
PhD Thesis

Computational methods for the
analysis of next generation viral

sequences
A thesis submitted to the University of East Anglia for the degree of Doctor of Philosophy.

Student:

Sergey Lamzin

Registration No:

4966694

Supervisors:

Dr. Mario Caccamo

Prof. Richard Morris

Dr. Pablo Murcia

February 28, 2016
This copy of the thesis has been supplied on condition that anyone who consults it is

understood to recognise that its copyright rests with the author and that use of any

information derived there from must be in accordance with current UK Copyright Law.

In addition, any quotation or extract must include full attribution.

2

Abstract

Recent advances in sequencing technologies have brought a renewed impetus to the

development of bioinformatics tools necessary for sequence processing and analysis.

Along with the constant requirement to be able to assemble more complex genomes

from ever evolving sequencing experiments and technologies there also exists a lack in

visually accessible representations of information generated by analysis tools.

Most of the novel algorithms, specifically for de novo genome assembly of next genera-

tion sequencing (NGS) data, are not able to efficiently handle data generated on large

populations. We have assessed the common methods for genome assembly used today

both from a theoretical point of view and their practical implementations.

In this dissertation we present StarK (stands for k∗), a novel assembly algorithm with

a new data structure designed to overcome some of the limitations that we observed in

established methods enabling higher quality NGS data processing.

The StarK approach structurally combines de Brujin graphs for all possible dimensions

in one supergraph. Although the technique to join reads remains in concept the same,

the dimension k is no longer fixed. StarK is designed in such a way that it allows the

assembler to dynamically adjust the de Brujin graph dimension k on the fly and at any

given nucleotide position without losing connections between graph vertices or doing

complicated calculations. The new graph uses localised coverage difference evaluation

to create connected sub graphs which allows higher resolution of genomic differences

and helps differentiate errors from potential variants within the sequencing sample.

In addition to this we present a bioinformatics analysis pipeline for high-variation viral

population analysis (including transmission studies), which, using both new and es-

tablished methods, creates easily interpretable visual representations of the underlying

data analysis.

Together we provide a solid framework for biologists for extracting more information

from sequencing data with less effort and faster than before.

4

Contents

Contents . 4

List of Figures . 8

List of Tables . 10

Preface 13

I. Viral Population Analysis 15

1. Introduction 16

1.1. Motivation . 16

1.2. Project Objective . 17

1.3. Influenza Transmission Studies . 19

1.3.1. Influenza A Viruses (IAVs) . 19

1.3.2. Experiments & Sequencing . 20

1.3.3. Studies Summary . 24

1.4. The Analysis Pipeline . 28

2. Primary Data Preparation 31

2.1. Introduction . 31

2.2. Quality Control . 31

2.3. Sequencing Read Trimming . 34

2.4. Alignments . 37

2.5. Duplicate removal . 38

Contents 5

2.6. Alignment pileup . 39

2.7. Consensus Sequences . 40

2.8. Sequence Coverage Visualisation . 41

3. Within-host population dynamics 43

3.1. Population Diversity Spectrum . 43

3.2. Nucleotide Entropy . 45

3.3. Sites Of Interest . 50

3.3.1. Bayesian statistics . 50

3.3.2. Comparison with entropy . 50

4. Inter-Host Variation Analysis 54

4.1. Variant Breakdown Tables . 54

4.2. Next Generation Phylogenetics . 56

5. Discussion 61

II. Sequence Assembly 65

6. Introduction 66

6.1. Motivation . 66

6.2. Genome assembly theory . 69

6.2.1. Coverage . 70

6.3. Overlap Layout Consensus (OLC) Assembly 71

6.4. De Brujin Graph Assembly . 73

6.5. String Graph Assembly . 73

6.6. Comparison of the above methods . 75

6.6.1. Expressitivity/information loss 75

6.6.2. Time . 77

6.7. Assessment of the tools in respect to viral data 78

6

7. De Brujin Graph assembly at work 81

7.1. Introduction . 81

7.2. Formal de Brujin Graph . 81

7.3. Observed coverage patterns . 84

7.4. De Brujin graph assembly . 90

8. StarK – locally adaptive graph assembly 93

8.1. Motivation . 93

8.1.1. Limitations of de Brujin graph assemblers 94

8.1.2. Multi-dimensional solution . 97

8.2. StarK Theoretical Framework . 99

8.2.1. Surface paths . 102

8.2.2. Link strength . 104

8.2.3. Graph partitioning . 107

9. Implementation and parallelisation of the StarK assembler 111

9.1. Introduction . 111

9.2. Data structure . 113

9.2.1. k-mer representation (starknode_t) 113

9.2.2. Explanation . 116

9.2.3. k-mer sequence retrieval. 116

9.3. Building a StarK graph . 118

9.3.1. Inserting reads . 118

9.3.2. Parallelisation . 120

9.4. Redundancy cleaning . 125

9.5. Assembly . 128

9.5.1. Initialisation . 128

9.5.2. Merging sub-contigs . 131

9.5.3. Exporting contigs . 134

9.6. Monitoring . 135

9.7. Performance Test . 137

Contents 7

9.8. Compressed data structure . 140

9.8.1. Design . 141

9.8.2. Parallel read parsing . 145

9.8.3. Node meta data . 146

10.Libraries 149

10.1. Generic Lists . 149

10.2. Hash maps . 153

11.Discussion 159

References 163

Acronyms 171

Appendices 175

A. Notation 177

8

List of Figures

1.2. Transmission Study of pandemic H1N1. 22

1.3. Ferret Transmission Study of endemic H3N2 sample overview. 23

1.6. Flowchart visualisation of our semi-automated analysis pipeline. 29

2.1. Quality scores histogram of a failed sample. 32

2.2. Quality scores histogram of influenza sample from Pig 3473 day 4. . . . 33

2.3. Side by side comparison of quality scores histograms. 36

2.4. Coverage plot of the HA segment of sample from Pig 3473 day 2. . . . 42

3.1. Visualisation of viral genetic diversity 44

3.2. Sample entropy plot for a single sample, HA segment. 46

3.3. Entropy plot for the whole experimental infection study, HA segment. . 48

3.4. Combined Shannon Entropy plots for all segments of sample Pig 3473

day 5. 49

4.1. Screenshot of the interactive view of mutation sites. 55

4.2. Results of NGS resolution phylogeny. 58

4.3. Phylogenetic tree of the HA segment in the experimental infection study. 60

6.2. OLC graph during the overlap phase. 72

6.3. String graph example . 74

7.1. de Brujin graph containing the two-mers of the sequence TGAC. 82

7.2. Artificial example coverage plot. 84

List of Figures 9

7.3. Coverage plot of influenza virus sample from Ferret 54 day 2 at k-mer

length 37. 85

7.4. Coverage plots models. 87

7.6. Multi dimensional coverage histogram. 89

8.1. The reads GGTGACTA and CTATGACG as 5-mers. 94

8.2. The reads GGTGACTA and CTATGACG as 4-mers. 95

8.3. The reads GGTGACTA and CTATGACG as 3-mers. 96

8.4. Multi-dimensional de Brujin graph assembly. 97

8.5. Full StarK graph of GGTGACTA and CTATGACG. 100

8.6. StarK link strength histogram sample. 107

9.2. starknode_t node – parent – neighbour relation. 115

9.3. StarK data structure with the read TGAC inserted. 117

9.4. Illustration of a StarK-graph containing only the k-mers of the read

GGTGACTA. 119

9.5. StarK graph example after redundancy removed. 126

9.6. Screenshot of StarK monitoring status web page. 136

9.7. StarK profiling charts . 138

9.9. Shows node → parents → grandparent relation within the StarK graph. 140

10

List of Tables

1.1. Influenza A virus genome segments. 20

1.4. Summary statistics of the experimental infection study. 25

1.5. Summary statistics of transmission experiment. 26

3.5. Comparison of sites detected by Shannon entropy and seqmutprobs. . . 51

6.4. Algorithmic complexity for graph based assembly algorithms. 77

6.5. Runtime comparison of graph-based assemblers. 78

9.1. The starknode_t data structure. 114

9.8. StarK run time breakdown . 139

9.10. Data layout of struct stark_node_phase1_small_s with up to two

offsets. 142

9.11. Combined data layout of struct stark_node_phase1_small_s in the

extended state with its extension. 144

10.2. Benchmarking of three methods to zero sparsely used memory arrays. . 156

List of Tables 11

13

Preface

This dissertation is focused on two approaches for the analysis of Next Generation

Sequencing (NGS) data. These two approaches are developed in two parts of the

dissertation with a discussion chapter covering each one of them. The first part of this

dissertation focuses on our methods for presenting raw and processed sequencing data

in visually accessible way. While already many methods for analysis exist, few present

their results in a visually accessible way. We demonstrate a full analysis pipeline that,

given input data samples, generates various visualisations that aid in determining inter-

and intra-host variation within the viral population. The pipeline incorporates both

established and newly developed methods, which we detail in the following chapters.

In the second part we discuss how similar viral sequencing samples can be assembled

de novo. We discuss the theoretical concepts behind modern sequence assembly algo-

rithms, putting them into a formal language framework at the same time. We then

evaluate their performance on viral sequencing samples and finally present StarK— our

own assembler, specifically designed to assemble high-variation viral genome samples

and overcome the shortcomings of existing algorithms.

We then discuss the theoretical background of the StarK assembler and how it improves

upon the existing de Brujin graph assembly approach. Finally we present in depth

details on our implementation of a prototype assembler based on the StarK theoretical

framework and our efforts on increasing its performance.

15

Part I.

Viral Population Analysis

16

1. Introduction

1.1. Motivation

Ribonucleic acid (RNA) viruses constitute a significant source of emerging infections

in humans and animals, threatening both public health and food security. They display

extremely large population sizes and high mutation rates. This mechanism enables the

virus to adapt quickly to new environments and jump host species. The latter has

caused various influenza pandemics (epidemics that spread to a large population of

humans) throughout history [Bar05] with the Swine Flu pandemic in 2009 being the

most recent example [Smi+09]. A better understanding of the dynamics of genetic

changes in RNA viral populations is key to gain insight into mechanisms that allow

them to jump species barriers, escape host immunity, develop antiviral resistance, or

simply become more virulent. The revolution in genomics technologies has resulted in

an exponential growth of genetic data at all taxonomic levels. Genetic data can now be

generated in most laboratory settings due to the development of powerful and affordable

sequencing technologies. The field of virology is one of many areas of research that have

benefited from this technological leap: the influenza virus resource (http://www.ncbi.

nlm.nih.gov/genomes/FLU/growth.html) hosts approximately 16 500 whole genome

sequences as of February 2014.

Influenza A viruses (IAVs) are significant pathogens of humans and animals. They

have caused four human pandemics since 1918 [Pot01], as well as multiple epizootics

(animal/non-human epidemics) with severe mortality, morbidity and socioeconomic

costs. Understanding the phylodynamics [HG09] of IAVs is critical in order to de-

http://www.ncbi.nlm.nih.gov/genomes/FLU/growth.html
http://www.ncbi.nlm.nih.gov/genomes/FLU/growth.html

1.2. Project Objective 17

vise effective strategies to predict, prevent and/or contain the burden caused by these

pathogens. IAVs are members of the Orthomyxoviridae family of viruses, and possess

a segmented genome — i.e. it is comprised of multiple pieces of RNA. In the case of

IAVs comprising of eight molecules of RNA of negative polarity [BP08], meaning it

is negative sense (3’ to 5’) encoded and positive sense (5’ to 3’) RNA must be first

produced prior to translation. IAVs evolve principally by single-point mutations and

reassortment, the former as a consequence of the lack of proofreading activity of the

viral polymerase and the latter due to the segmented nature of the genome. Stud-

ies on intra- and inter-host influenza variation [Mur+10] have provided insight on the

phylodynamics of IAVs, showing that significant genetic diversity is generated during

the course of infection, though this diversity is often ignored, instead summarising the

genetic information in the form of a consensus sequence (averaged across the popula-

tion). Also, such studies have shown that a proportion of variants are maintained at

low levels along the course of infection and are even being transmitted. Most studies on

within-host influenza dynamics have relied on the analysis of sequences derived from

the hemagglutinin 1 (HA1) region of the HA gene [Gar+09], generated by capillary

sequencing [Smi+85] of cloned Polymerase Chain Reaction (PCR) [Mul+87] products.

Although informative, a more comprehensive approach at the whole genome level is

required to better understand the evolutionary mechanisms at work during influenza

infections.

1.2. Project Objective

The Illumina platform is particularly suitable to study the extent and structure of viral

populations as it provides ultra-deep coverage and high accuracy. However, analysing

and mining such large sequencing datasets in a computationally efficient and biolog-

ically meaningful way is challenging, and requires the development of new computa-

tional tools. Probably the biggest limitation of within-host viral population studies is

the generation of artefact mutations in the laboratory during the reverse transcription

18

polymerase chain reaction (RT-PCR) [Bus02], PCR [Mul+87], and sequencing. Identi-

fying these errors is one of the key challenges when screening sequence data. In previous

work, our collaborators (Dr. Pablo Murcia and Dr. TJ McKinley) developed a statisti-

cal method for screening sequence data for single-site mutations-of-interest [McK+11]

based on modelling the observation process rather than the underlying mechanisms

driving evolution and/or sequencing error. This method can be used to search and

filter for variants that are unlikely to be purely artefacts of the sequencing process.

This is particularly important if we consider that a recent study has shown that very

few mutations are required to adapt highly pathogenic avian influenza viruses to trans-

mit in mammals [Mur+10]. Importantly, this method uses all available information on

genetic diversity obtained from multiple within-sample sequences, rather than simply

comparing consensus sequences. The efficiency of this screening algorithm is dependent

on the degree of heterogeneity in the observed sequences and the number of longitudi-

nal samples, and is why the analysis of Next Generation Sequencing (NGS) datasets

can become computationally intensive and in some cases practically unfeasible.

By modelling the observation process directly (i.e. making no assumptions about the

possible origin of an observable deviation from the prior) one can capture a wealth of

deviations from the mean. This comes though at the cost of having to apply a filter

subsequently to distinguish variants of interest from noise/errors introduced by the

sequencing process.

Although many tools already exist that facilitate research in this direction (and we have

also used several here), their use often requires advanced bioinformatics or computer

science knowledge to

• prepare the data to be processed,

• run the tools (possibly on limited hardware),

• interpret the results (which are often provided in binary or text form).

The objective of this project was to create a fully automated pipeline which, given

datasets similar to the ones described in section 1.3, runs a series of analyses fully au-

1.3. Influenza Transmission Studies 19

tomated and produce visually accessible results without requiring special bioinformatics

training beyond knowledge of a Linux command line from the user. The visualisations

provided allow for both quick visual overview (e.g. whole genome variation clustering)

of the data as well as more detailed versions (e.g. per-cite nucleotide counts).

In order to achieve this we have both created new tools and incorporated existing

ones into a semi automated analysis pipeline. A flowchart visualisation is shown in

Figure 1.6, the details are discussed in the following sections.

We applied this pipeline to characterise the mutational spectra of longitudinal intra-

host influenza virus populations derived from pigs experimentally infected with the

2009 H1N1 pandemic virus (pdmH1N1) in two studies (described in section 1.3) and

present here our methodology along with a small set of results exemplifying the power

of our software.

1.3. Influenza Transmission Studies

1.3.1. Influenza A Viruses (IAVs)

IAV is one of six genera of the family Orthomyxoviridae. These are characterised by

segmented, negative-sense, single-stranded RNA genomes. Although sharing common

ancestry with Influenza B virus, Influenza C virus, Isavirus, Thogotovirus and Quaran-

javirus these viruses have genetically diverged throughout evolution. IAVs’ host diver-

sity ranges from humans to domestic animals and in rare cases wild poultry. In rare

cases recombination between different strains of IAV can cause change in host, which

can lead to epidemics as in the case of the 2009 Swine Flu [Smi+09].

IAV genome structure The IAV genome consists of eight negative-sense, single-

stranded RNA segments (Table 1.1) [BP08]. Virologists classify different strains of

IAVs depending on their variants of HA and NA, as these virus surface proteins are

20

Segment Length Encoded protein Function

1 2341 PB2 Polymerase subunit

2 2341 PB1, PB1-F2 Polymerase subunit

3 2233 PA Polymerase subunit

4 1778 HA Surface glycoprotein; major antigen, recep-

tor binding and fusion activities

5 1565 NP RNA binding protein; nuclear import regu-

lation

6 1413 NA Surface glycoprotein; sialidase activity,

virus release

7 1027 M1, M2 Matrix protein

8 890 NS1 Interferon antagonist protein

NEP Nuclear export of RNA

Table 1.1.: Influenza A virus genome segments.

responsible for the antigenicity of the virus (ability to infect their host). This leads to

IAV designations like H1N1, H3N2. The virus classes referred to in this thesis are

• H1N1: 2009 Swine Flu [Smi+09], 1918 Spanish Flu [Gat09]

• N3N2: Common Human Influenza [Rus+08].

Throughout this thesis we will be referring to the segments by the name of the longest

encoded protein. Most of the search for sites of interest with variation has only been

performed within the protein coding region of the segments.

1.3.2. Experiments & Sequencing

All work detailed in this subsection was done by Dr. Pablo Murcia under GB Home

Office Licence following full ethical approval.

In order to study inter- and intra-host virus population dynamics several in vivo animal

1.3. Influenza Transmission Studies 21

experiments were performed which we categorise into three studies:

Experimental Infection Study (EI): 8 twelve-week-old piglets seronegative to IAVs

of the H1N1, H1N2 and H3N2 subtypes were inoculated with 105.4 EID50 of A/Eng-

land/195/09. Nasal swabs were collected for up to eight days after infection. All

animals were housed in the same cage.

Transmission Study of pandemic H1N1 (TR): Four naïve twelve-week-old piglets

were inoculated with 105.4 EID50 of A/England/195/09. On day two after inoculation

they were housed together with six naïve piglets for 48 hours. At this time point (four

days post initiation of the experiment) the recipient piglets were separated from the

inoculated donors and further housed together with three naïve piglets. During the

course of the experiments nasal swabs were collected on a daily basis. Figure 1.2 shows

an overview of the study.

Ferret Transmission Study of endemic H3N2: Two cages, each capable of housing

four ferrets, were set up. Two ferrets per virus were inoculated with 1 × 104 Pfu

A/Victoria/3/75 or 1 × 105 Pfu Vic-226-228HA. On day 1 post infection, three naïve

sentinel ferrets were co-housed with each inoculated donor. Each day, nasal washes

collected from the animals were tested for the presence of virus. These studies have been

performed by Kim L. Roberts and are documented in the paper “Lack of transmission

of a human influenza virus with avian receptor specificity between ferrets is not due to

decreased virus shedding but rather a lower infectivity in vivo” [Rob+11]. Figure 1.3

shows an overview of the study. One of the data sets from this study is used as a

training set for StarK (chapter 8).

Viral RNA was extracted from the collected swabs, amplified and sequenced on an

Illumina HiSeq 2000. Since this work was done before this thesis, it is not further

described here.

The contents of this thesis focuses on the methods employed to analyse the data at

22

P
ig

day
1

day
2

day
3

day
4

day
5

day
6

day
7

day
8

4301
4303

4305

received
inoculum

4295
4298

4309
4317

4302
4306

4310
4314

4315
4297

F
igure

1.2.:Transm
ission

Study
of

pandem
ic

H
1N

1.
C
olum

ns
represent

pig
identification

num
bers.

F
illed

circles

m
ark

days
for

w
hich

sam
ples

ofvirus
have

been
successfully

sequenced.
B
oxes

show
w
hich

anim
als

w
ere

housed
together

at
w
hich

point
in

tim
e.

D
ays

are
m
easured

in
days

post
infection.

1.3. Influenza Transmission Studies 23

Ferret 62

Ferret 50

Ferret 51

Ferret 52
infection

Day

1 2 3 4 5 6 7 8 9 10

X X X X X

X X X X

X X X

X X X X X

Ferret 54

Ferret 53

Ferret 65

Ferret 66
infection

1 2 3 4 5 6 7 8 9 10

X X X X X

X X X X

X X X

X X X X

Figure 1.3.: Ferret Transmission Study of endemic H3N2 sample overview. A tick (X)

indicates that enough virus was extracted from a blood sample at that day

to carry out sequencing. Ferrets 62 and 54 received the inoculum.

24

hand and the resulting computational and mathematical tools. The next chapters

will explain our analysis strategy and demonstrate the type of information that our

analysis pipeline is capable of generating on the example of the Experimental Infection

Study with occasional references to the Transmission Study. Data sets from the Ferret

Transmission Study are used as training sets for StarK and referred to in chapters 6

and 9.

1.3.3. Studies Summary

Tables 1.4 and 1.5 summarise the type of reads that were used during development of

our analysis methods.

In both studies very high average coverage has been achieved (approximately 5000×).
Over two thirds of the sequenced reads were not mapped to the National Center for

Biotechnology Information (NCBI) [Gee+10] reference genome A/swine/England/453/

2006. In order to determine the cause we have assembled the unmapped reads with

velvet [ZB08] and used Basic Local Alignment Search Tool (BLAST) [Alt+90] to de-

termine their origin. Most contigs aligned against influenza, which is expected given

that this is our intended target. One conting aligned against various Neisseria menin-

gitidis strains with an E-value of 0.0. Among the remaining contigs, top hits (E-values

below 0.1) were contaminants: various bacteria, pig (host), human (lab technician).

All animals, where more then one sample was acquired, displayed variable sites of in-

terest as detected by the Bayesian method seqmutprobs (described in subsection 3.3.1)

and a significantly higher amount of non-synonymous mutations were found in those

sites when compared to synonymous ones.

1.3. Influenza Transmission Studies 25

sa
m
pl
e

co
ve
ra
ge

ge
no

m
e

re
ad

s
si
te
s
of

in
te
re
st

va
ri
an

ts

an
im

al
da

y
m
in

av
g

m
ax

si
te
s

%
to
ta
l

m
ap

pe
d

%
no

ns
yn

sy
n

34
67

2
2

27
79

69
68

6
13

13
6

99
.5
%

1
85

6
64

0
32

8
82

8
17

.7
%

n/
a

n/
a

n/
a

34
68

3
2

45
62

10
7

05
0

13
17

7
99

.8
%

2
48

1
41

6
56

3
10

4
22

.7
%

n/
a

n/
a

n/
a

34
73

2
9

42
04

11
3

99
2

13
16

7
99

.7
%

2
20

1
76

4
52

3
71

1
23

.8
%

59

30
27

4
4

40
23

52
33

2
13

16
5

99
.7
%

1
54

4
25

6
49

9
86

0
32

.4
%

43
38

5
1

31
38

48
14

8
13

13
8

99
.5
%

1
14

6
45

2
37

8
84

0
33

.0
%

38
24

6
12

62
24

97
81

3
13

17
1

99
.8
%

2
47

1
68

6
75

8
09

9
30

.7
%

35
11

34
74

3
5

44
46

88
91

1
13

14
9

99
.6
%

2
09

1
92

0
53

1
94

3
25

.4
%

n/
a

n/
a

n/
a

34
75

2
3

12
29

35
05

6
13

16
9

99
.8
%

64
1

22
8

15
0

80
6

23
.5
%

33

20
8

3
2

13
90

36
88

7
13

15
6

99
.7
%

1
00

0
90

6
17

1
25

9
17

.1
%

21
8

4
1

14
10

23
68

8
13

08
8

99
.1
%

60
5

38
4

17
3

02
4

28
.6
%

20
9

5
12

78
19

10
4

64
1

13
17

2
99

.8
%

3
26

1
91

4
96

3
10

6
29

.5
%

15
8

34
80

2
2

12
40

24
93

7
13

17
1

99
.8
%

51
9

31
8

15
5

28
5

29
.9
%

31

3
1

3
4

13
97

27
42

6
13

16
1

99
.7
%

61
3

43
8

17
7

27
8

28
.9
%

4
1

4
5

43
06

70
53

5
13

17
1

99
.8
%

1
80

9
06

8
53

7
01

8
29

.7
%

2
1

41
30

3
3

11
75

2
31

0
17

3
13

15
2

99
.6
%

6
30

8
11

8
1

43
1

86
2

22
.7
%

65
8

5

4
1

54
83

17
3

81
3

13
09

2
99

.2
%

3
52

2
18

0
66

7
89

8
19

.0
%

26
10

41
31

3
2

66
22

14
1

19
1

13
17

2
99

.8
%

3
37

0
88

4
81

9
39

6
24

.3
%

10
6

16
5

4
1

44
33

14
8

02
7

12
36

5
93

.7
%

2
90

9
94

4
53

8
97

1
18

.5
%

44
7

5
6

60
18

18
1

62
3

13
05

2
98

.9
%

3
75

0
79

2
74

6
47

7
19

.9
%

38
16

av
g

4.
1

43
40

97
68

0
13

10
6

99
.3
%

2
21

6
17

4
53

2
46

1
25

.1
%

56
.8

22
.7

11
.2

m
ax

12
11

75
2

31
0

17
3

13
17

7
99

.8
%

6
30

8
11

8
1

43
1

86
2

33
.0
%

10
6

44
38

Ta
bl
e
1.
4.
:S

um
m
ar
y
st
at
is
ti
cs

of
th
e
ex
pe

ri
m
en
ta
li
nf
ec
ti
on

st
ud

y.

26

sample coverage reads sites of

interest

variants

animal day avg max total mapped nonsyn syn

4295
5 3516 106 109 2 081 084 20.3%

10
7 3

6 2107 56 227 970 122 26.4% 6 5

4297 6 2146 86 634 1 296 698 19.1% n/a

4298

5 7562 236 451 4 228 184 22.1%

92

6 5

6 9490 292 089 5 260 926 21.7% 13 10

7 3419 105 521 2 037 972 20.9% 28 14

4301

2 6134 182 918 3 364 538 23.2%

83

26 7

3 5837 283 119 5 004 986 14.3% 54 16

4 4917 187 155 3 742 662 15.9% 80 17

4302
5 11 801 272 213 5 938 080 24.3%

85
25 6

6 4263 153 625 2 759 880 19.0% 58 19

4303

2 4368 193 575 3 689 764 14.6%

44

16 7

3 4262 142 116 2 672 464 19.5% 23 7

4 9730 337 056 6 724 270 17.4% 19 7

4305

3 2276 52 095 1 201 990 23.8%

43

0 1

4 5337 180 401 3 407 674 19.5% 3 1

5 2906 74 092 1 448 616 25.2% 1 1

4306
4 7607 145 312 3 141 228 28.8%

48
10 4

5 2946 94 047 1 613 048 22.1% 57 15

4309

4 6556 163 896 3 267 086 24.1%

161

22 4

5 12 858 340 998 6 578 830 24.3% 36 9

6 14 511 432 191 8 548 222 21.8% 74 18

4310 5 4713 104 085 2 109 042 27.6% n/a

4314
4 2938 76 784 1 368 756 25.8%

77
12 5

5 6761 251 885 4 289 118 19.4% 38 10

4315
6 3345 91 857 1 573 180 25.2%

49
7 3501 173 828 2 651 266 16.0%

4317
4 8446 208 334 3 966 866 25.9%

90
16 6

5 8036 224 396 4 731 434 21.2% 53 26

avg 5941 181 000 3 436 827 21.7% 73.6 27.3 8.9

max 14 511 432 191 8 548 222 28.8% 161 80 26

Table 1.5.: Summary statistics of transmission experiment.

1.3. Influenza Transmission Studies 27

28

1.4. The Analysis Pipeline

During the course of this project we have designed and implemented a semi-automated

analysis pipeline that both incorporates known tools like the Burrows-Wheeler Aligner

(BWA) and the seqmutprobs Bayesian variant analysis package (both explained in

section 2.4 and subsection 3.3.1 respectively) and adds novel analysis methods.

The pipeline (flowchart shown in Figure 1.6) requires minimal input from the user.

The input reads and some meta data have to be provided though in order to run:

a) The sequencing reads, can be either as paired end (in which case paired end

information will be used) or as single reads.

b) Reference genome for the virus in question,

c) Table containing meta data about the experiment:

• Mapping of datasets ↔ animal, day

• Regions/reading frames within the genome that are of interest.

