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Several studies have suggested that the carbon sink in the Southern Ocean -

the ocean’s strongest region for uptake of anthropogenic CO2 - has weakened

in recent decades. Here, we demonstrate on the basis of multi-decadal analyses
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of surface ocean CO2 observations that this weakening trend stopped around

2002 and that by 2012, the Southern Ocean had regained its expected strength

based on the growth of atmospheric CO2. All three Southern Ocean sectors

have contributed to this reinvigoration of the carbon sink, yet differences in

the processes between sectors exist, related to a tendency towards a zonally

more asymmetric atmospheric circulation. The large decadal variations in the

Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that

varies more in time than previously recognized.

Simulations with ocean biogeochemical models have suggested a stagnation or even a re-

duction of the Southern Ocean carbon sink from the 1980s to the early-2000s (1–3), a result that

has been supported by inversion studies (1) based on atmospheric CO2 data. Such a stagnation

has wide-reaching implications to climate as the Southern Ocean south of 35◦S accounts for

about 40% of the global oceanic uptake of anthropogenic CO2 (4–6), thereby contributing a

disproportionally large share in the removal of anthropogenic CO2 from the atmosphere. The

trend towards a saturation of the Southern Ocean carbon sink has been attributed mainly to the

intensification and poleward shift of the westerly winds associated with a trend towards a more

positive state of the Southern Annular Mode (1, 2). The resulting enhanced upwelling of deep

waters with high concentrations of dissolved inorganic carbon (DIC) drove an anomalously

strong flux of natural CO2 out of the surface ocean, counteracting the increase in the oceanic

uptake of anthropogenic CO2 (2).

Several studies based on observations of the surface partial pressure of CO2 (7–9) corrob-

orated these model-based trends in the Southern Ocean carbon sink, but all of them used the

observations without any interpolation. Given the sparsity and spatial heterogeneity of these

surface ocean observations (8), the conclusions drawn in these studies regarding the trends turn

out to be rather sensitive to the chosen method of trend calculation (9) and the beginning and
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end year of analysis (10). Nevertheless, these studies tended to support a weakening sink trend

up to the mid 2000s. One of these studies (9) also pointed out that the trend may have reversed

in recent years, a finding corroborated by the analysis of pCO2 observations along a single

meridional transect south of Tasmania (11).

To address the sparse data coverage, we use a neural network technique (12) to interpolate

the pCO2 observations in time and space. We then evaluate the results using (i) a complementary

pCO2 observation-based product based on the interpolation by a data-driven mixed layer scheme

(13), and (ii) an atmospheric CO2 inverse estimate (14). Both surface ocean based methods have

been extended for this study to produce multi-decadal distributions of the surface ocean pCO2

field (15, 16). The air-sea CO2 flux variations are then computed employing a standard bulk

parameterization (see supplement 1.4). Though each of these estimates faces limits due to the

available information, their combination allows us to gain confidence in the inferred features.

The two surface ocean data-based air-sea CO2 flux products confirm that the Southern Ocean

carbon sink (south of 35◦S) weakened through much of the 1990s, in agreement with the model-

based studies and the atmospheric inversions (1, 2), but reveal that it has strengthened substan-

tially since about 2002, increasing by more than ∼0.6 Pg C yr−1 (see Fig. 1) to a vigorous

uptake of ∼1.2 Pg C yr−1 in 2011. This increase has returned the Southern Ocean sink to

levels expected from the increase in atmospheric CO2 (5), computed from an ocean biogeo-

chemistry model forced with just the increase in atmospheric CO2 (17). The increase in the

Southern Ocean carbon uptake since 2002 is responsible for roughly half of the global trend in

the ocean carbon sink over this period (15), highlighting the importance of the Southern Ocean

in moderating the growth of atmospheric CO2.

