
Simulating molecular docking with haptics

Georgios Iakovou

A thesis submitted for the degree of

Doctor of Philosophy

at the University of East Anglia

December 2015

Simulating molecular docking with haptics

Georgios Iakovou

c© This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with the author and that use of

any information derived there from must be in accordance with current UK

Copyright Law. In addition, any quotation or extract must include full attribution.

Abstract

Intermolecular binding underlies various metabolic and regulatory processes of the

cell, and the therapeutic and pharmacological properties of drugs. Molecular docking

systems model and simulate these interactions in silico and allow the study of the

binding process. In molecular docking, haptics enables the user to sense the interac-

tion forces and intervene cognitively in the docking process. Haptics-assisted docking

systems provide an immersive virtual docking environment where the user can inter-

act with the molecules, feel the interaction forces using their sense of touch, identify

visually the binding site, and guide the molecules to their binding pose. Despite a

forty-year research effort however, the docking community has been slow to adopt this

technology. Proprietary, unreleased software, expensive haptic hardware and limits

on processing power are the main reasons for this. Another significant factor is the

size of the molecules simulated, limited to small molecules.

The focus of the research described in this thesis is the development of an interac-

tive haptics-assisted docking application that addresses the above issues, and enables

the rigid docking of very large biomolecules and the study of the underlying inter-

actions. Novel methods for computing the interaction forces of binding on the CPU

and GPU, in real-time, have been developed. The force calculation methods proposed

here overcome several computational limitations of previous approaches, such as pre-

computed force grids, and could potentially be used to model molecular flexibility

at haptic refresh rates. Methods for force scaling, multipoint collision response, and

haptic navigation are also reported that address newfound issues, particular to the

interactive docking of large systems, e.g. force stability at molecular collision. The

i

ii

result is a haptics-assisted docking application, Haptimol RD, that runs on relatively

inexpensive consumer level hardware, (i.e. there is no need for specialized/proprietary

hardware).

iii

Dedicated to my father Apostolos Iakovou, the father I aspire to

be to my son, to my pappou (grandfather) Eleftherios Iakovou,

and to my giagiades (grandmothers) Despoina Iakovou and

Barbara Ziara. They are always in my thoughts and held dear

to my heart.

Acknowledgements

I would like to thank, and acknowledge the help and guidance of my primary super-

visor Dr Stephen Laycock and my secondary supervisor Dr Steven Hayward over the

duration of this doctorate thesis. I have taken invaluable lessons from them on how to

conduct proper research and be a good scientist. I have greatly enjoyed our meetings

(especially those involving coffee and cake) and everyday interaction, which helped

me in many ways ride this roll-coaster of mixed emotions and immense pressure I call

PhD, successfully and enjoyably.

Thank you to all members (scientists and statisticians) of the Graphics, Colour

and Visualisation Laboratory for the interesting conversations we had and the good

times we spent together. May the force be with you!!...(and risk analysis guide your

way).

My love and many thanks to my mother Anthoula Iakovou for being the excellent

mother she is. Her limitless love, support and constructive criticism have been one of

the driving forces in my life. I continue by thanking my brothers Lefteris and Dimitris

Iakovou, my sister-in-law Sofia Athanasiadou, my nephew Apostolos Iakovou, and my

nieces Anthoula and Anatoli Iakovou. I thank my brothers for helping me improve my

deductive reasoning skills and information-querying/processing response times, via a

series of well orchestrated pranks. Their life’s goal to keep stress testing my cognitive

iv

v

abilities finally paid off, i.e. I am about to get a doctoral degree! Likewise, I thank my

sister-in-law for warning me (whenever possible) on upcoming pranks; without her I

would have been stressed out a lot more. Finally, thanks to my nephew and nieces for

all the free treats I won from them playing card games; you have sweetened my way

through my PhD. I close this paragraph, by thanking my pappou Georgios Ziaras,

the man I was named after, for being always there for me ready to help. Thank you

all for your love, care and support; you are a big part of my life.