At this point the analysis can be performed with the invocation of only two analysis

scripts (one for within-sample and one for intra-sample analysis) and will produce the

following analysis results:

1. Quality control charts,

2. Shannon entropy plots,

3. Coverage plots,

4. Diversity plots,

5. Mutations breakdown Hypertext Markup Language (HTML) tables,

6. Hierarchical clustering of the samples by variation.

Both scripts can be run non-interactively on a cluster and support automatic scheduling

1.4. The Analysis Pipeline 29

sa
m

p
le

P
E

re
ad

s

q
u
al

it
y

st
at

s

q
u
al

it
y

ch
ar

ts

tr
im

tr
im

m
ed

P
E

re
ad

s

w
id

ow
re

ad
s

d
is

ca
rd

ed
re

ad
s

B
W
A

B
W
A

re
fe

re
n
cesa
m
t
o
o
l
s

rm
d
u
p

sa
m
t
o
o
l
s

m
er

g
e

a
li
gn

m
en

t

al
ig

n
m

en
t

B
A

M
fi
le

d
iv

er
si

ty
p
lo

ts

co
ve

ra
g
e

p
lo

ts

en
tr

o
p
y

p
lo

ts

se
q
m

u
tp

ro
b
s

m
u
ta

ti
on

si
te

s
ca

n
d
id

at
es

tr
an

sl
a
te

co
d
on

s
m

u
ta

ti
on

s
b
re

ak
d
ow

n

in
te

r-
h
os

t
m

u
ta

ti
on

s
b
re

ak
d
ow

n

H
ie

ra
rc

h
ic

al
cl

u
st

er
in

g

O
th

er
sa

m
p
le

s

In
p
u
t

d
a
ta

P
ro

ce
ss

in
g

st
ep

In
te

rm
ed

ia
te

re
su

lt

R
es

u
lt

F
ig
ur
e
1.
6.
:F

lo
w
ch
ar
t
vi
su
al
is
at
io
n
of

ou
r
se
m
i-a

ut
om

at
ed

an
al
ys
is
pi
pe

lin
e.

D
et
ai
le
d
ex
pl
an

at
io
ns

of
th
e
in
di
vi
du

al

pa
rt
s
of

th
e
pi
pe

lin
e
ar
e
di
sc
us
se
d
in

th
e
fo
llo

w
in
g
ch
ap

te
rs
.

30

on Platform Load Sharing Facility (LSF).

In the following chapters we will discuss the methods, that we designed and incorpo-

rated into the pipeline, as well as present example outputs and their possible interpre-

tations.

The source code for the analysis pipeline is currently being further developed and

maintained by Dr.George Kettleborough and the current version can be obtained by

contacting him via email George.Kettleborough@tgac.ac.uk.

We have divided the analysis pipeline into three major parts:

1. Primary Data Preparation. Encompasses everything from quality control, reads

filtering to alignments and data condensation.

2. Within-host population dynamics. Single sample and single host variation anal-

ysis. As the experiments were conducted as transmission experiments the first

step is to analyse what variants the virus displays in each sample and then how

the virus population changes within a single host.

3. Inter-Host Variation Analysis. Our attempt at trying to piece information to-

gether from the entire study and see how the virus populations change between

hosts.

mailto:George.Kettleborough@tgac.ac.uk

31

2. Primary Data Preparation

2.1. Introduction

Before we can begin variant analysis on raw NGS reads we have to first determine

the quality of the obtained reads, align them (ideally to a reference genome of the

same species) and perform sanity checks in order to ensure the most accurate data

interpretation.

This chapter focuses on our methods for achieving the above and the visualisations

that our pipeline provides to the user for understanding the quality of the reads within

data samples.

The statistical summary tables (as shown in subsection 1.3.3) are (with the exception

of sites of interest) derived from meta data collected during this stage and serve a

statistical purpose. Using those we were for instance able to exclude bad samples

(bad quality scores or very few reads) or samples with unknown content (less than 1%

of reads aligned). Please note that excluded samples are not shown in the summary

Tables 1.4 and 1.5.

2.2. Quality Control

Today many more sophisticated NGS quality control tools exist, though at the time

this project was started they were not yet available. As such we have designed a simple

32

program to evaluate the overall quality of the reads obtained from the sequencer. The

first step builds a simple histogram of quality score counts across all reads within a

sample and produces a plot as displayed in Figure 2.2.

The plot in Figure 2.2 displays a quality score histogram of a “good” sample. The

quality scores’ distribution is what we expected from the sequencers back in 2010.

The decay in the quality scores towards the end of the read is normal and follows our

expectations. As a comparison Figure 2.1 shows a quality histogram chart of a failed

sample. There are far fewer reads in total (as seen by the scale for the heatmap on the

right hand side of the plot) than we would expect and the average nucleotide quality

0

1

2

4

8

16

32

64

128

256

512

1 11 21 31 41 51 61 71 81 91 101 111

−1

4

9

14

19

24

29

34

Quality histogram
Pig 3468 day 2

read position

qu
al

ity
 s

co
re

Figure 2.1.: Quality scores histogram of influenza sample from Pig 3468 day 2. This is

a failed sample. There are far fewer reads in total than we would expect

(please note the scale on the right hand side) and the average nucleotide

quality scores are below what was “normal” for the technology at the time

(2010).

2.2. Quality Control 33

0124816326412
8

25
6

51
2

2^
10

2^
11

2^
12

2^
13

2^
14

2^
15

2^
16

2^
17

2^
18

2^
19

2^
20

1
11

21
31

41
51

61
71

81
91

10
1

11
1

−
1491419242934

Q
ua

lit
y

hi
st

og
ra

m
P

ig
 3

47
3

da
y

4

re
ad

 p
os

iti
on

quality score

F
ig
ur
e
2.
2.
:Q

ua
lit
y
sc
or
es

hi
st
og

ra
m

of
in
flu

en
za

sa
m
pl
e
fr
om

P
ig

34
73

da
y
4.

T
he

bl
ac
k
lin

e
sh
ow

s
th
e
av
er
ag

e

qu
al
ity

at
ea
ch

po
si
ti
on

.
T
he

qu
al
ity

sc
or
es

co
rr
es
po

nd
to

th
e
en
co
de
d
Ill
um

in
a
sc
or
e
ch
ar
ac
te
rs

m
in
us

’C
’,

i.e
.−

1
co
rr
es
po

nd
s
to

th
e
Ill
um

in
a
qu

al
ity

sc
or
e
’B

’.
P
le
as
e
no

ti
ce

th
e
ab

un
da

nc
e
of

nu
cl
eo
ti
de
s

sc
or
ed
−

1
at

al
lp

os
it
io
ns
.

34

scores are below what was “normal” for the technology at the time.

These plots are intended as visual aids in determining whether a sequencing sample

can be expected to yield useful results in further down analysis. At the time our Swine

Flu samples were sequenced no automatic quality control was being done yet by the

sequencing team. And no tool for determining the quality of a sample was available

beyond simple statistics (mean quality score, standard deviation). We wanted a tool

that will visualise the distribution of quality scores throughout the sample, but also

putting it into context of position within a read as quality scores tend to drop towards

the ends of a read.

We chose represent this three dimensional data using a heat map to indicate quantity

of nucleotides with a given quality score depending on their position within a read.

This allows us to assess how they are distributed and whether there are any visual

anomalies like certain scores being favoured or sudden jumps. The black line showing

the mean quality score per position was added to compare with existing mean quality

score plots that scripts produced in 2010. We decided to omit variance information

(which can be visually implied by a viewer from the heat map) to increase visibility of

the overall plot.

Our pipeline automatically generates a quality score histogram chart for each sample

to aid the user in tracking down failed sequencing runs.

2.3. Sequencing Read Trimming

As seen in the quality score histograms (Figure 2.2) there are a number of nucleotides

scored at −1 (Illumina score ’B’) which separate from the remainder of the histogram.

Based on our observations these are “filler” nucleotides inserted by the sequencing

platform to complete a full 100 base pair read. These nucleotides almost never align

against our reference and often cause the entire read to be discarded by the aligner as

a result.

2.3. Sequencing Read Trimming 35

In order to aid the downstream aligner we have designed a simple read trimmer that

removes those score −1 nucleotides from reads following the criteria:

• Remove any continuous leading or tailing sequence of nucleotides that all have a

quality score of −1 (’B’).

An aligner will decide whether to align or discard a read based on a score that

is determined by the ratio of aligned nucleotides versus unaligned nucleotides.

Removing these −1 quality scored nucleotides will raise the aligner score for the

remaining ones if they align and may make the aligner keep the remainder of the

read.

• If the above process removes more than 50% of the read – discard the read.

If more than half of the read consists of filler nucleotides then we decided not to

trust the remainder either. The underlying aligner does not know that the read

was initially more than twice as long as seen by the aligner. We want to reduce

the chances of it being misaligned due to short length.

• If the above process discards only one of two reads from a pair (paired end

sequencing), then the remaining read is saved as a single widow read.

Sequencing errors affecting one read of a pair have no effect on the other, so there

is no harm in keeping only one of a pair, but it needs to be treated as a single

read from there on.

After the trimming another quality control step is performed and a second set of quality

score histograms is generated. Figure 2.3 shows the quality score histogram plots of

sample Pig 3473 day 4 before and after trimming side by side. One can observe a

major reduction of nucleotides at score −1 and a significant improvement of the average

quality score towards the ends of the reads. This leads to more reads being aligned in

our runs during the next step than when using untrimmed reads.

The above parameters can be adjusted at the user’s will to have a more strict quality

cut-off or preserve shorter widow reads.

36

(a) Quality scores histogram of influenza sample from Pig 3473 day 4.

0

1

2

4

8

16

32

64

128

256

512

2^10

2^11

2^12

2^13

2^14

2^15

2^16

2^17

2^18

2^19

2^20

1 11 21 31 41 51 61 71 81 91 101 111

−1

4

9

14

19

24

29

34

Quality histogram
Pig 3473 day 4

read position

qu
al

ity
 s

co
re

(b) Quality scores histogram of influenza sample from Pig 3473 day 4 after trimming.

0

1

2

4

8

16

32

64

128

256

512

2^10

2^11

2^12

2^13

2^14

2^15

2^16

2^17

2^18

2^19

2^20

1 11 21 31 41 51 61 71 81 91 101 111

−1

4

9

14

19

24

29

34

Quality histogram
Pig 3473 day 4

read position

qu
al

ity
 s

co
re

Figure 2.3.: Side by side comparison of quality scores histograms of influenza sample

from Pig 3473 day 4 before and after trimming. One can observe a major

reduction of nucleotides at score −1 and a significant improvement of the

average quality score towards the ends of the reads.

2.4. Alignments 37

2.4. Alignments

The analysis pipeline presented here requires the reads to be aligned towards a reference

genome. The reference genome is not used further down in the analysis, it only provides

a means of aligning reads and identifying the necessary read frames for the protein

coding regions. Any further references to single nucleotide polymorphisms (SNPs)

refer to variants towards the study wide consensus sequence derived from the aligned

reads.

For our analyses we have used the Burrows-Wheeler Aligner (BWA) [LD09] (version

0.6.1) with default parameters. The aligner is interchangeable as long as the resulting

output is provided in Sequence Alignment/Map (SAM) [Li+09] or BAM format (binary

version of the SAM [Li+09] alignment format), i.e. it is simple to replace the BWA

[LD09] aligner with the Bowtie aligner [Lan+09] or a more accurate Smith-Waterman

based aligner [SW81].

If during the trimming step the reads are split into a set of paired-end reads and a

set of single widow reads. samtools [Li+09] is then subsequently used to merge the

alignments into a single BAM file.

This requirement for an alignment is a major limitation for this type of analysis. A

reference genome may not be available for as yet unresearched viral genomes or may

be out of date. A first attempt of using assemblies of food and mouth disease virus was

attempted before [Wri+11], but even modern assemblers struggle with high variation

data sets.

In order to attempt to tackle this limitation we have decided to create a novel genome

assembler that not only assembles a consensus sequence, but also does this type of

alignment and/or haplotyping during the assembly process. This eliminates both the

need for a reference genome and any bias introduced as a result of alignments. This

assembler uses a completely new method for assembly that was designed to be able to

cope with high variation NGS data.

38

Our progress towards this goal is presented in Part II of this thesis. Although we did

not finish the part of the assembler that does variant analysis and haplotyping, we have

created a very fast and accurate general purpose assembler in the process.

2.5. Duplicate removal

NGS data is often polluted by excessive amplification of a few select Deoxyribonucleic

acid (DNA) fragments during the library preparation step. This leads to sudden spikes

in coverage in these regions of the genome, but does not provide an accurate view of

the population diversity.

We often model the selection of fragments from a genome during sequencing using a

uniform distribution (compare to subsection 6.2.1). If a genome g is of length |g|,
and a fragment was selected at a position x then the probability of selecting a second

fragment at the same position is

1

|g|
. (2.5.1)

Given n reads on a genome g of length |g| and assuming a uniform distribution of

the selection of starting positions for a fragment we will have on average n
|g| fragments

starting per position.

The viral genome of Influenza, which we have been working with, is only 14 000 base

pairs long. If we would have only sequenced one million reads (in most cases we

have more, compare Tables 1.4, 1.5) we would on average observe approximately 71

fragments starting per position.

To help us identify reads originating from a fragment which was amplified excessively

from fragments that have randomly originated from the same position we will be using

paired-end reads.

Paired end reads are generated by a sequencer that takes a longer DNA fragment than

its read length (typically between 300 and 600 base pairs) and sequences it from both

2.6. Alignment pileup 39

ends up to the sequencer’s read length.

Considering this information, in order for two randomly selected fragments to be iden-

tical (assuming no repeats of fragment length within the genome) they have to have

originated from the same position and have the same length.

Given n reads on a genome g of length |g| and assuming a uniform distribution of the

selection of starting positions for a fragment and a uniform distribution of fragment

length between 300 and 600 we will have on average n
|g|·(600−300) fragments of the same

length starting per position.

Again, given our input data this amounts to only a 23% chance of observing such a

pair of fragments. This chance is further decreased by the fact that we are dealing

with high-variation viral genomes, erroneous reads and longer DNA fragments than

estimated above.

In addition to that, identical fragment reads in abundance do not contribute useful

information to variation analysis.

In order to deal with this we use the samtools rmdup (remove duplicates) function to

scan the alignment files for potential PCR [Mul+87] duplicate reads and remove them

[Li+09]. The result is fewer sudden jumps in coverage and data, that should be less

biased by the chemistry used during library preparation.

2.6. Alignment pileup

For all our downstream analysis we do not require the alignments themselves, but

rather pileup tables derived from those. A pileup table contains for each position in

the reference genome the amounts of the different nucleotides that were mapped there.

A program that reads the BAM file (interfacing through libbam [Li+09]) generates

tables for counts of appearance of

• nucleotides per position/sample,

40

• codons (triplets of nucleotides) per amino acid within protein coding regions.

Those are stored in a SQLite database (https://www.sqlite.org/) and are used by

all other scripts for downstream analysis. Since in earlier versions of the pipeline these

tables were generated on the fly for each subsequent analysis directly from the BAM

file, the latter is still used to represent this in the pipeline flowchart in Figure 1.6.

2.7. Consensus Sequences

To determine the level of genetic fluctuation along the course of infection at the whole

genome level, we generate a single full genome sequence from each day of each individual

sample where coverage permits. The consensus nucleotide at each site is assigned based

on a majority rule (i.e the nucleotide that exhibits the highest count).

In addition to this a study-wide consensus sequence is used for all downstream anal-

ysis instead of the alignment reference. This is to compensate for any SNPs that

may be present in the inoculum compared to the NCBI [Gee+10] reference genome

A/swine/England/453/2006.

https://www.sqlite.org/

2.8. Sequence Coverage Visualisation 41

2.8. Sequence Coverage Visualisation

In order to allow for quick visual assessment of read coverage towards the reference

genome the pipeline generates a series of coverage plots depicting a simple numeric

pileup of the reads. Figure 2.4 shows the coverage plot of the HA segment of sample

from Pig 3473 day 2. This allows for additional post-alignment quality control.

These plots are primarily used as another form of quality control. Severe misalignments

or other post-alignment anomalies (i.e. coverage in certain areas) can be identified here.

42

0 500 1000 1500

0
10

00
20

00
30

00
40

00

Pig 3473 day 2

gi|237689564|gb|GQ166661.1|
Position

C
ov

er
ag

e

Figure 2.4.: Coverage plot of the HA segment of sample from Pig 3473 day 2. One

can make two main observations: The coverage drops at the ends of the

segment - this has to do with the lower chance of selecting a fragment for

paired end sequencing that covers the ends. The coverage has only few

sudden jumps allowing us to deduce read connectivity based on coverage

differences as described in subsection 8.2.2.

43

3. Within-host population

dynamics

3.1. Population Diversity Spectrum

Previous studies have shown that IAV within-host populations are highly dynamic

even when the consensus sequence remains unaltered [Sta+12]. As such we built our

pipeline based around detecting and analysing subtle changes in the viral population

that are visible in high coverage deep sequencing data.

The objective of the analysis pipeline is to identify variants within the population. To

allow visual assessment of the diversity spectrum within a sample we generate what

we call diversity plots. A cut out of a sample diversity plot is shown in Figure 3.1.

These show both the variants exhibited and their magnitude in a graphical bar plot.

The colour coding represents the four different nucleotides. The magnitude of the bars

corresponds to coverage at that position. Bars going upwards agree with the study-

wide consensus nucleotide at the respective position, bars going down (stacked if more

then one) represent variants that disagree with the consensus.

In contrast to the bare coverage plots or the entropy plots (as discussed in the next

section, section 3.2) these contain more detailed visual information about the variants

at the cost of display space. A more compact and filtered version is later generated for

variant sites of interest (see section 4.1).

Since short deletions and insertions within the genome would break the reading frame

44

2 6 11 17 23 29 35 41 47 53 59 65 71 77 83 89 95 101 108 115 122 129 136 143 150 157 164 171 178 185 192 199 206 213 220 227 234 241 248 255 262 269 276 283 290 297 304 311 318 325 332 339 346 353 360 367 374 381 388 395 402 409 416 423 430 437 444 451 458 465 472 479 486 493 500 507 514 521 528 535 542 549 556 563 570 577 584 591 598 605 612 619 626 633 640 647 654 661 668 675 682 689 696 703 710 717 724 731 738 745 752 759 766 773 780 787 794 801 808 815 822 829 836 843 850 857 864 871 878 885 892 899 906 913 920 927 934 941 948 955 962 969 976 983 990 997 1005 1014 1023 1032 1041 1050 1059 1068 1077 1086 1095 1104 1113 1122 1131 1140 1149 1158 1167 1176 1185 1194 1203 1212 1221 1230 1239 1248 1257 1266 1275 1284 1293 1302 1311 1320 1329 1338 1347 1356 1365 1374 1383 1392 1401 1410 1419 1428 1437 1446 1455 1464 1473 1482 1491 1500 1509 1518 1527 1536 1545 1554 1563 1572 1581 1590 1599 1608 1617 1626 1635 1644 1653 1662 1671 1680 1689 1698

Diversity in Pig 3473 day 5

gi|237689564|gb|GQ166661.1|
Position

C
ov
er
ag
e

−5
00

0
50
0

10
00

15
00

20
00

−5
00

0
50
0

10
00

15
00

20
00

A
C
G
T
Deletions

Figure 3.1.: Visualisation of viral genetic diversity. Section of a diversity plot derived

from pig 3473 at day 5 post infection. The plot represents the variation

present from nucleotide position 535 to 689 in the HA segment. Vertical

coloured bars represent individual nucleotide sites and each colour corre-

sponds to a different nucleotide. Bars going upwards are counts of observed

nucleotides that agree with the consensus (across all samples), bars going

down show those that do not.

3.2. Nucleotide Entropy 45

for the appropriate protein and thus render the resulting genome non-functional [DSH08]

we are not considering short insertions and deletions within our analysis. Longer in-

sertions and deletions are difficult to pick up with short reads and even more so to

distinguish from sequencing errors when dealing with an entire virus population.

3.2. Nucleotide Entropy

In order to assign a more visually accessible (and compact) graphical representation

than the full-pileup diversity plots to the frequency of a variant at any given site within

the genome, we compute the Shannon entropy [Sha48] for each position in each sample.

Shannon entropy is commonly used in information theory for measuring information

content within a message. The basic idea is: the more patterns are needed to describe

the data the bigger the entropy. In terms of data compression it can be used to measure

the minimum amount of bits needed to encode a message. In our case we measure the

amount of variation at any given site. The more variation the more entropy — the

more information this site carries within the population.

The Shannon Entropy in this case is computed as follows: let Ai, Ci, Gi, Ti be the

counts of aligned respective nucleotides and ci := Ai + Ci + Gi + Ti the coverage at

position i. We calculate the nucleotide entropy at position i as

Hi = −
(
Ai

ci
ln
Ai

ci
+
Ci

ci
ln
Ci

ci
+
Gi

ci
ln
Gi

ci
+
Ti
ci

ln
Ti
ci

)
(3.2.1)

Using this measure we are assigning a single number (for the purposes of visualisation)

to the amount of variation at a single position within the genome. Entropy approaches

0 as all contributing reads display the same variant nucleotide and rises with

• the amount of different variants per position,

• the relative frequency of each variant,

46

●●

●
●

●●●●●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●●●●

●●●●

●●●●●

●●

●

●

●●●

●

●

●

●

●

●●●●●●●

●

●

●●

●●

●

●

●

●●

●●

●

●●●

●

●●

●●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●●
●

●

●●●
●
●
●

●

●

●

●

●●

●

●●

●

●
●

●

●
●
●

●
●

●

●●

●

●

●●

●

●●

●
●
●
●

●

●
●

●
●●●

●●
●
●
●

●

●

●

●

●

●
●●●
●

●

●

●●
●●

●
●
●
●
●
●

●
●●●
●

●

●●

●

●●
●
●
●

●

●

●

●
●
●

●

●

●

●
●●●
●●●●
●
●

●
●

●

●

●

●

●

●
●
●

●
●

●

●
●●
●
●

●
●

●

●
●●

●

●●
●

●●
●
●
●
●●

●
●

●
●●●●
●

●

●●●
●
●
●
●●

●
●

●

●
●

●
●

●●
●●
●
●
●
●

●●

●

●●●

●

●

●

●

●

●
●

●

●●

●●●

●●
●●
●
●
●
●
●
●●

●

●

●●
●

●

●●

●

●
●●●●
●

●

●

●

●

●●
●
●

●

●
●●●
●

●

●
●
●●

●
●●●
●

●
●●●

●

●

●
●
●
●

●

●
●

●

●

●

●●
●●

●

●

●●●
●

●

●

●●
●
●●

●

●
●●

●

●
●

●

●

●
●
●
●●

●●
●

●

●

●

●
●

●
●
●

●
●

●●

●

●

●
●●
●●

●●
●

●

●
●●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●
●●

●
●
●●

●

●

●
●
●●
●

●●●

●

●

●

●●

●
●
●●●●
●

●

●
●

●

●

●
●

●

●
●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●●

●
●
●

●

●

●

●

●
●●

●●●

●
●
●●●
●●

●

●

●

●
●

●●
●●

●

●

●
●

●

●●

●
●

●●

●
●
●●●
●

●
●●

●

●●●●●●●

●

●●

●

●
●
●●
●●●●●

●●

●

●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●●

●●

●
●
●
●●
●●●●
●●
●●

●
●●
●●●●
●
●

●

●●●●
●●●
●

●
●

●

●

●
●●●
●

●

●

●●
●

●●
●

●
●

●
●●●
●●●

●

●
●
●
●●
●●●
●
●●●
●
●●

●

●
●

●●
●

●

●
●
●

●●

●

●

●

●●

●

●●
●

●●
●●

●
●●
●●●

●
●

●

●●
●
●●●●●

●
●●●●
●

●

●
●
●
●
●

●
●
●●
●

●

●

●●
●
●
●●●
●●
●

●
●●●
●

●●
●●●
●
●●
●

●●
●
●●
●
●
●

●●●●●●●●
●

●
●●

●●
●●●

●
●
●

●●
●

●●●●
●
●●●

●

●●
●

●●●
●
●
●

●
●●●

●
●

●●

●

●●
●
●●

●●

●
●

●●

●
●

●

●●
●

●

●

●
●
●
●

●

●
●

●
●
●
●
●
●

●
●
●
●●
●
●

●●

●

●

●
●●
●

●

●
●●●
●
●●●

●

●
●
●●
●●●

●
●

●●●
●

●
●

●

●

●
●
●

●

●
●

●
●●●
●
●●●●
●

●
●

●

●
●●●

●

●
●

●●●●

●
●●
●●
●
●

●

●

●

●
●
●●
●

●

●

●

●●

●

●●
●
●
●●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●●

●●
●
●

●

●●●

●

●
●
●
●

●

●
●●
●

●
●●●●
●●

●●●
●
●
●
●
●

●

●

●

●●●
●

●
●

●
●●●
●
●

●
●
●●

●●

●
●

●

●
●●

●

●

●

●

●
●

●●●●
●
●

●

●●

●●
●

●
●●
●
●●
●

●

●
●●
●
●●
●●
●
●

●

●
●

●●
●

●●

●●●●●

●
●
●
●
●
●●
●

●

●
●●

●

●
●●
●
●

●

●

●

●●

●

●●
●●●
●

●

●●●
●●
●

●

●●

●

●

●
●●●

●
●●
●

●●
●
●
●

●
●●
●

●

●
●

●

●●●●●
●
●
●●
●●●●

●●
●

●●
●●

●
●●●

●

●
●●
●●
●●
●●●●
●●
●

●
●●
●●●●●
●●
●●

●

●

●●
●

●
●

●●●

●

●●

●
●
●

●
●●
●●

●

●
●

●
●

●

●

●
●●
●
●
●
●

●

●●
●
●
●
●
●
●

●●

●

●●

●●
●
●
●●

●

●
●
●
●

●

●
●●●
●
●

●
●

●
●
●
●
●

●

●

●
●
●●
●●

●

●●
●
●●
●●

●

●

●
●

●

●
●

●

●
●
●
●
●●
●

●
●

●

●●●
●

●
●
●
●●
●
●

●●

●

●
●

●
●
●

●

●

●

●

●

●●

●

●

●
●●●
●

●

●
●●

●

●●
●

●

●

●

●

●

●●
●

●
●●

●
●
●●

●
●●

●

●

●

●●

●

●
●

●●●

●

●

●

●●

●

●●

●●
●
●
●
●

●

●●●

●

●

●
●

●●
●

●

●

●

●●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●●

●
●●

●

●

●

●●
●●●●
●
●
●
●
●●●

●

●
●
●
●

●●

●

●

●
●

●

●

●
●
●

●

●

●●

●
●

●
●●●
●
●
●

●

●
●
●●
●●
●●

●

●
●

●●

●

●
●
●●

●
●●●

●

●
●

●

●●

●
●

●
●

●
●
●
●●

●
●

●●

●

●

●
●

●
●
●

●

●
●●●

●

●

●
●

●
●

●

●

●●
●
●●
●●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●●●●

●

●

●

●●●

●

●●

●

●

●

●●

●●

●●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●●

●●●●●

●

●●

●●

●

●●

●●●

●

●●

●

●

●

●

●

●●

●

●●

●●●

●

●●●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●●

●

●●●●

0 500 1000 1500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Nucleotide entropy Pig 3473 Day 4

HA

E
nt

ro
py

13
17
1820

192

432

505

511
619

621

716

Coverage

3

7

20

52

141

377

1011

2713

7275

19512

52329

Figure 3.2.: Single sample, single segment Shannon nucleotide entropy plot. The plot

shows the entropy levels as computed by Equation 3.2.1 of H1N1 sample

from Pig 3473 day 4, HA segment. One can observe clustering of several

highly variable mutations between positions 432 and 716. As coverage

drops at the ends of the segment, entropy values rise due to the low reso-

lution of the underlying alignment data.

