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Abstract 

      Globally, migratory behaviour is changing in response to climatic and 

anthropogenic change. In recent decades, previously wholly migratory species 

started forming resident populations in the breeding area. Partially migratory species 

with resident and migratory individuals in the same population provide an 

opportunity to understand the causes and consequences of changing migratory 

behaviour. This study focuses on the influence of climate and food availability in 

determining movement and behaviour patterns of birds in populations that have 

recently become resident.  

      The white stork Ciconia ciconia recently established a resident population in 

Iberia, likely facilitated by the availability of abundant anthropogenic food resources 

including landfill and the invasive red swamp crayfish Procambarus clarkii. Movement 

data from individual white storks fitted with GPS data loggers showed that year-

round nest use by resident individuals dictates many aspects of foraging behaviour, 

including frequency of landfill use and foraging range. Storks visited landfill from 

nests further away than previously expected (~48 km). High productivity near landfills 

has likely influenced the rapid population increase observed in recent decades, 

however breeding success in colonies far from landfill, particularly those located near 

rice fields, is low. This suggest that the imminent closure of landfills, due to EU 

directives, will have significant impact on white stork numbers. 

      Many species are still too small to be tracked with GPS tags, so stable isotopes can 

be used to identify breeding and wintering quarters of migratory birds. Stable 

isotopes were used to separate residents from migrants in a partially migratory 

population of lesser kestrels Falco naumanni. Carbon isotopic composition of feather 

samples indicated that birds completing their moult in Africa could be identified. 

However, resident birds could not be separated from birds that moulted in Iberia 

prior to migration. This emphasises the need to understand moult timing and 

sequence to correctly interpret stable isotope data.  
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Chapter 1 

 

 

Introduction 

 

Photo Left: White stork nests at high density near landfill, Coimbra, Portugal, 

Right: white stork chicks hatching.  

 

 

1.1. Species response to recent climate and environmental change 

      Globally, species are having to respond to increasingly rapid climate and 

environmental changes. Global climate has warmed by approximately 0.60C during 

the 20th century (IPCC 2014), with recent decades (since the late 1970s) likely being 

the warmest in the last millennium (Jones et al 2001). At regional scales climatic 

change is very heterogeneous and manifests in a variety of ways, including increases 

and decreases in temperature, and/or precipitation, and changes in the timing, 

predictability and intensity of climatic events (Walther et al 2002). Rapid climate 

change or climatic extremes can lead to rapid changes in habitats and their 

ecological communities. 
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      Species have responded to changing conditions in a variety of ways, including 

distribution shifts (range expansions/contractions) to track preferred climatological 

and environmental niches (Parmesan and Yohe 2003, Parmesan 2006, Hickling et al 

2006). This has led to changes in local community structure, biodiversity and species 

richness, including species invasions (Cheung et al 2009, Bellard et al 2013) and 

outbreaks of pathogens (Pounds et al 2006). Plants and animals are also changing 

the timing of seasonal events (phenology), such that leaves and flowers are opening 

earlier (Peñuelas and Filella 2001) and breeding is occurring earlier in the year (Crick 

and Sparks 1999, Forchhammer et al 1999, Walther et al 2002). This has high 

potential for a mismatch in timing between breeding season food demand and peak 

availability of food resources, particularly in migratory species (Sanderson et al 

2006, Visser and Both 2005, Post and Forchhammer 2008, Jones and Cresswell 

2010), which can have consequences for fitness, breeding success and overall 

population dynamics.       

      Coupled with climatic change, significant environmental changes associated with 

anthropogenic activities are also a major threat to biodiversity, including agricultural 

intensification, habitat degradation, loss and fragmentation (Donald et al 2006, 

Sirami et al 2008, Wilson and Cresswell 2006). This impacts the dispersal ability of 

species to track climatic change and is particularly affecting migrants. This is because 

migratory birds visit multiple countries and potentially have to respond to different 

rates and extents of change in the breeding, stop over and wintering sites. 

Consequently, the populations of many migratory species are declining rapidly 

(Saino et al 2011, Vickery et al 2014). In a changing world, the flexibility to adapt is 

key, and there is evidence to suggest that phenotypic plasticity to the timing of 

reproduction and migration is being positively selected for, and intensifying, as a 

result of climatic change pressures (Nussey et al 2005). 

 

1.2. Changes in migratory behaviour 

      Migratory behaviour is changing in response to climatic and anthropogenic 

change. Many avian migratory species are changing their migratory phenology by 

returning earlier and leaving later from the breeding areas (Cotton 2003, Marra et 

al 2005, Gordo and Sanz 2006), they are also changing their winter distribution and 
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migration distances by wintering closer to their breeding grounds, known as short-

stopping (La Sorte and Thompson 2007, Visser et al 2009, Parkin and Knox 2010, 

Elmberg et al 2014). Birds are also changing migratory behaviour and population 

distribution in response to anthropogenic food supplementation from sources 

including landfills, fisheries waste, wildlife tourism and bird feeders (Tortosa et al 

2002, Orams 2002, Yorio and Caille 2004, Robb et al 2008). 

      In recent decades, even more profound and fascinating changes to migratory 

behaviour have occurred, with individuals from migratory species abandoning 

migration completely (Newton 2008). In southern Europe, particularly the Iberian 

Peninsula, several previously entirely migratory species have become increasingly 

sedentary, with significant numbers of individuals overwintering in the breeding 

area with such regularity that they are now considered to have established resident 

populations (Berthold 2001, Atlas Team 2008, SE0/Birdlife 2012). The 

Mediterranean has been indicated as one of the world’s most responsive regions to 

climate change, a primary climate change hot-spot, based on A1B, A2 and B1 IPCC 

future emission scenarios (Giorgi 2006). Recent changes in migratory behaviour are 

likely associated with climatic change already observed in this region (Perez and 

Boscolo 2010). In fact, there is evidence to suggest that, in recent decades, climatic 

overlap between the Iberian Peninsula and former African wintering areas has 

increased, and that species that have recently formed overwintering populations 

are selecting wintering locations in Iberia that are warmer and more similar to their 

former African wintering areas (Correia 2014).  

      Temperature therefore seems to be the main factor facilitating the 

establishment of resident populations of formerly migratory species in Iberia. 

Migration is a solution to the seasonality of local climatic conditions and limited food 

supply (Newton 2008). Milder winter temperatures reduce winter mortality and 

increase food abundance by promoting the earlier emergence of insects (Bale et al 

2002). Additionally, in the Iberian Peninsula, supplemental food from anthropogenic 

sources, including landfill and invasive escape species, are buffering the impacts of 

climatic variance and having a major influence on population size, distribution and 

migratory decisions in some generalist species (Tortosa et al 2002, Navarro et al 

2010, Tablado et al 2010, Sanz-Aguilar et al 2015). 
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      Despite these recent, considerable and fascinating changes in migration, the 

ecology of formerly wholly migratory species that have become resident is not well 

understood. In particular, the behaviour and movement patterns of resident 

populations during the non-breeding season has not been well studied. Greater 

understanding of the role of food availability and climate in influencing the 

distribution, movement behaviour and productivity of recently resident populations 

will increase our capacity to predict how partially migratory species may respond to 

future climatic and environmental change and will assist in the design of effective 

conservation strategies. Additionally, the imminent closure of all open-air landfills 

(due to EU directives) offers a rarely available opportunity to study the impact of an 

abrupt change in food supply on distribution, habitat selection, population dynamics 

and migratory decisions. 

 

 

1.3. Thesis structure  

1.3.1. Concepts 

      This study considers movement and behaviour of two partially migrant species 

that have both recently formed resident populations in the Iberian Peninsula, the 

white stork Ciconia ciconia, and the lesser kestrel Falco naumanni. I focus 

particularly on the white stork because its large size enabled individuals to be 

equipped with high precision GPS data loggers to allow high resolution analysis of 

habitat use, movement and behaviour. I was also fortunate in being able to combine 

a historic data set of white stork productivity from Portugal with my own fieldwork 

data.  

      White storks are known to feed intensively year round on landfill (Figure 1.1) and 

the invasive red swamp crayfish which, coupled with milder winters, has enabled 

individuals to overwinter in increasing numbers in Iberia. Residency, coupled with 

changes in drought conditions in the Sahel are thought to be important in reversing 

the strong population decline occurring until the 1970s (Janss and Sanchez 1977, 

Kanyamibwa et al 1990, Tortosa et al 2002). Little is known about the movement  
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Figure 1.1 White storks foraging in high density on Beja landfill, Portugal 

 

and behaviour of resident storks in the Iberian Peninsula during the winter, 

particularly in relation to landfill use, so this study represents an excellent 

opportunity to explore the effects of an abundant, artificial food supply on 

wintering and breeding ecology. The climatic drivers governing landfill use, are also 

unknown. These are particularly important to understand because the open 

landfills that are so important to the breeding and wintering distribution and 

population dynamics of this species, are due to close due to EU directives. The 

combination of landfill closures and rapid climatic change predicted for Iberia 

(Giorgi 2006, Perez and Boscolo 2010) makes the white stork particularly 

susceptible to future environmental change. Despite this, the impact of landfill use 

on productivity has never been quantified. In order to understand the 

consequences of environmental changes, individual data on movement behaviour 

was needed.  

      The white stork was an excellent model species to use for developing and 

trialling a new GPS/GSM data logger. This was done in conjunction with 

collaborators from the University of Lisbon. Two prototypes were trialled on the 

white storks, firstly a battery powered model, then a solar powered version (Figure 

1.2).  

      The existence of migratory and non-migratory individuals in the same 

population provides an excellent opportunity to study the causes and 

consequences of different migratory decisions. However, data loggers are often 

not suitable for deployment on large numbers of individuals, especially low mass 
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species or those with low survival or breeding site fidelity. Thus my thesis also 

tested whether stable isotopes could be used to reliably infer migratory status. 

Stable isotopes are not a suitable technique for white storks for two reasons. 

Firstly, their moult slows with age, meaning feathers are not replaced every year 

(van den Bossche et al 2002) and secondly, high intake of food from landfill sites 

means the isotopic signal is not linked to local diet or hydrology. Instead, the lesser 

kestrel was used as a model species. 

      The lesser kestrel also underwent rapid population declines in recent decades 

so was classified as globally Vulnerable (Birdlife International 2015). However 

recent evidence from the past 20 years suggests the population has stabilised or 

recovered slightly. This major causes of population decline are thought to be 

habitat loss due to agricultural intensification in both the breeding and wintering 

areas and, in Portugal, loss of nest sites (Forero et al 1996 do not consider lack of 

nest cavities as a limiting factor in the Spanish population). In Portugal the majority 

of the population now nests in artificial nest boxes rendering this species and the 

white stork both highly influenced by anthropogenic activities.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Battery powered (left) and solar powered (right) versions of the logger 

trialled as part of this study. 
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1.3.2. Thesis aims and outline 

      This thesis can be split into two sections. In the first section (Chapters 2 – 5), 

the main objective was to provide insight into the consequences of artificial food 

resources on the breeding and winter season movement behaviour, foraging 

ecology and productivity of white storks. In the second section (Chapter 6), the aim 

was to test whether resident and migrant lesser kestrels could reliably be identified 

using stable isotopes from feathers.  

      Chapters are formatted as manuscripts with the objective of publishing each as 

an individual paper in peer-reviewed journals. Consequently, each chapter 

includes a list of references. Two chapters (Chapters 2 and 3) are currently in the 

editorial process for publication, the remaining chapters will be submitted for 

consideration in the near future. 

      This thesis consists of 5 data chapters, each addressing particular aims and 

questions: 

 

Chapter 2 assess the consequences of landfill use on the large-scale spatial and 

temporal movement patterns of resident white storks throughout the year using 

GPS tag data and answers questions including: 

i) How does the extent and consistency of landfill use compare during the 

breeding and non-breeding seasons? 

ii) How does landfill use impact on nest use, daily distance moved and 

foraging ranges?  

 

Chapter 3 explores the climatic drivers behind winter landfill use and asks: 

i) What weather conditions influence winter foraging behaviour? 

ii) How may future climatic change impact resident white stork populations?  

 

Chapter 4 investigates variation in breeding success as a consequence of relative 

use of landfill and non-landfill habitats. In view of imminent landfill closure, it is 
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important to quantify the current impact of landfill use on productivity and to 

assess how this may change, so the main questions asked in this chapter are: 

i) What is the impact on productivity of colony-landfill distance and distance 

from the colony to the most utilized non-landfill habitat? 

 

Chapter 5 tests a hypothesis raised in Chapter 4 and analyses the impact of 

foraging habitat on the heavy metal content of egg shells. 

i) Are levels of selected heavy metals higher in colonies close to rice field 

habitats, compared to colonies close to landfills or control habitats? 

 

Chapter 6 is a stable isotope analysis from feathers of lesser kestrels with the aim of 

determining if it is possible to distinguish birds of differing migratory status (resident 

or migrant). As feather deuterium values were discovered to be unexpectedly 

enriched, another aspect of this chapter became an investigation into the 

interpretation of enriched deuterium. Thus the research questions were: 

i) Which isotope, or combination of isotopes, best distinguishes Iberia and the 

Sahel, and can they be used to reliably assign individual migratory status? 

ii) Can differences in deuterium enrichment between age classes be used to 

identify juvenile (non-breeding) birds?      

 

Chapter 7 brings together the findings of other chapters to discuss how 

information acquired by this thesis may be useful in managing the impact of landfill 

closures on white storks. I make suggestions for future research directions that will 

continue to enhance our understanding of the movement and behaviour of species 

in response to future predicted climate and environmental changes.   
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Abstract 

      The migratory patterns of animals are changing in response to global 

environmental change with many species forming resident populations in areas 

where they were once migratory. The white stork Ciconia ciconia was wholly 

migratory in Europe but recently warmer European winter temperatures and 

guaranteed, year-round food from landfill sites has facilitated the establishment of 

resident populations in Iberia. In this study 48 resident white storks were fitted with 

GPS/GSM data loggers (including accelerometer) and tracked for 9.1 ± 3.7 months to 

quantify the extent and consistency of landfill attendance by individuals during the 

non-breeding and breeding seasons and to assess the influence of landfill use on daily 

distances travelled, percentage of GPS fixes spent foraging and non-landfill foraging 

ranges. 

      Resident white storks used landfill more during non-breeding (20.1% ± 2.3 of 

foraging GPS fixes) than during breeding (14.9% ± 2.2). Landfill attendance declined 

with increasing distance between nest and landfill in both seasons. During non-

breeding a large percentage of GPS fixes occurred on the nest throughout the day 

(27% ± 3.0 of fixes) in the majority of tagged storks. This study provides first 

confirmation of year-round nest use by resident white storks. The percentage of GPS 

fixes on the nest was not influenced by the distance between nest and the landfill 

site. Storks travelled up to 48.2 km to visit landfills during non-breeding and a 

maximum of 28.1 km during breeding, notably further than previous estimates. 

Storks nesting close to landfill sites used landfill more and had smaller foraging ranges 

in non-landfill habitat indicating higher reliance on landfill. The majority of non-

landfill foraging occurred around the nest and long distance trips were made 

specifically to visit landfill.  

      The continuous availability of food resources on landfill has facilitated year-round 

nest use in white storks and is influencing their home ranges and movement 

behaviour. White storks rely on landfill sites for foraging especially during the non-

breeding season when other food resources are scarcer and this artificial food 

supplementation probably facilitated the establishment of resident populations. The 

closure of landfills, as required by EU Landfill Directives, will likely cause dramatic 

impacts on white stork populations. 
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2.1. Introduction 

The migratory patterns of animals are changing in response to global 

environmental change (Walther et al 2002, Cotton 2003, Both 2009). Many 

previously wholly migratory bird species that used to winter in sub-Saharan Africa are 

forming resident populations in their southern European breeding grounds (Atlas 

Team 2008). The migratory strategy an individual adopts may impact on subsequent 

survival and lead to different population dynamics between migrant and resident 

individuals. Even small differences in survival and productivity associated with 

migratory strategy may lead to very rapid changes in the proportion of the overall 

population that migrates. Whilst migrants undergo energy demanding large-scale 

movements, residents are able to occupy the best breeding areas. Resident birds are 

known to breed earlier than migrants and have larger clutches (Massemin-Challet et 

al 2006). Due to the seasonal decline in food supply, early nests are known to have 

higher breeding success (Tryjanowski and Sparks 2008).  However, residents usually 

experience less favourable environmental conditions in the breeding areas during the 

winter, affecting their survival directly or indirectly through food availability (Newton 

1998, Newton 2007). The ability of resident birds to find food resources during this 

period may therefore be key for their survival. The ecology of migratory species that 

have become resident is not well understood. In particular, the movement behaviour 

of resident populations in the non-breeding season is poorly studied. Understanding 

the role of food availability in driving changes in resident bird distribution and 

movement behaviour will improve our ability to predict how partial migratory species 

may respond to future climate and environmental change and assist in designing 

effective conservation strategies. 

Food-supplementation in birds has been shown to advance bird phenology 

[Chamberlain et al 2009, affect singing behaviour (Saggese et al 2011) and increase 

fledging success (Hilgartner et al 2014) but there is little knowledge on the impacts 

of providing constant and reliable artificial food resources on the movement patterns 

and migratory behaviour of birds. 

Artificial food available from landfill sites may have facilitated the recent 

establishment (since the 1980s) of resident white stork populations in Iberia (Gordo 

et al 2007). This is within the lifetimes of individual birds in this long-lived (~25 years), 

http://www.movementecologyjournal.com/authors/instructions/research#formatting-background
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iconic species. The causes of these changes in behaviour are not fully established but 

milder European winter temperatures due to climatic change (Massemin-Challet et 

al 2006), increased winter food availability from landfill sites (Gordo and Sanz 2006) 

and foraging on the invasive red swamp crayfish Procambarus clarkii in rice fields 

(Rosa 2005) have been proposed as likely factors. Foraging on landfill is undoubtedly 

a major influence as 80% of overwintering white storks in Iberia congregate near 

landfill sites (Tortosa et al 2002) and landfill forms 68.8% of local diets in both adults 

and juveniles throughout the year (Peris 2003). White storks also preferentially nest 

near landfill sites (Tortosa et al 2002) which has consequences for population 

distribution and range expansion patterns. Foraging on landfill is also a relatively new 

occurrence in the Eastern Europe stork populations (Kruszyk and Ciach 2010).  

The number of overwintering white storks in Portugal has increased dramatically 

in recent decades (from 1,187 individuals in 1995 to 10,020 in 2008 (Rosa et al 2009) 

and to approximately 14,000 birds in 2014 (Rosa, personal communication)), 

simultaneously, the number of migrant individuals crossing the Straits of Gibraltar 

has increased by 86.4% between 1985 and 2004 (Nevoux et al 2008) and recent data 

indicates this trend continues (Onrubia et al 2014) suggesting that the overall 

population is increasing, not simply changing in migratory behaviour.  

This study is the first to assess the consequences of reliable and abundant food 

resources (landfill sites) on the large-scale movement patterns of a recently 

established resident population of a previously wholly migratory species. We assess 

the spatial and temporal changes in movement behaviour throughout the year using 

newly developed GPS/GSM technology. We quantify the extent and consistency of 

landfill use by resident individuals during the breeding and non-breeding seasons and 

assess its influence on nest use, daily travel, foraging and non-landfill foraging ranges. 

 

 

2.2. Methods 

2.2.1. Study area and study system 

      Data loggers were deployed on 48 birds captured on active landfill sites during the 

winters of 2012/13 (n=15) and 2013/14 (n=33). Licenses to catch and deploy loggers 
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were granted by the Instituto da Conservação da Natureza e das Florestas (ICNF). Five 

landfill sites across south-central Portugal were used: Aterro Sanitário de Ermidas do 

Sado (38.021444, -8.353319,  n=11), Aterro Sanitário de Vila Ruiva  (38.243040, -

7.952321, n=10), Aterro Sanitário Intermunicipal de Évora (38.538004, -7.971274, 

n=16), Aterro Sanitário da Herdade do Montinho, Beja (37.924916, -7.864950, n=8) 

and Aterro Sanitário do Barlavento, Portimão (37.214041, -8.522350, n=3). Birds 

nested a maximum of 48.2Km from their capture location. The surrounding habitat 

was largely Mediterranean cork oak woodland (montado), a traditional low intensity 

management system consisting of savannah-like grassland with Cork oak Quercus 

suber and holm oak Quercus rotundifolia trees in varying densities used for cattle 

grazing and low intensity agriculture. The surrounding area also included non-

irrigated agriculture, often in multi-annual crop rotation cycles, irrigated agriculture, 

rice fields and small plantations of olive trees and of deciduous and evergreen 

forestry. Urban settlements were mostly low density, apart from the city of Évora 

(population 56, 600).  

      Storks were captured using nylon and rubber leg lassos and a remotely activated, 

baited clap net. Both were deployed on the actively worked landfill and monitored 

continuously. Birds were detained for maximum of half an hour after capture. They 

were colour ringed on each leg and sex was estimated at time of capture from 

physical characteristics (body size, ruff size and bill length), a method known to be 

correct in 89% of cases (Ćwiertnia et al 2006)). In this study, sex was subsequently 

confirmed as correct in all six birds who were observed copulating.  

      There appeared to be no adverse effects of the deployment process. Several 

individuals were resighted in the days immediately following logger deployment and 

were behaving normally. Capture dates, total tracking time and the number of days 

of data available for each season are listed in Table 2.1.  

      Nests of tagged birds were easily detected as a location of tightly clustered GPS 

coordinates in continuous use. These locations were visited to confirm nest 

occupancy. All tagged bird nests were visited on 2-3 occasions throughout the 

breeding season (March and late May/early June) to monitor breeding parameters. 

Nests were observed with a telescope and, where possible, a camera pole was used 
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to look in to the nest on each visit to assess clutch size and chick age (based on visual 

assessment of bill length and plumage development).  

 

 

Table 2.1 Sex, tracking dates and number of days of tag data for each white stork. 

Breeding onset from accelerometer data (A) and/or field observations (F). 

*Sex: in brackets was estimated at time of capture from physical characteristics, 

without brackets was confirmed from copulation 

 

Sex* Capture 

Date 

End of 

Breeding 

No. Days of Data Total Breeding 

Onset 

Verification 

Date Last 

Tracked 
Non-

breeding 

Breeding 

M 15/11/2012 06/06/2013 118 85 203 A + F 14/02/2014 

(F) 15/11/2012 28/05/2013 123 71 194 A 13/05/2014 

F 16/11/2012 21/06/2013 112 105 217 A + F 16/09/2013 

(F) 24/11/2012 04/06/2013 119 73 192 A 11/01/2014 

(M) 24/11/2012 30/03/2013 126 62 188 A + F 05/06/2013 

(F) 25/11/2012 17/04/2013 101 42 143 A 21/07/2013 

(M) 25/11/2012 19/05/2013 113 62 175 A + F 24/06/2013 

(F) 30/12/2012 08/06/2013 78 82 160 A + F 24/09/2013 

(F) 30/12/2012 02/05/2013 99 24 123 A 15/09/2013 

(M) 17/01/2013 31/05/2013 66 68 134 A 12/09/2013 

(F) 17/01/2013 12/06/2013 68 78 146 A 12/06/2013 

F 29/11/2013 06/06/2014 90 99 189 A + F 10/10/2014 

F 08/12/2013 10/06/2014 88 96 184 A + F 11/11/2014 

M 11/12/2013 01/06/2014 82 90 172 A 28/06/2014 

(M) 11/12/2013 01/06/2014 83 89 172 A + F 26/06/2014 

(M) 15/01/2014 01/06/2014 83 89 137 A 21/08/2014 

F 02/02/2014 17/04/2014 50 24 74 A + F 01/06/2014 
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2.2.2. Data loggers and the identification of behaviours 

      Newly developed GPS-ACC data loggers, developed by our team, were used in this 

study. All loggers were back-mounted on a teflon harness with biodegradable 

stitching to prevent lifelong placement. Loggers weighed 90g (battery powered, less 

than 4% of the total mass of the bird) and 45g (solar powered). After deployment, 

loggers quickly sank below the feathers minimising drag. 

      Loggers were programmed to wake up 5 times per day at 6am, 9am, 12am, 3pm 

and 6pm GMT. Each wake up (termed a data burst) obtained 10-20 consecutive GPS 

fixes (±20 m accuracy) and 3D accelerometer readings (at 1Hz with a sensitivity of ±6 

G), once per second. Data automatically transmitted via GPRS using the GSM mobile 

phone network every 2 days to a web platform.         

      The information obtained from the accelerometer axes X (surge), Y (sway) and Z 

(heave in gravity) plus speed (derived from GPS positions) were used to determine 

behaviour during each data burst. Assigning a behaviour to each data burst allowed 

non-foraging behaviour (flight, inactive) to be excluded from foraging analysis, it was 

not to derive time budgets. The information of each variable was summarized by 

calculating the mean, standard deviation, max, min and range for the the whole 

duration of each data burst. Subsequently, each data burst was classified into four 

behaviour categories: inactive (standing and/or preening), foraging, flight and 

tending eggs. In the rare occasion that multiple behaviours were captured in a single 

data burst, the behaviour occurring at the end of the data burst was used. The 

behaviour associated with each data burst was then assigned to a GPS location 

derived from the end of the transmission (termed a GPS fix). This was because GPS 

position was fixed most accurately later in the transmission. Initially, the behaviours 

in a set of 500 randomly selected data bursts were manually classified for 6 birds 

based on field observations and, where there was ambiguity, reconstructions of 

accelerometer output in real-time with a hand held accelerometer linked to a 

computer, also analysing with pictures and video footage the position of the logger 

on the birds back. These behaviours were split into two independent sets: 400 

randomly selected behaviours were used for training and 100 for validation of a 

classification tree model of the four behaviour classes (10 rounds). Behaviour 

classification analysis was done with R using the rpart library and the final 
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classification-tree model was selected based on the lowest training data cross-

validation error. The overall model accuracy was assessed using a multi-class AUC test 

(HandTill 2001 library (Hand and Till 2001)), resulting in a single AUC value of 0.97, 

indicating a good level of classification of the four behaviours. Example graphs of each 

behaviour are shown in Figure 2.1.  Individual classification performance can be 

found in the confusion matrix (Appendix 2.1). 

 

2.2.3. Determination of onset and end of breeding 

      For the purpose of this study, the non-breeding season is defined as the period 

between capture (November–February) and initiation of breeding detected in the tri-

axial accelerometer data and verified with field observations. 

      The accelerometer data enabled the identification of the initiation of breeding 

designated “tending eggs”, characterised by birds looking down into the nest from a 

standing position. Our model predicted tending eggs behaviour with 87.0% accuracy 

(Appendix 2.1). This characteristic body position is observed in the field during the 

early breeding season and is a good indication that eggs are present. Tending eggs 

only occurred for a period of between 4 – 5 weeks during the incubation phase, only 

occurred in GPS fixes on the nest, and was detected in all breeding birds. The onset 

of this behaviour in the accelerometer data is abrupt and distinctive and matched 

observed timings for egg laying in all tagged birds with confirmed field data (n=9). 

The error between the appearance of the tending eggs behaviour in the 

accelerometry data and field observations of the presence of eggs was ±1 day. For 

the remaining birds (n=8), egg lay date is based on accelerometry and hatch date was 

also estimated based on chick ages observed by telescope (Table 2.1).  

      The breeding season is defined as the period from the initiation of breeding until 

either (1) breeding failure (n=6), (2) chicks fledged (n=8) or (3) the logger stopped 

transmitting (n=3). Failed breeders abruptly abandoned the nest for a period of 3-5 

days. Fledge date was known precisely in 5 successful nests because chicks were 

tagged with GPS devices (n=2 nests) or chicks were seen fledging (n=3 nests). The 

remaining 3 nests were monitored and fledge date was estimated from chick age and 

development during late season colony visits. After fledgling chicks usually remain in 
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the vicinity of the nest and continue to be supplementary fed by the adults for a 

period of one or two weeks, so for all nests fledgling date was defined as the earliest 

possible fledge date.    

 

 

 

 

Figure 2.1 Examples of the 4 behaviour classes used to train the model. White stork 

behaviours identified using the accelerometer data: a) inactive (standing), b) flight, c) 

foraging, d) tending eggs. The three axes and speed are represented, X axis- surge 

(black line), y axis -sway (dashed line), z axis -heave (dotted line) and speed (line with 

circles).  
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     This analysis focuses exclusively on the behaviour of breeding birds during the pre-

breeding and breeding period, no post breeding data are included. Similarly, juveniles 

(n=3) and non-breeding birds (n=5) were also omitted. Juveniles were distinctive due 

to their dispersive nature and lack of obvious cluster of GPS fixes which would have 

marked the location of a nest. Other non-breeding birds were associated with a nest 

but displayed no breeding behaviour as determined from accelerometer data (no 

tending eggs behaviour) and field observations. 

