0 27.9 0 

16.01.14 2815 101325 10 blank 18 0 0 0 0 21.5 0 

16.01.14 2816 101325 10 blank 18 0 0 0 0 26.1 0 

16.01.14 2817 101325 10 1 18 20 2E-11 8.37134E-10 0.837134 2399.8 2374.633 

16.01.14 2818 101325 10 1 18 40 4E-11 1.67427E-09 1.674269 4622.5 4597.333 

16.01.14 2819 101325 10 1 18 60 6E-11 2.5114E-09 2.511403 6909.7 6884.533 

16.01.14 2820 101325 10 1 18 10 1E-11 4.18567E-10 0.418567 1358.2 1333.033 

16.01.14 2821 101325 10 1 18 80 8E-11 3.34854E-09 3.348537 9199.6 9174.433 

16.01.14 2822 101325 10 1 18 100 1E-10 4.18567E-09 4.185672 11168.5 11143.33 

16.01.14 2823 101325 10 1 18 10 1E-11 4.18567E-10 0.418567 1246.5 1221.333 

16.01.14 2824 101325 10 1 18 10 1E-11 4.18567E-10 0.418567 1391.9 1366.733 

R = gas constant = 8.314472 Jmol-1K-1, Temperature (kelvins) =Temperature (celsius+273.15) 
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Figure 2.14 Example of calibration line for the data in Table 2.6. 

Precision, accuracy and limit of detection 

In each calibration, a given volume of standard, normally 10 ml, or water sample was injected 

three times to obtain the instrument precision. The precision of standards ranged from 0.2% to 

5.8% with an average variance of 1.2% (determined from repeat analysis of 3 constant volumes 

of standard). The precision of N2O concentration in the water samples was found to vary 

between 0.3% and 3.0% with an average variance of about 1.5% (determined from repeat 

analysis of 8 water samples taken at the same time and place). This is very comparable to the 

precision (2.5%) calculated by Outram and Hiscock (2012) who used the same instrument. 

Instrument accuracy was measured by calculating the differences between measured N2O 

values (calculated from the calibration equation) and actual N2O content of a standard divided 

by the actual N2O content of the standard. The accuracy calculated here for the entire study 

was ±3%. 

(Miller and Miller, 1993) discuss the definition of detection limit. The definition used here is 

that the limit of detection is an analyte concentration that gives a signal equal to the blank signal 

plus three standard deviations of the blank. Calculations using a number of blanks (and 

calibrations to convert the blank signal to a corresponding N2O concentration) suggest that the 

limit of detection was about 0.13 nM (0.004 µg N L-1). Mühlherr (1997) who utilised the same 

instrument quoted a limit of detection of 0.01nM. This is approximately 13 times lower than 

the value calculated in this study, but there is no definition of the limit of detection Mühlherr 

used.  

y = 0.0000000013x2 + 0.0003630606x - 0.0499667095

R² = 0.9996468212
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2.3.3 Statistics analysis 

The independent-sample t-test was used to examine the significant difference between two 

groups of data. A combination of one-way analysis of variance (ANOVA) with the assumptions 

of approximately normally distributed data and post-hoc tests (LSD) were used to compare the 

levels of significance among several treatments (three or more groups of data). For these tests, 

a significance level (p-value) of 0.05 was used. All statistical analyses were performed using 

SPSS for Windows® (version 20.0). Variations in data are given as standard errors. Microsoft 

Excel was used to plot the data and to calculate the fitted regression lines and their associations. 
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Chapter 3: EFFECTS OF COVER CROP AND REDUCED 
CULTIVATION ON SOIL QUALITY 

3.1 Introduction 

The need for sustainable management approaches to improve soil quality and increase 

agricultural production has been stressed by many studies in light of an increasing world 

population and climate change (Komatsuzaki and Ohta, 2007; Abdollahi and Munkholm, 

2014). Soil quality is defined by Karlen et al. (1997) as the capacity of a specific kind of soil 

to function, within natural managed ecosystem boundaries to sustain plant and animal 

productivity, maintain or enhance water quality, and support human health and habitation. 

Inappropriate use sometimes causes soil degradation which is one of the most critical threats 

facing mankind which not only lessens the productive capacity of an ecosystem but also effects 

overall climate. It is estimated that soil degradation has already affected more than two billion 

hectares of land globally at a rate of 8-9 million ha y-1 (Alam, 2014). Mechanisms that cause 

soil degradation include physical, chemical, and biological processes. Major physical processes 

are declines in soil structure leading to crusting, compaction, erosion, desertification, 

environmental pollution and unsustainable use of natural resources. Important chemical 

processes include acidification, leaching, salinisation and reduced fertility. The most important 

biological processes include a reduction in total biomass carbon and declines in land 

biodiversity (Eswaran et al., 2001). Thus, agriculture contributes significantly in deteriorating 

soil quality. However, nowadays, people have come to understand that agriculture should not 

only be high yielding, but also sustainable and thereby new approaches such as conservation 

agriculture are developed. 

Elements of conservation agriculture include conservation tillage, crop rotation and cover 

crops. Several studies have assessed the effects of different conservation agriculture elements 

on soil quality individually, but few studies have assessed the impacts of conservation tillage 

combined with cover crops. Therefore, the novel aspect of this study was to assess the effects 

of alternative cultivation regimes combined with cover crop on different parameters of soil 

quality. Conservation tillage, such as direct drill, is globally accepted as an effective approach 

for protecting the soil from structural degradation and erosion (Abdollahi and Munkholm, 

2014). It has been commonly observed that different tillage systems have affected soil 

properties. Conservation tillage has been shown to increase aggregate stability, organic matter 

content, biological activity and soil strength (Du Preez et al., 2001; Six et al., 2002; Mijangos 
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et al., 2006). On the other hand, increased bulk density and increased accumulation of 

phosphorus (P) and acidity near the soil surface has been reported as disadvantages of direct 

drill (Andraski et al., 2003; Dolan et al., 2006; Gál et al., 2007). 

In addition to conservation tillage, the inclusion of winter cover crops in spring crop rotations 

may deliver a range of important ecosystem benefits. Winter cover crops scavenge soil 

nutrients and reduce nutrient leaching into the surrounding aquatic environment (Jackson et al., 

1993; Fageria et al., 2005; Gómez et al., 2009). Improved soil quality and carbon sequestration 

have also been observed in the presence of cover crops (Mutegi et al., 2013). The presence of 

cover crops during autumn and winter when heavy rainfall events frequently occur also helps 

to prevent erosion and compaction by reducing rain-splash dispersion of the soil surface. They 

also help to reduce crusting by intercepting the large rain droplets before they can strike and 

compact the soil surface (Stagnari et al., 2010). Moreover, the significant effects of cover crops 

on nitrate loss has led some countries to include cover crops as a key element in their national 

strategy to reduce nitrate leaching (Munkholm and Hansen, 2012). No major disadvantages of 

cover crops on soil quality are known. However, concern has been raised over the potential 

negative effects of cover crops to the following crop yield. Cover crops may create N deficiency 

for the next crop if too much N is immobilised and not released in a timely manner (Fageria et 

al., 2005). Therefore, it was hypothesised in this study that alternative cultivation regime such 

as minimum tillage and direct drill combined with a cover crop would improve the overall soil 

quality. 

3.2 Results and discussion 

3.2.1 Particle size distribution 

The particle size distributions as a percentage of sand, silt and clay for the 144 soil samples 

collected at three soil depths are shown in Figure 3.1. Samples from topsoil (0-30 cm) are 

concentrated in a relatively small area in the ternary diagram and most of them have clay loam, 

sandy loam, sandy silt loam and sandy clay loam soil texture, with only one clay soil texture 

sample and no sand soil texture. Conversely, samples collected from the deeper soil (60-90 cm) 

are scattered in a relatively large area of the triangle, with many clay and sand texture samples. 

This means that the texture of topsoil in the nine fields is more homogeneous than the deep soil 

layer. This might be due to cultivating the top soil layers that homogenised the soil over years. 

The greatest variations occur in the clay and sand fractions, particularly in the deeper soil layer, 

with very little variation in the proportion of silt sized material. 
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Figure 3.1 Particle size distribution of 0-30 cm depth (top left), 30-60 cm depth (top right), and 60-90 cm depth 
(bottom). 

Spatial variation of soil fractions in the topsoil of the study area was visualised by using the 

data of all three soil fractions. The data of each fraction were interpolated via kriging in 

ArcGIS10.1 and then the interpolated maps were composite banded. The distribution of soil 

fractions in the topsoil (0-30 cm) are shown in Figure 3.2. Red colour indicates sand-dominated 

soil texture and blue colour represents soil with high clay content. Sheds Field and the southern 

part of Moor Hall Field show a reddish colour indicating high sand content. The eastern part 

of Swanhills and north-eastern part of GateHouse Hyrne fields possess relatively high silt 

content. On the other hand, Potash and the western part of GateHouse Hyrne fields have bluish 

colours indicating a soil with high clay content.  
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This result corresponds well with the electrical conductivity scan of these same fields 

(Appendix A2). The electrical conductivity of soils changes depending upon the porosity and 

the amount of moisture held by soil particles. Sands have low conductivity, silts have medium 

conductivity and clays have high conductivity. Consequently, electrical conductivity correlates 

strongly to soil particle size and texture (Grisso et al., 2009). Low electrical conductivity zones 

located in areas with high sand content and high electrical conductivity contours coincided with 

areas of high clay content. 

 

Figure 3.2 Distribution of soil fractions in the 0-30 cm soil depth. 

3.2.2 Soil mineral nitrogen (SMN) 

3.2.2.1 Soil nitrate 

Results for soil extractable nitrogen (reported as NO3̄-N) in the topsoil are shown in Figure 3.3 

and Figure 3.4. Soil nitrate concentrations were not significantly (p > 0.05) different among 
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the three treatments for the same sampling date. This means that in the topsoil, the cover crops 

and conservation tillage did not significantly reduce soil nitrate compared to the no cover crop 

and conventional tillage fields. After the winter wheat harvest and before cover crop planting 

in September 2013, soils in all three treatments had the highest nitrate concentration (>5 mg N 

kg-1). This was because some nitrate was left over from the previous crop and had not been 

leached. Soil nitrate concentration decreased substantially from September 2013 to February 

2014 in all three treatments from values of >5 mg N kg-1 to values of <3 mg N kg-1. The 

decrease in soil nitrate in bare fields over autumn may have been due to leaching losses as a 

large amount of rainfall occurred during the autumn (Figure 4.1). Additionally, the decline of 

soil nitrate in the two cover crop treatments over autumn may have been due to the uptake of 

potentially leachable soil nitrate by the growing cover crop. Evidence for this is provided by 

leaf and root nutrient analysis of the cover cops which showed that the average N content 

contained in both leaf and root was 76 kg N ha-1 (Table 3.1). Other studies have found a 

significant reduction in soil nitrate by radish cover crops compared to bare soil in the topsoil 

layer. Jackson et al.(1993) found that soil under a radish cover crop had a soil nitrate value of 

only 2 mg N kg-1,whereas this figure was approximately 28 mg N kg-1 for bare soils at 0-15 cm 

depth.  

Table 3.1 Oilseed radish leaf and root analysis (January 2014) 

N content 
Leaf 

(kg N ha-1) 

N content 
Root 

(kg N ha-1) 

N content 
Total 

(leaf & root) 
(kg N ha-1) 

 
Dry matter yield 

Leaf 
(t ha-1) 

Dry matter yield 
Root 

(t ha-1) 

Dry matter yield 
Total 

(leaf & root) 
(t ha-1) 

64 12 76  2.11 0.61 2.72 

 

The data presented here showed that there was no significant difference in soil nitrate 

concentrations between cover crop fields and bare soil fields after the cover crop was 

incorporated into the soil (i.e. results from July 2014 sampling). Soils from cover crop & direct 

drill treatment surprisingly had a lower mean nitrate level after cover crop incorporation 

compared to the control (no cover crop & conventional plough) treatment. The expected 

increase of soil nitrate after cover crop incorporation is because the trapped nitrogen stays in 

the soil and becomes available to the next crop when the plant decomposes in the spring. 

Contrary to the findings in this study, many studies found that soil nitrate increased in cover 

cropped fields compared to bare soil after incorporation. Jackson et al. (1993), for instance, 

noted that soil nitrate concentrations in cover crop plots were significantly higher than in bare 

soil by day 37 of the post-incorporation date. Knott (1996) also found that in all three 
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experiments, levels of soil mineral nitrogen (SMN) after peas were sown were consistently 

higher after cover crop incorporation than after bare stubble. Justes et al. (1999) also noted that 

after its incorporation, mineralisation of nitrogen within the radish cover crop increased SMN 

content. The absence of a significant increase in soil nitrate concentrations after cover crop 

incorporation in this study may be due to the fact that soil samples were collected four months 

after incorporation and soil nitrate might have been taken up by the following crop during that 

time.  

Again, there were no statistically significant differences in soil nitrate among treatments for 

both soil sampling dates (i.e. February 2015 and July 2015) in the second year. This confirms 

the results from the previous year that conservation tillage did not significantly affect soil 

nitrate levels compared to conventional tillage. Generally, soil nitrate was lower in the second 

farming year than the first farming year in both February and July. This might have been due 

to the type of crops planted. In the first farming year, when leguminous spring beans were 

grown, soil nitrate levels at both sampling dates were high, potentially due to the ability of 

spring beans to fix atmospheric nitrogen. Consequently, soil nitrate is unutilised by spring 

beans. Conversely, in the second farming year when non-leguminous winter wheat was grown, 

soil nitrate in both sampling dates were relatively low, potentially due to the ability of wheat 

to scavenge nitrate from soil profile.  
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Figure 3.3: Spatial variation of soil NO3̄ concentration for the five soil sampling occasions. 

 

Figure 3.4 Soil nitrate concentrations at 0-30 cm depth recorded in the three mitigation treatments on five soil 
sampling occasions. Error bars represent the standard error. 
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Even though the reduction of topsoil soil nitrate by cover crops was not significant (p > 0.05) 

compared to bare soil, the cover crop did significantly (p < 0.05) deplete soil nitrate in the 

deeper soil layers (i.e. 30-60 cm and 60-90 cm) compared to bare soil (Figure 3.5). Soil from 

three depths was sampled in February 2014 when cover crops were present in the seven fields 

and the other two fields were bare. Cover crops reduced soil nitrate in the topsoil (2.83 N mg 

N kg-1) compared to bare soil fields (3.04 mg N kg-1), but the difference was not statistically 

significance (p > 0.05) (Figure 3.3 and Figure 3.4). However, the significant effect of the cover 

crop started appearing in the two deeper soil profiles in which soil nitrate was reduced from 

(3.76 to 2.18 mg N kg-1) at 30-60 cm depth and from (3.54 to 0.76 mg N kg-1) at 60-90 depth. 

Thus, compared to bare soil, cover crops reduced soil nitrate by 7%, 42%, and 79% in 0-30 

cm, 30-60cm and 60-90 cm soil depths, respectively. This significant decline of soil nitrate in 

the deeper soils is related to the type of cover crop planted here. Oilseed radish has a thick, 

deep root that can help break up compacted soil layers and scavenge nitrate that has leached 

beyond the rooting zone of other crops. This ability of scavenging nitrogen from deep in the 

soil profile offers radish cover crops an extra advantage compared to other cover crop varieties 

because the nitrate in deeper soil layers is barely taken up by crops, so eventually it is more 

likely to leach into groundwater or field drains.  

 

Figure 3.5 Mean of soil nitrate in three soil depthsfor soil samples collected in February 2014 (i.e. during cover 
crop growth) in the three treatments. Error bar represented by standard error. Note: the cover crop planted in 
both treatments substantially depleted soil nitrate in the deeper soil layers relative to the control treatment. 
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3.2.2.2 Soil available nitrogen 

Available total nitrogen in the 30 cm soil profile is shown in Figure 3.6. Available nitrogen 

was not significantly (p > 0.05) different among the three treatments for the same sampling 

date, which again illustrates that the implemented mitigation measures did not have a 

substantial impact upon available nitrogen. The temporal trends in available nitrogen were very 

similar to that observed for soil nitrate. Soil available nitrogen post-harvest (September 2013) 

was relatively high, with mean values for three fields of 33 kg N ha-1. Levels then declined in 

all experimental fields to a mean value of 17 kg N ha-1. Like soil nitrate, this decrease in the 

bare control treatment (no cover crop & conventional plough) may be due to leaching and in 

the cover cropped treatments due to scavenging by the cover crop itself (Stivers-Young, 1998). 

Thus, the amount of soil nitrogen that was taken up by the cover crop in the 30 cm soil profile 

was approximately 17 kg N ha-1. Oilseed radish does not fix nitrogen, so all of its accumulated 

nitrogen content was obtained from the soil. Therefore, of the total nitrogen content of cover 

crop of 76 kg N ha-1 (Table 3.1), 17 kg N ha-1 were scavenged from the 30 cm soil profile and 

the remaining amount of 60 kg N ha-1 came from deeper soil profile. This emphasises the 

effectiveness of scavenging N from deep soil layers by oilseed radish, thus making it a highly 

effective cover crop for preventing N leaching. Such reductions in soil mineral nitrogen by 

cover crops has also been noted in other studies. Justes et al (1999) found that the presence of 

a radish cover crop markedly depleted the mineral nitrogen content of the soil compared to bare 

soil, particularly in the upper two layers where the roots are present. They found that radish 

cover crops decreased soil mineral nitrogen in the 0-120 cm depth  from 70 kg N ha-1 in 

September to ~30 kg N ha-1 in March, whereas this figure stayed relatively stable within that 

period for bare soils.  

Soil nitrogen did not significantly increase after cover crop incorporation (February 2014 to 

July 2014). Again, this may be related to the soil sampling occurring four months after cover 

crop incorporation. Similar to the reduction in soil available nitrogen from September 2013 to 

February 2014, soil available nitrogen over autumn reduced notably from July 2014 to 

February 2015 in all three treatments. This loss of nitrogen from the soil profile throughout 

autumn/winter is presumably due to leaching losses as a great amount of rainfall occurred 

during that period (Figure 4.1). A noticeable increase was observed from February 2015 to July 

2015 in all treatments perhaps due to the applied N fertilisers. Similar to soil nitrate, soil 

available nitrogen was generally lower in the second farming year than the first farming year 
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in both February and July. As discussed above, this might be due to the type of crops grown in 

that year. 

 

Figure 3.6 Soil available nitrogen at 0-30 cm depth in the three mitigation treatments during five sampling dates. 
Error bars represent the standard error. 

3.2.3 Soil macronutrients 

3.2.3.1 Soil Organic Carbon 

For the 144 topsoil samples collected prior to the experiment (May and September 2013), the 

soil organic carbon (SOC) was analysed along with soil texture to understand the overall 

condition of the study area. The SOC values were relatively low (median 1.28%) when 

compared to a median for the East Anglian region in general (2.24 %) based on analyses of 

2,858 topsoils samples collected between 2002 and 2005 (Rawlins, 2011). In their paper, 

Loveland and Webb (2003) cited 2% as a threshold below which many soil scientists believe a 

potentially serious decline in soil quality will occur. In this study, 86% of sampled soils on the 

nine fields had SOC values below 2%, indicating a potential threat to long-term soil quality.  

The measurements of soil organic carbon in 144 samples from topsoil (0-30) were interpolated 

by ArcGIS10.1 and treatment kriging to illustrate spatial variation (Figure 3.7). It is observed 

that zones of low SOC (green zones) generally coincided with soil of high sand content (Figure 

3.2), whilst zones of higher SOC generally matched with areas of high clay and silt content. 

Soil organic matter and thus SOC, tend to increase with increasing clay content. This increase 

depends on two mechanisms. First, bonds between the surface of clay particles and organic 

matter delay the decomposition process. Second, the potential for aggregate formation 
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increases with higher clay content. Thus, macro-aggregates physically protect organic matter 

molecules from further mineralisation caused by microbial activity (Rice, 2002; Bot and 

Benites, 2005). Power and Prasad (1997) mentioned that under similar climate conditions, the 

organic matter content in fine textured (clayey) soils is two to four times that of coarse textured 

(sandy) soils. 

 

Figure 3.7 Soil organic carbon distribution in the topsoil (0-30 cm) for 144 soil samples collected in May and 
September 2013. 

The percentage SOC can be converted into mega-grams (i.e. ton) of carbon per hectare (Mg 

ha-1), which is commonly used for presenting SOC data, by taking the bulk density and depth 

of soil sampling into consideration. During the experiment, no significant (p > 0.05) difference 

in SOC was observed in the treatments for the same sampling dates (Figure 3.8). Among the 

three treatments in September 2013, control treatment (no cover crop & conventional plough) 
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had the highest SOC of 89.1 Mg ha-1, followed by treatment (cover crop & reduced tillage) 

with a value of 81.8 Mg ha-1 and treatment (cover crop & direct drilling) had the lowest SOC 

value of 76.2 Mg ha-1. Regardless of the differences in farming practices, this order of SOC 

content of the three treatments was repeated in the following three sampling rounds. This is 

probably because soils in control treatment (no cover crop & conventional plough) are 

predominately clayey soils and soils in treatment (cover crop & direct drilling) are largely 

sandy (Figure 3.2) and as mentioned earlier, clayey soils tend to contain a higher percentage of 

SOC than sandy soils. 

Over time, there was a general trend for a slight increase in SOC content of each treatment. 

The SOC in treatment (cover crop & direct drilling), for instance, increased from 76.2 Mg ha-

1 in September 2013 to 80.2 Mg ha-1 in February 2014, 83.8 Mg ha-1 in February 2015 and 

finally 88.6 Mg ha-1 in July 2015. Thus, the mitigation measures practiced (i.e. cover crop and 

direct drill) increased SOC by 12.4 Mg ha-1 within two years of experimentation (September 

2013 to July 2015). This may be partially due to the incorporation of cover crops into the soils 

as approximately 2.7 Mg ha-1 of biomass was added into the soil and the biomass left 

undisturbed on the soil surface (Table 3.1). SOC also increased in treatment (cover crop & 

reduced tillage) from 81.8 Mg ha-1 in September 2013 to 90.8 Mg ha-1 by July 2015, an increase 

of 9.0 Mg ha-1. Thus, the mitigation measures practiced in this treatment (i.e. cover crops and 

minimum tillage) perhaps generated this increase in SOC. Surprisingly, SOC also increased in 

control treatment (no cover & conventional plough) within that two years of the experiment by 

6.8 Mg ha-1. Therefore, cover cropping, minimum and direct tillage may not be the only cause 

for the observed slight increase in SOC, as this increase also occurred in the control treatment. 

However, it is worth noting here that as the degree of soil disturbance decreased, the increase 

in SOC became greater.  

The results presented here are in agreement with the inconsistent results of the effects of cover 

crops and conservation tillage on SOC in the literature. Govaerts et al. (2009) conducted a 

literature review to identify the influence of the different components comprising conservation 

agriculture on SOC. In 7 out of 78 cases, the SOC content was lower in zero tillage compared 

to conventional tillage; in 40 cases it was higher and in 31 of the cases there was no significant 

difference. The mechanisms that govern the balance between increased, similar, or lower SOC 

after conversion to zero tillage are not yet fully understood. Six et al. (2002) found a greater 

accumulation of SOC in the topsoil with no-tillage compared to conventional tillage. They 

stated that this greater accumulation of SOC in zero or reduced tillage can be related to the lack 
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of soil disturbance and a better preservation of aggregates in reduced tillage compared to 

conventional tillage. It was concluded in a long-term (19 years) comparative study of 

conventional tillage to no-tillage and fallow to several winter cover crops by Calegari et al. 

(2008) that no-tillage resulted in a 6.84 Mg ha-1 increase in SOC in the upper soil layer (0-10 

cm), which represented 64% more than conventional tillage. Also, fallow treatment (regardless 

of tillage types) resulted in the lowest SOC stocks at 40 cm depth compared to all other winter 

cover crops. The higher SOC in no-tillage was potentially a result of organic residues left every 

year on the soil surface, no soil disturbance and decreased contact with soil microorganisms.  

Although the increase in SOC observed in this two-year study through implementing cover 

crops and reduced tillage/direct drill was small or insignificant, perhaps the real increase will 

be observed after a few years of continuing the experiment. Lal et al. (1998), supported by the 

results from Franzluebbers and Arshad (1996a, b), observed that there may be little to no 

increase in SOC in the first 2-5 years after a change in management practice, but will be 

followed by a larger increase in the next 5-10 years. West and Post (2002) concluded that SOC 

was generally increased by no-tillage management, but observed a delayed response, with a 

substantial increase observed in years 5-10. Campbell et al. (2000) found that a measureable 

gain in SOC could be detected in 6 years or less when weather condition were favourable. 

 

Figure 3.8 Soil organic carbon (SOC) content at 0-30 cm depth in the three treatments on four sampling 
occasions. Error bars represent the standard error. 
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3.2.3.2 Soil phosphorus 

Extractable phosphorus (P) concentrations for topsoil (0-15 cm) are presented in Figure 3.9. 

According to Horneck et al. (2011), who classified soils based on P concentration into four 

categories (low, medium, high and excessive), most of the soils in the study area are in the 

medium range (10-25 mg L-1) and in the lower end of the high range (25-50 mg L-1). Very few 

soils were in the excessive (>50 mg L-1) range and no soil was in the low (<10 mg L-1) range 

of P level. No major increase or decrease in P level was observed in individual soil sampling 

locations over time. Soils with medium P concentration, such as First and Far Hempsky fields, 

remained relatively constant over time and soil with high P levels, such as Sheds Field and 

Moor Hall Field, remained relatively high over time. 
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Figure 3.9. Spatial variation of soil P concentration on four sampling occasions. 

Accumulation of P in surface soil was greater in treatment (cover crop & direct drill) and 

treatment (cover crop & reduced tillage) than in control treatment (no cover crop & 

conventional plough) on all four soil sampling dates (Table 3.2). During the experiment when 

cover crops were present in the fields (i.e. February 2014), P concentrations were significantly 

(p < 0.05) higher in treatment (cover crop & reduced tillage) (27.4 mg L-1) and treatment (cover 

crop & direct drill) (26.2 mg L-1) than in control treatment (18.0 mg L-1). The lower value of P 

in the control treatment may be due to erosion and leaching as the soil was left bare during the 
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winter, whereas cover crops in the measures fields protected the soil from the erosion and 

retained P in the soil. This higher P concentration in treatment (cover crop & direct drill) and 

treatment (cover crop & reduced tillage) was also observed in both February 2015 and July 

2015. Moreover, no significant difference in P concentration between treatment (cover crop & 

reduced tillage) and treatment (cover crop & direct drill) was recorded for any of the sampling 

dates. The results here show that the cover crop and reduced tillage retained the soil P level in 

topsoil compared to conventional practices. It is also apparent that different types of reduced 

tillage (minimum tillage and direct drill) exerted only minor differences on topsoil P levels. 

Several studies have reported higher extractable P levels in reduced tillage soils compared with 

tilled systems, largely due to reduced mixing of phosphate fertiliser within the soil, which 

causes lower P- fixation. This is an advantage when P is a limiting nutrient of crop growth, but 

may be a danger when P is an environmental problem due to the possibility of soluble P losses 

in surface runoff (Duiker and Beegle, 2006). In a 10-year study, Matowo et al. (1999) found 

significantly higher extractable-P concentrations in no-tillage compared to tilled soil in the top 

5 cm. Andraski et al (2003) also found that long-term zero-tillage produced significantly higher 

concentrations of soil P in the soil surface (0-5 cm), whereas P levels were decreased at the 5-

15 cm depth compared to conventional tillage. Zibilske et al. (2002) stated that while P levels 

in conventional tillage were lower in top 8 cm than under conservation tillage, it was higher in 

the lower depths than in corresponding depths of conservation tillage. This suggests a 

redistribution of P with time toward the surface in conservation tillage. 

Cover crops can present several potential opportunities and challenges for P management in 

agricultural systems, including remediation of excessively high soil P, increased concentration 

of P at the soil surface and improved fertility of low P soil. If agricultural land is excessively 

high in P, then P transport from these areas to natural waters is one of the primary causes of 

eutrophication (Boesch et al., 2001). The concentration of P in soil can be depleted with time 

by reducing the use of P containing fertilisers while continuing to remove P from the soil 

through harvested cover crops and main crops. On the other hand, cover crops are allowed to 

decompose at the soil surface in no-tillage systems which may lead to an accumulation of P at 

the soil surface where it is susceptible to loss by surface runoff and erosion (Brown, 2006; 

White and Weil, 2011). The effects of cover crops on P in soil is less documented compared to 

the tillage effect on P. White and Weil (2011) noticed that P concentrations were lower in soil 

without cover crops than in soils under a cover crop. They recommended further studies be 
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conducted to determine if cover crops could increase P removal rates in excessively high P 

soils or increase P availability in low P soils. 

Table 3.2 Mean soil phosphorus (P) concentrations at 0-15 cm depth in the three mitigation treatments for four 
soil sampling dates. Means followed by different superscripted letters are significantly different (p < 0.05) for 
the same sampling date. Means followed by different superscripted numbers are significantly different (p < 

0.05) for the same treatment. SE is standard error 

Treatments 

Sep. 2013  Feb. 2014  Feb. 2015  Jul. 2015 
P 

(mg L-1) SE  
P  

(mg L-1) SE  
P  

(mg L-1) SE  
P  

(mg L-1) SE 
No cover crop & 
Conventional plough 
(control) 

21.4a1 2  18.0a1 2  22.9a2 3  26.9a1 4 

            
Cover crop & 
reduced tillage 

29.3a1 3  27.4b1 3  30.0a1 4  29.2a1 3 

            
Cover crop & direct 
drill  

30.3a1 3  26.2b1 2  33.0a1 3  34.4a1 3 

 

3.2.3.3 Soil potassium 

Topsoil (0-15 cm) extractable potassium (K) concentrations for the three field treatments are 

shown in Table 3.3. According to (Horneck et al., 2011), who classified soils based on K 

concentration into four categories (low, medium, high and excessive), the majority of soils 

have low (<150 mg L-1) K levels, a few are in the medium (150-250 mg L-1) range, whilst there 

are no soils with either high (250-800 mg L-1) or excessive (>800 mg L-1) K concentration.  

Before the experiment (i.e. September 2013), soils in treatment (cover crop & reduced tillage) 

had the highest K concentration (128 mg L-1) compared to the other two treatments, whilst 

treatment (cover crop & direct drill) had lower K concentration (103 mg L-1) than  control 

treatment (111 mg L-1). However, five months later when the cover crops were growing (i.e. 

February 2014) this order of treatments changed. K levels were significantly (p < 0.05) higher 

in both (cover crop & reduced tillage) (144 mg L-1) and (cover crop & direct drill) (129 mg L-

1) treatments than in control treatment (95 mg L-1). Similar to P concentrations , this lower 

value of K in the control treatment may be due to erosion and leaching given that the soil was 

left bare over winter, whereas the cover crop in the measures fields protected the soil from 

erosion and retained K in the soil. This higher K concentration treatment (cover crop & direct 

drill) and treatment (cover crop & reduced tillage) compared to control treatment was also 

observed in both February 2015 and July 2015.  
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A minor difference in K concentration between treatment (cover crop & reduced tillage) and 

treatment (cover crop & direct drill) was recorded in all four sampling rounds, meaning that 

different types of reduced tillage (reduced tillage and direct drill) potentially created minor 

differences in K level in the topsoil. Moreover, it is also observed that before the experiment, 

treatment (cover crop & direct drill) had the lowest K levels among the treatments with 103 

mg L-1, but that over time with implemented field measures in this treatment ( i.e. cover crop 

and direct drill) this treatment became the highest regarding K concentration (130 mg L-1). It 

is apparent from the comparison between control treatment and treatment (cover crop & direct 

drill) from the first to the last sampling date, that K levels in the topsoil decreased by 15 mg L-

1 within two years in control treatment which may be due to erosion. Conversely, in treatment 

(cover crop & direct drill), K concentration increased by 27 mg L-1 which is likely due to the 

prevention of leaching and erosion by the cover crop and non-disturbance through direct 

drilling. Therefore, the data here indicate that cover crops and reduced tillage retained higher 

soil K levels in topsoil compared to conventional practices. It is also observed that direct drill 

practices tended to retain a greater amount of K in the topsoil than reduced tillage.  

Many studies have observed higher extractable K concentration in reduced tillage systems than 

under conventional tillage. Minimum tillage retains and increases the availability of nutrients, 

such as K, near the soil surface where crop roots proliferate (Franzluebbers and Hons, 1996). 

Moreno et al. (2006) also observed that accumulations of K in the surface soil (0-10 cm) were 

greater in conservation tillage than under conventional tillage. Other studies have found higher 

extractable K levels at the soil surface as tillage intensity decreases (Lal et al., 1990; Ismail et 

al., 1994). Shallow incorporation of crop residues in reduced tillage may have resulted in higher 

amounts of K at the soil surface compared to conventional tillage. Du Preez et al. (2001) 

observed an increased concentration of K in no-tillage systems compared to conventional 

tillage, but this was less pronounced with depth. Some other authors have found surface 

accumulation of available K regardless of the tillage practice employed (Duiker and Beegle, 

2006), while Matowo et al. (1999) observed no notable effect of tillage on available K 

concentration. In agreement with the findings here, Obi (1999) noted that K levels in soils (0-

15 cm) under five different cover crops were appreciably improved compared to bare soil in a 

five-year cover cropping experiment. Abdollahi and Munkholm (2014) also found that cover 

crops significantly increased K content at the 0-10 cm soil depth and similar trends were also 

observed at 10-20 cm depth. In contrast to the results found in this study, Fourie et al. (2007) 
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found that cover cropping had no significant effect on extractable K in a study of sixteen 

treatments in comparison with no cover crop. 

Table 3.3 Mean soil potassium (K) concentrations at 0-15 cm depth in the three treatments for four soil sampling 
dates. Means followed by different superscripted letters are significantly different (p < 0.05) for the same 

sampling date. Means followed by different superscripted numbers are significantly different (p < 0.05) for the 
same treatment. SE is standard error 

Treatments 

Sep. 2013  Feb. 2014  Feb. 2015  Jul. 2015 
K 

(mg L-1) SE  
K  

(mg L-1) SE  
K  

(mg L-1) SE  
K  

(mg L-1) SE 
No cover crop & 
Conventional plough 
(control) 

111ab1 8  95a1 9  120a1 13  96a1 13 

            
Cover crop & 
reduced tillage 

128b1 10  144b2 8  147a2 8  120a1 7 

            
Cover crop & direct 
drill  

103a1 5  129b12 8  157b2 12  130a12 14 

 

3.2.3.4 Soil magnesium 

The data of soil magnesium (Mg) concentrations are presented in Table 3.4. According to 

(Horneck et al., 2011), who classified soils based on Mg concentration into three categories 

(low, medium and high), the majority of the soils have low (<60 mg L-1) Mg levels, a few are 

located at the lower end of the medium (60-300 mg L-1) range and no soil samples have high 

(>300 mg L-1) Mg levels. Before the experiment in September 2013, control treatment (no 

cover crop & conventional plough) had the highest mean Mg levels at 58.3 mg L-1, followed 

by treatment (cover crop & reduced tillage) (53.4 mg L-1) and treatment (cover crop & direct 

drill) (48.9 mg L-1). During the cover crop trials (i.e. February 2014), no major change occurred 

in mean Mg levels in any of the treatments, with control treatment still having the highest 

concentrations and treatment (cover crop & direct drill) the lowest. The same was true for the 

third and fourth sampling dates.  

The results here show that cover cropping and reduced tillage did not increase Mg 

concentration in the topsoil. A high level of Mg in a certain treatment remained high regardless 

of different agricultural practices, whilst a low Mg level in a certain treatment stayed low 

irrespective of cover crops and tillage operations. The results also show that unlike P and K 

which eroded and leached in the bare soil treatment during the winter, Mg concentrations were 

retained in a bare soil and were not reduced by erosion or leaching. 
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The findings in this study are in agreement with findings from a majority of other studies on 

the effects of tillage and cover crops on soil Mg content. Verhulst et al. (2010) in an extensive 

report stated that most research has shown that tillage method does not affect extractable Mg 

levels in the soil. Duiker and Beegle (2006) also observed no significant tillage effect on Mg 

content nor on its vertical or horizontal stratification. Franzluebbers and Hons (1996) found no 

significant effect of tillage on extractable Mg. A lack of tillage effect on Mg in soil was also 

observed by several others (Lal et al., 1990; Hulugalle and Entwistle, 1997; Govaerts et al., 

2007). Matowo et al. (1999), however, observed higher extractable Mg concentration with 

conventional tillage than with zero tillage, although they could not explain this finding.  

Table 3.4 Mean soil magnesium (Mg) concentrations at 0-15 cm depth in the three mitigation treatments for four 
soil sampling dates. Means followed by different superscripted letters are significantly different (p < 0.05) for 
the same sampling date. Means followed by different superscripted numbers are significantly different (p < 

0.05) for the same treatment. SE is standard error 

Treatments 

Sep. 2013  Feb. 2014  Feb. 2015  Jul. 2015 
Mg 

(mg L-1) SE  
Mg  

(mg L-1) SE  
Mg  

(mg L-1) SE  
Mg  

(mg L-1) SE 
No cover crop & 
Conventional plough 
(control) 

58.3a1 5  63.7a1 6  65.7a1 7  57.7a1 5 

            
Cover crop & 
reduced tillage 

53.4a1 3  53.0a1 4  52.2b1 4  51.2a1 3 

            
Cover crop & direct 
drill  

48.9a1 1  52.6a1 3  50.9b1 4  49a1 3 

 

3.2.3.5 Soil sulphate 

Results for soil extractable sulphate (reported as SO4-S) concentration are presented in Table 

3.5. According to (Horneck et al., 2011), who classified soils based on SO4 concentration into 

four categories (very low, low, medium and high), the majority of soils in the study had a 

medium (5-20 mg L-1) concentration, a few were within the low (2-5 mg L-1) range and no 

samples had either high (>20 mg L-1) or very low (<2 mg L-1) SO4 concentrations.  

Soil sulphate concentrations were not significantly (p > 0.05) different among the three 

treatments at the same sampling date. This means that cover crops and conservation tillage did 

not significantly elevate soil sulphate levels in the topsoil compared to no cover crop and 

conventional tillage. After the winter wheat harvest and before cover crop planting (September 

2013), soils in all three treatments had the highest sulphate concentration (>8 mg L-1). Soil 

sulphate concentrations then decreased between September 2013 and February 2014 (i.e. 

during autumn/winter) in all three treatments. The decrease in bare fields over autumn may 
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have been due to leaching losses as large amounts of rainfall occurred at this time. Additionally, 

the sulphate decline in the two cover cropped treatments may have been due to the uptake of 

potentially leachable soil sulphate by the growing cover crop.  

In 2015, there was again no statistically significant (p > 0.05) differences in soil sulphate among 

the treatments for both soil sampling dates (i.e. February 2015 and July 2015). This supports 

the results from the previous year that conservation tillage did not significantly affect soil 

sulphate levels compared to conventional tillage. Similar to the result here, Franzluebbers and 

Hons (1996) observed no change in soil sulphate under zero tillage compared to conventional 

tillage. Szulc et al. (2004), however, recorded the highest soil sulphate concentrations in deeply 

ploughed soil, whilst the smallest concentrations were observed under direct drill. The effects 

of different tillage systems and cover crops on soil sulphate level have been less intensively 

studied compared to other soil nutrients, perhaps due to the reason that it is one of the 

micronutrient in the soil instead of a key macronutrients for plant growth.  

Table 3.5 Mean soil sulphate (SO4) concentrations at 0-15 cm depth in the three mitigation treatments for four 
soil sampling dates. Means followed by different superscripted letters are significantly different (p < 0.05) for 
the same sampling date. Means followed by different superscripted numbers are significantly different (p < 

0.05) for the same treatment. SE is standard error 

Treatments 

Sep. 2013  Feb. 2014  Feb. 2015  Jul. 2015 
SO4-S 

(mg L-1) SE  
SO4-S  

(mg L-1) SE  
SO4-S  

(mg L-1) SE  
SO4-S  

(mg L-1) SE 
No cover crop & 
Conventional plough 
(control) 

9.9a1 1.3  6.1a1 0.5  4.2a1 0.2  7.4a1 0.6 

            
Cover crop & 
reduced tillage 

8.2a1 0.3  7.4a1 0.8  3.7a1 0.1  7.1a1 0.3 

            

Cover crop & direct 
drill  

8.5a1 0.3  7.4a1 0.8  3.4a1 0.3  8.2a1 0.5 

 

3.2.4 Soil physical properties 

3.2.4.1 Soil temperature 

Soil temperature data at three depths for the three treatments are presented in Figure 3.10. Data 

from temperature and moisture probes installed in clay loam soils were selected here as these 

provided the most complete data record. Probe number 50513 in control treatment (no cover 

crop & conventional plough), probe number 50369 in treatment (cover crop & reduced tillage) 

and probe number 50399 in treatment (cover crop & direct drill) were chosen. A maximum soil 

temperature of 25.1 °C was recorded in July 2014 at 15 cm depth in control treatment and a 

minimum soil temperature of 2.1 °C was recorded in February 2014 at 15 cm depth, also in 
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control treatment. In all treatments, no major differences in soil temperature between the three 

depths were observed and it was noted that soil temperatures at the three depths exhibited the 

same trends over time. As summer 2015 was approaching, for instance, soil temperatures 

gradually increased at all depths corresponding to the gradual increase in air temperature. It is 

also observed that soil temperature tended to be slightly lower in the deeper soil layer (75 cm) 

than the upper soil layer (15 cm). This is very clear for summer 2014 and summer 2015 when 

soil temperatures were consistently lower at 75 cm than 15 cm, but for winter 2014-2015 soil 

temperature was higher at 75 cm depth than at 15 cm. Liu et al. (2013) mentioned that it is 

commonly observed that soil temperature is strongly correlated with air temperature and 

decreases with increasing depth below the soil surface. The strong correlation between air and 

soil temperatures was also likely responsible for the remarkable fluctuations seen in the 

temperature of the upper soil layers compared to the deep soil layers. The correlation between 

air and soil temperature is not only recorded in different soil layers but also observed at 

different times. Air temperatures are lower in winter than in summer and soil was also found 

to have lower temperatures in winter than in summer. For example, the mean value of soil 

temperature in the top soil layer (15 cm) in control treatment in winter 2013-2014 was 5.5 °C, 

whilst this figure was 19.0 °C for summer 2014.  

No consistent significant differences in soil temperature between different mitigation 

treatments were observed. The mean values of soil temperature at 15 cm depth over the study 

period were 10.5 °C, 10.5 °C and 12.3 °C for control, (cover crop & reduced tillage) and (cover 

crop & direct drill) treatment, respectively. When a cover crop was present (i.e. winter 2013-

2014) on the two treatments, the bare soil treatment had a soil temperature of 5.5 °C which was 

not significantly different from treatment (cover crop & reduced tillage) with a soil temperature 

of 5.6 °C. In summer 2014, soil temperatures at 15 cm depth in control treatment (19.0 °C) 

were significantly (p < 0.05) higher than in treatment (cover crop & reduced tillage) (15.2 °C) 

and in treatment (cover crop & direct drill) (15.0 °C). However, in the following summer, no 

significant differences in soil temperature were noted among the treatments with mean values 

of 11.0 °C, 10.9 °C and 11.4 °C for the control, (cover crop & reduced tillage) and (cover crop 

& direct drill) treatments, respectively. Therefore, overall, cover crops and different soil tillage 

methods had little effect on soil temperature. 

Several studies have been conducted to assess the effect of different soil management 

approaches on soil temperature. (Fabrizzi et al., 2005) observed that mean soil temperatures 

were lower under no-tillage than under minimum tillage systems. They believed that the 
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differences in soil temperature between tillage systems were due to differences in residue 

accumulation on the soil surface. The high solar reflectivity and low thermal conductivity of 

the crop residues prevent an increase of soil temperature under no-tillage. Maximum soil 

temperature under minimum tillage was higher than under no-tillage, but minimum soil 

temperature was similar for both tillage systems. Drury et al. (1999) studied soil temperatures 

and soil water content under no-tillage and conventional tillage in corn fields in Ontario with 

and without cover crop. They found that no-tillage with and without cover crop increased soil 

water content by 2-5% and reduced soil temperature by 1-2 °C compared to conventional 

tillage. These cooler soil temperatures and higher soil moisture contents in no till soils can lead 

to poorer seedbed conditions which may result in lower germination success. Licht and Al-

Kaisi (2005) found that soil temperatures in the top 5 cm under strip tillage were higher (1.2-

1.4 °C) than that under no-tillage and they stayed close to the chisel plough soil temperature. 

This increase in soil temperature contributed to an improvement in plant emergence rate index 

under strip-tillage compared with no-tillage. Other studies (Moroizumi and Horino, 2002; Chen 

et al., 2011; Liu et al., 2013) recorded higher soil temperature under conventional tillage than 

under conservation tillage. 

It was hypothesised in this study that cover crop and reduced tillage would improve soil quality. 

Increasing (not decreasing) soil temperature is generally favourable for improving soil quality 

and crop productivity (Drury et al., 1999). Thus, increasing soil temperature was expected to 

occur as a result of having cover crops and reduced tillage. However, this study revealed that 

soil temperature was not significantly influenced by either cover crops or reduced tillage. 
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Figure 3.10 Soil temperature at three depths in (A) control treatment (no cover crop with conventional 
ploughing), (B)  treatment (cover crop with reduced tillage) and (C) treatment (cover crop with direct drill). 

Note: the gap in the data are due to absence of the probes in fields because of field operations.  