3.2. Nucleotide Entropy 47

giving us an easily accessible visual representation of variation throughout the genome.

Examples are depicted in Figures 3.2, 3.3 and 3.4. Please note that using the natural

logarithm the theoretical maximum entropy at a single position is − ln 1/4 = 1.386.

As entropy is influenced by the resolution of the data (in the case of genomic pileups

– coverage), areas with low coverage are likely to display high entropy values due to

background noise having a disproportional effect. We incorporated coverage informa-

tion to our entropy plots to visualise areas with inflated entropy values. As expected,

the ends of the gene segments displayed high entropy due to low coverage (Figures 3.2

and 3.3). In the experimental infection study all but one nucleotide site that exhib-

ited a consensus change displayed high entropy values thus reinforcing this value as a

valid measurement for the “magnitude” of variation at a position. The one site where

a consensus change did not display high entropy had a distribution of the majority

(different) nucleotide above 99%.

Entropy plots are being generated by our analysis pipeline for each sample/segment

(Figure 3.2) in addition to full genome (Figure 3.4) and whole-study/segment (Fig-

ure 3.3), the latter being a sum of all entropies across all samples of a study. This

allows us to identify prominent sites with significant variation across the whole study.

48

●●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●
●
●●
●

●

●

●
●

●
●
●
●●
●

●
●

●

●●
●
●

●●
●●●

●

●●●●●

●
●
●
●●

●

●●

●

●●●
●
●●
●
●
●

●●

●
●●

●

●●●
●

●
●
●
●
●●
●
●●

●

●●
●●●

●●
●

●
●
●

●
●
●●

●

●●

●

●
●

●

●●

●

●
●
●
●

●●●●
●
●
●
●●●●●

●

●

●

●

●
●

●
●
●●

●

●

●

●●●

●

●

●
●
●
●
●●
●

●●●●
●●

●
●●
●

●●
●

●

●

●●

●

●
●

●
●●●●
●
●●
●●●
●●●
●●
●

●

●
●
●
●●

●

●

●

●
●
●●●
●●●●
●●
●●

●

●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●●●

●

●
●
●
●

●
●●

●

●●

●●

●

●

●
●
●●

●

●●●

●

●

●

●●●

●
●
●

●●●

●●
●

●

●

●

●

●●

●
●

●

●

●
●●
●
●●

●

●
●
●

●

●

●

●

●

●
●
●
●

●
●

●

●

●
●
●

●●
●●
●
●●●●
●
●●

●

●●

●

●

●
●●
●●●
●

●

●
●●●●●
●●●●

●

●
●

●

●●
●

●
●
●
●
●●
●
●
●

●●

●

●●

●

●
●●
●

●
●
●●●
●●●●
●

●●●
●

●
●

●

●

●
●

●
●●
●●●

●

●

●●
●
●
●

●
●
●

●

●●●
●
●●
●
●●

●●

●

●
●
●●
●●●
●●●

●●●

●

●

●

●

●

●

●

●●●●
●
●

●

●
●

●

●
●●●
●
●
●

●
●
●●

●
●

●
●●●

●

●
●●
●
●●
●●●
●●
●

●

●

●

●

●●

●

●
●

●

●●
●●

●

●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●●

●

●●

●
●

●

●
●●
●
●
●●
●

●●
●●●●
●

●

●
●
●

●

●●
●●
●

●

●

●

●

●●

●

●●
●●
●

●●●●●●●●
●
●

●●●●●

●

●

●

●
●●●
●
●●
●
●●
●
●
●
●●●
●
●●

●

●

●

●

●

●
●●
●

●
●●●
●●●●
●
●

●

●●
●
●
●
●●●●
●●
●●

●

●

●
●●●●
●
●
●

●

●
●
●

●
●
●
●
●

●

●●●●●
●
●
●

●
●

●●
●
●
●●●
●●
●●●
●
●
●
●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●●
●
●
●●
●

●
●
●●●
●
●

●
●

●
●
●●
●

●

●●
●
●
●
●

●

●●

●

●
●

●
●
●
●
●●●

●

●

●

●●●
●●●●

●
●
●

●

●

●●●
●
●
●
●●●
●
●●
●●●●●

●
●
●

●

●●
●●●
●

●
●

●●●
●
●

●
●
●
●

●
●
●●●
●
●●●
●
●
●
●
●
●
●
●●
●●●●●
●
●
●●●
●

●●

●
●●●●●
●●
●
●
●
●●
●●

●

●
●

●

●●

●

●
●

●●●●●●●●

●

●
●●●
●●
●●

●

●
●●●

●

●

●

●
●

●

●

●

●

●
●

●

●●●
●●
●●

●
●

●

●
●●
●
●●

●

●●●
●
●●
●
●●●●
●
●●●
●●
●
●
●●●●

●
●
●
●
●●
●
●

●
●●●
●●

●

●

●

●
●

●
●●●
●

●

●

●

●

●●
●
●●
●●
●
●

●
●●●

●

●

●

●

●

●

●

●●

●
●
●
●●

●

●●

●

●
●

●

●

●
●●
●
●
●

●

●●●●
●

●
●●●
●

●●
●●●
●
●●

●
●●
●
●●
●●

●●

●●●
●
●●
●●

●
●●●
●
●

●

●●
●

●
●
●
●

●
●

●●
●●
●●

●

●●

●

●

●

●
●
●

●●
●●

●

●●
●
●
●●

●●●●

●

●
●●●

●

●

●

●●
●●
●●

●

●●
●●
●

●

●
●

●

●●

●●
●
●

●

●

●

●
●●●
●
●

●●
●

●
●
●●
●
●●

●

●
●
●

●

●

●●
●
●
●

●●
●●●
●
●
●
●●●●●
●
●●
●
●
●●
●
●●●●
●●
●●
●●
●

●
●
●
●●
●●●
●
●
●

●
●
●●
●●

●

●●●●
●
●●
●●●●●●

●●

●
●
●●●●●●

●
●●
●●

●●
●●
●●

●●

●
●

●
●
●

●

●●

●

●
●●
●
●●●

●

●●●
●
●
●●
●
●●

●

●
●

●●●
●
●●●
●●
●
●

●

●
●
●●●●
●●●

●

●
●

●●

●
●
●

●
●
●
●

●

●●●

●

●

●
●●●
●●●●
●
●
●●
●●●
●

●●●●
●
●
●●●
●
●
●●
●
●
●●

●●●

●
●●

●

●
●●
●

●

●

●
●●●
●
●●
●
●●●●
●
●
●●●

●

●

●

●
●
●●●
●

●
●●

●
●
●●●●●●
●
●
●

●

●
●
●●●●
●●●●●●
●●●
●●

●

●
●●

●

●
●
●
●●

●

●
●●
●

●●

●●●
●
●
●

●
●

●●

●

●
●
●
●●
●
●
●●
●

●

●●
●●●
●●●
●
●

●
●
●
●
●●
●
●

●●
●

●
●●
●
●●●
●
●●

●

●

●

●
●
●
●
●
●
●●
●
●●

●

●●

●
●
●

●

●
●
●

●

●●●

●●●

●●
●

●

●●●●
●●
●●
●
●

●●●●

●●
●●
●
●

●●●●●
●●
●●●

●

●●

●

●

●●
●●
●

●
●

●

●
●

●

●

●

●
●●●●
●●
●●
●●●●●●
●●
●●●●●●●

●●
●
●●●●
●
●
●

●
●
●●
●

●

●
●●●
●

●●●
●
●●●
●

●

●
●

●
●●

●

●●

●
●●●
●
●

●●●●
●

●
●
●●●●●
●●

●
●●
●

●

●

●
●●
●

●

●●

●●

●

●

●
●

●
●●
●
●●
●
●

●

●

●
●
●●
●
●

●

●
●●

●●
●●
●●
●●●●●

●●

0 500 1000 1500

0
2

4
6

8
10

Nucleotide entropy Experimental Infection Study

HA

S
um

 E
nt

ro
py

17

432

505

506

511

598

619

621

622

716

Figure 3.3.: Shannon nucleotide entropy plot for the whole experimental infection

study. The plot shows the sum of all entropies across the experimental

infection study for the HA segment. As with the entropy displayed in

Figure 3.2 one can observe clustering of several highly variable mutations

between positions 432 and 716 across the entire study.

3.2. Nucleotide Entropy 49

●●●●●

●

●●●●●●●

●

●●●

●

●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●
●
●●●
●
●●●●●●
●
●●●●●●●
●
●●●●●●
●
●●●
●●●●●
●
●●●●●●●
●
●●●●●●●●
●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●
●●●●●●●
●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●
●●

●

●●●●●●●

●

●●●
●●●●●●●
●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●
●●●●●●●●●●
●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●

●
●●●●●
●
●●●●●●●●●●●●●●●●

●●●●●
●●●●
●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●
●
●
●●●
●
●●●●

●

●●
●
●
●
●●
●
●●●
●●●●●
●
●
●●●
●
●●●●
●●●●●●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●
●●●●●●
●●●
●●●●
●
●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●
●
●

●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●
●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●
●●
●
●●●●
●
●●●●●●
●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●
●●●●●●●●
●
●●

●

●●●●●●●●●●●●●
●●●●●●●●●
●●●●●
●
●●●●●●●●●●

●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●
●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●
●●

●

●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●
●●
●
●●●
●
●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●●●●
●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●
●●●●●●●●●●●●●
●●●

●

●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●
●
●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●

●●●●
●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●
●●●●
●
●●●●●
●●
●
●
●●●●●●●●●●
●●●●
●
●
●
●●
●
●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●
●●●●●●●●
●
●
●●●●●●●●●●
●●●●●●●●
●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●
●●●●
●
●●●●
●●●●●●
●●●●
●
●●●●●●●●
●●●●●●●●●●●
●
●●●
●
●●●●●●●
●●●●●●
●●
●●●●
●
●●
●●●●
●●
●
●●●●
●
●●●

●●

●●●●
●
●●●
●●
●●●●●
●●
●

●
●
●
●
●
●
●
●
●●

●

●
●●
●
●●●
●
●
●

●
●

●

●●
●
●

●
●

●

●

●●
●
●
●
●●

x

y[
x]

0.
0

0.
3

0.
6

0 500 1000 1500 2000
Position

2123
PA

●●
●
●
●
●●

●●●●●
●
●●●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●
●
●

●

●
●
●
●
●●●
●
●
●
●

●
●●
●●●●
●●●●●●●●
●●
●●●●
●
●
●
●●

●

●●●
●
●
●
●
●●●●●●
●●●●●●
●

●
●
●●●●●●●●●

●
●
●●●
●

●

●●
●●●●
●
●
●●●●●●
●●●●●●●●

●

●
●●
●
●●●●●●
●
●
●●
●●●●●●
●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●
●●●

●

●●●●●●●●●●●●
●●●●
●
●●●●●●●●●
●●●●
●●
●●
●
●
●●●●●●●●●●●●
●●●
●
●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●

●
●●●●●●●
●●●●●
●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●

●
●●●

●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●
●●●●●●●●●●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●

●

●●●●●●
●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●
●
●●●●●
●
●●●
●●
●●●●●●●●
●
●●●
●
●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●●
●
●
●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●
●
●●●●
●
●●●
●
●●
●●●●●●●●
●●
●
●●●●●●●
●
●
●●●●●●●●●●
●
●
●●●●●●●●●●●
●●●●●●●●●●●●
●
●●
●●●●●●
●
●●
●
●●●●
●●●
●
●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●

●
●●●●●●●
●●●●●●●●●●●●
●●
●
●●●●●●●●●●●●
●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●
●
●●
●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●
●●●●●
●
●●●●
●
●●
●
●●●●●●
●
●●●
●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●
●●●●●●
●
●●
●
●●●●●●●●●●●●●
●
●
●
●●
●

●
●●●●●
●●
●●
●●●

x

y[
x]

0.
0

0.
3

0.
6

437
1201

1439
PB1

●●●
●●
●●

●

●●
●
●
●
●●
●●
●
●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●
●
●
●
●●●
●
●
●
●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●●●●●●●●●●●●

●

●

●
●

●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●
●●●●●●●●●●

●

●●●

●

●
●

●●●●●●●●
●
●●●
●
●●●

●

●●

●

●
●
●
●
●●●
●
●●●●
●●●●●●
●
●●●●

●

●●●
●●●●●●●●●●●●●●
●●●●●●
●
●●●●
●
●●●●
●●●
●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●
●●●
●
●●●●●●●●

●
●
●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●
●
●●
●●
●
●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●
●
●
●
●
●
●●●●●●●●●●●●●●●
●●●
●●●●
●
●

●

●
●
●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●
●●●●●●●
●
●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●
●●●●●●●●
●●
●●●●●●●●●●●●●●●●

●
●●●●●
●
●
●
●●●●●●●●
●●●●●●●●

●

●●●●●
●●●●●●●●
●
●●

●

●●●●●●●●●●●●●●●●●●
●
●
●●●●
●

●●●
●
●●

●

●●●●●●●●●●
●
●●●●●●●●●●●
●
●●
●●●●●●●
●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●
●
●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●
●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●
●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●
●
●
●●●●●●●
●
●●●
●
●●●●●●
●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●
●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●
●
●
●●●●●
●
●

●
●●●●●
●
●●
●●●●●●
●
●●●●●
●
●
●
●●
●●
●
●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●
●●●●●●●●●
●●●●●
●●●●●●●●●
●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●●●●●●●
●●●

●
●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●
●
●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●
●●●
●
●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●

●●●
●●

●
●

●

●

●
●
●●
●●
●
●
●
●●●●

●

●●

●

●●

●

●●●●●●●●

●●

●●●●
●●
●●●●●●
●●
●●
●●●●●
●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●
●
●●●
●
●●●●●●●
●●
●●●●
●●●●
●
●●●●●
●
●
●●●●●●
●
●●
●●
●●●●●●●●
●●●●●●●●●
●●●●
●●●●●●
●
●●●●●
●
●●●●●●●

x

y[
x]

0.
0

0.
3

0.
6

PB2

●●●●

●

●●

●

●
●●
●●
●
●●
●
●
●●●●●●●
●

●
●●
●●
●●
●●●●●
●●●●
●
●●●●●
●●●
●●●
●●●●
●●●
●
●
●
●
●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●
●●●●●●
●●●
●●●●●●●●●●●
●
●●●●
●
●●●●●●●
●●●●
●●●●
●
●
●
●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●

●

●●●
●●●●●●●●●
●●●●●●●●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●●●●
●●
●●●●●●●●●
●
●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●●●●●●
●
●●●●●●●●
●
●
●
●●
●
●
●●
●
●●●●
●●●●●●
●●
●
●
●●●●
●●●●●
●●
●●
●●
●
●
●
●●
●
●
●●●
●
●●●●●●●●●●●●

x

y[
x]

0.
0

0.
3

0.
6

NS

●●●●●●
●
●●●
●●
●

●●●●
●
●

●
●●●●
●●
●●●●●
●●●●

●
●
●●●
●
●●●●●●
●●
●

●
●●●●●
●
●●●●
●●
●●●
●●
●

●●
●●●
●

●
●
●●●
●
●●●
●●●●●
●
●●●●●●●●●●●
●
●●●
●●
●
●
●●●●●●●●
●
●
●●●●●●●●●
●●●●●●●●
●●●
●●●●
●●●
●
●●
●
●●●●
●●●
●
●●●
●●●●●●
●●●●
●●●●●●●●●●●●●●●●●

●
●●●
●●●●●●●

●

●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●

●

●●
●
●●●●●●●
●
●●●
●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●
●●
●
●●●●●

●
●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●
●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●
●●●
●

●●●●●●●●●●●●●●●

●

●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●
●
●
●●●●●●●
●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●
●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●

●

●●●●●●●
●
●●●●●
●●
●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●●
●
●●●●●●●●●●
●
●●●

●

●●●
●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●
●
●
●●●●●●
●
●
●●
●
●
●●●●
●

●
●
●●
●
●●
●
●●●●
●
●
●
●●

●

●●
●●●●●●●●●●
●
●●●
●

●
●
●●●●●●●
●
●●
●●●
●●●●
●●●●●●●●●●●●●●
●●●●●
●
●●●
●●●●●●
●●●●●●●
●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●
●●●●●●
●
●●●
●●
●●●●●
●
●
●
●●●●●●
●
●
●
●●●●
●●●
●
●●●●●●●
●
●●●●
●
●●●●●
●●●●●
●●●
●
●
●
●
●
●
●
●●●●●●●
●●●●●●●
●
●●●●●●
●
●●●
●
●●
●
●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●
●
●
●●
●●●
●●●
●●
●●●●●●
●
●●●●●
●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●
●
●
●
●●●●●
●
●●●●●●●●●●●●●
●
●●●●●
●●●●●●

x

y[
x]

0.
0

0.
3

0.
6

860

NP

●●●●●

●●

●

●●●

●●

●

●

●●

●

●

●●

●

●●●●●
●
●

●
●●
●●●●●●●●●
●
●
●
●●●●●●●
●●●
●
●
●●
●●●●
●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●
●
●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●
●●●●●●
●●
●
●●●
●
●
●●●
●●●
●●●●●●●●●
●●●
●●●●●●
●
●●●●●●●●
●●●●●
●●●●●●●
●
●●
●
●
●
●
●
●
●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●
●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●
●
●
●●●●●

●

●
●
●●●●●
●
●
●●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●●
●
●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●
●●●●
●

●●
●

●

●
●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●
●
●●●●●●●
●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●●●
●●●●●●●
●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●
●●●●
●
●●
●●●●●●●●●●●●
●●●●●
●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●

●
●
●●●●
●●●●●●●
●●●●●
●
●●●●
●●●
●●●
●●●●●●●●●
●●●●●●●
●●●●●●
●
●
●
●●●●
●●●●●
●●●
●●●
●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●
●

●
●●●●
●
●
●●
●●
●
●
●●●●
●
●●●●
●
●●●●●●●
●

●

●
●●●●

●

●

●

●

●
●●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●●●
●
●
●●●●●●●●●●
●●●●●●●

x

y[
x]

0.
0

0.
3

0.
6

NA

●●●●●

●

●

●●●●●

●

●

●
●

●●

●

●●

●
●
●
●

●

●

●
●
●●
●
●
●
●
●●●●●●●●
●●
●

●

●
●●●
●
●
●●
●
●●●●●
●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●
●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●
●●●●●●
●●●
●
●●●●●●●●●●
●●●●●●
●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●
●●●●
●●●●●●●
●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●
●●●

●
●●●

●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●
●●●

●●●●●●
●
●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●
●●●●●●●●●●●
●

●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●
●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●
●
●
●
●●●●●●
●●●
●
●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●
●

●

●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●

●

●
●
●●●●●
●
●
●●
●
●●
●●
●
●●●
●
●
●

●

●
●
●

●●

●

●

●

●
●
●●
●●
●●●
●●
●●●
●
●
●
●
●

●●
●
●

●

●
●
●
●

●

●

●

●
●
●●
●●●●●

●

●

●

●

●

●
●

●

●

●

●
●●
●●

x

y[
x]

0.
0

0.
3

0.
6

279
MP

●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●
●●
●
●●●●●

●

●●●●●●
●●
●●
●
●●
●
●●
●
●

●

●●●●
●●
●●●

●

●●●●●●●●●●●
●
●

●●●
●●●●●●●●●●●●●●●●●

●
●●
●
●●
●●●●
●●●●
●
●
●
●●●●●
●
●●●
●
●●
●
●●●●●●●
●
●
●●●●●●●●●●●
●●●●●
●
●●●●●●
●
●
●
●

●

●●●●
●●
●●
●●●●●
●●
●●●●●●●●●●●●●
●
●●
●●●●
●
●●●
●●●●●●●●
●
●●●●●●●
●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●
●●●●●●●
●
●●●●
●
●
●●●
●
●●●
●●●●
●
●●●
●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●
●
●●
●●●●●●●●
●●●●
●●●●●●●●●●●●●
●●●●
●
●●●●●●
●
●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●

●

●
●●●●●●●●●●
●
●●●●●
●
●●●●
●●●●●●●●●
●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●
●●●●

●
●

●

●

●●

●

●●

●

●●●●

●

●●●●●
●
●●
●
●●
●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●
●

●

●

●

●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●
●
●●●●●●
●
●●●●●●
●
●●
●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●
●●●●●●●●●
●
●●●
●●●
●
●●●●●●●●●●●
●●
●●●●
●
●

●●●
●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●
●●●●
●●●●●●
●●
●●
●
●●●
●●●●
●●
●●●
●●●

●

●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●
●
●●

●●●●●●●●●●●●●●●●
●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●
●●●●●●●●●
●●●●●●●●●●●
●●●
●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●
●●●●●●

●

●●●●●●●●●
●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●
●●●●●
●
●●●●●
●●●●
●●●●●●●●●●●
●●
●
●●●●●

●

●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●
●●●●
●
●●
●
●●
●●●●●●●●●●
●
●●●●●●●●●
●●
●
●●●●●●●●●
●●
●
●●●●●●●
●●●●●
●
●●●●●●
●●●
●●
●●●●●●●
●
●
●
●
●●●●●●●
●
●
●●●
●●●●●●
●●●●●●
●
●●●●●
●●●●
●
●●●●●●●
●●●●●●●
●
●●●●●●●●●●●
●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●
●●●●●●●●●●●●●●●●●

●
●●●●
●
●●●●●●●●●●
●
●
●
●
●
●
●
●
●●
●
●
●●●
●●●

●
●●
●●●●

x

y[
x]

0.
0

0.
3

0.
6

Entropy for animal 3473 day 5
432511619

621HA

3

7

19

51

136

362

962

2559

6806

18102

48145

Coverage

Figure 3.4.: Combined Shannon Entropy plots for all segments of sample Pig 3473 day

5.

50

3.3. Sites Of Interest

3.3.1. Bayesian statistics

In order to attempt to separate low-frequency variants within the viral population from

sequencing errors we have used a version of the “Bayesian Approach to Analyse Genetic

Variation within RNA Viral Populations” (as detailed in [McK+11]) that was adopted

for the use on high-coverage NGS data. The statistical methodology was adjusted

by Dr. McKinley to accommodate the increased amount of information available in

NGS data samples versus capillary sequencing. The models were adjusted to allow

for a cut-off to be applied to models appearing in very low frequency based on the

mean observable variation from the consensus. A beta version of the software that we

used for our pipeline, is available for download at the project’s home page (https:

//github.com/tjmckinley/seqmutprobs).

In essence the method uses Bayesian statistics to assign a model to the changes in

population distributions between samples. If the change in population distribution

changes significantly in a position with sufficient coverage (which is a sign of variation),

as calculated by Bayesian statistics, then the site is marked as a site of interest.

We use the software package (provided as an R [R D10] package), from here on called

seqmutprobs, as implemented by Dr. McKinley on all samples from one animal com-

bined and then store the results in our SQLite database for easy retrieval.

3.3.2. Comparison with entropy

Although the two approaches are intended for different purposes (seqmutprobs detects

multi-sample changes in population structure, and the Shannon entropy detects varia-

tion in single samples) we have compared the results between the two. High entropy

sites were arbitrarily defined as follows:

https://github.com/tjmckinley/seqmutprobs
https://github.com/tjmckinley/seqmutprobs

3.3. Sites Of Interest 51

Segment
Detected by Exclusive to

Intersection
seqmutprobs entropy seqmutprobs entropy

PB2 156 106 111 61 45

PB1 70 44 51 25 19

PA 180 143 113 76 67

HA 60 70 27 37 33

NP 44 36 24 16 20

NA 48 19 38 9 10

MP 98 7 93 2 5

NS 38 11 30 3 8∑
694 436 487 229 207

Table 3.5.: Comparison of number of sites detected as variable above noise threshold

by Shannon entropy and seqmutprobs in the Transmission Study.

• The entropy value must be larger than the study-wide mean entropy + 5 times

study-wide entropy standard deviation. This cut-off has empirically shown to

almost entirely eliminate noise generated by the sequencing process, but flag

biologically interesting sites.

• The site must be at least 120 nucleotides (read length) away from the start/end

of the segment. As we have seen on Figure 2.4 coverage drops significantly at the

ends of a segment. This artificially increases the entropy in those regions making

it difficult to distinguish high entropy due to variation from high entropy due to

low sample size.

• The site must exhibit a coverage above 200. This was an arbitrary cut-off to

completely exclude low-coverage regions with artificially high entropy due to low

sample size in the same way as in the item above.

In the transmission study out of the 694 sites detected by the screening algorithm

(same site in multiple animals counts multiple times) 207 displayed high entropies.

52

Additionally 229 sites with high entropy were not selected by the seqmutprobs screen-

ing algorithm.

A comparison of the differences in sites marked as sites of interest between seqmutprobs

and the entropy threshold can be found in Table 3.5. The nucleotide entropy is not

intended to distinguish low-frequency variants from noise due to errors in the sequenc-

ing process, but to assign a plot-able number to the amount of variation. As such the

differences in the sites marked by the two methods is expected.

3.3. Sites Of Interest 53

54

4. Inter-Host Variation Analysis

4.1. Variant Breakdown Tables

The objective of our analysis pipeline is to provide insights about sites of interest with

a virus genome population. Although the diversity plots (Figure 3.1) provide a fair

view of all observed variation within a dataset, this information is difficult to perceive

without filtering. These plots also provide no insight into the codons and resulting

amino acids (synonymous/nonsynonymous mutations). The seqmutprobs Bayesian

analysis package provides a certain amount of filtering for sites of interest, but lacks a

visually accessible representation.

In order to allow us to visually assess and compare the genomic variation at a seqmutprobs

detected site of interest, we have compiled a script that extracts all pileup data (nu-

cleotide, codon and amino acid) from the SQLite database for those sites and compiles

them in easily accessible dynamic tables. In order to allow rendering of the dynam-

ically expandable tables on any system they are represented in form of HTML with

JavaScript.

Figure 4.1 shows a static screen shot of a sample table. The first row is expanded

and shows the population breakdown of all codon/amino acid breakdowns visually for

each animal where that variant was detected and all days (where data is available).

This allows for visual assessment of the magnitude of changes. Green parts of the

bar represent the majority codon, yellow bars show synonymous variants and red ones

represent non-synonymous variants. Hovering the mouse over any of the cells brings

4.1. Variant Breakdown Tables 55

F
ig
ur
e
4.
1.
:S

ho
w
s
a
sc
re
en
sh
ot

of
th
e
in
te
ra
ct
iv
e
vi
ew

of
m
ut
at
io
n

si
te
s
pi
ck
ed

up
by

se
qm

ut
pr

ob
s
in

th
e
H
A

se
gm

en
t
of

th
e
ex
pe

ri
m
en
ta
l
in
fe
ct
io
n
st
ud

y.
T
he

co
lu
m
ns

di
sp
la
y
th
e
an

im
al
s
in

th
e
st
ud

y
an

d
th
e

ro
w
s
(w

he
n
ex
pa

nd
ed
)
sh
ow

th
e
da

ys
th
at

w
er
e
sa
m
pl
ed

fo
r
ea
ch

an
im

al
w
it
h
pe

rc
en
ta
ge
s
of

ea
ch

co
do

n

pr
es
en
t
in

th
e
va
ri
at
io
n
si
te
.
G
re
en

is
th
e
co
ns
en
su
s
co
do

n,
re
d
is
no

n-
sy
no

ny
m
ou

s
m
ut
at
io
ns
,y

el
lo
w

is

sy
no

ny
m
ou

s.
H
ov
er
in
g
th
e
m
ou

se
ov
er

an
y
of

th
e
ce
lls

w
ill

di
sp
la
y
de
ta
ile
d
in
fo
rm

at
io
n
ab

ou
t
al
l
th
e

co
do

n
da

ta
av
ai
la
bl
e
fo
r
th
is

si
te
.

56

up a fully detailed breakdown of all observed codons within that sample at the selected

position (in the case of Figure 4.1 Pig 3480 day 4).