      One tagged individual died prior to breeding. Twenty-two loggers stopped 

transmitting prior to or shortly into the breeding season and therefore could only be 

included for consideration of maximum distance travelled between nest and landfill. 

Here we present results from 17 tagged breeding birds, n=7 assessed to be male and 

n=10 assessed to be female (Table 2.1). 

 

2.2.4. Non-breeding and breeding season landfill use 

GPS fixes from all data bursts (excluding fixes where the bird was in flight) 

were used to ascertain the percentage of fixes occurring on landfill, non-landfill 

habitat and within 20 m of the nest. This included the 6am data burst, despite it 

occurring before sunrise during winter and well before conditions favourable for 

thermals suitable for long flights. White storks are known to forage on moonlit nights 

and were regularly observed leaving their nest on or before first light. Sensitivity 

analysis of a subset of tagged birds revealed that patterns of winter landfill use were 

highly variable between individuals (Appendix 2.2) with an indication that birds 

nesting further from landfill were more likely to use landfills at 6am than birds close 

by. In one individual during the non-breeding period, 8% of GPS fixes on landfill 

occurred at 6am. Such visits may make a crucial contribution to winter survival 

probability. 

A 50 m buffer was drawn around each landfill and all points within this buffer 

were considered as landfill. This 50 m buffer captured occasions where birds were 

disturbed and temporarily flushed off the landfill to just beyond the site perimeter. 

Distance from the nest to landfill was determined using the minimum straight-line 

distance between the nest and the centre of the utilised landfill site. GPS fixes within 
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20m of the nest were removed from foraging analyses and analysis of seasonal 

reliance on landfill because on the nest the birds are usually inactive.  

 

2.2.5. Daily distance  

      Non-breeding and breeding season mean daily distance travelled was calculated 

using GPS locations only from days where all 5 data bursts were available (including 

fixes in flight).  This varied between individuals from 34.2% to 98.8% of total data 

bursts (mean ±SE non-breeding: 77.6 ± 3.7, breeding: 68.2 ± 4.9). The distance 

between successive GPS positions (pairs of latitudes and longitudes) were calculated 

in kilometres then summed to obtain a daily totals. Daily totals were then used to 

create a non-breeding and breeding season mean for each individual.  

 

2.2.6. Foraging behaviour and home range estimates 

      Foraging range was derived by calculating the 50% and 95% utilization distribution 

kernels for each bird using only data bursts where accelerometer information 

indicated the bird was foraging. Kernel polygons were determined with the R library 

ade-habitat and imported into ArcGIS to calculate kernel area. Data bursts where the 

individual was standing, flying or on the nest were excluded.  The aim of this analysis 

was to investigate natural foraging habits so data bursts occurring within 50m of 

landfill sites were also removed.  

 

2.3. Statistical Analysis 

      Data are normally distributed so paired t-tests were used to assess seasonal 

differences in the percentage of GPS fixes spent by the nest, on landfill and in non-

landfill habitat. Linear regressions were used to explore the influence of distance 

from nest to land fill site on seasonal landfill use in the breeding and non-breeding 

seasons and to determine the relationship between nest-landfill distance and the 

percentage of data bursts assigned as foraging behaviour. Paired t-tests and non-

linear regression were used to compare differences in mean travel distances between 

seasons. Foraging range size (50% and 95% kernels) were log transformed for 



31 
 

normality and linear-regression was used to test the relationship between range size 

with nest-landfill distance.  

 

2.4. Results 

      48 birds were tracked for a total of 155 months (mean per individual 9.1 ± 3.7 

months, mean data bursts per day: 4.17 +/- 0.15). This study focuses on 10,425 data 

bursts (613.2 ± 41.3) from 17 birds, 5758 during the non-breeding season (338.7 ± 

26.6) and 4667 during breeding (274.5 ± 23.2). 

 

 

 

Figure 2.2 White stork habitat and nest use during the non-breeding (filled bars) and 

breeding (open bars) seasons. a) Seasonal differences in percentage of total GPS fixes 

(±SE, excluding flight) registered in non-landfill habitat (t(16)=1.465 p= 0.162),  landfill 

sites (t(16)= 2.63, p= 0.018) and on the nest (t(16)= -4.36, p= <0.001). b) Frequency of 

GPS fixes occurring on the nest during each of the 5 daily data bursts as a percentage 

(±SE) of all transmissions within 20m of the nest. Asterisks indicate statistically 

significant differences. 
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2.4.1 Seasonal foraging habitat, landfill and nest use 

      The percentage of GPS fixes on non-landfill habitat was similar in the breeding and 

non-breeding seasons (Figure 2.2a, paired t-test, t(16)=1.465, p=0.162). 

      During the non-breeding season, a large percentage of total GPS fixes were spent 

on the nest (mean 27.1% ± 2.97) with 25% of the birds (assessed as both males and 

females) spending up to 49.7% of GPS fixes within 20 metres of the nest. Individuals 

of both sexes were found on their nests throughout the day and there was no 

significant difference in the hour of nest attendance between seasons (Figure 2.2b). 

22.6% ± 2.24 of non-breeding GPS fixes on the nest occurring at midday (Figure 2.2b), 

indicating nest use throughout the day, not just as a night roost. The percentage of 

GPS fixes on the nest was not related to the distance between nest and landfill site 

during either the breeding F(1,15)=0.011, p= 0.915) or non-breeding F(1,15)=0.035, 

p= 0.855) seasons. Behavioural data, derived from accelerometery, indicated that in 

the majority of fixes on the nest the birds are inactive (inactive fixes within 20m of 

the nest: 87.2% ± 6.4 non-breeding, 86.9% ± 6.4 breeding). Post breeding data from 

8 individuals tracked until at least September (Table 2.1) indicated that all birds 

continued to remain on their nests after chicks fledged.  

      All 17 individuals that were tracked during non-breeding and breeding seasons 

used landfill to some extent in the non-breeding period, whilst one individual did not 

use landfill at all during breeding and a second only rarely (0.7% of data bursts). 

Although there were individual differences, overall percentage of fixes on landfill was 

significantly higher during the non-breeding season (mean ± SE 20.1% ± 2.3 of GPS 

fixes) compared to the breeding season (14.9% ± 2.2), (paired t-test, t(16)=2.63, p= 

0.018, Figure 2.2a). 35.3% (n=6) of individuals had higher attendance on landfill 

during the non-breeding season, the majority of individuals 52.9% (n=9) used landfill 

approximately equally in both seasons and two birds used landfill more during 

breeding (Figure 2.3).  

 

2.4.2. Impact of distance between nest and landfill on landfill use  

      Regardless of differences in landfill use between seasons, individuals closer to 

landfill used this resource more frequently than their more distant conspecifics and 
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landfill attendance declined with increasing straight-line distance between the nest 

and landfill site in both seasons (Figure 2.4 a and b, non-breeding R2=0.257, p= 0.045, 

breeding: R2=0.414, p= 0.007). Distance from nest to landfill is strongly correlated 

with frequency of landfill use during breeding (Figure 2.4b).  

      One white stork had a different strategy compared to all other birds in this study 

(unfilled square symbol, Figures 2.4 and 2.6). This individual was frequently detected 

on landfill during breeding, despite having the largest nest-landfill distance (28.1 km). 

This was probably due to a lack of non-landfill resources in the vicinity of the nest 

during breeding, likely associated with the local timing of rice field drainage. This bird 

was considered an outlier, and was not included in the analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Frequency of GPS fixes away from the nest (excluding flight) occurring on 

landfill sites in the breeding and non-breeding seasons for 17 white storks. Dashed 

lines are the 10% intervals around the line that represents equal use of landfill in both 

the non-breeding and breeding seasons. 6 birds use landfill less in the breeding season 

(points above dashed line), 9 individuals use landfill equally in both seasons (points 

inside dashed lines), and 2 birds use landfill more in the breeding season (points below 

dashed lines). 
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      During non-breeding, white storks travelled further to visit landfill sites, with 

almost one quarter (23.5%) of tagged birds travelling from ≥25 km to reach landfill, 

whereas in the breeding season the maximum distance travelled was 28.1 km. We 

found a positive quadratic response, particularly during breeding (Figure 2.4d), with 

the mean distance travelled increasing with distance to the nest until approximately 

14-15 km and then as the nest-landfill distance increased further, the mean distance 

travelled decreased. This suggests a threshold distance that birds will preferentially 

travel to landfill. Birds with nests located at this distance travelled larger daily 

distances (travelling further to visit landfill sites) than birds close to landfill or further 

away. Birds travelled further during the breeding season (mean ±SE 11.19km ± 1.46 

per day) compared with the non-breeding season (7.91km ± 0.69, paired t(16)= -2.37, 

p= 0.031).  

 

2.4.3. Foraging behaviour and foraging range 

      The percentage of GPS fixes away from the nest assigned as foraging behaviour 

increased from 45.5% ± 2.7 during non-breeding to 57.5% ± 3.1 during breeding 

(paired t(16)=-3.667, p= 0.002). During breeding birds nesting further from landfill 

spent a higher percentage of GPS fixes in foraging behaviour (Figure 2.5a and b). 

While during the non-breeding season there was no effect of distance to landfill on 

the percentage of foraging GPS fixes. All birds, except one, marked as a triangle, fitted 

this pattern. Analysis including this individual found no relationship in either the non-

breeding (R2= 0.001, p= 0.919, mean Mahalanobis distance ± SD: 0.941 ± 1.017) or 

breeding season (R2= 0.037, p= 0.461, Mahal: 0.941 ± 0.913).  

      During the breeding season, white storks increased their foraging range 

(measured by kernel 50% and 95%) with increasing distance between the nest and 

the landfill site (50% kernel: F(1,14)= 7.225, R2= 0.340, p= 0.018, 95% Kernel: F(1,14)= 

5.270, p= 0.38, R2=0.273, Figure 2.6). There was no significant increase in foraging 

range with distance between nest and landfill during non-breeding (50% kernel: 

(F(1,14)= 0.19, R2= 0.013, p= 0.67, 95% Kernel: F(1,14)= 0.130, R2= 0.009, p= 0.72). 
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Figure 2.4 Percentage of GPS fixes on landfill (excluding fixes in flight and within 20m 

of the nest) in relation to distance from nest to the landfill site during a) non-breeding 

and b) breeding seasons. Total daily distance moved (derived from all available fixes, 

including flight and nest) in relation to distance between the nest and the landfill site 

during c) non-breeding and d) the breeding season. One individual was considered an 

outlier (unfilled square) and was excluded from the linear regressions, see results 

section.  
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2.5. Discussion 

2.5.1. Winter nest use 

 This study provides first confirmation of year round nest use, an entirely new 

behaviour that has developed as the Iberian population of white storks shifted from 

being wholly migratory to partially migrant. There is no evidence from previous 

monitoring studies (Blanco 1996, Massemin-Challet et al 2006, Archaux et al 2008) to 

suggest ringed birds occupied their nests all year, perhaps because year-round nest 

use is a recent phenomenon. Data from tracking studies of migratory white storks 

indicate that, whilst highly faithful to their breeding grounds, individuals have little 

wintering site fidelity and pairs do not winter together (Berthold et al 2002). Landfill 

sites provide abundant food resources that are reliable in both space and time, thus 

likely contributing to enabling individuals to remain in their breeding territory and on 

their nests year-round. This is extremely rare in temperate zones because, during 

winter resident individuals of other species usually perform regional or local 

movements away from their breeding territory and/or form loose flocks that are 

highly mobile to track limited, dynamic winter food resources (Newton 1998).  

      Nest use and maintenance was observed throughout the day during the non-

breeding season (Figure 2.2b) with both males and females spending up to 49.7% of 

GPS fixes within 20 metres of the nest. This suggests the nest is defended during the 

winter rather than simply being used as a roost site at night. Field observations 

confirmed it is not uncommon to see pairs on the nest throughout the day engaged 

in nest defending and repair (authors, personal observations) during the non-

breeding season. Whilst in the vicinity of the nest birds are inactive 

(standing/preening) rather than engaged in foraging behaviour, which is a significant 

time investment during winter when daylight foraging hours are shorter. All       

individuals displayed this behaviour independent of distance between the nest and 

the landfill site. 

      Nests near guaranteed food supply from landfill are highly desirable locations 

(Tortosa et al 2002, Peris 2003, Kruszyk and Ciach 2010) and therefore it was 

predicted these would require more defending than nests in non-landfill locations.  

However, the lack of correlation between the percentage of GPS fixes on the nest and 

either distance between nest and landfill or frequency of landfill attendance indicates 
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 Figure 2.5 Foraging behaviour in relation to nest-landfill distance. Percentage of total 

foraging behaviour GPS fixes (defined from all GPS fixes) in relation to distance from 

nest to landfill during the a) non-breeding and b) breeding seasons. One individual 

(triangle) had an exceptionally high percentage of foraging behaviour GPS fixes 

during both the non-breeding and breeding seasons and was excluded from the linear 

regressions presented in this figure. Analysis including this individual showed no 

significant relationship. 

 

 

 

Figure 2.6 Breeding season foraging ranges in non-landfill habitat with distance 

from nest to landfill. a) 50% and b) 95% UD Kernels constructed from foraging GPS 

fixes. One individual (unfilled square) is excluded from the linear regressions (see 

results section). 
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individuals defend their nest regardless of proximity to landfill. This may be partially 

driven by other factors including proximity to high quality non-landfill habitat, colony 

size and the high white stork population density found in Iberia. It is unclear if white 

storks are limited by the availability of suitable nest locations around landfill sites. 

White storks nest in close proximity to each other on myriad structures from trees to 

pylons and other man-made constructs which suggests many nest options (Tortosa 

et al 2008) however, nest sites within specific colonies may be limited (Vergara et al 

2010).   

      Residency enables an advance in breeding phenology and can increase the 

breeding success of residents compared to returning migrants in the same 

population, mainly due to earlier laying date (Massemin-Challet et al 2006). Nests 

near landfill fledge significantly more chicks (Tortosa et al 2002) and fledging success 

has been demonstrated to decline by 8% per kilometre distance from a supplemental 

feeding location (Hilgartner et al 2014). In populations of white stork that do not use 

landfill, arrival date is strongly correlated with fledgling success due to the seasonal 

decline in food availability (Kosiki et al 2004, Tryjanowski et al 2004). Abundant food 

from landfill sites therefore mitigates the seasonal decline in food availability.  

 

2.5.2. Impact of nest distance on seasonal reliance on landfill 

      Overall, white storks were more reliant on landfill during the non-breeding season 

(Figure 2.2). All individuals in this analysis were caught on landfill sites so it was 

expected that all used landfill to some extent, however in the breeding season two 

birds (11%) did not use landfill. This study shows landfill site use varies considerably 

and is lower in Iberia than previously described (Peris 2003). Individuals nesting closer 

to landfill utilized this resource more frequently in both seasons than those nesting 

further away (Figure 2.4a and b) and landfill use declined with increasing distance 

between the nest and landfill, even during the non-breeding season, indicating that 

in both seasons distance from nest to landfill is the dominant factor determining 

reliance on landfill. During chick rearing, due to energy requirements and travelling 

time constraints, this relationship was expected. However, it was surprising during 

the non-breeding season, and may be because resident storks now also occupy their 
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nests during the non-breeding season, rather than forming loose roaming winter 

flocks, thus foraging occurs from a central point, the nest, throughout the year.  

      The lower frequency of use of landfill during breeding is possibly due to prey size. 

Adult white storks may prefer to feed smaller food items foraged in non-landfill 

habitats to their chicks. White storks supplementary fed with large items (rats, small 

chickens, fish) had similar foraging rates to nests that were not supplementary fed 

until chicks were over 20 days old and able to handle larger items (Moritzi et al 2001).  

This is consistent with similar behaviour showed by gulls. Herring Gulls preferred soft, 

small foods (e.g. earthworms) in the first days after chick hatching; but immediately 

switched back to the more energetically profitable strategy of foraging on landfill as 

soon as chicks could swallow larger items (Pons 1994).  

      During the non-breeding season white storks travel larger distances to visit landfill 

sites. One in every four breeding birds analysed travelled over 25km and one bird 

travelled 48.2 km from its nest to the landfill during non-breeding, while in the 

breeding season the maximum distance travelled was 28.1 km. This revises previous 

work that suggest Iberian white storks travel 12 km to reach landfill (Tortosa et al 

2002). Massemin-Challet et al (2006) defined non-landfill colonies as ones 15 km 

from landfill and Moritzi et al (2001) suggested storks travel an additional 4 km to 

reach supplemental food, both of which are under estimates for Iberian storks. 

      Distance from nest to landfill defines how far an individual is prepared to travel 

each day as well as how heavily landfill is used. The relationship is non-linear so daily 

distance moved increased with distance from the landfill whilst it remained beneficial 

(both energetically and in terms of leaving the nest undefended) to visit landfill 

(Figure 2.4 c and d). Thus, individuals who nest close to landfill use landfill more and 

travel lower daily distances. This effect is particularly strong during breeding when 

birds travel greater daily distances.  

 

2.5.3. Foraging behaviour and foraging range 

      During non-breeding there was no significant effect of nest-landfill distance on 

the percentage of GPS fixes spent foraging (Figure 2.5a).  This may be associated with 

seasonal changes in the quality of non-landfill habitat surrounding the nest, in 
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particular the abundance of red swamp crayfish. This important prey species is now 

prevalent in water ways across Iberia, particularly rice fields, and is more accessible 

to storks during winter when water levels are high (Almeida 2013). Crayfish 

abundance in the vicinity of the nest may therefore render the correlation between 

nest-landfill distance and percentage of GPS fixes spent in foraging activities less 

significant. During breeding, there is a general trend for birds close to landfill to have 

fewer foraging behaviour GPS fixes than those nesting further away (Figure 2.5b). The 

individual that did not follow this trend foraged extensively during both non-breeding 

and breeding, despite proximity to landfill (Figure 2.5), and is suspected to be a 

young, inexperienced bird breeding for the first time. Inclusion of this individual 

removed the significance of the relationship between foraging behaviour and nest-

landfill distance, suggesting a greater sample size is required in order to fully capture 

the range of behavioural responses. During breeding the majority of foraging occurs 

close to the nest so individuals nesting close to landfill are more likely to visit landfill 

and the average distance at which it compensates to visit landfill decreases.   

      Foraging range in non-landfill habitat increased with distance from the nest to 

landfill site indicating that birds nesting further from landfill forage primarily in non-

landfill habitat and require a larger foraging area. This was only significant during the 

breeding season (Figure 2.6). Kernel analysis indicated that across individuals and 

seasons, the majority of non-landfill foraging occurred immediately around the nest 

(Table 2.2), which is congruent with findings of previous studies (Ozgo and Bogucki, 

Alonso et al 1991, and Kosicki 2010). Landfill visits were usually specific, long distance 

excursions away from the nest that rarely included stops in non-landfill habitat en 

route. This may explain why distance from landfill had no effect on non-landfill 

foraging area during the non-breeding season. It also highlights the possibility for 

year-round depletion of local resources surrounding the nest.   

      The European Union Landfill Directive (1993/31/EC) set targets to progressively 

reduce the volume of biodegradable municipal waste entering landfills through to 

2016 (PERSU II).  As a result, open-air landfills are being replaced by covered waste 

processing facilities that are inaccessible to birds. In the immediate future there will 

be a sharp reduction in the availability of food waste that will have important 

consequences for Iberian white storks. This study is particularly relevant as it 
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quantifies the extent to which the resident Iberian white stork population relies on 

artificial food, prior to the closure of landfill sites. It is highly likely that, despite 

following individuals caught on landfill only, this study can be applied to the majority 

of resident storks in Iberia. This is because most (80%, Tortosa et al 2002), if not all, 

overwintering birds are thought to use landfill sites to some extent, which represents 

a significant proportion of the non-breeding population, whilst during breeding, birds 

preferentially nest close to landfill (Tortosa et al 2002). Results presented here are 

therefore believed representative of the resident white stork population and provide 

a snap-shop of the current situation in terms of patterns of landfill use. 

 

2.6. Conclusions 

      This study shows the effect of recent anthropogenic changes on the movement 

ecology and behaviour of a long-lived species through the provision of abundant and 

spatially stable food resources. This study presents robust evidence that resident 

white storks defend their nests year round and consequently spend a large 

percentage of GPS fixes attending the nest during the non-breeding season. The food 

resources, obtained on landfill sites, likely facilitated the establishment of resident 

individuals in a previously wholly migratory species. Frequency of landfill use by white 

storks decreases with increasing distance between the nest and the landfill, during 

both non-breeding and breeding seasons. During breeding birds nesting further from 

landfill spend proportionally more GPS fixes engaged in foraging behaviour and have 

larger foraging ranges in non-landfill habitat than birds nesting close to landfill sites. 

This will likely impact breeding success and population demography.  

 

 

 

 

 

 

http://www.movementecologyjournal.com/authors/instructions/research#formatting-conclusions
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Table 2.2 Typical non-landfill foraging ranges for 3 individuals (i,ii,iii) nesting at 

varying distances from landfill. The non-breeding season a) and the breeding season 

b) are depicted. 50% (dark grey) and 90% (light grey) UD Kernels from foraging GPS 

fixes in non-landfill habitat. Nests were located at 2.9km (i), 11.5km (ii) and 25.0km 

(iii) from landfill. The shaded rectangle indicates the position of the landfill. 

 

  

  

 
 

 

 

a,i) b,i) 

a,ii) 

b,iii) a,iii) 

b,ii) 
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Chapter 3 

 

 

The influence of weather conditions on foraging strategies and 

landfill use by white storks (Ciconia ciconia) overwintering in 

Southern Europe 
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Abstract 

      The white stork Ciconia ciconia was wholly migratory in Europe but in recent 

decades the number of individuals overwintering in Iberia has increased significantly. 

Overwintering is hypothesised to be a response to milder winter temperatures and 

increased food availability, including from anthropogenic sources such as landfill 

sites. Both changes in climate and in winter food availability likely contributed to 

population increases due to improved overwinter survival, yet little is known about 

the effect of winter climatic conditions on the relative use of landfill versus non-

landfill habitats. Open landfills are scheduled to close by 2018 as a consequence of 

EU directives, so understanding the effects of these changes for overwintering birds 

is crucial.  

      This study uses information from newly developed, high precision GPS/GSM data 

loggers programmed to collect 5 GPS fixes per day, to model and assess the relative 

importance of winter daily climatic variables (precipitation, temperature, wind 

speed) and distance from roost to landfill on the use of landfill sites. Tags were 

deployed on 48 storks caught on landfill during the winters of 2012 and 2013. 

      Accumulated precipitation (10-day running mean) was the most significant 

predictor of landfill use (negative effect 11.5 %). This indicated that storks use landfill 

less during wetter periods, possibly due to higher availability of prey items in non-

landfill habitats when conditions are more humid. Minimum temperature (5.5 %) 

significantly decreased the proportion of daily GPS fixes occurring on landfill, perhaps 

related to fewer thermals for soaring flight.  

     All storks utilized their nests throughout the winter. Consequently, the distance 

between nest and landfill was also an important predictor of landfill attendance 

(effect 8.0 %). White storks used their nest throughout the day and throughout the 

winter independently of climatic conditions.  

     Future climatic predictions for a drier, warmer regime will likely be problematic 

for the white stork, because it will decrease the suitability of winter non-landfill 

foraging habitat. It is likely that landfills currently buffer the wintering population 

against the impacts of dry winters.   

 



50 
 

3.1. Introduction 

      In response to global environmental change, the migratory behaviour of many 

species is changing (Walther et al 2002, Cotton et al 2003, Both et al 2009). Many 

avian species that used to be entirely migratory and winter in sub-Saharan Africa are 

now forming resident populations in their breeding grounds in southern Europe 

(Atlas Team 2008). For example, shifts in phenology, timing of migration and length 

of stay in the breeding area have been recorded in Iberia for many avian species 

including the iconic white stork (Gordo and Sanz 2006, Shephard et al 2015). In 

Portugal, the number of overwintering white storks has increased significantly from 

1,187 individuals in 1995 to 10,020 in 2008 (Rosa et al 2009) and an estimated 14,000 

individuals in 2014 (Rosa, personal communication). Increasing numbers of migrants 

from the Eastern European stork population now also overwinter in Iberia (NABU 

2015). The drivers of these behavioural changes are not fully understood but both 

climatic and environmental factors are likely important. These include: i) milder 

European winter temperatures due to climatic change (Gordo and Sanz 2005, 

Massemin-Challet et al 2006) and ii) increased availability of winter food resources in 

the form of the invasive red swamp crayfish Procambarus clarkii, which is present in 

rice fields, and abundant, artificial food from landfill sites (Tortosa et al 2002, Rosa et 

al 2005, Sanz-Aguilar et al 2015). 

      Landfills are undoubtedly a major influence in determining white stork 

distribution during winter when it is estimated that 80% of wintering storks in Iberia 

congregate at landfills (Tortosa et al 2002). However, recent EU policies have 

instigated the ongoing, systematic closure of all open-air landfills in favour of covered 

recycling facilities which will be inaccessible to birds (Directive 2001/77/EC, PERSU 

II). This is likely to have important impacts, particularly on the survival of wintering 

white storks. 

      White storks are highly opportunistic and adaptable, but traditionally forage by 

wading in shallow water and wet meadows (Carrascal et al 1993). Most studies 

investigating the influence of winter climatic conditions on white storks refer to birds 

in their African wintering areas. Here, winter survival is correlated with rainfall, hence 

primary production (Kanyamibwa et al 1990, Schaub et al 2005). Precipitation is also 

important during breeding where it is correlated with reproductive success across the 
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European range (Saether et al 2006, Rosa et al 2005, Nevoux et al 2008). Whilst 

seasonal precipitation is important, white storks usually do not colonize areas that 

experience either high annual rainfall (Atlas Team 2008), or areas with long drought 

periods, hence their absence across much of central Asia (Lack 1966). Temperature is 

also important because white storks avoid cool areas that experience significant frost 

(Cramp and Simmons 1977). For example, Saether et al (2006) noticed a population 

increase after a warm pre-breeding season, probably related to improved food 

availability. 

      Thus, so far, the warmer winter temperatures experienced in Iberia seem to have 

been favourable for storks, enabling an overwintering strategy to develop (Gordo and 

Sanz 2006, Pulido and Berthold 2010, Shephard et al 2015). However, the 

Mediterranean is a climate change hot-spot (IPCC 5AR, 2013), and one of the world’s 

most responsive regions to climate change (Giorgi 2006). Little is known about the 

winter ecology of resident white storks, particularly the climatic drivers behind 

landfill use, or how future climate change predictions for Iberia may impact 

overwintering birds. White storks are particularly vulnerable to potentially 

detrimental environment change in the near future due to the combination of landfill 

closures and rapid climatic change. It is therefore essential to identify the role of 

weather conditions in influencing winter foraging behaviour and determine how 

future climatic change may impact resident Iberian white stork populations. The aims 

of this study are 1) to quantify the current importance of landfill sites for the white 

stork and 2) to determine which climatic and physical factors predict winter landfill 

use. 

 

 

3.2. Methods 

3.2.1. Study area 

      This study was conducted in the Alentejo region of south Portugal. This area 

consists of flat plains and low, rolling hills. The climate is classified as Hot Summer 

Mediterranean (Peel et al 2007). Winters are relatively mild and wet with a January 

mean of 5-80C and most (75%) of annual rainfall (500 - 600mm) usually occurs 
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between October and March (Moreira et al 2005). Summers are hot and dry, the 

Alentejo being one of the hottest regions in Europe with regular summer 

temperatures of 400C (mean 30-350C). 

      The non-landfill habitat in the Alentejo largely consists of Mediterranean cork oak 

woodland landscape (called montado in Portugal, or dehesa in Spain), a traditional 

low intensity agro-forestry system of cork oak Quercus suber and holm oak Quercus 

rotundifolia trees in savannah-like grassland, grazed by cattle with some low intensity 

agriculture. Non-irrigated agriculture, frequently in crop rotation cycles, irrigated 

agriculture, rice fields, small vineyards and plantations of olive trees and deciduous 

or evergreen forestry are also present. Apart from the city of Évora (population 56, 

600), urban settlements are low in density and in population. 