Last but not least, I want to thank my wife Alexia Tsigka and my son Apostolos

Iakovou, for their unconditional love, understanding, patience and inspiration. They

are my beacons in life, that guide my actions and make things worthwhile. Without

them, my life would have been meaningless and this thesis would have not been

achieved. Thanks therefore to my father-in-law Vasilis Tsigkas and mother-in-law

Irene Lazani for raising this wonderful woman and bringing her to my life.

Table of Contents

Abstract i

Acknowledgements iv

1 Introduction 1

1.1 Motivations and Research Objectives 4

1.2 Contributions . 6

1.3 Publications . 7

1.4 Thesis Outline . 7

2 Molecular docking and Haptics 9

2.1 Molecular Docking . 9

2.1.1 Docking Mechanics . 12

2.1.2 Outlining Docking Approaches 16

2.2 Haptics-assisted Docking . 18

2.2.1 Overview . 20

2.2.2 Calculation Models of Intermolecular Interactions 21

2.2.3 Haptically Rendering Intermolecular Interaction Forces 26

2.2.4 Docking Applications with Haptics 34

2.3 Conclusions . 48

3 Building a haptics-assisted docking application 49

3.1 Introduction . 49

3.2 Potential Application of Haptimol RD 50

3.3 Atomic coordinates . 53

3.4 Force field . 54

3.5 Visualizing molecular structure . 55

3.6 Haptic Navigation . 60

3.7 Conclusion . 64

vi

vii

4 Real time calculation of the docking forces on the CPU 67

4.1 Introduction . 67

4.2 CPU-based Brute Force approach . 68

4.2.1 Computing the force . 68

4.2.2 Performance . 69

4.3 Using a cut-off distance . 70

4.3.1 Force calculations on the CPU using proximity querying . . . 72

4.3.2 Regular grid Construction . 76

4.3.3 Octree Construction . 78

4.3.4 Updating atom coordinates during querying 80

4.3.5 Regular grid Querying on the CPU 82

4.3.6 Octree Querying on the CPU 85

4.3.7 Calculating the Force . 88

4.4 Performance Testing of the CPU-based methods 90

4.4.1 Benchmarking Performance on the CPU 90

4.4.2 Haptics-assisted Interactive Rigid-Docking Simulations on the

CPU . 96

4.5 Conclusion . 101

5 Accelerating interaction force calculations on GPU 103

5.1 Introduction . 103

5.2 GPU Computing . 105

5.3 GPU-based Brute Force approach . 108

5.4 Force calculations using GPU-accelerated proximity querying 110

5.4.1 Constructing Spatial Partitioning Structures 110

5.4.2 Querying Partitioning Structures and Calculating Forces on the

GPU . 113

5.5 Performance Testing of the GPU-based methods 122

5.5.1 Benchmarking Experiments on the GPU 122

5.5.2 GPU-CPU Comparisons . 130

5.5.3 Haptics-assisted Interactive Rigid-Docking Simulations on the

GPU . 132

5.6 Implementing a hybrid approach . 134

5.7 Balancing occupancy and execution convergence on the GPU 137

5.8 Testing different GPUs . 138

5.9 Conclusion . 141

6 Force Scaling, Stability and Haptimol RD 144

6.1 Introduction . 144

6.2 Force scaling . 145

viii

6.3 Haptic Stability and Multi-point Collision Response 148

6.4 Implementation . 151

6.5 Conclusion . 154

7 Conclusions 156

7.1 Discussion and Conclusions . 156

7.2 Future Work . 163

7.2.1 Molecular Flexibility . 163

7.2.2 Grid/Octree Construction on the GPU 164

7.2.3 Torques . 165

7.2.4 Real time rendering of the Surface model 165

Bibliography 167

List of Tables

2.1 A comparison of existing haptics-assisted docking systems. *(VDW=van

der Waals, ES=Electrostatic) . 47

4.1 Regular grid and octree construction times per molecule in millisec-

onds, for cell sizes cg equal to nrC (where n=3,..5 and rC is the radius

of a carbon atom) and octree depth levels 3, 4, and 5, respectively.