3.2.4.2 Soil moisture 

Soil moisture data at three depths for the three treatments are presented in Figure 3.11. The soil 

moisture data were collected using soil moisture probes which recorded soil moisture at nine 

soil depths from 10 cm to 90 cm. However, here data from only three depths (10 cm, 50 cm 

and 90 cm) were selected to provide a clear graph. Unlike soil temperature which had no 

substantial differences at the three depths, it was observed that soil moisture showed significant 

differences between soil depths. Soil moisture increased with increasing soil depth. It was 

consistently higher at 90 cm than at 10 cm. For example, in treatment 9cover crop & reduced 

tillage) during summer 2014, mean soil moisture contents were 18%, 48% and 59% for the 10 

cm, 50 cm and 90 cm soil depths, respectively. Much greater fluctuations were observed in the 

upper soil layers compared to deep soil layers, likely corresponding to instant changes in 

weather conditions with the upper layers having direct contact to the atmosphere. 

There was no significant difference observed in soil moisture between the treatments. The 

mean values of soil moisture at 10 cm soil depth were 40%, 23% and 39% for control, (cover 
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crop & reduce tillage) and (cover crop & direct drill) treatments, respectively, over the study 

period. At 90 cm depth these figures were 53%, 58% and 58% for control, (cover crop & reduce 

tillage) and (cover crop & direct drill) treatments, respectively. When cover crops were present 

(i.e. winter 2013-2014) on the two cover cropped treatments, the bare soil treatment had a mean 

soil moisture of 46% at 10 cm depth which was considerably higher than treatment (cover crop 

& reduce tillage) (18%) and treatment (cover crop & direct drill) (24%). This illustrates that 

soil moisture tended to be lower under cover crops compared with bare soils. In summer 2014, 

mean soil moisture contents at 50 cm depth were 58%, 48% and 47% for control, (cover crop 

& reduce tillage) and (cover crop & direct drill) treatments, respectively, which again had no 

significant difference. Like soil temperature, it appeared that cover crops and different soil 

tillage systems had little effect on soil moisture during the summer. 

Verhulst et al. (2010) believed that conservation tillage may increase infiltration and reduce 

runoff and evaporation compared to conventional tillage, thereby soil moisture is conserved 

and more water is available for crop uptake. A study by De Vita et al. (2007) who assessed the 

effects of different tillage methods on soil moisture in wheat fields in Mediterranean soils 

observed that soil moisture was consistently higher under no-tillage compared to conventional 

tillage. The study showed the importance of saving soil moisture through a reduced tillage 

system, particularly in a semi-arid environment characterised by low annual rainfall and high 

evapotranspiration. Analysis of the water condition in the soil profiles suggested that for both 

studied soils, Fluvisol and Cambisol, during the entire three year experimental period, the 

moisture conditions were better at all depths of the soil profile under reduced tillage than under 

conventional tillage. Although the differences were not always statistically significant, soils 

under reduced tillage generally had higher soil moisture compared to conventional tillage 

(Sławiński et al., 2012). However, some other studies, similar to the finding of this study, found 

no difference. In a study to record the differences in soil moisture between conventional and 

different modes of conservation tillage in a long-term field trial in a temperate climate, Gruber 

et al. (2011) observed that different soil tillage methods had little effect on soil moisture. There 

was no temporal trend in soil moisture during the experiment and soil moisture decreased with 

increasing soil depth in most of the treatments. They suggested that significant differences 

between treatments were difficult to detect because of high variances between years and their 

interaction effects. However, slightly higher moisture contents were observed in no-till 

compared to all other treatments and indicates the effect of preserving soil moisture by reducing 

soil disturbance. 
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Figure 3.11 Soil moisture at three soil depths in (A) control treatment (no cover crop with conventional 
ploughing), (B)  treatment (cover crop with reduced tillage) and (C) treatment (cover crop with direct drill). 

Note: the gap in the data are due to absence of the probes in fields because of field operations. 

3.2.4.3 Bulk density (BD) 

Although soil bulk density (BD) varies seasonally, snapshot measurements provide an 

indication of the status of the soil structure. There is a broad range of BD values for topsoil 

across the catchments (min = 1.15 g cm-3; max = 1.89 g cm-3) which are within the typical 

range of values observed for other topsoils across England and Wales (Hall et al., 1977; 

Rawlins, 2011).  

Before the experiments (i.e. May 2013), BD measurements were the same for both (no cover 

crop & conventional plough) and (cover crop & reduced tillage) treatments with value of 1.50 

g cm-3, whilst treatment (cover crop with direct drill) had significantly (p < 0.05) higher BD 

with a value of 1.57 g cm-3 (Table 3.6). One year after the experiment (i.e. May 2014) soils 

under reduced cultivation treatment had a significantly (p < 0.05) higher BD (1.59 g cm-3) than 

the soils from control (1.49 g cm-3) which was conventionally ploughed. Soils from the direct 

drilled had significantly (p < 0.05) higher BD (1.67 g cm-3) than both the other two treatments. 
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The same pattern was observed during the subsequent sampling round (i.e. June 2015), with 

BD significantly higher in both direct drill (1.50 g cm-3) and minimum tillage (1.39 g cm-3) 

than conventional tillage (1.34 g cm-3) 

 The results here show that BD was significantly greater under both reduced and no-tillage 

operations than under conventional tillage. Verhulst et al. (2010) believed that the effect of 

tillage on soil BD is mainly confined to the topsoil. In deeper soil layers, BD is usually similar 

in zero and conventional tillage systems. A plough pan may be created by tillage immediately 

beneath the tilled soils, causing higher BD in this horizon in conventionally tilled fields. Jabro 

et al. (2011) observed that there were no significant difference in soil BD in the first and second 

year of an experiment between conventional and strip tillage in a two-year study carried out on 

sandy loam soils in North Dakota. They concluded that reduced tillage reduced soil compaction 

overall. Contrary to this, Hernanz et al. (2002) determined BD in a loam textured soil in the 

semi-arid conditions of central Spain after a 13-year experiment. They observed significantly 

higher BD under no-tillage than under conventional tillage at 0-10 cm depth. Differences in 

BD between tillage methods over longer time periods (>15 years) have been somewhat more 

consistent. Soil bulk densities were higher in the surface layer of zero tillage than conventional 

tillage after 23 years on a silt loam soil with a maize-soybean rotation in Minnesota (Dolan et 

al., 2006). Similarly, Gál et al. (2007) reported higher (10-17% higher) BD in the 0-30 cm layer 

under zero tillage compared with conventional tillage on a silty clay loam soil in Indiana after 

28 years, but no difference at the 30-100 cm layer. 

Hence, most of the studies have observed higher BD under minimum and zero tillage than 

under conventional tillage. Gál et al. (2007) believed that this higher value of BD under reduced 

compared to conventional tillage is because the soil becomes denser over time due to the effect 

of consolidation when it remains untilled. Even in temperate climate, the loosening effects of 

annual freezing and thawing cycles, wetting and drying, and soil organism activities are not 

enough to prevent this increase in soil BD. 
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Table 3.6 Mean soil bulk density (BD) measurements in the three mitigation treatments for three soil sampling 
dates. Means followed by different superscripted letters are significantly different (p < 0.05) for the same 

sampling date. Means followed by different superscripted numbers are significantly different (p < 0.05) for the 
same treatment. SE is standard error 

Treatments 

May 2013  May 2014  June 2015  
BD 

(g cm-3) SE  
BD 

(g cm-3) SE  
BD 

(g cm-3) SE  

No cover crop & Conventional plough 
(control) 1.50a1 0.02  1.49a1 0.03  1.34a2 0.04  

          

Cover crop & reduced tillage 1.50a1 0.02  1.59b1 0.04  1.39b12 0.03  

          

Cover crop & direct drill 1.57b1 0.02  1.67c1 0.03  1.50b12 0.02  

 

3.2.4.4 Penetration Resistance (PR) 

Soil penetration resistance (PR) data are presented in Table 3.7. Before the experiment (i.e. 

May 2013) soils in all three treatments had similar PR values ranging from 430 to 460 N cm-2, 

with no significant (p > 0.05) differences observed. The recorded values in all three treatments 

decreased after one year of the experiment (i.e. May 2014) to a range of 233-310 N cm-2. The 

PR measurements were not made by the same person in all three years, so this change maybe 

because different pressures were applied on the penetrometer in one year compared to another. 

Nevertheless, comparison among the treatments for the same sampling date would still show 

differences in the soil properties as the same parson carried out the measurements for the same 

year. Soils under directly drilled had a mean PR value of 310 N cm-2 which was significantly 

(p < 0.05) higher than that recorded for the conventionally ploughed (245 N cm-2) and the 

reduced tilled (233 N cm-2). In the following year, significantly (p < 0.05) higher PR (426 N 

cm-2) was observed for reduced tillage compared to conventionally ploughed (375 N cm-2) and 

directly drilled (344 N cm-2). 

Although the result of soil PR under different treatments here are not consistent over years, it 

shows that PR is generally higher under reduced tillage than under conventional tillage. 

Abdollahi and Munkholm (2014) observed that there was a significant effect of tillage on PR 

at the 18-23 cm and 55-60 cm soil depths. At 18-23 cm, PR was significantly lower under 

conventional tillage (71 N cm-2) than direct drill (90 N cm-2). At 55-60 cm depth, the results 

were reversed with conventional tillage (218 N cm-2) having significantly higher PR than direct 

drill (214 N cm-2). Of the three tillage systems, conventional ploughing compared to minimum 

tillage or no-tillage resulted in a better soil fertility through producing the smallest mean weight 

diameter and lowest PR. Cover crops tended to reduce PR in the soil profile. This suggests that 
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cover crops have the potential to alleviate soil compaction in the subsoil due to bio-pore 

formation and the stimulation of natural soil structure formation. The PR profile showed that 

the greatest differences among tillage treatments were in the upper layers of the un-trafficked 

inter-row, with no tillage systems having higher values compared to conventional tillage (da 

Veiga et al., 2007). Similarly, Thierfelder et al. (2005) concluded that measurements of PR and 

infiltration rate showed that practices of soil conservation tillage, such as reduced tillage and 

crop rotation, improved physical condition and prevented the development of soil crusting. 

Table 3.7 Mean soil penetration resistance (PR) in the three mitigation treatments for three soil sampling dates. 
Means followed by different superscripted letters are significantly different (p < 0.05) for the same sampling 
date. Means followed by different superscripted numbers are significantly different (p < 0.05) for the same 

treatment. SE is standard error 

Treatments 

May 2013  May 2014  June 2015  
PR 

(N cm-2) SE  
PR 

(N cm-2) SE  
PR 

(N cm-2) SE  
No cover crop & Conventional plough 
(control) 430a1 14  245a2 21  375a1 14  

          

Cover crop & reduced tillage 461a1 11  233a2 10  426b1 14  

          

Cover crop & direct drill 436a1 9  310b1 12  344a1 14  

 

3.2.4.5 Infiltration Rate (IR) 

An example of a typical infiltration rate curve is presented in Figure 3.12 and the mean 

infiltration rate (IR) data for the three treatments over the study period is presented in Table 

3.8. There were significant differences (p < 0.05) in IR among the treatments before the 

experiment started (i.e. May 2013), with control treatment (no cover crop & conventional 

plough) having the lowest IR at 44 mm hr-1, followed by treatment (cover crop & direct drill) 

at 63 mm hr-1 and treatment (cover crop & reduced tillage) at 77 mm hr-1. These differences 

may be partially due to differences in soil texture over the study area. Compared to other two 

treatments, control treatment has more clay rich soils and it is known that water moves more 

slowly through the small pore spaces in a clayey soil than it does through the large pores of a 

sandy soils. In May 2014, appreciable change occurred in the IR of the three treatments. 

Treatments (cover crop & reduced tillage) and (cover crop & direct drill), which had 

significantly higher IR values than control treatment in the previous year, now both had 

significantly (p < 0.05) lower values of 38 and 34 mm hr-1, respectively, than control treatment. 

These two treatments were under reduced tillage and direct drill. This illustrates that IR under 

conservation tillage is lower than under conventional tillage. In the third year, the IR order of 
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the treatments was same as the first year, with control treatment having the lowest IR value (3 

mm hr-1), treatment (cover crop & reduced tillage) the highest (8 mm hr-1) and treatment (cover 

crop & direct drill) in between with an IR value of 4 mm hr-1. However, the third year of IR 

data can be omitted in the comparison between different tillage systems because of a significant 

decline (one order of magnitude) in all the measurements which raised uncertainty about the 

accuracy of these data.  

 

Figure 3.12 An example of an infiltration rate curve (soil location P2 in May 2014 sampling) with steady state 
infiltration rate (IR) value of 45 mm hr-1. 

The IR data in this study supported the BD and PR data and suggested that IR is lower for soils 

under reduced and no-tillage systems than under conventional tillage. Reynolds et al. (2002) 

highlighted that there are relatively few studies on the effects of various tillage systems on 

infiltration rate, despite its major role on water flow and chemical transport in the soil. In a 

review on tillage effects on infiltration rate, Strudley et al. (2008) reported that most tillage 

practices have pronounced effects on the infiltration rate of soil immediately following tillage, 

but these effects can diminish quickly. Long-term effects on the order of a decade or more 

tended to be less pronounced and are sometimes impossible to separate from traditional 

management. Infiltration rate is generally a poor indicator of management practice because of 

the high spatial and temporal variability. They concluded that both seasonal/annual 

measurements and long-term investigations are required to clarify the effects of management 

on infiltration rate. Lipiec et al. (2006) recorded that cumulative infiltration was highest under 
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conventional tillage and was reduced by 61% under a no-tillage system. They concluded that 

the soil pore system under conventional tillage, with its higher contribution of large flow-active 

pores compared to minimum and no-tillage treatments, enhanced infiltration rate and water 

storage capacity.  

However, some other studies (Arshad et al., 1999; McGarry et al., 2000; Vogeler et al., 2009) 

observed that conservation tillage resulted in a higher pore connectivity and higher infiltration 

rate than conventional tillage. Jabro et al. (2009) found that the IR at the soil surface (0-10 cm) 

did not differ significantly between conventional tillage and strip tillage. But, the effect of 

tillage on the IR at 10-15 cm depth was well pronounced. The values were 23% and 138% 

greater for strip tillage than for conventional tillage at the Nesson and EARC sites, respectively. 

As a result of repeating tillage, plough pans (compact layers) are created at shallow depths (18-

25 cm) which reduce infiltration and saturated soil conditions develop above the pan leading 

to increased surface runoff. Plough pans also limit the growth of roots and thus reduce the 

amount of water available to the plant. It was concluded from their study that strip tillage can 

disrupt the plough pans and thus reduce surface runoff and erosion whilst increasing infiltration 

and transpiration rates (Temesgen et al., 2012). Miller et al. (1999) suggested that the greater 

infiltration potential under reduced or no-tillage systems is linked to increased surface residues, 

a greater bio-porosity caused largely by earthworm burrows, and soil pores that are more 

continuous because they are not disrupted by tillage. Conversely, other studies observed no 

significant change in IR under these two treatments. Topaloğlu (1999) found that tillage 

practices had no appreciable effect on infiltration rates in sandy clay loam soils. Kennedy and 

Schillinger (2006) showed that site, slope position nor tillage practice (traditional tillage and 

no-tillage) had any impact upon ponded infiltration rate. Karlen et al. (1994) reported IR values 

for no-tillage system, chisel and plough systems of 22 mm hr-1, 10 mm hr-1  and  9 mm hr-1, 

which were not significantly different. 
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Table 3.8 Mean infiltration rate (IR) of the soil in the three mitigation treatments for three soil sampling dates. 
Means followed by different superscripted letters are significantly different (p < 0.05) for the same sampling 
date. Means followed by different superscripted numbers are significantly different (p < 0.05) for the same 

treatment. SE is standard error 

Treatments 

May 2013  May 2014  June 2015  
IR 

(mm hr-1) SE  
IR 

(mm hr-1) SE  
IR 

(mm hr-1) SE  

No cover crop & Conventional plough 
(control) 

44a 3.4 
 

56a 7.7 
 

3a 1.8 
 

          

Cover crop & reduced tillage 77b 4.9  38b 4.6  8b 0.9  

          

Cover crop & direct drill 63c 3.7  34b 4.8  4a 1.0  

 

3.3 Summary 

The results presented in this chapter indicate that cover crops and reduced cultivation systems 

did not significantly reduce soil nitrate concentrations in topsoils across the study area. 

However, the effectiveness of cover crops in reducing soil nitrate increased with increasing soil 

depth. The mean soil nitrate concentration under cover crops at 15 cm depth was 2.83 mg kg-1 

which was not significantly lower (p > 0.05) than that under non-cover crop fields (3.04 mg 

kg-1). But in deeper soil layers (i.e. 45 cm and 75 cm), soil nitrate was significantly lower in 

the cover crop treatments (2.18 mg kg-1 and 0.76 mg kg-1) than the non-cover treatment (3.76 

mg kg-1 and 3.54 mg kg-1) for the two soil depths, respectively. This means that compared to 

bare soils, cover crops depleted soil nitrate concentrations by 7%, 42% and 79% at 15 cm, 45 

cm and 75 cm depths, respectively. This substantial reduction in soil nitrate concentration in 

the deeper soil layers is due to the type of cover crop planted here. Oilseed radish has a thick, 

deep root that can help break up compacted soil layers and scavenge nitrate that has leached 

beyond the rooting zone of other crops. This capability of scavenging nitrogen from deep 

within the soil profile offers radish cover crops an extra advantage compared to other shallower 

rooting cover crop varieties because it is able to capture this deeper soil nitrate that would 

otherwise leach into groundwater or rivers via the field drain network. 

Surface soil organic carbon (SOC) contents for the measures fields were relatively low (median 

1.28%) compared to the median for the East Anglian region as a whole (2.24 %) based on a 

national survey of topsoils between 2002 and 2005. Thus, in this study, elevating the SOC 

content was part of the overall package of improvements in soil quality that were hoped to be 

achieved through trialling cover crops and reduced tillage practices. However, the results 

revealed that SOC contents were not significantly improved by cover crops or reduced tillage 
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because control treatment (no cover crop & conventional plough) had consistently higher SOC 

concentrations than both (cover crop & reduced tillage) and (cover crop & direct drill) 

treatments. Regardless of the differences in farming practices, the order of SOC contents for 

the treatments remained the same on each of the four sampling dates. This is probably because 

soils in control treatment are dominated by clays which generally have a higher SOC content 

than the sandy soils in the other two treatments. Whilst no significant improvement in SOC 

content was observed during this two-year study, it is possible larger increases could occur 

over a longer time period (5-10 years). 

As far as other soil macronutrients (P, K, Mg and SO4) are concerned, the overall quality of 

soil in the study area is not in an ideal condition. Soil phosphorus concentrations were elevated, 

thus posing a surface water contamination risk, whilst the other macronutrients were generally 

below normal the range. Therefore, lowering of soil phosphorus levels and enhancing soil 

potassium, magnesium and sulphate concentrations were sought through the implementation 

of cover crops and reduced cultivation systems. The results presented in this chapter show that 

cover crops and reduced tillage retained soil P levels in the topsoil compared to conventional 

practices. This is a benefit when P is a limiting nutrient, but in the study area where P is an 

environmental problem, this could potentially have deleterious impacts on the river by 

increasing the likelihood of soluble P losses in surface runoff events. Regarding soil potassium, 

it was consistently found that cover crops and reduced tillage helped to maintain potassium 

concentrations in the topsoil compared to conventional practices. During the two year study, 

potassium concentrations under the cover crop and direct drilled fields increased by 27 mg L-1 

compared to a 15 mg L-1 decline under conventional practices. This may in part be due to the 

cover crop minimising leaching and erosion, whilst direct drilling reduced soil structural 

disturbance. It was also observed that direct drilling tended to retain greater amounts of 

potassium in the topsoil than minimum tillage. No significant increases in soil magnesium and 

sulphate concentrations were observed in response to the mitigation measures. 

It was hypothesised that the implemented measures would improve the physical quality of the 

soil by increasing soil temperature, moisture content and infiltration rate, whilst decreasing 

bulk density and penetration resistance. The results revealed that soil temperature and soil 

moisture did not change under different treatments. Bulk density was consistently and 

significantly higher for soils under direct drilling and reduced tillage than conventional 

ploughing. This maybe because the soil becomes denser over time due to the effect of 

consolidation and compaction when it remains untilled. Although the soil penetration 
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resistance results under different treatment were not consistent, it appeared that penetration 

resistance was generally higher under reduced tillage than under conventional tillage practices, 

corresponding to higher bulk density. The infiltration rate data supported the bulk density and 

penetration resistance data and suggested that infiltration is lower for soils under reduced and 

no-tillage systems than under conventional tillage. Overall, it is concluded that implementing 

these mitigation measures has, to date, not substantially improved soil quality across the study 

area.  
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Chapter 4:  EFFECTS OF COVER CROP AND REDUCED 
CULTIVATION ON SOIL NITRATE LEACHING 

4.1 Introduction 

Agriculture is a major contributor to environmental problems such as water pollution. Water 

pollution from nitrogen (N) is a serious problem in both Europe and developed countries 

(Ramos et al., 2002). The increased use of N fertilisers to meet increasing demands for food 

has increased the amount of residual inorganic N remaining in the crop root zone after harvest, 

which is then susceptible to winter leaching, especially in humid region soils (Drury et al., 

2014). In this chapter, the main focus is on nitrates (NO3̄ )because a number of leaching and 

drainage studies have consistently found that NO3̄ is the dominant form of N present in soil 

water (Jacinthe et al., 1999; Jaynes et al., 2001; Dinnes et al., 2002; Macdonald et al., 2005). 

Nitrate leaching occurs when there is an accumulation of NO3̄ in the soil profile that coincides 

with, or is followed by, a period of high drainage and heavy rainfall. Because nitrate and most 

soils in temperate regions are negatively charged, nitrate is not retained by the soil and is thus 

the dominant form of N leaching (Di and Cameron, 2002). A high concentration of nitrate in 

drinking water is considered harmful to human health, particularly for infants less than one 

year old. It can interfere with the transport of oxygen in the blood leading to so called ‘blue 

baby syndrome’ (Knobeloch et al., 2000) . To protect human health, world and national health 

organisations have established drinking water standards limiting NO3̄ concentrations to 

maximum of 11.3 mg NO3̄-N L-1 (Fewtrell, 2004). Furthermore, high nitrate concentrations in 

surface water bodies can cause deterioration in water quality, resulting in eutrophication, algal 

blooms and fish poisoning.  

The main factors influencing the amount of nitrate leached from a particular land use are soil 

type, climate condition and management practices. Nitrate leaching rates are usually lower 

from fine-textured soils than from coarse-textured soils, because of slower drainage and greater 

potential for denitrification (Di and Cameron, 2002). The depth of soil above the groundwater 

table is also an important factor, with nitrate reaching the groundwater quicker in shallow soil 

than in deep soil. Earthworm channels, root pore spaces and large cracks can accelerate solute 

transport and nitrate leaching (Silva et al., 2000). In addition to soil characteristics, climate and 

season can affect nitrate leaching, with the amount of drainage being one of the determining 

factors. Nitrate leaching usually increases in seasons with a high soil moisture content and 

throughflow, for example during autumn and winter when evapotranspiration is low and 
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rainfall totals are high. Summer weather conditions can also have an effect on nitrate leaching 

in the following winter. Long periods of hot summer weather were identified to cause more 

nitrate leaching over the subsequent winter than did cool wet summers. This is perhaps due to 

the lower N uptake in pasture land, lower denitrification loss and greater mineralisation upon 

rewetting following a long, dry and hot summer (Scholefield et al., 1993; Di and Cameron, 

2002). The amount of applied N fertiliser also has an impact on nitrate leaching. If N fertiliser 

is applied at a quantities substantially above that required by crops for growth, then the surplus 

N will likely accumulate in the soil profile and readily leach into ground and surface water 

bodies.  

The increased nitrate leaching loss not only creates environmental problems by increasing 

nitrate contamination of groundwater and surface waters, but also causes agronomic and 

economic losses by decreasing N use efficiency. Thus, reducing nitrate leaching from fields 

into ground and surface water is a key management priority. Several strategies have been 

proposed and studied to reduce nitrate leaching including reducing overall N fertiliser 

application loads, growing a cover crop to capture excess nutrients over winter, limiting N 

application rates prior to or during high leaching seasons, using buffer zones between fields 

and streams and using nitrification inhibitors (Di and Cameron, 2002). It has also been 

suggested that minimum tillage may cause less nitrate leaching than conventional tillage, but 

research so far has demonstrated mixed results with both higher and lower nitrate leaching 

under reduced tillage compared with conventional tillage (Meek et al., 1995; Di and Cameron, 

2002). However, significant reductions in nitrate leaching may be achieved through a 

combination of several mitigation measures rather than a single measure. The objective of this 

chapter is to assess the effects of the implemented mitigation measures including cover crop, 

reduced tillage and direct drill on nitrate concentrations and fluxes. Although the focus is on 

nitrate leaching, the changes in two other forms of nitrogen (i.e. ammonium and nitrite) under 

different treatments are also discussed.  

 

4.2 Results and discussion 

4.2.1 Rainfall 

The annual precipitation total for the hydrological year October 2013 to September 2014 was 

786 mm in weather station (A) (Figure 2.5), which is higher than the 1981-2010 mean annual 

total precipitation of 674 mm reported for the East Anglia region in Reepham weather station 
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(Meteorological Office, 2014). Within the study period, summer 2013 (106 mm) was drier than 

summer 2014 (194 mm), whereas winter 2013-2014 (193 mm) was wetter than winter 2014-

2015 (161 mm) (Figure 4.1). The overall mean monthly precipitation was 58 mm, with the 

highest monthly total occurring in May 2014 (129 mm) and the lowest in July 2013 (14 mm). 

This lowest monthly rainfall is far lower than the mean lowest monthly precipitation of 41 mm 

reported for period of 1981-2010, making summer 2013 one of the drier summers in recent 

years. Since water sampling was carried out weekly, the rainfall data here are presented at 

weekly intervals so that any changes in water quality parameters can be directly related to 

rainfall. The three highest weekly rainfall events during the study period are highlighted in red 

in Figure 4.1. The highest weekly rainfall occurred in mid-October 2013 (68 mm), followed 

late May 2014 (61 mm) and mid-October 2014 (54 mm). 

 

Figure 4.1 Weekly rainfall during the study period with three major rainfall events highlighted in red. 

4.2.2 Nitrate 

4.2.2.1 Nitrate concentration 

Table 4.1 summarises the mean and range of NO3̄ concentrations measured in the field drains 

underlying each of the three experimental treatments between April 2013 and April 2015. 

Drains in the table were ordered from upstream towards downstream. In total, 500 water 

samples were collected during weekly sampling of the field drains during the two-year period. 

Some drains, for instance D2, D4 and D1 (see Figure 2.8 for location), were flowing almost 

continuously throughout the study period, such that a greater number of samples were collected 

from these drains. Conversely, other drains such as D16, D3 and D8 flowed for a shorter time 

and yielded fewer samples. The depths of the sampled drains were 1-1.2 m from ground 

surface, and groundwater table was 1.7±0.5 m and 1.8±0.3 m from ground surface for 2013 
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and 2014 hydrological years, respectively (see Table 2.1). The groundwater table, therefore 

never reached the field drainage. If groundwater level reached drains then drying of the drain 

flow didn’t happen during summer because of continuous supply of flow from ground water. 

The mean nitrate concentration of all 500 samples was 5.2 mg N L-1.  

Water samples from drains D8 and D10 had mean NO3̄ concentrations of 9.8 mg N L-1 and 9.5 

mg N L-1, respectively, higher than any other drain. Among all the samples collected, the single 

highest NO3̄ concentration was measured in D10 (37.4 mg N L-1) in late May 2014. The second 

highest value was also measured in D10 (24 mg N L-1) in early June 2014, followed by the 

third highest value in D8 (21.7 mg N L-1) collected in mid-October 2014. For most of the drains 

the lowest measured NO3̄ concentration was <1.5 mg N L-1. The exception to this was D11, 

which had a minimum value of 3.3 mg N L-1 and a highest value of 9.0 mg N L-1, giving D11 

the smallest range (5.7 mg N L-1) of NO3̄ concentration of any drain, whilst D10 had the longest 

range (36.1 mg N L-1). 

 

Table 4.1 Summary of field drain NO3̄ concentrations in the three experimental treatments for samples collected 
during the April 2013-April 2015 study period 

Treatments Drain ID n 
Mean of NO3̄ 
(mg N L-1) 

Range of NO3̄ 
(mg N L-1) 

No cover crop & 
conventional plough 

(control) 

D10 59 9.5 1.4-37.4 

D8 40 9.8 0.9-21.7 

Cover crop & reduced 
tillage 

D3 41 4.4 0.5-11.4 

D16 39 4.2 1.5-10.2 

D1 77 4.8 0.9-11.1 

Cover crop & direct 
drill 

D11 20 5.9 3.3-9.0 

D2 86 2.3 0.1-12.0 

D4 80 2.8 0.2-15.9 

D6 58 6.4 1.1-14.1 

 

Temporal variability in nitrate concentrations 

The temporal variability of NO3̄ concentrations in individual field drains in each of the three 

treatments is shown in Figure 4.2. Gaps in the measurement are due to a lack of drain flow 

which usually happened each summer. As summer 2013 was approaching, field drain NO3̄ 

concentrations gradually decreased in all three treatments, perhaps due to both a decline in 
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precipitation and decline of potential leachable nitrate by crops during this growth period. 

There was a lower mean NO3̄ concentration in summer 2013 than in summer 2014, possibly 

because of low rainfall in the former (106 mm) compared to the latter (194 mm). It was 

observed that NO3̄ concentrations tended to be lower in summer than in winter throughout the 

study period. In October 2013 when the cover crop was growing, significantly lower NO3̄ 

concentrations were measured in the field drains under cover crop fields compared to the bare 

control fields. No notable increase was observed in NO3̄ concentration in the drains after 

incorporation of the cover crop in March 2014. This is in agreement with the soil NO3̄ data 

(Figure 3.3) which also illustrated no change in soil NO3̄ concentration after incorporation of 

the cover crop. 

 

Figure 4.2 Temporal variation in field drain nitrate (NO3̄) concentrations in (A) control treatment (no cover crop 

& conventional plough), (B) in treatment (cover crop & reduced tillage) and (C) in treatment (cover crop & 

direct drill) throughout the study period. 

 

NO3̄ concentrations in the drains responded differently to the three main rainfall events that 

occurred during the study. The highest weekly rainfall total (68 mm) occurred in mid-October 

Cover crop 

Cover crop 
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2013 generated no significant change in the field drain NO3̄ concentrations. NO3̄ concentrations 

in drains from both (cover crop & reduced tillage) and (cover crop & direct drill) treatments 

were not notably affected by the second highest weekly rainfall that occurred in May 2014. 

However, NO3̄ concentrations in drains from control treatment, solely contributed to by D10, 

increased substantially with concentrations of 37.4 mg N L-1 recorded the highest NO3̄ 

concentration measured throughout the entire study. Unlike the heavy rainfall in autumn 2013, 

the storm event on 14th October 2014 resulted in a sharp and dramatic rise in NO3̄ 

concentrations in all flowing drains in each of the three treatments. About half of the sampled 

drains (D1, D3, D4, D8 and D16) contained the highest NO3̄ concentrations of the entire study 

period. For example, NO3̄ concentrations in D3 did not exceed 7.5 mg N L-1 at any other point 

over the two years of data collection, yet the collected sample during this rainfall event 

contained 11.4 mg N L-1. This storm caused the drains from control treatment to flow with a 

high NO3̄ concentration of 21.7 mg N L-1.  

 

Effect of the cover crop on nitrate concentration 

A summary of the effect of the oilseed radish cover crop on field drain NO3̄concentrations is 

presented in Table 4.2. Field drains under the cover crop typically contained <6 mg N L-1 of 

NO3̄, whereas samples from drains under bare soil had concentrations >8 mg N L-1. The seven 

fields with the cover crop had NO3̄ concentrations at least one order of magnitude lower than 

those fields with no cover crop. The overall mean NO3̄ concentration was significantly (p < 

0.001) lower in drain water samples under the cover crop (2.5 mg N L-1) than drain water 

samples from bare soil (13.9 mg N L-1). This represents a ~82% reduction in nitrate 

concentrations due to the presence of the cover crop.  

This result is in good agreement with a large body of previous research investigating the effects 

of cover crops on reducing nitrate concentrations in water compared to bare soil. Staver and 

Brinsfield (1998) reported that groundwater NO3̄ concentration decreased by more than 60% 

in field-scale watersheds during a nine-year period as result of the use of a rye cover crop. 

Justes et al. (1999) observed that NO3̄ concentration in drainage water was depleted by 50%, 

from 20 to 10 mg N L-1 by the presence of an oilseed radish cover crop compared to bare soil. 

Kaspar et al. (2012) reported that a rye winter cover crop significantly reduced drainage water 

NO3̄ concentrations by 48% over five years, with a 58% reduction in the first four years. Kaspar 

et al. (2012) also observed that on autumn oat cover crop reduced NO3̄ concentrations by 26%. 
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A reduction of 21-38% in the flow weighted mean NO3̄ concentrations in tile drainage water 

was also reported by Drury et al. (2014) as a result of the use of a winter wheat cover crop. 

Premrov et al. (2014) observed that NO3̄ concentrations across three years were reduced by 

more than 70% using Mustard cover crop compared to no cover crop under both conventional 

and reduced tillage.  

 

Table 4.2 Mean and range of NO3̄ concentration in field drains under two different treatments during cover crop 
trials between September 2013 and March 2014. SE is standard error 

 
Drain 

ID 
n 

Mean of NO3̄  
(mg N L-1) 

Range of NO3̄ 
(mg N L-1) 

SE 

Without cover crop 
D10 19 12.8 8.7 - 14.3 0.33 

D8 16 15.3 10.6 - 19.5 0.75 
      

Mean   13.9   

With cover crop 
 

D3 14 2.2 0.5 - 3.2 0.22 

D16 17 3.2 1.5 - 6.6 0.28 

D1 24 3.9 0.9 - 8.4 0.41 

D11 8 3.9 3.3 – 4.6 0.15 

D2 26 1.0 0.3 – 3.6 0.14 

D4 26 1.5 0.4 – 2.5 0.12 

D6 19 3.2 1.6 – 5.0 0.22 
      

Mean   2.5  
 

 

Alongside field drain samples, soil water was also collected intermittently from porous pots 

buried at 90 cm depth across the nine mitigation measures fields (see Figure 2.9 for locations) 

and the NO3̄ concentrations analysed (Figure 4.3). There was frequently large variation in NO3̄ 

concentrations between porous pots just a few metres apart. In February 2014, for instance, 

large variations were measured at site P8 where NO3̄ concentrations in pot numbers 6 and 9 

were 3.3 and 2.2 mg N L-1, respectively, whilst pots 4 and 10 had concentrations of 19.7 and 

21.2 mg N L-1, respectively. The greatest difference was noted in February 2015 at site FAR9 

when soil water from pot 9 contained an extremely high NO3̄ concentration (48 mg N L-1),  

approximately one order of magnitude higher than the other pots from the same site and even 

higher than the highest value recorded in the field drains (37 mg N L-1).  
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Figure 4.3 Spatial variation in soil water NO3̄ concentrations collected from porous pot samples in control 
treatment = no cover crop & conventional lough (top row), treatment (cover crop & reduced tillage) (middle 

row) and treatment (cover crop & direct drill) (bottom row). The distance between two pots is 1 metre. 
Locations of porous pots are shown in Figure 2.9. 

The finding of a substantial reduction in soil water NO3̄ concentrations in field drains with a 

cover crop is also supported by the porous pot data summary in Table 4.3. In February 2014 

when the cover crop was growing, porous pot NO3̄ concentrations were significantly (p < 0.05) 

lower in fields under the oilseed radish cover crop than under bare soil in all three soil types. 

Fields under the cover crop had mean soil water NO3̄ concentrations of 0.55 mg N L-1, whereas 

bare soils had a mean value of 15.3 mg N L-1. This represents a 96% reduction in NO3̄ 

concentrations by the cover crop, which is higher than the 82% reduction in NO3̄ concentrations 

calculated from the field drain data. This larger reduction in porous pot NO3̄ concentrations is 

because the porous pot samples in the cover crop fields had lower NO3̄ concentrations than the 

drain samples. The mean NO3̄ concentration in all porous pots samples from treatment (cover 

crop & direct drill) was 0.5 mg N L-1, whereas this figure was 2.1 mg N L-1 in the drain samples 

for the same treatment. As well as providing evidence of a further reduction in soil NO3̄ loss to 

the deeper soil profile by the radish cover crop (Figure 3.5), this might also be another 

indication that the radish cover crop is able to scavenge NO3̄ from deeper within the soil profile. 
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Although most of the drains are deeper than 1m beneath the field surface, their collected water 

is likely to come from topsoil by preferential flow. Conversely, the water collected in the 

porous pots probably comes from the soil surrounding the pots (i.e. 90 cm depth) as the water 

is drawn into the pots under vacuum by a pump.  

A slight increase in the mean porous pot NO3̄ concentration under the cover crop is observed 

between February 2014 (0.55 mg N L-1) and April 2014 (2.7 mg N L-1). This is potentially due 

to the incorporation of the cover crop within the soil which causes the release of contained N 

into the soil. However, the significant differences (p < 0.05) between the porous pot samples 

under a cover crop and no cover crop fields remained in all soil types. Fields under the cover 

crop had mean NO3̄ concentrations of 2.7 mg N L-1, whilst bare soils had a mean concentration 

of 13.2 mg N L-1. In contrast to the porous pot data from the cover crop fields in February 2014, 

which consistently showed lower NO3̄ concentrations than the drain data, porous pot samples 

in the cover crop fields in April 2014 (2.7 mg N L-1) had very similar concentrations to the 

field drain samples at this time (2.9 mg N L-1). This means that the collected data from field 

drains and porous pots were in good agreement with each other apart from the time when cover 

crop was growing (i.e. September to March) in which the data from the porous pot usually had 

lower NO3̄ concentrations. 
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Table 4.3 Mean of soil water NO3̄ concentrations in porous pot samples from three soil types in the control 
treatment (no cover crop & conventional plough), treatment (cover crop (CC) & reduced tillage (RT)), and 
treatment (cover crop (CC) & direct drill (DD)) collected on three sampling occasions. Means followed by 
different superscripted letters are significantly different (p < 0.05) for the same sampling date and same soil 
type. Means followed by different superscripted numbers are significantly different (p < 0.05) for the same 

treatment and same soil type 

Soil 
type Treatments 

 NO3̄ (mg N L-1) 

 n Feb. 2014  n Apr. 2014  n Feb. 2015 

           

Sandy 
Loam 

control  10 17.5a1  6 16.6a1  9 10.6a1 

(CC& RT)  10 0.3b1  8 2.1b1  8 8.3a2 

(CC& DD)  8 0.5b1  9 2.8b1  8 18.1a2 

           

Sandy 
Clay 
Loam 

control  10 17.6a1  7 14.6a1  9 11.6a1 

(CC& RT)  9 0.2b1  10 3.0b1  10 10.9a2 

(CC& DD)  8 0.4b1  7 2.8b1  6 3.2a1 

           

Clay 
Loam 

control  10 10.9a1  9 9.8a1  5 10.9a1 

(CC& RT)  10 1.4b1  4 2.4b1  6 21.3b2 

(CC& DD)  10 0.5b1  4 3.0b1  7 1.6c1 

 

 

Effect of different tillage methods on nitrate concentration 

During the 2014-2015 farming year, only different tillage operations (i.e. with no cover crop) 

were trialled as a mitigation measure in the three treatments. As such, the data collected in this 

period can be used to compare different tillage operations on water quality. Data from the 

porous pot samples collected in February 2015 showed no particular pattern among the 

treatments or soil types (Table 4.3). Although the presented mean values appeared to be 

different from each other, no significant (p > 0.05) differences were observed (except for the 

clay loam soil type) because of great variation in each batch of porous pot samples. The NO3̄ 

concentrations in both sandy clay loam and clay loam porous pot samples in treatment (cover 

crop & direct drill) were lower than that in the control treatment, but because sandy loam 

samples had extremely high NO3̄ concentrations (18.1 mg N L-1), no notable decline in NO3̄ 

concentrations was observed compared to the control treatment.  

It is also apparent from the field drain data (Figure 4.2) that NO3̄ concentrations during winter 

2015 in (cover crop & direct drill) and (cover crop & reduced tillage) treatments were not lower 

than the control treatment. Results from both field drains and porous pots show that the 
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practiced mitigation measures in 2015 (i.e. reduced tillage and direct drill) did not reduce soil 

water NO3̄ concentrations (Table 4.4). The mean NO3̄ concentrations for porous pot and drain 

samples under conventional tillage during September 2014 to March 2015 was 6.8 mg N L-1, 

which was not statistically different from the 7.7 mg N L-1 and 7.1 mg N L-1 obtained for 

reduced tillage and direct drill fields, respectively. 

Table 4.4 Mean NO3̄ concentrations in field drain and porous pot samples under different tillage methods from 
October 2014 to April 2015. Means followed by different superscripted letters are significantly different (p > 

0.05). SE is standard error 

Tillage type n 
Mean of NO3̄  
(mg N L-1) 

SE 

Conventional tillage 61 6.8a 1.0 
    
Reduced tillage 84 7.7a 0.8 
    
Direct drill 102 7.1a 0.5 

    
Previous studies have demonstrated that the type of soil cultivation strongly influences NO3̄ 

concentrations, but the evidence that NO3̄ concentrations are higher for inversion compared to 

conservation tillage is contradictory. The results here agree with Joshi et al. (1994) who found 

no significant difference in mean NO3̄ concentrations between conventional and no-till 

systems. Similarly, Randall and Iragavarapu (1995) found insignificant differences between 

the average flow weighted NO3̄ concentrations of 13.4 mg N L-1 and 12.0 mg N L-1 for 

conventional and no-tillage corn production treatments, respectively. They concluded that the 

tillage system had minimal impact on NO3̄ leaching to subsurface drain flow. In a study on 

NO3̄ concentrations in field drainage under conventional and no tillage systems, Randall and 

Mulla (2001) again observed that NO3̄ concentrations were not influenced by tillage system. 

The insignificant difference in NO3̄ concentrations under conventional tillage and conservation 

tillage were also observed in other studies (Masarik et al., 2014; Premrov et al., 2014). 

Conversely, some studies have reported higher NO3̄ concentrations in conventional tillage than 

conservation tillage. Kanwar et al. (1993) monitored NO3̄ leaching beneath both continuous 

corn and corn-soybean rotations managed using mouldboard ploughing, chisel ploughing, ridge 

tillage and no-tillage practices. The three year average NO3̄ concentration in drainage water 

from continuous corn plots receiving mouldboard tillage was significantly greater (35.8 mg L-

1) than for the no-till treatment (22.2 mg L-1). They believed that this lower NO3̄ concentration 

from no-till may have resulted from greater bypass flow, denitrification and immobilisation 

under non-ploughed systems.  
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4.2.2.2 Nitrate fluxes 

The field drain area, drain flow rate and NO3̄ concentration were used to calculate field drain 

NO3̄ fluxes. Estimated drainage areas are presented in Figure 4.4 and Table 4.5. Map of field 

drain network was provided by farmers (see Appendix Figure D1). Drainage areas of the 

interested drains were delimited by polygon digitised using GIS with the contribution of field 

observations. The drainage area varied from 0.05 ha for D3 to 5.64 ha for D16, with the total 

area of all monitored drains equalling ~21 ha.  

 

Figure 4.4 Estimated drainage area for the field drains monitored in this study. 
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Table 4.5 Estimated drainage area and calculated flow rate for the field drains monitored in this study 
 

Drain 
ID 

Estimated area  
( ha ) 

Mean flow rate 
( L sec-1 ) 

Range of flow rate 
(L sec-1 ) 

D1 1.25 0.30 0.00-2.35 
D2 0.29 0.07 0.01-0.19 
D3 0.05 0.04 0.00-0.21 
D4 0.14 0.07 0.00-0.31 
D5 0.08 0.05 0.00-0.17 
D6 0.87 0.06 0.01-0.24 
D7 1.60 0.19 0.00-1.12 
D8 0.30 0.14 0.01-0.70 
D9 4.49 0.26 0.01-0.85 
D10 1.86 0.21 0.00-0.83 
D11 1.64 0.16 0.02-0.44 
D13 2.92 0.27 0.01-0.81 
D16 5.65 0.14 0.01-0.78 

 

Field drain flow rates were measured three times on each sampling occasion and a mean 

calculated. Drain flows in summer were lower than in winter. Generally, drains started flowing 

in autumn (October/November) and maintained high flow until spring (April/May) when flows 

gradually decreased, with most drying up during the summer (Figure 4.5). Drains D2 and D4 

flowed almost continuously throughout the study period, whereas other drains (e.g. D11, D3 

and D8) flowed for a shorter period of time. D13 and D16 were added to the sampling regime 

in November 2013. The calculated flow rates ranged from 0.001 to 2.35 L sec-1 with an average 

for all drains of 0.14 L sec-1. D1 had the highest mean flow rate (0.30 L sec-1), followed by 

D13 (0.27 L sec-1), whilst D3 had the lowest mean flow rate (0.04 L sec-1) (Table 5.2). Drain 

flow correlated (r=0.53) with drainage area as drains with larger area tended to have greater 

flows and drains with smaller areas had lower flows. D1 and D13 had the greatest flows and 

relatively large areas, whilst D3 and D5 had the lowest flows and the smallest drain areas. 