As an extension to the diversity plots (section 3.1) a whole-sample view (no filtered

sites) is also available in the form of similar dynamic HTML tables for viewing either

in nucleotide or codon spectrum. The underlying temporary files are used to construct

the whole-study selective variant breakdown tables discussed earlier.

4.2. Next Generation Phylogenetics

When studying populations of rapidly mutating viruses we are interested in their phy-

logenetic relationship. Traditional phylogenetic trees rely on changes in the consensus

sequences that occur over longer evolutional time frames. Although we have observed

consensus changes within our population, there are far more subtle changes within

those which become visible when using deep sequencing. We hypothesize that we

can increase the resolution of phylogenetic trees by incorporating the fine distribution

changes detected by deep sequencing.

Traditional phylogenetic trees are built using the Jukes-Cantor model [JC69], i.e. one

assumes that mutation rates for all nucleotides are the same leading to a distance

measure between two samples

d(s1, s2) = −3

4
ln

(
1− 4

3
p

)
(4.2.1)

with p being the proportion of sites that differ between the two samples. I.e. the

Hamming distance [Ham50] between the two samples divided by the genome length.

For our NGS samples we have extended the notion of the Hamming distance metric to

incorporate subtle differences in nucleotide distributions.

To achieve this we created a distance measure between two samples. Let ns,i be a 4-

dimensional vector containing the distributions of nucleotides at position i in sample s.

4.2. Next Generation Phylogenetics 57

I.e. if As,i, Cs,i, Gs,i, Ts,i are the counts of observed nucleotides at position i in sample

s then

ns,i :=
1

As,i + Cs,i +Gs,i + Ts,i


As,i

Cs,i

Gs,i

Ts,i.

 (4.2.2)

We then define the distance between two samples as the sum of all Euclidean norms of

the distribution vectors differences:

d(s1, s2) :=
∑
i

||ns1,i − ns2,i|| (4.2.3)

If this metric is used on consensus sequences then it is equal to twice the Hamming

distance between two samples.

In order to compensate for uncertainties in the nucleotide distributions at low coverage

sites and between incomparable sites (missing data, significant differences in coverage)

we have used seqmutptobs pairwise on all samples to filter for sites that have significant

changes in their nucleotide distributions as a filter. This breaks the measure’s metric

quality (it no longer obeys the triangle law since different sites are used for each pair

of samples), but it yields more conclusive results due to significantly less bias from

uneven sampling.

Using this filtered distance measure (seqmutprobs filtered) we can construct a distance

matrix for all samples in a study. In order to get a tree we then use hierarchical

clustering [Joh67] on the resulting sample distance matrix. This produces heat maps

and dendrograms that attempt to take the concept of phylogenetic trees to the genomic

resolution of NGS.

Using this approach we observed that samples that are similar population-wise cluster

together, whereas samples that display a significant change in viral population (even

58

34
73

_d
6

34
75

_d
3

41
31

_d
3

34
74

_d
3

34
80

_d
3

34
75

_d
2

34
80

_d
4

34
75

_d
4

41
31

_d
5

34
80

_d
2

41
30

_d
3

41
30

_d
4

34
73

_d
5

34
73

_d
2

34
73

_d
4

34
75

_d
5

34
67

_d
2

34
68

_d
3

41
31

_d
4

HA

4131_d4

3468_d3

3467_d2

3475_d5

3473_d4

3473_d2

3473_d5

4130_d4

4130_d3

3480_d2

4131_d5

3475_d4

3480_d4

3475_d2

3480_d3

3474_d3

4131_d3

3475_d3

3473_d6

Hireachial Clustering of Experimental Infection Study

Figure 4.2.: Shows the results of NGS resolution phylogeny of the HA segment of

the experimental infection study achieved via hierarchical clustering. The

heatmap in the centre is representative of the calculated distance between

samples. Red — no difference, white — large distribution changes. The

dendrogram on the side is the direct result of the hierarchical clustering

algorithm.

4.2. Next Generation Phylogenetics 59

without showing changes in the consensus sequence) are separated. Figure 4.2 shows

the hierarchical clustering of the HA segment of the experimental infection study.

As a comparison Figure 4.3 shows a phylogenetic tree of the consensus sequences of the

HA segment of the experimental infection study. Some similarities, but also differences

are readily visible. For example:

• Samples from Pig 4130 (all days) are in the same phylogenetic group and also have

been clustered the closest because the distributions of the virus have remained

virtually unchanged between them.

• Figure 4.2 shows that although samples 3473 day 5 and day 6 have the same

consensus sequence they are distantly related in the dendogram. This is likely

due to changes in the frequency and distribution of nucleotides at codon 207

(compare to Figure 4.1) as 87% of the reads for sample Pig 3473 day 6 code for

a Serine whereas only 54% of the reads code for the same amino acid in sample

Pig 3473 day 5. As a result, the within-host viral population of sample Pig 3473

day 5 relates better to the other samples in that cluster than to sample Pig 3473

day 6.

Overall, our results show that ultra deep sequencing data can reveal patterns of vari-

ation that would otherwise not be detected by classical phylogenetic methods based

on the analysis of consensus sequences and thus can provide a better insight on the

evolutionary dynamics of viruses over short time periods (i.e. days).

There are various other metrics for comparing multinomial samples that we could have

tried like the likelihood ratio that is derived from comparing the goodness of fit of

two models that can be approximated using Wilks’s theorem [Wil38] or Pearson’s chi-

squared test [Pla83], but given time constraints this was not further pursued.

60
Seaview HA-BioNJ_tree Mon Oct 7 11:54:52 2013

4131_d4_HA

4131_d5_HA

4131_d3_HA

3480_d4_HA

3480_d3_HA

3475_d4_HA

3475_d3_HA

3475_d2_HA

3474_d3_HA

3473_d2_HA

3468_d3_HA

3480_d2_HA

3473_d4_HA

3467_d2_HA

4130_d4_HA

4130_d3_HA

3475_d5_HA

3473_d6_HA

3473_d5_HA
BioNJ 1701 sites J-C 0.0001

Figure 4.3.: Phylogenetic tree of the HA segment in the experimental infection study

built based on consensus sequences (majority rule).

61

5. Discussion

With our pipeline we have introduced new methods, that specifically target visualisa-

tion of data on virus population diversity.

“Use a picture. It’s worth a thousand words.” - Arthur Brisbane, 1911

This amalgamation of methods has been successfully used to analyse the sequencing

data from the three IAV studies mentioned in subsection 1.3.2 (publication manuscript

is currently in final stages of development).

We have introduced two new concepts that allow a “Next Generation” view onto deep

sequencing data “Beyond the Consensus” [Wri+11]:

• Nucleotide Entropy — a simple, well established method for measuring informa-

tion content, allows us to visualise and filter out variants based on both number

of variants and their magnitude — section 3.2,

• NGS phylogenies — a novel attempt on refining traditional consensus based phy-

logenetic trees for populations based on deep sequencing data — section 4.2.

These two new methods are only the tip of the iceberg of what kind of information we

can extract from NGS deep sequencing data. But already these two simple concepts,

when properly visualised, demonstrate the power of NGS data. With more research

and development we will be able to bring even more well established consensus based

methods (e.g. protein structures, haplotyping, integration of long reads) to the resolu-

tion of NGS.

62

Third generation sequencing technologies (i.e. PacBio [McC10]) can provide cost-effective

long read sequencing of full viral genome segments. Our early experiments did not pro-

vide data of sufficient quality for our research, but integrating long read information

into our tool kit would greatly benefit this kind of analysis. For example we could

begin to do reliable haplotying on an entire population.

Along with new methods we have also begun work on web based visualisations of our

virus population data (section 4.1). With more work we can create a fully interactive

web service for visualising population variation and make it accessible to everyone to

use on their own data as it is fully built on portable web technologies HTML and

JavaScript.

We have achieved the goal of creating an easy to use analysis pipeline for biologists.

Adding a Graphical User Interface (GUI) will be an additional step in this direction as

right now the pipeline can only be run from the command line and requires the user to

populate a SQLite table with meta data about the study (sample names, animal/day

data).

One paper characterising the intra- and inter-host variation of the two Swine Flu studies

is based on this pipeline and is currently in its late manuscript stages. Another research

group working on the H3N2 IAV studies in Ferrets (Figure 1.3) is currently using and

extending our pipeline.

63

65

Part II.

Sequence Assembly

66

6. Introduction

In Part I we were working with reference-based alignments of viral NGS data. In

many cases the reference for a virus may not be available yet. In this chapter we

will discuss several assembly methods and their performance with regards to viral

sequence assembly. We will analyse both their theoretical capabilities and the actual

performance of the implementations. We will then introduce StarK, our new assembler

specifically targeted to overcome the shortcomings of the other methods with regard

to highly diverse viral sequence data.

6.1. Motivation

Determining an organism’s DNA sequence has always been a great challenge in biology.

Although the first genome was sequenced back in 1977 [SNC77], none of the employed

sequencing machines have ever been able to sequence a multiple kilo bases long genome

as a single sequence (until the recent announcement of the “Oxford Nanopore” [Eis12]).

Numerous commercially available sequencers have emerged over the years:

• Sanger sequencing was the most widely used sequencing technology for roughly 25

years until the introduction of the Next Generation (NGS) Sequencing technolo-

gies below. In 1985 automated capillary sequencing machines were introduced

that were capable of generating up to 1kb long reads [Smi+85]. Although being

able to generate 500-1kb long reads at high accuracy the technology is slow and

costly in comparison to newer NGS and is thus not being used as frequently any

6.1. Motivation 67

more.

• Pyrosequencing based technology (Roche 454 [Mar+05]) determines the sequence

by measuring the release of pyrophosphate molecules during DNA replication.

This technology provides reads between 500 – 1kb, but are expensive to produce

and often of insufficient quality or quantity to produce a full de novo assembly

on their own. 454 reads are frequently used to enrich Illumina read datasets for

resolving longer repeats.

• Sequencing by synthesis (Illumina [Ben+05; Ben06]) presented the first sequenc-

ing method for generating massive amounts of short read at low cost. While

initially used for resequencing or alignments the low cost associated with the

technology started an influx of de novo assemblers attempting to use these reads.

• Sequencing by ligation (SOLiD [Mar08]) is another technology capable of pro-

ducing short low-cost reads, of comparable length and quality to Illumina at the

time. This technology did not see much uptake due to being unable to keep up

with longer read lengths of the Illumina platform and lack of paired end reads.

• Single molecule real time sequencing (PacBio [Eid+09]) promises to deliver long

read lengths (2-5kb), but does so at a significant hit to the quality of the reads

which of their own cannot be reliably used for de novo assembly, but have been

successfully used to enrich Illumina assemblies as a replacement for previously

used 454 reads [Utt+14].

• At time of writing this thesis a new technology called “Oxford Nanopore” [Eis12]

had been announced promising read lengths of tens of kilo bases, but was not yet

publicly available.

Data sets obtained by current methodology have never been free of errors. This gave

rise to the need of computationally assembling larger genomes from small sequenced

fragments. Overlap Layout Consensus (OLC) assembly was one of the first developed

methods, which worked well with the first generation capillary sequencing [SNC77],

that produced genome fragments of roughly ∼ 700 bases.

68

The twenty first century then witnessed a new development in sequencing technology

[Mar+05; Ben+05; Ben06] as the so called Next Generation Sequencing (NGS) tech-

nology was first made available to the public. NGS was capable of providing scientists

with affordable deep sequencing with much higher yields at the compromise of shorter

reads. Although initially designed for resequencing the technology soon began to be

used as a viable option for de novo sequencing as new algorithms for dealing with the

shorter fragments became available.

Initially de Brujin graph based approaches [IW95; PTW01; ZB08; Sim+09] quickly

gained popularity as they produced reasonably good assemblies on low-repeat genomes

based on just short reads, but were suffering from serious problems when trying to deal

with either repeat-rich genomes or diverse (virus or metagenomics) datasets “out of the

box” (i.e. without tweaking the parameters and/or preprocessing the input data). A

significant amount of manual work in adjusting the assembler and the input data is

required to assemble most genomes using those assemblers. Until today numerous new

methods and hybrid approaches [Bra+13] have been developed.

We have assessed the capabilities of the major theoretical assembly models and several

representative algorithms on their capability to assemble highly diverse viral sequencing

data (see Table 6.5) and have identified their strengths and weaknesses. None of the

tested algorithms were capable of assembling our data to our satisfaction (compare to

Table 6.5).

In order to address some of the shortcomings of current methods we have developed

StarK – a new data structure and algorithm specifically designed to overcome the

limitations of single-dimensional de Brujin graph based methods for assembly of viral

data. We have implemented a prototype of the StarK algorithm in chapter 9 and

evaluated its performance in comparison to other algorithms in section 6.6. StarK

outperformed all other approaches in both quality of the assembly and speed (see

Table 6.5).

6.2. Genome assembly theory 69

6.2. Genome assembly theory

This chapter will use several formal language theory constructs to describe algorithms

and data structures. In addition to a set of definitions from the formal language theory

field we also introduce new notation which is described in appendix A.

In addition we will be using the following terminology:

sample: Collection of reads generated by a genome sequencer.

target: Desired genome which is to be assembled. Unknown at assembly time.

coverage: the number of reads that have originated (were sequenced) from a given

base (or sub-sequence) in the target genome.

contig: A set of overlapping reads that represent a possible sequence from the

target genome.

graph: Formal directed graph consisting of vertices and edges between them.

Formally written as G = (V,E) where V is the set of vertices and E is

the set of edges. We will often refer to a vertex by variables v, vi, . . . and

to edges by tuples of vertices e.g. (v1, v2).

word: A formal language word. Often referred to by symbols w, v, x, y, z, s and

used to identify sequences, k-mers and contigs.

Σ∗,Σ+: Sets of all finite words made of an arbitrary finite alphabet Σ including

and excluding the empty word λ respectively. Although our practical

application is limited to the genomic alphabet, most of the theory is

applicable to arbitrary alphabets.

Γ,Γ+: The genomic alphabet {A, C, G, T} and the set of all words made of it (i.e.

all possible genomic sequences) respectively.

R: This symbol always represents a finite set of reads R ⊆ Σ+, |R| <∞.

ι(w, x): The set of all positions where the sequence x appears in w as a full

subsequence. ι(w, x) 6= ∅ is often used to express “x appears in w as

a subsequence”. For a full definition please refer to definitions A.9 and

A.10.

70

6.2.1. Coverage

When sequencing a genome g ∈ Γ+ we require each base to be covered by at least

one fragment in order to be able to reconstruct the whole. We consider a base in the

target genome to be covered (by a read) if at least one read has been sequenced that

originated from that base. We call the number of those reads that cover a given base

the coverage of that base. Similarly for sub-sequences of the target genome.

Let g ∈ Γ+ be a genome and l ∈ N the length of the fragments that are being sequenced,

|g| >> l. The sequencing technology will select a number of (not necessarily unique)

fragments for sequencing from the genome in accordance to the technology specification

and sample preparation. Assuming that the distribution of selected fragments along

the genome g is uniform we can estimate that the probability of covering a base at a

fixed position p ∈ |g| with one fragment is

l

|g|
. (6.2.1)

In which case the probability of not covering a base with n ∈ N fragments is

(
1− l

|g|

)n

[CC76]. (6.2.2)

This expression can be simplified to

(
1− l

|g|

)n

≈ exp

(
− nl
|g|

)
. (6.2.3)

Where nl
|g| is called the redundancy. The actual measured redundancy is then called

coverage. This type of oversampling is required in order to maximise the probability

of covering each base within the target genome.

In practice two additional factors are important:

6.3. Overlap Layout Consensus (OLC) Assembly 71

• Genome sequencers do not actually sample reads from all positions within the

genome uniformly due to unpredictable bias in the PCR [Mul+87] primer chem-

istry [Koz+09],

• The reads generated are not error-free.

Both of these are limitations of today’s sequencing technology. Genome assembly

algorithms require oversampling in order to distinguish sampling errors from target

sequences. In section 7.3 we will be discussing how this affects k-mer based assemblies.

6.3. Overlap Layout Consensus (OLC) Assembly

One of the first methods for de novo genome assembly was the OLC assembly method

[NP13]. It is based on a simple principle: compare all reads pairwise - then find the

best contigs. In practice this is often implemented in the following way:

Overlap: Build a graph G = (R, E) where the node set R ⊆ Σ+ a finite read set and

the edges are the overlaps

(v, w) ∈ E ⇔ ∃x ∈ Σ+, |x| > cutoff, ι(v, x) 6= ∅ 6= ι(w, x). (6.3.1)

An edge exists in G between two reads v, w if and only if they share a common sub-

sequence of a minimal length (pre-set overlap length cutoff or another measure of

similarity) [Mye+00]. Figure 6.2 shows an OLC graph during the overlap stage.

Although initially this step was limited to overlaps between two reads, more recent

assemblers use full alignments between reads instead [Bat+02]. This variant is some-

times referred to as an Align Layout Consensus assembler. We will continue to refer

to this group of algorithms as OLC assemblers.

72

GACTA CTAT

TGAC

TGACT
CTA CTATG

CT

GGTGACTA GACTAT CTATGACG

TTGACTCC CCTATGG

Figure 6.2.: Full OLC graph during the overlap phase. This graph contains five

reads which are intended to have been originated from the sequence

GGTGACTATGACG. Notice that the repeat TGAC is also the longest overlap

between the two reads GGTGACTA and CTATGACG.

Layout: If all reads originated from the target sequence and were error-free, then

the ideal contig derived from this graph is a hamiltonian path through G. Unfortu-

nately, it is both computationally unfeasible to compute a hamiltonian path and the

assumptions do not apply to real sequences that are generated by sequencers. As a

result the algorithms generally try to combine parts of the graph into contigs that can

be assembled into continuous sequences with no inner branches. The resulting contigs

are an approximation of fragments of the hamiltonian path through the subgraph that

contains no erronous nodes.

Consensus: The branchless subgraphs are then compacted into consensus sequences

by taking the consensus base at each position.

Although theoretically this method can yield the highest quality results, its computa-

tional complexity during the overlap step (O(|R|2) limits its use to small data sets.

6.4. De Brujin Graph Assembly 73

6.4. De Brujin Graph Assembly

Capillary sequencing generates few high-accuracy long (∼700bp) reads. Roughly 6000

reads can be generated per day. Traditionally they can be assembled by pairwise

overlapping. NGS technologies generate shorter deep sequencing reads (around 150bp

today), but in far greater number. Approximately 5 million reads can be generated

per day with NGS sequencing [Qua+12].

One of the biggest projects that used capillary sequencing was the human genome

project [Lan+01].

Genome assembly by pairwise overlaps (e.g. OLC) is only feasible with few long reads,

typically capillary sequencing (which OLC was designed for) produces several thousand

reads. Pairwise overlaps between the large number of NGS reads (typically millions)

are computationally not economic. The computational time required for such a number

of pairwise comparisons (pairwise comparisons have time complexity of O(n2)) would

exceed years on current hardware (e.g. 8 cores at 2.5GHz).

This problem gave rise to an influx of new algorithms for short read processing [IW95;

Ear+11; Bra+13; PTW01]. One method in particular became popular quickly: de Brujin

graph assembly. Two of the most popular assemblers that use de Brujin graphs are

Velvet [ZB08] and ABySS [Sim+09].

We will be extensively discussing the algorithms used in de Brujin graph based assem-

blers in chapter 7.

6.5. String Graph Assembly

In concept String Graph Assembly is related to both OLC and de Brujin graph assem-

bly methods.

A string graph is always derived from a string or sequence. The vertices in the graph

74

GG TGA CT ATG ACG

G

T CC

C

Figure 6.3.: String graph based on the same reads used for Figure 6.2 constructed with

overlaps of at least length 3 (with the exception of CT, which is displayed

to allow the erronous part of the TTGACTCC read to be displayed). The

rest edges to the top and right correspond to errors in the reads that did

not overlap with the main ones. The target sequence GGTGACTATGACG is

displayed as the central path from left to right. The repeat around TGAC

is fully resolved by string graph using the given reads.

are positions within the source sequence and the edges are strings — the overlaps

within the sequence of an arbitrary minimum length.

Definition 6.5.1. Let Σ be an alphabet, s ∈ Σ+ a string, k ∈ N. Then the string graph

of s is defined by a graph G = (V,E) and a function f : E → Σk+ such that there exists

an Eulerian path (a path that visits all edges once, Definition A.13) p = (v1, . . . , vn)

which edges form the string s = f(v1, v2) . . . f(vn−1, vn).

In string graph genome assembly the string graph is constructed from the reads and

the target sequence is a path within it.

A string graph is constructed by pairwise comparing all reads and creating edges which

correspond to an overlap of at least k [Mye05].

In order to reduce the complexity of the resulting string graph transitive edges are

compacted such that if edges (v1, v2), (v2, v3), (v1, v3) exist then only the transitive

edge (v1, v3) is kept. In case v2 has no other edges connected to it then (v1, v3) may

also be created as a replacement for (v1, v2), (v2, v3) [Mye05].

Originally this method was intended to provide similar expressibility to de Brujin graph

6.6. Comparison of the above methods 75

based assembly with lower memory footprint (as a far lesser amount of sequences are

stored in comparison to k-mers in a de Brujin graph) at the cost of computational time

to calculate the overlaps (initially pairwise alignment, i.e. in O(n2) time complexity).

This fact made the method computationally unfeasible for large sample sizes.

In 2010 Jared T. Simpson and Richard Durbin published a new method of constructing

the string graph in linear time using the FM-Index [SD10]. To this day, their assembler

SGA remains slow in comparison to modern de Brujin graph assemblers due to constant

factors in the computation of the FM-Index [SD12].

6.6. Comparison of the above methods

In the following subsections we have summarised some of the theoretical and measured

qualities of the different assembly methods. In section 6.7 we will elaborate further on

measured run times.

6.6.1. Expressitivity/information loss

The various approaches all work with one or another combined/compressed data struc-

ture derived from the reads themselves. Those data structures are intended to facilitate

the construction of contigs. This often loses information that may be required in cer-

tain circumstances, which may have been present in the reads, but was lost during the

conversion.

OLC: The individual reads are preserved as nodes in the overlap graph. Theoretically

no information is lost, though often only the best matching overlap between two reads

is considered. The remaining is up to the implementation of the Layout and Consensus

steps. Repeats within the genome are distinguishable up to the read length.

76

de Brujin graph: Individual read information is lost and cannot be recovered. Any

overlap information longer than the de Brujin graph dimension k is also lost. Cover-

age of individual k-mers is preserved in most implementations, but the connection to

individual reads is lost. Repeat resolution of repeats longer than the de Brujin graph

dimension requires additional algorithms that are not part of the data structure, e.g.

paired-end read mapping on intermediate contigs or assisted contig assembly using long

reads obtained from another source.

String graph: Individual read information is lost, but can only be probabilistically

guessed in some cases. Overlaps up to the read length can be preserved. Repeats up

to the read length can be resolved where coverage permits. Coverage information of

the reads is lost, but overlap coverage is kept in some implementations.

StarK: It is up to the implementation to preserve or remove individual read infor-

mation. For memory performance reasons it is not preserved in our implementation.

Selective preservation of individual reads is also possible. Overlaps are kept up to the

underlying repeat length plus one nucleotide. Palindromes are preserved up to full read

length.

6.6. Comparison of the above methods 77

6.6.2. Time

Here we mention the theoretical asymptotic runtime of the analysed algorithms during

the graph construction step. Real runtime complexity depends on the concrete underly-

ing implementation. Let n be the number of reads. Run times for the actual assembly

steps vary between implementations and can be roughly estimated by O(m log(m))

where m is the number of nodes in the resulting graph. This estimation is based on

the assumption that many implementations use either sorting on the nodes or a divide

and conquer approach for contig assembly.

Algorithm Time Comment

OLC O(n2) Overlap stage requires pairwise comparison of all input reads.

de Brujin

graph
O(n)

Reads are processed once generating up to read length k-mers.

Hash maps (the most common underlying storage) permit con-

stant time access.

String

graph
O(n)

The introduction of the “Efficient construction of String Graph

using the with FM-Index” permits building the string graph in

linear time [SD10] .

StarK O(n)

Like with the de Brujin graph, reads are processed once gener-

ating (read length)2 k-mers. The design of the data structure

permits constant time access.

Table 6.4.: Algorithmic complexity for constructing the data structure for the under-

lying assembly methods. The Big-O notation is used to express asymptotic

runtimes, please refer to Definition A.11.

78

6.7. Assessment of the tools in respect to viral data

We ran several implementations of the theoretical algorithms mentioned earlier on

sample high-population viral data to assess their ability to assemble virus populations.

All assemblers that succeeded were ran with 8 and 64 cores respectively. 8 core (one

socket) and 64 (8 sockets) core benchmarks were chosen to benchmark assembler capa-

bility to utilise more than one socket. Multiple socket deployments (although logically

transparent to the program) require additional optimisation to compensate for a slow

multi-Central Processing Unit (CPU) interconnect. Times were measured using the

Linux utility time. The best assembly of the two is shown in Table 6.5.

Assembler
Assembly

Size

Number of

Contigs

Longest

Contig
N50 N90

time

8 cores 64 cores

PRICE 199 018 695 5711 450 118 41h n/a

Velvet 168 273 1304 5385 125 125 7m 73m

Celera 0 0 0 0 0 23m n/a

SGA 5385 1 5385 n/a n/a 2h n/a

IDBA-UD 9949 4 5465 5465 1163 18m 18m

SPAdes 1 213 926 16 448 5441 71 1163 99m 107m

StarK 31 244 37 2331 913 546 26m 12m

Reference 14 720 8 2292 2221 1027 n/a

Table 6.5.: Comparison of the assembly statistics of various short read assemblers ran

on reads from Flu virus H3N2 sample Ferret 52 day 2. The reference genome

was obtained through capillary sequencing.

We tried the following assemblers:

• PRICE [RBD13]: de Brujin-graph based assembler. PRICE was initially de-

signed to be a virus assembler, but was subsequently made into a general metage-

nomics assembler tool kit. Was run with 1000 reads as seed sequences with the

6.7. Assessment of the tools in respect to viral data 79

options -nc 30 -mol 30 -tol 20 -mpi 80 -dbmax 100 -dbk 63 and -a 8/64

respectively. The run on 64 cores ran for 22 days without finishing before we

aborted it.

• Velvet [ZB08]: de Brujin-graph based assembler. Was run with hash length of

64, no additional options.

• Celera Assembler [Mye+00]: OLC based assembler was ran with a modified op-

tions file RunCA Examples - Illumina + 454 Large Genome. After 23 minutes

no contigs were produced. This assembler is not intended to be used with short

reads only.

• SGA [SD10]: String Graph Assembler. SGA was run with correction k-mer length

of 41, minimum overlap of 63 and minimum number of pairs to link two contigs

of 10. The assembly produced just one contig. Neither the contig, nor the viral

reference sequence aligned against each other. When we ran BLAST [Alt+90] on

the contig the top hits were Acinetobacter baumannii , Streptococcus, Coliphage

phi and other bacteria all with an E-value of 0. This leads us to believe that a

contaminant was assembled instead of our real target.

• IDBA-UD [Qua+12]: IDBA is an assembler that can utilise multiple k-mer

lengths of de Brujin graphs. It generates multiple assembles based on a range of

k-mer lengths iteratively improving on loop resolution by increasing the k-mer

length in each step. Given the extreme variation in our virus sequencing sample

the assembler has created long contig that contains a concatenation of four of

the segments of the target genome. Pieces of the remaining genome are present

in multiple copies in the longer contigs.

• SPAdes [Ban+12]: Is a de Brujin graph assembler that uses multiple dimensions

of de Brujin graph. Similarly to IDBA it starts with a smaller k-mer length and

slowly works its way up to longer k-mers in order to resolve repeat sections. This

assembler similarly to IDBS-UD was not designed to handle the high variation

in the test sample. The largest contig is a concatenation of four of the target

http://wgs-assembler.sourceforge.net/wiki/index.php?title=RunCA_Examples_-_Illumina_%2B_454_Large_Genome&oldid=1291

80

segments. The remaining pieces of the target genome are scattered in multiple

copies throughout the longer contigs.