 

3.2.2. Tag deployment and tracking data 

      White storks were captured using two techniques, a remotely operated, baited 

clap net and leg lassos constructed of nylon line and rubber and anchored to heavy 

boards. Both were placed on the landfill and monitored continuously by multiple 

observers from different locations. Simultaneously with tag deployment, birds were 

colour ringed on each leg and basic metrics (weight, bill and wing length) were 

recorded. Birds were retained for a maximum of half an hour. Several individuals 

were observed in the days immediately after tag deployment and no behavioural of 

physical effects of the tags were observed. However, as a precaution to allow for tag 

accustomisation, the first 2 days of data after capture were excluded from this 

analysis. 

      Storks were trapped at five landfill sites in the Alentejo, Portugal: Aterro Sanitário 

Intermunicipal de Évora (38.538004, -7.971274, n=16 tags deployed), Aterro 

Sanitário de Vila Ruiva (38.243040, -7.952321, n=10), Aterro Sanitário de Ermidas do 

Sado (38.021444, -8.353319, n=11), Aterro Sanitário da Herdade do Montinho, Beja 

(37.924916, -7.864950, n=8) and Aterro Sanitário do Barlavento, Portimão 

(37.214041, -8.522350,n=3). Licenses to catch and tag birds were granted by the 

Instituto da Conservação da Natureza e das Florestas (ICNF). 
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      New GPS-ACC data loggers, developed by members of our research team, were 

programmed to collect data 5 times per day at 6am, 9am, 12am, 3pm and 6pm GMT. 

Each data burst consisted of 8 - 10 consecutive GPS fixes (±20 m accuracy), once per 

second.  Every two days data were transmitted to a web platform via GPRS using the 

GSM network. Data loggers were deployed back-mounted on a teflon harness. 

Biodegradable stitching was included to avoid lifelong attachment. Battery powered 

loggers weighed 90g and solar powered ones weighted 45g, less than 4% of total body 

weight.  

 

3.2.3. Spatial data analyses 

      Only data bursts from the winter are included in this study, covering the period 

between the 15th November and 28th February in 2 consecutive winters (2012/13 and 

2013/14). The start of the breeding season is defined as the 28th February, which is 

the earliest first egg of any tagged individual that we recorded. 

      All data bursts when the bird was in flight are excluded from this analysis. Flight 

was determined by calculating the mean speed associated with each data burst 

(minimum 8 seconds of continuous GPS fixes). Speeds ≥2.8km/hr (but typically 

>20km/hr) were interpreted as flight. The last GPS fix (deemed to be most 

geospatially accurate) from each non-flight data burst was imported into ArcGIS to 

calculate the percentage of GPS fixes occurring on non-landfill habitat, landfill or on 

the nest. GPS fix is here defined as the location most representative of a particular 

non-flight data burst.  

      All GPS fixes within a 50m buffer surrounding the perimeter of each landfill were 

considered as occurring on landfill. Consequently, birds that were temporarily 

flushed off the active landfill to the site boundary were also included as on landfill.  

      The roost sites of tagged birds were easily detected as the location of tightly 

clustered GPS coordinates in continuous use throughout the winter. These locations 

were visited during the early breeding season to confirm nest occupancy. All birds 

roosted on their nests and were faithful to the same nest throughout the winter. 

Birds frequently perch close to, but not on, the nest so all GPS fixes within a 20 m 

buffer around the nest were considered to be nest attendance. The minimum 
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straight-line distance between the centre of the landfill and the nest was used to 

calculate the distance between the nest and landfill. 

 

3.2.4. Climatic variables 

      Climatic data from the meteorological station at Évora (latitude: 38.53, 

longitude: -7.9, altitude: 246 m), accessed from the National Oceanic and 

Atmospheric Administration (www.noaa.gov) were used in this analysis (Table 3.1). 

This station is in the centre of the study region and situated on average 47.5 km ±12.4 

from the landfill sites. Continuous daily data was available for the entire study period 

and well represented the climate of the whole area due to the flat topography and 

homogeneity of the Alentejo region. 

      Mean climate data for Évora 1981-2010 were obtained from the Instituto 

Portugues do Mar e da Atmosfera (www.ipma.pt) in order to establish how the study 

winters compared to long term trends. Rainfall (daily precipitation, moving averages 

of the previous 10 days and 7 days of precipitation), temperature (mean, maximum 

and minimum) and mean wind speed were considered likely climatic predictors of 

winter landfill use by white storks. 

      The timing and volume of precipitation differed between the two study winters, 

compared to the 1981-2010 means. In both winters the rains began in late September 

after anomalously dry Augusts (-80.7 mm and -82.0 mm respectively, anomalous 

compared to the 1981-2010 mean). Overall, winter 2012/13 was wet, receiving +45.6 

mm more precipitation in total compared to the long term average. The majority of 

rain fell in November (+81.1 mm) and monthly rainfall alternated between being 

anomalously low and high in successive months. 

      Winter 2013/14 was overall drier (-20.6mm). The majority of rain fell in October 

(anomaly: +50.5 mm) and the rest of the winter was very dry (November-February 

mean anomaly: -64.8 mm), December being especially dry: -88 mm. Periods with 

more rainfall may coincide with greater prey availability in non-landfill habitats 

through influencing the height and duration of standing water in flooded meadows. 

For this reason, the moving average of the precipitation over the previous 10 and 7 

days were included in correlation analysis as possible candidates for inclusion in the 
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model. Both winters were cooler than the long term mean (September-February 

mean, winter 2012/13: -1.10C, winter 2013/14: -0.70C). February being the coldest 

month in winter 2012/13 with a temperature anomaly of -2.30C. In winter 2013/14 

November was coldest with an anomaly of -2.60C.  

       

Table 3.1 All climatic and non-climatic variables considered for inclusion in the model. 

Climate variables, from the meteorological station at Évora, describe the climate in 

the study region during the winters of 2012/13 and 2013/14. All climatic variables 

were measured daily. Mean precipitation is the moving average of precipitation 

recorded over the previous 10 and 7 days respectively. Mean temperature and mean 

precipitation 7 were excluded prior to running the model. The identities of landfills 1 

to 5 are found in Table 3.2. Nest-landfill distance is the straight line distance between 

the nest and the landfill site. Winter (1 or 2), landfill ID and individual were included 

as random effects. 

 

Variable 

 

Mean ±SE 

Winter 1 (2012-13) Winter 2 (2013-14) 

Max Temp 0C 14.6 ± 0.2 15.1 ± 0.2 

Mean Temp 0C 9.2 ± 0.8 9.6 ± 0.6 

Min Temp 0C 6.1 ± 0.3 5.8 ± 0.3 

Daily Precipitation (mm) 2.8 ± 0.6 2.5 ± 0.5 

Mean Precipitation 10 (mm) 2.8 ± 0.3 2.5 ± 0.3 

Mean Precipitation 7 (mm) 2.8 ± 0.3 2.4 ± 0.3 

Mean Wind Speed (m/sec) 3.4 ± 0.2 3.7 ± 0.2 

Landfill ID 1 - 5 1 – 5 

Nest-Landfill Distance (km) 12.4 ± 2.2 15.9 ± 3.4 

Individual (bird identity) 1 - 11 12 - 25 
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      Overall, mean wind speeds were 0.3m/sec faster in winter 2013/14 compared 

with winter 2012/13. Wind speed was considered an important variable to include 

because storks are obligate soaring birds and wind speed may influence the 

development and stability of the thermals on which they rely. 

 

3.2.5. Statistical analysis 

      A binomial Generalized Linear Mixed Model, GLMM, (R package lme4, Bates et al 

2014) was created to test the relative influence of climatic and non-climatic variables, 

and their interactions, on the proportion of daily GPS fixes away from the nest that 

occurred on landfill during the winter period. The dependent variable was the 

number of GPS fixes on landfill as a proportion of all foraging GPS fixes constructed 

using events-trials syntax to account for the fact that there were not always 5 GPS 

transmissions per day. Thus, the dependent variable combined both the number of 

events (the daily fixes on landfill) and number of trials (total daily GPS fixes excluding 

those within 20m of the nest or in flight). 

      Prior to running the model, a Spearman’s rank-order correlation was performed 

to determine the strength of the relationships between all the independent variables 

considered for inclusion in the model (Table 3.1). There was a strong, positive linear 

relationship between mean and minimum temperature (r=0.903, p= <0.001, n=1718). 

Mean temperature was more highly correlated with maximum temperature than was 

minimum temperature (mean: rs= 0.604, p= <0.001, n=1718, min: rs= 0.347, p= 

<0.001, n= 1718), so minimum temperature was selected for inclusion in the models. 

Similarly, mean precipitation 10 was strongly correlated with mean precipitation 7 

(rs= 0.885, p= <0.001, n= 1718). Mean precipitation 10 was selected for inclusion in 

the models because it was slightly less correlated with daily precipitation (rs= 0.488, 

p= <0.001, n= 1718), than was mean precipitation 7 (rs= 0.403, p= <0.001, n= 1718). 

The remaining independent variables (Table 3.1) correlated with each other with a 

Spearman’s rank of ˂0.7 so were all included in the initial model. All continuous 

variables were standardized to make the parameter estimates directly comparable. 

This was done by subtracting the mean, and then dividing by the standard deviation 

(Schielzeth 2010). 
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      The straight line distance between the nest and the landfill site was included as a 

non-climatic predictor. Year (2012/13 and 2013/14), landfill identity and individual 

identity (25 birds) were included as random effects. The names of landfills 1 to 5 and 

the number of tagged birds visiting each are given in Table 3.2. The landfill variable 

was included to control for the differing sample sizes of tagged birds visiting each 

landfill and to control for unquantified differences that may exist between landfills 

including: number of birds visiting, the volume and frequency of deliveries of organic 

waste and differences in quality of the surrounding non-landfill habitats, all of which 

may affect levels of competition for food. 

      Model simplification and selection was carried out by excluding non-significant 

explanatory variables. The significance of interaction terms was tested using 

likelihood ratio tests to compare a null model with the model containing the 

interaction term. The overall significance of the final model, R2
GLMM(model), was 

obtained using R (R Development Core Team 2014). Predicted values were obtained 

from the binomial GLMM by applying the logit back transformation. 

      Nest-landfill distance is known to be an important influence on the frequency of 

landfill use (Figure 2.4), so a second binomial GLMM with a logit link function was 

created to explore whether nest use is influenced by climatic variables, nest - landfill 

distance and their interactions. As in the first GLMM, the dependent variable was 

formulated as an events-trials argument where the number of daily GPS fixes 

occurring within 20m of the nest (events) were considered as a proportion of all 

available daily GPS fixes, except those occurring in flight (trials). This model 

considered all GPS fixes, except those occurring in flight. The independent variables 

and random effects were as above. All statistical analysis was carried out in R. 

 

 

3.3. Results 

     A total of 48 tags were deployed, 15 in winter 2012/13 and a further 33 birds were 

tagged in winter 2013/14. Criteria for inclusion in this study were: i) a minimum of 1 

month of data transmission occurring between November and 28th February; ii) a 

mean ≥3 GPS fixes per day (out of a possible total of 5 daily GPS transmissions) and 
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iii) sedentary behaviour (faithful to the same roost throughout the winter) rather 

than itinerant wandering over big areas in Iberia.  This was to ensure habitat selection 

would be meaningfully linked to the climatic predictors derived from Évora 

meteorological station. As a consequence of criteria iii, the birds in this analysis were 

most likely adults.   

      A total of 16 birds had insufficient data prior to 28th February (including one 

individual who died in a power line collision and another who lost its tag). Three tags 

did not meet the minimum GPS fixes per day and 4 juvenile birds wandered 

extensively across Portugal and Spain. Consequently, this study focuses on 25 birds, 

11 individuals from winter 2012/13 and 14 birds from winter 2013/14. The mean 

number of transmission days per bird (± SE) were 73.5 ±7.2 and 65.0 ± 6.3 in 

2012/2013 and 2013/2014 respectively. 

 

3.3.1. Winter landfill use 

      A mean of 13.6% ± 1.6 GPS fixes occurred on landfill sites (Figure 3.1). Within this, 

landfill use by individuals ranged from 0.9 - 29.3% of GPS fixes. A mean (±SE) of 28.2% 

± 3.1 GPS fixes occurred within 20 m of the nest and nest use ranged from 5.5 - 63.8% 

of fixes. The majority of GPS fixes were in non-landfill habitat (58.2% ±2.7) and these 

occurred within 2 - 4km surrounding the nest (see Chapter 2, Table 2.2).  

      With the exception of one individual, all birds were faithful to the landfill site 

closest to the nest and never visited other landfills. This bird predominantly used the 

closest landfill but visited the second nearest landfill site in 11.6% of GPS fixes that 

occurred on landfill. Immediately after capture another individual moved to its nest 

near a new landfill (Avis: -39.092123, -7.729116) and used this landfill exclusively for 

the rest of the study period. Mean distance travelled between nest and landfill was 

similar between landfills with the exception of Sado (Table 3.2). Birds visiting this 

landfill travelled approximately 8.9 km further. 
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3.3.3. Predictors of landfill use 

     Three predictors of frequency of winter landfill use were retained as significant by 

the final model (Table 3.3). In order of effect size, the 10 day moving average 

precipitation was the most significant with a negative effect of 11.5% on probability 

of landfill attendance. Nest-landfill distance had a negative effect of 10.0% and 

minimum daily temperature had a negative effect of 5.3%. Predicted values (derived 

by logit back transformation for a change of one unit (mm, km or 0C, as appropriate) 

were similar and indicated that the probability of landfill use dropped by 2.3% with 

every 1 mm increase in 10-day running mean precipitation and by 2% with every 1 

km of additional distance between the nest and landfill site. Probability of a GPS fix 

on landfill decreased by 1.1% with every 10C rise in minimum temperature. No 

interaction terms were significant.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Percentage of total GPS fixes (±SE, excluding fixes in flight) that occur in 

non-landfill habitat, on landfill sites and within 20 metres of the nest.  
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Table 3.2 Landfill sites, the number of birds visiting each landfill and the mean 

distance between the nest and landfill site. 

 

Number 

 

Landfill 

 

Number of birds 

Mean nest – landfill 

distance (km) 

1 Évora 10 11.4 ± 2.6 

2 Vila Ruiva 6 12.7 ± 2.9 

3 Avis 1 14.2 ± 0.0 

4 Beja 2 12.7 ± 1.2 

5 Sado 5 21.6 ± 7.0 

 

Table 3.3 Results of the final GLMM explaining the proportion of daily fixes on landfill 

during winter 2012/13 and 2013/14. Individual, landfill used and year were included 

as random factors. No interaction terms (italics) were retained in the final model. 

Predictors Estimate SE Z Pr(>|z|) 

Intercept -0.962 0.040 -23.938 ˂0.001 

Mean Precipitation 10 (mm) -0.115 0.025 -4.644 ˂0.001 

Nest-landfill distance (km) -0.100 0.041 -2.421 0.010 

Minimum temperature (0C) -0.053 0.023 -2.298 0.021 

 

Interactions (not retained by final model) 

Ppt 10 – Nest-landfill dist 0.045 0.025 1.823 0.063 

Min temp – Nest-landfill dist 0.001 0.002 0.506 0.613 

Min temp – Ppt 10 0.014 0.022 0.655 0.513 

 

Random effects 

 

Variance 

 

SD 

  

Individual 2.579e-02 1.606e-01   

Landfill Used 3.290e-08 1.814e-04   

Year 2.990e-09 5.468e-05   
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     Based on a lack of statistical significance, maximum temperature, daily 

precipitation and wind speed were removed from the final GLMM used to explain the 

proportion of daily GPS fixes occurring on landfill sites. Overall, the final model 

explained 26.3% of the variance (R2
GLMM(model)), of which the fixed effect component 

explained 17.6% of variance. 

      Storks utilised landfill more frequently during phases of dry weather (10-day 

running mean precipitation ≤2.12 mm per day, mean ± SE GPS fixes on landfill: 19.1 

± 2.0%) rather than wetter periods (10 day running mean >2.3 mm per day, GPS fixes 

on landfill: 11.1% ± 1.6, paired t-test: t(24)= -4.933, p= ˂0.001, Figure 3.2a). 

Frequency of occurrence on non-landfill habitat was the opposite and increased 

during wetter phases compared to dry phases (t(24)= 4.727, p= ˂0.001). 

      Individuals nesting closer to the landfill site than average (<14.4 km) occurred 

more often on landfill (mean ± SE 17.2 ± 2.1% versus 10.1% ± 2.8 of GPS fixes on 

landfill, Wilcoxon signed-rank test: Z= 70.000, p= 0.048) and less often in non-landfill 

habitat (Z=-2.272, p= 0.023) compared to birds with nests located at higher than 

average distances from landfill sites (Figure 3.2b). Storks were more likely to use 

landfill (17.1% ± 2.0 versus 11.9% ± 1.7, Z= -3.771, p= ˂0.001) and less likely to use 

non-landfill habitat when temperatures were below average (5.9 0C, Figure 3.2c).  

      None of the landfill use predictor variables retained by the model influenced the 

proportion of GPS fixes occurring on the nest during winter (10-day mean 

precipitation: Sign test, p=0.424, nest-landfill distance: Z= -0.874, p= 0.406, minimum 

temperature: Z= -0.619, p= 0.536). 

 

3.3.4. The influence of climatic variables on winter nest use 

      The second GLMM investigated if weather variables or nest - landfill distance 

influence winter nest use. No predictor variables (fixed and random effects, or 

interactions) were significant in the model output (Appendix 3.1). This indicates that, 

in winter, resident storks use their nests with equal probability and this is 

independent of weather or nest – landfill distance.    
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Figure 3.2 Comparison of the percentage of GPS fixes occurring in 3 locations (non-

landfill, landfill and on the nest) grouped depending on whether conditions in the 

predictor variables are below or above average. Predictor conditions were: a) distance 

between nest and landfill, b) daily precipitation (mm) and c) minimum daily 

temperature (0C). The non-landfill habitat category is represented as dark grey, 

landfill as medium grey and nest as light grey. 
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3.4. Discussion  

3.4.1. Climatic predictors of landfill use 

      Future climatic change in the Mediterranean is anticipated to be severe with high 

magnitude changes in rainfall and temperature patterns (IPCC 5AR, 2013). In Iberia 

winter rainfall is predicted to substantially reduce whilst minimum temperatures will 

increase (Nunes et al 2008, Perez and Boscolo 2010). Climate is also predicted to 

become more variable with an increase in extreme precipitation and heat events 

(Hoerling et al 2012).  Although extreme events affect survival, climatic influence on 

avian populations is primarily indirect through impacts on resources and habitat 

structure (Newton 1998). The systematic closure of open landfills is already 

underway in Iberia so it is important to understand which climatic factors are 

important drivers of landfill use in order to understand how white storks wintering in 

Iberia will cope with landfill closure and future climatic change.  

      GLMM results suggest that overall humidity (measured as the 10-day moving 

average of accumulated precipitation) is the most important factor in predicting the 

frequency of landfill utilisation. Wetter phases are associated with lower landfill 

attendance and higher frequency of occurrence on non-landfill habitat (Table 3.3, 

Figure 3.2a), whilst dry phases are the inverse. Probability of landfill attendance 

decreases by 2.3% with every additional 1 mm of accumulated 10-day precipitation. 

Daily precipitation was not significant, therefore was not retained in the final model, 

indicating that landscape humidity is the important consideration, rather than factors 

associated with individual rain events, for example reluctance to fly distances during 

rainfall due to wet feathers or lack of thermals for soaring (Arslangündoğdu et al 

2011). 

      It is well known that storks preferentially forage in flooded meadows and irrigated 

areas (Carrascal et al 1993) so it is likely that wet phases promote optimum foraging 

conditions in non-landfill habitats through influencing the height and duration of 

standing water in meadows and ditches. Preferred prey species, such as red swamp 

crayfish and amphibians are also likely to be more active in wetter conditions. During 

dry phases, prey in non-landfill habitats may be considerably less accessible and 

require more foraging effort to obtain. For example, the red swamp crayfish, a main 
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prey species, avoids dessication by sheltering in burrows and refugia by day (Ilhéu et 

al 2003). Landfills may currently be buffering white storks against climatic impacts 

through providing supplemental food sources during dry phases. 

      Climatic prediction for drier winters with fewer rainy days may therefore be 

problematic for white storks. In Iberia, lower precipitation will shift rivers from humid 

to semi-arid catchment regimes. Characteristics will include irregular river flow, 

increasingly marginal conditions for cultivation (Nunes et al 2008) and a reduction in 

ground vegetation (Gouveia et al 2009), which may affect prey abundance. The main 

alternative food source to landfill, red swamp crayfish, is desiccation tolerant making 

it suitable for colonisation of ephemeral streams (Cruz and Rebelo 2007). They are 

already widespread and abundant in all river systems across Iberia, not just in rice 

fields. However, increased dependence on crayfish will likely favour resident birds (as 

opposed to migrants) and older, more experienced individuals (Sanz-Aguilar et al 

2015).   

      Daily minimum temperature was also a significant predictor of landfill attendance. 

Storks were more likely to visit landfill rather than non-landfill habitat on days with 

below average minimum temperature (Table 3.3, Figure 3.2c) and attendance 

decreased 1.1% per 10C increase in temperature. This may be because prey in non-

landfill habitat, such as insects and crayfish, are less active. Additionally, 

decomposition taking place within the landfill likely makes landfill sites comparatively 

warmer than the surrounding non-landfill habitat, which reduces exposure to the 

lowest temperatures. It is known that white storks can tolerate periods of cold (Mata 

et al 2001) but an increasingly mild winter climate will benefit resident birds by 

reducing energy expenditure in thermoregulation and increasing the activity level of 

prey species. Iberian minimum winter temperatures are already within the tolerance 

range of the red swamp crayfish (Huner 2013), but warmer minimum winter 

temperatures will more suit this prey species, potentially increasing winter survival 

and therefore overall population numbers. However, significant changes in habitat 

and agricultural practices are forecast for the Mediterranean in the future due to a 

more arid climatic regime. For example, climatic change and abandonment of 

traditional agricultural practices are causing a reduction in the total area of cork oak 

savannah grassland (montado), another favoured foraging habitat of white storks 
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(Berrahmouni et al 2009, Carnicer et al 2011). It remains to be seen what the 

outcomes of rapid climate and environmental changes will have on the Iberian 

wintering white stork population.   

 

3.4.2. The importance of nest-landfill distance in predicting reliance on landfill 

      In this study, nest-landfill distance was the second most important predictor of 

frequency of landfill use, however its effect size was almost equivalent to the 

accumulated precipitation, suggesting it is equally important. Birds nesting closer to 

landfill had higher landfill attendance than birds in more distant nests, with 

probability of a GPS fix occurring on landfill decreasing by 1.1% for every additional 1 

km of distance between the nest and landfill.  

      A surprisingly large proportion of GPS fixes occurred within 20 m of the nest for 

all birds throughout the winter period (Figure 3.1).  Winter use of the nest is rare in 

temperate climates where resident birds usually undergo local or regional scale 

movements, often in loose flocks, in search of scarce winter food (Newton 1998). 

Therefore, remaining in the breeding territory and on the nest during the winter has 

likely been facilitated by changes in the reliability and abundance of winter food 

resources, especially from landfill sites.  

      Breeding season GPS fixes indicated that all tagged birds in this study proceeded 

to breed in their winter nests n= 24 (or in a nest within the same colony, n=1). This 

indicated that our tagged birds were exclusively resident in Iberia, rather than 

migratory birds from the Eastern European breeding populations, and therefore had 

a vested interest in maintaining their breeding territory and nest during the winter 

period. This may explain why frequency of winter nest was not related to climatic 

factors or distance from landfill (Appendix 3.1). 

      In order to investigate how white storks are utilising this important food resource, 

tags were deployed on birds caught exclusively on landfill. The overwintering white 

stork population is known to concentrate close to landfills (Tortosa et al 2002) and 

the majority, if not all, individuals are believed to feed on landfill to some extent 

whilst overwintering. Consequently, birds caught on landfill are believed 

representative of the wintering population. However, it seems likely that the 
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behaviour of resident birds may differ from the behaviour of non-resident 

overwintering birds.   

      Resident wintering storks are more likely to be rice field specialists and less reliant 

on landfill than non-resident birds (Sanz-Aguilar et al 2015). This is possibly because, 

compared to resident birds, migrant individuals are less familiar with the non-landfill 

habitats in the area and also with techniques specific to local prey species, such as 

foraging on red swamp crayfish in rice fields. On the other hand, it may be that non-

resident birds wintering in Iberia are not under pressure to defend their breeding 

territory and therefore are able to congregate more exclusively at landfill sites where 

foraging is optimal (Araújo et al 2011). Either way, the GLMM results of this study 

suggest that for resident, nest holding individuals, the distance between the nest and 

landfill is currently the significant predictor of frequency landfill use (Table 3.3, Figure 

3.2a). Birds nesting closest to landfill use landfill more and will therefore be most 

impacted by landfill closure. Based on the literature, it is also possible to speculate 

that non-resident over wintering birds may be more impacted by landfill closure than 

resident birds. Their lack of familiarity with local habitats will make them more 

vulnerable to the higher frequency of dry or drought phases predicted by future 

climate scenarios. 

 

 

3.5. Conclusions 

      White storks supplement their foraging with landfill during dry periods and on 

cold days (-0.5 – 60C). This suggests that landfill is increasing winter survival by 

mitigating the impacts of spells of drought and cold weather. This study predicts that 

after landfill closure future climatic predictions for warmer, drier winters may make 

Iberia increasingly unsuitable for overwintering white storks. 

 

 

 

 



67 
 

References 

Araújo, M.S., Bolnick, D.L. and Layman, C.A. 2011. The ecological causes of individual 

specialisation. Ecology Letters 14:948-958. 

 

Arslangündoğdu, Z., Dalyan, C., Bacak, E., Yardım, U., Gezgin, C. and Beşkardeş, V.  

2011. Spring migration of the White Stork, Ciconia ciconia, and the Black 

Stork, Ciconia nigra, over the Bosphorus. Zoology in the Middle East 53:7-13. 

 

Atlas Team 2008. [Atlas of Birds Wintering in Portugal (1999-2005)] Atlas das Aves 

Nidificantes em Portugal (1999-2005). Instituto da Conservacao da Naturaleza e da 

Biodiversidade, Sociedade Portuguesa para o Estudio das Aves, Parque National da 

Madeira e Secretaria Regional do Ambiente e do Mar. Assirio and Alvim, Lisboa. 

 

Bates, D., Maechler, M., Bolker, B.M. and Walker, S. 2014. Lme4: Linear mixed-effects 

models using Eigen and S4. Journal of Statistical Software 

http://arxiv.org/abs/1406.5823 accessed 15/04/2015 

 

Berrahmouni, N., Regato, P., Ellatifi, M., Daly-Hassen, H., Bugalho, M., Bensaid, S., 

Diaz, M. and Aronson, J. 2009. Ecoregional planning for biodiversity conservation. In: 

Aronson J., Pereira J.S., Pausas J.G. (eds). Cork oak woodlands on the edge. Island 

Press. Washington USA 203-216.  

 

Both, C., Van Turnhout, C.A.M., Bijlsma, R.G., Siepel, H., Van Strien, A.J. and Foppen, 

R.P.B. 2009. Avian population consequences of climate change are most severe for long-

distance migrants in seasonal habitats. Proceedings of the Royal Society. B. 277:1259-

1266. 

 



68 
 

Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sánchez, G. and Peñuelas, J. 2011. 

Widespread crown condition decline, food web disruption, and amplified tree 

mortality with increased climate change-type drought. PNAS 108:1474-1478. 

 

Carrascal, L.M., Bautista, L.M. and Encarnacion, L. 1993. Geographical variation in the 

density of the White Stork Ciconia ciconia in Spain: Influence of Habitat Structure and 

Climate. Biological Conservation 65:83-87. 

 

Cotton, P.A. 2003. Avian migration phenology and global climate change. PNAS 100: 

12219–12222.  

 

Cramp, S. and Simmons, K.E.L. 1977. Handbook of the Birds of Europe, the Middle 

East and North Africa: the Birds of the Western Palearctic, Vol. 1: Ostrich to Ducks. 

Oxford University Press.  

 

Cruz, M.J. and Rebelo, R. 2007. Colonization of freshwater habitats by an introduced 

crayfish, Procambarus clarkii, in Southwest Iberian Peninsula. Hydrobiologia 572:191-

201. 

 

Giorgi, F. 2006. Climate change hot-spots. Geophysical Research Letters 33:L08707. 