Both surface ocean observation based methods rely on the to-date largest sea surface pCO2

observation database (SOCAT version 2) (18), which contains more than 2.6 million observa-

tions in the Southern Ocean south of 35◦S. The neural network technique (12, 15) interpolates
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these observations to a 1◦×1◦ global grid at a monthly resolution for the period 1982 through

2011, resulting in a multi-decadal reconstruction of the global ocean carbon sink. The method

relies on non-linear but robust relations between the limited pCO2 observations and proper-

ties measured more frequently such as sea-surface temperature, sea-surface salinity, satellite

chlorophyll-a and mixed layer depth (see supplement 1.2). The mixed layer scheme (13, 16)

(version oc v1.2) in contrast does not regress pCO2 variations to physical, chemical or biolog-

ical driver data, but directly assimilates the available pCO2 observations into a mass-budget of

the mixed layer at a resolution of 4◦×5◦ in space and daily in time. This method also uses

several ancillary observations to parameterize the air-sea CO2 exchange, solubility and carbon

chemistry, but does not use them to interpolate the pCO2 to regions without observations. In-

stead, it interpolates the pCO2 data directly.

Extensive validation of the neural network based estimate using independent observations

reveal that the method is able to map the sparse pCO2 data with little bias (mean differences

between SOCAT observations and neural network estimates of generally less than 2 µatm; see

Table S1) in space and time. Both methods agree well regarding the sign and the magnitude

of the decadal trends within the two decades from 1992 through 2001 and 2002 through 2011

(Fig. 1, Table S2), where the majority of surface ocean pCO2 observations exist (Fig. S3).

However, given the methodological differences in the data treatment in data-sparse regions

(interpolation versus regression), there is less agreement regarding higher frequency variability

such as the year-to-year variations in the sink strength. This lower agreement is a result of the

weaker signal-to-noise ratio of the pCO2 data in the interannual frequency band. Under such

conditions, the direct interpolation scheme of the mixed layer method tends to extrapolate high-

frequency noise present in the observations to the data sparse region, likely generating overly

strong variations there. In contrast, the neural network scheme suppresses the high-frequency

noise by being constrained by the ancillary observations, resulting in a possible underestimation
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of the year-to-year variability in the data-sparse regions. In contrast, the relatively strong pCO2

signals that underlie the decadal changes in the Southern Ocean are distinctly captured by the

two methods, resulting in very similar decadal trends.

The changes in the Southern Ocean carbon sink are almost entirely driven by changes in the

air-sea difference of pCO2, i.e., ∆pCO2 = pCOsea
2 − pCOatm

2 (pCOatm
2 = atmospheric pCO2),

since the direct effect of changes in the wind and temperature on the gas transfer coefficient

is small (see Fig. S8). The spatial pattern of the trends in ∆pCO2 from the neural network

method reveals for both decades a very uniform trend pattern across the entire Southern Ocean,

with the strongest ∆pCO2 trends at high latitudes (see Fig. 2a& b). The spatial trends for the

mixed layer scheme are similar, although at coarser resolution and with somewhat more zonal

variations, part of which may be spurious due to missing data constraints there, reflecting the

more variance producing nature of this method in data-sparse regions (see Fig. S6). From 1992

through 2001, the trend in ∆pCO2 was strongly positive, driven by the surface ocean pCO2

increasing nearly twice the rate of pCOatm
2 around Antarctica. In contrast, from 2002 onward,

the growth of surface ocean pCO2 nearly stalled, strongly increasing the degree of surface ocean

undersaturation, which ultimately drove the increasing uptake of atmospheric CO2.

We test the robustness of this result on the basis that such strong decadal changes in the CO2

uptake across most of the Southern Ocean should leave an imprint on atmospheric CO2, taking

advantage of the lack of land regions with substantial CO2 fluxes south of 35◦S. Specifically, we

are using an atmospheric inversion method (14) to infer the air-sea CO2 fluxes that are optimally

consistent with the atmospheric CO2 data while taking into consideration atmospheric transport

and mixing. The employed setup that is the same as the published version s85 v3.6, but we

used the atmospheric winds from ERA-Interim reanalysis (19). The evolution of the Southern

Ocean carbon sink from this inversion of atmospheric CO2 data also supports our postulated

larger than expected increase in the Southern Ocean carbon sink strength within the last decade
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(Fig. 1), even though it shows much less of a weakening during the 1990s. In conclusion, two

complementary pCO2 data based estimates, as well as an atmospheric CO2 inversion confirm

that the Southern Ocean carbon sink experienced a significant strengthening since the early

2000s.