• StarK: Our new multi-dimensional de Brujin graph assembler. Was run with

default options. Out of the 8 target segments 6 were assembled completely. The

other two were in two parts each. The other partial contigs are incomplete variant

contigs.

PRICE, celera, SGA and StarK were ran on an SGI UV, Intel R© Xeon R© E5-4600 (8

cores, Hyper-threading off) on Red Hat R© Enterprise Linux R© on either one or 8 CPU’s

in a full shared memory environment.

IDBA-UD and SPAdes were run on a SGI UV, Intel R© Xeon R© E5-4650L (8 cores,

Hyper-threading off) on Red Hat R© Enterprise Linux R© on either one or 8 CPU’s in a

full shared memory environment.

81

7. De Brujin Graph assembly at

work

7.1. Introduction

In this chapter we introduce the basic concepts behind de Brujin graph assembly theory

in a more formal way. We also conduct a thorough analysis of coverage patterns that

are observed when reads are divided into k-mers. This will then be used to explain the

concepts behind StarK (our new assembler).

Please note that the theoretical concepts introduced here are not specific to the genomic

alphabet (A, C, G, T) and can be applied to an arbitrary alphabet.

7.2. Formal de Brujin Graph

De Brujin graphs form a family of graphs with two parameters:

• A finite alphabet, which forms its k-mers Σ,

• The de Brujin graph dimension k ∈ N.

Formally a de Brujin graph is the graph consisting of all words from the alphabet Σ

of length k with an edge between two vertices if one can remove a letter from the

beginning of the word represented by the first vertex and append another letter in

order to obtain the word represented by the second vertex.

82

Definition 7.2.1. Let Σ be an alphabet, k ∈ N, then a graph G = (Σk, E) is called a

k-dimensional de Brujin graph if and only if

E = {(w, ‘wa)|w ∈ Σ∗, a ∈ Σ} . (7.2.1)

In the context of genome assembly any subgraph of a de Brujin graph is often referred

to as a de Brujin graph. In this dissertation we will follow the same reference.

Also the de Brujin graph dimension k is often called the hash length (due to de Brujin

graphs often being represented as hash maps in memory) or simply the k-mer length.

Example 7.2.2. Consider the genomic alphabet Γ = {A, C, G, T} and the read TGAC.

The subgraph of the two-dimensional de Brujin graph containing TGAC is

G = ({TG, GA, AC} , {(TG, GA), (GA, AC)}) . (7.2.2)

A C
TG GA AC

Figure 7.1.: de Brujin graph containing the two-mers of the sequence TGAC.

Any path through a de Brujin graph can be viewed as a word in Σ≥k.(
Σk
)n 3 (wi) = (w1, . . . , wn) 7→ w1,1w2,1 . . . wn−1,1wn ∈ Σn+k−1 (7.2.3)

(TG, GA, AC) 7→ TGAC (7.2.4)

De Brujin graph based assemblers use these paths in order to create contigs. The art

of each assembler implementation lies in determining which paths belong to your target

sequence and which are spurious connections that are created by errors in the sampled

reads.

De Brujin graph assemblers can not resolve repeats within the target sequence that

are longer than the graph dimension k based on the graph structure alone.

7.2. Formal de Brujin Graph 83

If a sequence x of length greater or equal to k appears more then once within the target

genome, then assembly paths through a k-dimensional de Brujin graph have to reuse

the same k-mers that assemble x more then once. This requires the graph to have

a branch around x (i.e.more than one possible continuation of a path going through

x). Unless additional information is provided to the assembler it is impossible to tell

within a k-dimensional graph which branches belong together. More about this topic

is discussed in example 8.1.2.

Traditionally one of the methods to filter which paths lead to contigs relies on filtering

k-mers by their frequency of appearance.

Let n, k ∈ N, R ⊂ Σ≤n, |R| <∞ a finite set of reads. We assign a weighting function

cR : Σ+ → N : w 7→
∑
r∈R

|ι(r, w)| (7.2.5)

commonly referred to as the k-mer coverage — the frequency of appearance of a k-mer

as a sub-word within the read set.

Example 7.2.3. Consider the same example as in Definition 7.2.2. Having just one

read {TGAC} the values for c{TGAC} on 2-mers are:

c{TGAC}(TG) = 1 c{TGAC}(GA) = 1 (7.2.6)

c{TGAC}(AC) = 1 c{TGAC}(w) = 0 for all other 2-mers (7.2.7)

The assumption for using this method of filtering is that k-mers that belong to your

target will have been sequenced in higher frequency than noise. See subsections 6.2.1

and 7.3 for details.

84

7.3. Observed coverage patterns

In order to determine the quality of a de Brujin graph we often build coverage his-

tograms. We count the frequency of occurrence of each coverage value that nodes

within a de Brujin graph receive after all reads have been processed.

Figure 7.2 shows an artificial example of a coverage plot of a good sample. The k-

mers that belong to the target sequence that we want to assemble, clearly appear in

nu
m
be

r
of

co
un

ts
,l
og

sc
al
e

Coverage

F
re

qu
en

cy
 o

f a
pp

ea
ra

nc
e,

 lo
gs

ca
le

0
50

10
0

15
0

0 10 20 30 40 50

Figure 7.2.: Artificial example coverage plot. The average sampling of the target se-

quence is roughly 24× as indicated by the highest peak in the center of the

plot. The k-mers with low frequency of appearance are likely to be erro-

neous or artefacts of the sequencing process and can be safely discarded.

7.3. Observed coverage patterns 85

nu
m
be

r
of

co
un

ts
,l
og

sc
al
e

Coverage

F
re

qu
en

cy
 o

f a
pp

ea
ra

nc
e,

 lo
gs

ca
le

0
2

4
6

8
10

12

0 5 10 15 20

Figure 7.3.: Coverage plot of influenza virus sample from Ferret 54 day 2 at k-mer

length 37.

86

far higher frequency than the erroneous k-mers that appear in frequencies of 1 − 10.

Most assemblers would remove all k-mers with frequency of appearance below 10 and

assemble the remaining ones into contigs.

This approach is often impractical as real coverage plots often more resemble Figure 7.3.

This kind of coverage distribution makes it very difficult to distinguish between k-mers

that belong to the target sequence, k-mers that belong to variants and k-mers that

belong to errors.

In order to attempt to explain these observed plots we will attempt to model them

using stochastic distributions. We use the following assumptions and simplifications in

order to achieve this.

• If we were to sample k-mers from a genome uniformly with no errors, then we

would expect to see only one peak in the coverage plot at exactly the sampling

rate like shown in Figure 7.4a.

• We have to expect uneven sampling, so we will model this using a poisson dis-

tribution with a certain standard deviation (Figure 7.4b). Let s be the sampling

rate and c the coverage. Then the frequency of appearance for a given coverage

number can be modelled as

sc · e−s

c!
. (7.3.1)

• In addition to that we expect the sequencing platform to generate spurious errors

which will result in new k-mers that appear only very few times. Model these

using a Boltzmann distribution (σ is the spread, Figure 7.4b):

exp

(
− c

σ2

)
. (7.3.2)

• Combining the terms (7.3.1) and (7.3.2) we receive a coverage distribution similar

to the observed one as shown in Figure 7.4c.

• In addition to that there are often repeats within a genome. As such we expect

7.3. Observed coverage patterns 87

co
ve

ra
ge

frequency of appearance

1
5

20
30

40
60

90

ge
no

m
e

un
ifo

rm
ly

sa
m

pl
ed

 3
0x

no
 e

rr
or

s

sa
m

pl
ed

 3
0x

w
ith

 s
td

 =

5.
0

no
 e

rr
or

s

(a
)
N
o
er
ro
rs
,s

am
pl
in
g
w
it
h
va
ri
an

ce

co
ve

ra
ge

frequency of appearance

1
5

20
30

40
60

90

sa
m

pl
ed

 3
0x

w
ith

 s
td

 =

7.
0

no
 e

rr
or

s

ra
nd

om
 e

rr
or

s

(b
)
Sa

m
pl
in
g
w
it
h

va
ri
an

ce
+

se
pa

ra
te

er
ro
r

cu
rv
e

co
ve

ra
ge

frequency of appearance

1
5

20
30

40
60

90

su
m

 o
f e

rr
or

s
an

d
re

al
 k

−
m

er
s

(c
)
Su

m
of

er
ro
rs

+
ta
rg
et

as
ob

se
rv
ed

co
ve

ra
ge

frequency of appearance

1
5

20
30

40
60

90

no
n

re
pe

at
ed

 k
−

m
er

s
sa

m
pl

ed
 3

0x

1
5

20
30

40
60

90

2x
 r

ep
ea

te
d

k−
m

er
s

sa
m

pl
ed

 3
0x

1
5

20
30

40
60

90

3x
 r

ep
ea

te
d

(d
)
N
o
er
ro
rs
,
un

ifo
rm

sa
m
pl
in
g
w
it
h
2
×
,3
×

re
pe

at
s

co
ve

ra
ge

frequency of appearance

1
5

20
30

40
60

90

sa
m

pl
ed

 3
0x

w
ith

 s
td

 =

5.
0

(e
)
N
o
er
ro
rs
,
un

ev
en

sa
m
pl
in
g
w
it
h

2
×
,3
×

re
pe

at
s

co
ve

ra
ge

frequency of appearance

1
5

20
30

40
60

90

sa
m

pl
ed

 3
0x

w
ith

 s
td

 =
 1

5.
0

(f
)
Su

m
of

er
ro
rs

+
un

ev
en

sa
m
pl
in
g

w
it
h

2×
,3
×

re
pe

at
s
on

hi
gh

va
ri
an

ce
as

ob
-

se
rv
ed

F
ig
ur
e
7.
4.
:S

ho
w
s
th
e
di
ffe

re
nt

m
od

el
s
fo
r
th
e
or
ig
in

of
co
ve
ra
ge

pl
ot
s.

88

1 2 5 10 20 50 100

200

500

1000

2000

5000

10000

20000

50000

1e+
05

2e+
05

5e+
05

1e+
06

2
5

8
11

15
19

23
27

31
35

39
43

47
51

55
59

63
67

71
75

79
83

87
91

95
99

1 2 4 8 16 32 64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

k* C
overage H

istogram

k

coverage

7.3. Observed coverage patterns 89

Figure 7.6 (previous page): Multi dimensional coverage histogram of influenza sample

from Ferret 54 day 2 (100bp reads). The x-axis shows the dimension of

the de Brujin graph used and the y-axis the coverage in log-scale. The

heat map displays the frequency of appearance of each coverage at each

hash length in log-scale. One can see the high frequency of appearance of

low coverage across most hash lengths. Below hash length 10 one observes

saturation of the k-mer universe, thus the high frequencies. Closer towards

100 the resulting graphs become more and more disconnected and amount

of overlaps drops.

the k-mers within those repeat sections to appear in a multiple of the sampling

rate. See Figures 7.4d, 7.4e.

• The final observed coverage plot is a sum of the individual components as shown

in Figure 7.4e.

• In addition to that the coverage distributions change with the chosen hash length

as seen in Figure 7.6.

These distributions appear to model observed k-mer coverage patterns fairly accurately

and analyses based on similar (but more detailed) models are being used in the Kmer

Analysis Tool (KAT) [CB13].

This composition of k-mers makes it difficult to distinguish k-mers that originated in

errors from those that are part of the target sequence. We have found a new way of

separating those as discussed in subsection 8.2.2.

90

7.4. De Brujin graph assembly

As discussed in the previous section 7.3 erroneous reads create a large amount of k-mers

that are not part of the target genome. As a result the erroneous k-mers in practice

outnumber the target k-mers by at least a factor of 100 (for k > 15, based on empiric

measurements in StarK graphs). Each de Brujin graph assembler implements the

extraction of contigs from the graph in their own way based on various heuristics that

the developers find to work well on their given training sets. Also various specialised

assemblers exist (for e.g. metagenomics assemblies [RBD13; Bak+13]). Here we will

explain the most basic approach as details of the different assemblers are beyond the

scope of this comparative chapter.

The first draft of de Brujin graph assemblers was to simply use a coverage cut-off and

assemble the remainder of the graph. This is based on the assumption that the k-

mers generated by erroneous reads will separate in their frequency of appearance from

k-mers that belong to the target genome in a fashion similar to what is displayed in

Figures 7.4c and 7.2.

The steps for the most simplistic assembly algorithm are as follows:

1. Select all k-mers that have coverage greater than a cut-off (chosen as an assembly

parameter or based on some heuristic).

2. As long as there are unused k-mers in the graph:

• Begin at a random k-mer.

• Extend a path from there until a dead end or a branch is encountered.

• Mark used k-mers.

• If the contig associated with the marked path is of a minimum length – print

it.

3. Run your favourite scaffolder with the contigs.

We will not be further elaborating on de Brujin graph assembly here. The above

algorithm is mentioned for reference and in order to explain the transition to the

7.4. De Brujin graph assembly 91

StarK graph assembly in chapter 8 subsection 8.2.3 Graph partitioning.

92

93

8. StarK – locally adaptive graph

assembly

8.1. Motivation

As shown in Table 6.5 we experienced difficulties trying to assemble our high variation

viral samples using existing assemblers, primarily due to various limitations in the

underlying algorithms and implementation. In addition to that none of the assemblers

at the time this project began (2010) were capable of assembling variants together with

consensus contigs. As such analysis that requires this information like in Part I rely

on alignments towards a consensus sequence which is in itself biased.

Most short-read assemblers then were de Brujin graph based and were all suffering from

the limitations implied by choosing a fixed graph dimension. String graph assemblers

were not yet capable of run times that could be applied in practice.

As such we chose the de Brujin graph as the base for our new method due to widespread

use, good general algorithms for it and the speed that modern implementations allow.

The name StarK stands for k∗ (k star) — all dimensions.

The design focus behind the StarK assembler initially was to

• Create an assembler for high-variation viral samples,

• Overcome the limitations of single-dimension de Brujin graph assemblers.

During development of the algorithm and the StarK software we found that it can also

94

Figure 8.1.: The reads GGTGACTA and CTATGACG as 5-mers.

be used for general-purpose assemblies and is capable of outperforming current NGS

short read assemblers. The focus then slightly shifted towards being able to cope with

larger genomes and sample sets. As such the part of the assembler that identifies and

maps variants onto contigs has its backbone implemented, but is unfinished as of today.

The main sequence assembly part is implemented, works and our training sets are being

assembled into sensible contigs.

8.1.1. Limitations of de Brujin graph assemblers

Before we introduce the theoretical concepts behind StarK, we will recap the limitations

of de Brujin graphs in this section and then address them with StarK.

While de Brujin graphs are extremely fast to build they come with significant limita-

tions due to information loss originating from the representation.

The major limitations of de Brujin graph assembly is that it introduces an artificial

parameter: the de Brujin graph dimension k (also referred to as hash-length, k-mer

length or just k).

This leads to two major problems:

8.1. Motivation 95

Figure 8.2.: The reads GGTGACTA and CTATGACG as 4-mers.

Short overlaps cannot be assembled Let s ∈ Σ∗, |s| � k ∈ N a long sequence,

w ∈ Σk a k-mer and ι(s, w) 6= ∅ (w appears in s as a subsequence). If a read set

R ⊂ Σ≥k does not contain a k-mer that is part of s

∀r ∈ R : ι(r, w) = ∅ (8.1.1)

Then no contig containing s can be constructed.

Example 8.1.1. Let s = GGTGACTATGACG, R = {GGTGACTA, CTATGACG}. For all k > 3

it will be impossible to reconstruct s with a de Brujin graph formed from R because the

overlap CTA can not be represented by any 4-mer or longer. See Figures 8.1, 8.2.

One could argue that in order to overcome the above limitation one could use a smaller

de Brujin graph dimension. But indefinitely reducing the de Brujin graph dimension

is not an option because of the second drawback:

Repeats shorter than the hash length cause spurious joins of the graph

Let s ∈ Γ∗ a sequence and |s| � k ∈ N, w ∈ Γk such that

|ι(s, w)| > 1 (8.1.2)

96

Figure 8.3.: The reads GGTGACTA and CTATGACG as 3-mers.

i.e. the k-mer w repeats within s.

Then any assembler will require additional information on how to join the ends of the

graph leading from w.

Example 8.1.2. Let s = GGTGACTATGACG, R = {GGTGACTA, CTATGACG}. For all k > 3

the sequence TGAC will have branches in the graph. Figures 8.2 and 8.3 show the

de Brujin graphs for dimensions 4 and 3 respectively.

Combining those two drawbacks leads us to the conclusion that without additional in-

formation a traditional de Brujin graph assembler can not reconstruct GGTGACTATGACG

uniquely from the reads GGTGACTA and CTATGACG with any fixed hash length k ∈ N
even though the reads themselves provide sufficient information to do so.

Although a common approach today is to “scan” multiple k-mer sizes and then pool

the contigs together (e.g. the Trinity Assembly package [Gra+11]) it will rarely work

because of repeats like those shown in examples 8.1.1 and 8.1.2.

In order to address the above-mentioned limitations we have designed an algorithm

that does not require a fixed hash length and is capable of adjusting it on the fly.

8.1. Motivation 97

Figure 8.4.: Multi-dimensional de Brujin graph assembly example. The green path

shows the assembly path for the contig GGTGACTATGACG avoiding the repeat

section TGAC by using 5-mers at those positions.

8.1.2. Multi-dimensional solution

Regular (single-dimensional) de Brujin graphs are unable to efficiently overcome the

limitations described above and demonstrated in examples 8.1.2 and 8.1.1. But the

reads in those examples provide sufficient information to assemble them into the se-

quence GGTGACTATGACG, assuming we have a hint that they need to overlap on CTA,

which can be for example in the form of coverage information.

If we were able to use information from different de Brujin graph dimensions then we

could follow an elegant assembly path as shown in Figure 8.4. The displayed path

uses 5-mers to go around the 4-mer repeat TGAC, but reverts to 3-mers in order to join

the path at the 3-mer CTA. In the next section we will be discussing the theoretical

framework for achieving this.

98

De Brujin graphs of the same data on multiple dimensions can be linked together by

overlaying them with suffix and/or prefix trees. (i.e.) A k-mer w and a k + 1-mer wa

(for w ∈ Σ+, a ∈ Σ) would have an edge between them in a prefix tree. Suffix trees

are being used for alignments [Alt+90]. Combining the power of of de Brujin graphs,

prefix and suffix trees allows us to link short read fragments more efficiently.

We have earlier benchmarked the capabilities of two de Brujin graph based assemblers

that do utilise multiple dimensions (IDBA-UD [Pen+12] and SPAdes [Ban+12]), but

they both do so by gradually increasing the k-mer length. StarK differs from that

approach in such that we allow the assembler to access any k-mer length at any given

time allowing the information content from all dimensions to be available during all

stages of assembly.

8.2. StarK Theoretical Framework 99

8.2. StarK Theoretical Framework

The essence of the StarK approach is to load de Brujin graphs of all possible dimensions

into main memory (RAM) at once and allow the assembler to use any path through

the graph changing dimensions as necessary. The graph resembles an affix tree[Maa00]

and we will be using affix tree like connections between the nodes to connect them,

but apply metrics implied from the underlying de Brujin graphs to choose which ones

to use. Figure 8.5 displays all k-mers of the two reads GGTGACTA and CTATGACG as they

appear in the StarK graph.

Reminder of notation: ‘w is the word w truncated by one letter from front, w ‘ is the

word w truncated by one letter from the end.

Definition 8.2.1. Let Σ be an alphabet. A graph G = (Σ∗, E) is called a (full) StarK

graph (over Σ) if and only if

E = {(w,wa), (w, ‘w), (w, ‘wa)|w ∈ Σ∗, a ∈ Σ} (8.2.1)

Please note that a full StarK graph has only one parameter – the underlying alphabet

Σ. Although our current application and implementation (chapter 9) use only the

genomic alphabet, the theory discussed here applies to generic alphabets.

In practice we will only be interested in the subgraph of a StarK graph for which the

coverage (see Equation 7.2.5) in relation to a set of reads is above zero, thus the full

StarK graph (as is the case with the full de Brujin graph) is only of theoretical interest

here.

As is also the case with practical implementations for de Brujin graph assemblers out

StarK graph over the genomic alphabet {A, C, G, T} is implemented by folding the graph

in such a way that a k-mer is stored together with its the reverse complement. This

turns a practical implementation often into an undirected graph where each node has

twice as many edges.

When such a folded graph is traversed it is till only traversed following a direction

100

Figure 8.5.: All possible k-mers of the two reads GGTGACTA and CTATGACG as they appear

in the StarK graph. Each de Brujin dimension has a separate colour.

Circular vertices are odd dimensions, cubical ones are even. Oval shaped

nodes identify palindromic sequences (here displayed are AT, TA and CG).

8.2. StarK Theoretical Framework 101

that identifies only one of the two k-mers represented by a node in the graph. While

describing the theoretical framework here we will stick to the more general directed

graph.

Proposition 8.2.2. Let Σ be an alphabet. Let G = (Σ∗, E) be the StarK graph over

Σ. Then the following hold true:

1. The empty word λ is a vertex in G.

2. For every k ∈ N the de Brujin graph Gk = (Σk, Ek) of dimension k is a subgraph

of G.

3. For every word (k-mer) w ∈ Σ∗ and every character a ∈ Σ there are two edges

(w,wa), (wa,w) in E connecting the different de Brujin graphs of dimensions |w|
and |w|+ 1.

This new theoretical data representation has the practical advantage to be related to

de Brujin graphs and as such several features common to de Brujin graph assemblers

apply here too, namely coverage distributions as discussed in section 7.3. But the new

structure also comes with new features distinct from de Brujin graphs that need to be

considered:

• The same k-loop-free sequence may be assembled by more than one path through

the graph,

• In a de Brujin graph erroneous reads typically result in short, low-coverage off-

shoots (called tips in the de Brujin graph jargon) from a high coverage path

within the graph, in a StarK graph those offshoots rejoin the graph at a shorter

k-mer length creating new spurious connections.

In the next two subsections we will be discussing two new theoretical concepts that

deal with these new features.

102

8.2.1. Surface paths

One of the main differences which makes traditional de Brujin graph assembly ap-

proaches inappropriate for a StarK graph is the fact that the same sequence may be

reconstructed by more than one path though a StarK graph.

This makes it impossible to use the conventional “longest possible sequence” assembly

algorithm (compare to section 7.4). In order to extract contigs from a StarK graph we

require a method to tell the assembler which de Brujin dimension to use at a given

position in the contig.

For this reason we use so called surface paths. A surface path consists exclusively of

vertices (k-mers) (of a subgraph of a StarK graph) such that for any two connected

k-mers of the same dimension no (k+ 1)-mer exists in the subgraph that could replace

them in the path and still represent the same overall sequence.

We call them surface paths, because they go only along the surface of the appropri-

ate StarK subgraph (when being drawn) — there are no k-mers on a higher “k-mer

dimension” than those in the surface path.

Definition 8.2.3. Let Σ be an alphabet, G = (Σ∗, E) be a StarK graph over Σ and

S ⊆ Σ+ a subgraph in G. Let p = (v1, . . . , vn), n > 1 be a path in S. For i ≥ 2 we call

1. vi a decent node of p if |vi−1| − 1 = |vi|

2. vi an ascend node of p if |vi−1|+ 1 = |vi|

3. vi a level node of p if |vi−1| = |vi|

This categorises all nodes in a path except for the first as they can always only change

length by one.

Definition 8.2.4. Let Σ be an alphabet, G = (Σ∗, E) be a StarK graph over Σ and

S ⊆ Σ+ a subgraph in G. Then a path p = (v1, . . . , vn) in S is a surface path with

the sequence s1 . . . sm if and only if for every subpath q of p the sequence represented

by q cannot be represented by a shorter path in S or a path using nodes or larger k-mer

8.2. StarK Theoretical Framework 103

dimension.

Example 8.2.5. If two vertices CTGA, TGAC appear consequently in a surface path then

CTGAC cannot be in the same subgraph the surface path was derived in as it would

represent the same sequence and be both shorter and contain larger dimension k-mers.

Proposition 8.2.6. Let Σ be an alphabet, G = (Σ∗, E) be a StarK graph over Σ and

S ⊆ Σ+ a subgraph in G. and p = (v1, . . . , vn) in S a surface path with n ≥ 2. Then

any sequence of decent nodes in p is always followed by a level node.

Proof. A surface path cannot be terminated by a sequence of decent nodes as the start

of such a sequence will be a node that represents the same word in Σ∗ as the entire

sequence. As such it could be truncated away from the path forming a shorter path

thus violating the definition of a surface path.

If sequence of decent nodes vi . . . vj in a surface path cannot be followed by an ascension

node vj+1 because in that case the node vj could be removed from the path and it would

still represent the same word in Σ∗ thus violating the definition of a surface path.

⇒ any sequence of decent nodes in p is always followed by a level node.

Proposition 8.2.7. Let Σ be an alphabet, G = (Σ∗, E) be a StarK graph over Σ and

S ⊆ Σ+ a subgraph in G and p = (v1, . . . , vn) in S a surface path with n ≥ 2. Then

any sequence of ascend nodes in p is always preceded by a level node.

Proof. Same as proof for Proposition 8.2.6 just reversed.

Proposition 8.2.8. Let Σ be an alphabet, G be a StarK graph over Σ, S ⊆ Σ+ a

subgraph in G, s a word in Σ+ that has a surface path p representation in S. Then p

is unique (i.e. p is the only surface path representing this word).

Proof. Proof by contradiction.

Let p = (v1, . . . , vn), p′ = (v′1, . . . , v
′
m), p 6= p′ be two different surface paths in S that

represent the same word. They have to be of the same length (n = m), otherwise the

longer one violates the definition of a surface path.

104

Induction over k ≤ n.

Initial Step: If v1 6= v′1 then |v1| 6= |v′1| which violates the definition of a surface path

that demands that it has to use the vertices of larger k-mer dimension.

Inductive Step: Let us assume for all k ≤ o < n : vk = v′k. Then if vk+1 6= v′k+1 then

|v1| 6= |v′1| which violates the definition of a surface path that demands that it has to

use the vertices of larger k-mer dimension.

Now we know that once we have a surface path, no other surface path will give us

the same sequence. And we can uniquely map all loop-free paths of a subgraph of a

StarK graph to contigs. Just like splitting a de Brujin graph into paths that represent

contigs, we will be splitting StarK graphs into subgraphs, such that each contains only

one surface path and such a path is either a contig, a variant of another contig or an

assembly of errors.

The subsection 8.2.3 will discuss how we partition a StarK graph in such a way that

we get meaningful contigs from their respective surface paths.

8.2.2. Link strength

In a traditional de Brujin graph we would just select the parts of the graph with

sufficient coverage (compare to section 7.4). Using a similar cutoff in a StarK graph

leads to contigs that are not much longer than the input reads. This is due to the

fact that the majority of reads generated by the NGS short-read sequencers contain at

least one error and thus on the k-mers closer to read length we can rarely find a StarK

subgraph that contains only one longest path. On the smaller dimensions (shorter

k-mers) we receive too many spurious joins and the graph begins to “clump up” into

one large weakly connected component making it almost impossible to get branch-free

surface paths.

When analysing Figure 7.6 we have found that most connections between k-mers are

steady (i.e. coverage differences are small). Having observed that we have analysed

8.2. StarK Theoretical Framework 105

relative k-mer coverage between adjacent graph vertices further and are now using the

following measure for inter k-mer connectivity:

Definition 8.2.9. Let c1, c2 ∈ N be the coverage values for two neighbouring vertices

(may be neighbouring dimensions). We define the link strength:

l : N2 → [−1, 1] : (c1, c2) 7→
c1 − c2

max(c1, c2)
. (8.2.2)

In order to measure how link strength is distributed in a StarK graph we have computed

a histogram of link strength absolute values (from between 11-mers in a StarK graph

of influenza sample from Ferret 54 day 2) as displayed in Figure 8.6. The results are

clear: this measure separates parts of the graph with steady inner coverage changes

from those with radical coverage differences.