 

Gordo, O. and Sanz, J.J. 2005. Phenology and climate change: a long-term study in 

a Mediterranean locality. Oecologia 146: 484-495. 

 

Gordo, O. and Sanz, J.J. 2006. Climate change and bird phenology: a long-term study 

in the Iberian Peninsula. Global Change Biology 12:993–2004. 

 



69 
 

Gouveia, C., Trigo, R.M. and DaCamara, C.C. 2009. Drought and vegetation stress 

monitoring in Portugal using satellite data. Natural Hazards Earth System Science. 

9:185–195. 

 

Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T. and Pegion, P. 2012. On the 

Increased Frequency of Mediterranean Drought. Journal of Climate 25:2146–2161. 

 

Huner, J. 2013 Invasive Species Compendium: Procambarus clarkii (red swamp 

crayfish) datasheet http://www.cabi.org/isc/datasheet accessed 01/04/2015. 

 

IPCC 5AR 2013: Climate Change 2013: The Physical Science Basis. Contribution of 

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, 

A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA, 1535. 

 

Kanyamibwa S., Schierer A., Pradel R. and Lebreton J.D. 1990. Changes in adult annual 

survival rates in a western European population of the White Stork Ciconia ciconia. 

Ibis 132:27–35. 

 

Lack, D.L. 1966. Population studies of birds. Oxford: Clarendon Press 

 

Ilhéu, M., Acquistapace P., Benvenuto C. and Gherardi F. 2003. Shelter use of the red-

swamp crayfish (Procambarus clarkii) in dry-season stream pools Archiv für 

Hydrobiologie 157:535-546. 

 

NABU 2015 [White Storks and Radio-marking] Weißstorchzug & Besenderung 

https://bergenhusen.nabu.de/weissstorch/storchenzug.html census accessed 

20/04/2015. 



70 
 

Newton I. 1998. Food supply. In: Population limitation in birds. Academic Press Ltd; 

145-189. 

 

Nevoux, M., Barbraud, J.C. and Barbraud, C. 2008. Nonlinear impact of climate on 

survival in a migratory white stork population. Journal of Animal Ecology 77:1143-

115. 

 

Nunes, J.P., Seixas, J. and Pacheco, N.R. 2008. Vulnerability of water resources, 

vegetation productivity and soil erosion to climate change in Mediterranean 

watersheds. Hydrological Processes 22:3115–3134. 

 

Massemin-Challet S., Gendner J.-P., Samtmann S., Pichegru L., Wulgue A. and Le Maho 

Y. 2006. The effect of migration strategy and food availability on white stork Ciconia 

ciconia breeding success. Ibis 148:503-508. 

 

Mata, A.J., Caloin, M., Michard-Picamelot, D., Ancel, A. and Le Maho, Y. 2001. Are non-

migrant white storks (Ciconia ciconia) able to survive a cold-induced fast? 

Comparative Biochemistry and Physiology Part A: Molecular and Integrative 

Physiology 130:93-104. 

 

Moreira, F., Beja, P., Morgado, R., Reino, L., Gordinho, L., Delgado, A. and Borralho, R. 

2005. Effects of field management and landscape context on grassland wintering birds 

in Southern Portugal. Agriculture, Ecosystems and Environment 109:59–74. 

 

Peel, M.C., Finlayson, B.L. and McMahon, T.A. 2007. Updated world map of the 

Koppen-Geiger climate classification. Hydrology and Earth Systems Sciences 

Discussions 4: 439–473. 

 

 

http://www.sciencedirect.com/science/article/pii/S109564330100366X


71 
 

Perez, F.F. and Boscolo, R. 2010. [Climate in Spain: Past, present and Future. 

Evaluation report of regional climate change.] Clima en España: Pasado, presente y 

futuro. Informe de evaluación del cambio climático regional. 

http://www.clivar.es/files/informe_clivar_final.pdf accessed 01/04/2015. 

 

PERSU II [Strategic Plan for Municipal Solid Waste for the period 2007 to 2016] Plano 

Estratégico para os Resíduos Sólidos Urbanos para o período de 2007 a 2016 (PERSU 

II) Ministério do Ambiente do Ordenamento do Territorio e do Desenvolvimento 

Regional. 1st edition 2007 Deposito legal no. 255 244/07. 

http://www.egf.pt/files/165.pdf accessed 09/04/2015. 

 

Pulido, F. and Berthold, P. 2010. Current selection for lower migratory activity will 

drive the evolution of residency in a migratory bird population PNAS 107:7341-7346. 

 

R Development Core Team 2014. A Language and Environment for Statistical 

Computing. Vienna: R Foundation for Statistical Computing. http://www.R-

project.org/ 

 

Rosa, G. 2005. [Monitoring of White Stork Ciconia ciconia breeding colonies in 

Portugal: general results from 2005]. Monitorização dos efectivos nidificantes de 

Cegonha-branca Ciconia ciconia em Portugal: resultados gerais de 2005. Sociedade 

Portuguesa para o Estudo das Aves, Lisboa  

http://www.icnf.pt/portal/naturaclas/ei/resource/doc/cempa/ceg-branc/monitor-

cegonha05 accessed 16/04/2015. 

 

Rosa, G., Encarnacao, V., Leao F., Pacheco, C., and Tenreiro, P. 2009. [Censuses of the 

wintering population of White Stork Ciconia ciconia in Portugal (1995-2008)]. 

Recenseamentos da populacao invernante de Cegonha-Branca Ciconia ciconia em 

Portugal (1995-2008). In: VI Congresso de Ornitologia da SPEA, IV Congresso Ibérico 

de Ornitologia 2009. 



72 
 

http://www.spea.pt/fotos/editor2/livroresumos_vi_congressoornitologiaspea_iv_ib

erico_elvas_2009.pdf. Accessed 18/04/2015. 

 

Saether, B.-E., Grotan, V., Tryjanowski, P., Barbraud, C., Engen, S. and Fulin, M. 2006. 

Climate and spatio-temporal variation in the population dynamics of a long distance 

migrant, the white stork. Journal of Animal Ecology 75:80-90. 

 

Sanz-Aguilar, A., Jovani, R., Mellan, C,J., Pradel, R. and Tella, J.L. 2015. Multievent 

capture-recapture analysis reveals individual foraging specialisation in a generalist. 

Ecology 96:1650–1660. 

 

Schaub, M., Kania, W. and Koppen, U. 2005. Variation of primary production during 

winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. 

Journal of Animal Ecology 74:656-666.  

 

Schielzeth, H. 2010. Simple means to improve the interpretability of regression 

coefficients. Methods in Ecology and Evolution 1:103-113. 

 

Shephard, J.M., Rycken, S., Almalik, O., Struyf, K. and Van Erp-van der Kooij, L. 2015. 

Migration strategies revealed by satellite tracking among descendants of a 

population of European white stork Ciconia ciconia reintroduced to Belgium. 

Journal of Ornithology 156:943-953. 

Tortosa, F.S., Caballero, J.M. and Reyes-Lopez, J. 2002. Effect of rubbish dumps on 

breeding success in the White Stork in Southern Spain. Waterbirds 25:39-43. 

Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., 

Fromentin, J.-M., Hoegh-Guldberg, O. and Bairlein, F. 2002. Ecological responses to 

recent climate change. Nature 416:389-395. 



73 
 

 

Chapter 4 

 

 

Contrasting long-term productivity trends in new foraging 

habitats of white stork (Ciconia ciconia) in Iberia 

 

 

 

 

 

 

 

 

 

 

 

To be submitted as:  

 

Gilbert, N.I. Rosa, G., Silva, J.P., Pacheco, C., Correia, R., Catry, I., Gill, J.A. and Franco, 

A.M.A., Contrasting long-term productivity trends in new foraging habitats of white 

stork (Ciconia ciconia) in Iberia. 

 

 



74 
 

Abstract 

      In temperate zones foraging resources are unevenly distributed spatially and 

temporally. Breeding success can vary with habitat quality, because of variation in 

the quality of resources that those habitats provide. Significant environmental 

changes associated with anthropogenic activities can also impact foraging 

opportunities, including the creation of new habitats.  Landfill sites provide new 

foraging resources that are guaranteed in both space and time. White storks Ciconia 

ciconia in Iberia are among the species that have benefited from their utilization both 

in the winter and in the breeding season, and they increasingly nest close to landfills. 

However, due to EU directives, open-air landfills must close by 2018 to be replaced 

by covered recycling facilities. This will likely have consequences for white stork 

population size and distribution. This study uses data from 48 white storks tagged 

with high precision GPS/GSM data loggers and 8 years of productivity data from 

Portugal to investigate 1) which are the most utilized non-landfill foraging habitats 

and 2) what is the impact on breeding success (percentage of successful nests, and 

mean number of fledglings per breeding pair) of colony distance from landfill and 

distance from the most utilized non-landfill habitat.  

      Compositional analysis of breeding season (March – June) GPS data indicated that 

rice fields are selected over all other available non-landfill habitats. Other frequently 

used habitats included non-irrigated and irrigated farm land and cork oak grassland, 

a traditional Mediterranean agro-forestry system. These habitats will likely be more 

important for white storks after landfill closure.  

      Averaged over the 8 study years, nests near landfills had a higher percentage of 

successful nests and more chicks fledged per breeding attempt than colonies further 

away. Results of generalized linear models showed the percentage of successful nests 

decreased by ~7.3% with every additional kilometre away from landfills and the 

number of chicks per nest (including failed breeding attempts) decreased by ~3.4% 

per kilometre from landfill. Considering successful nests only, there was also a 

significant decrease (~2.4%) in the number of fledglings per nest with distance from 

landfill, indicating that variability in food supply is highly likely to be the explanatory 

mechanism.  This is the first time that the impact of landfill on breeding success has 
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been measured quantitatively. Our results indicate that landfill closure will have a 

large impact on breeding success in white storks in Iberia.   

      There was also variation in productivity in relation to distance from non-landfill 

habitats. Colonies close to rice fields had higher rates of total nest failure (highest 

mean ± SE for a single colony over the study period was 76% ± 4.6 of nests failing) in 

comparison to colonies not close to rice fields. The percentage of successful nests 

increased by 0.6% per kilometre distance from rice fields. However, the mean 

number of chicks per nest was similar across habitats indicating that, in successful 

nests, productivity close to rice fields was comparable to other land use types. This is 

the first study to assess the implications of rice field habitat on white stork breeding 

success. As productivity away from landfills was low overall, poor breeding success 

near rice fields may have important consequences for future white stork population 

dynamics in Iberia after landfill closure. Possible hypotheses for the differences in 

nest failure rates in rice fields compared to other habitats are discussed. 
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4.1. Introduction 

      Habitat quality can affect both the spatial and temporal availability of food 

resources, and can be a key factor in individual long term fitness and breeding success 

(Martin 1987, Newton 1998, Sergio et al 2009). Regions with resources that are 

variable in space and time have different species richness and bird biomass 

(Somveille et al 2013) compared to more stable environments. Additionally, foraging 

strategies will be different in unstable environments where food resources are 

seasonal, and usually require individuals to be highly mobile (Newton 1998). Landfill 

sites are a newly available, anthropogenic food resource that is guaranteed year-

round, providing stable conditions in an otherwise unstable environment. In Portugal, 

food waste became available to birds in the 1980s when managed landfill sites were 

created. Prior to this, domestic waste was dumped and burned locally. The volume 

of food discarded as waste also increased as at approximately the same time due to 

economic improvements.    

      For the white stork Ciconia ciconia, food availability for chick provisioning is a main 

influence on productivity and therefore on population trends (Dallinga and 

Shoenmakers 1989, Barbraud et al 1999, Tryjanowski and Kuzniak 2002), meaning 

this iconic species is widely regarded as an indicator for habitat quality (Olsson and 

Rogers 2009, Tobolka et al 2012; Janiszewski et al 2013).  

      Food supply has been demonstrated to have a positive influence laying date, 

clutch size (Tortosa et al 2003, Djerdali et al 2008, Eggers et al 2015) and number of 

chicks to fledge (Tortosa et al 2002, Massemin-Challet et al 2006, Kosicki and 

Indykiewicz 2011) in white storks. Landscapes are a mosaic of habitat patches that 

vary in quality and white stork productivity has been demonstrated to vary depending 

on the availability of different habitat types (Tryjanowski et al 2005). 

      Landfill has been utilized by white storks since the 1980s in Iberia (Tortosa et al 

2002) and more recently, since 1999 in Poland (Kruszyk and Ciach 2006)). It is widely 

considered to be having a strong impact on population distribution, productivity and 

survival. Tortosa et al (2002), noted that nesting near landfills had a positive influence 

on the number of chicks to fledge, whilst Massemin-Challet et al (2006) found that 

landfill pairs fledged more chicks than those further (1 km) away from landfills. Storks 

on the Iberian Peninsula increasingly nest close to landfill sites (Tortosa et al 2002), 
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resulting in artificially high concentrations of nests. Chicks fed on food resources from 

landfill are known to gain weight faster than their counterparts fed a non-landfill diet, 

which allows them to acquire homeothermy more rapidly (Tortosa et al 2002, Tortosa 

and Castro 2003, Denac 2006). This makes them less vulnerable to severe weather 

events and reduces mortality (Jovani and Tella 2004). 

      Landfill colonies are also buffered against the seasonal depletion of food 

resources and other density-dependent effects observed in non-landfill habitats 

(Massemin-Challet et al 2006).  There is also evidence that landfill chicks reproduce 

at a lower average age (Tortosa et al 2002) which speeds up recruitment to the 

breeding population. Birds that feed on dumps have been known to breed as young 

as 1 and 2 years of age (compared to the usual age of 3-4 years expected in non-

landfill nests (Tortosa et al 2002). Assuming lifespan and viable reproductive years 

are equivalent in landfill and non-landfill populations, landfill individuals potentially 

have a longer reproductive life and produce more chicks over their lifetime, further 

enhancing the breeding success of nests associated with landfill. 

      It is highly likely that feeding on landfill is also facilitating the trend towards year 

round residency in Iberia, with 80% of overwintering birds located near landfills 

(Tortosa et al 2002) and landfill forming 68.8% of local diets in both adults and 

juveniles throughout the year (Peris 2003). Consequently, landfill is thought to be an 

important factor in reversing the severe population decline that continued until the 

1970s (Tortosa et al 2002, Hilgartner et al 2014). 

      Despite the obvious importance of this new, artificial food resource for the white 

stork, the reproductive consequences of foraging on landfill have yet to be quantified 

in detail. This is particularly important because, as a result of EU directives, all open 

landfills are due to close by 2018. This drastic reduction in food supply could have 

significant impacts on white stork breeding success, nesting and migratory decisions.  

      Rice fields represent another new foraging habitat with an abundant prey source 

that is also extremely important to the white stork and may become increasingly 

utilized after landfill closure. Rice growing is a relatively recent land use is Iberia. 

Despite some local scale cultivation occurring in previous centuries, it only became 

widespread from the 1930s (Lima 1997). Rice growing consists of fields and drainage 

ditches that are seasonally flooded to a shallow depth, which is ideal for a shallow 
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wading species, such as the white stork, to catch amphibians, insects, fish, reptiles, 

small birds and mammals. Furthermore, the invasive red swamp crayfish 

Procambarus clarkii, a new prey resource which spread rapidly from Spain in the early 

1970s (Tablado et al 2010), has been present in vast numbers in both lentic and lotic 

water bodies, mainly rice paddies and reservoirs, in the study area since the late 

1980s (Ilheu pers com). White storks are known to feed extensively on crayfish in rice 

fields during the breeding season and to intensively provision their chicks with them 

(Negro et al 2000, Correia 2001).  

      This study investigates variation in productivity as a consequence of relative use 

of landfill and the most utilized non-landfill habitats in Iberia. The aims are firstly, to 

establish from individuals tracked with GPS tags which non-landfill habitats are most 

frequently used; secondly, to compare the impacts of distance between the colony 

and landfill on productivity (percentage of successful nests and mean number of 

chicks per nest), and thirdly, to compare productivity in relation to distance to the 

most used non-landfill habitat.   

 

 

4.2. Methods 

4.2.1. Study area and species 

      This study was carried out in colonies located throughout Portugal (Figure 4.1). 

Rice fields and irrigated agriculture occurs extensively in the local area surrounding 

colonies in the west of study area, on the estuaries of the Vouga and Mondego rivers 

to the north and the Tagus and Sado in the south. Other local non-landfill habitat 

surrounding colonies in the north were mixed, low intensity agriculture in crop 

rotations with fruit trees and vineyards, wet meadows and large stands of forest. To 

the south the habitat was mostly a mosaic of low intensity agriculture with irrigated 

agriculture (including olive groves and vineyards) and extensive areas of cork oak 

grassland (montado). This traditional, low intensity agro-forestry system consists of 

cork oak Quercus suber and holm oak Quercus rotundifolia trees in varying density in 

savannah grassland with some low intensity agriculture and cattle grazing. Urban 

areas around the colonies are mostly low density and diffuse.    
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Figure 4.1 Locations of the 25 study colonies in Portugal. Colony numbers correspond 

to the colony numbers listed in Table 4.1. 

 

 

 

 

 

 

 

 

 

 

 

      Over the course of this study there was a trend for land abandonment, particularly 

of the traditional cork oak grassland, and an increase in water bodies and areas of 

rice paddy, mostly taken from agricultural land (APA 2009). 

      The climate is classed as temperate continental with warm dry summers (IP 2015) 

with a gradient of decreasing humidity from west to east and from north to south. 

South-central Portugal and the Spanish border are particularly hot and dry. 

      White storks breed asynchronously. In Portugal, white storks usually start laying 

in the first week of March, laying up to 6 eggs, usually 4 (Zielinski 2002). Eggs hatch 

33-34 days later and chicks fledge 58-64 days after hatching. Adults may feed chicks 

for up to a week after fledging. White storks raise a single brood per year.  

 

4.2.2. Tag deployment and assessment of breeding season habitat use 

      Forty-eight white storks were equipped with GPS-ACC data loggers newly 

developed by the authors. Tag deployment occurred during the winters of 2012/13 

(n=15) and 2013/14 (n=33). Storks were captured on 5 active landfill sites in south-
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central Portugal (Aterro Sanitário Intermunicipal de Évora (38.538004, -7.971274, 

n=16), Aterro Sanitário de Ermidas do Sado (38.021444, -8.353319,  n=11), Aterro 

Sanitário de Vila Ruiva  (38.243040, -7.952321, n=10), Aterro Sanitário da Herdade do 

Montinho, Beja (37.924916, -7.864950, n=8) and Aterro Sanitário do Barlavento, 

Portimão (37.214041, -8.522350, n=3)). Storks were captured using leg lassos of 

nylon and rubber and a remotely activated clap net. Capture and tag deployment was 

licensed by the Instituto da Conservação da Natureza e das Florestas (ICNF).  

      Tags collected 5 GPS fixes per day at 6am, 9am, 12am, 3pm and 6pm GMT, each 

consisting of 10-20 consecutive GPS fixes (±20 m accuracy). Data were transmitted 

via GPRS using the GSM mobile phone network every 2 days to a web platform. Tags 

weighed 45g (solar powered) or 90g (battery powered) which was less than 4% of 

total body mass of each individual. Tags were back-mounted with a teflon harness 

that contained biodegradable string in order to prevent life-long attachment.  

      All tagged birds were subsequently resighted on their nests during the breeding 

season and productivity was monitored using protocols outlined below.  White storks 

do not breed in synchrony so the breeding season was defined as beginning on 1st 

March (egg laying in early nests) and ending on 30th June (final chicks fledging from 

late nests). Analysis incorporated habitat use data from tagged birds for the duration 

of this period. Nests were all located in colonies in south-central and south west 

Portugal.  

      Only GPS locations recorded during the breeding season were used in this 

analysis. GPS fixes occurring during flight were also removed. Flight was recognisable 

from speed, calculated as the distance between each consecutive GPS generated as 

part of each transmission. ArcGIS was used to link the GPS points to habitat categories 

derived from the Corine Land Cover (CLC) 2006 inventory. GPS positions occurring 

within 20 metres of the nest were considered to be nest attendance rather than 

foraging so were excluded from habitat analysis. The nest was easily recognised as a 

continuously used location of tightly grouped GPS coordinates. Since the aim was to 

establish patterns of habitat use after landfill closure all GPS locations occurring on 

and within 50 metres of an active landfill site were also excluded. Home ranges of 

tagged birds in non-landfill habitat were generated from the minimum convex 

polygon (MCP) of 95% of GPS fixes in order to exclude non-typical behaviour. A 
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compositional analysis (Aebischer et al 1993) comparing selected with available 

habitats was carried out in R using the Adehabitat library (Calenge 2006). 

 

4.2.3. Historic trends in fledging success in relation to habitat use 

      A nation-wide monitoring scheme recorded fledging success over time in selected 

nests in white stork colonies throughout Portugal between 2005 and 2009. 

Monitoring was coordinated by the authors, with local assistance from field 

biologists. Between 2012 – 2014 fledging success was recorded by the authors in 25 

of the previously monitored colonies (Figure 4.1, Table 4.1).  

      A minimum of 2-3 visits were made to each colony during the early and late 

phases of the breeding season to identify nests occupied by pairs and to capture 

fledging success in both early and late season nests. Where possible early season 

(March) visits were made at dusk or dawn to identify pairs roosting on nests and a 

camera pole was used to check for eggs. Coastal nests could be viewed in directly. It 

can be difficult to determine if a nest is occupied by a breeding pair so only nests 

where a pair were present during an early season visit, or eggs were present, are 

included in order to reduce the risk of over-estimation of nest failures. 

      Productivity is quantified by three metrics, the percentage of successful nests, the 

mean number of chicks per nest (including failed breeding attempts) and the mean 

number of chicks per successful nest. The percentage of successful nests is the 

number of successful pairs in a colony divided by the total number of monitored pairs. 

The mean number of chicks per nest is defined as the number of chicks about to 

fledge from all monitored breeding pairs, including unsuccessful breeding attempts. 

The mean number of chicks per successful nest considers only nests that fledged at 

least 1 chick. Chicks fledge at between 54 – 70 days of age (Hanckock et al 1992) so 

only nests with chicks ≥50 days old contributed to the productivity assessment. 

However, 91% of chick deaths) occur prior to 20 days of age (Jovani and Tella 2004). 

Nests containing chicks less than 50 days old were assessed in colony visits carried 

out later in the breeding season. Chicks were counted by telescope and, where 

possible, by camera pole. In deep nests chicks were not counted until an adult 

returned to provision the chicks. At this time all chicks usually stand to greet the  
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Table 4.1 Number of nests monitored, distance from colony to landfill and rice field 

and productivity metrics for the 25 study colonies. Landfill closures caused the colony 

– landfill distance to change between 2009 and 2012 and affected colonies have the 

pre 2009 and post 2012 colony – landfill distances listed. Means are the average 

across all study years (2005-2009, 2012-14). 

  

 

 

 

 

 

 

Colony ID 

Mean ± SE   

nests 

surveyed 

per year 

Landfill - 

colony 

distance 

(km) 

Rice field - 

colony 

distance 

(km) 

Mean ± SE  

chicks per 

nests  

Mean ± SE 

successful 

nests (%) 

1 31.3 ± 2.8 4.6 3.3 2.6 ± 0.2 85.4 ± 2.7 

2 21.5 ± 4.8 6.7 9.1 2.3 ± 0.3 83.6 ± 6.0 

3 26.4 ± 3.7 18.0 / 77.1 0.5 1.7 ± 0.2 69.1 ± 8.3 

4 69.5 ± 12.5 6.0 0.0 2.4 ± 0.3 82.1 ± 3.7 

5 21.5 ± 3.4 13.9 0.0 1.3 ± 0.2 61.6 ± 9.7 

6 28.3 ± 5.4 7.7 / 24.6 0.0 1.4 ± 0.3 62.9 ± 10.1 

7 26.8 ± 1.4 14.4 / 47.9 22.5 1.7 ± 0.1 82.2 ± 2.6 

8 45.8 ± 4.3 65.1 0.2 1.5 ± 0.2 67.5 ± 5.7 

9 49.6 ± 7.8 39.0 / 85.3 3.8 1.1 ± 0.2 52.3 ± 8.2 

10 21.4 ± 3.9 49.3 / 82.7 0.0 1.0 ± 0.1 52.2 ± 4.1 

11 19.3 ± 1.1 54.8 0.1 1.0 ± 0.1 48.7 ± 6.4 

12 13.1 ± 0.7 52.1 0.1 0.6 ± 0.1 34.2 ±6.1 

13 11.8 ± 0.5 49.2 0.1 1.2 ± 0.2 52.3 ± 5.1 

14 21.8 ± 1.6 47.9 0.0 0.8 ± 0.1 42.6 ± 6.0 

15 14.1 ± 2.9 48.1 0.6 1.0 ± 0.2 47.7 ± 7.6 

16 11.5 ± 1.4 40.5 0.2 0.4 ± 0.1 23.8 ± 4.6 

17 38.5 ± 4.1 49.7 33.5 1.2 ± 0.1 62.0 ± 5.1 

18 11.6 ± 3.0 48.8 26.5 1.2 ± 0.2 65.7 ± 9.2 

19 6.4 ± 1.3 46.1 30.0 1.6 ± 0.2 72.7 ± 6.8 

20 11.3 ± 2.0 44.2 36.0 1.5 ± 0.2 72.8 ± 6.3 

21 21.6 ± 3.7 27.7 35.9 1.1 ± 0.2 55.7 ± 6.5 

22 15.6 ± 0.8 25.0 41.1 1.3 ± 0.1 71.6 ± 4.0 

23 11.0 ± 0.4 45.2 54.0 1.2 ± 0.1 66.4 ± 3.7 

24 13.0 ± 2.7 43.7 21.6 1.0 ± 0.2 53.0 ± 8.6 

25 9.4 ± 1.7 42.7 24.1 1.4 ± 0.2 68.5 ± 5.5 
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adult. Only monitored pairs where breeding outcome was known are included in the 

study. 

      The study colonies captured variation in locally available foraging habitats and 

distance to landfill sites and were selected from a range of latitudes to minimise 

climatic effects associated with location, such as continentality. Additionally, nests 

were supported by a variety of structures (including trees, purpose built frames, low 

and high tension pylons, telephone poles, bridge supports and roofs), both within and 

between colonies, in order to eliminate any effect of supporting structure on 

breeding success (Hilgartner et al 2014). Fortunately, three of these colonies included 

the nests of tagged birds in 2013, ensuring continuity between the compositional 

analysis of habitat selection and historic colony productivity. 

 

4.2.4. Impact of landfill and non-landfill habitat on productivity  

      A colony was considered to be landfill influenced if it was 25 km or less from a 

landfill site. This distance was chosen because data from white storks tagged by the 

authors (in review, Chapter 2)) indicated that nest defending individuals used landfill 

less as distance between the nest and landfill increased. The regression describing 

this relationship during breeding indicated that nests 25 km distant would use landfill 

in less than 4.7% of total foraging trips (Figure 2.4b). Some tagged individuals at this 

distance did not use landfill at all during breeding. 

      Many colonies are located immediately beside rice fields (0 – 0.6 km distance), 

however, tagged bird data (authors unpublished data) revealed that birds travel 

further than the immediate habitat around the nest in order to visit both landfill and 

rice fields. Consequently, a colony was considered to have access to rice field if this 

resource was present within 4 km of the centre of the colony. This is based on mean 

distance from the colony to the nearest utilised rice field from tag data.  

      All distances were defined as the minimum straight line distance between the 

colony centre and the nearest perimeter of the landfill or closest rice field. A colony 

is defined as a minimum of 5 monitored nests occurring within a 515m radius of the 

colony centre. This distance allowed nests on 4 consecutive high tension pylon towers 
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to be considered a colony. Between 2005 – 2009 there was no data on the total 

number of nests present in any of the monitored colonies.  

       

4.3. Statistical analysis 

     All statistical analyses were carried out in R (R Development Core Team 2014). 

Linear regressions were used to investigate the relationship between colony scale 

productivity (percentage of successful nests and mean number of chicks fledged per 

breeding attempt and per successful nest) and the straight line distance between the 

colony and either the nearest landfill or nearest rice field. All 25 colonies were 

included in regressions assessing the impact of distance from landfill, whereas only 

colonies located at least 25 km from landfill sites were included in the regressions 

investigating the effect of distance from rice field. Landfills were excluded to explore 

productivity in non-landfill habitats in order to understand the possible impact of 

landfill closures on breeding success.  