However, for other drains such as D11 and D16 with large area and small flow rate, this 

relationship did not hold true. The field drain flow rate was also correlated with rainfall. The 

second and the third storm events highlighted in Figure 4.1 created associated peaks in drain 

flow. The drain flow of D1, for example, increased significantly from 0.04 L sec-1 one week 

prior to the third storm event, to 1.5 L sec-1 during the storm. On the other hand, the first 

highlighted storm event generated no corresponding peak in drain flow, whilst smaller storm 
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events such as the one that occurred on the 25th November 2014 generated some of the highest 

recorded flow rates of the entire study. Moreover, rainfall events during the summer did not 

generate a pulse in drain flow. Thus, whilst large increases in drain flow were produced by 

large storm events, not all storm events generate large increases in drain flow. 

 

Figure 4.5 Field drain flow rates throughout the study period. Note the very low or no flow of the drains during 
both summers and high flow during autumn and winter. 

A summary of NO3̄ fluxes in the field drains in the three experimental treatments is presented 

in Table 4.6. A mean NO3̄ flux of 35 kg N ha-1 a-1 was calculated for all the drains during the 

study, with the mean flux for most of the drains ranging from 10-40 kg N ha-1 a-1. However, 

drains D11 and D16 had fluxes of <5 kg N ha-1 a-1, whilst D8 (79 kg N ha-1 a-1) and D3 (74 kg 

N ha-1 a-1) had very high fluxes. Because of high variability in drain flow rate and drainage 

area, NO3̄ discharges within drain water from the agricultural soils varied considerably between 

the different drains. Nevertheless, the annual NO3̄ fluxes via drainage water were high in this 

study and were similar to the values of 10-90 kg N ha-1 a-1 measured by Rossi et al. (1991) in 

drainage water from arable land (with sugar beet, winter wheat or soybean) in northern Italy 

with an annual fertiliser input of about 150 kg N ha-1 a-1. 
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Table 4.6 Mean of NO3̄ fluxes in the field drains under three treatments during April 2013 to April 2015. SE is 
standard error 

Treatments 
Drain 

ID 
Mean of NO3̄ flux  

(kg N ha-1 a-1) 
SE 

No cover crop & conventional plough 
(control) 

D10 26 6.1 

D8 79 21.6 

Cover crop & reduced tillage 

D3 74 21.6 

D16 2 0.4 

D1 43 9.6 

Cover crop & direct drill 

D11 4 1.2 

D2 27 4.9 

D4 41 4.5 

D6 10 2.0 

 

Impact of the cover crop on nitrate fluxes 

The impact of the cover crop on field drain NO3̄ fluxes is presented in Table 4.7. The overall 

mean NO3̄ flux was significantly (p < 0.001) lower from field drains underlying the cover crop 

(17 kg N ha-1 a-1) than from drains underlying bare fields (113 kg N ha-1 a-1). This represents a 

~85% reduction in nitrate fluxes due to the presence of the cover crop. Many previous studies 

have found that cover crops significantly reduce NO3̄ leaching in field drains. In a field 

experiment on sandy loam and chalky loam soils at two sites in SE England, Macdonald et al. 

(2005) found that during the winter immediately after establishment, early sown cover crops 

(including forage rape, rye, white mustard, phacelia and ryegrass) decreased NO3̄ leaching by 

29-91% compared to bare soil. Macdonald et al. (2005) concluded that cover crops are most 

likely to be effective when grown on freely drained sandy loam soils where NO3̄ leaching in 

bare fields is greatest. In a 25-year simulation using Root Zone Water Quality (RZWQ) model, 

Singer et al. (2011) concluded that using a winter cover crop can reduce NO3̄ fluxes by 19-28% 

for corn-soybean and corn-soybean-corn rotations at the watershed sub-basin scale. A number 

of best management practices including a cover crop, no-tillage and reduced nitrogen fertiliser 

were compared in field trials over 14–17 years and cover crops were found to be the most 

effective practices at decreasing NO3̄ leaching (36-62%) and remained efficient over longer 

timescales (Constantin et al., 2010). 
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Table 4.7 Mean and range of field drain NO3̄ fluxes under the two different cover crop treatments between 
September 2013 and March 2014. SE is standard error 

 Drain ID 
Mean NO3̄ flux  
(kg N ha-1 a-1) 

SE 

Without cover crop 
D10 47 10 

D8 180 57 
    

Mean  113  

With cover crop 
 

D3 24 7 

D16 4 1 

D1 27 5 

D11 4 2 

D2 8 1 

D4 44 8 

D6 5 1 
    

Mean  17  
 

Impacts of different tillage regimes on nitrate flux 

In the 2014-2015 farming year, only different tillage regimes (i.e. with no cover crop) were 

trialled as a mitigation measure across the three treatments, such that data collected during this 

period can be used to compare different tillage practices on a particular parameter. As with 

NO3̄ concentrations, which showed no significant difference under different tillage practices, 

NO3̄ fluxes also did not change significantly (p > 0.05) between the three tillage types (Table 

4.8), with the exception of reduced tillage. The mean NO3̄ flux from field drains under 

conventional tillage was 44.1 kg N ha-1 a-1, which was slightly higher than the NO3̄ fluxes under 

direct drill (41.7 kg N ha-1 a-1). Contrary to the hypothesis that reduced tillage may reduce NO3̄ 

leaching, higher field drain NO3̄ fluxes were recorded under reduced tillage (114 kg N ha-1 a-1) 

than conventional tillage (44.1 kg N ha-1 a-1). NO3̄ fluxes were also significantly (p < 0.05) 

higher under reduced tillage than under direct drill practices. 

Similar to the results of this study, in an eight-year study to determine the potential effects of 

common agricultural practices on subsurface drainage water quality, Masarik et al. (2014) 

found that differences in the annual NO3̄ flux between conventional tillage (34 kg N ha-1 a-1) 
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and no-tillage  (38 kg N ha-1 a-1) corn treatments were not statistically significant. However, 

Masarik et al. (2014) found that NO3̄ fluxes from restored prairie land (0.07 N ha-1 a-1) were 

consistently lower than both the conventional and no-tillage treatments.  

Table 4.8 Mean field drain NO3̄ fluxes from different tillage systems between October 2014 and April 2015. 
Means followed by different superscripted letters are significantly different (p > 0.05). SE is standard error 

Tillage type 
Mean of NO3̄ flux 

(kg N ha-1 a-1) 
SE 

Conventional tillage 44.1a 20.9 
   
Reduced tillage 114b 27.1 
   
Direct drill 41.7a 5.2 

   
 

4.2.3 Ammonium 

Table 4.9 summarises the field drain NH4
+ concentrations and fluxes in the three experimental 

treatments during April 2013 to April 2015. In total, 376 NH4
+ measurements were obtained 

from drains sampled weekly over this two year period. Some drains, for instance D2, were 

flowing almost continuously throughout the study period, so greater numbers of samples were 

collected from them. Conversely, other drains, for example D11 and D8 flowed for a shorter 

time and yielded fewer samples. The mean NH4
+ concentration for all samples collected during 

the two years was 11.8 µg N L-1. Water samples from some drains, for instance D8 and D10 

had mean values of 16.6 µg N L-1 and 20.3 µg N L-1 respectively, which were higher than the 

mean NH4
+

 concentration of all drains together. Other drains, such as D2 and D4 had mean 

concentrations of 7.6 mg N L-1 and 8.5 µg N L-1, respectively, which were lower than the mean 

concentration of all drains together. Among all the samples collected for the two years, the 

highest NH4
+ concentration (191 µg N L-1) was measured in D10 in early December 2014. The 

second highest was measured from D8 (181 µg N L-1) in late March 2015, whilst the third 

highest concentration was found in D10 (174 µg N L-1) collected in late May 2014 which 

coincided with the second largest rainfall event highlighted in Figure 4.1. Excluding D10 and 

D8, all other drains had maximum NH4
+

 concentrations of <100 µg N L-1.  

The mean NH4+ flux for all the drains during the study period was 65 g N ha-1 a-1. Some drains 

had relatively low NH4+
 fluxes, for instance D6 and D11 with only 15 and 36 g N ha-1 a-1 

respectively, whilst others, such as D3, had a relatively high mean flux (146 g N ha-1 a-1). 

Nevertheless, compared to NO3̄, field drain NH4
+ concentrations and fluxes were very low and 
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typically three orders of magnitude lower than nitrate. In a previous study on N losses in 

subsurface drains,  Jaynes et al. (2001) found that losses of NH4+, NO2̄ and other forms of N 

were negligible in comparison to losses of NO3̄.  

 

Table 4.9 Summary of field drain NH4
+ concentrations and fluxes in the three experimental treatments for 

samples collected between April 2013 and April 2015. SE is standard error 

Treatment 
Drain 

ID 
n 

Mean NH4
+  

(µg N L-1) 
SE 

Mean NH4
+

 flux  
(g N ha-1 a-1) 

SE 

No cover crop & 
conventional 

plough (control) 

D10 48 20.3 4.8 49 5.9 

D8 27 16.6 1.4 82 6.5 

Cover crop & 
reduced tillage 

D3 34 12.4 1.5 146 1.5 

D16 30 14.2 3.2 38 3.2 

D1 57 9.1 1.2 43 1.2 

Cover crop & 
direct drill 

D11 12 14.4 4.0 36 4.0 

D2 68 7.6 0.9 40 0.9 

D4 57 8.5 0.9 124 0.9 

D6 43 12.2 2.2 15 2.2 

 

The temporal variation in field drain NH4
+ concentration in the three treatments is shown in 

Figure 4.6. Gaps in the measurements are due to a lack of drain flow which usually happened 

during the summer. NH4+ concentrations in all three treatments were generally <15 µg N L-1 

during spring, summer and even autumn 2014. In winter, NH4
+ concentrations showed some 

fluctuations, but with no specific differences among the treatments. In late May 2014, NH4
+ 

concentrations showed a pronounced peak of 174 µg N L-1 in control treatment (no cover crop 

& conventional plough) which coincided with the second storm event highlighted in Figure 

4.1. Surprisingly, field drains in the (cover crop & reduced tillage) and (cover crop & direct 

drill) treatments did not similarly exhibit this peak. Afterwards, and also during the second 

farming year, NH4+ concentrations did not change significantly except for a sudden increase in 

the control treatment at the end of the monitoring period. 
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Figure 4.6 Temporal variation in the mean concentration of NH4
+ in field drains under the three mitigation 

measure treatments. 

Unlike NO3̄ concentrations which were significantly reduced by the presence of a cover crop 

during September 2013 to March 2014, field drain NH4
+ concentrations were not dramatically 

lower in bare fields than in the cover crop fields. Details of NH4
+

 concentrations in field drains 

under the two treatments are presented in Table 4.10. The mean NH4+ concentration in field 

drains in fields with no cover crop (11.2 µg N L-1) was not significantly (p > 0.05) lower than 

the mean concentration in field drains under a cover crop (13.1 µg N L-1). The effect of the 

cover crop on NH4+ fluxes in field drains is also presented in Table 4.10. The overall mean 

NH4
+ flux under no cover crop (89 g N ha-1 a-1) was not significantly (p > 0.05) different from 

the mean flux with a cover crop (126 g N ha-1 a-1). 
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Table 4.10 Mean and range of NH4
+ concentrations and fluxes in the field drains under the two different 

treatments during cover crop growth (September 2013 to March 2014). SE is standard error 

Treatments 
Drain 

ID 
n 

Mean 
NH4

+  
(µg N L-1) 

SE 
Mean NH4

+ 
flux  

(g N ha-1 a-1) 
SE 

Without 
cover crop 

D10 18 11.8 3.6 42 12.5 

D8 15 10.5 1.7 136 46.1 
       

Mean   11.2  89  

With cover 
crop 

 

D3 13 13.8 2.7 158 49.8 

D16 16 21.6 5.2 122 40.8 

D1 22 10.7 1.7 103 32.4 

D11 7 21 5.0 120 59.3 

D2 24 10 1.4 70 12.1 

D4 23 11 1.4 283 71.0 

D6 17 11.6 1.9 25 8.1 
       

Mean   13.1  126  
 

The insignificant effect of the cover crop on NH4
+ concentrations is also shown by the porous 

pot data (Table 4.11). In February 2014, when cover crop was present on some fields, NH4
+ 

concentrations were not significantly (p > 0.05) lower in cover crop fields than in bare fields, 

ranging from 8-46 µg N L-1. The number of measurements for NH4
+ concentration on the 

subsequent two porous pot sampling occasions decreased greatly, which was due to either 

damage to the pots or insufficient water yielded by the pots. Thus, statistical analysis could not 

be carried out for most of the sample measurements. 

As it mentioned in the introductory of this chapter that nearly all of the studies assessed the 

effects of cover crops on reducing nitrogen loss from fields considered NO3̄ rather than the 

other two forms (NH4+ and NO2̄) of nitrogen. For instance, in a study to evaluate the use of 

cover crops in cereal-based cropping in England, Macdonald et al. (2005)  measured NH4
+ 

concentrations in the water under different treatments. However, it was observed that in all 

experiments about 97% of the mineral N measured in the leachates was present as NO3̄ rather 

than NH4
+. Consequently, leaching losses from NH4

+ was neglected. Therefore, it was not 

possible to compare the results of the effects of cover crop on NH4+ and NO2̄ found in this 

study to other studies in literature.  
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Table 4.11 Mean of NH4+ concentrations in porous pot samples from three soil types in the control treatment (no 
cover crop & conventional plough), treatment (cover crop (CC) & reduced tillage (RT)), and treatment (cover 

crop (CC) & direct drill (DD)) collected on three sampling occasions. Means followed by different superscripted 
letters are significantly different (p < 0.05) for the same sampling date and same soil type. 

Soil type Treatments 

 NH4
+ (µg N L-1) 

 n Feb. 2014  n 
Apr. 
2014  n Feb. 2015 

           

Sandy Loam 

control  6 24a  0 -  3 57ab 

(CC&RT  4 7a  2 326a  3 4a 

(CC&DD)  4 32a  2 14a  5 293b 

           

Sandy Clay 
Loam 

control  8 31a  1 222  0 - 

(CC&RT  2 9a  3 25  1 50 

(CC&DD)  5 46a  1 10  2 171 

           

Clay Loam 

control  8 10ab  2 20  0 - 

(CC&RT  6 33a  1 12  2 72a 

(CC&DD)  8 8b  0 -  2 141a 
 

During the 2014-2015 farming year when only different tillage practices where trialled as a 

mitigation measure, the limited data obtained from the porous pot samples in February 2015 

revealed no particular pattern among the treatments or soil types (Table 4.11). It seemed that 

NH4
+ concentrations were higher under direct drill than under either reduced or conventional 

tillage. However, with only three NH4+ concentration measurements out of 90 sampling sites, 

it was not possible to conduct any statistical analysis. It is also apparent from the field drain 

data (Figure 4.6) that NH4+
 concentrations in (cover crop & reduced tillage) and (cover crop & 

direct drill) treatments during winter 2015 were not substantially lower than the control 

treatment. The combined mean NH4
+

 concentration for porous pots and field drain samples 

under conventional tillage during October 2014 to April 2015 was 33.3 µg N L-1, which was 

not statistically different from 11.6 µg N L-1 and 47.5 µg N L-1 obtained for reduced tillage and 

direct drill treatments, respectively. Thus, these combined results from both field drains and 

porous pots demonstrate that the reduced tillage and direct drill mitigation measures practiced 

in 2015 did not reduce soil water NH4
+

 concentrations compared to conventional tillage (Table 

4.12). 

Like NH4
+ concentrations which showed no significant difference between conventional and 

conservation tillage, NH4+ fluxes also did not change significantly (p > 0.05) for the two main 
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tillage types (Table 4.12). The mean NH4
+ flux from field drains under conventional tillage 

was 88 g N ha-1 a-1, which was slightly lower than the NH4 flux under reduced tillage (117 g N 

ha-1 a-1) and higher than the NH4+ flux under direct drill (17 g N ha-1 a-1). The higher NH4+ flux 

under reduced tillage compared to conventional tillage is in agreement with the NO3̄ data 

(Table 4.7) which also showed higher NO3̄ fluxes in the former compared to the latter. It is 

noted that both NH4+ concentration and flux values in water samples collected under 

conventional tillage are in between the values obtained for reduced tillage and direct drill.  

Table 4.12 Mean NH4+ concentrations and fluxes in both field drain and porous pot samples collected under 
different tillage regimes during October 2014 to April 2015. Numbers followed by different superscripted letters 

are significantly different (p > 0.05) 

Tillage type 
Mean of NH4

+  
(µg N L-1) 

SE 
Mean of NH4

+ 
flux  

(g N ha-1 a-1) 
SE 

Conventional tillage 33.3ab 12.2 88ab 49.3 
     
Reduced tillage 11.6a 3.5 117a 49.8 
     
Direct drill 47.5b 16 17b 4.9 

     
 

4.2.4 Nitrite 

Table 4.13 summarises the field drain nitrite (NO2̄) concentrations and fluxes for the three 

experimental treatments during April 2013 to April 2015. In total, 465 measurements were 

made for NO2̄ from water samples collected weekly over two years. The mean nitrite 

concentration for all samples collected during this period was 4.5 µg N L-1, which is less than 

half of the mean NH4+ concentration (11.8 µg N L-1) and three orders of magnitude lower than 

the mean NO3̄ concentration (5.2 mg N L-1). No great variation in the mean NO2̄ concentration 

was observed amongst the field drains, with concentrations in each individual drain always <10 

µg N L-1. Among all 465 samples, the highest NO2̄ concentration of 182 µg N L-1 was measured 

in D10 in the last week of sampling (31th March 2015). The second highest concentration was 

measured in D8 during the same week (149 µg N L-1). The mean NO2̄ flux calculated from all 

the drains during the study period was 25 g N ha-1 a-1. Some drains had relatively low NO2̄  

fluxes, for instance D11 and D16 with only 1-2 g N ha-1 a-1, whilst others, such as D4 and D8, 

had relatively high fluxes of 46 and 48 g N ha-1 a-1, respectively. Nevertheless, field drain NO2̄ 

fluxes were typically three orders of magnitude lower than NO3̄ fluxes (35 kg N ha-1 a-1). 
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Table 4.13 Summary of the field drain NO2̄ concentrations and fluxes in the three experimental treatments for 
samples collected during April 2013-April 2015. SE is standard error 

Treatment 
Drain  

ID 
n 

Mean 
NO2̄   

(µg N L-1) 
SE 

Mean NO2̄  
flux  

(g N ha-1 a-1) 
SE 

No cover crop & 
conventional plough 

(control) 

D10 57 7.5 3.2 19 8.4 

D8 39 7.0 3.8 48 22.5 

Cover crop & reduced 
tillage 

D3 41 4.3 0.8 51 11.8 

D16 38 4.5 0.6 2 0.5 

D1 70 3.1 0.5 28 5.7 

Cover crop & direct drill 

D11 20 6.8 4.1 1 0.6 

D2 73 3.2 0.5 25 3.6 

D4 70 3.3 0.5 46 7.1 

D6 57 4.1 0.6 5 0.8 

 

The temporal variation in field drain NO2̄ concentrations across the three treatments is shown 

in Figure 4.7. Gaps in the measurements are due to the lack of drain flow during the 

summer/autumn. Throughout the study period, NO2̄ concentrations did not show a major peak 

in any treatment and remained relatively steady at 1-10 µg N L-1. Only on a few sampling 

occasions did the concentrations increase significantly. NO2̄ concentrations showed a small 

peak of 14 µg N L-1 in treatment (cover crop & direct drill) in late August 2013 when drains 

from the other two treatments were dry. In mid-March 2014, all drains contained relatively 

high NO2̄ concentrations (up to 14 µg N L-1) for two consecutive weeks. In late May 2014, 

coinciding with the second highlighted storm event in Figure 4.1, NO2̄ concentrations only 

increased in treatment (cover crop & direct drill) which was solely due to a concentration of 42 

µg N L-1 in drain D10. Another concentration increase was observed in early December 2014, 

when all drains in (cover crop & direct drill) had a mean value of 24.4 µg N L-1. Towards the 

end of the sampling period, NO2̄ concentrations gradually increased in all drains, with very 

high values recorded for D8 and D10 of 149 and 182 µg N L-1, respectively. This sharp increase 

in the (cover crop & reduced tillage) field drain (D10) NO2̄ concentration was also replicated 

in the NH4
+ (Figure 4.6) and NO3̄ concentrations (Figure 4.2). It was also observed that the 

third highlighted storm event in mid-October 2014 (Figure 4.1) caused a sharp increase in NO3̄ 

concentrations in all drains and all three treatments (Figure 4.2), but did not increase either 

NH4
+ or NO2̄  concentrations.  
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Figure 4.7 Temporal variation in the mean nitrite (NO2̄) concentration of field drains from the three mitigation 
measures treatments. 

The effects of the cover crop on field drain NO2̄ concentrations and fluxes are presented in 

Table 4.14. Unlike NO3̄ concentrations which were significantly reduced by the presence of a 

cover crop during September 2013 to March 2014,  NO2̄  concentrations and fluxes were not 

significantly reduced under cover crop fields relative to bare fields, as was the also the case for 

NH4
+. The mean NO2̄  concentration in field drains under cover crop fields (2.6 µg N L-1) was 

not significantly (p > 0.05) different from the mean value under fields with no cover crop (2.5 

µg N L-1). Likewise, the mean NO2̄  fluxes were also not significantly (p > 0.05) different 

between drain samples collected under the cover crop (22 g N ha-1 a-1) and those collected under 

no cover crop (25 g N ha-1 a-1). 
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Table 4.14 Mean and range of field drain NO2̄ concentrations and fluxes under the two different cover crop 
treatments during September 2013 to March 2014. SE is standard error 

 
Drain 

ID 
n 

Mean NO2̄   
(µg N L-1) 

SE 
Mean NO2̄  flux  

(g N ha-1 a-1) 
SE 

Without 
cover crop 

D10 18 2.5 0.4 11 3.4 

D8 15 2.5 0.5 39 14.7 
       

Mean   2.5  25  

With cover 
crop 

 

D3 14 2.6 0.5 30 9.5 

D16 17 3.8 0.5 6 1.4 

D1 23 2.2 0.3 20 6.1 

D11 8 3.2 0.9 4 1.9 

D2 24 2.4 0.4 19 2.9 

D4 24 2.3 0.4 66 15.1 

D6 19 2.3 0.4 5 1.3 
       

Mean   2.6  22  
 

NO2̄ concentrations and fluxes under different tillage are summarised in the Table 4.15. 

Although the mean concentration and flux values are different, these differences are not 

statistically significantly due to large variation. The combined mean porous pot and field drain 

NO2̄  concentration under conventional tillage (12.0 µg N L-1) was not significantly (p > 0.05) 

higher than that under reduced tillage (5.8 µg N L-1) and direct drill (6.9 µg N L-1). Likewise, 

the mean value of 76 g N ha-1 a-1 for NO2̄  fluxes under conventional tillage was not significantly 

(p > 0.05) higher than that of 66 g N ha-1 a-1 under reduced tillage and of 26 g N ha-1 a-1 under 

direct drill.  
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Table 4.15 Combined NO2̄ concentrations and fluxes from field drain and porous pot samples collected under 
different tillage regimes during October 2014 to April 2015. Means followed by different superscripted letters 

are significantly different (p > 0.05). SE is standard error 

Tillage type 
Mean NO2  
(µg N L-1) 

SE 
Mean of NO2 flux  

(g N ha-1 a-1) 
SE 

Conventional tillage 12.0a 4.8 76a 41.1 
     
Reduced tillage 5.8a 0.7 66a 14.2 
     
Direct drill 6.9a 1.2 26a 4.0 

     
 

4.3 Summary 

It is concluded from the data presented in this chapter that using cover crops as a mitigation 

measure for reducing diffuse N pollution is very effective. The mean concentration of NO3̄, the 

predominant form of N in soil water, was significantly reduced from 13.9 mg N L-1 without a 

cover crop to 2.5 mg N L-1 with a cover crop: an 82% reduction. Likewise, NO3̄ fluxes from 

fields were substantially reduced from 113 kg N ha-1 a-1 in bare fields to 17 kg N ha-1 a-1 in 

cover crop fields: equivalent to an 85% reduction in N flux. No statistically significant change 

in NH4
+ and NO2̄ concentrations and fluxes between cover crop and no cover crop fields was 

observed. However, these two forms of N contribute only a small proportion to total N 

leaching, so this does not lessen the overall effectiveness of cover crops at reducing N leaching. 

Conversely, different soil inversion regimes tended to have minimal effect on both the 

concentrations and fluxes of any form of N. Thus, the overall conclusion of this chapter is that 

in agricultural areas where high nitrate losses from fields into ground or surface water 

represents a major pollution risk, cover crops can be a highly effective mitigation measure.  
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Chapter 5: DISSOLVED NITROUS OXIDE 

5.1 Introduction 

5.1.1 Nitrous oxide   

Nitrous oxide (N2O) is a potent greenhouse gas with a present atmospheric concentration of 

319 ppb (Forster et al., 2007). N2O persists in the atmosphere and has 300 times more global 

warming potential than CO2 and accounts for about 5% of the total greenhouse effect 

(Omonode et al., 2011). N2O molecules also participate in photochemical reactions in the 

stratosphere which may lead to destruction of the earth-protecting ozone (O3) layer (Jacinthe 

and Dick, 1997). N2O is also linked to the release of nitric oxide and ammonia, which 

contribute to acid rain and the acidification of soils and drainage systems (Mosier and Kroeze, 

1998). 

The concentration of this gas in the atmosphere is increasing at an annual rate of ~0.3% 

(Kroeze, 1994). Since the pre-industrial era, global atmospheric N2O concentrations have 

increased by about 16% from 270 to 319 ppb (Syakila and Kroeze, 2011). Agriculture is 

considered to be the largest source for N2O emissions from anthropogenic activities. 

Agriculture accounts for about 60% of the total N2O anthropogenic emission and global 

agricultural N2O emissions increased by nearly 17% from 1990 to 2005 (Smith et al., 2007). 

Global agricultural N2O emissions are projected to increase 35-60% by 2030 due to increased 

nitrogen fertiliser use and increased animal manure production (Bruinsma, 2003). Similarly, 

Scheehle et al. (2006) estimated that emissions from agricultural soils are projected to increase 

by more than 50% by 2020 compared to 1990. The current agricultural contribution to total 

global nitrogen emissions is estimated at 4.7 Tg N a-1 (i.e. 4.7 million tonnes of nitrogen per 

year), but there is great uncertainty about the magnitude of emissions because of the wide range 

in estimates for different agricultural sources. The non-agricultural anthropogenic sources of 

N2O emissions are biomass combustion, stationary and mobile combustion, adipic and nitric 

acid production, solvent use, waste incineration, fugitives from oil and natural gas systems, and 

fugitives from solid fuels. 

The total flux of N2O into the atmosphere from all sources is currently estimated at 18.8 Tg N 

a-1, of which natural processes account for 65% and anthropogenic activities account for 35%. 

The largest sources of natural N2O emissions are soils, contributing ~35%, followed by oceans, 

river and estuaries. However, there is some debate as to what fraction of the emissions 

associated with rivers and estuaries should be considered as natural sources as these are driven 
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primarily by anthropogenic contributions of nitrogen into water bodies. Natural sources reflect 

microbial processes in uncultivated soils, ocean and other aquatic systems, including wetlands 

(Anderson et al., 2010). 

N2O is one of the key compounds in the nitrogen cycle. It is produced naturally in the soils 

through the microbial process of denitrification and nitrification. A number of anthropogenic 

activities add nitrogen to the soils, thereby increasing the amount of nitrogen available for 

nitrification and denitrification, and ultimately the amount of N2O emitted. Added nitrogen 

from anthropogenic activities into the soil is either directly or indirectly (Scheehle et al., 2006). 

Direct addition is through activities such as cropping practices, application of fertilisers, 

production of nitrogen-fixing crops (e.g. beans, pulses and alfalfa), incorporation of crop 

residues into the soil, and cultivation of high organic content soils. Indirect additions occur 

through volatilisation and subsequent atmospheric deposition of ammonia and oxides of 

nitrogen that originate from the application of fertilisers and livestock wastes onto cropland 

and pastureland, and subsequent surface runoff and leaching of nitrogen from these same 

sources (Scheehle et al., 2006). 

N2O is an obligatory intermediate of denitrification (Equation 5.1), a series of energy 

generating reactions during which nitrate is reduced to gaseous nitrogen compounds such as 

NO, N2O or N2. The generally accepted pathway is shown below (Bremner, 1997): 

                                         2223 NONNONONO →→→→ −−                                             (5.1) 

Denitrification takes places under anaerobic conditions when bacteria utilise nitrate as the 

terminal electron acceptor in place of oxygen. Denitrification plays a vital role in the N cycle 

of the atmosphere. In its absence, all biologically available N that has been released from 

igneous rocks of the Earth’s original crust and mantle would have been converted long ago to 

its more thermodynamically stable form of NO3̄ in the ocean. Denitrification also represents 

the only biological process for consumption of N2O (Williams et al., 1992). It is a vital step in 

waste water treatment as it removes nitrate from the water and thereby helps to reduce algal 

blooms and eutrophication. Conversely, this process accounts for the major loss of fixed 

nitrogen from both soils and the oceans, with N2O comprising >5% of the denitrification end 

product in soils (Nevison, 2000). It is considered as a major problem in farming as it decreases 

the effectiveness of fertiliser by converting nitrate into nitrogen gas. It can be seen from 
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equation 5.1 that denitrification not only produces N2O, but it also reduces N2O, especially 

when oxygen concentrations are extremely low.  

A wide range of bacteria are able to denitrify. They are facultative anaerobes and switch to  

NO3̄ as a terminal electron acceptor when oxygen concentrations in soil become depleted 

(Skiba and Smith, 2000). Types of denitrifiers include phototrophs, lithotrophs and 

organotrophs which generate energy for growth and regeneration from light, inorganic 

substances and organic substances, respectively. The latter group are the most common 

denitrifiers in soil and the aquatic environment. Species of Pseudomonas, Alcaligenes, Bacillus 

and Paracoccus are the most common denitrifers (Williams et al., 1992; Bernhard, 2012). 

Early researchers assumed that denitrification was the only biological process responsible for 

N2O production in soils and that essentially all of the N2O generated from soils was produced 

through the reduction of nitrate by denitrifying microorganisms under anaerobic conditions. 

However, it is now well documented that nitrifying microorganisms contribute significantly to 

emission of N2O from soils (Bremner, 1997). Nitrification is the aerobic oxidation of reduced 

forms of nitrogen, mainly ammonium to nitrite and nitrate (Equation 5.2). N2O generally 

accounts for <1% of the nitrification end product in soil in a normal oxygenated environment 

(Nevison, 2000). 

                                         −−+ ↑→↑→→ 3224

22

NONOOHNHNH
ONON

                                   (5.2) 

The process of nitrification is associated with the metabolism of chemoautotrophic bacteria of 

the family Nitrobacteraceae, as well as several species of heterotrophic microorganisms. None 

of these bacteria are able to oxidise ammonium to nitrate in a single step. Nitrification occurs 

in two steps which are carried out by two different groups of bacteria. N2O can be a by-product 

of either step. In the first step, Nitrosomonas and Nitrosospira bacteria oxidise ammonium to 

nitrite. The subsequent oxidation of nitrite to nitrate is facilitated by a second group of bacteria 

which include Nitrobacter. Although low numbers of a few other ammonium oxidising 

chemoautotrophs are also present in many soils, Nitrobacter is the only genus known to be 

involved in the oxidation of nitrite (Williams et al., 1992). 

Soil moisture, soil temperature, soil organic matter, nitrogen availability, availability of NH4+, 

pH, redox condition, topographic position and agricultural management practices have all been 

identified as main factors controlling denitrification and nitrification rates (Bouwman et al., 
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1993; Panek et al., 2000). Nitrification is a relatively constant process across ecosystems, 

whereas denitrification rates are temporally and spatially variable. In most soils, variability of 

NH4
+ and oxygen are the most important factors controlling nitrification, whereas the major 

controls on biological denitrification include the availability of organic carbon, oxygen and 

nitrate or other nitrogen oxides (FAO, 2001).  

Denitrification tends to produce greater N2O emissions, whilst rates of N2O production by 

nitrification tend to be smaller (Williams et al., 1992). However, conditions for nitrification in 

soils are much more common and thus the contribution of nitrification to total global N2O 

emissions is substantial (Skiba and Smith, 2000). The balance between nitrification and 

denitrification as contributors of N2O emissions will change with climate, soil condition and 

soil management. Generally, high rainfall, poor drainage, fine soil texture and high organic 

carbon content promote denitrification and associated N2O production, whereas low rainfall, 

good drainage and aeration and coarse texture enhance nitrification and associated N2O 

production (Groffman et al., 1991; Skiba and Smith, 2000). However, in most soils the 

dominant production mechanism is not static and can switch very quickly. For example, soil 

aeration levels can change rapidly in response to rainfall or increased oxygen demand caused 

by the presence of easily mineralisable organic matter (Skiba and Smith, 2000). 

The oxygen and moisture content of agricultural soils depends on soil texture and drainage. 

Fine textured soil have more capillary pores within aggregates than sandy soils and so hold soil 

water more tightly. As a result, anaerobic conditions may be more easily reached and 

maintained for longer periods within aggregates in fine textured soils than in coarse textured 

soils. The water content of the soils influences N2O emissions in all types of soil. Microbial 

activity generally peaks at 30-60% water-filled pore space. Nitrification and associated N2O 

production also peaks at 30-60% water-filled pore space, while ideal conditions for 

denitrification may occur at 50-90% of water-filled pore space (FAO, 2001). 

5.1.2 Nitrous oxide in aquatic systems 

The large uncertainties regarding the natural and anthropogenic sources and sinks of N2O have 

initiated many investigations into the N2O found in aquatic systems. The first N2O 

measurements from seawater were made by Craig and Gordon (1963). Oudot et al. (1990) 

reported that N2O in the ocean is present at concentrations in excess of saturation with respect 

to the atmosphere at the temperatures and salinity levels observed. Consequently, the open 

ocean acts as a source for atmospheric N2O. Initially, it was believed that the oceans would be 
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the predominant source for N2O. However, a series of studies corrected this understanding and 

it is now generally accepted that the ocean is a major, but not predominant, source of N2O to 

the atmosphere, and contributes ~35% of the total natural sources of N2O and ~21% of all 

sources (natural and anthropogenic) (Lal and Patra, 1998; Bange et al., 2001; Rao et al., 2013; 

Chen et al., 2014).  

Several different methods have been used to estimate N2O emissions from the ocean. 

Preliminary studies used measurements of dissolved concentrations in the surface water and 

estimated gas-transfer based on wind speeds. Estimates have also been made using 

observations of the correlation between dissolved N2O and other gases. Recently, inverse 

modelling techniques have been applied to calculate relatively large scale emission estimates 

for the northern versus southern hemispheres and for land versus ocean fluxes (Anderson et al., 

2010). 

Based on observations of water column profiles, N2O is thought to be generated at intermediate 

depths in the ocean and nitrification is believed to be the dominant production process. This is 

because N2O is generally negatively correlated with oxygen and positively correlated with 

nitrate in subsurface and deep waters and there is a linear relationship between the excess N2O 

in the water and the apparent oxygen utilisation rate (Oudot et al., 1990). N2O production in 

the surface layer is believed to be small because oxygen limits denitrification, whilst sunlight 

inhibits nitrification. Instead, N2O is produced in the subsurface and subsequently transported 

to the ocean surface. Dore et al. (1998) found that nitrification at 100-300 metres depth could 

produce 70-90% of the oceanic N2O emissions based on isotopic measurements of N2O in the 

oligotrophic subtropical North Pacific. 

N2O emissions from the ocean show great seasonal and spatial variation. Nevison et al. (2005) 

argued that N2O concentration should not be treated as an annual constant because it possesses 

strong seasonality. This seasonality is caused by thermal effects during the summer and a larger 

mixing effect during the winter as the depth of the surface mixed layer deepens and deeper 

N2O enriched waters are mixed together. Nevison et al. (2005) suggested that the mean annual 

N2O emissions from ocean water may be overestimated because the majority of surface N2O 

measurements have been made during summer. Furthermore, ocean N2O emissions are not 

uniformly distributed over the ocean surface. Nevison et al (2003) found that N2O 

concentrations are highest in the eastern tropical Pacific, moderate in the northern Pacific and 

Indian Ocean, and relatively low in the Southern and Atlantic Oceans. Hirsch et al (2006) also 
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calculated high N2O emissions from the equator, with moderate emissions from the northern 

hemisphere and very low emissions from the southern hemisphere. N2O concentrations have 

been found at unusually high levels of supersaturation in the oceanic samples collected in the 

vicinity of upwelling areas (e.g. coastal Peru, Chile, Arabian Sea, western South Africa, eastern 

New Zealand and the California coast). Since N2O is mainly produced in subsurface waters, 

upwelling provides a rapid pathway to the surface where it degases. Regions of upwelling are 

also areas of enhanced primary productivity, which results in higher fluxes of organic material 

sinking into deeper waters. Consequently, this organic input depletes oxygen levels and creates 

conditions favourable for denitrifers as well as nitrifers (Anderson et al., 2010). Lal and Patra 

(1998) discovered that the Arabian Sea contributes significantly to N2O emissions, generating 

~13-17% of net global oceanic emissions despite this area accounting for only ~1.7% of the 

total ocean area. 

The increasing concern about N2O in the atmosphere has also initiated numerous investigations 

in freshwater systems. Unlike the oceans, emissions from freshwater bodies (i.e. rivers, 

estuaries, lakes and groundwater) are generally classified as anthropogenic rather than natural 

sources of N2O because they are highly impacted by human activities. Although they cover a 

relatively small area globally, they represent active sites for aquatic productivity and 

biogeochemical cycling which leads to relatively high emissions in comparison to the open 

ocean.  

During transport in streams, rivers and estuaries, nitrate can be denitrified or assimilated by the 

biota. Within the N cycle of open water bodies, mineral N species can be produced or retained, 

and N2O can be produced by nitrification as well as produced and reduced by denitrification 

(Well and Butterbach-Bahl, 2010). Using a global river network model, Beaulieu et al. (2011) 

estimated that microbial nitrogen transformations (e.g. denitrification and nitrification) convert 

at least 0.68 Tg N a-1 of anthropogenic nitrogen inputs to N2O in river networks, equivalent to 

10% of the global anthropogenic N2O emission total. Beaulieu et al. (2011) also found that this 

estimate of stream and river N2O emissions is three times greater than that estimated by the 

IPCC (2006). Seitzinger and Kroeze (1998) modelled the emissions of N2O from rivers 

globally based on the rates of riverine nitrification and denitrification and assumptions about 

likely factors. They estimated that rivers could contribute as much as 25% of the global total 

anthropogenic N2O release into the atmosphere. Rosamond et al. (2012) reported that global 

riverine N2O emissions are currently estimated to be 0.9 Tg N a-1, equivalent to 17% of 

anthropogenic agricultural N2O emissions, by assuming a linear relationship between dissolved 
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inorganic nitrogen inputs to rivers and riverine N2O emissions. Recent studies, however, have 

shown that riverine N2O emissions are the most uncertain component of the current estimate 

due to a combination of insufficient data and a poor conceptual understanding of the 

mechanisms controlling riverine N2O dynamics spatially and temporally (Yu et al., 2013). 

Another study by Cole and Caraco (2001) calculated a lower N2O contribution from rivers. 

Based on a modelling study, they calculated that rivers might contribute only ~1.3% of the total 

anthropogenic N2O emissions in the Hudson watershed.  

In a study of the eutrophic San Joaquin river in California, Hinshaw and Dahlgren (2013) 

established a mean dissolved N2O concentration in surface waters of 0.91 µg L-1 and all the 

samples were supersaturated. They also found that the concentrations were significantly 

different between months and displayed a strong seasonal pattern, with the lowest 

concentrations found in April and highest concentrations recorded throughout the summer 

months. Outram and Hiscock (2012) measured dissolved N2O concentrations on different water 

compartments in the Upper Thurne river , eastern England, and found that the concentrations 

were highest in pumped drainage sites, followed by the drainage channels and river, whilst 

shallow lakes had the lowest concentrations. They found that all sites had N2O concentrations 

higher than would be expected when atmospheric N2O concentrations are in equilibrium with 

the water, meaning that all water bodies were acting as source of N2O to the atmosphere. 

N2O emissions from lakes have been less thoroughly investigated compared with other 

freshwater bodies. Lakes are not recorded as a source of N2O emissions in the 2007 IPCC report 

as they are generally considered a minor source of N2O emissions to the atmosphere. According 

to Anderson et al. (2010), N2O emissions from lakes are ~0.004-0.04 Tg N a-1, equivalent to 

0.02-0.2% of total global N2O emissions. Oxygen concentrations are an important factor 

controlling the balance between nitrification and denitrification processes. Lake oxygen 

concentrations are affected by water temperature, water depth and the rate at which oxygen is 

consumed by biota living within the lake water and sediments. Prisu et al. (1996) argued that 

most studies of marine systems have concluded that N2O is produced via nitrification in surface 

waters, whereas denitrification may be the source in oxygen depleted deep water. This pattern 

is not that simple in lakes, perhaps because of their wide range of trophic states. High N2O 

concentrations observed in several eutrophic lakes apparently arise from denitrification, 

whereas N2O in the water column of more oligotrophic lakes is believed to be produced by 

nitrification or a combination of both mechanisms. In a study of 15 Swiss lakes of different 

size and trophic status, Mengis et al. (1997) identified that N2O was produced in three zones: 
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(1) near the surface (epilimnion) which is observed occasionally in eutrophic lakes and seems 

to be attributed to the presence of actively growing algae; (2) in the oxic hypolimnion (water 

below the thermal boundary in thermally stratified lakes) which may be due to nitrification and 

inhibition of N2O reduction in the presence of oxygen; and (3) at oxic/anoxic interfaces in the 

hypolimnion, which is attributed to both denitrification and nitrification.  

N2O emissions from field drains have been poorly studied to date. N2O losses in leached 

drainage water from agricultural land were first reported by Dowdell et al. (1979). Bowden and 

Bormann (1986) indicated that after N2O is produced by microbial activity in the soil, it 

dissolves into soil water and leaches through the soil into streams where it rapidly degases and 

is released into the atmosphere. They also pointed out that these losses of N2O from such 

sources, which may be important to the global atmospheric budget, have been overlooked 

because they may be displaced temporally and spatially from expected sites of N2O production. 

Reay et al. (2003; 2004a; 2004b) conducted a study on N2O emissions from a drainage system 

underlying arable fields and discharging into a ditch. They concluded that N2O discharged by 

field drain outfalls was quickly released into the atmosphere during transport in the open ditch. 

They also found that the complexity of the process due to both spatial and temporal variability 

was ultimately responsible for the poor relationship between applied fertiliser N and N2O 

emissions from field drains. In a study of N2O emissions from 28 drained agricultural areas in 

the upper Neckar region, Germany, Hack et al. (2002) observed a wide range (0.4-60 µg N l-1) 

of N2O concentrations corresponding to different land use practices, which in turn 

corresponded to different nitrate concentrations. They concluded that the average N2O 

discharge in field drain water appears to be of minor importance in comparison to the direct 

N2O emissions from soils. 

Groundwater systems have recently been investigated in the assessment of global N2O sources. 

Numerous studies have shown that groundwater which is supersaturated with N2O with respect 

to the atmosphere will release any excess N2O into the atmosphere at its outlet, such as springs, 

seepages, instream and pumped wells (Bochove et al., 2001; Reay et al., 2003; Reay et al., 

2004b; Minamikawa et al., 2010; Jahangir et al., 2013). McMahon et al. (2000) listed reasons 

for nitrogen-enriched groundwater to be a potentially important anthropogenic source of 

atmospheric N2O. These were are follows: (a) dissolved N2O in groundwater has been reported 

at concentrations up to three orders of magnitude larger than air-equilibrated water; (b) the 

areal extent of groundwater contamination from inorganic nitrogen has increased over time due 

to increased fertiliser usage; (c) N2O from groundwater can be transferred to the Earth’s surface 
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through several outlets, including well pumping, natural discharges at springs and in lakes and 

oceans. 

In a study of N2O in boreholes and springs in the unconfined Chalk aquifer of Cambridgeshire, 

Mühlherr and Hiscock (1997) suggested that groundwater may be a significant component of 

the global N2O budget. This was because all the samples they collected were oversaturated 

with N2O, with concentrations ranging from 13 to 320 times greater than the air equilibrium 

concentration. They suggested that nitrification was the main mechanism for N2O production 

based on a strong positive correlation between N2O and NO3̄ and a weak correlation between 

N2O and O2 concentrations. A study by McMahon et al. (2000) in the US central High Plains 

aquifer also found that N2O may be produced primarily by nitrification as high concentrations 

of O2 and NO3̄  and low concentrations of NH4
+ and dissolved organic carbon were measured. 

However, they came to the conclusion that the flux of N2O from the aquifer to the atmosphere 

through well pumping and groundwater discharge to streams was not a significant source of 

the atmospheric N2O. Vilain et al. (2011) came to the same conclusion when they calculated 

annual N2O emissions from groundwater of 0.035 kg N ha-1 a-1, equivalent to just 1.8% of the 

direct N2O flux from agricultural land. 

The United Nations Framework Convention on Climate Change (UNFCC) calls for the 

compilation of national emission inventories for trace gases (CO2, CH4 and N2O) that 

contribute to climate change. The Intergovernmental Panel on Climate Change IPCC (2006) 

has developed protocols for quantifying N2O emissions from industry, agriculture and natural 

ecosystems. The total N2O emissions from agriculture are divided between direct and indirect 

emission. 