This approach uses two assumptions:

1. Coverage in the target is steady (except in repeat sections),

2. No single error variant appears in abundance.

Based on our observations these assumptions are not unrealistic, especially if some

preliminary filtering on the reads was done (e.g. PCR [Mul+87] duplicate removal as

described in section 2.5).

We use this metric to partition the StarK graph.

For implementation reasons we use a symmetric weighting function derived from the

link strength:

l : E → [0, 1] : (v1, v2) 7→ l(c(v1), c(v2))
2. (8.2.3)

Unlike in Figure 8.6 we use squares here instead of absolute values. This has perfor-

mance reasons tied to how x86 CPUs implement floating point operations; multiplying

a double precision float is faster than unsetting the sign bit if the value is already in

106

F
re

qu
en

cy
 o

f a
pp

ea
ra

nc
e

0

1

4

1

3

1

2

2

3

3

4

4

5

5

6

7

8 1
abs(link strength)

0

5 ⋅ 107

10 ⋅ 107

15 ⋅ 107

20 ⋅ 107

F
re

qu
en

cy
 o

f a
pp

ea
ra

nc
e,

 lo
gs

ca
le

abs(link strength)
0

1

4

1

3

1

2

2

3

3

4

4

5

5

6

7

8 1

0

10

100

1000

10^4

10^5

10^6

10^7

10^8

8.2. StarK Theoretical Framework 107

Figure 8.6 (previous page): The plots show link strength absolute values distributions

between 11-mers in a StarK graph of Influenza sample from Ferret 54 day 2.

The upper plot shows how well the link strength separates to the two extremes 0

(similar coverage) and 1 (total difference) while the bottom plot shows the same

in log scale. Small peaks can be observed at the various fractions, although one

might suggest that those are entries and exits into repeat sections, they are in

reality abundant links between erroneous k-mers of discrete coverages 1–2, 2–3,

etc.

a floating point register. Since squares are a monotone function this does not change

the sorting order compared to absolutes, which is all we are interested in.

We have benchmarked this performance by running a simple benchmark program 1010

times in a loop compiled with clang on a Mac running an Intel Core i5@2.4 GHz.

Squaring the result of a floating point subtraction each time required 72 seconds versus

81 seconds when unsetting the sign bit.

This has to do with the fact that the CPU needs to copy the contents of the floating

point register into a general purpose register before unsetting a bit incurring a delay,

while a multiplication will take place on the floating point stack directly.

8.2.3. Graph partitioning

The idea is to partition the StarK graph into subgraphs in such a way that each

subgraph contains exactly one surface path. Each surface path then corresponds to

either

• (part of) a haplotype of the target,

• an assembly of errors in the reads (equivalent to a tip in a de Brujin graph).

Since we can no longer apply the same approach to identify errors as de Brujin graphs

use (looking for low-coverage offshoots), we need to find some other means of doing

108

this. This is where the link strength comes in.

Example 8.2.10. Assume the reads TCAGATGCCACT and CCACTCCATCAT were sampled

in more than one copy each. In addition to that the read AGATGCCACACCA was sampled

once a with an error.
TCAGATGCCACT

CCACTCCATCAT

AGATGCCACACCA
In a 5-dimensional de Brujin graph these would form a single high coverage path with

a low-coverage tip that is created by the k-mers containing the error.

In a StarK graph the tip could be rejoined with the main contig path on the 3-mer CCA

in two positions making it more difficult to distinguish k-mers introduced by errors.

At this point we will use the assumption (as explained in subsection 8.2.2) that we

expect no radical changes in coverage between k-mers that make up our target contigs.

To explain the theoretical goal of our approach we introduce two new concepts:

Definition 8.2.11. Let G = (V,E) be a StarK graph and G′ = (V ′, E ′) a subgraph of

G with only one weakly connected component. We define the internal link strength

of G as the maximum of all link strengths within the subgraph:

l(G′) := max
e∈E′
|l(e)|. (8.2.4)

The link strength between two disjoint subgraphs G′ = (V ′, E ′), G′′ = (V ′′, E ′′) is defined

as the maximum link strength of any edges connecting them:

l(G′, G′′) := max
v′∈V ′,v′′∈V ′′
(v′,v′′)∈E

|l(v′, v′′)|. (8.2.5)

Definition 8.2.12. Let G be a StarK graph. We call G = {(Vi, Ei)} a family of

sub-contigs of G if

1. ∀(Vi, Ei) ∈ G : (Vi, Ei) weakly connected component of G,

2. ∀(Vi, Ei), (Vj, Ej) ∈ G : Vi ∩ Vj = ∅ (pairwise disjoint),

8.2. StarK Theoretical Framework 109

3. ∀(Vi, Ei) ∈ G : (Vi, Ei) has one unique (except for reversing) maximal surface

path that contains all other surface paths.

In practice construction of contigs during genome assembly is a heuristic process during

which we create the longest possible sequences that, based on some assumptions, have

most likely been the origin for the underlying reads. In StarK the contigs are derived

from sub-contigs (StarK subgraphs) and we assume that extreme changes in coverage

are unusual.

As such the ideal partition of a StarK graph into a family of sub-contigs that we would

aim for should have two features:

1. Joining any number of sub-contigs will not result in a new sub-contig (i.e. the re-

sulting graph has no unique maximal surface path and would introduce branches),

2. The internal link strength of each sub-contig is lower than the link strength to

any of its neighbouring sub contigs. Lower in this case means less radical changes

— more steady transitions.

Although we do not enforce the latter (weaker) feature in our implementation, it is a

factor that plays an important role in how we choose to merge sub-contigs.

Since the time complexity for achieving an ideal version of this goal is probably beyond

anything that can be reasonably computed, we will be trying to approximate this ideal

partitioning.

The steps are as follows:

1. Generate an initial partitioning G of a StarK subgraph with coverage of at least

1 into a family of sub-contigs. A trivial partitioning would be one where each

sub-contig contains exactly one k-mer.

2. Compute the link strength between any two adjacent sub-contigs.

3. In the order of ascending absolute link strength:

a) Attempt to join any two sub-contigs.

110

b) If a merge results in a new sub-contig with a longer sequence represented

by any of the two origin sub-contigs:

Keep the merged sub-contig instead, recompute link strength to neighbour-

ing sub-contigs.

4. Repeat the previous two steps until no more merges are done.

The resulting family of sub-contigs is an approximation of the ideal target family.

We observed that the restriction to apply this merging in ascending order guarantees

that contigs, which likely belong together, get merged first instead of joining errors/tips

with contigs.

The output then contains all contigs longer than a certain preset (runtime parameter).

Remark 8.2.13. Although building a similar family of sub-contigs could have also been

achieved through a top-down approach by splitting the original graph iteratively we have

chosen the bottom-up approach (merging) because it is easier to parallelise.

In the next chapter we will discuss the practical implementation of this theoretical

framework into software and the challenges met regarding to parallel execution.

111

9. Implementation and

parallelisation of the StarK

assembler

This chapter focuses on the technical implementation of the StarK assembler theory

into a working software prototype. The theoretical construct only explains the algo-

rithmic value of the approach. Here we explain the challenges met when implementing

the StarK algorithm in C [KRE88] and how we tackled them. Special attention is given

to parallelisation.

9.1. Introduction

Over the years we have seen various implementations of genomic de Brujin graphs. The

one most frequently used is to store all k-mers in a hash map by sequence. Edges are

stored implicitly in form of existence or non-existence of neighbour nodes. Testing for

a constant number of neighbour nodes requires O(1) constant time assuming the hash

map provides constant time access. This development has also led to the term hash

length to be used synonymously with k-mer length or de Brujin graph dimension.

This data representation requires a lot of memory, as the sequence, even when com-

pressed to two bits per nucleotide, uses up a large amount of memory per k-mer.

Considering that the majority of stored k-mers (in practice over 99%) originate from

112

errors and contaminants in the reads this can quickly exceed today’s typical hardware

capabilities (e.g. 256GiB Random Access Memory (RAM)). For example storing a 95-

mer (not unreasonable given read lengths of up to 160) would require 2 · 95 = 190 bits

or 24 bytes to store the sequence alone. The human genome requires approximately

232 k-mers to represent the target (without erroneous k-mers) as a de Brujin graph.

At 24 bytes per k-mer this brings us to 96GiB for the target k-mers alone at a single

dimension.

Recently an implementation was suggested using a bloom filter to decrease the amount

of memory used per k-mer to less than two bytes [CR+12], but this implementation

comes at the cost of not being able to attach payload data to a k-mer (i.e. coverage

information).

Since the StarK graph essentially has to store up to the read length number individual

de Brujin graphs we have chosen a different in-memory representation.

We have chosen to represent a StarK graph in memory in the form of a directed graph.

Edges in the graph exist only between nodes representing k-mers of length difference

of 1. The graph resembles a eight-ary tree-like structure where each node has exactly

two parents and up to 8 children.

Each node represents a k-mer and its reverse complement. The first draft of the data

structure (starknode_t) uses 48 bytes per k-mer. It illustrates well the functionality

of the data structure and allows superior processing speed, but is not intended for

production deployment. Using the new compressed data structure (section 9.8) data

representation each k-mer consumes on average less than 10 bytes independent of k-mer

length, while sacrificing performance.

9.2. Data structure 113

9.2. Data structure

The heart of the StarK implementation is our representation of a k-mer in memory

— the StarK node type starnode_t. The design of this data type focuses on both

representing the StarK graph with as much detail as is necessary for operation and

constant time transition between neighbouring graph vertices.

9.2.1. k-mer representation (starknode_t)

Each starknode_t struct represents both a k-mer and its reverse complement. They

are identified by a “forward” and a “reverse” k-mer. The “forward” k-mer is always the

lexicographically smaller one. A bit identifying node relative rotation allows selection

of a specific k-mer. If a k-mer is equal to its reverse complement (i.e. it is a palindrome)

then the software enforces its child nodes to be identical in both directions and the

rotation bit has no meaning.

Throughout this chapter we will refer to a starknode_t object as a node (dual k-mer

storage container, rotation independent) and only refer to k-mers if we wish to identify

a specific de Brujin k-mer (rotation dependent).

Since a StarK graph in memory resembles a tree-like layered structure (all shortest

paths to the node representing the empty word have the same length), we will also be

using tree-related terminology:

• Graph root – in this case the node representing the empty word λ.

• Node child – a directly connected node, which is one depth level lower from the

root.

• Node parent – reverse relation to child.

Table 9.1 Shows the starknode_t data layout as used by our implementation.

Although this is not the most memory efficient form of representation (see section 9.8

114

4 bytes 4 bytes

1 2 3 4 5 6 7 8

0x00 parent[0] parent[1]

0x08 edges flags debug coverage

0x10 child[0][0] child[0][1]

0x18 child[0][2] child[0][3]

0x20 child[1][0] child[1][1]

0x28 child[1][2] child[1][3]

(a) The starknode_t struct data layout.

parent[*] Offsets into for the two parents.

child[*][*] Offsets for four forward and four reverse children. These fields double

as an indicator for a child’s presence and as a lock when the child is

created (refer to subsubsection 9.3.2.2)

edges Bit field of 8 bits signalling the existence of the four neighbours

‘wΓ,Γw ‘.

flags Two times 2 bits indicating the transition nucleotide for each of

the two parents. This is necessary to be able to deduce the k-

mer sequence. Two bits indicating whether the parent is reverse-

complemented in relation to this k-mer (relative rotation). Two flags

for temporary use by downstream implementation.

coverage 32-bit integer holding the current coverage count.

debug Two bytes that were initially used for debugging purposes and are

only present for padding right now. Can be assigned any function if

necessary.

(b) Description of the starknode_t fields.

Table 9.1.: The starknode_t data structure.

9.2. Data structure 115

w

parent
edges ‘waexists

‘w
child[a]

Figure 9.2.: starknode_t node – parent – neighbour relation.

for improvements) it has several advantages over hash maps (as used by most graph-

based genome assemblers):

• k-mer sequence is not stored in the struct allowing for arbitrary length k-mers to

have constant memory footprint.

• Transitions w → ‘w,w ‘, wΓ,Γw (node→ parent, node→ child) can be performed

in constant time via only two pointer lookups.

• The struct allows for additional information to be stored like coverage. It can be

extended with extra fields if necessary.

The inclusion of the edges bit field (which holds a bit for every exiting neighbour

k-mer) seems redundant here. This information could be retrieved by querying child

existence on the appropriate parent node as displayed in Figure 9.2. This field becomes

necessary after the redundancy cleaning step section 9.4 and provides performance until

then.

Figure 9.3 shows a StarK graph in memory with all virtual links through node offsets

in order to illustrate inter-node link complexity.

116

9.2.2. Explanation

The StarK-graph is built in memory as a full graph containing every k-mer present in

the reads starting with the empty word λ. By convention the graph grows down and

we call the k-mer length depth.

The StarK master struct stark_t contains an array level holding 255 pointers to

arrays of starknode_t. Almost every function that operates on the StarK graph

receives a pointer to the master struct.

For memory efficiency we do not store pointers to StarK nodes, but rather their offsets

in the stark_t->level array. The former would require 8 bytes of storage space for

a 64-bit pointer, the latter is confined to a 32-bit offset and thus only requires half

as much memory. Although this only allows for 232 − 2 total k-mers to be stored per

depth, this was sufficient for our tests that we ran on viral sequencing data. The offsets

were only saturated to 22 bits. See section 9.8 for an alternative data structure which

allows for more k-mers to be stored at a smaller memory footprint.

Although edges is an optional field and we could merge coverage and flags into

just four bytes, we have decided to keep all fields to preserve 8-byte struct alignment.

Assigning only 2 bytes for the coverage has proved to be insufficient for viral sequences.

9.2.3. k-mer sequence retrieval.

The starknode_t struct does not carry the sequence of the represented k-mer itself in

order to conserve memory as discussed above. In order to retrieve the sequence we have

to traverse the graph from the node in question all the way to the root by following the

parent node links. The nucleotide of each transition to a parent is stored in the flags

field and allows together with the relative rotation full reconstruction of the sequence.

The function stark.h:get_sequence can be used as reference for this process.

9.2. Data structure 117

A

T
C G

A

T
C G

C

C
G

A
A

T

A
C A

C

C

A

λ

A

T

C

G

CA

TG

GA

TC

AC

GT
TCA

TGA

GAC

GTC

GTCA

TGAC

Figure 9.3.: Shows the StarK data structure concept when the read TGAC is inserted.

The sequences are not actually stored, but implied by the structure of the

graph. One can acquire the sequence associated with a k-mer by following

the graph to the root node.

118

9.3. Building a StarK graph

9.3.1. Inserting reads

When reads are inserted into the StarK-graph they are parsed in ascending k-mer sizes.

If l = |w| is the read length of a read w, then w contains 1
2
l · (l + 1) k-mers that need to

be processed. As such this operation has time complexity of O([read length]2) = O(l2).

This process needs to recognise nodes for k-mers that already exist in the graph, create

new ones, when necessary, and link them together. In order to minimise computation

time a dynamic programming algorithm is used that caches the parent nodes for longer

k-mers in each round. As an example the k-mers of the read GGTGACTA would be

processed in the following way:

round 1: G G T G A C T A

round 2:
↘

GG
↙ ↘

GT
↙ ↘

TG
↙ ↘

GA
↙ ↘

AC
↙ ↘

CT
↙ ↘

TA
↙

round 3:
↘

GGT
↙ ↘

GTG
↙ ↘

TGA
↙ ↘

GAC
↙ ↘

ACT
↙ ↘

CTA
↙

round 4:
↘

GGTG
↙ ↘

GTGA
↙ ↘

TGAC
↙ ↘

GACT
↙ ↘

ACTA
↙

round 5:
↘

GGTGA
↙ ↘

GTGAC
↙ ↘

TGACT
↙ ↘

GACTA
↙

round 6:
↘

GGTGAC
↙ ↘

GTGACT
↙ ↘

TGACTA
↙

round 7:
↘

GGTGACT
↙ ↘

GTGACTA
↙

round 8:
↘

GGTGACTA
↙

Identical k-mers are automatically mapped onto the same StarK nodes in the process. If

a given node does not exist, it is created, otherwise the coverage counter is incremented.

If this were the first read to be inserted into a new StarK graph representation, then

the resulting graph would look like shown in Figure 9.4.

9.3. Building a StarK graph 119

Figure 9.4.: Illustration of a StarK-graph containing only the k-mers of the read

GGTGACTA.

120

9.3.2. Parallelisation

Although a StarK graph can be trivially constructed by a single thread, parallel con-

struction of the graph is not straightforward. We use OpenMP [DM98] for parallel

dispatching. Still, there are three challenges which cannot be trivially addressed by

the middleware:

1. Arrays holding the nodes at each depth have to be enlargeable without interrupt-

ing concurrent updates to existing nodes on the same depth.

2. It should be possible to create new nodes without blocking access to their parents.

3. Cumulative updates to the coverage counters updates have scale to an infinite

amount of threads.

In the following subsections we will address those challenges and discuss our solutions.

9.3.2.1. Arrays

The objective here was to allow for each array to grow dynamically on use without

invalidating any pointers another thread may have acquired into the array.

In the first draft of the implementation we used a data structure similar to C++

std::vector [Str13] with a thread lock (or mutex) in front of it. This has proven to

scale badly for several reasons:

• Using a readers-writers mutex (a lock that permits multiple concurrent readers,

but only one writer) allows for multiple threads to update, but not construct,

nodes on the same depth simultaneously. Unfortunately this proved to be slow

because in our runs threads switch depths roughly three times faster then it takes

to acquire the reader’s lock. In addition to that acquiring a writer’s lock often

took until over half of the active threads went into idle state waiting for a lock

themselves.

9.3. Building a StarK graph 121

• Making each depth mutex thread exclusive causes the threads to work in a serial

nullifying the benefits of parallelisation.

The shared memory resizeable list (section 10.1) would have solved these issues, but

was not used here because most modern Operating Systems (OSes) do not allow for

sufficient shared memory to hold our data. Modern Linux is normally only configured

with a few hundred megabytes of shared memory, while we require tens of gigabytes.

The final solution we have used was to allocate unfaulted Virtual Memory (VM) pages

for as many nodes as we intend to hold and let the kernel provide empty pages on first

write. This relies on the fact that mmap(NULL, length, PROT_READ | PROT_WRITE,

MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); always provides zeroed-out pages which is

the default initialisation state for starknode_t. This type of allocation does not use

any physical RAM until it is written to, but reserves sufficient space in the processes

VM without the need for relocation. This approach requires kernel support for full

memory overcommit (which is a far less intrusive configuration than increasing shared

memory size and is default on most modern OSes). As a drawback this removes any

kind of runtime memory checking and should the process run out of memory it will

just crash. For our purposes this is sufficient as the data structure is unusable if it

cannot be fully constructed.

9.3.2.2. Node creation

Parallel node creation is not trivial in our case because:

• Two threads need to be prevented from attempting to create the same new node

simultaneously,

• This contention has to be resolved once one thread finishes initialising a new

node,

• Other threads need to be able to continue working (ideally) on all other existing

nodes and should not be prevented from creating other different new nodes even

122

on the same depth.

The reason why this problem is non trivial is because:

• Two parents need to receive consistent offsets to a new child,

• Having each node carry a mutex that needs to be locked is unfeasible for memory

reasons,

• Having a range (depth and/or modulus) mutex will introduce too much con-

tention.

This required us to develop our own localised locking mechanism.

To make sure two threads lock both parents consistently (to avoid a deadlock) each will

collect the pointers to the two to four offsets, determine the numerically smaller one and

promote this to the primary offset. Offsets start initialised to zero. The thread that is

creating a new node will then compare and swap (synchronised processor instruction) a

lock value of 0xFFFFFFFF ((unsigned int)−1) into the primary offset preventing any

other thread from acquiring it. If this fails this means that another thread has acquired

the lock, so this one will wait until a valid child offset is written to the primary. The

thread will then proceed to create the new node and write the child offset first to all

other offset locations before overwriting the primary offset.

input o f f s e t_t ∗ c h i l d_o f f s e t s [] =

a l l o f f s e t s that need updating in parents ;

volat i le o f f s e t_t ∗ pr imary_of f se t = min (c h i l d_o f f s e t s) ;

i f (∗pr imary_of f se t == 0

&& compare_and_swap(pr imary_of fset , 0 , −1)) {

o f f s e t_t ch i l d = new ch i l d () ;

for (a l l o f f s e t s in c h i l d_o f f s e t s)

i f (o f f s e t != pr imary_of f se t)

9.3. Building a StarK graph 123

∗ o f f s e t = ch i l d ;

∗pr imary_of f se t = ch i l d ;

} else {

while (! (v a l i d ∗pr imary_of f se t)) {} ;

}

This locking mechanism does not use any additional memory and only removed one

offset from the pool of valid offsets. Also it issues only one hardware lock (plus con-

tention) per new node. Any thread that does not need to access the new node is free

to continue updating the parents and any other nodes in the graph.

9.3.2.3. Updating coverage

This may seem simple at first. An atomic update the style of __sync_fetch_and_

add(coverage,1) (gcc) or lock inc (%rdx) (x86-64) makes sure no update is missed,

but it introduces a surplus of hardware locking. On a single CPU (tested on Intel R©
Xeon R© CPU E7- 8837) this works without major stalls in the instruction pipeline

because Intel CPUs only issues hardware locks to caches when working on a single

socket (physical chip). As soon as the program is run across multiple CPUs or over a

Non Uniform Memory Architecture (NUMA) link these updates stall execution due to

limited bandwidth of the NUMA interconnect and become a major bottleneck. Each

instruction with a lock prefix will issue cache invalidations on all other CPUs and

issue a lock on the NUMA link. We measured that those updates are issued on average

every 70 nanoseconds if not stalled. A lock on the NUMA link lasts longer then that,

and as such these updates quickly become a scalability problem when deployed across

multiple sockets.

After trying various approaches including special hardware accelerated atomic opera-

tions (SGI UV Global Reference Unit (GRU)) we have decided to serialise access to

124

the coverage counters removing the need for locking.

To allow some simultaneous counter updates we divided the counters equally into 16

buckets (can be extended to more). Each bucket has a unique access token which is

granted to one thread at a time. Each time a tread wants to update a coverage counter

it checks whether it holds the token associated with that bucket, if so it flushes all

queued updates in the bucket and then passes the token to the next thread in line. If

the thread does not currently hold the token then the update is queued until later.

input num_buckets ;

input bucket_tokens [num_buckets] ;

input bucket_queues [num_buckets] ;

f unc t i on update_counter (int ∗ counter) {

int bid = hash (counter) % num_buckets ;

enqueue (bucket_queues [bid] , counter) ;

i f (t h i s thread i s a s s i gned to bucket [bid]) {

f l u s h (bucket_queues [bid]) ;

pass_to_next_thread (bucket [bid]) ;

}

}

This code can be made to run completely lock-free and as such does not cause the

problems discussed above. It comes at the cost of keeping bucket queues per thread,

but this time and memory overhead dwarfs in comparison to cross-socket locking delays.

9.4. Redundancy cleaning 125

9.4. Redundancy cleaning

Although having all k-mers of all reads in a single data structure has its advantages, it

also comes at a significant cost in memory. The example in Figure 9.4 requires a total

of 30 nodes to represent. For our application (contig assembly) we are not interested

in individual reads, but in how we can put them together into longer sequences. The

StarK graph in Figure 9.4 has only one surface path — GGTGACTA. In order to minimize

memory usage we have implemented a procedure that will give us the smallest subgraph

of a StarK graph, that contains the exact same surface paths (the theory behind surface

paths was developed in subsection 8.2.1).

Essentially this procedure checks for every node whether removing it will create a

branch in the new surface path. The only way this can happen is if any of a node’s

parents have more then one child in either direction or the node itself represents a

palindromic k-mer.

This algorithm cannot leave a node “orphaned” (i.e. a node gets deleted that still has

children) because

1. We work through the graph starting from the longest k-mers first

2. If a node with the sequence awb of length k ≥ 3, awb not a genomic palindrome

is the only child of its parents aw,wb in the appropriate direction then no node

exists of a sequence awc, c 6= b or dwb, d 6= a. This means that all children on

awb are either xawb or awbx with x ∈ {A, C, G, T}.

Now let us assume that awb has two children xawb and yawb, x 6= y. But in this

case the node aw would have to have at least two children in one direction xaw

and yaw which contradicts the requirement for both parents to have at most one

child in each direction.

The algorithm in pseudo code:

input s ta rk ;

126

Figure 9.5.: This figure shows the “cleaned” StarK-graph of GGTGACTA (Figure 9.4) with

all redundant nodes removed. The remaining graph contains exactly one

surface path (cyan nodes) at the cost of only 15 nodes.

for (i = max(depth) ; i > 0 ; i−−) {

for (a l l nodes n o f l ength i) {

i f (n i s

not a pal indrome

and

both parents have at most one

ch i l d in e i t h e r d i r e c t i o n) {

remove n ;

}

}

}

9.4. Redundancy cleaning 127

In practice this step often reduces the memory footprint by at least 60%. As an

example: when ran on the Ferret 54 day 4 influenza H3N2 sample this step reduced

the memory footprint from 56 to 18 gigabytes.

Parallelisation The redundancy clearing step is implemented together with a memory

compaction step. The latter is implemented as concurrent parallel tasks.

128

9.5. Assembly

The sequence assembly step implements the theoretical algorithm described in sub-

section 8.2.3. Please refer to chapter 8 for a detailed explanation of the algorithm.

This section will focus on how we achieve the goals set in the theoretical constructs in

practical software.

After all reads have been imported into the StarK graph (section 9.3) and the graph

has been redundancy cleaned as described in section 9.4 the next step is trying to

approximate the ideal sub-contigs as described in subsection 8.2.3 (please refer there

for terminology).

This part consists of three sub-steps:

1. Initialise sub-contigs,

2. Merge sub-contigs,

3. Export assembled sequences.

9.5.1. Initialisation

We initialise a starting set of sub-contigs by dividing the StarK graph into groups of

connected nodes such that the internal link strength is less than a set cut off. The

default starting link strength cut off is 0.05, but this may be adjusted via a parameter.

We use Depth First Search (DFS) to determine inter-node link strength and group

nodes into connected sub-graphs with low link strength.

If at any point a constructed group is not a sub-contig (i.e. it does not contain a unique

maximal surface path), the group is subsequently split with a lower maximal internal

link strength until all sub-groups are sub-contigs.

9.5. Assembly 129

Algorithm 9.5.1. The following pseudo code shows approximately the implementation

of the initialisation step:

input stark , l ink_st rength_cuto f f ;

l s c ← l i nk_st rength_cuto f f ;

sub_contigs ← ∅

while (node n (not a s s i gned to) a sub−cont i g) {

sub−cont i g s ← sub_contigs . new () ;

s . a s s i gn (n) ;

for (a l l nodes m in DFS(n)) {

i f (m (not a s s i gned to) a sub−cont i g
&& l ink_st rength (s , m) < l ink_st rength_cuto f f

) {

s . a s s i gn (m) ;

}

}

i f (s does not have a unique su r f a c e path) {

s p l i t (s , l i nk_st rength_cuto f f /2) u n t i l i t does ;

}

}

9.5.1.1. Parallelisation

The code shown in Definition 9.5.1 will in its current state only work reliably when

executed sequentially. Although this stage takes only roughly 5% of the run time we

still parallelised it because many of the constructs here are used in the next step:

Merging sub-contigs.

130

Note: due to the way the initial sub-contig set is constructed the results are deter-

ministic (except for group IDs) independent of the amount of threads constructing

them.

The challenges in parallelisation during this step are:

1. Resolve contention when two (or more) threads attempt to combine the same

group simultaneously from different starting points.

2. Allow more then one DFS to be run simultaneously on the same graph (each

thread needs its private “seen” flag per node).

3. Allow threads to expand the array holding each group’s control structure while

other threads work on an existing group. This has been resolved by using our

generic list in section 10.1 with shared memory back-end.

In the following paragraphs we will discuss how we tackled the issues 1 and 2 mentioned

above.

Group contention resolution. When threads are assigned a starting node, they are

only allowed to pick nodes which have not yet been assigned a group id > 0. This

eliminates having two threads attempting to use the same starting node.