Common to both construction methods, the table lists the name of

and number of atoms comprising each molecule. It then groups under

grid construction the value of n used, the total number of cells created,

and the grid-construction times obtained, and under octree construc-

tion the tree level L, the total number of child/leaf octants created,

and the octree-construction times obtained. D stands for Dimer and

1S for one subunit. 95

4.2 Regular grid querying times for ten interacting molecular pairs in

milliseconds, for cell sizes cg equal to nrC , where n=3,..5 and rC is the

radius of a carbon atom. The table lists the displacement distance used

in these experiments, the number of interacting atom pairs (SPairs)

returned, the total number of grid cells traversed, and the total number

of atom pairs examined in order to generate the set SPairs. D stands

for Dimer and 1S for one subunit. 97

ix

x

4.3 Octree querying times for ten interacting molecular pairs in millisec-

onds, for depth levels 3, 4, and 5. The table lists the displacement dis-

tance used in these experiments, the number of interacting atom pairs

(SPairs) returned, the total number of child/leaf octants traversed, and

the total number of atom pairs examined in order to generate the set

SPairs. D stands for Dimer and 1S for one subunit. 98

4.4 Octree construction times for the six molecules used in the real-time

docking simulations. 99

5.1 Molecule specific information used for the construction of both par-

titioning structures. The table lists the molecule’s PDB code, the

number of atoms comprising each molecule, and the molecule’s largest

bounding box dimension. 123

5.2 Benchmarking the regular-grid-based method. The grids are constructed

with cell sizes cg equal to nrC , where n=1,2,..7 and rC is the radius of

a carbon atom. The table lists the total number of interacting atom

pairs (SPairs), the GPU memory allocated for the grid, the actual size

of the cell in Å, the value of n used, the best response time attained,

and the percentages (rounded to the nearest integer) of those 10000 re-

sponse times found below 1ms, within 1-2ms(inclusive), within 2-4ms

and above 4ms. 126

5.3 Benchmarking the octree-based method at subdivision levels 1-7. The

table lists per subdivision level the total number of interacting atom

pairs (SPairs), the GPU memory allocated for the octree, the actual

leaf octant’s size in Å, the subdivision level, the best response time

attained, and the percentages (rounded to the nearest integer) of those

10000 response times found below 1ms, within 1-2ms(inclusive), within

2-4ms and above 4ms. 129

xi

5.4 Structural information for the eight molecules used in the real-time

docking simulations. The table lists the molecule’s PDB code, the

number of atoms comprising each molecule, and the molecule’s largest

bounding box dimension. 133

5.5 The two GPU architectures used for testing the scalability of the grid-

querying method on different GPUs. The table lists per architecture,

the number of processing cores offered, the processing clock speed, the

global memory size, the memory clock speed, and the memory bandwidth.139

5.6 Structural information for the six molecules used for testing the scal-

ability of the grid-querying method on different GPUs. The table

lists the molecule’s PDB code, the number of atoms comprising each

molecule, and the molecule’s largest bounding box dimension. 139

List of Figures

2.1 The process of molecular docking. The ligand and receptor molecules

bind together into a larger molecular complex. At the docking site the

two structures are complementary to each other. 10

2.2 The binding kinetics of the receptor (green or blue) and the ligand

(brown) molecules, under the three structural behaviour theories (note:

in this example only the receptor can deform structurally). a) Under

rigid-body the receptor does not deform and the docking fit is not the

best possible; b) Under selected fit the receptor deforms its structure

in the second step (before the binding occurs), and assumes the most

favourable (for the ligand) docking conformation. The docking fit is

perfect; c) Under induced fit the receptor deforms its structure in the

third step (while the binding occurs), in order to maximize the fit

between the two surfaces. Again, the docking fit is perfect (adapted

from Weikl and von Deuster [WvD09]) 13

2.3 A schematic representation of haptics-assisted docking. The user con-

trols the ligand with the haptic device, senses the interaction forces,

and uses this visuohaptic information in order to identify and guide

the ligand to the docking pose. 19

2.4 Energy/force grid surrounding the receptor molecule 1ADG {Oxidoreductase

(Nad(A)-Choh(D))} . 28

xii

xiii

2.5 Juxtaposing the Lennard-Jones energy and force graphs. a) Depiction

of a Lennard-Jones energy graph where σ (red line) is the distance at

which the inter-atomic potential is zero, σ 6
√

2 is the distance at which

the energy is minimized, and ε is the potential well depth at σ 6
√

2. b)