5.1.3 Direct N2O emissions 

N2O emissions occurring from agricultural land use include direct emissions from the soils as 

well as indirect emissions caused by nitrogen flows from agricultural fields into the 

surrounding aquatic environment (Well and Butterbach-Bahl, 2010) as is shown in Figure 5.1. 

In most agricultural soils, production of N2O is enhanced by an increase in available mineral 

N which consequently increases nitrification and denitrification rates. Addition of N fertiliser, 

therefore, directly results in extra N2O production. Nitrogen additions to soils can be from 

synthetic fertilisers, animal manures, biological N-fixation through N2-fixing crops, crop 

residues returned to the field after harvest and human sewage sludge applications. Most studies 

on N2O emissions from agricultural soils have investigated the difference in N2O formation 
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between fertilised and unfertilised fields. Emissions from unfertilised fields are considered 

background emissions (Mosier et al., 1998). Direct N2O emissions from agricultural soils have 

been well documented (Bouwman, 1996; Skiba et al., 1996; Beauchamp, 1997; Smith et al., 

1998; Dobbie and Smith, 2003; Van der Hoek et al., 2007; Rochette et al., 2008b)  

 

 

Figure 5.1 Nitrogen pathways from arable fields to adjacent environments and associated indirect N2O 
emissions (Well et al., 2005b). 

5.1.4 Indirect N2O emissions 

A major proportion of excess agricultural N is leached as nitrate into the surrounding aquatic 

environment. The IPCC (2006) considers that ~30% of applied N is lost through leaching and 

runoff with an uncertainty range of 10-80%. This loss of N by leaching provides enhanced 

conditions for nitrification and denitrification to occur and consequently accelerates N2O 

production. Indirect emissions resulting from N leaching into aquatic systems, therefore, are 

considered a potentially important N2O source. However, its magnitude is still under debate, 

with the uncertainty associated with currents estimates of almost two orders of magnitude, 

which is larger than the uncertainty for other N2O sources (Well and Butterbach-Bahl, 2010). 

The aquatic pathway for reactive N originates in leaching and runoff from agricultural fields 

and ultimately ends up in the ocean after passing through a chain of connected systems (i.e. 

aquifers, riparian area, rivers and estuaries) as shown in Figure 5.1. N2O produced in 

groundwater and unsaturated zones can be transported to the atmosphere via upwelling 
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diffusion (Deurer et al., 2008) or groundwater discharge to wells, springs and streams, because 

once groundwater is discharged into surface water bodies the dissolved N2O may partially or 

completely degas to the atmosphere (Reay et al., 2004b).  

Indirect N2O emissions from groundwater, streams and rivers receiving N-rich drainage water 

from agricultural fields have been poorly investigated to date, while direct sources of N2O from 

soil have been fairly well documented (Outram and Hiscock, 2012). Furthermore, estimating 

indirect N2O emissions is complicated by the fact that it is often difficult to separate the fluxes 

originating from agricultural land from other N sources. As an example, riparian buffers are 

described by Well and Butterbach-Bahl (2010) to show the complexity of natural processes. 

Riparian buffers between agricultural fields and streams receives N via subsurface groundwater 

flow, atmospheric deposition from industrial, agricultural and natural sources, biological N2 

fixation and potentially N from different sources in the stream during flooding. N2O emitted at 

the soil surface is thus a mixture of groundwater-derived N2O of mostly agricultural origin and 

N2O produced in soil that originates from industrial, agricultural and natural sources. 

Investigations to determine the importance of indirect N2O emissions relative to direct N2O 

emissions and to the global N2O budget have shown inconsistent results. Studies on streams 

(Beaulieu et al., 2008), groundwater (Ueda et al., 1991), aquifers (Hiscock et al., 2003) and 

field drains (Hack and Kaupenjohann, 2002; Reay et al., 2004b) have shown that the 

contribution of indirect N2O emission to the overall N2O budget is insignificant. Conversely, 

other studies on different surface water bodies (Outram and Hiscock, 2012), on aquifers (Ronen 

et al., 1988a), and on some groundwater systems (Ueda et al., 1993) have shown that indirect 

N2O emission can be significant. The latter two studies discussed that these indirect emissions 

cannot therefore be overlooked when constructing a global N2O budget, especially considering 

the worldwide trend of increasing groundwater contamination by NO3̄. The objective of this 

chapter is to investigate the spatial and temporal changes in dissolved N2O concentrations in 

field drains and stream waters and the factors beyond these changes. Another objective of this 

chapter is to assess the effects of the mitigation measures on N2O concentrations. 

5.2 Results and Discussion 

5.2.1 Spatial variation of nitrous oxide concentrations 

A summary of dissolved N2O concentrations in field drain and stream water samples collected 

throughout this study is presented in Table 5.1, and Figure 5.2 shows the variations in N2O 

concentration for each field drain and stream site. In total, 645 water samples were collected 
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from field drains and 308 samples were collected from stream sites, such that 953 samples in 

total were obtained for N2O analysis over the duration of this study. Some drains (e.g. D1, D2 

and D4) were flowing almost continuously throughout the study period, such that a greater 

number of samples were collected from these drains, whereas others (e.g. D11 and D13) flowed 

for less than one year and thus yielded fewer samples. All of the drains were found to have 

dissolved N2O concentrations higher than would be expected when atmospheric N2O 

concentrations at in equilibrium with water, which is ~0.35 µg N L-1 (Forster et al., 2007). Field 

drain N2O concentrations ranged from 0.4 µg N L-1, just above the atmospheric-water 

equilibrium, to 34.4 µg N L-1, 100 times greater than atmospheric-water equilibrium. Stream 

water contained N2O concentrations 1-20 times greater than the atmospheric–water equilibrium 

concentration. This demonstrates that all sites were acting as a source of N2O to the atmosphere.  

A mean N2O concentration of 4.5 µg N L-1 was calculated for all field drain samples. Among 

the drains, D11 had the highest mean value (8 µg N L-1) and D2 the lowest (1.9 µg N L-1). For 

all the stream samples, a mean value of 1.4 µg N L-1 was calculated, with concentrations 

ranging from 0.35 µg N L-1 to 7.3 µg N L-1. Among the stream sampling sites, site M had the 

lowest mean concentration (1.0 µg N L-1) and site B the highest (1.8 µg N L-1). 
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Table 5.1 Summary of dissolved N2O concentrations in field drains and stream samples collected during April 
2013-April 2015 

Location  ID n 
Mean N2O 
(µg N L-1) 

Range of N2O  
(µg N L-1) 

Field Drain 

D1 73 3.9 0.4-11 
D2 83 1.9 0.4-7.2 
D3 39 4.1 0.6-12.4 
D4 74 6.5 0.7-19.5 
D5 62 4.5 0.9-21.4 
D6 52 3.8 1.1-10.1 
D7 43 5.3 0.7-32.9 
D8 41 6.3 0.6-34.4 
D9 45 5.2 0.6-16.9 
D10 49 6.2 0.7-29.6 
D11 16 8.0 2.6-14.6 
D13 27 4.2 0.7-9.6 
D16 41 2.0 0.4-4.4 

Stream 

A 77 1.3 0.7-6.3 
B 77 1.8 1-4.7 
E 77 1.6 0.9-7.3 
M 77 1.0 0.35-7.1 

 

 

Figure 5.2 Boxplot of dissolved N2O concentrations in field drains (D1-D16) and in stream water (A, B, E and 
M) for samples collected during April 2013-April 2015. The horizontal dashed line represents the atmospheric 

N2O concentration when in equilibrium with water (0.35 µg N L-1). 
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There are very few studies of dissolved N2O concentrations in field drains. Dowdell et al. 

(1979), who studied dissolved N2O in agricultural drains for the first time, found a range of 1-

132 µg N L-1 in three different locations across southern England. In a study of N2O discharged 

from 28 drained agricultural areas in the upper Neckar region, Germany, Hack et al. (2002) 

observed a range of 0.4-60 µg N l-1 in N2O concentration corresponding to different nitrate 

concentrations and land use. One potential reason for the relatively wide range in reported N2O 

concentrations in these two studies is that the sampled drains were located in different countries 

from areas of different land use. Therefore, the field drains experienced different climates, 

notably rainfall, and different farming practices, including amounts of applied N fertiliser, 

which consequently generated a wide range of N2O concentrations. A study by Reay et al. 

(2004b) on one particular field drain under arable land planted with spring barely on the Bush 

Estate, Scotland, revealed a narrow range in N2O concentration (2-4 µg N l-1) over a 45 day 

sampling period. Sawamoto et al. (2010) reported that dissolved N2O concentrations in 

drainage water at a depth of 1.7 m in a lysimeter that contained a brown forest soil ranged from 

3.7 to 123 µg N l-1. In another lysimeter experiment, Minamikawa et al. (2011) recorded an 

N2O concentration range of 0.4 to 500 µg N l-1. Thus, in total, a range of 0.4-132 µg N l-1 is 

reported in the literature for dissolved N2O concentrations from field drains under different 

land use, which compares with 0.4-35 µg N l-1 recorded in this study. This is towards the lower 

end of the range reported in some studies, but towards the higher end of the range reported in 

others. 

Compared to field drains, stream samples contained significantly lower N2O concentrations. 

This illustrates that N2O is rapidly degassed from field drain water once it has come into contact 

with the atmosphere. This degassing of supersaturated N2O in subsurface drainage and 

groundwater to the atmosphere after discharge to surface water has been also reported in 

previous studies (Bowden and Bormann, 1986; Reay et al., 2003; Minamikawa et al., 2011; Li 

et al., 2013). Other studies have found similar values for dissolved N2O in surface water. In a 

study on nine sites of the eutrophic San Joaquin River, California, over a 13-month period, 

Hinshaw and Dahlgren (2013) found a mean dissolved N2O concentration in surface waters of 

0.91 µg L-1 and all the samples were supersaturated. Outram and Hiscock (2012) measured 

dissolved N2O concentrations on different water bodies in the Upper Thurne river, eastern 

England, and found that river samples contained a mean concentration of 1.7 µg L-1. Outram 

and Hiscock (2012)  also found that all the sampled sites had N2O concentrations higher than 

would be expected when atmospheric N2O concentrations are in equilibrium with water. 
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5.2.2 Temporal variation in nitrous oxide concentrations 

The temporal variability in field drain and stream water N2O concentration is presented in 

Figure 5.3. Gaps in the measurement in drain N2O concentration are due to lack of drain flow 

during the summer/autumn. As summer 2013 was approaching, N2O concentrations gradually 

decreased in all drains, perhaps due to both a decline in water flow rate and a decline in 

potentially leachable nitrate due to crop growth in this period. Drain samples contained lower 

N2O concentrations in summer 2013 than summer 2014, possibly because of lower rainfall 

totals in 2013 (106 mm) compared with 2014 (194 mm). Although a large amount of rainfall 

occurred in autumn 2013 (244 mm), including the largest storm event in mid-October 2013 in 

which 68 mm fell in one week, N2O concentrations in field drains remained low with no 

obvious peak corresponding to this storm event. The low N2O concentrations continued 

through winter, spring and summer 2014 with a slight gradual increase. The low N2O 

concentrations throughout this period might be due to the fact that most of the drains were 

draining fields under spring beans which received either no N fertiliser or only 30 kg N ha-1. A 

pronounced increase in N2O concentration did, however, occur in autumn 2014 when the 

highest  values of the study period were recorded in D7 (31.3 µg N L-1) and D8 (34.4 µg N L-

1). These higher N2O concentrations continued throughout autumn and winter 2014-2015, such 

that levels were considerably higher than they had been in the previous year (2013-2014). In 

some drains, N2O concentration decreased more or less continuously from winter to summer, 

particularly in the first sampling year, which correlated strongly with decreasing water flow 

rates in summer (see Figure 5.8). Temporal variations in N2O concentration in stream samples 

were not as apparent as in the drain samples. Throughout the study period, N2O concentrations 

were consistently highest at site B, followed by site E, site A and finally site M. 



 

 

122 

 

 

Figure 5.3 Weekly rainfall totals (top), dissolved N2O concentrations in field drains (middle) and in stream 
samples (bottom) throughout study period. 

N2O concentrations in the field drains and streams responded differently to the three main 

rainfall events which occurred throughout the study. The highest weekly rainfall (68 mm) 

which occurred in mid-October 2013 created no change in N2O concentration in the flowing 
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drains, however, most of dry drains started flowing after this event. Also, with the exception 

of site M, none of the stream sites showed an increase in N2O concentration in response to this 

rainfall. N2O concentration at site M increased from 0.6 µg N L-1 prior the event to 2.5 µg N 

L-1 during the event. Regarding the second storm event which occurred in late May 2014, no 

significant increases in N2O concentration were observed in most of the drains and stream sites, 

with the exception of site M which showed a slight increase (0.5 to 1.6 µg N L-1) and drains 

D1 (1.3 to 5.9 µg N L-1) and D8 (2.5 to 7.9 µg N L-1) which showed modest increases. Unlike 

the storm event in autumn 2013, the storm event in October 2014, in which 54 mm of rainfall 

fell in one week, resulted in a pronounced rise in N2O concentrations at all stream sites and 

flowing field drains. During this week, the maximum N2O concentrations were recorded in all 

four stream locations. N2O concentrations at site M, for example, did not exceed 2.5 µg N L-1 

in the previous one and half years of data collection, but during this storm a concentration of 

7.1 µg N L-1 was measured. N2O concentrations in the field drain samples also peaked in mid-

October, but this was less pronounced as most of the drains were not flowing prior to this 

rainfall event. Autumn rainfall, therefore, can sometimes cause a flushing event with high N2O 

concentrations associated with nitrification of residual soil nitrate post-harvest. Thus, this study 

shows that whilst N2O concentrations in field drains and instream are sometimes heavily 

impacted by storm events, on other occasions the effect is not noticeable. No clear relationship 

between N2O concentration and rainfall was observed in a field drain study by Reay et al. 

(2004b), which they argued might be due to time lags between rainfall and the resulting impact 

on N2O concentration. Such time lags are themselves likely to be extremely variable due to the 

spatial heterogeneity of soil N processing.  

During this study, samples from field drains and steam sites were collected continuously for 

24 months, such that samples were obtained twice for each season. To evaluate seasonal 

changes in the N2O concentration of field drains and in stream, all samples collected in a 

particular season were combined (Figure 5.4) for spring (MAM), summer (JJA), autumn (SON) 

and winter (DJF). In all seasons, N2O concentration was significantly lower in stream than in 

the field drains, which is due to the rapid degassing of N2O from the drain water once it comes 

into contact with the atmosphere. N2O concentrations were significantly (p < 0.05) lower 

during summer than any other season in both the drains and the streams, with mean 

concentrations of 3.02 and 1.02 µg N L-1, respectively. These low summer concentrations are 

probably due to both a decline in water flow rate and a decline in potential leachable nitrate 

due to nutrient uptake by the growing crops. Lower concentrations in field drains during the 
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summer were also observed by Hack et al. (2002). The other three seasons showed no 

statistically significant differences in the field drain N2O concentrations, although values 

during spring (mean = 4.9 µg N L-1) tended to be slightly higher than the other two seasons. 

Regarding stream samples, no significant difference was observed between samples collected 

during winter and spring, although the autumn (mean = 1.82 µg N L-1) did have significantly 

higher (p <0.05) N2O concentrations than winter and spring. The storm event in mid-October 

2014 generated extremely high N2O concentrations at all four stream sites and this contributed 

to the high N2O concentrations observed during the autumn. In a two year study investigating 

the effects of season on N2O production in headwater streams in the Kalamazoo River basin, 

south-west Michigan, Beaulieu et al. (2008) found that there was no seasonal pattern in N2O 

concentration in 2004, but in 2005 N2O values were highest in winter and lowest during 

summer. Therefore, it is concluded from this study that N2O concentrations in both the streams 

and field drains vary seasonally, with the lowest concentrations occurring typically during the 

summer. 

 

Figure 5.4 Average N2O concentrations in field drains and in stream waters during different seasons in samples 
collected during April 2013-April 2015. Error bars represent the standard error. Significant differences (p < 

0.05) are indicated by different letters for the same type of water samples. 

 

5.2.3 Nitrous oxide fluxes 

The fluxes of N2O from field drains into the atmosphere were calculated based on the 

assumption that all of the dissolved N2O, at concentrations above that of air saturation is, 
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subsequently lost to the atmosphere (Lemon and Lemon, 1981; Bowden and Bormann, 1986; 

Hack and Kaupenjohann, 2002; Reay et al., 2004b). Thus, the air saturation N2O concentration 

(0.35 µg N L-1) was subtracted from the measured dissolved N2O concentration, then multiplied 

by flow rate and divided by drain area (see section 4.2.2.2) to obtain the N2O flux in field 

drains. Drain samples were taken on the drain outlets (see Figure 2.11 A), there may be losses 

of N2O in the drains before samples were taken. Thus, estimates of N2O fluxes from drains are 

likely to be underestimated. N2O fluxes from stream water were calculated using the same 

method as Outram and Hiscock (2012). The water-air gas exchange for stream water is 

calculated according to Equation (5.3): 

      
h

a
w k

C
kCF

'
−=                                                             (5.3) 

 where: F is the flux of gas (mol cm-2 h-1); k is the transfer velocity of N2O across the water-air 

interface (cm h-1); Cw is the concentration of N2O in water (mol cm-3); Ca is the concentration 

of N2O in air (mol cm-3); and kʹh is the Henry’s law constant for N2O which is dimensionless 

and obtained from literature as 1.02 (Sander, 1999). Cw is obtained from field sampling and Ca 

is calculated taking the ambient N2O concentration as 319 ppb (Forster et al., 2007). A value 

for k was calculated according to Clark et al. (1995), using u, wind speed in (cm h-1), obtained 

from weather station at Site A (Equation 5.4): 

224.00.2 uk +=                                                         (5.4) 

The field drain and instream fluxes of N2O are presented in Table 5.2. The mean N2O flux for 

all drains during the study period was 30 g N ha-1 a-1 with a range of 0-1169 g N ha-1 a-1. The 

mean N2O flux for most drains was between 10 and 40 g N ha-1 a-1, however, drains D16 and 

D11 had low mean fluxes (<5 g N ha-1 a-1), whilst fluxes for D4 (89 g N ha-1 a-1) and D5 (79 g 

N ha-1 a-1) were high. Low flow rates are the main reason for the low fluxes in the former, 

whilst high flow rates explain the high fluxes in the latter drains. It is apparent that drains with 

high N2O concentrations do not necessarily generate the largest fluxes of N2O into the 

atmosphere, with flux depending upon both concentration and flow rate. D11, for instance has 

the highest mean N2O concentration (Table 5.1) yet one of the lowest N2O fluxes due to low 

flow rates per drainage area. Thus, field drain N2O discharges from agricultural soils varied 

considerably between different drains because of high variability in both flow rate and drainage 

area. Nevertheless, the annual field drain N2O fluxes in this study are comparable to the range 

observed by Hack and Kaupenjohann (2002) in which 11 out of 28 sites studied had field drain 
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N2O fluxes of between 10 and 120 g N ha-1 a-1. However, the highest value reported was only 

about 365 g N ha-1 a-1, which is lower than the highest value recorded in this study (1169 g N 

ha-1 a-1). Additionally, the N2O fluxes presented here are consistent with the value of ~50 g N 

ha-1 a-1 recorded from agricultural drains between November and March in a study reported by 

Dowdell et al. (1979).  

Calculated instream dissolved N2O fluxes per hectare ranged from 0.016 to 40 kg N ha-1 a-1, 

with mean value of 5.5 kg N ha-1 a-1. This value is significantly higher than the N2O fluxes 

from field drain. However, it should be noted that the stream fluxes here are calculated per area 

of stream surface which cover a relatively small area in the catchment (Figure 2.5 and Table 

6.2). This is also comparable to the mean N2O flux of 7.3 kg N ha-1a-1 calculated by Outram 

and Hiscock (2012) for the River Thurne in south-east England. Site B had the highest N2O 

fluxes and site M the lowest, as was true for N2O concentration. Also, the calculated stream 

N2O fluxes here is in the range of (2-18 kg N ha-1 a-1) estimated in a study of the eutrophic San 

Joaquin river in California by Hinshaw and Dahlgren (2013). 

The calculated mean field drain N2O flux of 30 g N ha-1 a-1 is three orders of magnitude lower 

than the mean flux of NO3̄ (35 kg N ha-1 a-1) (see Section 4.2.2.2) and is the same order of 

magnitude as the mean fluxes of NH4
+ (65 g N ha-1 a-1) and NO2̄  (25 g N ha-1 a-1). This again 

demonstrates that NO3̄ is the dominant form of N transported from field drains into the 

surrounding environment. Also, this emphasises that N loss in the form of N2O is not 

insignificant and can be as great as or even greater than NH4
+ and NO2̄. Compared with direct 

N2O emissions of 0.5 to 1 kg N ha-1 a-1 calculated for soils planted with winter wheat in 1996 

and 1997 in the UK  (Dobbie et al., 1999), these indirect emissions from field drains are ~6% 

of this flux. Therefore, the contribution of indirect sources of N2O from field drains is 

significant. 
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Table 5.2 Mean and range of dissolved N2O fluxes from field drains and stream sites during April 2013-April 
2015 

  ID 
Mean N2O flux 
(g N ha-1 a-1) 

Range of N2O flux 
(g N ha-1 a-1) 

Drain 

D1 42 0-572 
D2 16 0-120 
D3 67 0-1169 
D4 89 0-391 
D5 79 0-562 
D6 5 0-64 
D7 13 0-345 
D8 29 0-291 
D9 6 0-57 
D10 9 0-69 
D11 4 0-109 
D13 7 0-65 
D16 1 0-10 

Stream 

A 5107 1002-23000 
B 7533 1734-40967 
E 6331 1476-34977 
M 3090 16-23103 

 

The temporal variations in field drain and instream N2O fluxes are illustrated in Figure 5.5. 

The N2O flux in all field drains was low in summer 2013 because most drains were either dry 

or had very low flows at this time. Fluxes from dry drains were considered to be zero as no 

dissolved N2O came out of the drain. The largest weekly rainfall event (68 mm) in mid-October 

2013 generated no flux increase in any drains or stream sites. However, the smaller rainfall 

event in mid-February 2014 (38 mm in a week) generated a sharp increase in most of drains 

and all the stream sites. After summer 2014, N2O fluxes from both field drains and stream sites 

increased during the autumn following a flushing event in mid-October. Similar to the previous 

year, a less pronounced storm event in late-November 2014 (30 mm in a week) generated a 

sizable increase in N2O flux from both the drains and instream, in which almost all drains (D1, 

D3, D6, D7, D8, D9, D10, D11 and D13) delivered their maximum N2O fluxes into the 

atmosphere. Thus, it is apparent that rainfall events are important drivers behind the temporal 

variability in field drain and instream N2O flux. N2O fluxes from drains are calculated from 

N2O concentration and flow rate. Field drain N2O fluxes were significantly lower in summer 

compared to autumn and winter because of very low flow rates (Figure 4.5) and low 



 

 

128 

 

concentrations (Figure 5.3). For the total annual fluxes, highest losses of N2O into atmosphere 

occurred during the winter (54%), followed by autumn (25%), spring (18%) and finally 

summer (3%).  

 

Figure 5.5 Weekly rainfall (top), dissolved N2O fluxes in field drains (middle) and in stream (bottom) 
throughout study period. 
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5.2.4 Downstream variation in nitrous oxide concentration 

Sites A, E and M are situated on the same stream with site M being 1035 m upstream of site 

A, which in turn is 725 m upstream of site E (Figure 2.6 and Figure 5.6). The results revealed 

that N2O concentrations increased downstream and this trend was consistent across the entire 

study period. Out of a total of 77 sampling dates over the two-year monitoring period (Table 

5.1), N2O concentrations were higher at site A than site M on 71 occasions, whilst on 70 

occasions N2O concentration were higher at site E than site A. It was calculated that N2O 

concentrations increased by an average of 0.3 µg N L-1 as water moved downstream from site 

M towards site A, and increased a further 0.3 µg N L-1 as water moved from site A to site E. 

Thus, it is calculated that average N2O concentrations increased downstream by 0.6 µg N L-1 

over the 1760 m distance between sites M and E. 

This increase downstream may be due to two reasons. Firstly, water with high dissolved N2O 

concentration enters the stream as it moves downstream. Five drains, namely D2, D1, D4, D6 

and D5 enters the stream between sites M and A, and as was shown earlier all these drains had 

higher N2O concentrations than stream water. Although it is assumed that drain water will lose 

all dissolved N2O to the atmosphere when concentrations are above that of air saturation, some 

dissolved N2O above the atmospheric-water equilibrium may remain within the water and enter 

the stream. Moreover, stream B had the highest N2O concentration for almost all of the time 

(Table 5.1 and Figure 5.3), with a mean concentration 0.2 µg N L-1 higher than site E, and this 

entered the main stream just after site A. The joining of this high N2O water body would likely 

raise the N2O concentration downstream. The second potential cause for this increase is N2O 

production within the stream itself. As N2O is produced by both nitrification and denitrification, 

changing nitrate concentrations along the stream might contribute to the production of N2O 

within the stream. Unlike the N2O data, nitrate concentrations for the stream sites (see Chapter 

6) illustrated no particular pattern from upstream to downstream. However, as Abbasi and 

Adams (2000) mentioned, it is possible that soil and water conditions may allow both 

nitrification and denitrification to take place simultaneously so that N2O may be produced 

without an obvious change of nitrate. 
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Figure 5.6 Mean monthly N2O concentrations at three stream sampling sites ordered by distance downstream. 

5.2.5 Potential factors controlling N2O concentrations 

5.2.5.1 Soil texture 

In addition to the effects of rainfall and season on field drain dissolved N2O concentrations, an 

attempt was also made to evaluate the effect of soil texture. Areas of the drains were divided 

into two dominant soil types (clay loam and sandy loam) based on the soil texture data collected 

in this study (Figure 3.2 and Figure 4.4). Drains D3, D7, D8, D9, D10 and D13 were within 

mostly clay loam soils, whereas drains D1, D2, D4, D5, D6, D11 and D16 were within mostly 

sandy loam soils. Although this assumption might not be completely exact because soil texture 

in the study area changes from one type into another within a short distance, such that no drain 

area has just one type of soil texture, there is a dominant soil texture for most of the drains. D8 

is a good example of a mostly clay loam soil texture and D6 is a good example of a mostly 

sandy loam soil. 

It was observed that the mean N2O concentration from clay loam soils (5.47 µg N L-1) was 

significantly (p < 0.05) higher than that from sandy loam soils (4.14 µg N L-1) (Figure 5.7). 

This is because some drains, namely D8, D9 and D10 with clay loam soils had high mean N2O 

concentrations, whilst some drains with a sandy loam soil texture, specifically D2, had low 

N2O concentrations (Table 5.1). However, drains with sandy loam soils did not always have 

low N2O concentrations, as can be seen for D4 and D11 which both had high N2O 



 

 

131 

 

concentrations. Nevertheless, overall the data presented here suggested that drains within clay 

loam soils yielded higher N2O concentrations than sandy loam soils. 

Very few of the studies reported in the literature which investigated field drain N2O 

concentrations considered soil texture as a potential controlling factor. Thus, it is difficult to 

directly compare the results here with these studies. Jahangir et al. (2013) observed that mean 

N2O concentrations in the groundwater at high permeability (sandy clay loam and sandy loam) 

agricultural sites were significantly higher than low permeability (silty clay loam and clay 

loam) agricultural sites. However, numerous studies on direct N2O emissions have assessed the 

effects of soil texture. Rochette et al. (2008a) stated that in fine textured soils, higher N2O 

emissions are often observed as a result of reduced oxygen levels within the soil matrix due to 

poor drainage. In a study assessing the effects of soil texture on N2O emissions from soils, 

Włodarczyk et al. (2005) emphasised that soil texture and particle size distribution significantly 

affected the production of N2O. They observed that the lowest rates of N2O production were in 

light textured soils developed from sand, whereas heavier textured soils developed from silt 

showed the highest rates of N2O production and consumption. Even heavier textured soil 

developed from loams showed intermediate N2O production. Overall, they concluded that 

heavier textured soils provided more favourable conditions for N2O production than sandy 

soils. Hénault et al. (2012) listed a number of controlling factors of N2O emissions from soils, 

which included soil texture, and stated that emissions are generally higher for fine-textured 

soils compared with either coarse or medium- textured soils. The higher N2O emissions from 

fine textured soil maybe because of the increased frequency of anaerobic conditions associated 

with higher water contents in heavier soils. Therefore, assuming that dissolved N2O 

concentrations are consistent with direct N2O emissions from the soil, the findings of this study 

are in agreement with most other studies assessing the effects of soil texture on N2O 

concentrations.  
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Figure 5.7 Field drain N2O concentrations for drains underlying the two dominant soil textures in the study area: 
clay loam (n = 257) and sandy loam (n = 418). Samples collected during April 2013-April 2015. 

5.2.5.2 Drain flow rate 

N2O is highly soluble in water and therefore field drains with high flow rates are expected to 

contain high dissolved N2O concentrations. Figure 5.8 shows there was a statistically 

significant weak positive correlation (r = 0.17, p < 0.05) between these two variables. The 

correlation did, however, vary greatly amongst the drains. D2 (r = 0.77) and D1 (r = 0.75) had 

very strong positive correlations between N2O concentration and flow rate, whereas D10 (r = -

0.35), D8 (r = -0.05) and D4 (r = -0.04) had weak negative correlations. This variability is 

partially due to soil texture because Drains in sandy loam soils had a strong, positive correlation 

between the two parameters, whilst drains in clay loam soils had weak, negative correlations. 

This is supported by the fact that the two drains with the strongest positive correlation (i.e. D1 

and D2) were in sandy loam soils and the two drains with the strongest negative correlation 

(i.e. D8 and D10) were in clay loam soils. However, there were exceptions to this, with drain 

D13 in a clay loam soil having a strong positive correlation (r = 0.6) and D4 in a sandy loam 

soil having a weak negative correlation (r = -0.04). Nevertheless, the data presented here 

demonstrate that field drain N2O concentrations generally increase with increasing flow rate.  
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Figure 5.8 Relationship between field drain dissolved N2O and flow rate for 617 samples collected 
during April 2013-April 2015. The dash line represents the trend line. 

5.2.5.3 pH 

The pH values of the field drains ranged from 3.7 to 8.6, with a mean value of 7.7 and a 95% 

confidence interval for the mean of 7.67-7.76 (Figure 5.9). This illustrates that although the pH 

range is wide, the majority of the samples are buffered within a very narrow range. A 

statistically significant negative correlation (r = -0.19, p < 0.001) was established between pH 

and dissolved N2O. Hénault et al. (2012) identified pH as one of the key soil parameters which 

significantly influences direct N2O emissions and that lower emission levels were observed 

when pH >7.3. Hénault et al. (2012) suggested that N2O emissions from acidic soils generally 

exceed those from alkaline soils and this probably reflects the reported higher N2O emissions 

from nitrification or higher N2O:N2 ratios at lower pH levels. Similarly, Martikainen and Boer 

(1993) established an inverse relationship between soil N2O emissions and soil pH and 

observed that at pH 4 the production rate of N2O was 4-8 times greater than at pH 6. Weslien 

et al. (2009) also observed that soil N2O emissions were significantly and negatively (r = -0.93, 

p < 0.05) correlated with soil pH and suggested that this strong negative correlation represents 

a well-known relationship from previous studies dealing with soil condition factors on N2O 

emissions in which N2O inhibited by acidic pH, thus enhancing N2O emissions. 
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Figure 5.9 Relationship between field drain dissolved N2O concentration and pH for 617 samples collected 
during April 2013-April 2015. The dash line represents the trend line. 

5.2.5.4 Other nitrogen species 

Figure 5.10 shows the relationship between dissolved N2O concentration and the other three N 

species measured in field drains and stream water samples. N2O concentrations were generally 

three orders of magnitude smaller than dissolved NO3̄, similar to the findings of previous 

studies (Ueda et al., 1993; Vilain et al., 2011; Outram and Hiscock, 2012). The concentrations 

of N2O and NO3̄ were positively correlated in both the field drains (r = 0.19, p < 0.05, n = 617) 

and the stream samples (r = 0.55, p < 0.05, n = 307). The stronger correlation in stream samples 

was possibly due to the greater variation in field drain N2O concentrations and greater 

variability in correlation strength amongst the drains. Drains D2 (r = 0.80), D6 (r = 0.67) and 

D1 (r = 0.46) located within mainly sandy loam soils had the strongest positive correlations, 

whereas D8 (r = -0.36), D13 (r = -0.29) and D7 (r = -0.15) located within mostly clay loam 

soils had the strongest negative correlations. Previous studies have suggested that a positive 

correlation between N2O and NO3̄ indicates that nitrification is the principle production 

mechanism for N2O (Ueda et al., 1993; Hiscock et al., 2003). This is based on the fact that 

during nitrification of NH4
+ to NO3̄ a small fraction (~0.1%) of the NH4

+ is transformed to N2O 

(Nevison et al., 1995). Thus, according to this, the main production mechanism for N2O in 

stream water is most likely to be nitrification, whereas the dominant production mechanism in 
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field drains might be a combination of both nitrification and denitrification, with the latter 

occurring mainly in clay loam soils.  

In the field drain N2O study by Hack and Kaupenjohann (2002), higher concentrations of N2O 

also coincided with higher concentrations of NO3̄. Similarly, in a study of N2O in groundwater 

from the most important limestone aquifers in the UK, Mühlherr and Hiscock (1998) observed 

a strong positive correlation (r = 0.89 and r = 0.94) for two of the aquifers and a strong negative 

correlation (r = -0.45) for one aquifer. They suggested that both nitrification and denitrification 

are production mechanisms for N2O. Surprisingly, Reay et al (2004b) observed no relationship 

between dissolved N2O and NO3̄ concentration. Therefore, although the correlation between 

N2O and NO3̄ observed in this study, especially in the field drain samples, is not as high as 

some previous studies, the results presented here do support the common understating that 

dissolved N2O concentration increases with increasing NO3̄ levels. N2O was negatively and 

significantly correlated with NH4+ in both field drain water (r = -0.04, p < 0.05, n = 472) and 

in stream samples (r = -0.13, p < 0.05, n = 282), and this might provide further evidence that 

nitrification is the main mechanism for N2O production. N2O concentrations were not 

significantly correlated with NO2̄ concentration in either the field drain (r = 0.05, p > 0.05, n = 

578) or stream water samples (r = 0.04, p > 0.05, n = 307). 

 

Figure 5.10 Relationship between dissolved N2O concentration and NO3̄ (n=617, n=308), NH4+ (n=420, n=278) 
and NO2̄ (n=572, n=308) concentrations in field drain and stream water samples, respectively, collected during 

April 2013-April 2015. Dashed lines represent the trend line. 

 

5.2.6 Impact of a cover crop on nitrous oxide 

During autumn and winter 2013-2014, dissolved N2O concentrations in field drains below the 

oilseed radish cover crop ranged from 0.6 – 8.8 µg N L-1, whereas concentrations in drains 

underlying fields without a cover crop ranged from 0.6 - 4.3 µg N L-1 (Table 5.3). Mean of 
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N2O concentrations in drain water under cover crop (2.61 µg N L-1) was not statistically 

significant (p >0.05) lower than that under no cover crop (2.23 µg N L-1). In fact slightly higher 

N2O concentration was recorded in field drains under a cover crop than without cover crop. 

This might be due to the accumulation of both carbon and nitrogen residues under the combined 

cover crop and reduced tillage management and consequently higher substrate availability for 

nitrification and denitrification compared to conventional management (Abdalla et al., 2012). 

Table 5.3 Mean and range of N2O concentrations in field drains under the two different cover crop treatments 
during September 2013 to March 2014 

Treatments ID n 
Mean N2O 
(µg N L-1) 

Range of N2O 
(µg N L-1) 

Cover crop 

D1 22 3.8 0.8-7.5 

D2 24 1.1 0.6-1.8 

D3 11 2.0 0.6-8.7 

D4 22 2.8 0.7-5.9 

D6 17 2.7 1.3-5.7 

D11 4 7.8 7.3-8.8 

D16 15 2.0 1.5-2.9 

     

Mean   2.61  

No cover 
crop 

D8 15 1.7 0.6-4.3 

D10 15 2.8 2.1-3.6 

     

Mean   2.23  

 

The primary goal of using a cover crop as a mitigation measure in agriculture is to improve soil 

fertility and decrease nitrate leaching rather than to reduce greenhouse gas emissions; however 

the latter should be not neglected when assessing the overall effectiveness of such measures. 

The effects of cover crops on direct nitrous oxide emissions from soil have been fairly well 

documented (Jarecki et al., 2009; Kallenbach et al., 2010; Dietzel et al., 2011; Abdalla et al., 

2012; Sanz-Cobena et al., 2014), but to our knowledge the effects of cover crops on indirect 

nitrous oxide emissions from groundwater and rivers receiving N-rich drainage water from 

agricultural soils has not been studied to date. 
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The findings from studies investigating the effects of cover crops on soil N2O emissions are 

not consistent. To evaluate the change of N2O emissions following soil application of swine 

manure, Parkin et al. (2006) found that a rye cover crop significantly lowered cumulative N2O 

emissions from fields applied with a large amount of manure compared to fields without a 

cover crop. However, when smaller amounts of manure were applied the decrease in N2O 

emissions under the rye cover crop was not significant. In a growth chamber laboratory 

experiment, Jarecki et al. (2009) observed a significant reduction in N2O emissions from soil 

amended with swine manure slurry in the presence of a rye cover crop. However, Jarecki et al. 

(2009) found that N2O emissions were not influenced by the presence of an oat/rye cover crop 

in the field experiment. Abdalla et al. (2012) even found that daily N2O emissions were 

significantly higher under reduced tillage and cover crop treatments compared with 

conventional farming. In a short study (19/06/2014 to 21/07/2014) on the same study area as 

this study, Garrard (2014) found that direct N2O emissions from clay loam soil texture were 

consistently and significantly higher from Middle Hempsky (MH) field which was under cover 

crop and direct drill treatment than Potash (P) field which had no cover crop and ploughed 

conventionally (Figure 5.11).   

 

Figure 5.11 Temporal evolution of direct N2O flux rate from Potash (P) field and Middle Hempsky (MH) over 
sampling period (19/06/2014 to 21/07/2014) (Garrard, 2014). 

The substantial reduction in field drain NO3̄ concentrations under a cover crop is shown in 

Figure 5.12. The overall mean NO3̄ concentration was significantly (p < 0.001) lower in drains 

under cover crops (2.5 mg N L-1) than drains underneath bare fields (13.9 mg N L-1). This 

represent a ~82% reduction in NO3̄ concentrations due to the presence of cover crops (see 

Section 4.2.2.1). However, drains under cover crops contained higher N2O concentrations than 

drains under no cover crops. Thus, our study suggests that the use of cover crops as an 
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alternative farm management system to reduce N2O emissions from agriculture would not be 

advisable without further research. 

 

Figure 5.12 Relationship between dissolved nitrous oxide and nitrate concentrations in field drain samples 
collected during cover crop growth (September 2013 to March 2014) from fields with (n = 114) and without a 

cover crop (n = 29). 

5.2.7 Impact of reduced tillage on nitrous oxide 

During the 2014-2015 farming year, different tillage options only (i.e. no cover crop) were 

continued as a mitigation measure. N2O concentrations from field drains under different 

cultivation practices are presented in Table 5.4. The mean N2O concentration in field drains 

under conventional tillage (7.6 µg N L-1) was not significantly (p > 0.05) different from that 

under direct drill (6.2 µg N L-1). However, the mean N2O concentration under reduced tillage 

(4.4 µg N L-1) was significantly (p < 0.05) lower than that under both conventional and no 

tillage. Despite this finding, the lower N2O concentrations in field drains under reduced tillage 

may not truly represent differences in tillage practice. That is because of the three field drains 

under reduced tillage, only D16 actually had significantly lower N2O concentrations, whereas 

D1 and D3 showed no substantial decline in N2O compared to the other drains (Figure 5.3). 

Moreover, if N2O concentration is truly lower in drains under reduced tillage than conventional 

tillage, then N2O concentration should be even lower in drains under direct drill because here 

the soil was not disturbed at all. However, this is not case and drains under direct drill had high 
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N2O concentrations that were closer to conventional ploughing than reduced tillage. Thus, the 

results presented here suggest that different soil inversion methods tended to have little impact 

on dissolved N2O concentrations. To our knowledge, there has been no previous study on the 

effects of different tillage methods on indirect N2O emission from nitrogen leaching. Thus, it 

is impossible to compare the results from this study to others. However, several studies were 

carried out to investigate the effects of soil management on direct N2O emissions from soil and 

these have shown inconsistent results, perhaps due to variability in weather and soil conditions, 

such as soil water content, rates and types of fertiliser application, and depths of fertiliser 

placement (Baggs et al., 2003; Grant et al., 2004; Venterea et al., 2005). Some researchers have 

reported greater N2O emissions with conservation tillage compared to conventional tillage 

(MacKenzie et al., 1997; Ball et al., 1999; Baggs et al., 2003; Li et al., 2005), whilst others 

have found lower emissions with conservation tillage relative to conventional tillage (Civerolo 

and Dickerson, 1998; Grant et al., 2004; Omonode et al., 2011). Furthermore, others have 

observed no significant difference in N2O emissions between these two tillage methods 

(Venterea et al., 2005; Grandy et al., 2006; Lee et al., 2006; Abdalla et al., 2010; Maraseni and 

Cockfield, 2011). 

Table 5.4 Field drain N2O concentrations under different tillage practices during October 2014 to April 2015. 
Numbers followed by different superscripted letters are significantly different (p > 0.05) 

Tillage type n 
Mean N2O  
(µg N L-1) 

Conventional tillage 35 7.6a 
   
Reduced tillage 62 4.4b 
   
Direct drill 77 6.2a 

   
 

5.3 Summary 

All samples collected in this study, regardless of location and time of sampling, contained 

higher N2O concentration than the water-air equilibrium, thus demonstrating that all sites were 

acting as a potential source of N2O emissions to the atmosphere. This finding is in agreement 

with the majority of previous research which found N2O supersaturation in water samples. It 

was observed that stream samples consistently contained lower N2O concentrations than the 

field drains due to rapid degassing of N2O from drain water once it comes into contact with the 

atmosphere. A number of factors were determined to have an impact on N2O concentrations. 

Rainfall was sometimes found to be solely responsible for a change in N2O concentration 
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through time, although on a number of occasions the effects of heavy rainfall events were 

unnoticeable. Thus, whilst it is correct to state that most increases in N2O concentration were 

generated by storm events, not all storm events increased N2O concentration. Seasonally, N2O 

concentrations in both field drains and stream samples changed significantly, with lower values 

during the summer and higher values during spring and autumn. The lowest concentrations 

during summer were probably due to a decline in drain flow rates and a decline in potentially 

leachable nitrate from fields due to crop uptake. 

In addition to rainfall and season, soil texture also influenced N2O concentration. Water 

samples from field drains in clay loam soils tended to contain higher N2O concentrations than 

drains in sandy loam soils. However, there was considerable uncertainty associated with this 

result because some drains were located within a range of soil types. A strong, positive 

correlation was observed between N2O concentration and field drain flow rate. This emphasises 

the importance of rainfall as it generally increases flow rate which in turn increases dissolved 

N2O concentrations. 

N2O concentrations were generally three orders of magnitude smaller than dissolved NO3̄ 

concentrations. The mean N2O flux (30 g N ha-1 a-1) was also three orders of magnitude lower 

than the mean loss of N in the form of NO3̄  (35 kg N ha-1 a-1), although was the same order of 

magnitude as losses of NH4
+ (65 g N ha-1 a-1) and NO2̄  (25 g N ha-1 a-1). This emphasises that 

NO3̄ is the dominant form of N loss from field drains into the surrounding environment. 

Additionally, this study highlights that N loss in the form of N2O is not insignificant and can 

be as high as NH4+ and NO2̄ losses or even higher.  

One of the objectives of this study was to assess the effect of on-farm mitigation measures on 

dissolved N2O concentration. The results indicated that different inversion soil practices tended 

to have little effect on N2O concentrations and fluxes. It was hypothesised that a cover crop 

would substantially reduce dissolved N2O concentrations because if similarly reduced NO3̄ 

concentration. However, higher N2O concentrations were recorded in field drains under an 

oilseed radish cover crop than drains beneath fields without a cover crop. Hence, the results 

presented here suggest that the use of a cover crop as an alternative farm management practice 

to reduce N2O emissions would not be successful. 
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Chapter 6: CALCULATION OF INDIRECT NITROUS OXIDE 
EMISSION FACTORS 

6.1 Introduction 

Indirect N2O emission factors (EF5) are a way for stating N2O emissions from a water body as 

a fraction of the original N flux into the system (Well et al., 2005b). Guidelines on calculating 

national inventories of N2O emissions associated with agriculture are provided by the 

Intergovernmental Panel on Climate Change (IPCC). The IPCC (2006) defined nitrous oxide 

emission factors for N leaching and runoff from managed soils in regions where leaching and 

runoff occur as follows: 

                           EF5 = N2O(L)-N / (Total N input x FracLEACH )                                          (6.1) 

where, EF5 is the emission factor for N2O emissions from N leaching and runoff (kg N2O–N 

(kg N)-1) with a default of 0.0075 (range = 0.0005-0.025); N2O(L)–N is the annual amount of 

N2O–N produced by the leaching and runoff of N additions to managed soils (kg N2O–N a-1); 

Total N input is the total annual amount of N added to the system, including synthetic fertilisers 

and animal manure, that is lost through leaching and runoff (kg N a-1); FracLEACH is the fraction 

of all N added to, or mineralised within, managed soils that is lost through leaching and runoff 

( kg N (kg of N additions)-1) with a default of 30% (range = 10-80%). 