If during DFS traversal a thread detects that a node is within the link strength limit,

but already has been assigned to a different group then the group IDs are compared.

The thread processing the other group will eventually come to the same point. The

thread with the numerically smaller group ID gets to keep going on and the other

aborts essentially allowing a group to “absorb” another half-constructed group. This

comes at the cost of limited recalculation, but redundant execution like this is less

expensive than synchronising the threads using locks and group merges.

The numerically larger group ID gets recycled by the aborting thread and is reused for

a new group.

9.5. Assembly 131

Parallel DFS. Depth First Search based algorithms require a “seen” flag to be set on

every visited graph node in order to avoid going down the same branch twice. When

running multiple independent parallel DFS searches with different starting nodes on

the same graph, then each thread requires its own private “seen” flag on each node.

Since we cannot afford to allocate any additional memory for each thread on each

starknode_t (plus synchronisation overhead) we need a method to keep track of this

“seen” flag for each thread in a different way.

We solved this issue by giving each thread a private hash map as discussed in sec-

tion 10.2. This special implementation of a hash map stores pointers to each visited

node for fast lookup and insertion. In addition since the constructed groups vary in

size from a few nodes to millions of nodes the efficient recycling implementation of this

hash map significantly boosts performance. Please refer to section 10.2 for details on

design and performance.

9.5.2. Merging sub-contigs

Conceptually this step is trivial. During construction of the initial sub-contig set each

group’s list of “neighbour” groups (groups where there is at least one edge between

them connecting nodes from different groups) is already created. These pairs of groups

are sorted in ascending inter-group link strength and each pairing is then tested to

see whether a merge results in a new sub-contig that is longer than both original

sub-contigs.

This can then be repeated in multiple rounds, recalculating the pairings before each

round, until no more merges are possible.

132

Algorithm 9.5.2. Basic pseudo code algorithm for the merge step:

input sub_contig_set ;

do {

ad jacent_pa i r ings ← pa i r i n g s o f ad jacent groups

from sub_contig_set ;

ad jacent_pa i r ings . s o r t (by l i n k strength , ascending) ;

for (each pa i r p in ad jacent_pa i r ings) {

i f (merge o f groups in p g i v e s l onge r sub−cont i g) {

merge groups in p ;

}

}

} while (at l e a s t one merge was done)

9.5.2.1. Parallelisation

This part of the software requires roughly 70% of the total CPU time, so parallelisation

of this step is crucial for performance.

The biggest challenge during parallelisation of this step was to preserve a deterministic

output while maximising the amount of parallel processing.

To achieve this we had to determine which pairings are dependent on a previous pairing

succeeding or failing before they can be tested. As soon as we can detach independent

pairings which are guaranteed to be tested independently, we are able to run those

tests in parallel.

To achieve this we have divided the threads into two categories:

1. One dispatcher,

2. Workers.

9.5. Assembly 133

The dispatcher thread is responsible for determining independent lists of pairings which

can be executed by the workers in parallel, keeping track of which groups are being

tested by which worker and recycling the workers’ testing queue.

The concept for determining pairing test independence is simple:

A pairing (g1, g2, l(g1, g2)) (where gi are group IDs and l(g1, g2) is the square of their

inter-group link strength, please compare to Definition 8.2.11) is independent from a

pairing (g3, g4, l(g3, g4)) with l(g1, g2) < l(g3, g4) if and only if

• g1, g2, g3, g4 are pairwise different,

• There is no chain of pairings (gi1 , gj1 , l(gi1 , gj1)) . . . (gin , gjn , l(gin , gjn)) such that

l(g1, g2) ≤ l(gi1 , gj1) ≤ · · · ≤ l(gin , gjn) and gi1 ∈ {g1, g2} , gjn ∈ {g3, g4}. In

essence if merging any pairings between those will affect the last pairing.

In practice we do it the following way:

• Each worker thread receives a queue of pairing to process.

• The dispatcher iterates the list of sorted pairings one by one. For each pairing it

tests:

– Are both groups in this pairing not yet assigned to any groups. If so, assign

it to a worker with the least load.

– If both groups are assigned to the same worker or one is assigned and the

other is not yet assigned – assign this pairing to that worker.

– If both groups are assigned to different workers, mark both groups as being

invalid for any further assignments.

This ensures that the same merges are done as if pairings would be tested in the

same order as they would be if worked through sequentially.

• The dispatcher periodically tests whether a worker’s queue is empty. If so, it

releases all group assignments, reassigns groups that are still in other workers’

queues and rewinds the previous step. This ensures that load is balanced through-

134

out most pairing tests. In our trial runs on sample Ferret 54 day 2 all workers

were busy 90% of the time.

9.5.3. Exporting contigs

Once the merging step has been run for (either a fixed number of rounds or) as many

rounds as it can be the remaining groups are tested for their contig length and contigs

longer than a threshold (set via runtime parameter) are printed in FASTA format.

This step was intended to include alignment comparisons of the contigs in order to

map variants to each other, but was not implemented due to lack of time.

No parallelisation was done on this part as it does not require much CPU time compared

to the other steps.

9.6. Monitoring 135

9.6. Monitoring

Our implementation of StarK provides a built-in minimal web interface for progress

monitoring. The interface was initially developed for debugging purposes, but is avail-

able to anyone and provides information like:

1. How many threads are running and their status.

2. Sequence statistics, current assembly progress.

3. Thread scheduling, dispatched CPU, memory usage and other diagnostic statis-

tics.

4. If StarK was compiled with libpbs support and is running on a Portable Batch

System (PBS) scheduler then PBS job statistics are shown in the web interface.

Figure 9.6 shows a screenshot of the status website on a running assembly process. The

plan was to extend the web interface to allow the user to alter execution parameters,

but this was never implemented because of time constraints.

Access to the web interface is provided through a Transport Control Protocol (TCP)

port that can be set as a parameter at start or through a UNIX domain socket, which

is created automatically in the user’s TEMP directory.

136

Figure 9.6.: Example screenshot of the StarK status monitoring web page. The assem-

bler finished loading a previously generated snapshot of a StarK graph and

is in its first round of merging sub-contigs.

9.7. Performance Test 137

9.7. Performance Test

We ran our StarK prototype implementation on the Ferret 54 day 4 influenza H3N2

sample to determine its performance. We used the Allinea Map (http://www.allinea.

com/products/map) 5.0-40932 profiler to determine the activity of the threads spawned

by the program and the memory usage curve.

Figure 9.7 shows the CPU and memory usage of the profiling run while Table 9.8 shows

the timings for the individual steps.

The green line in Figure 9.7 shows CPU usage averaged over the 8 cores through a full

assembly run while the red line shows memory usage. One can clearly see that most of

the time is spent in parallel sections where all cores are busy. The two longest episodes

of parallel work are the step that builds the StarK graph from the reads (in the first

third) and the assembly part (in the second half) are both executed fully in parallel.

The first long parallel section has a little jitter in the CPU usage as there are sometimes

wait times due to synchronisation routines. The second parallel section (the assembly

part) has occasional short breaks in parallelism at the end of each round that merges

contigs where threads need to resynchronise. Even though the redundancy cleaning

step (where the drop in memory occurs) is parallel, the amount actual of parallelism

is minimal.

The red line shows memory usage. It shows the build up of memory while the StarK

graph is built and the sharp drop during the redundancy cleaning step. In this partic-

ular run the cleaning saved over 60% of the memory. The memory build-up during the

assembly step is only marginal.

The assembler performed the steps detailed in Table 9.8 on 8 cores on a Intel(R)

Xeon(R) CPU E5-4650L 0 @ 2.60GHz (Check mark indicates that this step is capable

of running in parallel across all 8 cores).

http://www.allinea.com/products/map
http://www.allinea.com/products/map

138

100%

C
P
U

0%100%

R
A
M

0%

0sec
T
im

e
22m

in
35

F
igure

9.7.:Show
s
T
he

C
P
U

and
m
em

ory
usage

charts
usage.

T
he

green
line

show
s
C
P
U

usage
averaged

over
the

8
cores

through
a
full

assem
bly

run
w
hile

the
red

line
show

s
m
em

ory
usage.

O
ne

can
clearly

see
that

m
ost

ofthe
tim

e
is
spent

in
parallelsections

w
here

allcores
are

busy.
T
he

red
line

show
s
m
em

ory
usage

one
can

clearly
see

the
build

up
of

m
em

ory
w
hile

the
StarK

graph
is

built
and

the
sharp

drop
during

the
redundancy

cleaning
step.

9.7. Performance Test 139

Task Parallel Real time

Read I/O (read sequences) X 14sec

Remove duplicates X 18 sec

Build StarK graph X 6min 33 sec

Redundancy cleaning & compact memory X 126sec

Compute statistics X 1min 36sec

Prepare graph for assembly X 1min 33 sec

Merge contigs Round 1 X 4min 24 sec

Merge contigs Round 2 X 57 sec

Merge contigs Round 3 X 32 sec

Merge contigs Round 4 X 30 sec

Merge contigs Round 5 X 30 sec

Merge contigs Round 6 X 33 sec

Merge contigs Round 7 X 30 sec

Merge contigs Round 8 X 33 sec

Merge contigs Round 9 X 30 sec

Merge contigs Round 10 X 30 sec

Merge contigs Round 11 X 30 sec

Merge contigs Round 12 X 30 sec

Merge contigs Round 13 X 30 sec

Merge contigs Round 14 X 31 sec

Merge contigs Round 15 X 30 sec

Total 22min 35 sec

Table 9.8.: The prototype assembler ran on on 8 cores on a Intel(R) Xeon(R) CPU E5-

4650L 0 @ 2.60GHz assembling the Ferret 54 day 4 influenza H3N2 sample.

Please note that the timings are different from those in Table 6.5 because

the same machine the initial tests were conducted on was unavailable for

further profiling.

140

grandparent

parent 1 parent 2

node

Figure 9.9.: Shows node → parents → grandparent relation within the StarK graph.

9.8. Compressed data structure

The starknode_t (subsection 9.2.1) is a robust data structure for the purposes of

our implementation and provides superior performance when deployed in a parallel

environment, but comes at the expense of 48 bytes per node (two k-mers). When

importing all the reads from our training sample (human Influenza H3N2 from ferret

54 day 2) peak RAM usage was 56 gigabytes. The majority of the space (83%) is used

up for parent and child offsets within the struct.

Benchmarks have shown that out of the eight entries for child offsets only two are used

in over 92% of the nodes within the graph.

Additionally we have observed that a full 32 bits for child offsets may not be necessary

as grouping nodes that share certain features within memory may give us the ability

to decrease this offset size. The common feature that we will be exploiting here is that

although each node has two distinct parent offsets, making offsets based on parent

unfeasible, both of those share one common (grand)parent.

Definition 9.8.1. Let awb be a k-mer in the genomic alphabet. a, b ∈ Γ, w ∈ Γ∗. The

parent nodes are representatives for the (k − 1)-mers aw and wb respectively. We will

be calling the common ancestor of those (node that is representative for the (k−2)-mer

w) the grandparent. See Figure 9.9 for clarification.

Combining the fact that in the majority of nodes only two child offsets are necessary

9.8. Compressed data structure 141

and that we can use part of a grandparent’s offset for addressing a node led us to the

design for a compressed data structure – StarK node version 2. Please note that in its

current state this new data structure is only capable of delivering the first two phases

of the StarK assembly process – importing reads into the StarK graph and redundancy

cleaning. Due to this it is not yet used by the main algorithm, but will eventually

replace the base starknode_t. A temporary solution is to convert the StarK node

version 2 graph into a starknode_t based graph after the redundancy cleaning step,

thus avoiding the peak memory usage of a starknode_t based graph before redundancy

cleaning.

9.8.1. Design

The design of what we internally call stark_node_phase1 (StarK node for phase one)

is divided into two structs: a small version and an extension.

The small node has one of two states:

1. It stores two child offsets directly.

2. It was extended and stores the location of the extension, which in turn contains

up to eight child offsets.

Base state 1. In the base state where a stark_node_phase1 small node stores only

two child offsets it holds enough data to store the familiar edges (8-bit) field from

starknode_t, a new flags (8-bit) field, two 20-bit child offsets and two 4-bit identifiers

for those children.

If a small node receives a third child, then an extension is created, flags are changed to

indicate the presence of an extension and the two times 24 bit, which previously stored

child data, are re-purposed to hold the offset of the extension struct.

The small node struct is just 8 bytes in size and (according to earlier mentioned bench-

marks) will be sufficient to represent 92% of nodes. The remaining nodes will addi-

142

bits

bytes 7 6 5 4 3 2 1 0 bits

0x00 lock c1 direction c1 nucleotide c1 offset[16..19] 8

0x01 lock c2 direction c2 nucleotide c2 offset[16..19] 16

0x02
flags

24
n/a palindrome reverse first nucleotide last nucleotide

0x03 edges, at most two bits set 32

0x04
child 1 offset[0..15]

0x05 48

0x06
child 2 offset[0..15]

0x07 64

Table 9.10.: Data layout of struct stark_node_phase1_small_s with up to two off-

sets. c stands for child.

tionally have an extension struct of eight times 20 bits = 20 bytes. On average this

brings us to less than 10 bytes per node. This is a significant improvement in storage

in comparison with the original starknode_t structure, which requires 48 bytes per

node – an improvement of almost 500% in memory efficiency.

Table 9.10 shows the data layout of the small node (struct stark_node_phase1_small_s)

with up to two offsets.

The child offsets are split over multiple non-adjacent fields. The four least significant

bits of the first two bytes hold the most significant bits of the offsets and the last two

words (2 bytes in Intel terms) hold the 16 least significant bits. The bits 4, 5 and 6 in

each of the two first bytes identify which of the 8 possible children are stored.

The first two bytes also function as a lock indicator in their most significant bit for

parallel execution. A value of 0xFFFF in the two first bytes (a value that does not make

sense for child storage) indicates that another thread is currently modifying this node.

20 bits are by far not enough to store sufficient nodes (recall that our training sample

9.8. Compressed data structure 143

required 22 bits of offsets). This is why we splice the final child offsets together from

the common grandparent’s (refer to Figure 9.9) offset (up to 20 bits may be used) and

the offset stored within the node. The resulting final offset is calculated as

final_offset = ((grandparent_offset & 0xFFFFF) << 20

| child_offset) & mask;

where mask is an offset mask calculated depending on the runtime’s available VM space

and the depth (small depths can not produce sufficient nodes to justify large offsets).

On our SGI UV this was set to up to 38 bits, which is a significant improvement over

starknode_t maximum of 32 bits. It is also way above anything current hardware

can actually accommodate. When virtual memory address space will be increased

(currently 48 out of 64 bits), this maximum final offset length will rise to 40 bits,

which is orders of magnitude more then is needed for today’s NGS sequencing samples,

not to mention way beyond any current hardware.

Extended state. When a stark_node_phase1 small node would receive a third child

it is instead extended. An extension struct (eight times 20 bits) is created and the

small node is altered to hold the extension’s 48-bit offset in place of the memory

previously occupied by the two prior children. At this point all child offset information

is outsourced to the extension.

The two states are differentiated by the amount of bits set in the edges field. More

than two bits set indicate the presence of an extension. Table 9.11 shows the data

layout for this state.

As explained above, this two-stage approach to storing StarK nodes significantly im-

proves memory footprint due to the fact that in practice often not more than two

children are attached to each node.

144

bits

bytes 7 6 5 4 3 2 1 0 bits

0x00
extension offset[32..48]

0x01 16

0x02
flags

24
n/a palindrome reverse first nucleotide last nucleotide

0x03 edges, more than two bits set 32

0x04

extension offset[0..32]
0x05

0x06

0x07 64

(a) Data layout of struct stark_node_phase1_small_s in the extended state.

byte byte

bytes quartet quartet quartet quartet bits

0x00 c0 offset[16..19] c4 offset[16..19] c1 offset[16..19] c5 offset[16..19] 16

0x02 c2 offset[16..19] c6 offset[16..19] c3 offset[16..19] c7 offset[16..19] 32

0x04 child 0 offset[0..15] 48

0x06 child 1 offset[0..15] 64

0x08 child 2 offset[0..15] 80

0x0A child 3 offset[0..15] 96

0x0C child 4 offset[0..15] 112

0x0E child 5 offset[0..15] 128

0x10 child 6 offset[0..15] 144

0x12 child 7 offset[0..15] 160

(b) Data layout of struct stark_node_phase1_extension_s – the small node extension.

Table 9.11.: Combined data layout of struct stark_node_phase1_small_s in the ex-

tended state with its extension.

9.8. Compressed data structure 145

9.8.2. Parallel read parsing

As with section 9.3 we have taken into account parallelisation when designing this

data layout. starknode_t uses local per-offset locking when children are being added.

Although this allows for two threads to append two different new children to the same

node, in practice this almost never happens. Also because the two data fields for

child offsets in a stark_node_phase1 small node are no longer associated with specific

children, the entire node has to be locked down during addition of new children.

Taking this into account we have specifically designed the stark_node_phase1 small

node in such a way that it is only 8 bytes long and can thus be loaded atomically by

a modern 64-bit CPU (memory alignment provided). Thus each time a thread wishes

to modify a stark_node_phase1 small node, it loads it atomically onto its stack,

performs updates and then pushes the full struct in an atomic compare-and-swap back

into memory. This guarantees a fully atomic update of the entire struct in just one

write.

This method ensures that only a single locked instruction (compare-and-swap) is used

to limit memory bus lock down and that the struct is always kept in a consistent state

without the use of locks and unnecessary strain on the hardware memory bus.

When a small node is extended, it can no longer be updated with just one write. At this

point an internal locking mechanism is used. This is acceptable due to the significantly

smaller amount of extended nodes.

146

9.8.3. Node meta data

The reader may have noticed that the stark_node_phase1 small node struct has no

fields for meta data (e.g. coverage information). This type of data is independent of

the actual structure of the StarK graph representation in memory. As such we have

decided to move this part to a separate array. Any meta data is now held in separate

arrays that are addressed with the same offset as the stark_node_phase1 small node

itself and thus uniquely identified. Our current implementation supports coverage data

only, but can easily be extended to any additional information as it becomes necessary.

The idea behind this is to run the graph creation and redundancy cleaning steps before

any memory for meta data is commissioned.

9.8. Compressed data structure 147

149

10. Libraries

During the implementation of StarK we encountered the need for several helper libraries

with specific requirements that were unavailable otherwise. Below are the helper li-

braries listed that we implemented and the reasoning behind them.

10.1. Generic Lists

Relatively early in development we started to require a list type structure similar to

the C++ std::vector class [Str13].

The reasons for not using an off-the shelf implementation were:

• We wanted to rely on a custom allocator making use of Linux realloc and Mach

vm_remap,

• We require support for atomic size increments,

• We require (in some use cases) the ability to enlarge/reallocate the memory region

to allow for new elements without invalidating any pointers another thread may

have acquired into the array.

Since C does not directly support template/generic programming we have implemented

much of this in preprocessor macros.

The resulting library is self-contained in just one header list.h and implements the

following functions:

150

#define list_t(type)

Macro that unfolds into a struct representing the container meta data. Used as

the type for the list. Provides access to the members

• type * list; the pointer into the array that holds the list contents.

• size_t size; Current amount of elements in the list. Setting this to 0

effectively erases the list.

list_init(list_t *)
Simple list initializer, also available with optional parameters initial size and

flags.

list_init_size(list_t *, size_t)

list_init_flags(list_t *, int)

list_init_size_flags(list_t *, size_t, int)

So far the only implemented flag is thread safe memory expansion (see below).
list_free(list_t)

List deinitialiser, deallocates the underlying array and any helper memory. The

list meta structure is unmodified and should not be used unless reinitialised.

list_new_empty(list_t *)

Makes sure that sufficient memory is available for a new element in the array,

zeroes it out and returns its index.

list_insert(list_t *, object)

Makes sure that sufficient memory is available for a new element in the array and

copies the passed object in. Types of the list generic and the object have to match

at the penalty of unpredictable results.

list_push(list_t *, object)

Alias for list_insert for stack semantics.

list_pop(list_t *)

Decrements list size for stack semantics. No consistency checking is done and the

popped element is not zeroed out. Users should make sure that list->size > 0

before calling this.

10.1. Generic Lists 151

list_compact(list_t *)

Compacts the underlying allocated array to use only exactly as much memory as

necessary within the bounds of the used allocator.

list_qsort(list_t *, int (*compare)(const void *, const void *))

Quicksort convenience macro, calls libc qsort.

list_heapify(list_t *, int (*compare)(const void *, const void *))

Heapifies the list for use as a heap with array backbone.

Most of the above functions are implemented as preprocessor macros for fast inlining.

Five memory allocator models are supported by the implementation, three of which

are fully implemented and tested. The Mach-specific allocators are implemented in a

testing build, but not yet fully tested and are not currently distributed with the code.

The allocators are:

1. libc malloc, realloc

2. POSIX mmap with Linux mremap

3. Mach (OS X) vm_alloc, vm_remap

4. POSIX shared memory

5. Mach shared vm_remap

The first three are selected transparently within the initialiser, the fourth and fifth

ones are necessary for a special feature discussed below.

list_init allows a flag to be passed to it which sets the list up in such a way that

list_insert and list_new_empty can concurrently enlarge the array while another

thread is modifying existing elements. On Linux this effect is achieved by binding

an instance of list_t to a shared memory file descriptor (memory model 4). Each

time the array is enlarged a new VM mapping is created from the underlying shared

memory preserving the previous one. This permits other threads to continue working

on the obsolete mapping while a new larger one is available at the next access. Sadly

152

this comes with a limitation: OS wide maximum shared memory (as discussed in

subsubsection 9.3.2.2). On Mach-based VM implementations (OS X) this problem

can be avoided by using the Mach vm_remap without binding the memory to a file

descriptor (memory model 5).

10.2. Hash maps 153

10.2. Hash maps

During various stages of the StarK implementation we encountered the requirement

for a hash map with special requirements:

• Space efficient.

• Map has to store only the key (which in itself is an integer) and thus needs only

to say whether a key is present or not. A key of zero (0) is invalid.

• Needs to support the usual hash map features of fast lookup, insertion and resiz-

ing.

• Needs to support a fast zeroing out operation which is called frequently on

sparsely populated maps.

The reasoning behind the above requirements is that the hash map will be used pri-

marily by a re-entrant graph traversal function that needs to store visited node flags.

Thus every thread will receive a private copy of such a hash map which will be recycled

on every new function call. The map stores addresses of visited nodes. Thus the ability

to quickly zero everything is essential.

Since only integers are stored and zero values are invalid we do not need additional

meta data to store in the hash map container. As the underlying contention resolution

we have chosen chained hashing and limited the map’s load factor to 1/2 (although

usually values around 0.7 are recommended [Knu73]).

The default hash function for integer types is the identity function. As the chaining

hash function we have used

h : x 7→ x+ 1 mod [map size]. (10.2.1)

Although a more sophisticated hash function can be used for increased spread, this was

sufficient during our tests due to the nature of our input data (VM addresses) being

154

relatively uniformly distributed in the first place.

We identified that it is a significant performance bottleneck when the functions that

use this special hash map often only sparsely populate it before requiring a new one.

We benchmarked different approaches for recycling the memory. Table 10.2 shows the

results of those benchmarks.

The slowest was to deallocate and reallocate a completely new map using munmap/mmap.

This is because it involved to two system calls and the new memory needs to be faulted

in on use.

The first attempt which gave a small performance increase was to remap fresh anony-

mous VM on top of the old ones using mmap with the MAP_FIXED flag to overwrite

the existing mapping. Although this reduced the amount of system calls to one and

performed adequately if always only few keys were inserted, but was still very slow if

most of the map was actually used. This is due to the cost associated with faulting in

new pages on each use.

At this point we have divided the memory used by the map into buckets of VM page

size (this can be altered if necessary). Each time a bucket is written to a flag is set

that this bucket is dirty (non-zero). When the map has to be zeroed out we will then

only zero out the dirty buckets.

This has two main advantages:

• Pages of large maps with only few entries that remained unused do not have to

be touched.

• Pages do not have to be faulted in again. Surprisingly on our test Systems (Linux

Intel R© Xeon R© E7- 8837, OS X Intel R© CoreTM i5-2435M) faulting a new empty

page in is slower than zeroing a dirty page with memset. This may be due to

expensive context switches.

We note that the most consistent way of using the Direct Memory Access (DMA)

controller to fulfil this job is yet to be found.

10.2. Hash maps 155

Fill

amount
Method

Map size

4KiB 8 KiB 16KiB 32KiB 64KiB 128KiB 256KiB

1%�

u;m 6ms 7ms 12ms 32ms 182ms 59ms 116ms

m/F 6ms 6ms 9ms 17ms 29ms 72ms 163ms

i/s 730µs 1344µs 1663µs 3ms 6ms 20ms 27ms

2%�

u;m 6ms 10ms 11ms 20ms 35ms 63ms 119ms

m/F 4ms 5ms 9ms 79ms 40ms 59ms 106ms

i/s 390µs 744µs 1507µs 3ms 6ms 15ms 36ms

3%�

u;m 7ms 6ms 12ms 29ms 42ms 87ms 145ms

m/F 7ms 9ms 10ms 17ms 31ms 66ms 125ms

i/s 542µs 1000µs 2ms 4ms 8ms 19ms 197ms

5%�

u;m 9ms 12ms 25ms 17ms 39ms 67ms 119ms

m/F 4ms 6ms 12ms 22ms 40ms 62ms 127ms

i/s 807µs 2ms 4ms 7ms 19ms 28ms 57ms

7%�

u;m 4ms 7ms 13ms 24ms 38ms 216ms 140ms

m/F 4ms 10ms 13ms 25ms 46ms 77ms 124ms

i/s 954µs 1926µs 3ms 8ms 17ms 39ms 73ms

1.1%

u;m 5ms 6ms 11ms 22ms 40ms 78ms 161ms

m/F 6ms 9ms 12ms 22ms 41ms 72ms 142ms

i/s 1476µs 2ms 5ms 15ms 25ms 53ms 99ms

1.7%

u;m 5ms 7ms 13ms 26ms 56ms 90ms 166ms

m/F 6ms 9ms 14ms 270ms 44ms 85ms 168ms

i/s 2ms 4ms 8ms 19ms 43ms 82ms 152ms

2.5%

u;m 6ms 9ms 18ms 34ms 204ms 108ms 245ms

m/F 5ms 9ms 15ms 29ms 52ms 120ms 198ms

i/s 3ms 6ms 15ms 67ms 65ms 107ms 223ms

3.8%

u;m 6ms 10ms 20ms 33ms 71ms 112ms 226ms

m/F 5ms 9ms 18ms 33ms 240ms 128ms 233ms

i/s 4ms 9ms 24ms 43ms 83ms 164ms 482ms

5.7%

u;m 7ms 15ms 22ms 43ms 75ms 151ms 307ms

m/F 27ms 17ms 24ms 49ms 76ms 143ms 282ms

i/s 6ms 19ms 31ms 60ms 120ms 423ms 482ms

8.6%

u;m 8ms 15ms 30ms 55ms 95ms 322ms 377ms

m/F 10ms 16ms 29ms 56ms 103ms 214ms 410ms

i/s 10ms 24ms 48ms 87ms 208ms 584ms 882ms

156

Table 10.2 (previous page): Benchmarking of three methods to zero sparsely used mem-

ory arrays. Fill amount is the amount of non-zero bytes in the map. Methods are:

u;m – munmap the mapping and remap it using mmap, m/F – remap the mapping

using mmap with MAP_FIXED flag overwriting the previous mapping, i/s – keep a

bookkeeping bitfield indicating dirty pages and set those to zero using memset.

The bold entry marks the fastest approach for each fill amount/map size.

The resulting library is contained in a single header hashmap.h and implements the

following functions:

#define hashmap_t(type)

Macro that unfolds into a struct representing the container metadata. Used as

the type for the hash map. size_t size; is the only member that should be

used and holds the current count of members in the map.

map_init(hashmap_t *)

Simple map initializer, also available with an optional parameter specifying the

initial map size.

map_free(hashmap_t *)

Hash map de-initialiser, deallocates the underlying map and any helper memory.