      Three models were constructed to test the effect of distance from landfill and rice 

fields (and their interaction) on productivity in the 25 study colonies. In one model 

the relationship between percentage of successful nests in the colony and distance 

from landfill and/or rice fields was explored using a binomial generalized linear mixed 

model (R package lme4, Bates et al 2014). Percentage of successful nests, was 

modelled with a binomial “success” or “fail” dependent variable for each nest. 

Success denoted that at least once chick fledged the nest (ie at least one chick of ≥50 

days old was present in the nest), whereas fail indicated that the nest of a breeding 

pair fledged no chicks. The independent variables were: distance from colony to 

nearest landfill distance, distance from colony to nearest rice fields and the 

interaction between the two distance variables for 25 colonies (for details see Table 

4.2). Year was included as a random factor. Both distance variables were standardized 

by subtracting the mean, then dividing by the standard deviation (Schielzeth 2010). 

      The next two models investigated the impact of distance from landfill and/or rice 

fields on productivity at nest scale. Firstly, the number of chicks fledged per nest 

(including breeding attempts that failed) was investigated using a Poisson regression 

model. Secondly, the impact of nest distance from landfill and/or rice fields on the 
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number of chicks per successful nest (excluding breeding attempts that failed) was 

explored using a Gaussian model. In both nest-scale models, year and colony identity 

(Table 4.2) were included as random factors. 

      All independent variables were initially included in the models and the statistical 

significance of each (and their interaction) was tested by comparison to a null model 

(from which the variable of interest had been deleted) using likelihood ratio tests. A 

logit link back transformation (binomial model) and a log link transformation (Poisson 

model) were applied to the final model outputs to derive predicted values. The 

overall significance of the final models, R2
GLMM(model), was obtained using R (R 

Development Core Team 2014).  

 

4.4. Results 

      The storks with tags that stopped transmitting before the breeding season (n=20) 

and others (n=8) suspected juveniles or non-nest holding birds were not included in 

the analyses. In total GPS data from 20 nest-defending tagged birds (mean 

transmissions per bird = 406.8 ± 30.2) were used to construct the breeding season 

compositional analysis ranking matrix (Table 4.1).  

 

 

 

 

 

 

Table 4.2 caption. Compositional analysis comparing proportions of utilized habitat 

with proportions of total habitat types available within the home range MCP. The 

habitat rank indicates whether the habitat type in the row is used significantly more 

/ less than the habitat type in the column.  Triple symbols indicate statistically 

significant preferences.
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Table 4.2. Compositional analysis ranking matrix.  Caption bottom of previous page.  
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Rice field 
 

 + + +++ +++ +++ +++ +++ + +++ +++ +++ 

2 
(10) 

Non Irrigated  
Arable -  + +++ +++ +++ +++ +++ +++ +++ +++ +++ 

3 
(9) 

Permanently 
Irrigated - -  + + + + + + +++ + +++ 

4 
(8) 

Cork Oak 
grassland --- --- -  + + + + +++ +++ +++ +++ 

5 
(7) 

Water 
margins --- --- - -  +++ +++ + + + + +++ 

6 
(5) 

Vineyards 
 --- --- - - ---  + - + + + + 

7 
(4) 

Permanent & 
annual crop --- --- - - --- - - + + + - + 

              

7 
(4) 

Complex  
Cultivation --- --- - - - + -  - + + + 

9 
(3) 

Agriculture & 
Grassland - --- - --- - - - +  - + + 

9 
(3) 

Transitional 
Woodland --- --- --- --- - - - - +  + + 

11 
(2) 

Unsuitable 
 --- --- - --- - - + - - -  + 

12 
(0) 

Olive groves 
 --- --- - --- --- - + - - - -  
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4.4.1. Non-landfill habitat preference 

      CLC 2006 habitat classifications within the non-landfill MCPs of each individual 

were summarised into a total of 12 habitat types (Table 4.2). Compositional analysis 

indicated that, in MCPs where rice field was available, it was positively selected over 

all other habitat types (Table 4.2). In order of utilization preference, habitats were 

ranked rice field > non-irrigated arable > permanently irrigated land > cork oak 

grassland > water margins. There was then a drop in rank score to the remaining 7 

habitats, indicating these habitat types were less used. Rice field occurred in the 

MCPs of 9 birds, suggesting good representation in the analysis. Cork oak grassland 

and non-irrigated arable land were the most common land use categories, occurring 

in the home ranges of all birds. In one case, non-irrigated arable was the only 

available habitat category in the non-landfill foraging range. Habitat types in the 

unsuitable category were urban and industrial areas and coniferous forest.     

 

4.4.2. Productivity trends 

4.4.2.1. Historic productivity 

      Over the 8 study years, breeding success data were collected from 4285 breeding 

events in 25 colonies. The number of nests monitored per year ranged from 265 in 

2012 to 371 in 2009 (mean ±SE number of nests per year = 307.3 ± 12.8). Details of 

the mean number of nests per colony can be found in Table 4.1. The number of 

fledglings per nest ranged from 0 to 6 chicks. 

      Colonies located up to 25 kilometres in a straight line distance away from an active 

landfill were considered to be landfill-influenced (n =7 colonies, mean ± SE = 147.1 

±10.6 nests). Colonies within 4 km of rice fields were considered to be rice field 

colonies (n =14 colonies, 230.3 ± 16.7 nests), 5 of which were close to both rice fields 

and landfill. The remaining colonies (n =9 colonies, 147.5± 5.8 nests) were considered 

to be out of foraging range of both landfill (mean distance ±SE= 41.4 km± 3.0) and 

rice field (mean = 33.6 km ±3.3). These colonies were situated in areas dominated by 

cork oak grassland with some non-irrigated agriculture. Distances from both landfill 

and rice fields for each colony are found in Table 4.1. 
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Figure 4.2 Mean ± SE colony-scale productivity in relation to the distance between the 

colony and the nearest active landfill (a - c) and distance between colony and nearest 

rice fields (d -f), averaged over the years 2005 – 2009 and 2012 – 2014 for 25 colonies. 

Percentage of successful nests (a, d) expresses the percentage of breeding pairs in 

each colony that successfully fledged at least one chick. The mean number of 

fledglings per nest per colony is presented inclusive of failed breeding attempts 

(graphs b and e) and mean chicks fledged from successful nests only (fledging a 

minimum of 1 chick, c and f). Colonies identified as blue symbols were located within 

4 km of rice fields, colonies in yellow were located within 25 km of landfill. All colonies 

are included in the regressions in a-c, whereas landfill colonies are excluded from 

regressions in d-f to assess productivity away from the influence of landfill. 
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4.4.2.2. Productivity trends in different foraging habitats  

      Averaged across all study years, there was a strong, negative relationship 

between distance from colony to landfill site and i) the percentage of successful nests 

per colony ii) the mean number of fledglings per nest (including unsuccessful nests) 

and iii) the mean number of fledglings per successful nest (excluding failed nests), 

Figure 4.2 a, b and c (see Appendix 4.1 a and b for data presented per year). Colonies 

situated close to landfill were more likely to successfully rear at least one chick and 

fledge higher numbers of chicks per nest (both including and excluding failed nests) 

than colonies where individuals were far from landfill. As a result, over the study 

period, the mean number of fledglings per breeding pair (± SE) in colonies located 

within 25 km of landfill (n=7, mean distance 10.2 km ± 2.0) was 2.0 ± 0.2 compared 

to 1.1 ± 0.1 in colonies located far from landfills (n=18, mean distance 45.5 km ± 2.1). 

This difference includes the failed breeding attempts. 

      With the exception of colonies influenced by landfill (in yellow, excluded from 

regressions in Figure 4.2 d, e and f), colonies located near rice fields experienced 

highly variable breeding success. Some colonies had high rates of nest failure, Figure 

4.2 d (lowest success rate was 34.2% ± 6.1 of nests in a single colony, averaged over 

the study period, Table 4.1) and low numbers of fledglings per nest (Figures 4.2 e), 

whilst others performed equivalently to colonies in other non-landfill habitats. As a 

result, away from rice fields there was a significant increase in both the percentage 

of successful nests and the mean number of chicks per nest. Taking into account 

failed breeding attempts, colonies located within 4km of rice fields (mean distance 

0.6 km ± 0.4) and far from landfills fledged a mean of 1.0 ± 0.1 chicks per nest, 

whereas nests far from both rice (33.6 km ± 3.3) and landfill fledged 1.3 ± 0.1 chicks 

per nest. Landfill colonies excluded, there was no significant effect of proximity to 

rice field on the mean number of chicks per successful nest (Figure 4.2 f). This means 

productivity in successful nests is similar across all non-landfill habitats.  

      Back-transformation of the standardized model results shown in Table 4.3 

revealed that, across all 25 colonies, the percentage of successful nests decreased by 

7.3% per kilometre away from landfill sites, whilst in colonies near rice fields the 

percentage of successful nests was 2.6% lower than in other habitats (Table 4.3a). 

The interaction term between rice field-colony distance and landfill-colony distance  
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Table 4.3 Results of GLMMs predicting the relationship between a) percentage of 

successful nests per colony, b) mean number of fledglings per nest (including failed 

breeding attempts) and c) mean number of fledglings per nest (excluding failed 

breeding attempts) in relation to distance to nearest landfill and/or rice field for 25 

colonies. Non-significant effects (not included in the final model) are in italics.  

 

a) Successful nests (%) 
Predictors Estimate SE Z Pr(>|z|) 

Intercept 0.570 0.135 4.231 ˂0.001 

Landfill – colony distance (km) -0.326 0.028 -11.526 ˂0.001 

Rice – colony distance (km)   0.075 0.036 2.121 0.034 

Landfill – rice interaction 0.039 0.005 0.694 0.488 

Random effect Variance SD   

Year 0.136 0.369   

Variance explained (R2
GLMM(model)): 65.3% 

 

b) Number of fledglings per breeding pair (including failed nests) 

Predictors Estimate SE Z Pr(>|z|) 

Intercept 0.196 0.115 1.687 0.091 

Landfill – colony distance (km) -0.249 0.075 -3.388 ˂0.001 

Rice – colony distance (km)   -0.038 0.061 -0.618 0.537 

Landfill – rice interaction 0.050 0.093 0.538 0.590 

Random effect Variance SD   

Year 0.762 0.276   

Colony 0.081 0.284   

Variance explained (R2
GLMM(model)): 81.6% 
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c) Number of fledglings per successful nest 

Predictors Estimate SE Z Pr(>|z|) 

Intercept -2.15 0.115 18.723 0.075 

Landfill – colony distance (km) -0.220 0.065 -3.366 <0.001 

Rice – colony distance (km)   -0.115 0.060 -1.915 0.064 

Landfill – rice interaction 0.066 0.082 0.766 0.415 

Random effect Variance SD   

Year 0.576 0.282   

Colony 0.576 0.240   

Variance explained (R2
GLMM(model)): 74.5% 

 

 

 

was not significant indicating that rice field habitat use away from landfill does not 

significantly impact the percentage of successful breeding attempts. In all models, 

the random effects were not significant, indicating that there was no effect of year 

or colony identity. 

      The mean number of fledglings per nest decreased by 3.4% per kilometre distance 

from landfill (failed nests included) or 2.4% per kilometre (successful nests only), 

highlighting that the benefit of nesting near landfill is not only increased likelihood of 

breeding successfully, but also increased likelihood of raising more chicks. The impact 

of proximity to rice fields on mean number of chicks per nest was only significant 

when considering failed nests (Table 4.3 e). There was no significant difference in the 

mean number of chicks per successful nest (Table 4.3 f). Thus, despite higher rates of 

total nest failure, the number of fledglings raised in successful nests by rice field 

colonies was not significantly different from the number of chicks raised in other 

habitats. This was explored further by comparing the frequency and distribution of 

chicks in nests nest dimensions (ie frequency of occurrence of nests with 0, 1, 2 etc 

chicks per colony) in different habitats (Figure 4.3).  
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Figure 4.3 Frequency distribution of numbers of chicks per breeding attempt in 8 years 

(2005 – 2009, and 2012 – 2014) for a) colonies close to landfill (colony – landfill 

distance ˂8 km, n=4), b) colonies close to rice fields (colony – rice field distance ˂0.6 

km, n= 11) and c) colonies (n=10) far from both landfill (minimum distance = 14.4 km, 

mean ±SE= 38.7 km± 3.8) and rice fields (minimum= 21.6 km, mean = 32.5 km ±3.1). 
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4.4.3. Variation in numbers of chicks per nest       

      The benefit of landfill manifests not only in terms of fewer nest experiencing total 

failure (no fledglings), but also in the considerably higher frequency of nests fledging 

4 or more chicks in comparison to colonies in non-landfill habitats (Figure 4.3). The 

only nests to fledge 6 chicks were in landfill colonies. This combination of high success 

rate and high numbers of chicks per nest means that landfill closures will have a 

considerable impact on white stork productivity. 

      In congruence with the model results, the frequency of breeding pairs failing to 

produce fledglings is highest in colonies close to rice fields and this is consistent 

across study years (Figure 4.3b). The frequency of nests recording 1, 2, or 3 chicks is 

similar between rice fields and other non-landfill habitats, whereas the frequency of 

4 chicks per nest is higher in rice fields (Figure 4.3 b and c). This indicates that whilst 

many pairs in rice colonies fail completely, a small number of pairs are highly 

successful.   

 

4.5. Discussion 

4.5.1. Preferred non-landfill foraging habitats 

      To our knowledge, this study is the first high-precision analysis of white stork 

habitat selection from tagging data, which has enabled us to rank habitats with very 

different foraging opportunities in order of utilization preference. This is relevant to 

our understanding of how the artificially high concentration of storks nesting in the 

vicinity of landfills may redistribute themselves after landfill closures. The top ranked 

habitats are congruent with previous studies of white stork habitat selection in Iberia. 

These indicated dry and flooded pastures, including cork oak grassland, (Alonso et al 

1991, Carrascal et al 1993) and rice fields (Sans-Aguilar et al 2014) as key foraging 

habitats, whilst woods and scrub are avoided. 

      Food availability is a key driver in white stork habitat selection (Alonso et al 1991). 

White storks are highly opportunistic and, according to theories of optimal foraging, 

individuals should forage on the most profitable resources (Sutherland 2002). 

Although it is not known how close to optimal is the white stork foraging strategy, 

they are known, to some extent, to discriminate between high and low quality 
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patches and those with low and high associated flight costs (Johst et al 2011). Rice 

field habitat is clearly highly important for foraging white storks because 

compositional analysis indicated that it is selected over all other available habitats 

(Table 4.2). 

      Data from tagged white storks (authors unpublished data) indicated that 

individuals may travel further to visit rice fields than the normal range of breeding 

season foraging trips. The majority of foraging normally takes place in the immediate 

1 - 2.5 km radius around the nest (Dziewiaty 1992, Moritzi et al 2001, Denac 2006, 

Vrezec 2009), but one tagged bird regularly travelled 8 km to foraging in rice fields, 

whilst another occasionally travelled 13 km. This distance is equivalent to distances 

others have reported that birds travelled to visit landfill (Tortosa et al 2002). The 

abundance and large size of individual crayfish likely equates to shorter foraging 

bouts to meet calorific needs.  This suggest that, due to the predictability and 

abundance of crayfish, after landfill closure white storks may preferentially elect to 

nest close to paddy fields particularly, but also irrigated areas and water margins. 

Large flocks of storks on rice and irrigated fields are problematic because they 

trample seedling crops and muddy the water, which may lead to conflict with local 

farmers.  

      The use of arable land by white storks varies throughout its breeding range. 

Intensification of farming practices have been highlighted as a causal factor in the 

decline and loss of the white stork across its breeding range (Olsson and Rogers 2009, 

Janiszewski et al 2014). However, in less intensively farmed areas, studies report that 

storks use arable fields (eg Ozgo and Bogucki 1996, Latus and Kujawa 2005) and that 

they can be seasonally optimal, such as during ploughing (Pinowska and Pinowski 

1989). Farming practices in the study area, Portugal, are generally much less intensive 

than elsewhere, and often include 5 – 7 year crop rotation cycles with fallow years 

and grazing. For this reason, the non-irrigated arable category is extremely broad, 

both temporally and spatially, and suitable for storks because it includes seasonally 

wet land and grazing, as well as low intensity crops with high abundance of insects, 

mammals and amphibians. 
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4.5.2. Productivity trends in relation to landfill and rice fields 

      Iberia is an area of high white stork population density (Thomsen 2006) and 

results presented here show the impact of proximity to landfill on breeding success 

to be considerable. Colonies situated near landfills had higher percentages of 

successful nests and fledged higher numbers of chicks per nest (including much 

higher frequency of broods of 4 or more chicks) compared with colonies far from 

landfills (Figure 4.2, Table 4.3, Figure 4.3). The percentage of successful nests 

decreased by 7.3% per additional kilometre distance from landfill and the number of 

fledglings per nest decreased by 3.4% per additional kilometre (including failed nests) 

or 2.4% considering successful nests only. This last metric considers factors impacting 

breeding success after hatching (therefore eliminates differences in fecundity, and 

other confounding effects on hatching success such as predation and weather 

effects). Nest close to landfill have significantly higher numbers of fledglings per 

successful nest than nests further away (Figure 4.2 c) which indicates that food 

availability is likely an explanatory mechanism.     

      To our knowledge, no other study has quantitatively estimated the impact of 

landfill on productivity, but studies investigating the impact of supplemental feeding 

in white storks have been carried out. Contrary to our findings, Moritzi et al (2001) 

found no effect of supplemental feeding, which may have been related to favourable 

foraging conditions in local habitats due to good weather. Hilgartner et al (2014), the 

only study thus far to quantify supplemental feeding effects, reported a drop in 

number of fledglings per nest of 8% per additional kilometre distance from the 

feeding station. However, these works are not directly comparable with the current 

study because feeding stations were only available during the course of the study and 

only stocked at certain times meaning additional food was not available ad libitum as 

it is in landfills. Furthermore, they were carried out in an area of considerably lower 

population, meaning population density effects were likely less important. 

It is likely that all white storks in Iberia, including those nesting far from 

landfill, utilise landfill to some extent, particularly during winter. Even occasional 

landfill use may have carryover effects that improve productivity in the subsequent 

breeding season, so our estimates for productivity after landfill closure, based on 

current productivity in colonies far from landfills, may be overestimated. 
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Nevertheless, our study indicates that landfill closure will have huge consequences 

for future white stork breeding success because it is likely the high productivity in 

landfill colonies that is driving the substantial population increase seen in recent 

decades. Away from landfills (mean 45.5 km ± 2.1), colonies fledged fewer chicks per 

nest than reported elsewhere in Europe (2005-9, 2012-14 mean ± SE = 1.1 ± 0.1). For 

example, in a non-landfill population in western France, the mean number of 

fledglings per nest was 3.2 ± 1.1 (years 1978 – 96, Barbraud et al 1999). However, the 

annual mean fell over the study period in association with density dependent effects 

as the population increased. By the end of the study the mean was 2.1 ± 1.1, still 

higher than reported for Portugal by this study. A study in Poland (1983 -2002), 

reported mean fledglings per breeding pair of 2.58 ± 0.10 and 2.76 ± 0.09 

(Tryjanowski et al 2004), whilst in Germany 1.7 fledglings per breeding pair was 

reported (Hilgartner et al 2014).  

      Overall, breeding outputs in the western European population of white storks are 

low and not dissimilar to the reproductive rates reported during the strong 

population decline of the 1970s (Hilgartner et al 2014). Comparatively low rates of 

reproductive success in nests away from landfills reported by this study mean it is 

unknown if non-landfill productivity is sufficient to sustain a stable population in 

Iberia, particularly in the face of environmental and climatic change in both Iberia 

(Giorgi 2006, Perez and Boscolo 2010, Hoerling et al 2012) and the African wintering 

grounds (Kanyamibwa et al 1990, Saether et al 2006, Wilson and Cresswell 2006). 

Low breeding success is likely due in part to the strong effect of high population 

density on productivity. In non-landfill colonies, whilst there was no variation in the 

number of chicks fledged from successful nests (Figure 4.2 f), there was high variation 

in rates of total nest failure (Figure 4.2 d), and effect that may become increasingly 

important after landfill closures. 

      Across all study years, colonies within 4 km of rice field had highly variable 

breeding success, with some colonies significantly more likely to experience complete 

nest failure than colonies in other habitats (Figure 4.2, Table 4.3, Figure 4.3). This was 

surprising because rice fields were the highest ranked foraging habitat (Table 4.2) 

with an abundant prey source, the red swamp crayfish, that is considered to be of 

high nutritional value (Negro et al 2000). This should make rice fields high quality 
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nesting territories with higher than average breeding success and fewer nest failures. 

Other studies have demonstrated that nests near wetlands have lower incidence of 

brood reduction and higher breeding success than those in drier habitats (Barbraud 

et al 1999, Janiszewski et al 2013). As rice fields are likely to be utilized increasingly 

after landfill closure, it is important to understand the causal mechanisms behind the 

highly variable breeding success in this habitat. 

 

4.5.3. Hypotheses for variable productivity in colonies near rice fields 

      Poor breeding success can result from two occurrences, either low initial clutch 

size (low female quality or resource availability), or mortality during chick rearing. 

Insufficient nests were easily accessible and colonies were not visited with sufficient 

regularity to confirm at which stage the majority of losses occurred. However, views 

into accessible nests in rice field colonies, and the occurrence of eggshell below, 

indicated that pairs in rice field colonies were hatching clutches within expected size 

dimensions (2-5 eggs, authors unpublished data). This suggested that nest failures 

were likely occurring mainly during the chick rearing phase. 

      Nest predation in white storks in Iberia is extremely low at under 4% (Vergara et 

al 2006, Aguirre and Vergara 2009, authors’ observations) and the colonies near rice 

field did not differ from other colonies located elsewhere, thus this was considered 

an unlikely explanatory mechanism. Climatic variables, particularly precipitation and 

temperature, are known to influence white stork breeding success (Denac et al 2006) 

but total nest failures in rice field colonies were consistently high across all eight 

study years (Figure 4.3, Appendix 4.1 a and b), encompassing good and bad breeding 

years. Additionally, colonies at equivalent latitudes and distances from the coast that 

were not close to rice fields were not impacted suggesting a location specific driver. 

Prey availability is an important mechanism governing breeding success (Tryjanowski 

and Kuzniak 2002), therefore, four non-exclusive hypotheses linked to food 

availability were considered to explain the high nest failure rate close to landfills. 

      Firstly, inadequate skills in rice field foraging, particularly in dealing with crayfish. 

Although storks are known to consume crayfish in large quantities (Tablado et al 

2010), crayfish is a relatively new prey that has colonised the study area within the 
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life time of individuals (~25 years) and is not available outside of Iberia. There is 

evidence to suggest that expertise and specialism in crayfish develops with age in 

storks (Sanz-Aguilar et al 2015) so young birds may be less adept at foraging in this 

habitat and therefore chicks suffer lower provisioning rates and higher incidence of 

starvation or brood size adjustment by the adults (Lack 1954, Mock and Forbes 1994). 

However, chicks were noted to have orange skin, indicative of carotenoids derived 

from high crayfish consumption (Negro et al 2000). Furthermore, the availability of 

vertebrates, such as frogs, in wetland habitats means these environments are 

calculated to have a higher biomass intake than drier areas (Pinowska and Pinowski 

1989). 

      Secondly, some rice field colonies may contain many high proportions of low 

quality individuals, or young birds breeding for the first time. Juveniles are known to 

occupy lower quality nest sites in marginal locations and to have lower rates of 

breeding success and higher risk of total nest failure (Vergara et al 2006, Nevoux et 

al 2008). This may result in differential representation of first time breeders in some 

colonies. In our population there were insufficient birds of known age to draw 

conclusions about the distribution of age classes within a colony. Furthermore, some 

low performing rice field colonies were located in areas of perceived good quality 

foraging habitat, including extensive areas of cork oak and grazing, making it unlikely 

that every colony was in marginal habitat. However, other low productivity colonies 

had significant stands of coniferous forest in the immediate vicinity, making these 

more likely to be marginal zones. Colonies where rice field constitutes the only 

suitable foraging habitat will be vulnerable to changes in the timings of rice field 

management (eg flooding, ploughing) because crayfish accessibility is dependent on 

water level (Cook et al 2014). This is because crayfish hide in burrows and other 

refugia by day to prevent desiccation, whereas storks are primarily day time foragers.  

      Thirdly, breeding success in certain rice field colonies may be impacted by 

pollutants, for example heavy metals. Rice fields are located on estuaries down 

stream of industrial areas that were historically unregulated. This may have led to the 

sedimentation and accumulation of environmental contaminants in rice fields. 

Wading birds can ingest large quantities of sediment during foraging and some 

contaminants, for example lead, can be toxic even in small quantities (Pain et al 
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1998). Heavy metals are known to bio accumulate in apex predators, such as white 

storks (Bosveld et al 1995), with several ciconiform species suspected to demonstrate 

increased sensitivity (Goutner et al 2011). They are also known to accumulate in the 

main prey species, the red swamp crayfish (Alikhan et al 1990, Geiger et al 2005, 

Alcorlo et al 2006). Accumulation may influence individual condition with 

consequences for survival and reproductive success (Heath and Frederick 2005).  

      Structural deformities associated with heavy contamination were not noted in the 

study region, however, metal burdens can impact on DNA, hatching success and the 

development of chicks (Pastor et al 2001, De Luca-Abbott et al 2001, Boas et al 2006). 

Additionally, the synergistic and antagonistic effect of multiple heavy metals is known 

to be greater than their individual toxicity (Pain et al 1998, Boas et al 2006). The 

combined impact of metal burdens and environmental stressors (eg climatic 

conditions, poor food availability) on body condition is also known to be important 

(De Luca-Abbott et al 2001, Boas et al 2006), so it is possible that low level 

contamination may be contributing to making rice field colonies more prone to 

failure. Future work should investigate this hypothesis further. 

 

   4.6. Conclusions 

      Two new, abundant foraging opportunities have become available to white storks 

within the lifetimes of individuals: foraging on landfill and on the invasive red swamp 

crayfish in rice fields. Currently in Iberia white stork preferentially nest near landfill 

sites where productivity is high and this is contributing significantly to the population 

increase seen in Iberia in recent decades. It is highly likely that rice fields will become 

key areas for white storks after landfill closure, however, productivity trends in this 

habitat were highly variable in comparison to other non-landfill habitats, with many 

nests failing completely. Away from landfill, mean productivity in the study area was 

relatively low, compared to other European countries, likely the result of both 

behavioural and environmental factors. It is not known if current levels of 

reproductive success in non-landfill habitats are sufficient to sustain a viable 

population. It is thus important to unravel the mechanisms behind differences in 

breeding success in non-landfill habitats since this information will be essential to 

understand population dynamics after landfill closure.          
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Abstract 

      Apex predators are susceptible to the accumulation of pollutants, mainly through 

consumption of contaminated food sources which biomagnify with progress up the 

food chain. This can have a detrimental effect on breeding success through impacts 

on egg and chick development. On the Iberian Peninsula, the population of white 

storks Ciconia ciconia is known to forage extensively on landfill sites and rice fields 

throughout the year. Both these sites may be contaminated due to environmental 

pollution. Landfill food resources may be in contact with toxic rubbish and rice fields 

may have trace elements deposited in sediments. In Portugal, breeding success in 

colonies located near some rice fields tends to be below average, with some colonies 

consistently experiencing high rates of complete nest failure. One possible hypothesis 

for factors contributing to poor productivity near rice fields is contamination by 

environmental pollutants. The red swamp crayfish Procambarus clarkii, a main prey 

species in rice fields is known to bio-accumulate heavy metals. White storks also 

forage extensively year round on landfill, which is also likely to increase body burdens 

of trace elements. For females, egg laying is an important route for the excretion of 

heavy metals, enabling body concentrations to be evaluated non-invasively.  

      This study compared differences in the distribution of 4 heavy metal species in 

167 egg shells from 19 colonies in key foraging habitats: landfill, rice field and cork 

oak savannah (control colonies), to ascertain if rice field colonies had higher 

concentrations of key metal species known for their toxicity. These were mercury, 

lead, arsenic and cadmium. Content (yolk and albumen) and shell samples from the 

same egg were also analysed to ascertain whether concentrations deposited in shell 

was representative of the contamination experienced by the developing chick.  