Depiction of the respective Lennard-Jones force graph where σ 6
√

2 is

the distance at which the force becomes zero. The interaction force

becomes highly repulsive when rij is less than σ 6
√

2, and attractive

when it is greater than σ 6
√

2. 31

2.6 The GROPE-III docking system with the Argonne E-3 manipulator

[BJOYBJK90] . 36

2.7 The 6DOF, flexible docking system by Daunay and Regnier [DR09]

with the Virtuose haptic device . 40

2.8 The HMolDock system with a 6DOF PHANToM haptic device [HS11] 43

2.9 An HMolDock screenshot with the force and torque vectors visualized

[HS11] . 44

3.1 Conducting an interactive rigid docking simulation with proteins GroEL

(larger molecule) and GroES (smaller molecule), Haptimol RD, and

the 3DOF Geomagic Touch haptic device. Both molecules are defined

in the PDB file with accesion code 1GRU where they are in a bound

conformation. The user controls GroES and feels the interaction forces

using the haptic device. 51

3.2 The protein Crambin (PDB code: 1CRN) visualized using the: (a)

space-filling, (b) backbone, (c) ball ans stick, and (d) surface models.

All models were visualized using the JSmol viewer provided by the

PDB website (http://www.rcsb.org). 55

xiv

3.3 The protein Epidermal Growth Factor (PDB code: 1NQL) displayed in

space-fill (a,c,e) and backbone (b,d,f) modes using the three rendering

approaches examined in this thesis. (a)(b) The molecule is rendered

using standard OpenGL commands and primitives. (c)(d) VAO and

VBO objects describe the structure of a single atom and rod on the

GPU, and the molecule is rendered by populating and adjusting the

size and positioning of these structures using OpenGL and GLSL. Hap-

timol RD visualizes molecular structure using this approach. (e)(f)

Molecular structure is described as quads and ray traced on the GPU

using the impostor-based method proposed by Easdon [Eas13]. 57

3.4 Performance measurements, in frames per seconds, for the three render-

ing techniques discussed in this chapter, as executed on a 2.93GHz Intel

Core i7 CPU and an NVIDIA GTX580 GPU. The rendering involved

receptor/ligand molecules of sizes ranging from 20 up to 285 thousand

atoms each. OpenGL refers to the first method, Single VAO/VBO

refers to the second method, and Ray Traced refers to the third method,

as they are described in Section 3.5 respectively. 59

xv

3.5 A 2D conceptual illustration of the Virtual Haptic Workspace (VHW)

implemented in Haptimol RD. The HIP moves within the actual haptic

workspace. This movement influences virtual cursor movement within

the VHW, which in turn induces ligand, and/or VHW movement. The

black and red arrows give the direction of the HIP and cursor dis-

placements, respectively. Likewise, the black and red unfilled circles,

the light blue structure, and the grey box display the last positions

of the HIP, cursor, ligand and VHW, respectively. All displacements

are sampled at consecutive haptic frames. (a) The HIP moves within

its inner box, causing an equivalent position control displacement of

the cursor and ligand within the VHW and virtual world respectively.