 

Researchers calculate indirect N2O emissions by using the default values of EF and FracLEACH 

in equation 6.1. However, other studies such as this study which have already measured indirect 

N2O emissions through dissolved N2O concentration use this equation to calculate EF5. The 

IPCC (2006) revised down the default emission factor for indirect N2O emissions associated 

with N leaching and runoff (EF5) from 0.025 kg N2O-N (kg N)-1 in 1997 to 0.0075 kg N2O-N 

(kg N)-1 in 2006. The EF5 was further divided into three components according to the site of 

N2O production: EF5g for groundwater and surface drainage (0.0025), EF5r for rivers (0.0025) 

and EF5e for estuaries (0.0025). Thus, 0.0025 for each of the partial EFs and 0.0075 for the 

overall EF5. However, EF5 has a wide range of uncertainty (0.0005–0.025) as a result of natural 

variability and a lack of data to support designation. The methodology defined by the IPCC to 

determine EF5 is calculated by taking the total annual flux of N2O from a water body and 

dividing it by the total annual amount of N leached to the water body. This is then used to 

calculate national N2O inventories. However, as most studies are often lacking in such detailed 

mass balance information, EF5 values are commonly calculated by using a N2O/ NO3̄ mass 
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ratio derived using concentration data collected from the water body. Therefore, most studies 

(Hack and Kaupenjohann, 2002; Hiscock et al., 2003; Reay et al., 2004a; Höll et al., 2005; 

Sawamoto et al., 2005; Weymann et al., 2008; Reay et al., 2009; Outram and Hiscock, 2012; 

Hinshaw and Dahlgren, 2013; Minamikawa et al., 2013) on emission factors from leaching and 

runoff calculate EF5 by the following method: 

                                                EF5 =N2O-N / NO3̄ -N                                                          (6.2) 

Where, N2O-N and NO3̄ -N are the concentrations of N2O and NO3̄ measured in agricultural 

drainage water or groundwater. Considering the IPCC default EF5g of 0.0025, for every 

kilogram of NO3̄ -N in groundwater or drainage water, 2.5 g of N will be released as N2O.  

Reay et al. (2005) indicated that there are several areas of concern with how EF5 is currently 

determined. Firstly, EF5g is supposed to account for all N2O emitted after N leaching and run-

off from fields, but prior to instream processing of this N. Therefore, N2O emissions from 

riparian areas are indirectly included in EF5g. Such emissions are not accounted for by using 

the current methodology for the calculation of EF5g. In agricultural areas with tile drainage that 

provides a direct transfer pathway for leachate into drainage ditches without interaction with 

the riparian zone, such riparian losses are likely to be insignificant. However, in areas where N 

in leachate and runoff passes through a riparian wetland or buffer strip, N processing and 

subsequent N2O emissions may be important.  

In addition to concerns over the potential under-estimation of riparian N2O emissions, there are 

also issues with simply using the ratio of dissolved N2O-N to NO3̄-N in drainage waters to 

calculate EF5g. This calculation assumes no processing of the leached N occurs, either through 

reduction of NO3̄ or production of N2O, between its leaching from the soil and its subsequent 

sampling point. In reality, it is likely that a substantial amount of N processing occurs, with the 

nitrate load likely being reduced relative to that initially leached and the N2O load either 

increasing or decreasing. However, Nevison (2000) believed that despite some limitations on 

the significance of the groundwater N2O/ NO3̄ ratio, at present, this ratio appears to be the best 

measurement available for linking N2O to total leached N in groundwater. 

6.2 Results and discussion  

6.2.1 EF5 for field drains and stream water 

The relationships between N2O and NO3̄ in field drain and stream water samples are presented 

in Figure 6.1. The EF5g emission factor (ratio of N2O-N to NO3̄-N) in drain samples largely 
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varied between 0.00003 and 0.0106, with a mean value of 0.0012. The EF5r emission factor for 

stream samples was between 0.00006 and 0.0028, with a mean value of 0.0003. Thus, the EF5g 

values for field drains calculated in this study were predominantly lower than the current IPCC 

EF5g emission factor of 0.0025 for N2O emissions from N leaching to groundwater and 

agricultural drainage water (IPCC, 2006). The EF5g emission factors for 90% of samples 

collected in this study were lower than the current IPCC EF5g emission factor of 0.0025, whilst 

~15% of collected samples were one order magnitude lower than this value. Similarly, the 

emission factors for stream samples, EF5r were also always lower than the IPCC EF5r emission 

factor of 0.0025, with a mean value of 0.0003 being an order of magnitude lower than the IPCC 

value. This indicates that the IPCC revised default value of 0.0025 may still be overestimating 

indirect N2O emissions in systems similar to that studied here.  

 

Figure 6.1 Relationship between N2O-N and NO3̄-N in field drain (n = 617) and stream water (n = 308) samples 
collected during April 2013-April 2015. The dashed line represents the ratio of N2O/ NO3̄ (EF5g and EF5r) of the 

IPCC default value (0.0025). 90% of drain samples and all stream water samples had lower N2O/ NO3̄ ratios 
than the IPCC default value. 

In addition to this study, a number other studies have also observed lower N2O-N/ NO3̄-N ratios 

(EF5g) for groundwater and river water than the IPCC default value (0.0025) (Table 6.1). 

Hiscock et al. (2003) calculated a value of 0.0019 for chalk groundwater in eastern England, 

whilst Hack and Kaupenjohann (2002) calculated a value of 0.0008 for field drain water on 
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arable land in the upper Neckar region, Southern Germany. Studying different water bodies in 

eastern England, Outram and Hiscock (2012) calculated values of 0.0061 and 0.00011 for 

drainage channels and the River Thurne, respectively. However, few studies have calculated 

EF5g higher than the current IPCC default value. Reay et al. (2009) derived a value of 0.003 

(range 0.00008-0.036) for water samples collected from field drain outfalls in an intensively 

managed grazed pasture in the Ythan catchment, Aberdeenshire. Hinshaw and Dahlgren (2013) 

calculated a value of 0.0028 (0.0012-0.0069) for EF5r in a study of the eutrophic San Joaquin 

River, California. 
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 Table 6.1 Comparison of N2O-N/ NO3̄-N ratios reported in the literature and derived from this study 

Reference Water body  Land use  N2O-N/NO3̄-N 

Hack and Kaupenjohann (2002) Field drain (Germany) Grassland and arable 0.0008 (0.00003-0.005) 

Ueda et al. (1993) Well and springs (US and Japan) Forest and arable ~0.0001-0.01 

Reay et al. (2004b) Field drain (UK) Arable ~ 0.0005-0.001 

Sawamoto et al. (2003) Subsurface drainage (Japan) Arable 0.00076-0.0105 

Dowdell et al. (1979) Agricultural drains (UK) Arable ~ 0.001-0.01 

Ronen et al. (1988b) Groundwater and sewage (Israel) Arable ~0.0015-0.0067 

Weller et al. (1994) Groundwater (US) Forest ~0.0017-0.045 

Hiscock et al. (2003) Groundwater (UK) Arable 0.0019 

Deurer et al. (2008) Sandy aquifer (Germany) Arable and Forest 0.002-0.042 

Kim et al. (2009) Sandy aquifer, riparian buffer (US) Grassland 0.0022-0.0054 

Vilain et al. (2011) Groundwater (France) Arable 0.0026 

Hinshaw and Dahlgren (2013) River (US) Arable 0.0028 (0.0012-0.0069) 

Reay et al. (2009) Field drain (UK) Arable  0.003 (0.00008-0.036) 

Mühlherr and Hiscock (1997) Groundwater (UK) Arable 0.005 (0.0005-0.0025) 

Well et al. (2005a) Shallow groundwater (Germany) Arable 0.005-0.73 

Outram and Hiscock (2012) Drainage channel (UK) Arable 0.0061 

Höll et al. (2005) Soil solution (Germany) Forest 0.0073 

Minamikawa et al. (2010) Subsurface drainage (Japan) Arable 0.00820.0296 

Jahangir et al. (2013) Groundwater (Ireland) Grassland and arable  0.0156 (0.0089-0.0223) 

    

    

This study Field drains (UK) Arable 0.0012 (0.00003-0.0106) 

This study Stream (UK) Arable 0.0003 (0.00006-0.0028) 
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Furthermore, according to the IPCC (2006), stream water and groundwater have the same 

emission factor of 0.0025. However, it is clear from the data presented here that stream water 

had significantly lower EF values (mean = 0.0003) than field drain samples (mean = 0.0012). 

These low stream water values are due to the low stream water N2O content, which is a 

consequence of the rapid degassing of N2O from field drains upon contact with the atmosphere 

prior to reaching the stream. This degassing of supersaturated N2O in subsurface drainage and 

groundwater has also been reported in previous studies (Bowden and Bormann, 1986; Reay et 

al., 2003; Minamikawa et al., 2011; Li et al., 2013).  

In this study, it was also possible to estimate EFs using the first method presented in the 

introduction (Equation 6.1). As mentioned earlier, unlike the N2O-N/NO3̄-N ratio method, this 

method requires detailed information (Table 6.2). The total field drain area was estimated at 

~21.14 ha (see Section 4.2.2.2), whilst the area of the stream is calculated as the surface area 

of the stream in mini-catchment A and estimated to be 0.33 ha. These areas were multiplied by 

the N2O emissions to calculate the total indirect N2O emissions annually. Total N input was 

calculated for the 2012-2013 and 2013-2014 farming years for mini-catchment A (Figure 6.2) 

using available farm business data. During 2012-2013, the majority of fields were growing 

spring barley malt and winter wheat feed, receiving fertiliser at a rate of 150-250 kg N ha-1. 

Three fields contained winter oilseed rape and received 325 kg N ha-1 of fertiliser. During 2013-

2014, some fields contained spring beans, receiving ~50 kg N ha-1, some had sugar beet and 

received ~150 kg N ha-1, and the rest had winter wheat feed. In 2013-2014, some fields with 

spring beans received 0 kg N ha-1. The total N fertiliser applied across mini-catchment A was 

67,985 kg N a-1 in 2012-2013 and 61,106 kg N a-1 in 2013-2014, thus giving an annual mean 

fertiliser application of 64,545 kg N. It should be noted here that these nitrogen inputs into the 

soils are applied nitrogen fertilisers by the farmers only. This amount does not include the 

amount of nitrogen fixed by any legume cops planted. For the field drain area, the total applied 

N fertiliser was 2,659 kg N a-1 for 2012-2013 and 3,080 kg N a-1 for 2013-2014, giving a mean 

total applied N fertiliser of 2,870 kg N a-1 (Table 6.2). 
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Figure 6.2 Field application of N fertiliser in mini catchment A for the 2012-2013 (top) and 2013-2014 (bottom) 
farming years. 

FracLEACH, which is the fraction (given here as a %) of all applied-N lost through leaching and 

runoff was calculated from the leached dissolved inorganic and organic N divided by the total 

N input. N-leaching for the stream was calculated from the flow rate at site kiosk A (see Figure 

6.2 for location), multiplied by the inorganic and organic N concentrations of stream samples 

collected at site A. Leaching rates for individual field drains were calculated from the drain 

flow rates multiplied by the inorganic and organic N concentrations obtained for each specific 

drain. For the stream, 15,885 kg N a-1 were lost through leaching from a total applied-N of 

64,545 kg N a-1 in mini-catchment A, giving a FracLEACH of 25%. For the field drains, FracLEACH 

. A 

. A 
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was calculated separately for each drain from the N leached divided by the total N applied over 

a certain field drain area, giving a mean estimated FracLEACH value for all drains of 34%. 

The mean FracLEACH value of 34% for the field drains is just above the default value given by 

the IPCC (30%). However, a wide uncertainty range (10-80%) is given in the IPCC (2006) 

report and a similarly wide range of values (4-83%) was measured in the field drain samples 

measured in this study. The mean FracLEACH value for the stream (25%) was lower than the 

field drains, perhaps due to a dilution by groundwater that enters the stream. Nevison (2000) 

criticised the default value of 30% as it was based on the general knowledge of an expert group 

that developed the 1996 revised IPCC methodology. The default uncertainty range (10-80%) 

was justified on the basis of the global scale modelling study on N loadings in rivers by 

Seitzinger and Kroeze (1998). Critically examining the FracLEACH default value, Nevison 

(2000) reviewed six specific case studies in the Midwestern United States, generally in maize 

and/or soybean fields underlain by tile drainage and showing evidence of N leaching into rivers. 

The inputs and outputs of agricultural N were measured in all the cases at the watershed level 

over a number of years and mass balances for N were calculated. Nevison (2000) found that 

FracLEACH values were typically ~20%. In one case, the fraction of N inputs leached ranged 

from 3-70%, depending on inter-annual variability in rainfall. One of the reasons that this 

comparatively low FracLEACH value was obtained in all six of these case studies was that organic 

N was not considered as a component, although it may constitute a significant fraction of the 

total leached N (Seitzinger and Kroeze, 1998). In theory, since FracLEACH includes both 

inorganic and organic N, so studies that only consider inorganic N may underestimate the true 

amount of N leaching. The calculated FracLEACH values of 34% and 25% for field drains and 

stream water in this study, respectively, are not too dissimilar from the modelling results for 

the UK as a whole, in which FracLEACH values of 16-24% were estimated for the Norfolk area 

(Cardenas et al., 2013). 
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Table 6.2 Emission factors Ef5g and EF5r calculated for field drains and stream water using two different 
methods and the relevant 2006 IPCC emission factors (EF5) 

 
Drain Stream 

Area (ha) 21.14 0.33 

Indirect N2O emissions (kg N2O-N ha-1 a-1) 0.03 5.11 

Total indirect N2O emissions (kg N2O-N a-1) 0.63 1.67 

Total N input (kg N a-1) 2,870 64,545 

FracLEACH (%) 34 25 

EF5g, EF5r (IPCC (2006) methodology) 0.0006 0.0001 

EF5g, EF5r (N2O-N/NO3̄-N method) 0.0012 0.0003 

EF5g, EF5r (IPCC default) 0.0025 0.0025 
   
 

The results EF5g value calculated using the IPCC methodology was similar to that calculated 

using the N2O-N/NO3̄-N ratio (see Table 6.2). The EF5g value was lower using the IPCC (2006) 

methodology than the N2O-N/NO3̄-N ratio method for both field drain and stream water 

samples. This lower calculated EF5g value using the IPCC methodology was expected based 

on previous research by Well and Butterbach-Bahl (2010). Because significant denitrification 

is a frequent phenomenon in near-surface groundwater, it can be expected that in many cases 

some of the leached NO3̄ and N2O are denitrified before groundwater is discharged via this 

pathway. Whilst of the same order of magnitude, the EF5r calculated for the stream using the 

IPCC methodology (0.0001) was three times as low as using the N2O-N/NO3̄-N ratio (0.0003). 

The EF5g calculated for field drains using the IPCC methodology was half of the value of EF5g 

calculated using the N2O-N/NO3̄-N ratio, with values of 0.0006 and 0.0012, respectively. 

Hence, if the EF5 was to be revised by the IPCC, regardless of soil type, crop type and land use 

practices, then a value of 0.0009 (about third of the current value) for EF5g and a value of 

0.0002 (one order lower than the current value) for EF5r may be more reasonable estimates for 

the types of system studied here. 

Calculation of EF5g values using the two different approaches does not necessarily ensure the 

same result. Most studies calculate EF5g using the N2O-N/NO3̄-N ratio as they often lack 

detailed mass balance information and few studies calculate EF5g using the IPCC approach if 
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they have the detailed mass balance information for a catchment. However, there are very few 

studies that have calculated EF5g using both approaches. One such study is by Outram and 

Hiscock (2012), who calculated EF5g values for different water bodies using both approaches. 

They found that EF5g values calculated using the IPCC (2006) approach were very different 

from those calculated using the N2O-N/NO3̄-N ratio. The EF5g calculated for the drainage 

channels using the IPCC approach was an order of magnitude higher than that obtained when 

using the N2O-N/NO3̄-N ratio, with values of 0.053 and 0.0061, respectively. This difference 

increased to two orders of magnitude difference when examining shallow lake water, with 

values of 0.018 and 0.0008 for the IPCC approach and N2O-N/NO3̄-N ratio, respectively. The 

EF5r calculated for the River Thurne using the IPCC approach was nine times as high as that 

calculated using the N2O-N/NO3̄-N ratio, with values of 0.009 and 0.00011, respectively. Thus, 

although in this study the calculated EF5g values using both approaches were not very different, 

large differences have been calculated in previous studies. Therefore, to achieve an accurate 

result and avoid miscalculation from using different approaches, the IPCC might need to 

propose one comprehensive and simple approach. 

It is also observed in this study that regardless of the method used for calculation of EF5g and 

EF5r, the default value set by IPCC (2006) of 0.0025 might overestimate indirect N2O emission 

(Table 6.2). The default value is one order of magnitude higher than the EF5r for stream water 

calculated by either method, with a value of 0.0001 using the IPCC approach and 0.0003 using 

N2O-N/NO3̄-N ratio. For the field drains, the default EF5g value is four times higher than that 

calculated using the IPCC approach (0.0006) and more than double that calculated using the 

N2O-N/NO3̄-N ratio (0.0012). Furthermore, the EF5 values calculated using both the IPCC 

methodology and the N2O-N/NO3̄-N ratio revealed that EFs are not uniform for different water 

bodies. This study has shown that within a single catchment different water bodies can yield 

different amounts of N2O with unique EF values required for each type. Therefore, different 

water bodies need to be separated when emission factors are calculated, unlike the current IPCC 

approach which uses one EF value for all water bodies.  

 

6.2.2 Spatial variability in EF5 values 

It was shown in Section 6.2.1 that a wide range of N2O-N/NO3̄-N ratios existed for field drain 

(0.00003 to 0.0106) and stream water (0.00006 to 0.0028) samples. Other studies have also 

reported a wide range of values for this ratio, such as Reay et al. (2009) (0.00008-0.036)  and 
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Hack and Kaupenjohann (2002) (0.00003-0.005) (Table 6.1). In this study, because the samples 

were collected from different drains, it was possible to investigate if this ratio varied spatially 

(Figure 6.3). None of the field drains nor the stream sampling sites had median N2O-N/NO3̄-N 

ratios higher than the IPCC default value (0.0025). However, some sites yielded several 

samples with higher N2O-N/NO3̄-N ratios than the IPCC default value, whilst some other 

locations never had any samples higher than this level. Only 10% of the total collected samples 

had higher N2O-N/NO3̄-N ratios than the IPCC default value. This variation in N2O-N/NO3̄-N 

ratio was generally due to N2O concentrations measured in those sites. Sites with high N2O 

concentrations, such as D4 and D11 (Figure 5.2), generally had high N2O-N/NO3̄-N ratios, 

whilst sites with low N2O concentrations, such as D5, largely had low N2O-N/NO3̄-N ratios. 

However, this was not always a case as some sites, such as D2, had low N2O concentrations 

but did not have a low N2O-N/NO3̄-N ratio. The factors which influence N2O concentrations 

that were described in Chapter 5, such as rainfall, soil texture, drain flow rate and land 

management practices, are also influencing the N2O-N/NO3̄-N ratio. 

 

 

Figure 6.3 Boxplot of the N2O-N/NO3̄-N ratio in field drains (D1-D16) and in stream (A, B, E and M) for 
samples collected during April 2013-April 2015. The horizontal dashed line represents the ratio of N2O/ NO3 

(EF5) at the IPCC default value of 0.0025. 

6.2.3 Temporal variability in EF5 values 

As illustrated in Figure 6.1, the N2O-N/NO3̄-N ratios varied substantially across field drain and 

stream water samples. It was possible in this study to monitor this variability temporally over 
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the two-year sampling period. Changes in the N2O-N/NO3̄-N ratios over time are presented in 

Figure 6.4. As illustrated in Figures 6.1 and 6.4, the N2O-N/NO3̄-N ratios of stream water 

samples were always lower than that of the field drains throughout the entire study period by 

about one order of magnitude. For both field drains and stream samples, it is observed that the 

ratio started increasing during the summer (July) and returned to relatively stable levels in mid-

October. This pattern was repeated in both sampling years. This might be due to the substantial 

decline in NO3̄ concentrations during the summer as the result of a decline in water flow and a 

decline in potentially leachable nitrate due to nutrient uptake by crops during this period. 

It is also observed in Figure 6.4 that the N2O-N/NO3̄-N ratios for stream samples were always 

lower than the IPCC default value (0.0025) throughout the study period. The increases which 

occurred during summer in both years never reached the 0.0025 level. Additionally, the N2O-

N/NO3̄-N ratio in field drain samples was always lower than the IPCC default value of 0.0025, 

except during the summer when the ratios exceeded 0.0025. This summer period of high ratios 

represents ~10% of collected samples shown in Figure 6.4. To our knowledge, there have been 

no previous studies on the temporal variability of EF5 values, so a comparison with the 

literature cannot be made. Therefore, it is clear from the data presented here that EF values 

varied over time and that it might be inappropriate to have one EF value throughout a year as 

it suggested by the IPCC (2006). 

 

Figure 6.4 Temporal change of mean of N2O-N/NO3̄-N in field drain and stream water samples collected during 
April 2013-April 2015. The dashed line represents the ratio of N2O-N/NO3̄-N (EF5) for the IPCC default value 

of 0.0025. 
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6.2.4 Implications of the measured EF values 

From the results of this study, it appears that the indirect emissions component of the UK 

agricultural N2O budget may be overestimated using the current default emission factor (EF5g). 

Revision of this emission factor in line with the findings presented here would result in a large 

reduction in the estimated N2O emissions in both the UK and globally (Table 6.3). For the UK, 

the indirect N2O emissions arising from N leaching and runoff from agroecosystems total 

around 14.3 Gg N a-1, based on the 1997 guideline default value for EF5 of 0.025 (Reay et al., 

2005). Using the revised IPCC (2006) EF5 values of 0.0075, these indirect emissions were 

reduced significantly to 6.71 Gg N2O-N a-1 (Syakila and Kroeze, 2011). If the calculated value 

for EF5 of 0.0036 (sum of all EF5g, EF5r and EF5e) (See Table 6.3) in this study is applied, these 

emissions would be further reduced to 3.22 Gg N2O-N a-1.  

Similarly, the estimates of indirect N2O emissions from leaching and runoff globally would be 

reduced. Firstly, these emissions were estimated to be 1.90 Tg N2O-N a-1 based on the default 

value for EF5 of 0.025 reported by the IPCC in 1997. However, with a revised default value of 

0.0075, these estimates were substantially reduced to 0.60 Tg N2O-N a-1 in 2006 (Syakila and 

Kroeze, 2011), and should the suggested emission factor from this study (0.0036) be applied 

to global indirect N2O emissions, the estimates would be further reduced to 0.28 Tg N2O-N a-

1. The above emphasises that the revision of emission factors in 2006 by the IPCC considerably 

lowered global estimates of indirect N2O emissions from leaching and runoff compared to the 

previous estimates in 1997. However, it appears that the current IPCC inventory may still 

overestimate the actual emissions of N2O. If the emission factors calculated in this study were 

to be applied, further significant reductions in indirect N2O emissions similar to the level of 

reductions achieved in the 2006 revision, will be observed again. Several studies investigating 

emission factors and indirect N2O emissions from leaching and runoff have been carried out 

since 2006, and so updating the IPCC guidelines and indirect N2O estimates by incorporating 

these new findings from recent investigations is strongly recommended. 
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Table 6.3 Summary of current and previous IPCC default emission factors for indirect N leaching from 
agriculture, calculated emission factors from this study and implications for indirect N2O emission estimates 

from the UK and globally 
 IPCC 1997   IPCC 2006  This study 

      
EF5g 0.015  0.0025     0.0009 
EF5r 0.0075  0.0025     0.0002 
EF5e 0.0025  0.0025  0.0025© 
      
EF5 0.025  0.0075  0.0036* 
      
Indirect UK N2O emissions 
(Gg N a-1) from N leaching and runoff 14.30+  6.71∞  3.22 
      
Indirect global N2O emissions 
(Tg N a-1) from N leaching and runoff 1.90β  0.60β  0.28 

©Assumed unchanged, because this value remained the same from IPCC (1997) to IPCC (2006). 
*EF5 is the sum of all three EFs (i.e. EF5g+EF5r+EF5e).  
+From Reay et al. (2005) 
∞Total UK N2O emissions are 59 Gg N a-1 for 2013 according to the National Atmospheric Emissions Inventory 
(2015), and from this amount, indirect emissions account for 24%, with 46% of associated with N leaching and 
runoff (Syakila and Kroeze, 2011). 
βFrom Syakila and Kroeze (2011) 
 

6.3 Summary 

In this chapter, indirect nitrous oxide emission factors associated with agricultural nitrogen loss 

through leaching and runoff (EF5) have been calculated using two approaches: the IPCC 

approach and the N2O-N/NO3̄-N ratio method. Although the calculated EF5 values were lower 

using the IPCC approach than the N2O-N/NO3̄-N ratio in both field drain and stream water 

samples, the differences were significant. The EF5r calculated for stream samples using the 

IPCC approach (0.0001) was three times lower than the value obtained using the N2O-N/NO3̄-

N ratio (0.0003). The EF5g calculated for field drains using the IPCC approach (0.0006) was 

half that calculated using the N2O-N/NO3̄-N ratio (0.0012). 

The EF5 values calculated using either method for both field drain and stream water samples 

were lower than the IPCC default value of 0.0025. The calculated EF5r for stream samples was 

at least one order of magnitude lower than the IPCC default value and EF5g value was at least 

a third lower for the field drains. This indicates that the IPCC (2006) default value may still 

overestimate indirect N2O emissions. Temporal variations in the N2O-N/NO3̄-N ratio showed 

that this ratio is not constant. Increases in the N2O-N/NO3̄-N ratio were recorded during the 

summer in both field drain and stream samples over both monitoring years and corresponded 

to substantial declines in NO3̄ concentrations. Summer was the only period when that N2O-
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N/NO3̄-N ratio reached the IPCC default value for drain samples, whilst these increases never 

reached the default value for stream samples. It is concluded here that unlike the IPCC 

approach, which uses one EF value for both groundwater and stream water, different water 

bodies have different EF values. Thus, if the EF5 were to be revised by the IPCC, regardless of 

soil type, crop type and land use practices, then a value of 0.0009 (about a third of the current 

value) for EF5g and a value of 0.0002 (one order of magnitude lower than the current value) for 

EF5r may be more reasonable estimates. Such a radical downward revision would more than 

halve the current estimates of indirect N2O emissions associated with leaching and runoff from 

agriculture for the UK and globally. 
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Chapter 7: CONCLUSIONS AND FURTHER WORK 

 

7.1 Conclusions 

The overall aim of this study was to assess the effectiveness of cover cropping and conservation 

tillage as in-field mitigation measures to improve water and soil quality and nitrous oxide 

greenhouse gas emissions. It was hypothesised that implementing these mitigation measures 

would improve soil and water quality and reduce indirect emissions of nitrous oxide. However, 

a wide range of outcomes were obtained from the investigations carried out here, some of which 

were positive, some negative and others which had no discernible effect. 

Apart from significant reduction in soil nitrate, the mitigation measures did not substantially 

improve any soil quality parameters. Cover crop depleted soil nitrate at three soil depths of 15 

cm, 45 cm and 75 cm by 7%, 42% and 79%, respectively. This might be due to the distinctive 

properties of the oilseed radish cover crop in scavenging nitrate from deep within the soil 

profile. The soils were mostly below the accepted 2% soil organic carbon threshold, so it would 

have been a great success if the implemented measures could help elevate this problem. 

However, it appeared that the measures had little effect on soil organic carbon levels, although 

increases might be observed if the mitigation measure trials were run for several more years. 

Regarding other soil macro and micro nutrients, such as soil phosphorus, potassium, 

magnesium and sulphate, the overall quality of soil in the study area was not in good condition. 

Soil phosphorus concentrations were excessively high and other nutrients were generally below 

optimum range. Therefore, reducing soil phosphorus levels and raising the concentrations of 

other soil nutrients were desired through the mitigation measures. However, instead of reducing 

phosphorus, the measures acted to retain high soil phosphorus levels. Whilst this is an 

advantage for soil where phosphorus is a limiting nutrient, in this study area where phosphorus 

represents an environmental risk, high levels pose a potential eutrophication issue should 

soluble phosphorus enter the stream via surface runoff. Soil potassium levels were consistently 

increased by the measures, but the soil magnesium and sulphate levels were not improved. 

Improvements in soil physical conditions, such as increased temperature, moisture content and 

infiltration rate, along with decreased bulk density and penetration resistance, were sought 

through the measures. However, soil temperature and soil moisture did not change and bulk 

density and penetration resistance increased and consequently reduced the infiltration capacity. 
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Therefore, the mitigation measures did not improve the overall soil quality, and in some 

respects they actually caused a deterioration in soil quality. 

Unlike soil quality, water quality was significantly improved by the mitigation measures. With 

the presence of a cover crop, the concentration of dissolved nitrate in soil water, the main form 

of N, was significantly depleted from 13.9 mg N L-1 under bare soils to 2.5 mg N L-1 under the 

cover crop, which represents an 82% reduction. Likewise, the nitrate leaching rate from fields 

were substantially reduced from 113 kg N ha-1 a-1 in bare fields to 17 kg N ha-1 a-1 in cover crop 

fields, equivalent to 85% reduction in N fluxes. Thus, the cover crop reduced both N 

concentrations and N fluxes by at least 80%. No changes in either ammonium or nitrite 

concentrations and fluxes in field drainage between the cover crop and no cover crop fields 

were observed. However, these two forms of N contributed an insignificant proportion to total 

N leaching and so does not lessen the great effectiveness of cover crops as a mitigation 

measures for reducing N leaching. On the other hand, different soil inversion intensities tended 

to have no effect on either concentrations or fluxes of any form of N. Overall, it was concluded 

that for an agricultural area where high nitrate losses from fields into groundwater or surface 

water is occurring, such as in the intensive arable land as Norfolk, inclusion of winter cover 

crops within a crop rotation is a highly recommended mitigation measure. 

The only drawback of the implemented mitigation measures with respect to water chemistry 

was the impact they had on dissolved nitrous oxide (N2O) concentrations. It was hypothesised 

that cover crops would substantially reduce dissolved N2O concentrations because of their 

ability to reduce nitrate which was generally found to have a linear relationship with N2O. 

However, although the differences were not statistically significant, higher N2O concentrations 

were recorded in field drains under cover crops than without a cover crop. This result may 

suggest that the use of cover crop as an alternative farm management system to reduce N2O 

emissions would not be successful. However, in the study area the implemented mitigation 

measures were employed to tackle high nitrate losses rather than high indirect N2O emissions 

and as such were found to be effective. Overall, it is concluded from this study that the 

implemented mitigation measures, particularly the use of a winter cover crops, are highly 

recommended. 

All samples collected in this study, regardless of location and time of sampling, contained 

higher N2O concentration than the water-air equilibrium concentration, illustrating that all sites 

were acting as a source of N2O emissions to the atmosphere. Stream samples consistently 
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contained lower N2O concentrations than field drain samples due to the rapid degassing of N2O 

from drain water on contact with the atmosphere. Sometimes rainfall was found to be the only 

factor driving changes in N2O concentration over time. However, in a few cases large storm 

events had negligible effects on N2O concentration. Moreover, N2O concentrations in both field 

drain and stream water samples changed significantly with season, with lowest values 

occurring during the summer and highest values during the spring and autumn. Although 

somewhat uncertain, soil texture was observed to exert an influence on N2O concentrations, 

with clayey loam soils tending to contain higher N2O concentrations than sandy loam soils. A 

strong, positive correlation between N2O concentration and drain flow rate highlighted the 

influence of rainfall as it generally increases flow rate which in turn increases N2O fluxes. N2O 

concentrations were largely three orders of magnitude smaller than dissolved NO3̄ 

concentrations. Mean field drain fluxes of 30 g N ha-1 a-1 for N2O were also three orders of 

magnitude lower than the mean NO3̄ loss of 35 kg N ha-1 a-1 and were comparable to the losses 

of NH4
+ (65 g N ha-1 a-1) and NO2̄ (25 g N ha-1 a-1). This emphasised again that NO3̄ is the 

dominant form of N loss from field drains in the study. Also, this stressed that N loss in the 

form of N2O is significant and can be as high as NH4
+ or NO2̄ or even higher.  

In this study, indirect nitrous oxide emission factors associated with agricultural nitrogen loss 

through leaching and runoff (EF5) have been calculated using two approaches: the IPCC (2006) 

approach and the N2O-N/NO3̄-N ratio method. For both field drain and stream water samples, 

the calculated EF5 values were lower when using the IPCC approach than the N2O-N/NO3̄-N 

ratio, although the differences were small. The EF5r values calculated for stream water using 

the IPCC approach (0.0001) were three times lower than the value obtained using the N2O-

N/NO3̄-N ratio (0.0003). The EF5g value calculated for field drains using the IPCC approach 

(0.0006) was half that calculated using the N2O-N/NO3̄-N ratio (0.0012). 

One of the objectives of this study was to compare the calculated EF5 values based on the two 

years of monitoring data gathered here for field drains and streams to the IPCC default value. 

It was found that the calculated EF5g and EF5r emission factors using either method for both 

drain and stream samples, respectively, were lower than the IPCC default value of 0.0025. The 

calculated EF5r for stream samples was at least one order of magnitude lower than IPCC default 

value and it was at least third lower in case of the field drains. This indicated that the IPCC 

(2006) default value, if applied, may still overestimate indirect N2O emissions. Temporal 

variation in the N2O-N/NO3̄-N ratio showed that this ratio is not constant through time. 

Increases in the N2O/NO3 ratio were recorded during the summer in both field drains and 
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stream samples during both monitoring years. The summer period was the only time when the 

N2O/NO3 ratio reached the IPCC default value for drain samples, whilst increases in stream 

samples never reached the default value. It is concluded here that unlike the IPCC approach, 

which uses one EF value for both groundwater and stream water, different water bodies have 

different EFs values. Hence, if the EF5 was to be revised again for the IPCC methodology, 

regardless of soil type, crop type and land use practices, then a value of 0.0009 (about a third 

of the current value) for EF5g and a value of 0.0002 (one order lower than the current value) 

for EF5r may be more reasonable estimates. Such a radical downward revision would more than 

halve the current estimates of indirect N2O emissions associated with leaching and runoff from 

agriculture for the UK and globally. 

 

7.2 Recommendations for further research 

Several aspects concerning the effects of mitigation measures on soil and water quality and 

N2O emissions have been addressed throughout the course of this study and the main objectives 

stated in the introductory chapter have been fulfilled. However, there remains room to further 

improve our understanding.  

If possible, a long-term experiment is required to make the correct decision to accept or reject 

mitigation measures as part of routine agricultural practices in intensive arable areas. Thus, 

continuing with the implemented mitigation measures trial for the next few years with the 

current soil and water sampling scheme in the study area is highly recommend because, as 

discussed earlier, substantial changes in soil and water quality may only be observed after many 

years of running the trials. Moreover, to correctly assess the effectiveness of the mitigation 

measures, all soil and water quality parameters as well as greenhouses gases should be taken 

into consideration. However, emphasis should be placed on the effectiveness of such measures 

in tackling the predominant environmental issues in any area.  

Regarding dissolved nitrous oxide measurements, some measurements of stable isotope 

composition of nitrous oxide in drain and stream samples might help to finally clarify the 

prevailing production mechanism. Indirect N2O emissions are from aquatic systems that 

receive N-rich water, typically from agriculture. Dissolved N2O measurements from other 

water bodies such as lakes, rivers and aquifers might help to calculate N2O emissions more 

precisely as these also contribute to overall N2O emissions. Additionally, to calculate N2O 
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emissions globally and to reduce the large uncertainties in the estimated EF values, further 

global work is required with more sampling of groundwater and other waterbodies with 

variable anthropogenic influence. It would be very helpful if direct N2O emissions from soils 

were measured alongside indirect N2O emissions so that the effects of land use and weather 

could be observed on these major emissions and a more accurate comparison between direct 

and indirect N2O losses could be made. Finally, several studies to estimate emissions factors 

and indirect N2O emissions from leaching and runoff have been carried out since 2006. 

Therefore, updating the IPCC guidelines and indirect N2O estimates by considering the new 

findings from recent investigations is recommended. 
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Table A1 Percentage of soil fractions in (0-30 cm), (30-60 cm), and (60-90 cm) soil depths  

Sample 
name Latitude (N) Longitude (E)  

Sand 
0-30 

Silt 
0-30 

Clay 
0-30 

Sand 
30-60 

Silt 
30-60 

Clay 
30-60 

Sand 
60-90 

Silt 
60-90 

Clay 
60-90 

D1 52.7844873 1.119858 46 32 22 46 31 23 53 20 27 

D2 52.78364387 1.11953044 48 34 18 47 36 17 35 23 42 

D3 52.78209388 1.11658463 45 31 24 43 25 32 35 23 42 

D4 52.78470428 1.11743469 53 34 13 55 30 15 53 27 20 

D5 52.78404155 1.11481005 40 33 27 39 28 33 24 27 49 

D6 52.78359362 1.1151999 47 31 22 44 31 25 49 23 28 

D7 52.78297931 1.11600137 46 29 25 46 31 23 52 23 25 

D8 52.78219711 1.1170388 43 31 26 44 29 27 45 25 30 

D9 52.78313781 1.1175858 38 37 25 34 32 34 26 26 48 

D10 52.78392873 1.11798344 40 38 22 39 38 23 36 32 32 

D11 52.78461202 1.11819182 48 35 17 44 39 17 55 30 15 

D12 52.78377257 1.1191906 48 32 20 48 32 20 48 26 26 

D13 52.782774 1.1197886 45 37 18 46 30 24 48 30 22 

D14 52.78328994 1.12057052 48 31 21 41 32 27 54 22 24 

D15 52.78408153 1.12024203 62 27 11 56 29 15 55 33 12 

D16 52.78474613 1.11986107 65 30 5 3 29 68 79 19 2 

MH1 52.79209752 1.11331305 52 28 20 55 25 20 43 21 36 

MH2 52.79059757 1.11420055 52 28 20 50 30 20 45 22 33 

MH3 52.79009499 1.11671488 56 28 16 59 26 15 41 22 37 

MH4 52.79183216 1.1149977 50 29 21 53 29 18 51 24 25 

MH5 52.79283592 1.11280477 49 33 18 45 22 33 50 20 30 

MH6 52.79214651 1.11247159 49 29 22 50 22 28 51 23 26 

MH7 52.79134068 1.11201033 50 30 20 55 24 21 75 12 13 

MH8 52.79043895 1.11149811 46 32 22 44 27 29 35 18 47 

MH9 52.79082385 1.11298422 47 30 23 54 23 23 49 20 31 

MH10 52.79111009 1.11431401 46 28 26 46 22 32 39 20 41 

MH11 52.79172398 1.11501449 50 29 21 55 25 20 39 25 36 

MH12 52.79076174 1.11509286 48 31 21 57 21 22 22 28 50 

MH13 52.79006378 1.11425542 46 31 23 37 31 32 39 18 43 

MH14 52.78992497 1.11521406 46 30 24 44 28 28 40 27 33 

MH15 52.7898425 1.1160494 44 39 17 43 36 21 34 32 34 

MH16 52.78980444 1.11705003 58 28 14 57 25 18 60 23 17 

GH1 52.78208922 1.1252575 52 30 18 53 30 17 42 31 27 

GH2 52.78494598 1.12460809 47 33 20 43 33 24 38 25 37 

GH3 52.78419622 1.12157544 36 32 32 41 24 35 31 24 45 

GH4 52.78693822 1.12796749 49 36 15 66 25 9 75 17 8 

GH5 52.78439652 1.12141164 34 31 35 36 24 40 17 23 60 

GH6 52.78370334 1.12251244 36 34 30 26 42 32 28 39 33 

GH7 52.78281284 1.12372538 56 25 19 66 18 16 67 18 15 

GH8 52.78184063 1.12473255 49 34 17 52 31 17 54 24 22 

GH9 52.78372723 1.12454102 54 32 14 51 33 16 39 39 22 

GH10 52.78506858 1.12431614 40 40 20 32 41 27 22 44 34 

GH11 52.78609201 1.12454144 39 46 15 58 29 13 62 27 11 

GH12 52.78519926 1.1255399 59 28 13 56 30 14 62 24 14 
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GH13 52.78431254 1.12650842 59 28 13 61 26 13 66 23 11 

GH14 52.78521627 1.12690128 57 29 14 60 27 13 73 17 10 

GH15 52.78609905 1.12674044 47 41 12 57 26 17 56 23 21 

GH16 52.78678344 1.1277891 53 37 10 46 40 14 70 22 8 

FH1 52.7891617 1.11659453 51 30 19 47 27 26 33 20 47 

FH2 52.78652318 1.11631782 44 35 21 40 30 30 31 24 45 

FH3 52.78835787 1.11448645 45 30 25 40 28 32 28 21 51 

FH4 52.78535548 1.11845662 47 38 15 54 34 12 44 26 30 

FH5 52.78554954 1.11839281 41 34 25 49 34 17 51 32 17 

FH6 52.78613887 1.11665667 39 36 25 33 33 34 18 31 51 

FH7 52.78663617 1.11536385 42 31 27 34 29 37 31 26 43 

FH8 52.78718334 1.11439297 40 30 30 37 27 36 24 19 57 

FH9 52.78712072 1.11593046 52 25 23 59 19 22 66 14 20 

FH10 52.78714872 1.11724994 50 28 22 39 25 36 25 23 52 

FH11 52.78767175 1.11636238 54 26 20 49 20 31 51 19 30 

FH12 52.78790301 1.11561027 50 27 23 47 28 25 53 21 26 

FH13 52.78833635 1.11462557 42 31 27 58 28 14 38 29 33 

FH14 52.78858186 1.11549611 50 27 23 54 24 22 63 16 21 

FH15 52.78875427 1.11634218 54 24 22 55 20 25 48 19 33 

FH16 52.78908251 1.11723921 57 25 18 57 22 21 56 22 22 

FAR1 52.79286178 1.11129611 52 37 11 47 36 17 51 27 22 

FAR2 52.79321201 1.10916505 52 27 21 47 26 27 44 21 35 

FAR3 52.79126612 1.10858467 49 25 26 52 24 24 39 22 39 

FAR4 52.79235789 1.10900801 45 30 25 34 24 42 25 22 53 

FAR5 52.79327589 1.11136358 63 34 3 60 32 8 58 30 12 

FAR6 52.79339634 1.10997939 47 40 13 52 31 17 45 30 25 

FAR7 52.79340212 1.10897985 48 38 14 50 33 17 56 28 16 

FAR8 52.79349298 1.10777395 52 34 14 65 23 12 71 16 13 

FAR9 52.79275454 1.10917096 45 39 16 49 34 17 54 19 27 

FAR10 52.79228331 1.11070124 58 33 9 73 21 6 78 12 10 

FAR11 52.79204442 1.10936156 57 31 12 58 23 19 50 25 25 

FAR12 52.7918855 1.10809565 54 31 15 37 29 34 29 26 45 

FAR13 52.79167838 1.10664826 43 36 21 49 34 17 60 24 16 

FAR14 52.79145073 1.10769264 47 36 17 44 27 29 39 27 34 

FAR15 52.79129801 1.10893509 47 37 16 56 26 18 62 21 17 

FAR16 52.79108268 1.11015315 43 38 19 61 30 9 62 19 19 

MHF1 52.78039675 1.11915705 51 27 22 51 23 26 30 21 49 

MHF2 52.77911746 1.1184839 57 26 17 53 28 19 44 28 28 

MHF3 52.77837316 1.11535349 58 24 18 60 23 17 60 18 22 

MHF4 52.78107553 1.11609046 42 33 25 44 28 28 40 27 33 

MHF5 52.78039441 1.11939529 50 32 18 36 33 31 64 16 20 

MHF6 52.78054546 1.11753124 49 33 18 46 35 19 40 38 22 

MHF7 52.78054428 1.1157992 41 40 19 38 39 23 37 34 29 

MHF8 52.77983962 1.11686764 54 31 15 58 27 15 61 22 17 

MHF9 52.77910335 1.11806667 55 30 15 54 29 17 58 26 16 

MHF10 52.77841226 1.11924123 55 30 15 59 25 16 51 27 22 
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MHF11 52.77851368 1.11728976 52 31 17 47 30 23 51 25 24 