      Results showed that, in this species, arsenic preferentially deposit in egg content, 

whilst there was no difference in the distribution of cadmium, mercury and lead 

between the shell and content. This means cadmium, mercury and lead in egg shell 

are representative of body burdens at the time of egg laying. None of the metal 

species were found in concentrations that were cause for concern. Additionally, eggs 

from nests that are in close proximity to landfill habitat (where productivity is good) 

were the most contaminated meaning it is unlikely that rice field colonies are 

suffering reduced productivity as a result of contamination by trace metals. 
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5.1. Introduction 

      Habitat quality and the availability of food resources are known to impact on 

breeding success (Martin 1987, Newton 1998), however, increasingly the quality of 

food resources is being impacted by anthropogenic activities. It is widely known that 

environmental pollutants, such as organo-chlorates, persistent organic pollutants 

(POPs), flame retardants and trace elements including heavy metals, can have 

negative effects on the population dynamics of local species (Gómez-Ramírez et al 

2012, Casa-Resino et al 2015, De Luca-Abbott et al 2001). Contaminants bio-

accumulate up the trophic levels and concentrate in apex predators, making them 

particularly susceptible to negative impacts (Bosveld et al 1995). Impacts include 

behavioural alteration, increases in stress hormones (Casa-Resino et al 2015) and 

reduced physical condition (with consequences for breeding fitness), reduced 

survival and lower breeding success (De Luca-Abbott et al 2001, Connell et al 2003).  

Breeding success can be affected in a variety of ways including reduced clutch size, 

egg shell thinning, egg hatchability, as well as impacts on egg and chick development 

(Custer 2000, Erwin and Custer 2000). Mercury, lead, cadmium and arsenic, normally 

derived from industry and smelting, are individually highly toxic and are widely 

monitored in breeding birds, (eg Golden et al 2003, Lam et al 2004, Ayas 2007). 

Synergistic and antagonistic interactions between heavy metals means that the 

combined impact of metals may be greater than their individual toxicity (Pain et al 

1998, Baos et al 2006). This is known to make individuals more susceptible to disease 

and can increase the impact of environmental pressures, such as bouts of cold 

weather (De Luca-Abbott et al 2001). 

      In Southern Europe, rice fields are important foraging habitat for many avian 

species (Lourenco and Piersma 2009, Toral et al 2012), including the white stork. This 

species is becoming increasingly sedentary on the Iberian Peninsula and is known to 

utilize rice fields extensively throughout the year. However, recent analysis of 8 years 

of breeding success data in white stork colonies in Portugal has indicated that 

colonies close (within 4 km) to rice fields have below average productivity in 

comparison to other habitats (Chapter 4). In particular, some colonies consistently 

experienced high rates of complete nest failures, where monitored breeding pairs 

failed to raise any chicks. 
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      A possible explanatory hypothesis may be that some rice fields experience 

environmental contamination from trace elements, such as heavy metals, and this is 

impacting productivity. Rice field colonies in the estuaries of the River Sado and Tagus 

in south-western Portugal are located close to areas of heavy industry associated 

with the capital, Lisbon, and its hinterland. Historically, potentially hazardous 

industrial emissions were less regulated which may have resulted in the deposition 

of industrial contaminants in areas that are now rice field. Wading birds are known 

to be particularly susceptible to contamination because they ingest sediment in large 

quantities as they forage (Pain et al 1998). Furthermore, in rice fields, white storks 

forage intensively on the abundant, invasive red swamp crayfish, which they feed to 

their chicks in large quantities during the breeding season (Negro et al 2000, Correia 

2001). Crayfish are an abundant food source most of the year, but it is known to 

accumulate pollutants and heavy metals in its tissues and organs and transmit them 

up the trophic levels (Alikhan et al 1990, Geiger et al 2005, Alcorlo et al 2006), 

impacting particularly on the species at the apex of the food chain. The white stork, 

an apex predator, is therefore an indicator species for overall level of habitat 

contamination. Data from this study could be of interest to studies of other species 

who intensively use rice fields. 

      White storks also forage extensively on landfill, which likely influences heavy 

metal concentrations in eggs and chicks in nests breeding close to landfill (Casa-

Resino et al 2014), since birds with nests located close to landfill sites tend to use 

landfill sites with high frequency throughout the year (Chapter 2). However, breeding 

success near landfills in the study area was high overall, suggesting minimal impact, 

which could be used as a bench mark comparison with rice fields. 

      Evaluation of levels of heavy metals in eggshell is a widely recognized, non-

invasive monitoring method (Connell et al 2003, Evers et al 2003, Ikemoto et al 2005, 

Brasso et al 2012), and egg-laying is an important contaminant excretion method in 

females (Burger 1994). The levels of heavy metals, for example mercury, in eggshells 

are known to correlate with female blood concentrations, as well as concentrations 

in prey (Evers et al 2003). This means values reported in egg shells should reflect 

levels at time of breeding and indicate levels the developing chick is exposed to. 

Deposition in egg material is particularly important for this species because moult 
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slows with age (van den Bossche 2002). This means in some years individuals do not 

replace any feathers, thereby being unable to deposit contaminants into feathers, 

another well-known excretion route.  

      The aims of this study were:  1) to compare the detectability of the metal species 

in the content and shell of white stork eggs, and 2) to compare the distribution of 

various metals in eggshells from rice fields, landfill and control colonies to ascertain 

if heavy metal contamination could be impacting productivity in white stork colonies 

located near rice fields. 

 

 

 

5.2. Methods 

5.2.1. Sample collection 

      During the breeding season of 2013, the area below nests in 19 colonies was 

frequently checked for egg shell and whole, unhatched eggs. Whole eggs may be 

expelled from the nest as a result of nest ownership changes, or because they failed 

to hatch. A mean (± SE) of 8.4 ± 0.5 eggshells per colony were collected. Shell and 

content samples were stored in individually labelled, sealed plastic bags until 

analysis.  

      The location of the 19 colonies is depicted in Figure 5.1 and sample numbers are 

shown in Table 1. The frequency with which individual white storks visit landfill is 

dependent on the distance between the nest and landfill site (Chapter 2), so landfill 

colonies were selected to be as close to landfill sites as possible (max distance: 6.7 

km, mean ± SE: 4.1 ± 1.3 km). Many stork colonies are located immediately beside 

rice fields, thus rice field habitat forms a significant proportion of the foraging habitat 

immediately around the nest. Where possible, egg material was gathered from the 

same rice field colonies monitored for productivity (7 of the 9 rice field-only colonies, 

Chapter 4). This was to ensure that colonies with particularly low breeding success 

were targeted. Unfortunately, one colony was located on pylons over flooded rice 

fields and another was on urban roof tops, so no egg material was recovered. Three 

alternative colonies immediately beside rice fields were included as alternatives. Rice 
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colonies were located a mean (± SE) of 0.1 km ± 0.1 from rice field and a minimum 

distance from landfill of 38.1 km (mean ± SE: 55.6 km ± 3.9). 

      Control colonies were located in extensive areas of cork oak savanna, a traditional, 

low intensity management system of cattle grazing and cork oak trees with some 

small crop fields on rotation cycles. This habitat was considered likely to be relatively 

uncontaminated by industrial pollutants. Control colonies were located a mean (± SE) 

distance of 48.0 km ± 8.3 from landfill and 35.7 km ± 5.6 from the nearest rice field.   

 

     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Location of colonies where egg samples were collected in Portugal. The 

area inside the box is the Sado Estuary, where productivity in rice fields Is particularly 

low. 
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5.2.2. Laboratory analysis 

      Prior to analysis egg content was freeze dried to remove moisture content. Shell 

was cleaned of surface debris using distilled water and acetone, then dried in a fume 

hood for a minimum of 48 hours. Each 0.5g sample was acid digested with a 

Milestone Ethos closed vessel microwave acid digestion system using 10mls of ultra-

pure nitric acid (65%). Afterwards, the sample volume was raised to 15ml using ultra-

pure water (Mili-Q).  

      Shell and content samples were analysed for heavy metals (Cd, Pb, Hg and As) by 

ICP-MS (Internally coupled plasma mass spectrometry). 1ml of sample was diluted 

with 9ml of Mili-Q and spiked with 1m of Rhodium, the internal standard. Samples 

were analysed in batches of 20 with 3 Mili-Q blanks, a blank containing 1ml of 

rhodium and 5 standards between them. The 5 standards each contained 1ml of 

rhodium then stepped volumes (0.2, 0.4, 0.6, 0.8 and 1ml)  of reference solution 

made up to 10mls with Mili-Q. The reference solution was mixed separately and 

contained known quantities of single element standards of Cd, Pb, Hg and As from 

CPI International.  

      Due to suspected interference from alkali metal oxides causing high deposition on 

the cones at the ionization stage, samples and standards were diluted again as 

follows. 1ml of sample diluted as above was made up to 10ml with a further 1ml of 

rhodium and 8ml of Mili-Q. Reported concentrations are blank corrected.           

 

Table 5.1 Number of colonies and egg shell samples per habitat type. 

 

 

 

 

 

 Habitat type  

Landfill Rice field Control Total 

Number of 
colonies 

3 10 6 19 

Total shell 
samples 

25 81 61 167 
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5.3. Statistical analysis 

      Concentration data were not normally distributed. Wilcoxon signed rank tests 

were carried out to compare differences in metal concentrations between egg 

content and shell. Kruskal-Wallis tests were conducted to investigate significant 

differences in trace element concentration between the three habitat categories. 

 

5.4. Results       

5.4.1. Deposition site of metal species in egg and content 

      In the white stork, arsenic preferentially deposit in the contents (Z= -3.054, p= 

0.002), meaning that levels reported from eggshells may be significantly lower than 

those the developing chick was exposed to. There was no statistical difference in 

deposition location (shell or content) in cadmium (Z= -1.485, p= 0.137), mercury (z= 

-314, p= 0.753) or lead (Z= -0.142, p= 0.887) meaning the levels reported in egg shell 

are likely similar to levels of exposure of the developing chick (Figure 5.2).  

 

  

 

  

 

 

 

 

 

 

 

 

 

Figure 5.2 The mean (± SE) distribution and concentration of metal species in egg shell 

(dark bars) and egg contents (grey bars) from 18 whole eggs found below white stork 

nests.  Statistically significant differences are *(p <0.05) and ***(p <0.001). 

*     
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Figure 5.3 Mean (± SE) concentration of a) lead, b) cadmium, c) arsenic and d) mercury 

from eggshell sampled from colonies in 3 different foraging habitats. Colonies in 

landfill habitat are represented as dark bars (n=3 colonies), colonies near rice field 

(n=10) are grey bars and control colonies located in arable and cork oak habitats (n=6) 

are shown as pale bars. Statistically significant differences are *(p <0.05) and ***(p 

<0.001). 

 

5.4.2. The distribution and concentration of various metals in different habitats 

      The values for each metal ranged from below detection limits (all metals) to 1.66 

ppm (arsenic), 0.16 ppm (cadmium), 1.49 ppm (lead) and 1.76 ppm (mercury). Levels 

of lead, cadmium and arsenic were lowest in rice field colonies of all the habitats 

(Figure 5.3). Levels of mercury in rice field colonies were significantly lower than 

quantities present in landfill. Landfill is the largest source of all metals in this study 

population and was statistically different to the concentrations found in rice fields 

(As: Z= -2.424, p= 0.015, Cd: Z= -6.895, p= ˂0.05, Hg: Z= -2.714, p= 0.007, Pb: Z= -

4.574, p= ˂0.005). 

  Landfill    Rice   Control   Landfill    Rice   Control 
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5.5. Discussion and Conclusion 

      Determination of metal concentrations from eggshells is a widely used monitoring 

tool for assessing and monitoring environmental contaminants. Individually, lead, 

cadmium, arsenic and mercury are all highly toxic. In this study, in all habitats (Figure 

5.3), abundancies of all 4 metals were equivalent to, or below, background levels 

reported in white stork eggs in Spain (Hernandez et al 1988) and also below levels 

reported in eggshells of species with similar ecologies, such as grey heron (Ayas 

2007). Thus, in normal breeding years, the cause of low productivity in rice fields is 

unlikely to be related to the individual impact of any of the four heavy metals species 

investigated by this analysis.  

      Arsenic preferentially deposits in egg content in this species (Figure 5.2). This 

means that values recorded in shell are not representative of true body values. 

Overall, concentrations of all four elements was highest in landfills, which was not 

unexpected. As productivity is known to be good near landfills (Tortosa et al 2002, 

Massemin-Challet et al 2006, Chapter 4) this further indicates that the four metals 

were not present in abundances that are cause for concern. The closure of open 

landfills will reduce body burdens of trace metals in the white stork population.   
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Abstract  

      Several previously wholly migratory species recently established resident 

populations in Europe. The ability to distinguish migratory from non-migratory 

individuals within partially migrant populations is essential to understand the 

consequences of changing migratory behaviour. This study uses stable isotopes of 

carbon, hydrogen and nitrogen from feather samples to determine migratory status 

of individuals from two populations of lesser kestrels Falco naumanni, a migratory 

population in Portugal and a partially migratory population in Spain.  

      Breeding and post breeding (winter) grown primary feathers were collected from 

233 birds with unknown migratory status. Control breeding area feathers were 

sampled from chicks and juvenile males. The African wintering locations were known 

from 6 birds tracked with geolocators. Unexpectedly, the post breeding grown 

feathers of 3 tagged individuals showed an Iberian isotopic signal suggesting 

flexibility in timing of moult, with some birds completing moult before or immediately 

after migration. Carbon isotopes could therefore only distinguish migrants who 

moulted in Africa (82.1% of birds from the wholly migratory population, 42% from 

the partially migrant population). Deuterium ratios from winter-grown feathers were 

too variable to assign migratory status and there was no difference in nitrogen values 

between adult breeding and winter grown feathers in either population. 

      All adult primary feathers grown during breeding were highly enriched in 

deuterium compared to chick and juvenile feathers, possibly due to increased stress 

and evaporative cooling associated with breeding effort. Differences in enrichment 

were used to identify non-breeding (likely juvenile) females (6% of the migratory 

population, 5.3% of the partially migrant population). This novel use of deuterium 

potentially has applications for other studies where there is a requirement to identify 

the age or breeding status of individuals. Nitrogen isotopic ratios provided 

confirmation of the robustness of deuterium in identifying likely juveniles, but only 

in the migratory population.  
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6.1. Introduction  

      Partial migration, where some individuals within a population migrate whilst 

others remain in the breeding area, occurs frequently across diverse taxa, including 

fish, insects, mammals and birds (Chapman et al 2011, Chapman et al 2011b). 

Comparing migrants and non-migrants within the same population offers a unique 

opportunity to understand the causes and consequences of migratory decisions, 

which will improve our ability to predict how species may respond to future climatic 

and environmental change. Relatively few studies have compared individuals with 

contrasting migratory strategies (Chapman et al 2011a) and to do this it is important 

to be able to confidently distinguish a resident individual from a migrant. 

      Birds are good study species to understand the causes and consequences of 

partial migration due to a diversity of techniques that can be used to mark individuals.  

In populations with a high number of marked individuals, it may be possible to 

monitor presence/absence in the breeding grounds during the winter. However, this 

is labour intensive and resident individuals wintering even a short distance away from 

the breeding colonies may go undetected. Furthermore, ring recoveries from sub-

Saharan Africa are notoriously low (Chamberlain et al 2000, Reichlin et al 2013). Data 

loggers and geolocators are increasingly high-resolution, light weight and low-cost 

enabling deployment on a large sample of individuals and ever-smaller species 

(Stutchbury et al 2009, Tottrup et al 2012). However, geolocators usually require 

recapture of marked individuals to acquire the data thus cannot be used for species 

with low site fidelity or low year on year survival (Bachler et al 2010, Hahn et al 2013). 

A non-invasive, quick and low-cost solution for separating migrants from non-

migrants is the use of stable isotopes of hydrogen (deuterium (D)), carbon (13C) and 

nitrogen (15N) and contrast the isotopic signatures of feathers grown in the breeding 

and non-breeding season.  

      Stable isotope analysis relies on the predictable geographic variation in ratios of 

abundance of the heavy to light isotopic species of an element. The isotopic signature 

of the local food web is taken up by all species through diet and drinking water and 

is metabolically inert after synthesis in keratinous body tissues, including feathers 

(Hobson 1999). These ratios are retained when a bird migrates to a new, isotopically 

distinct area which means inferences can be made about the location where the 
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feather was grown. Therefore, provided diet is constant and moult sequence is 

understood sufficiently to confidently select feathers representative of the breeding 

area wintering area in the same individual, it should be possible to separate migrants 

from non-migrants by comparing the difference in isotopic ratios between the two 

feather samples. Using this method, the migratory strategy of all individuals in a study 

population can be investigated, not just ringed individuals, or surviving birds tagged 

the previous year.   

      Stable isotope analysis is now a well-established tool for assessing migratory 

connectivity and assigning geographic wintering areas to long-distance migratory 

birds (Rubenstein and Hobson 2004, Bowen et al 2005). In areas of strong isotopic 

gradients, isotopes have also been successfully utilized to identify resident from 

migratory individuals (eg Hegemann et al 2015). However, it has not been assessed if 

stable isotopes can distinguish individual migratory strategy in areas of low isotopic 

variance, such as between southern Europe and sub-Saharan Africa. This is 

particularly relevant because many previously wholly migratory species recently 

established resident populations in Iberia (Atlas Team 2008) making this a fascinating 

region for migration studies. This study assesses the ability of stable isotope 

investigations to infer migratory status between southern Europe and the Sahel 

region of sub-Saharan Africa. Furthermore, to date the majority of isotopic 

information from the Sahel is derived almost entirely from studies of passerines (eg 

Yohannes et al 2007, Pain et al 2004, Oppel et al 2011) so there is a conspicuous lack 

of isotopic information from other bird groups, particularly raptors. In order to be 

able to correctly interpret isotope data from raptor species, it is essential to have full 

understanding of mechanisms influencing isotopic ratios in tissues and how these 

differ from passerines. Isotopic data of known origin is an important tool in the 

conservation of Afro-Palearctic raptor species, many (51% Kirby et al 2008) of which 

are experiencing strong declines and are in poor conservation status. The Sahel 

region in particular poses potential threats to migratory raptors due to climatic and 

land-use changes and other anthropogenic impacts (Limiñana et al 2012), so isotopic 

data from this region is especially welcome. 

     Most Afro-Palearctic studies find carbon and nitrogen to be the most informative 

(Hobson et al 2012a). Carbon isotopic analysis can distinguish between feathers 
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grown in a predominantly C3 or C4 plant photosynthetic pathway habitat (Still et al 

2003, Still and Powell 2010). This has enabled both habitat selection by migrants 

(therefore likely wintering region) and migratory connectivity between populations 

to be established (eg Chamberlain et al 2000, Yohannes et al 2007, Evans et al 2012, 

Morrison et al 2013). Gradients are strong between Africa (predominantly C4) and 

Iberia (predominantly C3) meaning carbon was expected to be the most informative 

isotope in this study. Nitrogen fractionation depends on moisture availability and 

trophic level and previous studies have used differences in nitrogen, in conjunction 

with carbon, to infer distinct population segregation in migratory birds in the 

wintering area (eg Møller and Hobson 2004, Bensch et al 2006). Nitrogen may 

therefore be useful as an indicator of migratory status if there are noticeable 

differences in diet (trophic level changes) between the breeding and winter areas.  

     Several studies have assessed the value of using hydrogen to differentiate 

breeding from wintering areas. Hydrogen gradients are strongly influenced by the 

isotopic composition of precipitation which becomes continuously more isotopically 

depleted moving from low to high latitudes and with increasing continentality 

(Dansgaard 1964). Thus, many studies, particularly in the Americas where this 

gradient is well established, have found strong links between the hydrogen 

composition of feathers and geographic origin (Hobson et al 2012b). However, there 

is little variation in hydrogen isotopic composition between Iberia and the Sahel (4-

6‰) which may render the two regions difficult to distinguish (IAEA/WMO 2015). 

Additionally, the scarcity of precipitation in some regions, paucity of sampling 

stations, high variability between feathers from the same area and lack of ground-

truthed feather samples means hydrogen gradients are low resolution and 

inadequately described (Bowen et al 2005, Gutiérrez-Expósito et al 2015) leading 

some studies to conclude  that hydrogen is not particularly useful for assigning 

geographic area in Africa (Pain et al 2004, Møller and Hobson 2004, Meehan et al 

2003, Oppel et al 2011). The few that found deuterium meaningful were at broad 

geographic scale (eg Reichlin et al 2010, Reichlin et al 2013). By combining multiple 

stable isotopes with data from geolocators was hoped to enable this study to 

overcome these issues.  
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      Deuterium interpretation is also confounded by a lack of knowledge concerning 

the causes (physiological and environmental) and extent of variance in diet-tissue 

fractionation factors within individuals and across age classes (Wunder and Norris 

2008, Betini et al 2009). Unlike carbon and nitrogen, which are derived almost 

entirely from food, body water is derived from many sources (drinking water and 

from prey), each source pool with its own individual isotopic fractionation conditions. 

Body water is also lost by many sources (for example respiration and sweating) and 

loss rates vary according to physical effort, body size and individual metabolic rate. 

This may contribute to explaining why some feather - precipitation isoscapes have 

low goodness of fit. Some studies have found significant enrichment in deuterium in 

adult feathers compared to chick feathers from the same species grown in the same 

area (Meehan et al 2003, Smith and Dufty 2005, Lott et al 2006, Powell and Hobson 

2006, Hobson et al 2009, Greenwood and Dawson 2011), and these far exceeded 

levels expected in passerines and predicted by precipitation. It was therefore not 

certain in this study if deuterium ratios would be predominantly influenced by 

precipitation or another factors. 

      This study aims firstly to determine which isotope, or combination of isotopes, 

best distinguishes Iberia from the Sahel using a partially migratory species, the lesser 

kestrel, as a case study; and secondly to use isotopic ratios from a breeding and 

winter grown feather from the same individual to estimate the percentage of 

residents and migrants in two populations, a migratory population in Portugal, where 

there are presumed to be no/few resident birds, and a partially migratory population 

in Spain. However, in view of the differences in deuterium values found between age 

classes during the course of this study, a third aim became to test whether deuterium 

enrichment could be used to identify non-breeding (likely juvenile) birds. This is 

particularly useful in the lesser kestrel because juvenile females (with no migratory 

status) are not easily distinguished from adult females by plumage.  
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6.2. Methods 

6.2.1. Study species and study site 

      The lesser kestrel Falco naumanni, was considered an ideal study species to 

address the aims of this study because it is thought to be wholly migratory in Portugal 

with no individuals staying in breeding colonies during the post-breeding season, but 

is known to be partially migratory in Spain, where colonies have both migratory and 

resident individuals (Negro et al 1991). We sampled individuals from 5 colonies from 

the migratory (M) population, Castro Verde, Portugal (37.690515, -7.997410) and 

from 7 colonies from the partially migratory (PM) population, Gerena, Spain 

(37.528283, -6.154926). The sampled populations, with different migratory 

strategies, exist in close proximity to each other in an isotopically comparable region 

(IAEA/WMO (2015), allowing robust comparison between them.  

      Details of migratory routes and timing of migration was known for a subsample of 

birds from the migratory Portuguese population, from light level geolocators 

deployed by a previous study (Catry et al 2011a).  Feather samples (P9, T3) were 

collected from the individuals with geolocators enabling the verification of the 

wintering area and contributing to the much needed isotopic data variation in feather 

isotopes of a raptor species in the Sahel. 

 

6.2.2. Feather sampling 

      One or more feathers samples were collected from a total of 233 birds over 3 

different years in Portugal (79 birds, years 2009, 2013) and Spain (160 birds, 2013/14) 

from birds caught in nest boxes in breeding colonies. Adult males are easily 

recognised, juvenile and adult females have indistinguishable plumage. Based on 

previous knowledge of lesser kestrel moult patterns (Cramp and Simmons 1977), the 

primary P9 was considered the best feather to characterise the wintering area.  

      A total of 79 birds were sampled from breeding colonies in the migratory 

population in Portugal, where no individuals remain during the winter. In 2009 the 

winter grown feather P9 and the breeding season grown tail feather T3 were sampled 

from 32 birds, including 6 individuals whose sub-Saharan African wintering location 

was known from light level geolocators (see Catry et al 2011a). During the first 
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batches of isotopic analysis, the T3 feathers were realised to be unreliable as an 

indicator of the breeding area due to high isotopic variability in carbon values. They 

were not included in the results. In the 2013 breeding season an additional 47 

Portuguese birds were sampled when P9 (winter grown) and P3 (breeding grown) 

feather samples were collected. In total 28 individuals were identified from plumage 

as adult males, 51 were females of unknown age.  

      To isotopically characterise the Iberian breeding area, and to establish the base 

level for deuterium in non-breeding birds, breast feathers were collected from 25 

chicks from the migratory (Portuguese) colonies, in 2013. Analysis of all primary 

feathers from dead birds (see below) showed that the P3 feather is grown at the end 

of the breeding season when some birds may already be migrating. This indicated 

that P4 would in fact be a better feather to characterise the breeding area. 

Consequently, during the 2013 winter and the 2014 breeding season, we sampled P4 

and P9 feathers from 160 birds in breeding colonies from the partially migratory 

(Spanish) population known to have both resident and migrant individuals. 

Approximately 25-30% of individuals are resident in these colonies, and it is likely that 

some individuals overwinter in Iberia away from their breeding colonies (Negro et al 

1991, author’s unpublished data). Of birds sampled from Spain, 79 were adult males, 

13 were known from rings to be adult females and 68 were females of unknown age. 

Breeding season P4 feathers were also taken from 40 birds known from plumage to 

be juvenile males. Feathers were stored individually in labelled sample bags until 

analysis. All 3 isotopes were analysed from Portuguese samples, whilst for Spanish, 

every isotope was analysed in a subset of feathers. 

      Moult sequence and consistency of isotopic variance across the wing were 

established by sampling all primary feathers (P1:10) from 9 lesser kestrels (n= 6 

female, n= 3 male) found dead in 2013, using stable isotopes of δ13C, δ15N and δD. 

Three (2 female, 1 male) were from the migratory Portuguese colonies and 5 were 

from the partially migratory Spanish colonies and included a known first year female.  
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6.2.3. Stable isotope analysis 

      A sample of 1.5 x 1.5cm of material was clipped consistently from the same distal 

portion of the feather to avoid any systematic differences in isotopic ratios within the 

feather that have been noted in some raptor species (Smith et al 2008). They were 

washed in a 2:1 chloroform:methanol solution  to remove surface oils and dirt, then 

dried under the fume hood for 48 hours. Each sample (excluding rachis) was cut as 

finely as possible, cutting parallel to the rachis to capture as much isotopic variation 

as possible in each fragment. 0.5mg of sample were weighed and tightly packed in to 

tin capsules. To account for continuous exchange with atmospheric moisture, the 

standards and replicate samples intended for Deuterium analysis were loosely 

covered and allowed to equilibrate at room temperature with the ambient laboratory 

air for a minimum of 72 hours before being scrunched closed.  

      All samples were analysed using a Thermo Finnigan Delta XP continuous-flow 

isotope ratio mass spectrometry at the Stable Isotope Laboratory (ENVSIL), University 

of East Anglia, UK. Carbon and nitrogen isotopic composition δ13C and δ15N were 

simultaneously analysed using a Costech Elemental Analyser on-line with a mass 

spectrometer. For hydrogen isotopic analysis, a Vecstar vertical furnace with a glass 

carbon packed pyrolysis column was used on-line with the same mass spectrometer. 

Two newly developed international keratin standards from the US Geological Survey 

(USGS 42 and USGS 43; Coplen and Qi 2012) and an inter-comparison material 

independently developed by the Doñana Biological Station, Spain (LIE-PA2, Razorbill 

feather; Alvarez 2012) were analysed at the start and end of batches to ensure 

consistency between batches. Some samples had repeated analysis in different 

batches as an additional consistency check. A triplicate of the USGS43 was analysed 

after every 12 unknown samples to account for instrument drift quantification. Due 

to faulty carrier gas flow affecting the nitrogen portion of the analysis, some batches 

of the Spanish feathers had to be remeasured. In some cases there was insufficient 

sample remaining so carbon data only exists for these feathers. 

      Assuming the proportion of exchangeable hydrogen in feather keratin was 20% 

(Wassenaar and Hobson 2000) an isotopic scale stretch correction was applied to all 

samples using the known non-exchangeable fractions of USGS 42 (-78.5‰), USGS 43 

(-50.3‰) and Razorbill (20.8‰). 
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      Stable isotope compositions are reported in δ notation in parts per thousand (‰) 

deviation from the international standards for Carbon (Pee Dee Belemnite (PDB)), 

nitrogen (Atmospheric Nitrogen (Air)) and for hydrogen (Vienna Standard Mean 

Ocean Water (VSMOW)). This is defined by the equation: 

δsample=([Rsample/Rstandard]-1)x1000 where δsample is either 13C, 15N or 2H 

respectively, relative to the standard and R is the ratio of the heavy and light isotopes 

(13C/12C, 15N/14N or 2H/1H respectively) in both the sample and reference material. 