The map meta structure is unmodified and should not be used unless reinitialised.

map_free(hashmap_t *, size_t size)

Shrinks the memory container for the map to the specified value. Only usable on

an empty map.

map_insert(hashmap_t *, uint64_t object)

Inserts a new non-zero integer value into the hash map. Expands the underlying

storage if necessary.

map_get(hashmap_t *, uint64_t object)

Test whether an object is in the map. Returns a copy of the object on success,

zero on failure.

10.2. Hash maps 157

map_zero(hashmap_t *)

Empties the map as discussed above. The underlying memory container is re-

tained for new use.

Additionally any user may supply their own hash function (required for objects that

are non-integer types) by defining the macro map_hashfunction to the name of their

own hash function of type int64_t (*)(type).

159

11. Discussion

De novo assemblies of highly variable deep sequencing data such as populations of

viral genomes or metagenomics remain a substantial challenge. We have assessed the

theoretical frameworks of modern NGS short read assemblers and evaluated several

implementations of those on virus population data. Having established that the current

methods have inherent shortcomings due to the theoretical design, we have designed a

new approach (multi dimensional de Brujin graphs) to tackle this problem.

The current theoretical framework for assembling genomes de novo from short reads

have all been primarily designed with single individual (typically diploid) targets in

mind. While the tools implementing those frameworks perform well on their intended

targets, the need for assemblies of more diverse sequencing samples has emerged. Sev-

eral attempts have already been made in either adapting the existing theoretical frame-

works for the new type of data (e.g. PRICE assembler) or creating Frankenstein as-

semblers by pooling together pieces of sequences generated by different assemblers in

an attempt to get a better joined assembly (e.g. Trinity assembler [Gra+11]).

Although all those approaches are justified, we have come to the conclusion that a new

theoretical framework is needed, which specifically targets the shortcomings of existing

ones. Especially useful in this case is retention of as much information as the individual

reads can provide for the purpose of assembly which allows for more diverse datasets to

be efficiently dealt with. The StarK assembler is a solid extension of existing de Brujin

graph based approaches, but allows for additional flexibility for the assembler, which

was not possible with previous theoretical frameworks at the same time complexity.

160

Our prototype implementation of the StarK assembly framework performs well on our

training sets and has outperformed any other assembler that we tried (Table 6.5).

The implementation is fully parallelised for over 90% of the program’s runtime and

scales to additional CPUs better then any other assembler that we tried. We have also

attempted to assemble other genomes de novo with varying success. We obtained a

decent assembly of yeast with contigs, that were short (2 - 5kb), but aligned against

the reference and a not very useful assembly of E.coli. The latter was unsuccessful

because StarK was not designed to handle the 32bp reads of the SRR001665 E.coli

read set, but intended for use with read lengths of 80bp and longer.

The design goal behind both the StarK theoretical framework and the implementation

was to achieve maximum

• accuracy in constructing contigs,

• speed when deployed on parallel computing architecture.

Both of those goals have been achieved at the cost of high main memory (RAM)

consumption. Assembly of our IAV training set required 56GiB of RAM. Although

modern hardware can easily handle this, the RAM consumption scales poorly to larger

read sets. The compressed data structure (as discussed in section 9.8) was designed in

an effort to address this issue. Preliminary results are promising, but it requires more

testing and integration into our software beyond the first stage of the algorithm. We

have also considered other approaches to reduce memory usage like partitioning of the

data or reducing the number of stored StarK nodes at lower depths. Both of those

approaches need further exploration.

In its current state the prototype implementation assembles useful contigs, runs very

fast and scales well to more hardware. More work is still needed as

• contig haplotyping/mapping of variant contigs onto each other is not yet imple-

mented,

• the former would benefit from output in FASTG file format (http://fastg.

sourceforge.net)

http://fastg.sourceforge.net
http://fastg.sourceforge.net

161

• heuristics for creation of longer contigs need to be improved as we are confident

that our fear of creating chimeric contigs led to a too conservative algorithm when

it comes to merging sub-contigs,

• in its current state paired-end read information is not used yet and long mate

pairs cannot be reliably assembled,

• support for reference/long read assisted assemblies is planned and will increase

assembly accuracy significantly if added,

• the compressed data structure has only been implemented for the first stage of

the assembly (importing reads) and still needs to be ported to the rest of the

algorithm in order to begin making use of it’s five fold memory conservation,

• explore the possibilities of partitioning the data in order to reduce memory usage.

The StarK theoretical framework provides a solid and powerful foundation for general

and high variation population genome assembly. The prototype implementation has

already demonstrated the ability to generate good assemblies efficiently. We are con-

fident that with more work (listed above) we can turn our prototype implementation

into a very powerful genome assembler, not only for viral, but also general purpose and

possibly even metagenomics assemblies.

The current source code for our prototype implementation is available at https://

github.com/sergeylamzin/stark and is licensed under GNU Public Licence (GPL)

version 3. We welcome external contributions of forks of the program.

https://github.com/sergeylamzin/stark
https://github.com/sergeylamzin/stark

162

Bibliography 163

Bibliography

[Alt+90] Stephen F Altschul et al. “Basic local alignment search tool”. In: Journal

of molecular biology 215.3 (1990), pp. 403–410.

[Bak+13] Kate S Baker et al. “Metagenomic study of the viruses of African straw-

coloured fruit bats: detection of a chiropteran poxvirus and isolation of a

novel adenovirus”. In: Virology 441.2 (2013), pp. 95–106.

[Ban+12] Anton Bankevich et al. “SPAdes: a new genome assembly algorithm and

its applications to single-cell sequencing”. In: Journal of Computational

Biology 19.5 (2012), pp. 455–477.

[Bar05] John M Barry. The great influenza: The story of the deadliest pandemic

in history. Penguin, 2005.

[Bat+02] Serafim Batzoglou et al. “ARACHNE: a whole-genome shotgun assembler”.

In: Genome research 12.1 (2002), pp. 177–189.

[Ben+05] Simon T Bennett et al. “Toward the 1000humangenome”. In: (2005).

[Ben06] David R Bentley. “Whole-genome re-sequencing”. In: Current opinion in

genetics & development 16.6 (2006), pp. 545–552.

[BP08] Nicole M Bouvier and Peter Palese. “The biology of influenza viruses”. In:

Vaccine 26 (2008), pp. D49–D53.

[Bra+13] Keith R Bradnam et al. “Assemblathon 2: evaluating de novo methods of

genome assembly in three vertebrate species”. In: GigaScience 2.1 (2013),

pp. 1–31.

164

[Bus02] SA Bustin. “Quantification of mRNA using real-time reverse transcrip-

tion PCR (RT-PCR): trends and problems”. In: Journal of molecular en-

docrinology 29.1 (2002), pp. 23–39.

[CB13] Ayling S. Caccamo M Clavijo B. Mapleson D. “KAT—Kmer Analysis

Tool”. Manuscript submitted for publication. 2013.

Available online at: http://www.tgac.ac.uk/kat.

[CC76] Louise Clarke and John Carbon. “A colony bank containing synthetic CoI

{EI} hybrid plasmids representative of the entire E. coli genome”. In: Cell

9.1 (1976), pp. 91 –99. issn: 0092-8674. doi: http://dx.doi.org/10.

1016/0092-8674(76)90055-6. url: http://www.sciencedirect.com/

science/article/pii/0092867476900556.

One of the first publications to use modern DNA Sequencing theory.

[CR+12] Rayan Chikhi, Guillaume Rizk, et al. “Space-efficient and exact de Bruijn

graph representation based on a Bloom filter.” In: WABI. 2012, pp. 236–

248.

[DM98] Leonardo Dagum and Ramesh Menon. “OpenMP: an industry standard

API for shared-memory programming”. In: Computational Science & En-

gineering, IEEE 5.1 (1998), pp. 46–55.

[DSH08] Siobain Duffy, Laura A Shackelton, and Edward C Holmes. “Rates of

evolutionary change in viruses: patterns and determinants”. In: Nature

Reviews Genetics 9.4 (2008), pp. 267–276.

[Ear+11] Dent Earl et al. “Assemblathon 1: A competitive assessment of de novo

short read assembly methods”. In:Genome research 21.12 (2011), pp. 2224–

2241.

[Eid+09] John Eid et al. “Real-time DNA sequencing from single polymerase molecules”.

In: Science 323.5910 (2009), pp. 133–138.

[Eis12] Michael Eisenstein. “Oxford Nanopore announcement sets sequencing sec-

tor abuzz”. In: Nature biotechnology 30.4 (2012), pp. 295–296.

http://www.tgac.ac.uk/kat
http://dx.doi.org/http://dx.doi.org/10.1016/0092-8674(76)90055-6
http://dx.doi.org/http://dx.doi.org/10.1016/0092-8674(76)90055-6
http://www.sciencedirect.com/science/article/pii/0092867476900556
http://www.sciencedirect.com/science/article/pii/0092867476900556

Bibliography 165

[Gar+09] Rebecca J Garten et al. “Antigenic and genetic characteristics of swine-

origin 2009 A (H1N1) influenza viruses circulating in humans”. In: science

325.5937 (2009), pp. 197–201.

[Gat09] Derek Gatherer. “The 2009 H1N1 influenza outbreak in its historical con-

text”. In: Journal of Clinical Virology 45.3 (2009), pp. 174–178.

[Gee+10] Lewis Y. Geer et al. “The NCBI BioSystems database”. In: Nucleic Acids

Research 38.suppl 1 (2010), pp. D492–D496. doi: 10.1093/nar/gkp858.

eprint: http://nar.oxfordjournals.org/content/38/suppl_1/D492.

full.pdf+html. url: http://nar.oxfordjournals.org/content/38/

suppl_1/D492.abstract.

[Gra+11] Manfred G Grabherr et al. “Full-length transcriptome assembly from RNA-

Seq data without a reference genome”. In:Nature biotechnology 29.7 (2011),

pp. 644–652.

[Ham50] Richard W Hamming. “Error detecting and error correcting codes”. In:

Bell System technical journal 29.2 (1950), pp. 147–160. url: http://

www.caip.rutgers.edu/~bushnell/dsdwebsite/hamming.pdf.

[HG09] Edward C Holmes and Bryan T Grenfell. “Discovering the phylodynamics

of RNA viruses”. In: PLoS computational biology 5.10 (2009), e1000505.

[IW95] Ramana M Idury and Michael S Waterman. “A new algorithm for DNA se-

quence assembly”. In: Journal of computational biology 2.2 (1995), pp. 291–

306.

[JC69] Thomas H Jukes and Charles R Cantor. “Evolution of protein molecules”.

In: Mammalian protein metabolism 3 (1969), pp. 21–132.

[Joh67] Stephen C Johnson. “Hierarchical clustering schemes”. In: Psychometrika

32.3 (1967), pp. 241–254.

[Knu73] Donald E Knuth. Sorting and Searching (The Art of Computer Program-

ming volume 3). 1973.

http://dx.doi.org/10.1093/nar/gkp858
http://nar.oxfordjournals.org/content/38/suppl_1/D492.full.pdf+html
http://nar.oxfordjournals.org/content/38/suppl_1/D492.full.pdf+html
http://nar.oxfordjournals.org/content/38/suppl_1/D492.abstract
http://nar.oxfordjournals.org/content/38/suppl_1/D492.abstract
http://www.caip.rutgers.edu/~bushnell/dsdwebsite/hamming.pdf
http://www.caip.rutgers.edu/~bushnell/dsdwebsite/hamming.pdf

166

[Koz+09] Iwanka Kozarewa et al. “Amplification-free Illumina sequencing-library

preparation facilitates improved mapping and assembly of (G+ C)-biased

genomes”. In: Nature methods 6.4 (2009), pp. 291–295.

[KRE88] Brian W Kernighan, Dennis M Ritchie, and Per Ejeklint. The C program-

ming language. Vol. 2. prentice-Hall Englewood Cliffs, 1988.

[Lan+01] E S Lander et al. “Initial sequencing and analysis of the human genome”.

In: Nature 409.6822 (Feb. 2001), pp. 860–921. doi: 10.1038/35057062.

Human genome publication.

[Lan+09] Ben Langmead et al. “Ultrafast and memory-efficient alignment of short

DNA sequences to the human genome”. In: Genome Biol 10.3 (2009), R25.

[LD09] Heng Li and Richard Durbin. “Fast and accurate short read alignment with

Burrows–Wheeler transform”. In: Bioinformatics 25.14 (2009), pp. 1754–

1760.

[Li+09] Heng Li et al. “The sequence alignment/map format and SAMtools”. In:

Bioinformatics 25.16 (2009), pp. 2078–2079.

[Maa00] Moritz G Maaß. “Linear bidirectional on-line construction of affix trees”.

In: Combinatorial Pattern Matching. Springer. 2000, pp. 320–334.

[Mar+05] Marcel Margulies et al. “Genome sequencing in microfabricated high-density

picolitre reactors”. In: Nature 437.7057 (2005), pp. 376–380.

[Mar08] Elaine R Mardis. “Next-generation DNA sequencing methods”. In: Annu.

Rev. Genomics Hum. Genet. 9 (2008), pp. 387–402.

[McC10] Alice McCarthy. “Third generation DNA sequencing: pacific biosciences’

single molecule real time technology”. In: Chemistry & biology 17.7 (2010),

pp. 675–676.

[McK+11] Trevelyan J McKinley et al. “A Bayesian approach to analyse genetic vari-

ation within RNA viral populations”. In: PLoS computational biology 7.3

(2011), e1002027.

http://dx.doi.org/10.1038/35057062

Bibliography 167

[Mul+87] Kary B Mullis et al. One of the first Polymerase Chain Reaction (PCR)

patents. US Patent 4,683,195. 1987.

[Mur+10] Pablo R Murcia et al. “Intra-and interhost evolutionary dynamics of equine

influenza virus”. In: Journal of virology 84.14 (2010), pp. 6943–6954.

[Mye+00] Eugene W Myers et al. “A whole-genome assembly of Drosophila”. In:

Science 287.5461 (2000), pp. 2196–2204.

[Mye05] Eugene W. Myers. “The fragment assembly string graph”. In: Bioinfor-

matics 21.suppl 2 (2005), pp. ii79–ii85. doi: 10.1093/bioinformatics/

bti1114. eprint: http://bioinformatics.oxfordjournals.org/content/

21/suppl_2/ii79.full.pdf+html. url: http://bioinformatics.

oxfordjournals.org/content/21/suppl_2/ii79.abstract.

[NP13] Niranjan Nagarajan and Mihai Pop. “Sequence assembly demystified”. In:

Nature Reviews Genetics 14.3 (2013), pp. 157–167.

[Pen+12] Yu Peng et al. “IDBA-UD: a de novo assembler for single-cell and metage-

nomic sequencing data with highly uneven depth”. In: Bioinformatics 28.11

(2012), pp. 1420–1428.

[Pla83] Robin L Plackett. “Karl Pearson and the chi-squared test”. In: Interna-

tional Statistical Review/Revue Internationale de Statistique (1983), pp. 59–

72.

[Pot01] Christopher W Potter. “A history of influenza”. In: Journal of applied

microbiology 91.4 (2001), pp. 572–579.

[PTW01] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. “An Eulerian

path approach to DNA fragment assembly”. In: Proceedings of the National

Academy of Sciences 98.17 (2001), pp. 9748–9753.

[Qua+12] Michael A Quail et al. “A tale of three next generation sequencing plat-

forms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq

sequencers”. In: BMC genomics 13.1 (2012), p. 341.

http://dx.doi.org/10.1093/bioinformatics/bti1114
http://dx.doi.org/10.1093/bioinformatics/bti1114
http://bioinformatics.oxfordjournals.org/content/21/suppl_2/ii79.full.pdf+html
http://bioinformatics.oxfordjournals.org/content/21/suppl_2/ii79.full.pdf+html
http://bioinformatics.oxfordjournals.org/content/21/suppl_2/ii79.abstract
http://bioinformatics.oxfordjournals.org/content/21/suppl_2/ii79.abstract

168

[RBD13] J Graham Ruby, Priya Bellare, and Joseph L DeRisi. “PRICE: software for

the targeted assembly of components of (meta) genomic sequence data”.

In: G3: Genes| Genomes| Genetics 3.5 (2013), pp. 865–880.

[Rob+11] Kim L Roberts et al. “Lack of transmission of a human influenza virus with

avian receptor specificity between ferrets is not due to decreased virus

shedding but rather a lower infectivity in vivo”. In: Journal of General

Virology 92.8 (2011), pp. 1822–1831.

[Rus+08] Colin A Russell et al. “The global circulation of seasonal influenza A

(H3N2) viruses”. In: Science 320.5874 (2008), pp. 340–346.

[SD10] Jared T Simpson and Richard Durbin. “Efficient construction of an as-

sembly string graph using the FM-index”. In: Bioinformatics 26.12 (2010),

pp. i367–i373.

[SD12] Jared T Simpson and Richard Durbin. “Efficient de novo assembly of

large genomes using compressed data structures”. In: Genome research

22.3 (2012), pp. 549–556.

[Sha48] Claude Shannon. A mathematical theory of communication. First Edition.

Vol. 27. Bell Systems, 1948.

[Sim+09] Jared T Simpson et al. “ABySS: a parallel assembler for short read se-

quence data”. In: Genome research 19.6 (2009), pp. 1117–1123.

The most widely used parallel MPI based short-read assembler.

[Smi+09] Gavin JD Smith et al. “Origins and evolutionary genomics of the 2009

swine-origin H1N1 influenza A epidemic”. In: Nature 459.7250 (2009),

pp. 1122–1125.

[Smi+85] Lloyd M Smith et al. “Fluorescence detection in automated DNA sequence

analysis.” In: Nature 321.6071 (1985), pp. 674–679.

[SNC77] Frederick Sanger, Steven Nicklen, and Alan R Coulson. “DNA sequenc-

ing with chain-terminating inhibitors”. In: Proceedings of the National

Academy of Sciences 74.12 (1977), pp. 5463–5467.

Bibliography 169

[Sta+12] J Conrad Stack et al. “Inferring the inter-host transmission of influenza A

virus using patterns of intra-host genetic variation”. In: Proceedings of the

Royal Society B: Biological Sciences (2012), rspb20122173.

[Str13] Bjarne Stroustrup. The C++ programming language. Pearson Education,

2013.

[SW81] Temple F Smith and Michael S Waterman. “Identification of common

molecular subsequences”. In: Journal of molecular biology 147.1 (1981),

pp. 195–197.

[Utt+14] Sagar M Utturkar et al. “Evaluation and validation of de novo and hybrid

assembly techniques to derive high-quality genome sequences”. In: Bioin-

formatics 30.19 (2014), pp. 2709–2716.

[Wil38] Samuel S Wilks. “The large-sample distribution of the likelihood ratio for

testing composite hypotheses”. In: The Annals of Mathematical Statistics

9.1 (1938), pp. 60–62.

[Wri+11] Caroline F Wright et al. “Beyond the consensus: dissecting within-host

viral population diversity of foot-and-mouth disease virus by using next-

generation genome sequencing”. In: Journal of virology 85.5 (2011), pp. 2266–

2275.

[ZB08] Daniel R. Zerbino and Ewan Birney. “Velvet: Algorithms for de novo short

read assembly using de Bruijn graphs”. In: Genome Research 18.5 (2008),

pp. 821–829. doi: 10.1101/gr.074492.107. eprint: http://genome.

cshlp.org/content/18/5/821.full.pdf+html. url: http://genome.

cshlp.org/content/18/5/821.abstract.

One of the first de Brujin-graph assemblers.

[R D10] R Development Core Team. R: A Language and Environment for Statis-

tical Computing. ISBN 3-900051-07-0. R Foundation for Statistical Com-

puting. Vienna, Austria, 2010. url: http://www.R-project.org/.

http://dx.doi.org/10.1101/gr.074492.107
http://genome.cshlp.org/content/18/5/821.full.pdf+html
http://genome.cshlp.org/content/18/5/821.full.pdf+html
http://genome.cshlp.org/content/18/5/821.abstract
http://genome.cshlp.org/content/18/5/821.abstract
http://www.R-project.org/

170

Acronyms 171

Acronyms

API Application programming interface. 172

BLAST Basic Local Alignment Search Tool [Alt+90]. 24, 79

BWA Burrows-Wheeler Aligner [LD09]. 28, 37

contig From a biological standpoint, contigs are collections of reads that clearly over-

lap each other and refer to the same overall sequence. 72

CPU Central Processing Unit. 78, 105, 107, 123, 134, 135, 137, 138, 145, 160

DFS Depth First Search. 128, 130, 131

DMA Direct Memory Access. 154

DNA Deoxyribonucleic acid. 38, 66, 67

gcc GNU Compiler Collection. 123

GPL GNU Public Licence. 161

GRU Global Reference Unit. 123

GUI Graphical User Interface. 62

HA Hemagglutinin. 17

HTML Hypertext Markup Language. 28, 54, 56, 62

172

IAV Influenza A virus. 10, 16, 17, 19, 20, 43, 61, 62, 160

KAT Kmer Analysis Tool [CB13]. 89

LSF Platform Load Sharing Facility. 30

mutex Mutual exclusion. Often used as a synonym for a mutual exclusion lock as pro-

vided by Application programming interfaces (APIs). E.g. the POSIX Pthread

pthread_mutex_t.. 120–122

NCBI National Center for Biotechnology Information [Gee+10]. 24, 40

NGS Next Generation Sequencing. 8, 13, 18, 31, 37, 38, 50, 56–58, 61, 66, 68, 73, 94,

104, 143, 159

NUMA Non Uniform Memory Architecture. 123

OLC Overlap Layout Consensus. 67, 71–73, 75, 77, 79

OS Operating System. 121, 152

PBS Portable Batch System. 135

PCR Polymerase Chain Reaction [Mul+87]. 17, 18, 39, 71, 105

Pfu Pfu DNA polymerase is an enzyme used as part of a PCR process to aplify DNA..

21

RAM Random Access Memory. 99, 112, 121, 138, 140, 160

RNA Ribonucleic acid. 16, 17

RT-PCR reverse transcription polymerase chain reaction [Bus02]. 17

SAM Sequence Alignment/Map [Li+09]. 37

Acronyms 173

SGI UV Supercomputer commercialised SGI. Comes in configurations of 768 - 4096

Intel R© Xeon R© cores. 80, 123, 143

SNP single nucleotide polymorphism. 37, 40

TCP Transport Control Protocol. 135

VM Virtual Memory. 121, 143, 151–154

x86-64 x86-64 (also known as x64, x86_64 and AMD64) is the 64-bit version of the

x86 instruction set. 123

174

175

Appendices

177

A. Notation

Definition A.1. Let Σ be a finite set of characters. Then we call Σ an alphabet.

Definition A.2. Let Σ be a finite set of characters, n ∈ N, ai ∈ Σ. We call a finite

sequence a1a2a3. . . an a word over Σ. We symbolise the empty sequence or empty word

using the symbol λ.

Definition A.3. Let Σ be an alphabet and λ the empty word. We define

Σk := {a1 . . . ak|ai ∈ Σ} (A.1)

the set of all words (k-mers) of length k,

Σ+ :=
⋃

k∈N≥1

Σk (A.2)

Σ∗ :=
⋃

k∈N≥1

Σk ∪ {λ} (A.3)

the set of all (non empty) words over the alphabet Σ.

Definition A.4. Let Σ be an alphabet. We define the concatenation function

· : Σ∗ × Σ∗ →Σ∗ (A.4)

: (w, v) = (w1 . . . wk, v1 . . . vl) 7→w1 . . . wkv1 . . . vl. (A.5)

Instead of writing w · v := ·(w, v) we omit the invix operator and simply write wv when

we mean the concatenation of two words.

Proposition A.5. Let Σ be an alphabet. Then (Σ∗, ·) is a monoid.

178

Proof of the above proposition is beyond the scope of this thesis.

Definition A.6. Let Σ be an alphabet and w = w1. . .wn ∈ Σ+ a word. We define

‘w := w2. . .wn (A.6)

w ‘:= w1. . .wn−1 (A.7)

the front and rear truncation of w respectively.

Definition A.7. We define the genomic alphabet Γ := {A,C,G, T}.

We define complement nucleotides as:

˜ : Γ→ Γ (A.8)

: N 7→


T for N = A

G for N = C

C for N = G

A for N = A.

(A.9)

Definition A.8. We define the reverse complement of a genomic sequence as:

˜ : Γ∗ → Γ∗ (A.10)

: s1 . . . sn 7→ s̃n . . . s̃1. (A.11)

Definition A.9. We define the sequence index as

ι : Σ∗ × Σ∗ → P(Z) (A.12)

: (s, w) 7→ {|x||x, y ∈ Σ∗, xwy = s} . (A.13)

The set of all starting positions in s where w starts and is contained as a subsequence.

Definition A.10. When referring to the genomic alphabet we define the sequence index

additionally as:

ι : Γ∗ × Γ∗ → P(Z)

: (s, w) 7→ {|x|, x ∈ Σ∗|xwy = s, y ∈ Σ∗}∪
{−|y|, x ∈ Σ∗|xwy = s̃, y ∈ Σ∗, w 6= w̃}

(A.14)

179

Definition A.11. Let f, g : R→ R be two functions. We define the big-O notation:

f ∈ O(g)⇔ limsup
x→∞

∣∣∣∣f(x)

g(x)

∣∣∣∣ <∞. (A.15)

Remark A.12. The big-O notation is often used for asymptotic estimation of resource

usage. For example if the exact runtime of an algorithm is a complex function

f : n 7→ n4 log log(n) + 3n log(n) (A.16)

(where n measures the size of the input) then this can be simplified as

f(n) ∈ O(n4 log(n)) ⊆ O(n5). (A.17)

Definition A.13. Let G = (V,E) be a graph. A path p = (e1, . . . , en), ei ∈ E is called

an eulerian path if and only if each edge in E is used exactly once.

n⋃
i=1

{ei} = E

∀i 6= j : ei 6= ej

(A.18)

	Contents
	List of Figures
	List of Tables
	Preface
	Viral Population Analysis
	Introduction
	Motivation
	Project Objective
	Influenza Transmission Studies
	Influenza A Viruses (IAVs)
	Experiments & Sequencing
	Studies Summary

	The Analysis Pipeline

	Primary Data Preparation
	Introduction
	Quality Control
	Sequencing Read Trimming
	Alignments
	Duplicate removal
	Alignment pileup
	Consensus Sequences
	Sequence Coverage Visualisation

	Within-host population dynamics
	Population Diversity Spectrum
	Nucleotide Entropy
	Sites Of Interest
	Bayesian statistics
	Comparison with entropy

	Inter-Host Variation Analysis
	Variant Breakdown Tables
	Next Generation Phylogenetics

	Discussion

	Sequence Assembly
	Introduction
	Motivation
	Genome assembly theory
	Coverage

	Overlap Layout Consensus (OLC) Assembly
	De Brujin Graph Assembly
	String Graph Assembly
	Comparison of the above methods
	Expressitivity/information loss
	Time

	Assessment of the tools in respect to viral data

	De Brujin Graph assembly at work
	Introduction
	Formal de Brujin Graph
	Observed coverage patterns
	De Brujin graph assembly

	StarK – locally adaptive graph assembly
	Motivation
	Limitations of de Brujin graph assemblers
	Multi-dimensional solution

	StarK Theoretical Framework
	Surface paths
	Link strength
	Graph partitioning

	Implementation and parallelisation of the StarK assembler
	Introduction
	Data structure
	k-mer representation (starknode_t)
	Explanation
	k-mer sequence retrieval.

	Building a StarK graph
	Inserting reads
	Parallelisation

	Redundancy cleaning
	Assembly
	Initialisation
	Merging sub-contigs
	Exporting contigs

	Monitoring
	Performance Test
	Compressed data structure
	Design
	Parallel read parsing
	Node meta data

	Libraries
	Generic Lists
	Hash maps

	Discussion
	References
	Acronyms
	Appendices
	Notation