MHF12 52.77865819 1.11556199 56 30 14 55 29 16 59 18 23 

MHF13 52.77858166 1.1137505 49 27 24 48 21 31 32 21 47 

MHF14 52.77783005 1.11490695 52 26 22 56 22 22 53 24 23 

MHF15 52.7772372 1.11681249 59 22 19 66 18 16 81 7 12 

MHF16 52.77670512 1.11864829 56 24 20 56 23 21 62 17 21 

P1 52.78904358 1.11153692 46 33 21 45 26 29 32 26 42 

P2 52.78656512 1.11232 42 40 18 43 29 28 27 24 49 

P3 52.78644065 1.10896574 29 36 35 26 30 44 20 23 57 

P4 52.78628121 1.10803925 40 36 24 38 33 29 17 22 61 

P5 52.78530789 1.11226715 41 37 22 30 25 45 18 15 67 

P6 52.78624129 1.11204076 38 38 24 37 32 31 22 24 54 

P7 52.78732114 1.11201175 44 37 19 49 29 22 23 17 60 

P8 52.78868931 1.11183573 44 31 25 43 30 27 41 29 30 

P9 52.78770394 1.10968083 40 32 28 46 27 27 60 16 24 

P10 52.78648471 1.1087258 26 34 40 15 40 45 11 34 55 

P11 52.78776135 1.10854374 35 41 24 22 36 42 22 36 42 

P12 52.78881605 1.10841525 46 37 17 49 31 20 49 31 20 

P13 52.78966899 1.10774185 41 40 19 40 37 23 37 37 26 

P14 52.78876768 1.10714891 34 43 23 22 40 38 16 33 51 

P15 52.78766278 1.10647576 33 41 26 42 35 23 59 24 17 

P16 52.78691646 1.10617803 32 47 21 35 43 22 23 37 40 

SF1 52.7916208 1.11688446 49 32 19 49 27 24 39 29 32 

SF2 52.78915513 1.11937261 54 30 16 60 26 14 54 21 25 

SF3 52.78856779 1.12179354 54 31 15 63 25 12 76 12 12 

SF4 52.78643488 1.11965521 53 27 20 45 26 29 25 28 47 

SF5 52.78652159 1.11880872 55 31 14 56 28 16 53 26 21 

SF6 52.78772464 1.12099288 54 32 14 56 29 15 61 23 16 

SF7 52.7881455 1.12211086 59 29 12 59 29 12 59 28 13 

SF8 52.78860801 1.12300504 62 23 15 64 25 11 74 24 2 

SF9 52.78867188 1.121014 59 26 15 60 23 17 61 23 16 

SF10 52.78881756 1.11967994 59 25 16 70 16 14 89 5 6 

SF11 52.78893641 1.1182515 57 27 16 57 27 16 58 29 13 

SF12 52.78978416 1.11858157 58 25 17 58 22 20 68 13 19 

SF13 52.79062738 1.1189373 61 22 17 65 19 16 68 15 17 

SF14 52.79081647 1.11800834 63 21 16 79 11 10 91 4 5 

SF15 52.79166296 1.11692154 51 28 21 45 26 29 42 24 34 

SF16 52.79231608 1.11583985 57 25 18 64 19 17 61 17 22 

SW1 52.78810412 1.12510085 68 21 11 79 14 7 92 4 4 

SW2 52.78741455 1.12315304 53 30 17 55 29 16 45 33 22 

SW3 52.78689904 1.12159951 52 32 16 45 34 21 34 29 37 

SW4 52.78681637 1.12485273 57 31 12 54 32 14 72 16 12 

SW5 52.7860372 1.12104753 43 36 21 40 28 32 18 36 46 

SW6 52.78722935 1.12207373 47 35 18 34 40 26 25 36 39 

SW7 52.78789823 1.12315977 59 29 12 70 18 12 88 8 4 

SW8 52.78857624 1.12407759 56 34 10 58 32 10 61 30 9 
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SW9 52.78745642 1.12465435 52 37 11 53 35 12 71 21 8 

SW10 52.78686441 1.12466047 50 38 12 55 33 12 63 21 16 

SW11 52.78793327 1.12535248 52 37 11 53 33 14 60 24 16 

SW12 52.78849837 1.12593049 52 40 8 60 32 8 62 28 10 

SW13 52.78779 1.1250132 40 46 14 43 45 12 39 45 16 

SW14 52.786645 1.1234032 49 39 12 59 30 11 69 19 12 

SW15 52.787591 1.1270905 44 44 12 54 32 14 67 21 12 

SW16 52.787029 1.1269166 35 41 24 63 22 15 60 26 14 
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Figure A2 Electrical conductivity map for (0-30 cm) soil depth (top), and (60-90 cm) soil depth (bottom) with 
soil texture determined by GIS 
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APPENDIX B Soil chemical and physical data 

 

Figure B1 Map of locations of soil sampling 

Table B1 Soil Mineral Nitrogen (SMN) data 

Table B2 Soil macronutrients data  

Figure B2 Map of location of Soil Organic Carbon and soil physical 
measurements 

Table B3 Soil Organic Carbon data 

Figure B3 Photographs of field works of soil physical measurements  

Table B4 Bulk density, Infiltration rate, and Penetration resistance 
data 
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Figure B1 Map of locations of soil sampling
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Table B1 Soil Mineral Nitrogen (SMN) data 

Sample  
name 

Sampling 
date 

Depth 
(cm) 

Dry 
Matter 

(% w/w) 

Nitrate  
(mg 

N/kg) 
Ammonium 
(mg N/kg) 

Available N 
 30 cm profile  

(kg N/ha) 
Depth 
(cm) 

Dry 
Matter 

(% w/w) 

Nitrate  
(mg 

N/kg) 
Ammonium 
(mg N/kg) 

Available N 
 30 cm profile  

(kg N/ha) 
Depth 
(cm) 

Dry 
Matter 

(% w/w) 

Nitrate  
(mg 

N/kg) 
Ammonium 
(mg N/kg) 

Available N 
 30 cm profile  

(kg N/ha) 

P1 03/09/2013 0-30 88.3 4.62 0.05 18.7 30-60 89.2 0.48 0.42 3.6 60-90 89 0.05 0.05 0.4 

P2 03/09/2013 0-30 84.8 9.53 0.35 39.5 30-60 88.5 0.69 0.05 3 60-90 88.9 0.06 0.06 0.5 

P3 03/09/2013 0-30 83.5 9.04 0.56 38.4 30-60 85.6 0.71 0.05 3 60-90 88 0.05 0.05 0.4 

P4 03/09/2013 0-30 82 8.14 0.58 34.9 30-60 87.1 1.77 0.06 7.3 60-90 87.7 0.07 0.07 0.5 

FAR1 03/09/2013 0-30 85.5 5.72 0.37 24.4 30-60 90.8 0.86 0.32 4.7 60-90 91.1 0.05 0.05 0.4 

FAR2 03/09/2013 0-30 86.5 6.53 1.07 30.4 30-60 90.8 1.17 0.42 6.4 60-90 89.6 0.07 0.49 2.3 

FAR3 03/09/2013 0-30 86.1 8.63 0.44 36.3 30-60 90.4 2.27 0.86 12.5 60-90 90.8 0.26 0.05 1.2 

FAR4 03/09/2013 0-30 86.2 6 0.83 27.3 30-60 87.3 1.26 0.69 7.8 60-90 89.8 0.05 0.05 0.4 

MH1 03/09/2013 0-30 88.2 3.74 0.05 15.2 30-60 89.7 0.56 0.36 3.7 60-90 86.8 0.05 0.05 0.4 

MH2 03/09/2013 0-30 86.9 4.78 0.48 21 30-60 89.5 0.49 0.49 3.9 60-90 90.3 0.05 0.51 2.2 

MH3 03/09/2013 0-30 89 5.53 0.38 23.6 30-60 94 1.32 0.28 6.4 60-90 88 0.05 0.71 3.1 

MH4 03/09/2013 0-30 88.5 8.27 1.13 37.6 30-60 93.6 1.85 0.46 9.2 60-90 88.6 0.94 0.37 5.2 

FH1 03/09/2013 0-30 88.6 6.66 4.31 43.9 30-60 90.1 1.73 0.45 8.7 60-90 88.1 0.06 0.34 1.6 

FH2 03/09/2013 0-30 84.1 6.22 1.24 29.8 30-60 87.3 0.83 0.24 4.3 60-90 88.9 0.05 0.05 0.4 

FH3 03/09/2013 0-30 85.9 3.6 0.82 17.7 30-60 86.8 0.42 0.05 1.9 60-90 89.2 0.05 0.05 0.4 

FH4 03/09/2013 0-30 81.5 13.19 1.22 57.6 30-60 84.8 7.06 0.06 28.5 60-90 85.8 0.99 0.05 4.2 

SF1 03/09/2013 0-30 89.1 7.17 0.84 32.1 30-60 90.6 2.21 0.34 10.2 60-90 88.1 0.69 0.05 3 

SF2 03/09/2013 0-30 89.9 6.27 0.42 26.8 30-60 96.1 1.5 0.05 6.2 60-90 91.7 0.42 0.26 2.7 

SF3 03/09/2013 0-30 89.6 5.35 0.46 23.2 30-60 96.1 1.94 0.62 10.2 60-90 96.1 0.2 0.49 2.7 

SF4 03/09/2013 0-30 87.1 5.6 1 26.4 30-60 87.8 1.06 0.75 7.2 60-90 87.1 0.05 0.47 2.1 

SW1 03/09/2013 0-30 88.6 9.46 2.32 47.1 30-60 95 6.25 0.6 27.4 60-90 97.3 0.43 0.26 2.7 

SW2 03/09/2013 0-30 86.2 13.16 0.91 56.3 30-60 86.3 3.4 0.47 15.5 60-90 84 2.3 1.15 13.8 

SW3 03/09/2013 0-30 85.5 3.7 0.54 16.9 30-60 85.4 2.47 0.54 12 60-90 81.7 0.67 0.34 4 

SW4 03/09/2013 0-30 85.9 7.15 1.12 33.1 30-60 89.5 1.74 0.43 8.7 60-90 87.1 0.05 0.39 1.7 

D1 03/09/2013 0-30 85.5 8.51 0.38 35.6 30-60 89.1 1.05 0.3 5.4 60-90 90.6 0.05 0.05 0.4 

D2 03/09/2013 0-30 84.6 6.75 0.35 28.4 30-60 89.6 1.16 0.05 4.8 60-90 90.2 0.06 0.06 0.4 

D3 03/09/2013 0-30 87.9 10.43 0.29 42.9 30-60 87 2.02 0.4 9.7 60-90 87.3 0.31 0.05 1.5 

D4 03/09/2013 0-30 83.8 7.03 0.48 30.1 30-60 89.4 1.42 0.06 5.9 60-90 87.9 0.08 0.05 0.5 

GH1 03/09/2013 0-30 87.1 5.87 0.69 26.2 30-60 92.4 1.73 0.31 8.2 60-90 90.7 0.05 0.3 1.4 

GH2 03/09/2013 0-30 86.1 4.29 0.6 19.6 30-60 89.3 1.4 0.05 5.8 60-90 89.8 0.05 0.05 0.4 

GH3 03/09/2013 0-30 83.7 5.19 0.35 22.2 30-60 88.3 2.83 0.29 12.5 60-90 85.6 3.11 0.39 14 

GH4 03/09/2013 0-30 86 16.61 0.81 69.7 30-60 89.7 6.34 0.42 27 60-90 84.5 4.32 0.67 19.9 

MHF1 03/09/2013 0-30 87.5 13.81 0.33 56.6 30-60 90.1 3.8 0.3 16.4 60-90 87.1 0.05 0.32 1.5 

MHF2 03/09/2013 0-30 87.8 4.62 0.5 20.5 30-60 91.7 2.32 0.3 10.5 60-90 91.6 0.04 0.04 0.4 

MHF3 03/09/2013 0-30 88.9 4.91 0.53 21.8 30-60 92.4 3.72 0.34 16.2 60-90 90.8 0.47 0.41 3.5 

MHF4 03/09/2013 0-30 87.1 11.39 0.29 46.8 30-60 88.3 1.96 0.23 8.8 60-90 86.4 0.47 0.05 2.1 
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Sample  
name 

Sampling 
date 

Depth 
(cm) 

Dry 
Matter 

(% w/w) 

Nitrate  
(mg 

N/kg) 
Ammonium  
(mg N/kg) 

Available N 
 30 cm profile  

(kg N/ha) 
Depth 
(cm) 

Dry 
Matter 

(% w/w) 

Nitrate  
(mg 

N/kg) 
Ammonium  
(mg N/kg) 

Available N 
 30 cm profile  

(kg N/ha) 
Depth 
(cm) 

Dry 
Matter 

(% w/w) 

Nitrate  
(mg 

N/kg) 
Ammonium  
(mg N/kg) 

Available N 
 30 cm profile  

(kg N/ha) 

P1 03/02/2014 0-30 83 2.65 0.68 13.3 30-60 83.4 2 0.49 10 60-90 84.2 2.56 0.43 11.9 

P2 03/02/2014 0-30 77.6 3.55 1.28 19.3 30-60 81.2 5.03 0.64 22.7 60-90 84 4.17 0.52 18.7 

P3 03/02/2014 0-30 78.3 2.89 0.69 14.3 30-60 80.6 3.79 0.54 17.3 60-90 83.5 3.5 0.44 15.8 

P4 03/02/2014 0-30 73.8 3.27 1.19 17.9 30-60 78.4 3.58 0.69 17.1 60-90 83.1 2.99 0.39 13.5 

FAR1 03/02/2014 0-30 80.1 3.48 1.21 18.8 30-60 82.9 5.01 0.88 23.6 60-90 85.2 5.01 0.93 23.8 

FAR2 03/02/2014 0-30 81.8 3.32 1.49 19.3 30-60 84 3.64 0.95 18.4 60-90 85 3.02 1.16 16.7 

FAR3 03/02/2014 0-30 80.1 1.65 1.34 12 30-60 84 2.27 0.77 12.2 60-90 85.2 2.95 1.15 16.4 

FAR4 03/02/2014 0-30 80.2 3.53 1.05 18.3 30-60 81.8 4.73 1.48 24.9 60-90 83.1 4.14 1 20.5 

MH1 03/02/2014 0-30 85.2 2.55 1.28 15.3 30-60 85.7 1.3 1.05 9.4 60-90 84.4 1.63 2.08 14.8 

MH2 03/02/2014 0-30 82.7 3.39 1.03 17.7 30-60 83.7 1.42 0.6 8.1 60-90 84.6 0.56 0.56 4.4 

MH3 03/02/2014 0-30 85.2 2.54 0.83 13.5 30-60 87.2 1.8 0.67 9.9 60-90 84.4 0.06 0.55 2.4 

MH4 03/02/2014 0-30 84.4 3.03 5.42 33.8 30-60 86.4 1.93 0.97 11.6 60-90 84.7 0.49 0.68 4.7 

FH1 03/02/2014 0-30 84.8 2.72 0.84 14.2 30-60 85.7 2.08 1.49 14.3 60-90 82.8 0.07 0.79 3.4 

FH2 03/02/2014 0-30 79.8 3.13 1.43 18.2 30-60 82.9 2.26 0.63 11.6 60-90 84.6 0.71 0.51 4.9 

FH3 03/02/2014 0-30 81.9 1.17 1.12 9.2 30-60 82.8 1.74 0.71 9.8 60-90 83.5 0.8 0.57 5.5 

FH4 03/02/2014 0-30 76.8 6.71 1.19 31.6 30-60 79.4 4.73 0.84 22.3 60-90 83.4 1.66 0.54 8.8 

SF1 03/02/2014 0-30 84.8 3.62 2.67 25.2 30-60 86.6 3.48 1 17.9 60-90 83.2 0.75 1 7 

SF2 03/02/2014 0-30 86.4 2.59 0.96 14.2 30-60 88.8 1.68 1.12 11.2 60-90 89.9 0.05 0.87 3.7 

SF3 03/02/2014 0-30 86.5 1.85 1.12 11.9 30-60 89 1.82 0.82 10.6 60-90 90.4 0.06 1.12 4.7 

SF4 03/02/2014 0-30 83.8 2.4 0.94 13.4 30-60 83 2.02 1.15 12.7 60-90 82.8 0.59 1.18 7.1 

SW1 03/02/2014 0-30 85.1 5.21 1.29 26 30-60 90.1 1.22 1.22 9.8 60-90 94.2 0.05 0.49 2.2 

SW2 03/02/2014 0-30 78.1 0.07 2.88 11.8 30-60 83.3 1.37 1.07 9.8 60-90 79.7 2.99 8.76 47 

SW3 03/02/2014 0-30 80.3 1.75 3.16 19.6 30-60 80.3 2.66 0.85 14 60-90 80 0.94 1 7.8 

SW4 03/02/2014 0-30 82.1 3.91 1.23 20.5 30-60 84.9 1.84 0.79 10.5 60-90 85.5 0.53 0.87 5.6 

D1 03/02/2014 0-30 83.5 1.03 0.54 6.3 30-60 83.2 2.1 0.53 10.5 60-90 80.4 1.1 0.84 7.8 

D2 03/02/2014 0-30 81.1 3.41 1.01 17.7 30-60 83.3 2.58 0.74 13.3 60-90 85.4 0.57 0.51 4.3 

D3 03/02/2014 0-30 82.8 1.57 1.08 10.6 30-60 83.6 1.32 0.66 7.9 60-90 83.9 0.69 0.49 4.7 

D4 03/02/2014 0-30 78.2 4.59 1.16 23 30-60 81.2 3.47 0.61 16.3 60-90 83 0.99 0.49 5.9 

GH1 03/02/2014 0-30 84.4 4.76 1.04 23.2 30-60 85.7 2.46 0.67 12.5 60-90 85.4 0.65 0.56 4.9 

GH2 03/02/2014 0-30 83.7 2.07 0.92 12 30-60 84.9 1.37 0.81 8.7 60-90 85.7 0.83 0.61 5.8 

GH3 03/02/2014 0-30 79.1 3.63 1.31 19.8 30-60 82.4 2.56 0.75 13.3 60-90 82.1 1.69 0.88 10.3 

GH4 03/02/2014 0-30 81.7 4.91 0.9 23.2 30-60 86.4 4.14 0.78 19.7 60-90 87.1 0.7 0.65 5.4 

MHF1 03/02/2014 0-30 83.5 2.33 1.16 14 30-60 85.6 1.77 0.61 9.5 60-90 83.2 0.52 0.47 4 

MHF2 03/02/2014 0-30 84.3 1.86 0.93 11.1 30-60 86.4 1.82 0.69 10 60-90 86.1 0.39 0.56 3.8 

MHF3 03/02/2014 0-30 83.5 0.6 1.54 8.6 30-60 86.4 1.86 0.55 9.6 60-90 86.7 0.06 0.56 2.5 

MHF4 03/02/2014 0-30 83 2.26 1.06 13.3 30-60 84.3 1.9 0.55 9.8 60-90 83.7 1.12 0.49 6.4 
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Sample  
Name 

Sampling 
date 

Depth 
(cm) 

Dry 
Matter 
% w/w 

Nitrate  
mg 

N/kg 
Ammonium  

mg N/kg 

Available N 
 30 cm profile  

kg N/ha 
Sampling 

 date 
Depth 
(cm) 

Dry matter 
% w/w) 

Nitrate 
N 

(mg/kg) 
Ammonium 
N (mg/kg) 

Available N 
30 cm profile 

(kgN/ha) 
Sampling 

 date 
Depth 
(cm) 

Dry matter 
(% w/w) 

Nitrate 
N 

(mg/kg) 
Ammonium 
N (mg/kg) 

Available N  
30 cm profile 

(kgN/ha) 

P1 17/07/2014 0-15 86.8 1.7 0.92 5.3 20/02/2015 0-15 83.2 0.44 0.87 4.8 21/07/2015 0-15 90.9 2.34 0.94 12.3 

P2 17/07/2014 0-15 80.9 3.33 1.13 8.9 20/02/2015 0-15 79.1 0.61 1.06 6.2 21/07/2015 0-15 87.4 7.66 1.23 33.3 

P3 17/07/2014 0-15 81.2 5.18 1.29 12.9 20/02/2015 0-15 80 7.04 0.77 29.2 21/07/2015 0-15 86 3.02 1.03 15.2 

P4 17/07/2014 0-15 80.3 4.41 1.09 11 20/02/2015 0-15 76.2 1.01 1.22 8.4 21/07/2015 0-15 86.2 2.91 1.07 14.9 

FAR1 17/07/2014 0-15 84.1 4.3 0.89 10.4 20/02/2015 0-15 80.5 1.69 1.06 10.2 21/07/2015 0-15 88.6 1.55 0.69 8.4 

FAR2 17/07/2014 0-15 84.4 4.88 3.1 16 20/02/2015 0-15 83.2 0.9 0.95 7 21/07/2015 0-15 91 1.46 0.61 7.8 

FAR3 17/07/2014 0-15 85.7 1.99 0.66 5.3 20/02/2015 0-15 81.5 1.13 0.92 7.8 21/07/2015 0-15 88.8 1.51 0.8 8.7 

FAR4 17/07/2014 0-15 85.1 3.84 0.95 9.6 20/02/2015 0-15 81.6 0.69 1.03 6.4 21/07/2015 0-15 89 1.89 1.07 11.1 

MH1 17/07/2014 0-15 87.2 5.12 2.07 14.4 20/02/2015 0-15 85.3 1.17 0.76 7.2 21/07/2015 0-15 94.3 1.65 0.99 9.9 

MH2 17/07/2014 0-15 87.4 1.85 1.3 6.3 20/02/2015 0-15 84.3 1.43 1.15 9.6 21/07/2015 0-15 92.5 4.08 1.43 20.6 

MH3 17/07/2014 0-15 90.6 2.49 0.95 6.9 20/02/2015 0-15 84.9 0.65 0.7 5 21/07/2015 0-15 92.5 1.61 1.13 10.3 

MH4 17/07/2014 0-15 87.4 4.07 0.95 10 20/02/2015 0-15 82.8 1.39 1.88 12.2 21/07/2015 0-15 93.7 6.94 1.04 29.9 

FH1 17/07/2014 0-15 89.6 2.08 1.16 6.5 20/02/2015 0-15 83.3 0.61 0.85 5.4 21/07/2015 0-15 92 1.63 1.25 10.8 

FH2 17/07/2014 0-15 82.6 4.28 0.9 10.4 20/02/2015 0-15 80.9 1.64 0.78 9 21/07/2015 0-15 90.1 3.81 1.32 19.3 

FH3 17/07/2014 0-15 86.7 2.15 0.8 5.9 20/02/2015 0-15 83.8 1.12 0.59 6.4 21/07/2015 0-15 90.2 2.07 0.87 11 

FH4 17/07/2014 0-15 81.7 3.79 1.2 10 20/02/2015 0-15 76.7 1.17 0.88 7.6 21/07/2015 0-15 86.8 3.4 1.22 17.3 

SF1 17/07/2014 0-15 89.6 1.58 0.96 5.1 20/02/2015 0-15 84.6 1.1 0.7 6.8 21/07/2015 0-15 92.4 2.96 1.54 16.9 

SF2 17/07/2014 0-15 90.2 2.06 0.91 5.9 20/02/2015 0-15 85.4 0.55 1 5.8 21/07/2015 0-15 93.3 9.9 1.03 41 

SF3 17/07/2014 0-15 89.7 0.95 1 3.9 20/02/2015 0-15 86.6 0.67 0.61 4.8 21/07/2015 0-15 93.2 2.73 0.57 12.4 

SF4 17/07/2014 0-15 87.5 1.73 0.89 5.2 20/02/2015 0-15 84.9 0.3 0.66 3.6 21/07/2015 0-15 90.5 6.72 0.8 28.2 

SW1 17/07/2014 0-15 86.5 3.03 1.13 8.3 20/02/2015 0-15 84.6 2.31 0.58 10.8 21/07/2015 0-15 92.3 4.53 1.24 21.6 

SW2 17/07/2014 0-15 87 2.06 1 6.1 20/02/2015 0-15 83.9 1.69 1.01 10.2 21/07/2015 0-15 89.2 2.78 0.97 14.1 

SW3 17/07/2014 0-15 84.3 1.92 0.85 5.5 20/02/2015 0-15 81.5 3.25 1.36 17.4 21/07/2015 0-15 86.2 14.65 1.03 58.8 

SW4 17/07/2014 0-15 85.6 1.75 1.15 5.8 20/02/2015 0-15 81.9 0.6 0.71 4.8 21/07/2015 0-15 89.9 3.88 1.18 19 

D1 17/07/2014 0-15 84.8 2.9 0.69 7.2 20/02/2015 0-15 81.4 1.23 0.9 8 21/07/2015 0-15 90.6 4.01 0.8 18.1 

D2 17/07/2014 0-15 84.3 3.61 0.9 9 20/02/2015 0-15 81.1 1.03 1.03 7.8 21/07/2015 0-15 91.4 2.86 1.22 15.3 

D3 17/07/2014 0-15 86.9 6.99 2.33 18.6 20/02/2015 0-15 82.2 0.06 1.19 4.6 21/07/2015 0-15 90.7 1.42 0.74 8.1 

D4 17/07/2014 0-15 81.1 8.59 0.8 18.8 20/02/2015 0-15 78.6 1.49 1.06 9.6 21/07/2015 0-15 82.9 6.66 1.92 32.2 

GH1 17/07/2014 0-15 87.6 1.79 0.92 5.4 20/02/2015 0-15 83.7 1.35 1.19 9.6 21/07/2015 0-15 89.9 1.74 1.32 11.5 

GH2 17/07/2014 0-15 87 2.06 1.03 6.2 20/02/2015 0-15 82 0.64 0.89 5.8 21/07/2015 0-15 89.1 2.79 1.13 14.7 

GH3 17/07/2014 0-15 82.3 30.02 1.08 62.2 20/02/2015 0-15 79.1 0.95 0.88 6.8 21/07/2015 0-15 83.8 14.16 1.7 59.5 

GH4 17/07/2014 0-15 86.2 1.66 1.01 5.3 20/02/2015 0-15 82.1 1.36 0.71 7.8 21/07/2015 0-15 90.5 2.33 1.11 12.9 

MHF1 17/07/2014 0-15 87.9 2.12 0.77 5.8 20/02/2015 0-15 84.4 0.48 0.85 5 21/07/2015 0-15 90.9 4.26 1.16 20.3 

MHF2 17/07/2014 0-15 88.8 2.26 0.93 6.4 20/02/2015 0-15 84.8 0.79 1.14 7.2 21/07/2015 0-15 91.5 1.59 1.26 10.7 

MHF3 17/07/2014 0-15 87.6 2.29 1.25 7.1 20/02/2015 0-15 84.6 0.06 0.95 3.8 21/07/2015 0-15 92.7 2.33 0.88 12 

MHF4 17/07/2014 0-15 87.1 3.02 1.04 8.1 20/02/2015 0-15 82.2 0.06 0.79 3.2 21/07/2015 0-15 91.3 3.28 0.98 16 
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Table B2 Soil macronutrients data  

Sample 

P  
Sep.2013  
(mg L-1) 

K  
Sep.2013  
(mg L-1) 

Mg  
Sep.2013  
(mg L-1) 

SO4-S  
Sep.2013  
(mg L-1) 

P  
Feb.2014  
(mg L-1) 

K  
Feb.2014  
(mg L-1) 

Mg  
Feb.2014  
(mg L-1) 

SO4-S  
Feb.2014  
(mg L-1) 

P  
Feb.2015 
 (mg L-1) 

K  
Feb.2015  
(mg L-1) 

Mg  
Feb.2015  
(mg L-1) 

SO4-S  
Feb.2015  
(mg L-1) 

P  
Jul.2015  
(mg L-1) 

K  
Jul.2015  
(mg L-1) 

Mg  
Jul.2015  
(mg L-1) 

SO4-S  
Jul.2015  
(mg L-1) 

P1 28.4 86 52 8.9 25 83.8 38.1 5.7 23 96.3 48.2 3.6 26 98.3 44.8 6.8 

P2 21.4 76 57 15.4 17.6 82.2 62.35 5.1 28.2 120.8 80.5 5.0 22.6 63.6 66.7 9.1 

P3 18.6 110 72 13.4 21.2 134.3 80.25 4.8 28 165.9 83.5 5.1 36 143.0 70.9 10.2 

P4 31 140 86 13.9 25.4 137.5 93.15 7.4 37.6 170.8 96.4 4.7 50.2 160.0 91.6 7.8 

FAR1 14.4 94 51 6.5 11.6 73.1 59.75 6.8 13 74.5 57.9 3.9 25.4 68.9 35.1 8.4 

FAR2 22.8 128 48 6.9 15.6 81.1 57.3 7.6 15 85.4 48.5 3.8 18.8 71.3 44.3 5.4 

FAR3 16.4 134 51 6.5 14.8 76.3 61.25 7.1 19.2 110.8 54.1 3.4 18.4 80.2 54.1 5.9 

FAR4 18.4 118 49 8.0 13 95.1 57.15 4.0 19.2 132.6 56.8 4.4 17.4 81.4 53.9 5.1 

MH1 31.2 82 53 8.0 24.6 91.3 41.05 5.9 37.8 165.6 49.7 3.8 39.6 79.8 33.4 6.9 

MH2 25.6 87 45 7.5 23.2 113.9 29.6 6.8 28.4 129.3 44.4 3.6 49 245.0 54.5 8.7 

MH3 37.6 92 41 6.4 37.8 147.2 43.4 4.5 46.6 160.4 30 3.8 43.8 109.0 30.8 7.4 

MH4 31.4 122 45 8.0 34.4 172.4 46.75 6.8 38.6 232.1 45.1 3.6 39.2 141.0 34.6 7.1 

FH1 20.8 131 45 7.6 22.2 125.7 43.15 8.4 19.6 140.2 41.2 3.2 23.4 73.3 32.6 7.7 

FH2 16.2 109 59 7.6 15.8 128.9 63.2 8.7 15.8 124.9 63 4.0 16.2 106.0 55.5 7.9 

FH3 18.6 121 57 6.5 21.4 164.4 65.4 6.1 17 203.4 86 3.5 19 133.0 62 5.1 

FH4 22.8 85 57 12.1 26.4 109.1 65.5 10.2 24.6 86.6 74.1 7.0 25 58.0 60.6 12.5 

SF1 51 124 46 8.3 26.2 128.4 51.2 8.4 55.2 234.4 48.3 3.1 64.8 204.0 50 11.3 

SF2 41.2 107 44 7.2 33.6 109.6 48.3 6.4 53.6 206.3 40.3 3.0 44.8 138.0 40.9 11.0 

SF3 41.4 91 43 6.3 36.8 184.3 43.5 7.5 46 160.4 46.8 2.5 41.2 101.0 44.6 5.7 

SF4 32 86 52 7.9 28 110.7 75.3 7.2 31.8 108.0 55.8 2.4 36 107.0 74 7.1 

SW1 40.6 142 45 6.7 37 167.6 51.45 7.0 38.4 199.0 51.6 2.6 38.8 242.0 42.7 7.3 

SW2 39 114 50 19.8 26.6 120.3 59.25 8.5 34.6 152.7 43.6 2.8 31.6 103.0 51 8.8 

SW3 23 69 48 9.6 15 123.0 56.5 7.9 25.6 117.2 55.1 3.4 20 103.0 54.7 9.0 

SW4 11.8 79 53 6.3 10 73.1 58.5 7.4 13.6 87.4 39.8 2.6 18 133.0 54.5 7.6 

D1 13.8 95 54 8.5 12.6 103.2 38.85 6.5 12.8 118.5 41.6 3.9 14.4 128.0 59.5 7.2 

D2 14.2 126 50 8.3 11 132.7 35.5 4.3 13.4 147.1 56.7 4.0 12.4 100.0 48.8 8.2 

D3 34.4 189 69 8.2 31.8 168.7 69.25 7.1 29 170.8 72.8 3.4 32 168.0 72.3 5.6 

D4 21.8 68 48 8.7 22.6 97.2 48.15 5.2 34 87.4 67 4.3 36.8 94.7 58.8 8.0 

GH1 52.2 138 51 7.2 43 196.1 72.15 11.0 54.6 182.9 54.9 3.3 49.6 118.0 54.5 8.4 

GH2 27.4 153 64 6.7 29.6 153.6 77.15 10.8 26.8 149.4 53 3.6 25.2 102.0 65.8 7.0 

GH3 34.2 170 57 8.5 33.6 175.7 68.3 10.7 43 175.3 54.3 4.2 41.6 149.0 49.5 8.6 

GH4 24.6 141 44 9.1 24.6 137.5 50.95 11.5 18.2 148.3 36.3 4.0 16.8 105.0 30.6 6.9 

MHF1 26.8 90 50 9.7 28.4 138.1 45.35 4.7 32.6 168.4 49.4 3.4 29.2 121.0 46.8 6.6 

MHF2 34.6 138 47 7.0 25 160.6 40.05 5.2 29.8 147.7 41.1 2.6 28.6 146.0 43.5 5.8 

MHF3 38.6 99 43 6.8 35.6 143.4 44.45 4.7 41 118.9 35.2 3.6 43.2 112.0 37 6.1 

MHF4 29.4 133 64 9.5 31.2 122.5 46.15 7.6 25.2 146.3 64.3 3.8 21 93.5 47 6.3 
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Figure B2 Map of location of Soil Organic Carbon (SOC) and soil physical measurement
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Table B3 Soil Organic Carbon (SOC) data 

Sample 
SOC (%)  

May2013 

SOC (%)  

Sep.2013 

SOC (%)  

Feb.2014 

SOC (%)  

Feb.2015 

SOC (%)  

Jul.2015 
Sample 

SOC (%)  

May2013 

SOC (%)  

Sep.2013 

SOC (%)  

Feb.2014 

SOC (%)  

Feb.2015 

SOC (%)  

Jul.2015 
Sample 

SOC (%)  

May2013 

SOC (%)  

Sep.2013 

SOC (%)  

Feb.2014 

SOC (%)  

Feb.2015 

SOC (%)  

Jul.2015 

P1   1.508 1.508 1.508 1.566 FH1   1.508 1.218 1.334 1.392 D1   1.74 1.972 1.914 2.03 

P2   2.03 2.262 2.552 2.61 FH2   1.972 2.03 2.262 2.32 D2   1.856 1.914 2.088 1.972 

P3   2.378 2.378 2.494 2.436 FH3   1.914 1.682 1.682 1.914 D3   1.45 1.392 1.508 1.566 

P4   2.842 3.248 3.132 3.364 FH4   2.494 2.958 3.19 3.48 D4   2.378 2.378 2.668 2.784 

P5 1.88         FH5 1.47         D5 1.64         

P6 1.77         FH6 2.10         D6 1.12         

P7 2.05         FH7 1.05         D7 1.04         

P8 1.21         FH8 1.31         D8 0.97         

P9 1.35         FH9 1.05         D9 1.48         

P10 1.81         FH10 1.01         D10 1.55         

P11 1.33         FH11 0.97         D11 2.07         

P12 1.06         FH12 1.09         D12 1.49         

P13 1.08         FH13 1.19         D13 1.69         

P14 1.44         FH14 0.98         D14 1.15         

P15 1.53         FH15 0.81         D15 0.91         

P16 1.59         FH16 3.67         D16 2.08         

FAR1   1.798 1.798 1.914 1.972 SF1   1.276 1.45 1.276 1.45 GH1   1.45 2.378 1.508 1.74 

FAR2   1.74 1.624 1.682 1.682 SF2   1.102 1.218 1.218 1.16 GH2   1.566 2.146 1.624 1.798 

FAR3   1.798 1.624 1.798 1.74 SF3   1.044 1.218 1.16 1.102 GH3   2.32 2.9 2.61 2.726 

FAR4   1.856 1.682 1.856 1.798 SF4   1.276 1.566 1.45 1.508 GH4   2.03 2.262 1.972 2.262 

FAR5 1.23         SF5 1.02         GH5 1.98         

FAR6 1.18         SF6 0.82         GH6 2.11         

FAR7 0.83         SF7 0.98         GH7 1.39         

FAR8 0.80         SF8 0.81         GH8 1.92         

FAR9 1.21         SF9 0.82         GH9 0.93         

FAR10 1.10         SF10 0.82         GH10 1.59         

FAR11 1.38         SF11 0.87         GH11 1.94         

FAR12 1.20         SF12 0.83         GH12 0.78         

FAR13 1.53         SF13 0.68         GH13 0.69         

FAR14 1.27         SF14 0.85         GH14 0.80         

FAR15 1.46         SF15 0.96         GH15 1.55         

FAR16 1.49         SF16 0.92         GH16 2.48         

MH1   1.45 1.218 1.45 1.334 SW1   1.566 1.798 1.74 1.914 MHF1   1.566 1.45 1.45 1.624 

MH2   1.392 1.45 1.508 1.74 SW2   1.45 1.682 1.682 1.74 MHF2   1.334 1.044 1.102 1.218 

MH3   1.218 1.16 1.334 1.276 SW3   1.74 1.914 2.088 2.436 MHF3   1.102 1.16 1.16 1.334 

MH4   1.218 1.276 1.508 1.45 SW4   1.74 1.798 1.914 2.088 MHF4   1.856 1.682 1.74 1.856 

MH5 0.81         SW5 2.25         MHF5 1.07         

MH6 0.98         SW6 0.95         MHF6 0.93         

MH7 1.00         SW7 0.89         MHF7 1.24         

MH8 1.03         SW8 1.39         MHF8 1.00         

MH9 0.95         SW9 1.70         MHF9 0.79         

MH10 0.82         SW10 1.43         MHF10 0.78         

MH11 1.00         SW11 2.02         MHF11 0.85         

MH12 1.12         SW12 3.06         MHF12 1.02         

MH13 0.90         SW13 2.61         MHF13 1.02         

MH14 1.05         SW14 1.98         MHF14 0.96         

MH15 0.98         SW15 2.02         MHF15 0.76         

MH16 0.98         SW16 2.27         MHF16 0.78         
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Figure B3 Photographs of field works to carry out soil physical measurements (bulk density, infiltration rate and penetration resistance) and soil sampling in May 2013 
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Table B4 Bulk density (BD), Infiltration rate (IR), and Penetration resistance (PR) data 

Sample 

BD  

May2013 

(gm/cm3) 

BD  

Jun.2014 

(gm/cm3) 

BD  

Jun.2015 

(gm/cm3) 

IR 

May2013 

(mm/hr) 

IR 

Jun.2014 

(mm/hr) 

IR 

Jun.2015 

(mm/hr) 

PR 

May2013 

 (N cm-2) 

PR 

Jun.2014 

 (N cm-2) 

PR 

Jun.2015 

 (N cm-2) Sample 

BD  

May.2013 

(gm/cm3) 

BD  

Jun.2014 

(gm/cm3) 

BD  

Jun.2015 

(gm/cm3) 

IR 

May2013 

(mm/hr) 

IR 

Jun.2014 

(mm/hr) 

IR 

Jun.2015 

(mm/hr) 

PR 

May2013 

 (N cm-2) 

PR 

Jun.2014 

 (N cm-2) 

PR 

Jun.2015 

 (N cm-2) 

P1  1.51 1.52  64 0  230 357 SF1  1.72 1.59  30 0  333 333 

P2  1.41 1.23  46 3  227 413 SF2  1.58 1.53  46 3  277 367 

P3  1.57 1.26  91 15  210 390 SF3  1.62 1.66  51 15  250 313 

P4  1.37 1.17  78 0  207 423 SF4  1.51 1.35  25 0  240 270 

P5 1.45   48   347   SF5 1.66   70   387   
P6 1.31   48   427   SF6 1.73   50   407   
P7 1.36   49   480   SF7 1.57   59   427   
P8 1.44   29   373   SF8 1.63   38   420   
P9 1.45   51   493   SF9 1.60   27   453   

P10 1.26   70   393   SF10 1.58   57   360   
P11 1.50   27   533   SF11 1.51   43   400   
P12 1.62   71   393   SF12 1.62   76   400   
P13 1.48   28   533   SF13 1.67   73   440   
P14 1.50   5   420   SF14 1.66   48   373   
P15 1.59   38   413   SF15 1.59   16   453   
P16 1.33   46   587   SF16 1.64   53   533   

FAR1  1.57 1.34  58 4  250 343 MH1  1.83 1.45  29 6  347 367 

FAR2  1.50 1.44  22 3  200 397 MH2  1.71 1.49  20 6  260 453 

FAR3  1.48 1.47  40 3  253 300 MH3  1.68 1.53  55 6  307 420 

FAR4  1.49 1.31  51 0  380 380 MH4  1.86 1.33  23 3  275 380 

FAR5 1.54   48   340   MH5 1.67   95   453   
FAR6 1.57   51   360   MH6 1.60   81   460   
FAR7 1.60   38   413   MH7 1.66   62   407   
FAR8 1.66   53   493   MH8 1.64   38   540   
FAR9 1.52   70   387   MH9 1.63   87   427   

FAR10 1.51   40   373   MH10 1.52   32   413   
FAR11 1.57   21   433   MH11 1.73   79   500   
FAR12 1.48   12   427   MH12 1.67   137   340   
FAR13 1.50   47   503   MH13 1.70   88   460   
FAR14 1.57   53   460   MH14 1.50   86   460   
FAR15 1.64   56   407   MH15 1.65   95   460   
FAR16 1.56   52   320   MH16 1.58   130   493   
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Sample 

BD  

May2013 

(gm/cm3) 

BD  

Jun.2014 

(gm/cm3) 

BD  

Jun.2015 

(gm/cm3) 

IR 

May2013 

(mm/hr) 

IR 

Jun.2014 

(mm/hr) 

IR 

Jun.2015 

(mm/hr) 

PR 

May2013 

 (N cm-2) 

PR 

Jun.2014 

 (N cm-2) 

PR 

Jun.2015 

 (N cm-2) Sample 

BD  

May2013 

(gm/cm3) 

BD  

Jun.2014 

(gm/cm3) 

BD  

Jun.2015 

(gm/cm3) 

IR 

May2013 

(mm/hr) 

IR 

Jun.2014 

(mm/hr) 

IR 

Jun.2015 

(mm/hr) 

PR 

May2013 

 (N cm-2) 

PR 

Jun.2014 

 (N cm-2) 

PR 

Jun.2015 

 (N cm-2) 

FH1  1.72 1.61  23 3  323 343 SW1  1.67 1.36  62 6  323 283 

FH2  1.70 1.48  7 3  400 397 SW2  1.70 1.60  19 0  400 263 

FH3  1.79 1.60  13 3  343 300 SW3  1.53 1.47  77 0  343 327 

FH4  1.46 1.46  31 6  273 380 SW4  1.62 1.45  30 8  273 300 

FH5 1.50   23   517   SW5 1.51   78   580   
FH6 1.50   61   460   SW6 1.54   75   533   
FH7 1.74   43   420   SW7 1.58   75   507   
FH8 1.47   47   493   SW8 1.50   61   420   
FH9 1.68   36   467   SW9 1.44   38   327   

FH10 1.73   78   387   SW10 1.61   45   413   
FH11 1.69   59   415   SW11 1.36   57   373   
FH12 1.69   56   400   SW12 1.31   75   320   
FH13 1.61   38   447   SW13 1.20   68   433   
FH14 1.62   58   380   SW14 1.25   59   593   
FH15 1.54   45   313   SW15 1.30   74   400   
FH16 1.67   107   460   SW16 1.40   35   387   

D1  1.67 1.39  59 11  300 453 GH1  1.59 1.43  32 6  227 407 

D2  1.54 1.28  10 6  187 480 GH2  1.51 1.47  34 8  213 473 

D3  1.89 1.56  21 6  227 467 GH3  1.44 1.36  57 16  207 353 

D4  1.42 1.15  50 6  300 367 GH4  1.46 1.23  46 7  267 407 

D5 1.27   68   533   GH5 1.36   57   533   
D6 1.51   50   473   GH6 1.44   85   493   
D7 1.45   63   560   GH7 1.54   92   380   
D8 1.62   46   540   GH8 1.53   71   393   
D9 1.39   119   500   GH9 1.57   78   433   

D10 1.39   84   507   GH10 1.61   96   467   
D11 1.40   55   360   GH11 1.38   120   370   
D12 1.38   112   577   GH12 1.56   133   413   
D13 1.39   84   473   GH13 1.55   101   427   
D14 1.52   100   543   GH14 1.62   86   400   
D15 1.61   164   580   GH15 1.49   81   427   
D16 1.39   51   507   GH16 1.33   76   373   
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Sample 

BD  

May2013 

(gm/cm3) 

BD  

Jun.2014 

(gm/cm3) 

BD  

Jun.2015 

(gm/cm3) 

IR 

May.2013 

(mm/hr) 

IR 

Jun.2014 

(mm/hr) 

IR 

Jun.2015 

(mm/hr) 

PR 

May2013 

 (N cm-2) 

PR 

Jun.2014 

 (N cm-2) 

PR 

Jun.2015 

 (N cm-2) 

MHF1  1.57 1.51  33 11  223 380 

MHF2  1.68 1.45  35 8  213 387 

MHF3  1.62 1.40  22 8  223 460 

MHF4  1.64 1.39  59 6  213 480 

MHF5 1.58   80   493   
MHF6 1.57   70   420   
MHF7 1.56   57   497   
MHF8 1.54   84   440   
MHF9 1.55   76   520   

MHF10 1.60   59   360   
MHF11 1.52   9   460   
MHF12 1.63   38   427   
MHF13 1.52   57   453   
MHF14 1.55   57   533   
MHF15 1.54   52   370   
MHF16 1.66   56   360   

 

 

 

 

 

 

 

 

 



 

 

196 

  

APPENDIX C Location of cover crop sampling and chemical 
analysis 

 

Figure C1 Map of location of sampling Radish cover crop 

Figure C2 Photographs of Oilseed radish cover crop sampling 

Table C1 Chemical analysis of Oilseed Radish cover crop for leaf and 
root 

 



 

 

197 

  

 

Figure C1 Map of location of sampling Radish cover crop on 22nd January 2014 
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Figure C2 Photographs of Oilseed radish cover crop sampling in January 2014 
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Table C1 Chemical analysis of Oilseed Radish cover crop (Raphanus sativus) sampled on 22nd January 2014 for leaf (top) and root (bottom) 