Measurement precision for δ13C and δ15N was estimated to be ≤0.2‰ and for 

Hydrogen was ≤2.0‰ 

 

6.2.4. Assessing the effects of body size and heat stress on feather hydrogen 

      Heat loss efficiency, and the degree of deuterium enrichment due to water loss 

through the skin, may be linked to body size so simultaneously with feather harvest, 

birds of unknown migratory status were sexed and wing chord length, (a proxy for 

body size) was measured. Weight was also measured but was not included in this 

study because it can fluctuate according to time since last feeding, internal egg 

development and other factors, so a single measure of weight was not considered a 

sufficiently reliable indicator of body size.  

      Evaluation of the impacts on feather deuterium (δDf) of heat stress from 

prolonged exposure to high temperatures in artificial nest boxes was possible for 6 

of the 25 Portuguese chicks, each from a different brood. This came about because 

temperature was being recorded in a subset of nests by a different study and 6 nest 

boxes overlapped with birds in this study. Artificial nests have very different micro-

climates depending on the construction material and aspect (compass orientation). 

Micro-T DS1922L temperature loggers recorded temperature inside nests and 

externally in the shade every 60 minutes. Three chicks were from the hottest nest 

type, wooden boxes, three were from cooler nests in concrete cavities in purpose-

build breeding walls where temperatures remain similar to the ambient air. See Catry 

et al 2011b for further details of nest types and the impact of nest temperature on 

chick survival. Weight and wing chord length were measured at the time of feather 

sampling. 
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6.3. Statistical Analysis 

6.3.1. Inter annual differences in isotopic ratios 

      Differences in isotopic ratios of δ13C, δ15N and δD between years (2009 and 2013) 

and between migratory (Portuguese) and partially migratory (Spanish) populations 

were investigated using Mann-Whitney U tests.   

 

6.3.2. Testing the evaporative cooling hypothesis 

      Linear regressions were used to assess the relationship between wing chord 

length, a proxy for body size, and deuterium enrichment in the breeding season 

grown feather (P3 and P4) in birds known to be adult. Mann-Whitney U tests were 

used to evaluate differences in deuterium enrichment between sexes in feathers 

grown at the beginning (P4) and end (P3) of the breeding season.   

      Linear regressions were carried out to examine the relationship between δDf and 

chick wing length (mm) and cumulative total temperature above 300C experienced 

prior to feather harvest. Our field observations suggest 300C is the mean 

temperature, taking in to account nest box type and compass orientation, at which 

chicks start to display signs of heat discomfort including panting and weight loss. 

Accumulated heat over 300C inside the nest box was quantified hourly using the 

formula used to calculate Growing Degree Days (GDD30). For each nest box, the 

hourly maximum temperature was subtracted from the threshold temperature of 

300C. Hourly values were then summed to make an accumulated total for each nest 

box. Only positive values (temperatures of 300C or more) contributed to the final 

total. 

 

6.3.3. Assigning migratory status 

Comparisons between feathers grown in the breeding and wintering areas 

were made using Mann-Whitney U tests and Kruskal-Wallis tests.  
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6.4. Results 

6.4.1. Inter annual differences between feathers from different years 

      P9 winter feathers from Portugal collected over 2 years (2009 and 2013) were 

pooled as one sample. There was no inter annual difference between years in ratios 

of δ15N (Mann-Whitney U= 695.00, p= 0.925) or 2H (U= 876.00, p= 0.791). There was 

an inter-annual difference in carbon means but not in the range of carbon values 

(Mann-Whitney U= 475.00, p= 0.016, mean ±SE 2009: -18.9‰ ± 0.6, 2013: -16.7‰ ± 

0.7, Appendix 6.1). 

 

6.4.2. Isotopic variance of feather isotopes from the wholly and partially migrant 

populations 

Carbon  

Carbon isotopic signatures enabled good characterisation of the breeding area. The 

range and mean values obtained did not differ between the two Iberian populations 

P3 (Migratory, M) (mean: -21.9‰ ± 0.1) and P4 (Partially Migratory, PM) (mean: -

22.7 ‰ ± 0.05) (U= 459.00, p= 0.960), or between the chicks from the migratory 

population and the juvenile males from the partially migrant population (chick mean 

±SE: -23.1‰ ±0.35, juvenile males: -23.0 ±0.12). The carbon signature of the breeding 

area was consistent across all groups analysed and displayed small value ranges, 

Figure 6.1a.  

      The carbon isotopic ratios of winter grown P9 feathers from both populations 

showed overlap with the breeding range values, with higher degree of overlap in the 

partially migratory population suggesting, as expected, a higher frequency of resident 

birds in the partially migratory population. Carbon values of the wholly migratory 

population (P9(M), mean: -17.6‰ ± 0.4) span a range of values from those similar to 

the Iberian breeding area (chicks) to the less negative values of the Sahel wintering 

area (isotopically different from the chicks and P3(M) feather). The mean from the 

partially migrant population P9(PM) feathers was (-21.2‰ ± 0.2), similar to isotopic 

ratios characteristic of Iberia. Migratory strategy could not be reliably identified from 

the carbon isotopic signature in feathers since, unexpectedly, the post-breeding  
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Figure 6.1 Isotopic compositions of a) carbon (δ13C vs VDB), b) hydrogen (δ2H vs 

VSMOW) and c) nitrogen (δ15N vs AIR) of lesser kestrel young and adult primary (P3 

and P4) feathers grown in Iberia and adult feather (primary P9) grown in Iberia or in 

the Sahel, Africa. Feathers (chicks, P3 and a subset of P9) derive from a wholly 

migratory (M) population from Portugal. Feathers (Juvenile males (juv), P4, and a 

subset of P9) are from a partially migrant (PM) population from Spain. The wintering 
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location of six adults from the migratory population were known from geolocators 

and values for the P9 feathers of tagged individuals are shown as triangles. The 95th 

percentile for carbon of the combined P3 and P4 feather is the threshold defining the 

breeding area and is represented as a dashed line in graph a). The total number of 

individuals in each sample are listed. Asterisks indicate significant differences 

between feather types. 

 

       

P9(M) carbon isotopic ratios of 3 of the 6 adults known, from geolocators, to have 

wintered in the Sahel overlapped with the range of values obtained for the breeding 

area P3(M) feather indicating flexibility in the timing of moult, with some individuals 

completing their moult in the breeding site or soon after arrival at the wintering 

areas.  

 

Deuterium 

Breeding area isotopic ratios determined by chicks and juvenile males indicate 

significant differences between the two populations (U= 3.00, p< 0.001, Figure 6.1b), 

chicks from the migratory population being more enriched. In both populations the 

mean of breeding season feathers from birds of unknown migratory status are 

significantly more enriched than the young birds (P3(M): 33.0‰ ± 3.2, P4(PM): 

13.8‰ ± 2.01). 

      Hydrogen isotopic ratios of the migrant population show greater deuterium 

enrichment during the breeding period than during the post-breeding period. On 

average P3(M) values are higher than P9(M) (Figure 6.1b). Deuterium values of the 

post-breeding grown P9 feather are highly variable, the mean of the migratory 

population (P9(M): 5.9‰ ± 1.8) being less enriched than P3 feather and more similar 

to the chicks, whilst P9(PM) values (mean: 24.8‰ ± 5.1) are enriched and strongly 

disimilar to the juveniles (Figure 6.1b). The deuterium values of the winter P9(M) of 

the 6 tagged birds overlap with the chicks. Deuterium is therefore not useful for 

assigning migratory status. 
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Nitrogen 

Nitrogen was not useful in determining migratory status since there was no 

isotopic difference between the values of breeding and winter grown primary 

feathers in either the partially migrant (P4(PM), P9(PM) feathers, Wilcoxon Rank Z= -

1.848, p= 0.650) or migrant populations (P3(M), P9(M) feathers: Z=-0.577, p= 0.564, 

Figure 6.1c). There was a significant difference between young birds and breeding 

season feathers in both the migratory (chick and P3(M): U= 49, p<0.001) and partially 

migrant (juvenile males, P4(PM): U= 898, p= 0.002) populations. However, 

differences between the means were small, particularly in the partially migrant 

population (difference: 0.9‰) and there was considerable overlap in the value ranges 

between the P4(PM) (mean: 11.0‰, min: 7.7‰, max: 15.84‰) and juvenile males 

(mean: 10.1‰, min: 7.4 ‰, max: 12.7‰). There was a slightly larger difference in the 

means (1.5‰) in the Portuguese population (chick mean: 7.7‰, adult mean: 9.2‰). 

It was also noted that all feathers sampled from the migratory (Portuguese) 

population were more enriched in nitrogen than birds from the partially migrant 

(Spanish) population, Figure 6.1c. 

 

6.4.3. Identification of long distance migrants using carbon 

      The breeding area was delimited for carbon by combining P3 and P4 feather 

values and taking the 95th percentile (-21.2‰). The 95th percentile was considered a 

robust value that would exclude the occasional replacement of feathers out of the 

normal sequence potentially leading to isotopic values outside the range expected 

for the breeding area. The 95th percentile provided a conservative estimate for the 

maximum isotopic value expected for Iberia and is represented as a dashed line on 

Figure 6.1a. Thus, 82.1% of individuals sampled from the migrant population were 

identified as migratory, including 3 of the 6 migratory tagged birds. In the partially 

migrant population only 42% of individuals were classified as migrant, (including 7 

females known from rings to be adult). The majority (58%) of winter grown P9 

feathers from the partially migratory colony were below this threshold and had 

Iberian breeding area values for carbon.  
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Figure 6.2 Isotopic compositions:  δ13C (a and b), δ2H (c and d), and δ15N (e and f) of 

primary feathers P1 to P10, ordered by moult sequence from the migrant and partially 

migrant lesser kestrel populations. Primaries P4-7 are known to be moulted in Iberia 

during breeding, the rest are moulted after in either Iberia or Africa. Each individual 

is represented by a different colour. Male birds (all adults) are squares, females (age 
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unknown) are circles, a first year female is identified by open diamonds and a female 

known from rings to be an adult is shown as triangles. In graphs a and b the dashed 

lines represent the 95th percentile threshold value defining the Iberian breeding area 

for carbon. In graphs c) and d) the baseline deuterium enrichment level is derived 

separately for each population from the 95th percentile of the young birds. Three birds 

show low isotopic variability in all isotopes, a female (depicted in yellow) from the 

migrant population, an adult male (purple) and juvenile female (open diamonds) from 

the partially migrant population. 

 

 

6.4.4. Consistency of moult and enrichment across primary feathers 

1) Moult 

      The moult sequence, according to the majority of the 9 dead birds and from field 

investigations, is in the sequence displayed in Figure 6.2 (P4, P5, P6, P7, P3, P2, P8, 

P9, P1, P10). Carbon and hydrogen isotopic compositions of the P4, P5, P6 and P7 

feathers are consistent with values expected in the breeding area, therefore were 

grown during the breeding season.  The remaining feathers are grown in the non-

breeding period. Carbon data showed relatively little variance in order of moult of 

primary feathers between individuals, P4 being the first feather to moult during the 

breeding season for both males and females, whilst P3 is moulted at the end of 

breeding, or shortly after. However, our field observations during the breeding 

season have noted birds moulting 2 feathers simultaneously (for example P4 and P5, 

or P5 and P6). The remaining feathers are moulted post-breeding either in Iberia or 

in the sub-Saharan African wintering area. These results suggest that P9 is a good 

winter grown feather to contrast with isotopic values of the breeding area. 

 

2)  Breeding season feather enrichment 

Characterising deuterium enrichment thresholds in young birds  

      Due to significant differences in deuterium between the chicks (n=25, migrant 

population) and the juvenile males (n=6 partially migrant population), a threshold 



142 
 

value of baseline enrichment in non-breeding, juvenile birds was created for each 

population using the maximum feather value (from Figure 6.1, chicks: 6.3‰, juvenile 

males: -8.3‰, threshold shown in Figure 6.2c and d). It was not considered necessary 

to take the 95th percentile value because both groups displayed a small value range 

and none of the young birds had ever migrated, so all feather values were considered 

representative of the breeding area. The majority of breeding season grown feathers 

P3 and P4 feathers are more enriched than these thresholds. 

 

Isotopic enrichment across all primary feathers   

      For all birds, feathers grown in the breeding area (P4-7 and P3) showed low 

variance in carbon (Figure 6.2a and b) and values on or below the threshold limit 

defined for Iberia (shown as a dashed line).   

      Three individuals, likely juvenile birds still with chick grown feathers (1 known first 

year female (open diamonds) and 2 females of unknown age (depicted in yellow and 

purple, Figure 6.2), showed low isotopic variability across all feathers for all 3 isotopes 

and carbon and deuterium values consistent with young birds in all primary feathers. 

The remaining 6 birds (adult males and females of unknown age) showed strong, 

consistent enrichment in deuterium of all breeding season grown feathers in 

comparison to young birds (Figure 6.2 c and d). Enrichment between individuals was 

highly variable however, in this small sample, males tended to be less enriched than 

females across all breeding season grown feathers. 

 

3) Winter grown feather enrichment 

For carbon, the winter grown feathers of 2 individuals, P8 - P10 (female depicted 

in grey and the male depicted in black, Figure 6.2), have isotopic signatures consistent 

with the African wintering area (δ13Cf ≤-15‰). Surprisingly, all the remaining birds, 

including known adults from the migrant population, showed low carbon variance 

across all feathers and more enriched 13C values consistent with Iberia (Figure 6.2a 

and b). This suggests that 7 of the 9 birds completed moult in Iberia rather than in 

the African wintering area.  Hydrogen and nitrogen isotopic values of post-breeding 

grown feathers from the 2 migratory individuals were indistinguishable from the 
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other birds (Figure 6.2d and f), which is consistent with the result that neither of these 

isotopic measurements can inform migratory status.  

Hydrogen values of feathers moulted post breeding were highly variable but 

generally less deuterium enriched than early breeding season grown feathers and 

isotopically more similar to the young birds. This suggests an overall trend of 

decreasing feather enrichment across the moult as the breeding season progresses. 

However, an increase in enrichment between the P1 and P10 feathers in all birds, 

even the known juvenile, was also noted. 

 

6.4.5. Effects of evaporative cooling on feather deuterium 

Chicks 

      There was a significant positive relationship between feather deuterium and 

cumulative exposure to temperatures above 300C (Figure 6.3a). The difference 

between the least enriched and most enriched chick feathers was 17.4‰. The 

maximum temperature experienced inside a nest box was 38.5C. There was an 

almost-significant, positive relationship between feather deuterium and wing length 

(figure 6.3b). However, there was no significant relationship between enrichment 

and the standardized residuals of wing length and GGD30 so it was unclear if body 

size or temperature is the main explanatory effect. There was no significant 

relationship between deuterium enrichment and wing length (F=(1,5)= 0.390, R2= 

0.072, p= 0.560 in the juvenile males from the partially migrant Spanish population. 

 

Adults 

      There was no effect of sex on enrichment of the P4(PM) feather grown at the start 

of the breeding season (males n= 47, females n= 42, Mann-Whitney U=830.00, p= 

0.197), or on the P3(M) grown at the end of the breeding season (males n= 15, 

females n= 32 Mann-Whitney U= 161.0, p= 0.071). There was also no relationship 

between deuterium values of breeding season grown feathers and wing chord length, 

a proxy for body size, in known adults in either population (P4(PM): (F(1,46)= 0.0,  
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Figure 6.3 Hydrogen isotopic composition of chicks feathers in relation to a) 

cumulative hourly temperature experienced in the nest ≥300C, equivalent to Growing 

Degree Days above 300C ((GDD30) a measure of heat accumulation, b) wing chord 

length (a proxy for body size) and c) standardized residuals of the relationship 

between wing length and GDD30 for 6 chicks from the migrant population. 
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p= 0.891, P3(M): (F(1,15)= 0.140, p= 0.983). Thus, there was no effect of any metric 

of body size on deuterium enrichment in adults. 

  

6.4.6. Identification of non-breeding (juvenile) females using deuterium  

      All adult birds trapped in breeding colonies likely undergo a breeding attempt.  

Isotopic values of the majority of known adults, who underwent reproductive effort, 

are significantly higher in comparison to the young non-breeding birds who 

underwent no reproductive effort (migratory population: Mann Whitney U=103.00, 

p<0.001, partially migratory population: U=6.000, p <0.001, Figure 6.4). Females of 

unknown age, therefore unknown reproductive effort, overlap with both chick and 

adult feathers suggesting reproductive effort by some but not others. In the 

migratory population 11.9% of females of unknown age had P3(M) values below the 

baseline enrichment threshold delimited by the chicks, suggesting these individuals 

had no/little reproductive effort. In the partially migrant population 5.3% of female 

P4(PM) values showed no reproductive effort. A small percentage of birds known to 

be adults showed little enrichment and overlapped with the non-breeding values 

associated with young birds. This means, 7.9% of adults in the partially migrant 

population and 1.6% in the migratory population showed little or no evidence of 

reproductive effort.  

 

6.4.7. Congruence between deuterium and nitrogen isotopes 

      In the migratory population there was no difference in nitrogen isotopic 

composition between the chicks and birds assigned juvenile status by using hydrogen 

isotopic composition (U= 49.00, p= 0.976), but there was a significant difference 

between birds assigned adult status and those assigned as juveniles (U= 80.000, p< 

0.001) (Figure 6.5). In the partially migrant population there was too much overlap in 

the value ranges of known juveniles (min: 7.4‰, max: 12.7‰) and confirmed adults 

(min: 8.4, max: 15.8‰) to draw robust conclusions about unknown birds using 

nitrogen. 
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Figure 6.4 Reproductive effort gauged from deuterium enrichment of breeding season 

grown feathers from young birds (no reproductive effort), females of unknown 

reproductive status and confirmed adults (reproductive) from both the migrant (M) 

and partially migrant (PM) populations. The 95th percentile of the young non-breeding 

birds (dashed lines) are shown for both populations. Asterisks indicate statistically 

significant differences between young birds and adults. 

 

 

6.5. Discussion  

6.5.1. Inter annual differences in isotopic ratios  

      Breeding season feathers from multiple years were directly comparable. All 

feathers came from the same breeding colonies and there were no significant 

changes in the local habitat during this time. Additionally, there was no isotopic 

difference in carbon between the chicks from Portugal and the juvenile males from 

Spain suggesting the carbon signal of Iberia is robustly characterised. Inter annual 

variance in the post breeding grown P9(M) was considered likely due to variance in  
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Figure 6.5 Nitrogen isotopic composition in feathers grown in the breeding season for 

the wholly migrant Portuguese population. Birds are defined as adult or juvenile 

according to their reproductive status based on the hydrogen isotopic composition. 

The asterisk indicates a statistically significant difference between juvenile females 

and reproductive adults. 

 

 

the proportion of birds completing moult in Iberia rather than after migration to sub-

Saharan Africa. Tracking studies from both Spain and Portugal suggest birds are 

known to congregate in large winter roosts in Senegal, Mauritania and Mali 

(Rodriguez et al 2009, Catry et al 2011a, Limiñana et al 2012) in a very small latitudinal 

range of 4-170N making it unlikely that wintering location differed significantly 

between years. There was no difference in nitrogen values between winter and 

breeding season feathers, or between years in the winter grown feather. There was 

also no inter annual difference in hydrogen isotopic composition, however this may 

be due to the large range in values derived from the P9 feather.   
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6.5.2. Determining the migratory status of lesser kestrels between Iberia and Africa 

1) Carbon can only identify long distance migrants 

      In terms of migratory behaviour, the most informative isotope for this species is 

carbon,13C, which shows clear differences between feathers grown in the Iberian 

breeding area and feathers grown post breeding, Figure 6.1. Chicks and juvenile 

males isotopically characterise the breeding area. The mean δ13C of the Portuguese 

chicks (-23.1‰ ± 0.35) is identical to the 3 passerine species average (-23.1‰ ± 0.35) 

generated in Portugal by Neto et al (2006). These are typical of values associated with 

a predominantly C3 photosynthetic pathway habitat such as the grain crops and 

Mediterranean cork oak savannah grassland surrounding the breeding colonies (Aires 

et al 2008). The breeding season feathers of birds of unknown migratory status 

(P4(PM) and P3(M)) also show small range and agree well with the young birds.  

      The post-breeding grown feather (P9) from both populations shows a large 

continuum of values indicating a transition from a C3 to C4 photosynthetic pathway 

dominated habitat. This is particularly evident in the Portuguese population (P9(M)) 

where birds are suspected to be wholly migratory. Stable isotopes of carbon from 

atmospheric CO2 are differently fractionated by plant photosynthetic pathways 

resulting in distinct isotopic differences between C3 and C4 plants (Hobson 1999). This 

means that habitats can be distinguished according to the relative abundance of C3 

and C4 pathway plants; C3 pathway plants having relatively lower 13C values (mean –

27‰) compared with C4 plants (mean -13‰) (Smith and Epstein 1971, Chamberlain 

et al 2000, Yohannes et al 2005). Geolocators suggest the lesser kestrel winters in 

habitat dominated by C4 savannah, tropical grassland and shrub (Catry et al 2011a). 

Consequently, the P9 samples may contain both sub-Saharan migrants, whose values 

are strongly different (less negative) to those of the breeding area, and resident birds 

whose isotopic ratios are likely to be very similar to the C3 habitat Iberian signal of 

the chicks. In order to separate birds of unknown migratory status in to migrants and 

residents, a maximum limit for the breeding area was defined using the 95th 

percentile of the P3 and P4 feathers (-21.2‰). Individuals with post-breeding grown 

feather (P9) values less negative than this threshold can confidently be considered as 

migrant (42.0% for the partially migratory population, mean ±SE 13CP9f = -16.0‰ 

±0.4, 82.1% for the migratory population, mean ±SE 13CP9f = -18.2‰ ±0.3). Carbon 
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values determined in this study to be indicative of sub-Saharan Africa are within the 

range of mean values found by other sub-Saharan African studies (eg Neto et al 

(2002) mean = -16.4‰, Reichelin et al (2010) mean = -18.3‰) including the black kite 

Milvus migrans, a raptor species with the same wintering distribution and diet as the 

lesser kestrel (Cortes-Avizanda et al 2011, mean -14.2‰). For birds with δ13Cf P9 

below the limit expected for the breeding area, determining its migratory status is 

not so straight forward.    

      Unexpectedly, the δ13C of the P9 feather ratios from 3 of the 6 adults known from 

geolocators to have wintered in the Sahel, Africa, were below the breeding area 

threshold, and another was borderline (Figure 6.1a). This indicates flexibility in the 

timing of moult which means an unknown proportion of individuals whose P9 feather 

is isotopically similar to Iberia may be migrants who completed moult in Iberia, rather 

than resident birds. Carbon can therefore only successfully assign migratory status to 

birds who complete moult outside of the Iberian breeding area.  

 

2) Deuterium values probably not correlated with the isotopic signature of local 

precipitation 

      If hydrogen isotopic ratios of feathers were predominantly influenced by the 

isotopic composition of local precipitation, then feathers grown in the breeding area 

should be isotopically similar to the chicks and the 95th percentile breeding area limits 

defined for each population. Instead, deuterium values of feathers from (mostly) 

adult birds grown in the breeding season (P4(PM) and P3(M)) were significantly 

higher compared to the juvenile males and chicks (Figure 6.1b), a mismatch that has 

been reported in studies of other raptor species (Meehan et al 2003, Smith and Dufty 

2005 and Greenwood and Dawson 2011). Hobson et al (2009) noted in the American 

kestrel, a species closely related to the lesser kestrel, that individuals with feather 

deuterium more enriched than -20.0‰ departed strongly from the expected linear 

relationship with precipitation. Furthermore, other studies have suggested that in 

birds with low drinking water requirements, such as the lesser kestrel, drinking water 

only contributes between 18 ±3% (Wolf et al 2011) and 20–32% (Hobson et al 1999) 

to the hydrogen values of tissues, including feathers. In Japanese quail Coturnix 



150 
 

japonica, a species with high water intake needs, Wolf et al (2013) found only a weak 

correlation between feather hydrogen and drinking water.   

      Patterns of deuterium enrichment across the moult were further investigated by 

analysis of every primary feather from 9 individuals found dead (Figure 2). Three 

birds, including a known juvenile female, showed low variance in any isotope and 

similarity to the Iberian threshold in all feathers (depicted in yellow and purple, the 

juvenile female as open diamonds, Figure 6.2). The remaining 6 individuals showed 

variance in one or more isotopes. The breeding season grown feathers (P4-7) of these 

6 individuals were all consistently enriched above the 95th percentile threshold limit 

of the chicks and juveniles, whilst winter grown feathers tended to show less 

enrichment (Figure 6.2 c and d). According to the carbon isotopic ratios, 2 of the 

individuals showing isotopic variance (a male and a female) are long distance 

migrants who completed moult in Africa. This is because carbon values of feathers 

grown post breeding are all significantly less negative than values expected for Iberia 

(Figure 6.2b). However, in terms of deuterium, these birds are indistinguishable from 

other enriched birds (Figure 6.2d), which again suggests that hydrogen is not able to 

inform migratory status. 

 

3) Nitrogen is not useful in identifying migratory status 

      There was no significant difference in nitrogen between breeding (P4(PM) and 

P3(M) and post-breeding (P9) grown feathers in either population. This suggests 

there is no shift in dietary trophic level between Iberia and Africa, which is consistent 

with a year round diet known to mainly consist of orthoptera (Catry et al 2011a, 

Limiñana et al 2012) and small rodents. The Spanish population was generally more 

enriched in nitrogen than the Portuguese population, particularly during breeding. 

This may be due to a higher diversity of foods at various trophic levels in the Spanish 

population. Spanish birds had a larger range of nitrogen in the winter grown feather 

than the Portuguese birds, presumably because migrant birds winter in less 

intensively farmed areas. However, the difference was not sufficient to identify 

migrants and nitrogen was therefore not useful for differentiating migrant from 

resident birds in either population. 
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6.5.3. Isotopes may be able to distinguish non-breeding (juvenile) females from 

adults.  

      In total 7 individuals (one male, 6 females) showed low isotopic variability in 

carbon (Figure 6.2a and b). One female was known to be a juvenile and has isotopic 

ratios consistent with Iberia throughout all feathers. Three birds (one female and 2 

males) were known to be adults and may be either a) migrants that completed moult 

in Iberia, or b) resident birds. All confirmed adults with low δ13Cf P9 values are in one 

of these 2 categories. However, whilst adult males can be identified from plumage 

characteristics, adult and juvenile females cannot reliably be separated by plumage. 

The age of a few females in each population was known from ring data (10 from the 

migrant population, 14 from the partial migrants). For the majority of females, 

although all birds were sampled in breeding colonies, their age status (adult or 

juvenile) during feather growth the previous year was not certain. Consequently, in 

addition to being categorised as migrant or resident, females may also be juveniles 

with no migratory status. Carbon is unable to distinguish between them. However, in 

Figure 6.2, all 3 birds known to be adult show consistently enriched deuterium in all 

breeding season grown feathers, whereas the known juvenile shows no enrichment. 

The lack of juvenile enrichment is consistent with the juveniles and chicks sampled in 

Figure 6.1. According to the main explanatory hypothesis for enrichment, deuterium 

may be useful in separating adults from juveniles.  

 

6.5.4. Explanatory mechanisms for deuterium enrichment 

      Hydrogen incorporation in raptors species appears to be more complex in 

comparison to other avian groups, resulting in high levels of deuterium enrichment. 

Meehan et al (2003) and Greenwood and Dawson (2011) discuss 3 non-exclusive 

hypotheses that may explain the high levels of deuterium enrichment.  

      In the first hypothesis the consumption of migrant birds with a non-local isotopic 

signal may result in the expression of more enriched deuterium values. However, this 

is not relevant to the lesser kestrel whose diet year round consists mainly of 

orthoptera and small rodents, and shall not be considered further.  
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      Secondly, the synthesis of feather keratin from proteins mobilized from stores laid 

down in the non-breeding season may lead to a disconnection from the local 

hydrogen signal at the time of feather growth. Understanding of source to tissue 

discrimination factors (enrichment or depletion) and the speed in which a dietary 

change is reflected isotopically in body tissues (turnover time) is better understood 

in carbon compared to hydrogen (Martínez del Rio et al 2009, Hahn et al 2012). 