This reinvigoration after the early 2000s cannot be a simple reversal of the Southern An-

nular Mode-driven wind trend that has been suggested to cause the weakening of the Southern

Ocean carbon sink over the past decades (1, 2), because the ERA-Interim reanalysis winds (19)

do not show such a signal (Fig. 2g-h). Instead, the atmospheric circulation became more zon-

ally asymmetric with a wave-number two pattern, reminiscent of the lower frequency pattern

of variability of the Antarctic Circumpolar Wave (20). But how can this zonally asymmetric

forcing result in a relatively zonally uniform response of the surface ocean pCO2?

Insight into the drivers is gained by separating the ∆pCO2 trend pattern into a component

driven by changes in sea-surface temperature (i.e., thermal trend; Fig. 2c and Fig. 2e), and one

driven by changes in the dissolved inorganic carbon (DIC) and/or alkalinity (i.e., non-thermal

trend; Fig. 2d and Fig. 2f) (21). For both analysis periods, the trends in the thermal and

non-thermal components are generally opposed for any given location, in line with previous

studies (21–23). The thermal component shows a sink increase in both decades in the Pacific

sector, where the advection of cold air from Antarctica and sea-ice changes led to a persistent

surface cooling trend (24). In the lower latitudes of the Atlantic and Indian sectors, we find a

reduced thermally-driven uptake in the 2000s due to surface ocean warming, which is probably

related to the more asymmetric atmospheric circulation that caused a reduced northward Ekman

transport (Fig. S11) of cold polar waters in these regions.

In the non-thermal component, we find more distinct differences between the two periods.

Between 1992 and 2001, the non-thermal component increased the oceanic pCO2 over most of

the Southern Ocean (Fig. 2d), in particular in the high latitudes and in the Pacific sector. The
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estimated changes in Ekman pumping velocity (estimated from ERA-Interim winds (19), Fig.

S11) support the hypothesis that wind changes led to an increased surface divergence and an

associated upwelling of DIC-rich waters into all sectors of the high-latitude Southern Ocean (2)

in the first period. During the subsequent period, the non-thermal component primarily reduced

the oceanic pCO2 in the Atlantic and Indian sectors and over the Antarctic shelf (Fig. 2f). In

contrast, this component continued to increase pCO2 in most of the Pacific sector, though at a

much weaker rate than in the 1990s. This much weaker DIC and/or alkalinity induced increase

in pCO2 in the Pacific sector could no longer compensate for the thermal trend, so that the neg-

ative trend in the total pCO2 in this region for the period after 2001 is dominated by the thermal

trend. In contrast, in the Atlantic, Indian sector, and over the Antarctic shelf, the negative non-

thermal trend dominates the thermal changes. Thus, overall, the temperature dominated pCO2

trend in the Pacific sector, and the DIC/alkalinity-driven trend in the other regions worked in

tandem to prevent the pCO2 to increase across the entire Southern Ocean since the early 2000s.

Over the same period, atmospheric CO2 continued to rise strongly, resulting in a substantial

increase of the undersaturation of the surface ocean with regard to atmospheric CO2, hence

driving a strong increase in the flux of CO2 into the entire Southern Ocean.

We interpret this zonal asymmetry of thermal- and DIC-/alkalinity-driven changes to be

primarily the result of an increased asymmetry in the southern hemisphere atmospheric circu-

lation in the years since 2001 (Fig. 3). Specifically, the conditions became more cyclonically

dominant in the Pacific sector, and more anti-cyclonically dominant in the Atlantic and parts

of the Indian sector (Fig. 2h). As a result of the associated increase in the meridional wind

components, more cold air was advected from the Antarctic continent over the Pacific sector,

and more warm air was advected from subtropical latitudes over the Atlantic and part of the In-

dian sectors. Together with the changes in northward Ekman transport (Fig. S11), this provides

an explanation for the strengthened asymmetry in the sea-surface temperature trends, which
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underlie the thermal trends in Fig. 2e.

A strengthening of the carbon sink in the Pacific sector combined with the further inten-

sification of the winds (Fig. 2h) during the 2000s provide a paradox at first sight, since the

increased upwelling in the Pacific sector should have increased the surface DIC content further.