Sample Total N Total P Total K Total Mg Total S Total C 
C:N 
Ratio 

Dry 
Matter 

Total Dry 
Weight 

Total Dry 
Weight 

Total Fresh 
Weight 

Sward 
height Cover 

name % w/w mg/kg mg/kg mg/kg mg/kg % :1 % g g dry wt m-2 g (mm) % 

D1 3.61 2734 27960 957 5893 36.9 10.2 9.9 49.9 199.6 506 470 90 

D2 3.62 3285 28335 1005 6116 40.4 11.2 8.6 50.5 202 587 280 75 

D3 2.76 3767 36442 1110 5861 31.8 11.5 9.8 94.6 378.4 966 360 90 

D4 3.17 3116 30133 1154 6179 33.3 10.5 9.2 80.7 322.8 875 315 95 

FH1 2.89 3526 34471 1159 8423 39.1 13.5 9.2 47.3 189.2 519 310 80 

FH2 2.25 2903 29104 1100 5308 39.8 17.7 10.4 85.6 342.4 822 540 85 

FH3 2.13 2984 25979 1104 4922 32.6 15.3 11.4 69.7 278.8 609 305 70 

FH4 3.28 4079 30467 1372 7492 36.4 11.1 8 24.6 98.4 307 155 30 

GH1 4.11 4858 33946 1191 7013 38.2 9.3 7.3 19.6 78.4 267 175 30 

GH2 2.61 2683 24905 876 6128 41.2 15.8 9.8 58 232 592 325 85 

GH3 2.73 2798 22355 857 5323 35 12.8 11.2 41 164 365 230 75 

GH4 2.54 2723 26507 802 5781 35.5 14 10.8 59.9 239.6 553 285 65 

MH1 2.86 3145 28673 973 7096 41.7 14.6 10.4 42.5 170 410 295 30 

MH2 2.68 3411 22795 1088 6523 41.5 15.5 6.8 42 168 616 385 40 

MH3 3.14 3320 30777 1113 6248 41.8 13.3 9.9 63.5 254 644 335 50 

MH4 3.04 3262 27903 1158 7620 39 12.8 9.2 61.6 246.4 670 305 85 

MHF1 3.43 3941 30388 1017 7209 35.5 10.4 8.4 29.9 119.6 355 250 40 

MHF2 3.3 3391 32130 967 6672 39.5 12 9.3 51.5 206 552 315 60 

MHF3 3.25 4027 30130 908 7532 40.5 12.4 9.3 29.4 117.6 318 153 50 

MHF4 4.72 3739 30506 971 7820 39.6 8.4 7.5 103 412 1369 470 95 

SF1 2.74 3464 27591 879 7161 42.5 15.5 9.1 56.1 224.4 613 455 75 

SF2 2.7 3189 27380 940 7162 44.4 16.4 10 51.6 206.4 516 450 40 

SF3 2.5 2826 27884 832 5994 43.1 17.3 9.2 45.5 182 497 344 35 

SF4 2.57 2659 24164 826 6131 42.5 16.6 9.7 64.4 257.6 666 375 75 

SW1 3.52 4799 44972 1143 6566 40.2 11.4 7.5 51.3 205.2 685 365 80 

SW2 3.22 3806 37991 1085 7411 41 12.7 7.8 52 208 665 370 70 

SW3 2.9 3709 32600 1033 6558 42.3 14.6 7.9 28.3 113.2 360 280 50 

SW4 3.5 3651 31802 1098 8542 42.3 12.1 8.8 19.6 78.4 222 240 25 
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SAMPLE Total N Total P Total K Total Mg Total S Total C 
Dry 

Matter 
Total Dry 
Weight Total Dry Weight 

Total Fresh 
Weight 

NAME % w/w mg/kg mg/kg mg/kg mg/kg % % g g dry wt m-2 g 

D1 3.23 3624 36217 1815 6933 39.3 8.6 9 36 105 

D2 2.68 3637 27497 1603 5650 41.7 9.9 11.8 47.2 120 

D3 2.67 8966 46158 1531 8106 40.5 8.7 10.2 40.8 117 

D4 3.09 4680 35580 1663 7906 42.4 8.1 13.6 54.4 169 

FH1 1.77 6305 32230 1382 6404 42.2 10.9 20.5 82 189 

FH2 1.68 6206 36634 1637 7583 43.3 11.3 17.1 68.4 152 

FH3 1.68 6640 35749 1497 7254 40.6 11.5 16.3 65.2 141 

FH4 3.01 5607 33664 1805 8653 41.1 9.2 12.4 49.6 135 

GH1 3.78 8183 53035 1916 8740 39.1 7.3 9.2 36.8 126 

GH2 1.57 6779 32878 1514 6268 42.2 11.6 17.5 70 151 

GH3 1.71 7740 34107 1772 6672 41.5 12.4 16.4 65.6 132 

GH4 1.9 6698 39930 1292 6658 43 10.5 16.7 66.8 159 

MH1 1.46 5950 32317 1419 6012 43.9 12.3 13.9 55.6 113 

MH2 1.38 7143 26477 1635 6906 44.7 13.5 18.2 72.8 134 

MH3 1.77 5907 33515 1188 6515 42.3 11 29 116 264 

MH4 1.74 6183 30676 1309 6458 43.8 11.2 15.8 63.2 141 

MHF1 3.05 5748 33405 1390 6608 41.2 10.9 10.5 42 96.6 

MHF2 1.96 6334 38954 1560 6804 42.8 10.2 12 48 118 

MHF3 2.06 8422 35556 1268 6303 42.8 11.1 14.5 58 130 

MHF4 3.92 5855 51330 1842 8097 37.6 6.7 13.6 54.4 203 

SF1 1.98 8189 42354 1683 8815 42.9 8.8 10.2 40.8 115 

SF2 1.18 7274 30257 1387 4854 45 13.8 23.5 94 170 

SF3 1.24 6117 31384 1184 4790 43.2 11.7 16.5 66 141 

SF4 1.26 6572 36439 1580 6070 41.4 11.2 30 120 267 

SW1 2.26 9772 43939 1523 6657 42.2 8.4 11.6 46.4 138 

SW2 1.74 5799 36719 1146 7069 43.2 10.1 18.8 75.2 186 

SW3 1.66 7022 34600 1535 6544 43.5 10.8 10.4 41.6 96.8 

SW4 3.16 6835 42193 2004 8123 41.7 9.8 10.9 43.6 111 
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APPENDIX D Drain photographs and drain data 

 

Figure D1 Location map of drains  

Table D1 coordinates of drains 

Figure D2 photographs of drains 

Table D2 Drain flow rates data 

Table D3 Dissolved nitrate concentration in drains 

Table D4 Ammonium concentration in drains 

Table D5 Nitrite concentration in drains 

Table D6 pH values of drain samples 

Table D7 Weekly rainfall data 
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Figure D1 Map of field drain network and locations of sampled drains (indicated by red circles)  

Table D1 Coordinates of drains 

Drain name Latitude (N) Longitude (E) 

D1 52.78508 1.119731 

D2 52.78497 1.118388 

D3 52.78428 1.114691 

D4 52.78617 1.122198 

D5 52.78732 1.128453 

D6 52.78724 1.127815 

D7 52.78427 1.113755 

D8 52.78577 1.108775 

D9 52.78615 1.107704 

D10 52.78661 1.105097 

D11 52.79221 1.115068 

D13 52.78365 1.114363 

D16 52.78169 1.117516 

D11L 

D05R 
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Figure D2.1 photos of field drain of D1, D2, D3, and D4 

   

D1 

D3 D4 

D2 
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Figure D2.2 photos of field drain of D5, D6, D7, and D8  

   

D7 

D5 

D8 

D6 
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Figure D2.3 photos of field drain of D9, D10, D11, D13, and D16 

    

D11 

D10 D9 

D16 D13 

D11 
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Table D2 Drain flow rates data 

 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 

 
Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

03/04/2013 0.125 0.036 0.005 0.115 0.081 0.024   0.124 0.075    
09/04/2013 0.192 0.036 0.005 0.118 0.077 0.029 0.013 0.018 0.105 0.071    
16/04/2013 0.145 0.040 0.003 0.114 0.081 0.027 0.005  0.071 0.063    
23/04/2013 0.088 0.035  0.092 0.061 0.016   0.049 0.043    
30/04/2013 0.062 0.037  0.082 0.058 0.010   0.025 0.028    
07/05/2013 0.050 0.039  0.079 0.055 0.014   0.023 0.021    
14/05/2013 0.055 0.044  0.072 0.058 0.014   0.017 0.016    
21/05/2013 0.041 0.047  0.065 0.052    0.007 0.010    
28/05/2013 0.062 0.046  0.113 0.052 0.035 0.054  0.020 0.017    
04/06/2013 0.033 0.030  0.067 0.039 0.008    0.005    
11/06/2013 0.023 0.034  0.050 0.030         
18/06/2013 0.011 0.033  0.034 0.027         
25/06/2013 0.005 0.029  0.023 0.010         
02/07/2013 0.003 0.029  0.017 0.020         
09/07/2013  0.020  0.005 0.015         
16/07/2013  0.015            
23/07/2013  0.014            
30/07/2013  0.014            
06/08/2013  0.022            
13/08/2013  0.025            
20/08/2013  0.029            
27/08/2013 0.005 0.034  0.008          
03/09/2013  0.032  0.007          
10/09/2013  0.033  0.009          
17/09/2013 0.011 0.046  0.023 0.007         
24/09/2013 0.012 0.037  0.018 0.005         
01/10/2013 0.007 0.033  0.013 0.005         
08/10/2013 0.009 0.029  0.010          
15/10/2013 0.024 0.068  0.065          
22/10/2013 0.039 0.108  0.120 0.010 0.024 0.201  0.015 0.008  0.016  

29/10/2013 0.085 0.094 0.007 0.089 0.011 0.031 0.178 0.044 0.238 0.078  0.040  

05/11/2013 0.062 0.071  0.079 0.011 0.027 0.124 0.092 0.150 0.190  0.036 0.040 

12/11/2013 0.217 0.101 0.018 0.137 0.022 0.075 0.241 0.283 0.511 0.426  0.260 0.193 

19/11/2013 0.152 0.083 0.008 0.101 0.019 0.048 0.106  0.271 0.168  0.101 0.070 

26/11/2013 0.248 0.082 0.012 0.105 0.022 0.053 0.147 0.062 0.416 0.256  0.159 0.092 

03/12/2013 0.134 0.072  0.088 0.024 0.039 0.054 0.035 0.202 0.111  0.044 0.041 

10/12/2013 0.059 0.060  0.070 0.015 0.015 0.009 0.017 0.066 0.057   0.016 

17/12/2013 0.043 0.066  0.006 0.017 0.013 0.032  0.066 0.048   0.011 

07/01/2014 0.398 0.078 0.049 0.156 0.030 0.036 0.623 0.701 0.729 0.402 0.279 0.595 0.246 

14/01/2014 0.585 0.077 0.042 0.174 0.065 0.078 0.470 0.461 0.628 0.471 0.279 0.595 0.333 

21/01/2014 0.679 0.077 0.039 0.183 0.082 0.100 0.393 0.342 0.578 0.506 0.279 0.594 0.376 

28/01/2014 0.773 0.076 0.035 0.193 0.100 0.121 0.316 0.222 0.528 0.541  0.594 0.420 

04/02/2014 0.711 0.088 0.028 0.182 0.085 0.112 0.199 0.119 0.558 0.520 0.139 0.324 0.469 
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 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 

 
Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

Flow 
(L s-1) 

11/02/2014 1.055 0.085 0.060 0.309 0.125 0.243 0.450 0.196 0.710 0.682 0.286 0.733 0.781 

18/02/2014 0.691 0.082 0.048 0.199 0.173 0.119 0.221 0.104 0.462 0.424 0.130 0.267 0.358 

25/02/2014 0.427 0.081 0.017 0.188 0.106 0.057 0.064 0.053 0.250 0.195 0.028 0.102 0.219 

04/03/2014 0.487 0.078 0.022 0.197 0.112 0.066 0.160 0.083 0.251 0.179 0.058 0.253 0.248 

11/03/2014 0.221 0.070 0.033 0.115 0.092 0.031 0.009 0.028 0.126 0.137  0.009 0.056 

18/03/2014 0.192 0.071 0.020 0.111 0.097 0.027 0.005 0.032 0.064 0.115   0.052 

01/04/2014 0.268 0.074 0.029 0.136 0.088 0.033 0.048 0.041 0.040 0.143   0.058 

15/04/2014 0.162 0.072 0.029 0.107 0.061 0.021 0.048 0.041 0.040 0.072   0.034 

29/04/2014 0.057 0.070  0.078 0.034 0.008    0.001   0.010 

13/05/2014 0.080 0.093  0.088 0.045 0.013  0.055  0.212   0.012 

27/05/2014 0.393 0.083 0.026 0.073 0.029 0.022  0.176  0.693   0.050 

10/06/2014 0.277 0.085 0.012 0.073 0.022 0.013 0.010 0.036  0.243   0.025 

24/06/2014 0.084 0.054  0.033 0.019     0.022    
08/07/2014 0.042 0.048  0.018 0.017     0.007    
22/07/2014 0.059 0.045  0.016 0.016     0.010    
05/08/2014 0.020 0.034   0.011         
19/08/2014 0.029 0.042  0.018          
02/09/2014 0.031 0.053  0.023          
16/09/2014 0.031 0.066  0.021          
30/09/2014 0.032 0.080  0.018          
07/10/2014 0.047 0.060  0.035 0.005         
14/10/2014 1.508  0.177 0.078 0.045 0.127 1.119 0.438    0.503 0.057 

21/10/2014 0.377 0.124 0.016 0.042 0.010 0.032 0.085 0.042 0.291   0.050 0.012 

28/10/2014 0.209 0.099 0.005 0.042 0.008 0.029 0.037  0.209     
04/11/2014 0.137 0.090  0.025 0.011 0.013   0.090     
11/11/2014 0.252 0.116 0.020 0.043 0.016 0.058 0.135 0.066 0.380 0.022   0.024 

18/11/2014 1.170 0.159 0.118 0.058 0.033 0.176 0.472 0.260 0.855 0.336 0.092 0.460 0.145 

25/11/2014 2.351 0.170 0.207 0.058 0.046 0.234 0.567 0.247  0.827 0.442 0.713  

02/12/2014 0.719 0.130 0.066 0.047 0.044 0.088 0.132 0.078 0.491 0.386 0.090 0.213 0.181 

09/12/2014 0.271 0.117 0.019 0.024 0.038 0.042 0.042 0.034 0.190 0.149  0.028 0.039 

16/12/2014 0.416 0.119 0.026 0.031 0.044 0.048 0.078 0.066 0.238 0.205 0.020 0.063 0.060 

06/01/2015 0.450 0.119 0.042 0.034 0.065 0.059 0.086 0.070 0.293 0.251 0.026 0.119 0.178 

13/01/2015 1.009 0.188 0.213 0.053 0.099 0.151 0.590 0.431 0.602 0.487 0.287 0.808  

20/01/2015 0.450 0.127 0.032 0.042 0.067 0.056 0.065 0.044 0.291 0.222  0.091 0.116 

27/01/2015 0.477 0.124 0.046 0.043 0.073 0.061 0.109 0.077 0.288 0.230  0.133 0.118 

03/02/2015 1.138 0.150 0.116 0.065 0.086 0.132 0.260 0.186 0.658 0.513 0.222 0.405  

10/02/2015 0.536 0.126 0.038 0.065 0.068 0.064 0.085 0.073 0.290 0.202 0.032 0.129  

17/02/2015 0.222 0.102 0.009 0.033 0.065 0.024  0.015 0.158 0.111    
24/02/2015 0.666 0.118 0.059 0.058 0.071 0.069 0.162 0.124 0.326 0.284 0.050 0.205 0.185 

03/03/2015 0.414 0.112 0.028 0.079 0.057 0.078 0.075 0.089 0.234 0.195  0.100 0.112 

10/03/2015 0.197 0.097 0.006 0.032 0.067 0.023 0.008  0.125 0.093   0.028 

17/03/2015 0.184 0.079  0.024 0.046 0.016   0.059 0.065   0.016 

24/03/2015 0.154 0.078  0.029 0.043 0.010   0.035 0.065   0.013 

31/03/2015 0.202 0.078 0.025 0.045 0.068 0.032 0.085 0.119 0.057 0.174  0.054  
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Table D3 Dissolved nitrate concentration in drains 
 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 

Date NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 

 (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) 

03/04/2013 8.99 2.33 5.79 3.22 10.71 6.99   11.81 12.12    
09/04/2013 8.75 2.26 5.18 3.31 10.87 6.91 6.91 3.43 11.61 12.15    
16/04/2013 8.44 1.96 5.38 3.11 11.20 7.32 2.32  12.30 11.59    
23/04/2013 8.61 1.88  3.59 11.67 8.28   13.27 11.26    
30/04/2013 7.59 1.58  3.26 11.39 7.89   13.05 9.88    
07/05/2013 7.34 1.56  3.16 11.20 6.78   13.04 9.36    
14/05/2013 7.24 1.81  3.75 11.34 6.93   12.85 8.13    
21/05/2013 5.34 1.22  2.89 10.32    11.68 6.13    
28/05/2013 5.10 2.13  3.92 11.10 7.01 8.29  11.95 6.31    
04/06/2013 4.35 1.35  3.68 10.04 6.62    4.39    
11/06/2013 3.66 0.86  3.48 9.35         
18/06/2013 2.43 0.80  3.92 8.81         
25/06/2013 1.32 0.46  4.27 8.65         
02/07/2013 1.28 0.48  4.96 7.78         
09/07/2013  0.48  6.76 7.25         
16/07/2013  0.44            
23/07/2013  0.37            
30/07/2013  0.30            
06/08/2013  0.30            
13/08/2013  0.36            
20/08/2013  0.35            
27/08/2013  0.97  0.40 0.50         
03/09/2013  0.42  0.47          
10/09/2013  0.33  0.41          
17/09/2013 1.12 1.37  1.40 4.07         
24/09/2013 0.87 0.62  0.65 3.61         
01/10/2013 0.88 0.68  0.62 3.22         
08/10/2013 0.87 0.70  0.61          
15/10/2013 3.37 3.55  1.72 7.90         
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 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 

Date NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 

 (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) 

22/10/2013 2.17 2.66  1.37 6.94 5.00 11.85  6.21 14.04  19.88  

31/10/2013 7.60 1.85 2.50 1.16 8.79 4.71 12.95 19.08 6.13 11.98  17.72  

05/11/2013 5.93 1.23  1.04 8.82 3.70 12.03 19.09 6.09 12.03  17.09 6.62 

12/11/2013 8.37 0.87 1.32 0.90 9.83 4.39 12.25 19.51 4.15 14.33  19.47 4.17 

19/11/2013 7.22 0.91 0.49 1.14 10.50 4.37 11.75  4.55 12.92  18.00 3.32 

26/11/2013 5.90 0.70 0.94 1.45 12.26 3.66 12.51 17.89 3.96 13.87  18.66 2.75 

02/12/2013 5.05 0.60  1.87 12.27 3.22 11.70 17.11 4.35 12.64  18.12 2.80 

10/12/2013 4.18 0.42  1.84 12.28 3.01 10.53 16.93 4.61 10.19   2.63 

17/12/2013 3.60 0.46  2.11 11.29 2.86 8.96  4.26 8.68   3.77 

07/01/2014 3.85 0.58 2.40 1.57 13.98 2.65 7.48 15.34 2.32 13.52 4.57 16.33 1.48 

14/01/2014 3.12 0.40 2.07 1.29 13.38 1.62 7.15 16.81 1.96 13.92 3.25 14.95 1.53 

21/01/2014 3.49 0.55 1.76 1.72 12.44 1.96 6.88 16.47 1.73 13.96 3.76 13.98 2.66 

29/01/2014 3.60 1.04 3.18 1.91 12.60 2.10 6.00 14.33 1.47 14.25  12.76 2.95 

04/02/2014 3.51 0.53 2.79 2.02 12.80 2.27 5.12 14.20 1.13 13.82 3.76 11.15 2.88 

11/02/2014 3.41 0.59 3.17 2.33 12.70 2.84 4.17 11.46 0.94 12.50 3.73 9.37 3.08 

18/02/2014 3.79 1.24 2.83 2.49 14.48 3.42 3.95 12.43 0.90 13.14 3.92 8.42 3.56 

25/02/2014 3.77 0.83 1.93 2.31 13.72 2.57 3.25 11.48 0.80 12.93 4.43 7.94 3.70 

04/03/2014 3.87 0.96 1.99 1.92 13.87 2.61 3.17 10.60 0.43 12.13 4.14 6.88 3.29 

11/03/2014 3.71 1.04 2.78 2.42 13.10 3.12 2.35 12.21 1.39 12.40  5.20 3.89 

18/03/2014 4.06 1.33 3.35 2.48 13.74 3.22 1.12 11.28 1.52 12.29 4.04   
31/03/2014 3.99 1.29 3.37 2.17 13.92 3.19 2.00 10.90 2.02 11.78   3.85 

15/04/2014 3.53 1.46  2.63 12.82 3.97    10.11   5.07 

29/04/2014 3.06 1.03  1.99 11.64 3.79    9.77   4.87 

13/05/2014 2.73 2.08  1.85 10.58 3.03  11.85  16.78   6.08 

27/05/2014 3.88 1.50 3.33 2.39 9.68 3.55  11.24  37.42   5.37 

10/06/2014 5.22 1.89 3.41 3.25 11.45 1.14 5.88 8.46  24.00   6.99 

24/06/2014 3.57 0.56  1.70 8.42     14.34    
08/07/2014 2.97 0.35  1.51 7.63     9.69    
22/07/2014 3.08 0.35  1.19 8.01     6.78    

 

 



 

 

210 

  

 

 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 

Date NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 

 (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) (mg N/L) 

06/08/2014 2.66 0.13   4.99         
19/08/2014 2.40 0.27  0.33          
02/09/2014 1.78 0.33  0.24          
16/09/2014 1.68 0.37  0.22          
30/09/2014 1.38 0.27  0.19          
07/10/2014 1.66 0.36  0.23 3.57         
14/10/2014 11.08  11.40 15.91 8.74 10.21 10.84 21.68    10.74 10.17 

21/10/2014 6.85 3.70 6.04 4.06 7.44 6.52 6.51 9.74 19.99   8.16 6.70 

28/10/2014 5.73 3.36 5.69 3.31 7.57 6.17 5.79  16.58     
04/11/2014 5.03 2.33  2.67 4.76 5.64   15.10 7.21    
11/11/2014 6.38 4.99 5.90 4.47 6.61 8.02 4.90 8.48 15.76 3.24   7.24 

18/11/2014 9.43 10.91 7.46 8.10 8.84 12.93 4.82 7.07 20.13 3.82 7.65 7.25 8.81 

25/11/2014 10.73 12.00 7.26 7.81 12.32 14.11 4.00 5.60  5.80 8.96 5.73  

01/12/2014 9.41 7.75 7.18 5.60 14.56 13.30 4.16 6.14 15.83 4.64 7.64 6.22 8.07 

09/12/2014 7.79 6.28 6.43 4.54 14.84 11.60 3.87 5.69 15.70 3.79 7.01 6.20 6.44 

16/12/2014 7.97 6.88 6.66 4.47 15.98 11.98 3.35 5.05 15.22 4.21 7.40 6.21 5.68 

06/01/2015 7.33 7.95 6.73 4.55 15.99 12.97 2.70 5.52 15.14 4.20 7.94 5.77 5.38 

13/01/2015 6.98 10.36 6.25 4.10 14.11 12.01 2.22 1.48 12.51 4.54 8.08 5.48  

20/01/2015 6.63 7.46 5.72 3.93 14.76 11.81 2.41 2.15 12.14 3.37  4.69 3.80 

26/01/2015 6.47 7.89 6.04 4.18 14.62 11.89 2.50 2.08 12.12 3.95 5.54 3.25  

03/02/2015 6.17 8.22 5.00 4.33 14.39 11.08 2.02 1.22 10.04 3.03 7.65 5.17  

10/02/2015 5.49 7.07 5.15 3.93 14.24 11.23 2.00 1.29 9.26 2.42 7.33 4.61 2.70 

17/02/2015 4.17 5.33 4.49 2.83 13.55 10.30  1.15 8.74 2.00   2.44 

24/02/2015 4.75 4.33 4.35 3.52 13.85 9.73 1.63 0.91 6.99 2.49 6.97 4.54 1.82 

03/03/2015 4.23 5.26 4.22 3.14 13.92 8.99 1.48 0.89 6.19 2.17  4.12 1.64 

10/03/2015 3.58 4.23 3.60 2.44 13.23 7.81 1.56  6.46 1.61   2.03 

17/03/2015 3.23 3.68  2.31 12.87 7.03   6.66 1.41   2.00 

24/03/2015 3.11 3.22  2.46 12.30 6.32   6.72 1.36   1.89 

31/03/2015 3.41 3.20 4.04 2.21 12.96 5.70 3.08 4.62 6.05 7.21  13.06  
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Table D4 Ammonium concentration in drains 
 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 

Date NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 

 (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) 

03/04/2013 0  1 1 1 11   4     
09/04/2013 7 5 6 7 5 15 6 6 5 5    
16/04/2013 6 5 8 7 19 17 12  6 9    
23/04/2013 7 5  8 7 17   2 3    
30/04/2013 4 5  6 10 21   6 4    
07/05/2013 4 3  9 3 9   5 4    
14/05/2013 4 3  5 6 9   4 19    
21/05/2013  0  0 2    2 5    
28/05/2013 1 1  2 1 3 0  3 1    
04/06/2013 7 12  5 7 7    7    
11/06/2013 7 6  4 5         
18/06/2013 4 7  4 3         
25/06/2013 1 1  1 1         
02/07/2013 12 6  5 6         
09/07/2013  8  7 8         
16/07/2013  8            
23/07/2013  6            
30/07/2013  8            
06/08/2013  5            
13/08/2013  8            
20/08/2013  5            
27/08/2013  21  12 11         
03/09/2013  19  18          
10/09/2013  10  11          
17/09/2013 6 10  12 9         
24/09/2013 16 12  16 18         
01/10/2013 6 4  3 6         
08/10/2013 6 5  5          
15/10/2013 5 4  6 7         
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 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 

Date NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 

 (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) 

22/10/2013 12 10  11 9 11 11  14 9  9  

31/10/2013 2 2 0   0 1 3 4 4  0  

05/11/2013 0 0  1 4 2 3 0 2 1   1 

12/11/2013 6 10 3 6 5 6 7 9 5 6  5 4 

19/11/2013 2 2 1 2 2 4 4  2 2  2 3 

26/11/2013 12 13 10 13 15 13 16 12 13 11  11 12 

02/12/2013 0 0  0 0 0 0 0 0 0  0 0 

10/12/2013 11 13  11 11 12 12 18 13 11   20 

17/12/2013 7 9  5 4 9 6  9 13   13 

07/01/2014   14     11  0  14 1 

14/01/2014 15 16 15 20 18 16 15 16 16 15 15 15 17 

21/01/2014 34 29 36 22 13 25 17 15 18 14 47 15 81 

29/01/2014 19 9 16 16 10 20 9 8 10 7  6 28 

04/02/2014 20 17 21 19 20 22 17 17 18 16 24 16 39 

11/02/2014 16 15 21 17 17 19 17 17 17 17 21 15 35 

18/02/2014 11 8 14 10 9 10 11 9 13 11 12 11 40 

25/02/2014 9 6 9 7 9 8 6 4 7 7 5 5 24 

04/03/2014 21 18 19 21 19 20 17 18 23 69 23 20 27 

11/03/2014              
18/03/2014 20 21 20 21 21 21 21 21 21 20 22   
31/03/2014 15 15 22 14 14 14 14 15 16 15   12 

15/04/2014 0 0  0 0 0    0   0 

29/04/2014 4 8  7 8 13    6   6 

13/05/2014 24 23  24 24 23  27  23   24 

27/05/2014          174    
10/06/2014 0 0 17  1         
24/06/2014 0 0  0 0     0    
08/07/2014 0 0  0 0     0    
22/07/2014     3     94    
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 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 

Date NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 NH4 

 (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) 

06/08/2014 44    2         
19/08/2014 3 8            
02/09/2014 6             
16/09/2014 24 10  18          
30/09/2014              
07/10/2014              
14/10/2014 6  23 5 6 5  11    7 12 

21/10/2014  1  1  2       7 

28/10/2014 2 3 1 3 4 4 5  4     
04/11/2014 2 0   20     0    
11/11/2014 17 4 7 0 26 6 3  3 4   4 

18/11/2014   5  3 1 0 5 0 8    
25/11/2014     6         
01/12/2014              
09/12/2014 5 5 3 18 4 3 5 6 2 191 3 4  

16/12/2014   0  9         
06/01/2015  0 16  8  0 1 0 2 1  0 

13/01/2015  0 18  6   6   0 12  

20/01/2015   1           
26/01/2015   15  4         
03/02/2015              
10/02/2015   2           
17/02/2015 6 5 25 5 11 8  5 5 7   6 

24/02/2015   14 7 13 18 1   2 0  1 

03/03/2015 10 3 25 8 7 91 36 8 3 1  0 2 

10/03/2015 14 0 3   1 11  16 37   3 

17/03/2015 3 3  3 3 7   2 3   5 

24/03/2015 1 2  0 6 2   0 1   1 

31/03/2015 15 37 13 14 33 8 29 181 17 119  305  
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Table D5 Nitrite concentration in drains 
 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 

Date NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 

 (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) 

03/04/2013 0.8 0.6 5.4 0.7 0.5 12.4   0.1 3.9    
09/04/2013 1.0 0.8 3.4 0.9 0.9 7.5 1.4 2.2 1.0 3.1    
16/04/2013 0.8 0.6 1.0 0.6 0.7 3.5 2.6  1.2 2.7    
23/04/2013 2.4 1.4  2.0 1.5 3.6   0.9 3.8    
30/04/2013 0.6 0.2  0.8 0.9 2.2   0.5 4.1    
07/05/2013 0.4 2.4  0.5 0.7 2.0   0.1 5.6    
14/05/2013 0.9 0.2  0.3 0.6 1.2   1.2 4.2    
21/05/2013 0.1    1.1     3.1    
28/05/2013    0.1 0.2 1.2 0.6   2.3    
04/06/2013 0.5 0.6  6.0 9.2 0.7    2.4    
11/06/2013 0.3    42.3         
18/06/2013 0.8 0.0  0.6 0.4         
25/06/2013 0.9    0.8         
02/07/2013  2.1  4.2          
09/07/2013    0.2          
16/07/2013  0.7            
23/07/2013  0.5            
30/07/2013  5.6            
06/08/2013  3.1            
13/08/2013  1.6            
20/08/2013  3.0            
27/08/2013  18.9  9.0 7.7         
03/09/2013  7.5  7.1          
10/09/2013  0.6  0.6          
17/09/2013 1.0 0.7  1.0 0.8         
24/09/2013 1.2 0.8  1.1 1.2         
01/10/2013 1.6 1.2  1.3 1.5         
08/10/2013 2.2 2.1  1.7          
15/10/2013 1.9 1.8  1.4 2.1         
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 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 

Date NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 

 (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) 

22/10/2013 1.5 1.7  1.6 1.6 1.3 1.2  1.7 1.2  1.1  

31/10/2013 1.2 1.4 1.0 1.3 2.3 1.2 1.2 1.1 1.1 1.3  2.8  

05/11/2013 2.2 2.5  2.2 2.9 1.9 3.1 1.8 1.7 1.6  1.6 1.7 

12/11/2013 2.4 2.4 1.5 2.0 1.5 2.1 1.7 2.5 1.4 1.6  1.5 1.9 

19/11/2013 2.0 1.8 2.1 2.1 1.6 2.1 3.1  2.1 4.3  2.1 2.3 

26/11/2013 2.4 1.4 1.5 1.5 1.3 1.5 1.2 1.5 1.7 1.6  1.4 1.6 

02/12/2013 1.2 1.4  1.0 1.1 1.3 1.1 1.2 1.1 1.6  0.9 1.7 

10/12/2013 3.5 3.3  3.7 9.5 3.4 3.7 3.6 3.4 3.5   4.7 

17/12/2013 1.5 1.7  1.6 2.6 1.0 0.9  1.0 1.0   2.4 

07/01/2014   2.0  0.0 0.3 0.6 1.2 0.2 0.3 1.1 2.2 2.9 

14/01/2014 5.8 5.9 6.2 5.7 6.6 6.2 5.8 6.2 5.9 5.9 6.6 6.6 7.2 

21/01/2014 6.1 6.3 6.6 6.3 8.5 6.2 21.0 6.2 6.4 6.5 6.5 6.7 8.0 

29/01/2014 0.1  0.7   2.5   5.1    2.9 

04/02/2014 5.3 4.8 5.0 4.9 4.7 4.9 4.6 4.9 4.7 4.8 5.3 5.0 6.1 

11/02/2014 2.0 2.1 2.2 1.4 1.8 1.6 2.0 1.4 1.4 2.1 0.9 0.5 2.3 

18/02/2014 2.3 1.9 2.5 1.9 2.1 2.2 2.3 2.2 2.3 2.3 2.5 2.3 3.1 

25/02/2014 1.4 1.7 1.3 1.3 1.8 1.3 1.3 1.0 35.0 1.4 1.5 2.6 6.2 

04/03/2014 0.9 0.7 0.9 0.7 0.9 0.9 2.8 0.7 10.3 1.5 1.1 4.8 7.3 

11/03/2014 1.2 1.0 2.9 1.7 1.6 1.4 1.3 1.9 3.2 1.9  3.1 2.8 

18/03/2014 11.1 11.1 13.1 11.9 11.0 14.0 10.7 11.0 14.9 12.4 13.3   
31/03/2014 8.0 8.1 11.7 8.8 7.6 8.2 9.5 9.3 8.3 8.2   7.9 

15/04/2014 0.8 1.0  0.3 1.1 0.0    0.0   0.5 

29/04/2014 10.3 4.9  5.4 4.3 6.1    6.6   7.0 

13/05/2014 4.6 4.6  4.8 4.9 4.7  5.0  7.5   4.9 

27/05/2014 1.7 0.8 1.4 1.0 3.0 1.1  3.7  42.8   1.9 

10/06/2014 1.7 0.5 1.3 2.1 2.4 1.8 1.7 2.1  14.2   1.5 

24/06/2014 2.9 2.1  2.1 2.4     7.8    
08/07/2014 1.0 0.0  0.0 1.2     0.0    
22/07/2014 0.5 0.3  0.2 1.0     1.2    
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 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 

Date NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 

 (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) 

06/08/2014 6.3             
19/08/2014              
02/09/2014              
16/09/2014 1.6 1.9  1.5          
30/09/2014              
07/10/2014     1.5         
14/10/2014 7.9  4.5 1.3 1.2 7.6 19.7 9.7    5.4 3.6 

21/10/2014 3.1 3.5 4.0 4.4 10.4 4.2 5.1 5.4 7.2   4.3 6.8 

28/10/2014 3.0 2.6 2.9 3.1 2.6 3.6 4.4  2.1     
04/11/2014 1.3 4.0  4.0 7.1 2.4   1.8 2.9    
11/11/2014 0.7  0.7 8.3 1.3  0.4 0.6      
18/11/2014 4.4 6.5 7.0 1.9 6.4 3.7 6.0 3.1 2.7 2.2 2.3 0.8 8.7 

25/11/2014 3.9 2.6 3.3 2.6 4.2 4.2 1.8 0.9  0.5 0.3 1.0  

01/12/2014 1.2 1.9 3.4 1.7 3.9 2.6 1.2 1.6 7.9 1.5 1.0 1.5 0.7 

09/12/2014 2.1 5.8 3.1 5.3 5.6 2.2 1.7 2.8 1.5 1.5 84.2 1.1 0.4 

16/12/2014 1.8 1.5 4.2 5.4 4.5 2.9 2.3 3.2 7.3 3.2 2.4 3.8 2.5 

06/01/2015 1.0 1.2 2.9 0.5 3.2 0.7 0.3 1.7 2.5 0.9 0.8 0.9 2.9 

13/01/2015 1.1 0.9 2.0 1.0 2.9 1.6 1.7 6.3 1.2 1.2 0.9 13.0  

20/01/2015 0.9 2.0 2.7 1.3 2.9 1.7 1.1 1.5 0.9 2.6  0.2 1.4 

26/01/2015 3.1 2.4 4.2  3.3 0.9 6.0 2.8 2.8 1.4 1.0 1.2  

03/02/2015 0.9 1.0 1.2 3.7 24.2 1.0 0.7 0.9 0.7 0.2 0.6 0.7  

10/02/2015 1.1 1.4 1.8 1.5 5.1 1.1 0.8 1.3 0.8 2.9 1.7 2.0 1.2 

17/02/2015 3.7 3.1 4.0 2.4 3.6 2.6  2.8 2.5 3.5   2.5 

24/02/2015 4.1 2.5 4.7 2.7 4.8 5.0 2.4 2.8 2.8 2.5 2.5 2.9 3.0 

03/03/2015 5.2 4.7 7.7 4.2 10.0 6.4 4.0 5.3 4.7 3.9  4.6 6.8 

10/03/2015 3.0 1.4 8.8 6.2 11.8 5.4 5.1  5.7 5.2   5.9 

17/03/2015 16.5 17.1  15.9 20.0 18.4   17.0 15.3   18.1 

24/03/2015 15.8 14.7  14.9 27.9 18.8   15.9 15.9   17.5 

31/03/2015 22.0 21.7 29.5 23.0 59.2 21.2 68.7 149.0 24.5 182.0  67.6  
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Table D6 pH values of drain samples 
 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 

Date pH pH pH pH pH pH pH pH pH pH pH pH pH 

03/04/2013 7.59 7.75 7.81 7.53 7.49 7.65   7.86 7.85    
09/04/2013 7.65 7.76 7.93 7.77 7.76 7.88 7.96 7.95 8.11 8.09    
16/04/2013 8.12 8.12 8.23 8.03 7.97 8.09 8.24  8.08 8.16    
23/04/2013 7.99 7.98  7.96 7.95 8   8 8.15    
30/04/2013 7.6 7.58  7.71 7.71 7.92   7.93 8.15    
07/05/2013 7.64 7.73  7.74 7.59 7.79   7.89 8.04    
14/05/2013 7.84 7.8  7.79 7.74 7.72   8.07 8.08    
21/05/2013 7.83 7.86  7.79 7.81    8.1 8.12    
28/05/2013 7.68 7.73  7.73 7.63 7.72 7.84  8 7.99    
04/06/2013 7.73 7.69  7.72 7.77 7.94    7.95    
11/06/2013 7.81 7.6  7.52 7.59         
18/06/2013 7.84 7.79  7.74 7.85         
25/06/2013 8.12 8  7.93 7.91         
02/07/2013 8.03 7.79  7.79 7.76         
09/07/2013  8.08  8.39 3.71         
16/07/2013  8.29            
23/07/2013  7.85            
30/07/2013  8.03            
06/08/2013  7.63            
13/08/2013  7.61            
20/08/2013  8.15            
27/08/2013  8.03  7.83 7.87         
03/09/2013  8.13  8.14          
10/09/2013  8.23  8.13          
17/09/2013 8 8.01  7.94 8         
24/09/2013 7.99 7.9  7.9 8.02         
01/10/2013 8.12 8.03  8.01 8.13         
08/10/2013 8.04 7.95  7.98          
15/10/2013 7.93 7.81  7.83 7.92         
22/10/2013 7.95 7.87  7.85 7.91 8.06 8.13  8.22 8.18  8.18  

31/10/2013 7.94 7.93 8.31 7.93 7.99 8.02 8.12 7.91 8.14 8.15  8.18  

05/11/2013 8.16 8.23  8.13 8.41 8.27 8.22 8.25 8.42 8.24  8.27 8.17 

12/11/2013 7.95 7.96 7.86 7.91 8.25 8.09 8.07 8.06 8.15 8.04  8.05 8.04 

19/11/2013 8.09 8.12 8.11 8.12 8.25 8.19 8.6  8.11 8.16  8.11 8.09 

26/11/2013 7.83 7.93 8.07 7.84 7.93 8.11 8.06 7.99 8.06 8.13  8.09 8.07 

02/12/2013 7.59 7.52  7.64 7.59 7.7 7.66 7.7 7.66 7.81  7.87 7.98 

10/12/2013 8.08 8  7.98 7.94 8.14 8.1 8.09 8.02 8.13   8.06 

17/12/2013 8 7.91  7.89 8.09 8.04 7.75  7.94 7.9   7.91 

07/01/2014 7.81 7.9 7.64 8 8.17 7.9 7.66 7.92 7.94 7.75 7.99 8.07 8.28 

14/01/2014 7.75 7.78 7.84 7.74 7.66 7.68 7.74 7.86 7.71 7.92 7.87 7.92 7.66 

21/01/2014 8.01 8.11 8.38 8.02 8.03 8.05 8.21 8.21 8.15 8.29 8.2 8.11 8.3 

29/01/2014 7.14 6.66 6.22 5.56 7.08 7.07 7.69 7.48 5.25 4.86  6.07 4.92 
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 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 

Date pH pH pH pH pH pH pH pH pH pH pH pH pH 

04/02/2014 7.7 7.69 7.97 7.66 7.53 7.72 7.93 7.77 7.81 7.8 7.75 7.8 7.96 

11/02/2014 7.81 7.84 7.83 7.95 8.02 8.18 8.14 7.9 8.05 7.94 7.98 7.76 8.02 

18/02/2014 8.06 8.06 8.11 7.96 7.98 8 8.18 8.1 8.12 8.12 8.01 8.07 8.22 

25/02/2014 7.91 7.97 8.19 7.86 7.85 8 8.26 8.07 8.14 8.13 8.06 8.14 8.26 

04/03/2014 8.13 8.1 8.06 8.12 7.88 8.07 8.04 8.25 8.17 8.15 8.05 8.13 8.11 

11/03/2014 7.67 7.67 7.72 7.63 7.6 7.77 7.9 8.01 7.86 8.12  8.37 8.24 

18/03/2014 7.49 7.52 7.66 7.48 7.41 7.6 7.83 7.79 7.67 8 7.96   
31/03/2014 7.32 7.37 7.35 7.38 7.3 7.43 7.41 7.57 7.49 7.59   7.65 

15/04/2014 6.94 7.17  7.05 7.04 7.57    7.51   7.91 

29/04/2014 7.17 7.15  7.21 7.28 7.34    7.58   7.99 

13/05/2014 7.53 7.69  7.79 7.84 7.87  7.64  7.64   7.81 

27/05/2014 7.56 7.58 7.57 7.6 7.66 7.91  7.73  7.53   8.17 

10/06/2014 8.06 7.9 7.81 7.79 8.41 7.81 8 7.84  7.92   7.88 

24/06/2014 8.05 8.15  8.11 8.09     8.06    
08/07/2014 7.38 7.34  7.49 7.5     7.56    
22/07/2014 7.34 7.53  7.48 7.35     7.86    
06/08/2014 7.57 7.67   7.81         
19/08/2014 7.56 7.68  7.75          
02/09/2014 7.52 7.52  7.49          
16/09/2014 7.86 7.98  7.98          
30/09/2014 7.63 7.64  7.65          
07/10/2014 7.66 7.75  7.64 7.65         
14/10/2014 7.5  7.56 7.55 7.43 7.83 7.63 7.6    7.51 7.96 

21/10/2014 7.68 7.76 7.86 7.77 7.71 7.96 7.85 7.86 7.8   7.79 7.83 

28/10/2014 7.64 7.49 7.43 7.75 7.93 7.9 7.55  7.66     
04/11/2014 7.72 7.93  7.71 7.77 7.95   7.91 7.9    
11/11/2014 5.91 5.98 5.88 6.31 6.47 6.11 6.08 5.93 6.19 5.77   5.88 

18/11/2014 6.12 6.22 5.98 6.17 6.26 6.81 7.18 6.59 6.55 6.73 6.76 7.06 6.35 

25/11/2014 6.95 7.75 7.02 7.91 7.68 7.37 6.61 7.84  7.64 8.04 6.47  

01/12/2014 5.49 5.77 5.05 5.15 7.07 5.42 4.55 6.26 5.19 5.82 7.36 5.43 5.67 

09/12/2014 6.43 6.54 5.2 6.75 5.99 5.46 6.36 5.26 7.27 6.35 5.67 5.9 5.71 

16/12/2014 7.96 8.02 7.99 7.89 7.8 7.91 7.86 7.89 7.93 7.99 7.83 7.85 8.12 

06/01/2015 8.06 8 8 7.94 7.85 7.91 8.15 7.96 8.06 8.04 7.99 7.97 8.17 

13/01/2015 7.67 7.77 7.77 7.82 7.6 7.7 7.74 7.94 7.88 7.85 7.8 7.78  

20/01/2015 8.06 8.03 7.83 8 8.54 8.52 7.99 7.95 8.02 8.04  7.95 7.95 

26/01/2015 7.76 7.77 7.9 7.77 7.7 7.9 7.86 7.79 7.85 7.93 7.91 8.12  

03/02/2015 7.61 7.71 7.7 7.74 7.55 7.73 7.63 7.82 7.82 7.87 7.68 7.8  

10/02/2015 7.89 7.97 8.09 8.35 7.98 8.06 8.11 8.02 8.11 8.1 8.15 8.12 8.24 

17/02/2015 7.61 7.62 7.79 7.72 7.62 7.88  7.71 7.73 7.97   8.24 

24/02/2015 7.54 7.73 7.87 7.8 7.76 7.83 7.82 7.88 7.92 8.03 7.82 7.92 8.12 

03/03/2015 7.94 8.02 8.09 8.05 7.95 8.04 8.1 8.14 8.05 8.25  8.11 8.34 

10/03/2015 7.75 7.74 7.95 7.68 7.65 7.99 7.97  7.77 8.01   8.29 

17/03/2015 7.95 7.96  8.08 7.82 8.16   8.01 8.19   8.61 

24/03/2015 7.92 7.95  7.99 7.76 8.2   8.15 8.18   8.21 

31/03/2015 7.59 7.65 7.79 7.62 7.52 7.87 7.73 7.74 7.84 7.72  7.69  
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Table D7 Weekly rainfall data 