Feathers are synthesised from amino acids transported by blood. By switching 

individuals from one isotopically distinct diet to another, studies have confirmed that 

carbon in whole blood and feathers update at similar rates (Bearhop et al 2002) and 

reflect diet over a short time period varying from 15.7 ± 2.1days in great skuas 

Stercorarius skua (Bearhop et al 2002) to 11.2 ± 0.8 days in dunlin Calidris alpina 

(Evans Ogden et al 2004) and 3.9 to 6.1 days in yellow-rumped warblers Setophaga 

coronata (Pearson et al 2003). However, it has also been demonstrated that feathers 

can be synthesised from carbon and nitrogen derived endogenously from protein 

stores (Fox et al 2009). Discrimination factors and turnover times are significantly 

more complex in hydrogen, and less well understood. Whereas carbon is derived 

entirely from diet, hydrogen can be derived from multiple sources including from 

prey, drinking water and metabolically created water (Hobson et al 1999, Wolf et al 

2011, Wolf et al 2012, Wolf et al 2013), each source with its own dynamics and 

unquantified contribution to the overall signal. Any delay in hydrogen turnover would 

be very difficult to assess.        

      Investigations into the deuterium delay hypothesis by studying the relationship 

between deuterium values in blood plasma and feathers in American kestrels Falco 

sparverius were inconclusive (Greenwood and Dawson 2011). However, in woodrats, 

body water turnover had a half-life of 3-6 days in response to water intake (Podlesak 

et al 2008), in rock dove Columba livia isotopic equilibrium with drinking water was 

reached in 3.97 ±0.72 days at room temperature (McKechnie et al 2004) and in 

Japanese quail, Wolf et al (2012) found the turn over time of hydrogen in blood 

plasma was generally faster than for carbon -although this was not statistically 

significant due to small sample size and large differences between individuals. These 

studies suggest that hydrogen likely updates at a similar rate to carbon and therefore 

the signal laid down in feathers during synthesis should represent a relatively 
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immediate timescale. Furthermore, deuterium ratios observed in this and other 

studies are significantly enriched compared to values expected for local precipitation 

in either the breeding or wintering zones, suggesting significant disconnect with local 

precipitation, not simply a delay in signal expression.  

      In the third hypothesis, the lighter isotopologues (those with lighter hydrogen and 

oxygen isotopes) are preferentially lost as a result of increased evaporative cooling 

due to heat stress. This may lead to pronounced enrichment of heavier isotopologues 

in body water and therefore of feathers. Greenwood and Dawson (2011) favour, 

though cannot confirm, this hypothesis as the dominant mechanism in their analysis 

of deuterium from American kestrels, a species closely related to the lesser kestrel. 

Similarly, Smith and Dufty (2005) and Powell and Hobson (2006) also feel that heat 

stress during feather moult is the most likely explanation. Data analyses were 

conducted in this study to explore this hypothesis in more detail.  

 

6.5.5. Assessing the effects of evaporative cooling on feather deuterium 

      According to this mechanism, increased rates of evaporative cooling are 

experienced as a result of breeding effort and temperature regulation in hot weather 

and this significantly enriches body water isotopic composition in adults compared to 

chicks. The correlation between enrichment and body size arises because metabolism 

and heat loss are proportional to mass and surface area. Larger individuals have 

higher metabolism and energy requirements and generate more heat but have lower 

capacity for passive heat dissipation (due to a smaller surface area in relation to mass) 

and as a result have increased requirement for evaporative heat loss. As a result, the 

relationship between the isotopic signatures of feathers and precipitation breaks 

down making hydrogen unreliable as a predictor of migratory status. Unfortunately, 

in our study there was insufficient availability of breeding metrics data (eg fecundity, 

chicks hatched, chicks fledged) from the previous year when feathers were grown, to 

assess direct evidence for breeding stress on adults. However, the influence of heat 

stress and body size on deuterium enrichment could be measured in chicks. 
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1) Heat stress and deuterium enrichment in chicks 

      The impact of heat stress in wild populations is usually difficult to measure, 

however this study benefitted from the fact that the majority of lesser kestrels in 

Portugal nest in artificial nest boxes in which they experience very different 

temperature regimes depending on box aspect and construction material (Catry et al 

2011b).  Although our sample size was small, there was evidence for a positive 

correlation between temperatures over 300C and deuterium enrichment (Figure 

6.3a). The impact of body size (wing length) on deuterium was almost significant 

(Figure 6.3b) and, based on results of other studies of enrichment in nestlings (eg 

Betini et al 2009), these results would be significant with a larger sample size. 

Although this study could not distinguish the relative effects of body size (chicks age) 

and temperature on enrichment, the difference in enrichment between the least and 

most enriched chicks (17.4‰) was similar to the value derived in heat stressed doves 

(20.2‰, McKechnie et al 2004). 

       

2) Breeding and heat stress in adults 

      In support of the breeding stress hypothesis, Greenwood and Dawson (2011) 

found enrichment of adults to be correlated with body size (larger males were more 

enriched) and breeding effort (adult females that fledged higher mass female chicks 

had greater enrichment). In this study we speculated that the breeding season 

feathers of the migratory Portuguese population (P3M) were more enriched in 

deuterium than the Spanish population (P4PM) because an unknown proportion of 

adults likely bred in hot nest boxes and therefore likely experienced a higher level of 

heat stress. However, despite size dimorphism in the lesser kestrel, there was no 

effect of sex on enrichment of the P4(PM) feather grown at the start of the breeding 

season, or on the P3(M) grown at the end of the breeding season. There was also no 

effect of body size (wing chord length) on enrichment levels of either breeding season 

feather. This was attributed to high variation in degree of enrichment between 

individuals during the breeding season, particularly in the P3 feather, with some birds 

being considerably more enriched than others (Figure 6.1, Figure 6.2). In turn, this 

suggests various non-exclusive individual-specific effects (metabolism, individual 

fitness, stress levels and body condition). Effort related to breeding (fecundity, the 
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number of chicks to hatch, number of chicks to fledge and partner quality) are likely 

also important factors. 

      Levels and reactivity of physiological stress hormones (eg corticosterone) in wild 

birds are known to vary seasonally and to be much higher in the breeding season than 

during post breeding, migration and wintering. Increased corticosterone, an adrenal 

steroid hormone, is linked with increased levels of activity and foraging in birds. For 

example, baseline levels of corticosterone were 50% lower in autumn compared to 

during breeding in long eared owls Asio otus (Romero et al 2009). Baseline levels are 

known to vary between Accipiter species and, in some species, between sexes. 

Cooper’s hawk Accipiter cooperii, the subject of the study by Meehan et al (2003), 

mentioned above, is known to have relatively high baseline levels of adrenocortical 

(Rogers et al 2010), which may be a contributing factor in the extremely enriched 

deuterium observed by the authors. In American kestrels (the subject of Greenwood 

and Dawson’s 2011 paper, also mentioned above) female corticosterone was 

significantly higher during the egg laying period (Rehder et al 1984). Most crucially 

for this study, in non-breeding females corticosterone levels were always lower and 

no significant peaks were observed (Rehder et al 1986). Flat corticosterone levels 

have also been observed in other wild, non-breeding avian species (Akesson and 

Raveling 1981) and differences in corticosterone may be an explanatory factor in 

varying reproductive success (Rehder et al 1986). This may explain the differences in 

deuterium enrichment observed between adult and suspected juvenile birds in this 

and other studies. It was also noted by Rehder et al (1986) that levels of plasma 

corticosterone rose post breeding in both breeding and non-breeding American 

kestrels. This was interpreted as preparation for migration, and has since been found 

in many avian species (Rogers et al 2010), and may also explain the upward trend in 

enrichment between the P1 and P10 feathers observed in all bar one of the 9 lesser 

kestrels in Figure 6.2 of this study. 

      Unlike most passerine species, which delay moult until after breeding and have 

good links between feather deuterium and precipitation, raptors undergo moult 

during the extremely stressful breeding season. This likely has two effects: firstly, to 

increases energetic demands further, and secondly the breeding season stress 

response becomes stored in feathers as a reliable summary of stress responses during 
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feather growth (Bortolotti et al 2008, Bortolotti et al 2009) and likely, also manifests 

as deuterium enrichment. This phenomenon is not exclusive to raptors. In fact, 

deuterium enrichment of adult compared to juvenile feathers has also been noted in 

passerines that moult immediately after breeding (Powell and Hobson 2006, 

Marquiss et al 2012). It has also been suggested in corvids (Hobson et al 2004).   

      As levels of stress hormones such as corticosterone are individual responses and 

are not related to body size, this may explain why this study did not find a link 

between deuterium enrichment and wing length and why other studies found only 

tenuous links between breeding effort and deuterium enrichment (Greenwood and 

Dawson 2011). The corticosterone response in feathers of birds of breeding age may 

also explain why the linear relationship between deuterium composition and 

precipitation in juvenile feathers is unaffected, resulting in the successful generation 

of isoscapes with juvenile raptor feathers (eg Lott and Smith 2006) but why the link 

to precipitation breaks down in adult birds.      

      Many strands of evidence therefore suggest that breeding stress is the main 

explanatory mechanism for the level and pattern of deuterium enrichment observed 

in adult feathers of this and other raptor studies. Future studies should investigate 

this further by simultaneous assay of both corticosterone and hydrogen isotope 

ratios deposited in feathers of both breeding and non-breeding raptor and non-

raptor species. Furthermore, recent advancements in tracking equipment and 

accelerometry should allow detailed derivation of ODBA (overall dynamic body 

acceleration), metabolism and energetics which could significantly increase 

understanding of the link between deuterium enrichment and stress.  

 

6.5.6. Identification of non-breeding females using deuterium  

 According to the hypothesis of deuterium enrichment due to increased 

evaporative cooling as a response to breeding stress, non-breeding birds should be 

identifiable by their consistently low, flat levels of deuterium enrichment. In 

comparison, breeding birds (therefore adults) should have highly enriched breeding 

season feathers. This is observed in Figure 6.4. Here all young birds are significantly 

lighter in deuterium than the majority of confirmed adults.  The females are of 
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unknown age because juvenile birds cannot be identified by plumage, and span a 

large range of values. This indicates both adults and juveniles are present in the 

sample.  

Birds with low enrichment can be identified by applying the base-line 

deuterium enrichment threshold derived for each population from the 95th percentile 

of the young birds. Consequently 6.0% of females of unknown age from the migratory 

breeding colonies and 5.3% from the partially migratory colonies were identified as 

non-breeding. It is not certain whether these individuals are juveniles or non-

breeding adults. In addition, Figure 6.4 shows that 7.9% of confirmed adults from the 

migratory population (Portuguese P3(P)) and 1.6% from the partially migrant 

(Spanish P4(S)) population also have extremely low enrichment of breeding season 

feathers, comparable to levels expected in young birds. Interestingly, one of these 

adults with low enrichment of the P3 feather was the male depicted in purple in 

Figure 6.2. This bird showed strong enrichment of early breeding season feathers (P4-

7) then a sharp drop in the P3 feather value. Interpretation of this individual in 

accordance with the corticosterone/breeding stress hypothesis allow speculation 

that this bird had a breeding attempt but likely failed, hence the sudden drop in P3 

enrichment in comparison to other birds. This suggests that feathers grown early in 

the breeding season (P4 and particularly P5) may be more reliable indicators of 

whether or not a breeding attempt was initiated. This may explain why fewer 

confirmed adults sampled for the early breeding season P4 feather were highlighted 

as possibly non-breeding birds. Consequently, the 5.3% of unenriched females of 

unknown age status from the partially migrant population, sampled for P4, are highly 

likely to be juveniles with flat levels of enrichment across all feathers and can be 

excluded from studies of migratory behaviour. The slightly higher percentage (7.9%) 

of females of unknown age from the Portuguese population sampled for the end of 

breeding P3 feather may include adults misidentified as juveniles. 

 

6.5.7. Confirmation of juvenile status using Nitrogen 

      The range of expected values of nitrogen for both adults and chicks was very small 

(Figure 6.1). Despite this, the slight difference in the means of chicks and juvenile 
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males in comparison to their respective P4(PM) or P3(M) feather was statistically 

significant. This suggests the diet of chicks differed from the adults, possibly 

indicating they are selectively provisioned with smaller or softer bodied prey items 

by the adults. The range of juvenile male nitrogen values overlapped considerably 

with the P4(PM) which is likely because diet becomes less selective in older chicks 

who are able to handle a larger variety of prey. This range overlap meant nitrogen 

was not informative in confirming the age status of birds with low deuterium 

enrichment in the Spanish population. However, there was less overlap with young 

birds in the Portuguese population (Figure 6.1). After regrouping birds by their age 

status according to carbon and deuterium (Figure 6.5), all females of unknown age 

that were light in terms of both carbon and deuterium, had nitrogen values 

indistinguishable from chicks and different to the known adults. Thus, these 

individuals (6.0% of individuals in the Portuguese sample) are highly likely juvenile 

birds of no migratory status and can be eliminated from studies of migratory 

behaviour.  

 

Table 6.1 Status of lesser kestrels determined by stable isotopes (%).   

Birds of unknown migratory status are either resident or birds who completed moult 

in Iberia prior to migration. Percentages are presented both including and excluding 

birds determined by deuterium to be juveniles. 

 

 

 

 

Status Migratory population  

(Portugal) 

Partially migrant population 

(Spain) 

Including 

juveniles (%) 

Excluding 

juveniles (%) 

Including 

juveniles (%) 

Excluding 

juveniles (%) 

Migrant 

 

82.1 87.3 42.0 44.4 

Migratory 

status 

unknown 

11.9 12.7 52.7 55.6 

 

Juvenile 

 

6.0 

  

5.3 
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Although the final sample size of juvenile females was small, nitrogen 

supports the theory that deuterium enrichment due to increased evaporative cooling 

resulting from breeding stress can be used to identify non-breeding (juvenile) 

individuals within a population.  

 

6.5.8. Individual migratory status in migratory and non-migratory populations 

A summary of individual migratory status derived for the 2 populations by this 

study is presented in Table 6.1. After exclusion of juveniles, the majority (87.3%) of 

individuals from the Portuguese population, suspected to be wholly migratory, were 

successfully assigned as migratory by carbon. In this population, it is likely that all the 

birds with unknown migratory status (12.7%) were birds that moulted in Iberia prior 

to migration. It is known from tracking studies that birds perform a short post 

breeding period of local wandering prior to migration (Catry et al 2011a) and moult 

could have been completed during this phase. As expected, the proportion of birds 

assigned by carbon as migratory was significantly lower in the partially migrant 

population (44.4%). Assuming the proportion of birds to complete moult in Iberia is 

approximately the same as in the migratory colony, potentially 42.9% of birds were 

resident. Unfortunately, it is not possible to determine isotopically which individuals 

are true residents.     

 

6.6. Conclusions 

Of the 3 isotopes tested only carbon was useful when assigning individual 

migratory status in the lesser kestrel. However, isotopic ratios of individuals fitted 

with geolocators indicated flexibility in timing of moult. This means an unknown 

number of migratory individuals may have completed moult in Iberia rather than 

being truly resident. Carbon could only robustly identify migrants meaning this 

isotope was less informative in determining migratory status in the partially migrant 

population. This emphasises that understanding the moult characteristics of the 

study species, in terms of moult flexibility as well as order of feather moult, is crucial 

to accurate interpretation.  
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This study provides additional support for a breeding stress hypothesis as the 

dominant explanatory mechanism for enriched deuterium seen in many raptor 

species. If increased rates of stress are experienced as a result of breeding effort and 

temperature regulation in hot weather, then adult breeding season feathers should 

consistently be significantly enriched in deuterium in comparison to juveniles and 

non-breeding birds. Evidence for this was found in this study and verification of 

juvenile status was independently provided by nitrogen. This allowed elimination of 

juvenile females, which are indistinguishable from adults by plumage. This new 

interpretation of deuterium in raptors has many potential applications across a wide 

range of species and research questions. 
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Chapter 7 

 

 

General Conclusions 

 

 

 

 

 

 

 

 

Photo: Left: Stork with leg ring code 4C+ equipped and ready for release.  

Right: Tagged stork 4P+ with chicks. 

 

 

7.1. Key findings  

7.1.1. White storks, insights for conservation management planning 

      This work is a contribution to our understanding of the movement and foraging 

ecology of a newly resident species in response to an abundant, artificial food supply. 

In a changing world where many species including bears, gulls, garden birds and 

marine species (Ayres et al 1983, Orams 2002, Yoril and Caille 2004, Robb et al 2008a, 

Fuller et al 2008, Corcoran et al 2013) are adapting their wintering and breeding 

ecology around anthropogenic food supplements, this knowledge is hugely relevant.    

      Climate and environmental changes in the form of milder winters and abundant 

food resources (landfill and red swamp crayfish) have enabled the white stork to 

remain on the nest as a central place forager throughout the year. This is notably rare 

in temperate climes, where species are normally highly mobile during winter as a 
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response to limited food resources (Newton 1998). This fascinating new behaviour in 

resident storks governs many aspects of their wintering and breeding season foraging 

strategies. Thus, the nest-landfill distance determined the frequency of landfill use, 

foraging range in non-landfill habitat and proportion of GPS fixes spent foraging 

(Chapter 2). It was also discovered that, for the years of study, the nest - landfill 

distance was more important than climatic variables in predicting landfill use 

(Chapter 3). This may indicate that, for this species, the climatic drivers of winter 

habitat use are currently being obscured by the anthropogenic contribution to the 

abundance of winter food.  

      From a conservation perspective, this thesis provides key insights into how the 

artificially high white stork population in Iberia may be affected by the imminent 

closure of open-air landfills. From their movement behaviour and habitat, it was 

ascertained that birds travelled to visit landfill from further away than previously 

estimated (Tortosa et al 2002, Massemin-Challet et al 2006). This indicated that the 

sphere of influence of landfills may be greater than previously suspected, therefore 

a higher proportion of the population than previously thought may be regularly 

utilizing landfill resources and will consequently be impacted by their closure. This 

study also provided the first quantitative evidence of the importance of landfill for 

breeding success (Chapter 4). High productivity near landfills indicates the important 

role this food resource had been in the strong population recovery observed in the 

last few decades. Frequency of visits to landfill declined with increasing nest-landfill 

distance, never the less, it can be speculated that even rare landfill visits may be the 

crucial difference between nest success rather than failure, particularly in years with 

low food resource availability in local habitats. However, reproductive rates away 

from landfills were low compared to other studies across the breeding range 

(Barbraud et al 1999, Tryjanowski et al 2004, Hilgartner et al 2014) so it is not yet 

known whether population dynamics in Iberia will remain stable. 

      A caveat of this study is that nests far from landfill were considered to be 

minimally influenced by them. However, it is highly likely that the majority of storks 

(resident and migrant) benefited from landfill use to some extent during winter (Peris 

2003), thereby improving individual fitness. Carry-over effects, whereby events of 

one season influence the success of an individual in another, are thought to be 



173 
 

widespread (Harrison et al 2011), and evidence indicates that diet quality during 

winter can influence breeding success the following spring (Gill et al 2001, Sorensen 

et al 2009, Robb et al 2008b). Thus, productivity in colonies that do not use landfill 

during breeding are still boosted by landfill use during non-breeding and are 

therefore higher than they otherwise should be. The implications of this are that true 

non-landfill productivity rates in Iberia will actually be lower after landfill closure than 

predicted by this study.  

      The combination of landfill closures and rapid climatic change predicted for Iberia 

makes the white stork particularly susceptible to future environmental change. 

Increased utilization of rice field habitat after landfill closure may bring storks into 

increased conflict with farmers who dislike large flocks of storks because they muddy 

the water in rice paddies and trample young crops.  Management alternatives, such 

as the creation of artificial feeding sites, would mitigate the impact of landfill closure 

for white storks and other species that use landfills, including herons, egrets, gulls, 

and raptors.  

 

7.1.2. Stable isotopes as indicators of migratory status: the importance of moult 

      In a changing world, where increasing numbers of species are becoming sedentary 

where they were formerly wholly migratory, it will be increasingly of interest to be 

able to separate residents from migrants within the same population.  This study 

emphasises that full understanding of moult is crucial to accurate interpretation of 

stable isotope data, both in terms of the sequence and timing of feather renewal. It 

was surprising that four of the birds tagged with geolocators had carbon ratios similar 

to Iberia when they were known to have wintered in Africa (Chapter 6). As a result, it 

was not possible to separate true residents from migrants that completed moult in 

Iberia. Variance in moult between individuals is often not well understood, so caution 

is urged.  

      My work contributes to mounting evidence that timing of moult may also be 

influencing hydrogen incorporation in feathers. Whilst many studies find hydrogen is 

linked to local precipitation (Hobson et al 2012) others find ratios of deuterium in 

feathers from the same location are different between age classes and enriched 
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beyond values predicted by precipitation (Meehan et al 2003, Smith and Dufty 2005, 

Lott et al 2006, Powell and Hobson 2006, Hobson et al 2009, Greenwood and Dawson 

2011). The mechanisms driving this detachment from meteoric water are still unclear 

but theories suggest that simultaneously moulting whilst breeding may be recording 

breeding season processes in feathers, particularly extra evaporative cooling due to 

breeding effort. This thesis ventures a new hypothesis for further consideration: that 

levels of stress hormones during breeding (breeding stress) may be influencing 

feather deuterium. 

 

7.2. Future research directions 

7.2.1. White storks 

      This thesis provides a baseline for the current situation with white stork 

movement behaviour and productivity in relation to landfill use. Sadly, the period of 

my doctoral research ended just as the landfill closures were finally coming into effect 

–in other words, just as things got really interesting! 

      The planned closure of open-air landfills is a fantastic and rare opportunity for 

studying the consequences of an abrupt change in food supply on movement 

behaviour and habitat selection, population dynamics and productivity. Furthermore, 

the white stork is a prominent and well-studied species which enables very in-depth 

research questions to be tackled. This will facilitate greater understanding of species 

response to anthropogenic environmental change.  

      In order to understand the responses to these changes, individuals need to be 

followed. Consequently, GPS tags should continue to be deployed on white storks in 

colonies close to landfills in order to monitor the consequences of closure for 

movement behaviour and productivity and also for migratory decisions.  

      My research highlighted that current levels of white stork productivity on the 

Iberian Peninsula are low compared to breeding populations elsewhere in Europe, 

particularly in colonies far from landfills. Future research should investigate whether 

reproductive rates are sufficient to sustain a stable population and, if necessary, 

devise management strategies.  I have started to address this question using survival 

analysis of 20 years of white stork chick ringing data from Portugal, coupled with 
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historic productivity data and population estimates from the recently conducted 7th 

International White Stork Census (2014). However, the manuscript is still a work in 

progress so was not included in this thesis. 

 

7.2.2. Lesser Kestrels 

      In this thesis, interpretation of deuterium enrichment was carried out with low 

sample sizes. This was because understanding the processes and implications of 

enrichment was not part of the original study design. Feather sampling targeted adult 

birds because of interest in migratory behaviour, so only a limited number of 

individuals transpired to have juvenile feathers. Future research should focus on 

obtaining good sample sizes of both breeding and non-breeding birds, with the 

breeding history corresponding to the year of feather growth. Levels of stress 

hormones, such as corticosterone, in feathers should then be assayed simultaneously 

with deuterium in order to compare breeding and non-breeding individuals. This 

would facilitate fuller understanding of the impact and variability of stress levels in 

individuals on deuterium ratios. This may have profound implications for the 

interpretation of stable isotopes of hydrogen from feathers across all species.  

      I have a considerable amount of data that has not been included in this thesis. In 

the course of my research I analysed stable isotopes of carbon, nitrogen and 

hydrogen from 12 passerine species resident in the African Sahel and a further 6 

resident species from Southern Africa. This was part of my attempt to understand 

variability in deuterium derived from lesser kestrels. Additionally, I performed triple-

isotope analysis on feathers from the European Roller Coracias garrulous with the 

aim of compiling a multi-species analysis of variability in feather isotopes between 

the Iberian breeding area and African (Sahel and Southern Africa) wintering areas. 

The aim remains to bring these data to publication. 
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Appendices 

 

Appendix 2.1  

Confusion matrix. Performance of the decision tree model used to predict four 

behaviour classes: 1) standing/preening, 2) foraging, 3) flight and 4) tending eggs. 

True positives are in bold. 

 

 Behaviours 

 

 

Predicted 

 Standing / 

Preening 

Foraging Flight Tending Eggs 

1 1205 41 5 16 

2 23 749 5 0 

3 0 1 82 0 

4 16 0 0 107 
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Appendix 2.2 Temporal patterns of landfill attendance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distribution of GPS fixes occurring on landfill during each of the 5 daily data bursts as 

a percentage of all transmissions on landfill during the non-breeding (dark grey) and 

breeding (light grey) seasons. Graph a: Summary (± SE) of 10 birds tracked in 2012-

13. Graphs b-e: variability in landfill attendance by individuals nesting at different 

distances from landfill b) 3.5 km, c) 4.1 km, d) 14.2 km, e) 25.0 km. The latter 

individual only used landfill during the non-breeding season. In all graphs, dark bars 

are the non-breeding season, light bars are the breeding season. 

a) 

6         9        12      15      18 6         9        12      15      18 
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Appendix 3.1 

Outputs of the GLMM investigating predictors of winter nest use.  

Predictors Estimate SE Z Pr(>|z|) 

Intercept -0.758 0.096 -7.932 < 0.001 

Maximum temperature (0C) -0.014 0.025 -0.547 0.585 

Minimum temperature (0C) -0.010 0.026 -0.766 0.444 

Wind speed (m/sec) 0.008 0.026 0.302 0.762 

Nest-landfill distance (km) -0.05 0.062 -0.860 0.390 

Daily Precipitation (mm) -0.040 0.026 -1.541 0.123 

Mean precipitation 10 (mm) 0.025 0.024 1.058 0.290 

 
Interactions 

    

Daily Ppt – Wind speed -0.037 0.019 -1.880 0.062 

Daily Ppt- Nest-landfill dist  -0.015 0.021 -0.733 0.464 

Daily Ppt – Ppt 10     

Daily Ppt – Max temp 0.006 0.030 0.188 0.851 

Daily Ppt – Min temp 0.011 0.025 0.427 0.669 

Nest landfill dist – Max temp 0.004 0.024 0.177 0.859 

Nest landfill dist – Min temp -0.023 0.024 -0.973 0.331 

Nest landfill dist – Wind 
speed 

-0.040 0.026 -1.562 
 

0.547 

Nest landfill dist – Ppt 10 -0.023 0.022 -1.058 0.290 

Ppt 10 – Max temp -0.009 0.024 -0.401 0.688 

Ppt 10  - Min temp -0.006 0.019 -0.292 
 

0.770 

Ppt 10 – Wind speed  0.021363 0.024 0.881 0.379 

Max temp – Wind Speed 0.03587 0.023 1.555 0.120 

Max temp – Min temp 0.009984 0.023 0.428 0.668 

 
Random effects 

 
Variance 

 
SD 

  

Individual 0.053 0.230   

Landfill used 0.002 0.044   

Year 0.011 0.107   
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 Appendix 4.1a: Colony-scale productivity in relation to the distance between the centre of the colony and nearest landfill, years 2005 – 2009 and 2012 - 2014.

Dashed lines are the percentage of monitored nests in each colony that successfully reared at least one chick. Bars indicate the mean number of chicks per nest (including failed 

breeding attempts) per colony. Dashed trend lines indicate years where the percentage of successful nests was significantly related to the colony – landfill distance and the bold 

trend line indicates where the mean number of chicks per nest was also significant.  
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Appendix 4.1b: Colony-scale productivity in relation to the distance between the centre of the colony and nearest rice field, years 2005 – 2009 and 2012 - 2014. 

 

 

 

Dashed lines are percentage of monitored nests per colony that successfully reared at least one chick. Bars show mean number of chicks per nest (including failed breeding attempts) per 

colony.  Dashed trend lines indicate years where the percentage of successful nests was significantly related to colony – rice field distance, bold trend lines indicate where the mean number 

of chicks per nest was also significant. Only colonies ≥25km from landfill sites are included to avoid observing impacts of landfill on productivity. 
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Appendix 6.1  

Carbon isotopic ratios of Portuguese post-breeding grown feather (P9(M) sampled 

in 2009 and 2013.  

There is an inter-annual difference in carbon means, but not in the range of carbon 

values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