A possible explanation is that the recent stabilization of the surface waters (25) counteracted

the wind induced upwelling. In the Pacific sector and in coastal regions, strong surface fresh-

ening (25, 26) might have caused most of this stabilization, while in the lower latitudes of the

Atlantic and Indian sector warming stabilized the surface waters. The reduction in northward

Ekman transport to the lower latitude Atlantic and Indian sector during the 2000s (Fig. S11),

that is probably the result of the zonally more asymmetric atmospheric circulation, also reduced

the northward advection of high-latitude waters, lowering the DIC content and/or increasing the

alkalinity at the surface.

The trend towards a zonally more asymmetric atmospheric circulation may be related to

long-term variations of the tropical sea-surface temperature, i.e., to the more prevalent La Niña

conditions in the Pacific since the early 2000s (27) and the more positive phase of the Atlantic

Multidecadal Oscillation over recent decades (28). Alternatively, it may be driven by a zonally

asymmetric response of the southern hemisphere near-surface circulation to the anthropogenic

forcing (24).

Our results indicate that Earth’s most important sink for anthropogenic CO2 (5, 6) is more

variable than previously suggested, and that it responds quite sensitively to physical climate

variability. This also suggests, that should current climate trends reverse in the near future, the

Southern Ocean might lose its recently regained uptake strength, leading to a faster accumula-

tion of CO2 in the atmosphere and consequently an acceleration of the rate of global warming.
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Fig. 1. Evolution of the Southern Ocean carbon sink anomaly south of 35◦S. The lines show the

integrated air-sea CO2 flux derived from two complementary surface ocean pCO2 interpolation

methods (a 2-step neural network technique (15) and a mixed layer scheme (16)) as well as the

integrated flux from an atmospheric inversion based on measurements of atmospheric CO2 (14).

The horizontal error bar represents the uncertainty of the inverse estimate based on different

realizations. These estimates are compared with the expected uptake based on the growth of

atmospheric CO2 alone, based on simulations with the ocean component of the Community

Climate System Model (CCSM3) (17). All data are plotted as anomalies by subtracting the

1980-1990 mean flux from each method.

Fig. 2. Trends in ∆pCO2 based on the neural network output and its two components for the two

analysis decades, i.e., from 1992 through 2001 and from 2002 through 2011. (a) Linear trend

in ∆pCO2 for the 1990s; (b) as (a) but for the 2000s. Linear trend in (c) thermal pCO2 and (d)

non-thermal ∆pCO2 for the 1990s; (e) and (f), as (c) and (d), but for the 2000s. Positive (red)

∆pCO2 trends indicate a faster increase of pCO2 in the surface ocean than in the atmosphere,

i.e., a decreasing sink, and vice versa for positive (blue) trends. Hatched areas indicate where

the linear trends are outside the 5% significance level (p≥0.05). (g) and (h) illustrate decadal

trends of sea level pressure (shading) and 10-m wind (vectors) from 1992 through 2001 (g) and

2002 through 2011 (h) based on data from ERA-Interim (19).

Fig. 3. Schematic of the processes governing the changes in the ∆pCO2 trends in the Southern

Ocean since 2001. The trend toward a zonally more asymmetric distribution of the atmospheric

pressure systems in the last decade led to stronger meridional winds bringing either colder air

(Pacific sector) or warmer air (Atlantic sector) to the open Southern Ocean, causing strong

cooling of the sea surface in the Pacific sector and warming in the Atlantic sector. The changes

in wind also affect the oceanic circulation pattern, with the net effect being a increase in the

DIC/Alk driven pCO2 component in the Pacific sector, and a decrease of this component in
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the Atlantic sector, i.e., opposing the effect of sea surface temperature on pCO2. In the Pacific

sector, the effect of the cooling trend on pCO2 prevails, while in the Atlantic sector, the effect

of circulation/mixing on DIC/Alk prevails, also causing a lowering trend in pCO2. Thus, owing

to the interaction between temperature and circulation changes, the zonally asymmetric forcing

caused a zonally relatively symmetric response of the ocean carbon sink.
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