DATE 

Weekly rainfall 

(mm) DATE 

Weekly rainfall 

(mm) DATE 

Weekly rainfall 

(mm) 

03/04/2013 0 02/12/2013 3.8 05/08/2014 0 

09/04/2013 0.6 10/12/2013 2 12/08/2014 35.6 

16/04/2013 8 17/12/2013 7.8 19/08/2014 4.8 

23/04/2013 2.2 24/12/2013 26 26/08/2014 17.8 

30/04/2013 6.6 31/12/2013 7.6 02/09/2014 7.2 

07/05/2013 0.2 07/01/2014 22.2 09/09/2014 0.4 

14/05/2013 10.6 14/01/2014 17.2 16/09/2014 1.4 

21/05/2013 19.2 21/01/2014 10.6 23/09/2014 1.4 

28/05/2013 27.2 29/01/2014 23 30/09/2014 14.4 

04/06/2013 0.4 04/02/2014 14.6 07/10/2014 15.8 

11/06/2013 0.2 11/02/2014 38.8 14/10/2014 54 

18/06/2013 11.8 18/02/2014 17 21/10/2014 10.2 

25/06/2013 5.2 25/02/2014 2.6 28/10/2014 7.6 

02/07/2013 9 04/03/2014 16 04/11/2014 2.4 

09/07/2013 0.8 11/03/2014 1 11/11/2014 23.4 

16/07/2013 0.2 18/03/2014 0.6 18/11/2014 23.8 

23/07/2013 0.6 25/03/2014 9.4 25/11/2014 30.8 

30/07/2013 9.2 31/03/2014 19.6 01/12/2014 10.4 

06/08/2013 31.2 08/04/2014 10.4 09/12/2014 9.4 

13/08/2013 2.6 15/04/2014 0.4 16/12/2014 10 

20/08/2013 10.4 22/04/2014 6.2 23/12/2014 13.4 

27/08/2013 24.6 29/04/2014 8.2 30/12/2014 31.4 

03/09/2013 0.2 06/05/2014 3 06/01/2015 5.6 

10/09/2013 16.2 13/05/2014 33.4 13/01/2015 16.8 

17/09/2013 41.4 20/05/2014 0 20/01/2015 7 

24/09/2013 2.4 27/05/2014 61.8 26/01/2015 8.4 

01/10/2013 0.2 03/06/2014 31.4 03/02/2015 22.8 

08/10/2013 2.8 10/06/2014 18.2 10/02/2015 5.8 

15/10/2013 68.6 17/06/2014 0.2 17/02/2015 3.8 

22/10/2013 17.6 24/06/2014 1.2 24/02/2015 17 

31/10/2013 29.2 01/07/2014 41.4 03/03/2015 9.8 

05/11/2013 8.6 08/07/2014 7.4 10/03/2015 1.4 

12/11/2013 27.6 15/07/2014 47.8 17/03/2015 1.4 

19/11/2013 7.2 22/07/2014 18.2 24/03/2015 3.4 

26/11/2013 18.6 29/07/2014 0.6 31/03/2015 23.6 
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APPENDIX E Porous pot data 

 

Figure E1 Map of locations of installed porous pots 

Table E1 Coordinates of installed porous pots 

Table E2 Dissolved nitrate concentration in porous pots 

Table E3 Ammonium concentration in porous pots 
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Figure E1 Map of locations of installed porous pots 

Table E1 Coordinates of installed porous pots 
Sample name Latitude (N) Longitude (E) 

FH11 52.78767175 1.11636238 
FAR9 52.79275454 1.10917096 

MHF14 52.77783005 1.11490695 
MHF8 52.77983962 1.11686764 
SF9 52.78867188 1.121014 

FAR10 52.79228331 1.11070124 
P8 52.78868931 1.11183573 

MH14 52.78992497 1.11521406 
GH6 52.78370334 1.12251244 

 

 



 

 

222 

  

Table E2 Dissolved nitrate concentration in porous pots 
 Feb2014 Apr2014 Feb2015  Feb2014 Apr2014 Feb2015  Feb2014 Apr2014 Feb2015 

Sample ID  NO3 NO3 NO3 Sample ID  NO3 NO3 NO3 sample ID  NO3 NO3 NO3 

 (mg N/L) (mg N/L) (mg N/L)  (mg N/L) (mg N/L) (mg N/L)  (mg N/L) (mg N/L) (mg N/L) 

FAR10-P1 12.13 11.41 24.92 FAR9-P1 16.82 17.13 0.44 P8-P1 10.71 6.95 18.02 

FAR10-P2 11.36 10.40 0.68 FAR9-P2 11.68 16.37 0.78 P8-P2 9.98 9.03 13.25 

FAR10-P3 15.64  5.54 FAR9-P3 4.73  11.35 P8-P3 16.66  5.25 

FAR10-P4 11.03 22.27 0.16 FAR9-P4 19.82  7.35 P8-P4 19.73 14.04 7.90 

FAR10-P5 26.89  0.30 FAR9-P5 18.03 22.24 9.39 P8-P5 8.64 11.37 10.10 

FAR10-P6 22.29   FAR9-P6 18.16 19.27 3.88 P8-P6 3.29 7.09  

FAR10-P7 20.85 24.11 22.74 FAR9-P7 23.47 12.60 20.56 P8-P7 8.49 9.41  

FAR10-P8 18.15 9.87 9.27 FAR9-P8 24.47 3.19 2.68 P8-P8 8.61 7.90  

FAR10-P9 14.92  12.95 FAR9-P9 21.08 11.71 48.03 P8-P9 2.20 3.60  

FAR10-P10 21.44 21.68 18.76 FAR9-P10 17.41   P8-P10 21.17 18.88  

MHF8-P1 0.38  0.18 MHF14-P1 0.58 3.33 12.58 GH6-P1 0.73 0.01 12.30 

MHF8-P2 0.29 2.23 0.38 MHF14-P2 0.07 3.11 14.16 GH6-P2 0.57 0.03 34.71 

MHF8-P3 0.23 2.23 4.58 MHF14-P3 0.35 3.31 10.01 GH6-P3 1.26 6.17 31.13 

MHF8-P4 0.04  12.60 MHF14-P4 0.24 1.90 13.98 GH6-P4 0.34  10.44 

MHF8-P5 0.35 5.92 41.23 MHF14-P5  3.13 0.84 GH6-P5 1.18  19.93 

MHF8-P6 0.57 3.69 2.21 MHF14-P6 0.12 4.27 0.36 GH6-P6 1.22  19.14 

MHF8-P7 0.29 2.67 5.46 MHF14-P7 0.01 3.36 7.77 GH6-P7 3.45   
MHF8-P8 0.20 0.01 0.12 MHF14-P8 0.24 2.24 0.43 GH6-P8 1.26   
MHF8-P9 0.36 0.01  MHF14-P9 0.26 2.34 22.72 GH6-P9 3.04   

MHF8-P10 0.16 0.01  MHF14-P10 0.01 3.13 26.23 GH6-P10 0.63 3.34  

SF9-P1 1.05 1.90 15.74 FH11-P1 0.33 0.71 3.83 MH14-P1 0.60 8.29 1.16 

SF9-P2 0.33 3.87 13.86 FH11-P2 0.36 0.38 0.72 MH14-P2 0.40 1.85 0.22 

SF9-P3 0.60 2.46 11.44 FH11-P3 0.07 1.00 2.89 MH14-P3 0.51  0.72 

SF9-P4  2.76 8.62 FH11-P4 0.21 1.87 0.76 MH14-P4 0.32 0.68 2.10 

SF9-P5 0.50 2.36 16.89 FH11-P5 0.74 5.27 0.18 MH14-P5 0.27 1.22 1.44 

SF9-P6 0.27 2.98 19.69 FH11-P6 0.66 4.85 10.68 MH14-P6 1.04  0.52 

SF9-P7 0.47 2.65 43.10 FH11-P7    MH14-P7 0.42  4.89 

SF9-P8 0.06 3.52 15.21 FH11-P8 0.61 5.18  MH14-P8 0.43   
SF9-P9 0.36 2.38  FH11-P9    MH14-P9 0.38   

SF9-P10    FH11-P10 0.39   MH14-P10 0.66   
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Table E3 Ammonium concentration in porous pots 
 Feb2014 Apr2014 Feb2015  Feb2014 Apr2014 Feb2015  Feb2014 Apr2014 Feb2015 

Sample ID  
NH4 NH4 NH4 

Sample ID  
NH4 NH4 NH4 

Sample ID  
NH4 NH4 NH4 

( µg N/L) ( µg N/L) ( µg N/L) ( µg N/L) ( µg N/L) ( µg N/L) ( µg N/L) ( µg N/L) ( µg N/L) 

FAR10-P1 2  13 FAR9-P1 15   P8-P1 38   
FAR10-P2 0   FAR9-P2 15   P8-P2 6   
FAR10-P3    FAR9-P3    P8-P3    
FAR10-P4 0   FAR9-P4 106   P8-P4 5   
FAR10-P5 33  38 FAR9-P5 36   P8-P5 4   
FAR10-P6    FAR9-P6 0   P8-P6    
FAR10-P7 19  119 FAR9-P7  222  P8-P7 5   
FAR10-P8    FAR9-P8 19   P8-P8 0 19  

FAR10-P9    FAR9-P9 39   P8-P9 21   
FAR10-P10 92   FAR9-P10 15   P8-P10 5 20  

MHF8-P1    MHF14-P1 12   GH6-P1  12  

MHF8-P2 8  2 MHF14-P2    GH6-P2 7   
MHF8-P3    MHF14-P3    GH6-P3 30   
MHF8-P4    MHF14-P4 5   GH6-P4    
MHF8-P5 6   MHF14-P5    GH6-P5 32   
MHF8-P6 8   MHF14-P6  20  GH6-P6 101   
MHF8-P7 5  4 MHF14-P7  47 50 GH6-P7 10   
MHF8-P8  645 7 MHF14-P8    GH6-P8 16   
MHF8-P9  8  MHF14-P9  7  GH6-P9   144 

MHF8-P10    MHF14-P10    GH6-P10   0 

SF9-P1    FH11-P1 86   MH14-P1    
SF9-P2 4  43 FH11-P2    MH14-P2 8   
SF9-P3 64  290 FH11-P3 10  301 MH14-P3    
SF9-P4    FH11-P4 49 10 41 MH14-P4 0  190 

SF9-P5 37 20 154 FH11-P5    MH14-P5 16  93 

SF9-P6    FH11-P6 29   MH14-P6 32   
SF9-P7 25  516 FH11-P7    MH14-P7 0   
SF9-P8    FH11-P8 55   MH14-P8 2   
SF9-P9  8 463 FH11-P9    MH14-P9 3   

SF9-P10    FH11-P10    MH14-P10 5   
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APPENDIX F Riverine data 

 

Figure F1 Location map of stream samplings 

Table F1 Coordinates of stream sampling sites  

Table F2 Nitrate concentration in stream samples 

Table F3 Ammonium concentration in stream samples 

Table F4 Nitrite concentration in stream samples 

Table F5 Flow and inorganic and organic N fluxes at site A 
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Figure F1 Location map of stream samplings (A, B, E, and M) (indicated by orange square) 

Table F1 Coordinates of stream sampling sites 
Sample name Latitude (N) Longitude (E) 

A 52.78767175 1.11636238 
B 52.79275454 1.10917096 
E 52.77783005 1.11490695 
M 52.784268 1.11686764 
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Table F2 Nitrate concentration in stream samples 
 A B E M  A B E M  A B E M 

Date NO3 NO3 NO3 NO3 Date NO3 NO3 NO3 NO3 Date NO3 NO3 NO3 NO3 

 (mg N/L) (mg N/L) (mg N/L) (mg N/L)  (mg N/L) (mg N/L) (mg N/L) (mg N/L)  (mg N/L) (mg N/L) (mg N/L) (mg N/L) 

03/04/2013 8.20 9.70 7.71 8.85 24/09/2013 3.48 8.03 4.88 0.46 22/07/2014 2.52 6.49 3.71 0.74 

09/04/2013 8.25 8.95 7.47 8.59 01/10/2013 3.73 8.53 5.14 0.73 19/08/2014 2.37 5.94 3.44 0.55 

16/04/2013 3.43 6.98 6.94 7.04 08/10/2013 3.85 8.04 5.06 0.53 16/09/2014 2.49 6.10 3.51 0.45 

23/04/2013 7.16 9.56 7.01 6.43 15/10/2013 6.47 9.54 6.77 7.96 30/09/2014 2.47 5.82 3.40 0.42 

30/04/2013 5.28 9.17 6.16 4.98 22/10/2013 3.93 9.33 4.99 4.45 07/10/2014 2.37 6.16 3.34 0.49 

07/05/2013 3.97 9.20 5.76 3.10 31/10/2013 10.84 13.81 11.38 13.05 14/10/2014 22.54 7.10 19.72 24.05 

14/05/2013 4.23 9.31 4.94 2.89 05/11/2013 6.03 9.59 6.35 7.66 21/10/2014 8.37 5.97 6.90 9.58 

21/05/2013 3.31 8.16 5.09 1.36 12/11/2013 8.79 9.92 8.49 10.49 28/10/2014 6.24 6.50 5.47 7.23 

28/05/2013 4.52 8.67 5.62 4.17 19/11/2013 8.65 10.33 8.29 9.84 04/11/2014 5.26 7.07 4.92 5.25 

04/06/2013 3.61 8.75 5.36 2.21 26/11/2013 10.35 11.47 9.64 12.22 11/11/2014 7.74 6.53 6.59 8.61 

11/06/2013 3.11 8.30 5.08 1.62 02/12/2013 8.54 10.53 7.92 10.49 18/11/2014 10.96 6.44 9.06 11.43 

18/06/2013 3.12 8.47 5.19 0.91 10/12/2013 6.54 9.74 6.74 8.01 25/11/2014 11.26 6.54 9.70 11.69 

25/06/2013 3.71 9.02 5.67 0.63 14/01/2014 10.04 9.37 9.60 11.80 01/12/2014 9.56 6.91 8.32 10.62 

02/07/2013 3.48 8.74 5.50 0.54 21/01/2014 9.77 8.78 8.88 10.78 06/01/2015 8.00 7.04 7.50 8.87 

09/07/2013 3.95 9.00 5.91 0.46 29/01/2014 10.59 8.88 9.66 11.93 13/01/2015 7.35 6.95 6.72 7.48 

16/07/2013 4.03 8.87 5.57 0.39 04/02/2014 10.65 8.84 9.61 11.25 20/01/2015 8.31 6.80 7.21 8.56 

23/07/2013 4.31 8.58 5.42 0.36 11/02/2014 8.64 7.38 8.13 9.03 26/01/2015 7.51 7.29 6.99 7.98 

30/07/2013 4.13 8.92 5.46 0.34 18/02/2014 9.18 7.83 8.30 10.11 03/02/2015 8.64 6.73 7.50 8.90 

06/08/2013 3.12 7.84 4.63 0.18 25/02/2014 8.23 7.95 7.55 9.35 10/02/2015 8.44 6.89 7.19 8.80 

13/08/2013 3.76 8.79 5.34 0.49 04/03/2014 6.73 7.32 6.43 7.46 17/02/2015 6.59 7.12 5.91 6.84 

20/08/2013 3.92 8.27 5.11 0.39 11/03/2014 7.79 8.54 7.06 8.48 24/02/2015 4.54 6.37 4.23 6.46 

27/08/2013 4.03 8.39 5.01 0.36 18/03/2014 7.56 8.22 6.93 8.43 03/03/2015 6.31 6.78 6.08 7.04 

03/09/2013 3.77 7.87 4.89 0.46 31/03/2014 5.95 7.54 6.07 7.26 10/03/2015 5.83 7.07 5.52 6.21 

10/09/2013 2.12 8.04 4.74 0.43 29/04/2014 4.20 7.08 4.74 4.75 17/03/2015 5.64 7.03 5.45 5.30 

17/09/2013 3.45 8.36 5.07 0.55 27/05/2014 11.20 5.85 9.02 12.69 24/03/2015 5.10 6.83 5.18 5.28 

     24/06/2014 5.25 6.99 4.58 6.23 31/03/2015 5.44 6.12 5.22 6.08 
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Table F3 Ammonium concentration in stream samples 
 A B E M  A B E M  A B E M 

Date NH4 NH4 NH4 NH4 Date NH4 NH4 NH4 NH4 Date NH4 NH4 NH4 NH4 

 ( µg N/L) ( µg N/L) ( µg N/L) ( µg N/L)  ( µg N/L) ( µg N/L) ( µg N/L) ( µg N/L)  ( µg N/L) ( µg N/L) ( µg N/L) ( µg N/L) 

03/04/2013 91 13 56 5 24/09/2013 38 31 30 32 24/06/2014 115 18 21 21 

09/04/2013 133 16 65 13 01/10/2013 21 22 25 21 22/07/2014 7  1 15 

16/04/2013 173 15 87 17 08/10/2013 5 5 5 6 19/08/2014 7 4 79 11 

23/04/2013 187 15 86 20 15/10/2013 202 8 48 8 16/09/2014 36 18 36 38 

30/04/2013 281 20 90 19 22/10/2013 108 28 22 17 30/09/2014    6 

07/05/2013 346 18 101 23 31/10/2013 46 0 8  07/10/2014 103 5 17 2 

14/05/2013 446 27 60 27 05/11/2013  2  1 14/10/2014 47 13 21 7 

21/05/2013 386 34 99 19 12/11/2013 71 16 24 9 21/10/2014 82 19 53 5 

28/05/2013 152 11 54 16 19/11/2013 39 14 9 8 28/10/2014 66 7 7 4 

04/06/2013 335 21 66 29 26/11/2013 51 23 17 18 04/11/2014 25 10 9 1 

11/06/2013 290 46 48 39 02/12/2013 0 0 0 0 11/11/2014 53 19 21 4 

18/06/2013 154 19 27 64 10/12/2013 79 28 23 20 18/11/2014 26 16 9 3 

25/06/2013 96 19 33 73 14/01/2014 64 30 41 21 25/11/2014 25 4 7  

02/07/2013 55 19 107 58 21/01/2014 84 28 54 23 01/12/2014 26 7 4  

09/07/2013 48 21 33 56 29/01/2014 30 34 31 15 06/01/2015 68 8 39 8 

16/07/2013 33 25 26 54 04/02/2014 61 33 48 23 13/01/2015 39 8 40 5 

23/07/2013 32 27 28 58 11/02/2014 39 32 41 22 20/01/2015 14  12  

30/07/2013 39 36 60 40 18/02/2014 47 28 45 19 26/01/2015 41  26  

06/08/2013 35 33 50 31 25/02/2014 69 28 66 18 17/02/2015 57 13 28 11 

13/08/2013 19 30 22 28 04/03/2014 71 28 54 27 24/02/2015 14 8   
20/08/2013 18 26 29 29 11/03/2014 107 11 59  03/03/2015 5 4 14 10 

27/08/2013 11 21 26 21 18/03/2014 94 19 36 20 10/03/2015 79 4 13  

03/09/2013 37 39 43 38 31/03/2014 88 23 56 17 17/03/2015 144 9 58 30 

10/09/2013 175 33 98 21 29/04/2014 170 19 73 22 24/03/2015 252 6 62 6 

17/09/2013 19 16 24 14 27/05/2014 169 10 70 13 31/03/2015 266 6 138 280 
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Table F4 Nitrite concentration in stream samples 
 A B E M  A B E M  A B E M 

Date NO2 NO2 NO2 NO2 Date NO2 NO2 NO2 NO2 Date NO2 NO2 NO2 NO2 

 ( µg N/L) ( µg N/L) ( µg N/L) ( µg N/L)  ( µg N/L) ( µg N/L) ( µg N/L) ( µg N/L)  ( µg N/L) ( µg N/L) ( µg N/L) ( µg N/L) 

03/04/2013 12.5 12.9 12.9 7.2 01/10/2013 26.3 19.9 22.8 4.0 19/08/2014 14.4 1.9 13.9 1.5 

09/04/2013 15.1 15.3 14.6 7.7 08/10/2013 29.5 22.5 18.1 5.8 16/09/2014 36.2 12.5 14.9 7.8 

16/04/2013 20.9 17.7 21.5 11.1 15/10/2013 82.6 19.2 52.8 29.7 30/09/2014 27.5 12.9 15.6 3.7 

23/04/2013 23.0 14.4 20.5 10.7 22/10/2013 112.4 24.9 44.1 15.0 07/10/2014 61.4 7.9 27.2 5.3 

30/04/2013 21.1 13.0 18.4 6.5 31/10/2013 43.6 18.8 34.9 13.9 14/10/2014 35.5 19.0 42.3 24.9 

07/05/2013 37.8 13.3 26.7 7.6 05/11/2013 63.1 19.7 34.6 30.8 21/10/2014 98.1 19.6 56.2 27.1 

14/05/2013 36.3 11.1 27.2 5.1 12/11/2013 43.8 17.9 44.9 11.5 28/10/2014 120.9 19.6 31.4 19.5 

21/05/2013 48.4 14.0 31.2 5.5 19/11/2013 40.2 19.4 35.3 11.1 04/11/2014 96.3 14.8 20.8 8.4 

28/05/2013 32.5 12.7 23.7 6.9 26/11/2013 29.2 16.3 25.8 8.4 11/11/2014 62.3 15.3 33.4 9.8 

04/06/2013 63.9 11.4 31.4 8.5 02/12/2013 50.4 20.2 42.5 10.9 18/11/2014 39.4 16.9 29.2 13.6 

11/06/2013 83.0 10.5 35.4 6.2 10/12/2013 65.1 23.6 46.2 23.0 25/11/2014 18.6 17.8 22.3 11.0 

18/06/2013 127.5 9.7 37.8 7.0 14/01/2014 18.0 18.8 20.7 9.9 01/12/2014 25.2 17.9 28.1 11.5 

25/06/2013 102.6 8.6 38.4 7.7 21/01/2014 19.5 19.1 24.2 11.3 06/01/2015 13.8 17.6 15.7 6.8 

02/07/2013 71.5 8.5 30.8 4.1 29/01/2014 8.1 14.6 11.1 5.6 13/01/2015 17.9 18.7 16.8 9.7 

09/07/2013 47.8 7.9 21.3 3.2 04/02/2014 14.5 15.3 15.9 8.7 20/01/2015 11.9 13.1 9.8 4.1 

16/07/2013 38.7 12.5 20.6 4.1 11/02/2014 9.8 9.3 10.3 5.6 26/01/2015 10.4 15.2 12.1 5.0 

23/07/2013 46.8 20.7 30.1 5.6 18/02/2014 10.8 10.0 12.2 5.7 03/02/2015 5.6 8.6 6.4 5.7 

30/07/2013 41.5 30.1 43.8 6.1 25/02/2014 14.2 13.3 16.8 7.8 10/02/2015 5.5 8.1 6.4 2.3 

06/08/2013 44.0 28.6 49.5 7.1 04/03/2014 9.9 9.9 9.2 5.0 17/02/2015 11.4 14.4 11.5 5.8 

13/08/2013 20.8 26.2 19.7 4.8 11/03/2014 12.5 11.7 14.9 5.9 24/02/2015 9.0 16.6 14.2 6.4 

20/08/2013 22.4 25.7 23.8 4.2 18/03/2014 34.6 20.2 32.9 18.0 03/03/2015 15.5 13.9 16.0 7.8 

27/08/2013 37.9 52.7 46.6 10.3 31/03/2014 21.3 13.9 21.7 12.5 10/03/2015 21.0 13.0 19.4 9.5 

03/09/2013 35.8 32.4 38.0 11.8 29/04/2014 21.6 53.6 10.3 28.9 17/03/2015 65.8 33.7 54.5 33.9 

10/09/2013 65.1 27.7 42.1 3.2 27/05/2014 49.6 6.7 46.2 10.6 24/03/2015 71.4 33.7 60.0 29.5 

17/09/2013 25.2 19.3 21.9 2.4 24/06/2014 133.4 12.5 61.1 14.4 31/03/2015 102.0 31.8 93.7 119.3 

24/09/2013 25.2 21.8 23.2 3.4 22/07/2014 48.8 37.0 24.2 22.6      
 

 

 



 

 

229 

  

Table F5 Flow and inorganic and organic N fluxes at site A 

 Date 

flow 

m3 sec-1 

 flux 

 (kg N a-1 ha-1) Date 

flow 

m3 sec-1 

flux 

 (kg N a-1 ha-1) Date 

flow 

m3 sec-1 

 flux 

 (kg N a-1 ha-1) 

03/04/2013 0.0304 11571.44 15/10/2013 0.0113 2761.77 22/07/2014 0.0073 971.50 

09/04/2013 0.0306 11502.82 22/10/2013 0.0094 1485.16 19/08/2014 0.0094 1245.04 

16/04/2013 0.0318 12816.36 29/10/2013 0.0437 16496.13 16/09/2014 0.0161 2041.07 

23/04/2013 0.0174 4230.68 05/11/2013 0.0296 6888.98 30/09/2014 0.0083 1104.58 

30/04/2013 0.0198 4520.75 12/11/2013 0.0369 12707.37 07/10/2014 0.0141 2143.25 

07/05/2013 0.0198 3940.04 19/11/2013 0.0339 11406.98 14/10/2014 0.0949 82929.56 

14/05/2013 0.0416 6467.66 26/11/2013 0.0437 17047.38 21/10/2014 0.0384 13587.22 

21/05/2013 0.0416 7372.86 02/12/2013 0.0109 3598.98 28/10/2014 0.0231 6053.68 

28/05/2013 0.0341 7506.14 10/12/2013 0.022 5640.53 04/11/2014 0.0255 5371.84 

04/06/2013 0.0341 6118.90 17/12/2013 0.0087 1805.31 11/11/2014 0.0387 11789.48 

11/06/2013 0.0341 5344.63 07/01/2014 0.0804 32403.62 18/11/2014 0.0741 29584.11 

18/06/2013 0.0341 4935.98 14/01/2014 0.0747 36396.17 25/11/2014 0.108 45843.25 

25/06/2013 0.0341 5215.58 21/01/2014 0.0622 26559.24 01/12/2014 0.0511 7171.13 

02/07/2013 0.0341 5323.12 27/01/2014 0.169 71949.38 09/12/2014 0.039 12311.34 

09/07/2013 0.0341 5398.40 27/01/2014 0.169 72642.23 16/12/2014 0.0496 15970.33 

16/07/2013 0.0424 7060.03 29/01/2014 0.169 69391.18 06/01/2015 0.0553 18154.42 

23/07/2013 0.0424 6859.46 04/02/2014 0.0856 38035.70 13/01/2015 0.1172 35592.66 

30/07/2013 0.0424 7340.82 11/02/2014 0.1533 56224.87 20/01/2015 0.0723 24761.37 

06/08/2013 0.0424 6632.15 18/02/2014 0.091 31825.82 26/01/2015 0.0562 17581.45 

13/08/2013 0.0424 6792.60 25/02/2014 0.0632 23199.40 03/02/2015 0.1297 42497.38 

20/08/2013 0.0424 7086.77 04/03/2014 0.0531 14853.36 10/02/2015 0.0903 26796.86 

27/08/2013 0.0181 2808.34 11/03/2014 0.0393 10398.27 17/02/2015 0.0903 24547.18 

03/09/2013 0.0181 2973.88 18/03/2014 0.0252 6667.59 24/02/2015 0.0833 35279.92 

10/09/2013 0.0181 2203.29 31/03/2014 0.0292 7882.49 03/03/2015 0.0556 15833.22 

17/09/2013 0.0209 2965.96 29/04/2014 0.0324 5762.76 10/03/2015 0.0556 15026.65 

24/09/2013 0.0428 6316.79 27/05/2014 0.04 17975.52 17/03/2015 0.0556 14220.09 

01/10/2013 0.0428 6370.78 03/06/2014 0.0329 17191.95 24/03/2015 0.0556 14079.81 

08/10/2013 0.0232 3255.78 24/06/2014 0.0267 5708.84 31/03/2015 0.0556 16008.56 
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APPENDIX G Dissolved nitrous oxide data 

 

Table G1 Dissolved nitrous oxide concentration in drains and river 
samples 
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Table G1 Dissolved nitrous oxide (N2O) concentration in drain (D1-D16) and river (A-M) samples 
 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 A B E M 

Date N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O 

 (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) 

03/04/2013 3.83 1.05 2.42 15.75 4.08 5.05 4.96 1.76 2.70 19.18    1.63 2.10 1.62 0.71 

09/04/2013 3.63 1.07 2.72 15.37 4.37 5.00 4.05 1.56 3.11 18.46    1.90 2.19 1.73 0.70 

16/04/2013 2.46 1.41 1.42 14.01 3.59 6.44 1.04  2.85 19.56    1.62 1.78 1.45 0.58 

23/04/2013 2.54 1.55  15.24 3.41 4.73   2.60 20.65    1.22 1.48 1.38 0.57 

30/04/2013 1.97 1.47  14.22 3.15 1.73   0.64 22.17    1.35 1.66 1.35 0.57 

07/05/2013 1.97 1.87  13.19 3.52 5.19   1.37 13.48    1.52 1.38 1.32 0.48 

14/05/2013 1.53 1.55  12.19 2.84         1.12 1.32 1.16 0.45 

21/05/2013 1.42 1.57  11.69 2.77         1.07 1.24 1.12 0.42 

28/05/2013 1.29 1.49  11.31 2.58         0.95 1.20 1.07 0.41 

04/06/2013 1.30 1.70  12.51 2.26 2.60        0.92 1.11 1.03 0.41 

11/06/2013 0.90 1.15  8.85 2.45         0.70 1.13 0.96 0.34 

18/06/2013 0.61 1.00  6.58 1.86         0.72 1.03 0.95 0.31 

25/06/2013 0.53 0.47  7.15 1.71         0.68 1.00 0.96 0.35 

02/07/2013 0.45 0.43  6.12 1.55         0.78 1.12 1.02 0.34 

09/07/2013  0.38  1.82 1.17         0.82 1.12 1.00 0.29 

16/07/2013  0.36            0.92 1.02 0.99 0.30 

23/07/2013  0.45            1.17 1.18 1.14 0.42 

30/07/2013  0.41            1.25 1.27 1.34 0.35 

06/08/2013  0.49            1.09 1.32 1.36 0.35 

13/08/2013  0.51            0.97 1.10 1.02 0.37 

20/08/2013  0.82            1.06 1.43 1.03 0.46 

27/08/2013  3.33            1.09 1.42 1.13 0.44 

03/09/2013  0.76            1.04 1.15 1.10 0.42 

10/09/2013  0.89            1.07 1.23 1.11 0.53 

17/09/2013 1.29 1.02  1.37 8.46         1.10 1.32 1.12 0.64 

24/09/2013 1.08 0.88  0.97          0.92 1.24 1.11 0.45 

01/10/2013 0.95 0.73  0.78          0.96 1.15 0.94 0.34 
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 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 A B E M 

Date N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O 

 (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) 

08/10/2013 0.98 0.64  0.68          0.89 1.24 0.98 0.57 

15/10/2013 1.02 1.79  1.32          1.31 1.43 1.18 2.53 

22/10/2013 0.96 1.42  1.26 3.45 3.35 0.87  0.72     1.08 1.85 1.27 0.88 

29/10/2013 0.88 1.28  1.35  2.35 1.30  1.41     1.70 1.81 1.86 1.67 

05/11/2013 0.81 1.14  1.43  1.34 1.74 4.31 2.10 2.37  2.62 1.51 1.06 1.74 1.32 0.99 

12/11/2013 4.26 1.19 1.59 2.02  2.61 4.44 2.90 2.31 2.84  3.07 1.92 1.19 1.75 1.36 1.21 

19/11/2013 4.75 1.18 1.53 2.60 2.85 1.52 3.16 2.40 2.80 2.05  1.99 1.56 2.01 1.72 1.28 1.66 

26/11/2013 4.29 1.08  3.49 3.08 1.69 3.57 2.15 3.15 2.36  2.24 1.69 1.55 1.78 1.32 1.37 

03/12/2013 3.83 0.97  4.38 3.31 1.86 3.98 1.90 3.50 2.66  2.50 1.83 1.09 1.84 1.37 1.08 

10/12/2013 1.28 0.77  4.09 3.04 1.41 1.40 1.56 2.13 2.52  3.27 1.49 1.03 1.81 1.38 1.06 

14/01/2014 6.78 0.86 1.81 3.41 4.67 2.85 3.50 1.52 3.32 3.42  4.04 2.35 1.07 1.45 1.07 1.19 

21/01/2014 6.22 0.99 0.92 4.01 4.96 2.18 3.09 1.47 3.01 2.91  5.79 2.20 1.11 1.65 1.22 0.97 

28/01/2014 6.36 0.80 1.37 2.65 5.82 2.43 2.66 1.12 2.71 2.65  4.28 1.71 0.99 1.41 1.19 1.03 

04/02/2014 6.51 1.03 0.90 3.16 5.84 2.68 1.23 1.41 2.10 2.84  4.02 2.17 1.14 1.49 1.27 0.98 

11/02/2014 7.47 1.36 1.14 3.29 6.85 3.61 1.50 1.08 1.57 3.03 8.78 5.32 2.64 1.23 1.72 1.29 0.86 

18/02/2014 6.67 1.09 1.44 3.78 7.63 5.68 1.87 1.11 2.27 3.62 7.30 3.56 2.37 0.91 1.62 1.09 0.74 

25/02/2014 5.95 1.20 0.57 4.63 6.28 2.65 2.12 0.64 1.41 2.86 7.44 1.81 1.48 0.84 1.54 1.07 0.55 

04/03/2014 6.93 1.33 1.95 4.38 7.90 3.73 2.37 0.86 1.80 3.26 7.59 3.26 2.90 1.03 1.81 1.23 0.86 

11/03/2014 5.34 1.21 8.74 5.94 6.88 4.30 1.49 1.01 1.51 2.08  0.71 1.46 1.14 2.08 1.32 0.69 

18/03/2014 3.72 1.37 7.28 6.56 6.50 4.47 0.81 1.25 1.42 2.37   2.38 1.07 1.89 1.36 0.68 

01/04/2014 5.25 1.47 12.42 6.52 7.90 5.12 2.92 1.70 2.54 4.39   4.01 1.19 1.85 1.50 0.92 

15/04/2014 2.09 1.07  7.28 5.03 1.37  2.11  2.69   0.90     
29/04/2014 2.48 0.94  5.45 3.97 3.48  2.31  4.19   0.85 0.91 1.20 1.19 0.49 

13/05/2014 1.32 1.41  3.54 3.95 1.06  2.52  14.99   0.80     
27/05/2014 5.95 1.55 10.34 4.77 3.93 1.63  7.85  1.25   1.38 1.60 1.45 1.87 1.65 

10/06/2014 2.20 2.32 3.39 3.40 3.07 2.56 0.73 2.91  15.44   2.09     
24/06/2014 2.92 1.08  5.01 2.37     29.62    1.77 1.21 1.53 0.73 
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 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D13 D16 A B E M 

Date N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O 

 (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) (µg N/L) 

08/07/2014 2.31 1.02  3.95 2.69     16.29        
22/07/2014 2.30 0.93  2.19 2.31     2.61    1.21 2.10 2.51 0.63 

05/08/2014 2.13 1.38  1.69 2.20             
19/08/2014 2.83 1.21  1.19          1.43 2.50 2.68 0.88 

02/09/2014 2.14 1.16  0.84              
16/09/2014 2.23 1.37  1.56          1.52 1.99 2.47 1.27 

30/09/2014 2.22 2.03  1.07          1.41 2.49 2.14 0.74 

07/10/2014 1.65 1.47  0.95          1.68 2.60 3.33 0.74 

14/10/2014 6.20 4.36 6.67 4.63 7.04 3.55       2.45 6.26 4.68 7.28 7.10 

21/10/2014 7.71 7.24 3.26 6.76 3.54 2.03 9.10 23.53 10.91    1.60 1.52 2.43 2.13 1.52 

28/10/2014 6.01 4.50 0.71 5.23 2.39 3.24 1.74 20.22 6.26     1.00 2.19 2.99 0.92 

04/11/2014 6.63 4.10 1.28 7.09 1.08 1.94 5.49 18.56 6.05 0.74    1.78 2.69 3.86 1.32 

11/11/2014 7.25 4.44 1.84 9.05 0.87 3.79 3.42 16.91 5.84 1.28 2.86  2.86 1.87 2.75 2.30 1.38 

18/11/2014 11.00 5.55 10.52 9.05 1.35 6.90 32.94 10.82 7.75 3.50 8.02 9.64 2.83 2.38 3.16 2.40 2.32 

25/11/2014 9.99 5.48 9.28 7.67 4.55 7.86 31.26 11.65 12.33 5.29 13.17 8.78 2.22 3.13 3.57 2.74 3.10 

02/12/2014 9.86 1.97 8.05 9.14 2.93 10.13 22.56 13.92 16.91 4.68 14.61 7.57 1.62 2.38 2.24 1.83 1.65 

06/01/2015 9.34 3.63 3.42 8.54 9.02 9.88 2.61 34.37 13.17 4.62 11.69 6.75 2.78 2.15 2.89 2.44 1.85 

13/01/2015 3.71 6.12 3.29 6.71 2.88 4.49 8.91 6.65 6.61 6.00 7.00 6.24 2.91 0.80 1.40 0.89 1.30 

20/01/2015 2.26 4.14 3.30 4.34 4.55 4.14 9.19 4.31 5.29 4.07 8.59 3.10 3.05 2.14 1.86 1.99 1.25 

27/01/2015 5.88 2.86 5.93 7.13 3.97 4.80 5.71 8.39 6.68 2.03 9.38 2.89 1.69 1.55 2.20 1.63 1.45 

03/02/2015 9.83 4.06 8.75 8.34 7.56 7.66 11.32 8.31 8.06 2.64 10.18 6.58 2.43 1.56 2.03 1.62 1.68 

10/02/2015 4.11 4.83 4.99 6.78 3.22 3.93 5.07 6.66 2.39 6.92 2.60 5.93 4.41 0.96 1.42 2.20 1.82 

17/02/2015 3.64 5.16 2.70 6.84 8.09 3.13 5.00 5.41 10.64 4.07 3.64 4.30 2.55 0.99 1.52 1.93 1.41 

24/02/2015 5.88 3.56 4.70 6.12 5.47 5.04 4.93 5.87 8.44 1.04 4.68 2.67 0.45 0.97 1.34 1.05 0.58 

03/03/2015 5.45 2.25 1.78 19.53 5.32 4.08 2.61 6.82 11.84 1.36  1.57 1.42 0.95 1.95 1.62 0.91 

10/03/2015 3.69 1.89 3.23 19.18 4.85 3.12 1.65  13.52 1.32   1.24 1.09 2.15 1.44 0.98 

17/03/2015 4.62 2.02 4.00 14.56 7.36 3.75 2.35  13.47 1.67   1.04 1.19 2.23 1.64 0.84 

24/03/2015 3.73 2.01 4.39 14.79 6.49 2.45 2.70  8.43 1.18   1.06 1.27 2.25 1.82 0.96 

31/03/2015 2.79 2.38 4.77 14.27 21.42 4.09 3.04 6.97 5.94 3.92   3.38 1.15 2.00 1.44 0.97 
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APPENDIX H Farm data 

 

Table H1 Data of fertiliser applied
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Table H1 Data of fertiliser applied for 2012-2013 and 2013-2014 farm year in the mini-catchment A 

Field name 

CROP 

2012-2013 

Area 

(ha) 

N 

fertilizer 

kg N ha-1 

P 

fertilizer 

kg P ha-1 

K 

fertilizer 

kg K ha-1 

S 

fertilizer 

kg S ha-1 Field name 

CROP 

2013-2014 

Area 

(ha) 

N 

fertilizer 

kg N ha-1 

P 

fertilizer 

kg P ha-1 

K 

fertilizer 

kg K ha-1 

S 

fertilizer 

kg S ha-1 

Green Yards Sugar Beet 11.3 128.4 0.0 132.6 22.2 Green Yards Spring Barley Malt 11.4 150.4 24.4 92.7 11.5 

Dunkirk Winter Wheat Feed 13.1 235.3 26.6 100.6 18.8 Dunkirk Spring Beans Dried 12.9 30.2 30.3 57.4 14.4 

Gatehouse Hyrne Spring Barley Malt 16.6 150.8 25.4 96.0 12.1 Gatehouse Hyrne Spring Beans Dried 16.9 38.0 29.3 55.4 14.7 

Swanhills Spring Barley Malt 10.4 145.6 26.4 100.0 11.7 Swanhills Spring Beans Dried 10.6 26.3 26.4 50.0 12.6 

Far Hempsky Spring Barley Malt 12.5 149.8 24.7 93.6 12.0 Far Hempsky Spring Beans Dried 13.5 0.0 27.9 52.8 11.1 

Church Spring Barley Malt 3.6 146.4 25.2 95.5 11.7 Church Spring Beans Dried 3.6 0.0 29.9 56.6 11.9 

First Hempsky Spring Barley Malt 13.8 150.4 25.6 96.7 12.0 First Hempsky Spring Beans Dried 13.8 34.4 29.8 56.5 14.6 

Moor Hall Fld Spring Barley Malt 18.6 151.1 26.2 99.0 12.1 Moor Hall Fld Spring Beans Dried 20.0 0.0 29.5 56.0 11.7 

Georges Field B Winter Wheat Feed 14.0 210.0 26.9 78.2 0.0 Georges Field B Spring  Beans Dried 14.0 48.3 0.0 6.0 0.0 

Merrisons Spring Beans Dried 40.7 0.0 30.6 30.6 12.1 Merrisons Winter Wheat Feed 43.0 222.9 0.0 0.0 17.8 

Sapwells Winter Wheat Feed 12.9 236.1 0.0 0.0 18.9 Sapwells Sugar Beet 12.7 111.6 0.0 137.3 19.7 

Potash Winter Wheat Feed 25.9 240.7 24.1 91.2 19.3 Potash Spring Beans Dried 26.0 0.0 28.0 53.0 11.7 

Glebe Winter Wheat Feed 24.8 236.2 0.0 0.0 18.9 Glebe Sugar Beet 25.4 108.5 0.0 133.2 19.2 

Reepham Road Gardens Spring Barley Malt 4.3 148.6 24.1 109.9 11.7 Reepham Road Gardens Winter Barley Malt 4.3 150.9 0.0 0.0 12.1 

Beggar Hall Spring Beans Dried 13.1 0.0 0.0 0.0 0.0 Beggars Hall Winter Wheat Feed 13.1 224.0 0.0 0.0 26.2 

Reepham Road Gardens Spring Barley Malt 4.0 148.6 24.1 109.9 11.7 Reepham Road Gardens Winter Barley Malt 3.9 169.6 0.0 0.0 13.6 

Sapwells Winter Barley Malt 5.7 123.5 0.0 0.0 17.1 Sapwells Winter Oilseed Rape 5.7 225.0 0.0 0.0 45.8 

Reepham Road Gardens Spring Barley Malt 9.7 148.6 24.1 109.9 11.7 Reepham Road Gardens Winter Barley Malt 9.7 150.5 0.0 0.0 12.0 

17 Acres Winter Barley Malt 6.5 128.5 0.0 0.0 18.2 17 Acres Winter Oilseed Rape 6.5 225.0 0.0 0.0 45.8 

Newlands Winter Oilseed Rape 8.0 326.2 87.2 98.7 50.1 Newlands Winter Wheat Feed 8.0 241.5 0.0 0.0 19.3 

Newlands Winter Oilseed Rape 7.8 326.2 87.2 98.7 50.1 Newlands Winter Wheat Feed 7.8 241.5 0.0 0.0 19.3 

Newlands Winter Oilseed Rape 8.7 326.2 87.2 98.7 50.1 Newlands Winter Wheat Feed 8.7 241.5 0.0 0.0 19.3 

Low Farm Ave Winter Barley Feed 17.8 150.5 0.0 0.0 12.0 Low Farm Ave Winter Oilseed Rape 19.4 277.3 91.1 96.5 93.9 

Stimpsons Potash Winter Barley Feed 24.3 153.2 0.0 0.0 12.3 Stimpsons Potash Winter Oilseed Rape 24.9 299.8 96.8 102.5 100.1 

Lane Field Winter Wheat Feed 12.0 241.1 0.0 0.0 19.3 Lane Field Sugar Beet 11.8 122.9 0.0 139.9 21.0 

Cooks Cottage Winter Wheat Feed 10.6 236.3 0.0 0.0 18.9 Cooks Cottage Sugar Beet 10.9 109.1 0.0 132.5 19.3 

Carfour Spring Barley Malt 15.9 91.1 30.3 114.7 7.3 Carfour Spring Beans Dried 16.2 7.5 29.3 55.6 12.2 

Kerdy Green Winter Barley Feed 13.3 150.5 0.0 0.0 12.0 Kerdy Green Winter Oilseed Rape 13.9 289.3 95.5 101.1 98.1 

Forest Field Winter Wheat Feed 15.1 235.2 0.0 0.0 18.8 Forest Field Sugar Beet 16.4 104.1 0.0 125.9 18.5 

Howards Barn Winter Wheat Feed 14.1 231.6 0.0 0.0 18.5 Howards Barn Sugar Beet 14.1 113.9 0.0 136.9 20.3 

Salle Old Grounds Winter Barley Feed 12.7 151.2 0.0 0.0 12.1 Salle Old Grounds Winter Oilseed Rape 12.6 320.3 99.6 105.4 103.8 

Fronthouse   6.7 0.0 0.0 0.0 0.0 Fronthouse Winter Wheat Feed 6.7 253.5 0.0 0.0 20.3 

 



 

 

  

 

  

 

 

 

 

 

  