(b) The HIP moves and intersects the borders of its inner box. This

is translated to position and rate displacements, and the result is ap-

plied to the cursor/ligand. (c)(d)(e) The HIP moves within its outer

box. The resultant rate control displacement causes the cursor to in-

tersect/overrun the borders of the VHW inner box. As a result, the

VHW is translated towards the same direction (see the displacements

of the red and grey boxes) and brings the cursor back within the inner

box. (f) Again the HIP moves within its outer box, and the resultant

rate control displacement causes the cursor to overrun the borders of

the VHW inner box. In this case however the ligand collides with the

receptor at multiple points, and as such no VHW position updating

takes place. From this point on, HIP displacement will result in cur-

sor/VHW displacement only if the given ligand displacement produces

collision free results. 61

3.6 Haptic navigation of the ligand (molecule in purple) around the recep-

tor using Haptimol RD. The green arrows indicate that the ligand (and

the VHW) moves along the negative x, y and positive z axes under rate

control displacements. The arrows are not displayed when the ligand

moves under position control displacements. 65

xvi

4.1 Representing visually the concept of a cut-off distance. As the receptor

and ligand (in purple) molecules come in close proximity, the pairwise

interatomic distance in some of their atoms becomes less than or equal

to the cut-off (atoms coloured in green). Force calculation will be based

only on this set of atom pairs. 71

4.2 The molecule Trypsin subdivided with the same level of detail by a

regular grid and an octree. (a) The constructed octree structure with

all of its octants displayed. (b) The constructed regular grid structure

with all of its cells displayed. The total number of octants is far less

than the total number of cells, resulting in a smaller memory footprint

for the octree. 74

4.3 Top row: A conceptual 2D visualization of a molecule R comprising of

atoms a, b, c, d, e, and the respective regular grid and octree (of depth

1) structures constructed. Atom e intersects all of the cells/octants

in both structures. Bottom row: R is intersected by a molecule L

comprising of atom j. Atom j is within cut-off distance from (interacts

with) atoms a, b, c, d, and e, forming the respective sets of interacting

atom pairs. (a) A typical construction method assigns e to all cells/leaf

octants, i.e. all e coloured in blue. As a result, the set of interacting

atom pairs produced contains duplicates of (j,e). (b) The construction

method described here assigns e to the first cell/leaf octant traversed,

i.e. e coloured in red. Under this construction method the set contains

only one instance of (j,e). 75

xvii

4.4 A 2D visualization of Algorithm 4 and Equation 4.3.4. (a) During reg-

ular grid querying each atom aj creates a search region, mapped to grid

cells, based on dcutoff (red dotted box). This region, is always larger

than the one required (blue dotted circle), since the latter is always

inscribed in the former. (b) Two leaf octants that belong to different

octrees and contain atoms ar and al, respectively. These atoms are

within the cut-off distance and thus interact. In cases like this, dNet

will always be less than or equal to the cut-off, since it defines the

closest distance between the two spheres (of radii rR and rL) bounding

these atoms. In this example dTot is larger than dcutoff 81

4.5 A diagram-based proof that both querying algorithms will handle the

atom pair (ar, al) correctly, irrespective of the cell/leaf octant (A, B,

C or D) atom ar was initially assigned to during construction. a)

Atom al maps its search range (red dotted cube) on the regular grid.

Even though al is not within dcutoff from ar, the query will examine

ar (indifferent of cell placement) since the range and ar share the same

coordinates at position P (in this case the search range encloses all

four cells). When the atoms are within dcutoff , al’s range will always

enclose/overlap with ar and therefore such a P will always exist. b)

Octant O queries octants A, B, C, and D to identify whether or not

ar and al are within dcutoff . Even in the worst case scenario (ar was

assigned to C), the dNet of octants C and O will be equal to dcutoff

(blue line), whereas in the other three cases it will be less than dcutoff .

In this example octant A is the best insertion case for ar since it is in

zero dNet distance from octant O. 85

xviii

4.6 Two proteins interact during a docking simulation. Green colours de-

note the atoms with a pairwise interatomic distance less than or equal

to a given cut-off, as identified by the two proximity querying meth-

ods. (a) The regular grid-based method, in which all ligand atoms

query the regular grid (applied only on the receptor) to identify the

interacting atom pairs. (b) The octree-based method, in which the

interacting atom pairs are identified by querying both receptor/ligand

octrees recursively and pairwise. 89

4.7 The four molecules used for benchmarking the two CPU-based force

calculation approaches, while showing their relative sizes. The largest

molecule is 1ADGD with 7k atoms (see Table 4.1). 91

4.8 Regular grid and octree construction times per molecule in millisec-

onds. (a) The regular grids were constructed with cg values equal to

nrC , where n=2,..,8 and rC is the radius of a carbon atom. (b) Similarly

the octrees were constructed at depth levels L=2,3,..,8. 93

4.9 Regular grid and octree querying times of the ten interacting molecular

pairs tested, in milliseconds. (a) The grid querying times at the same

different cell sizes, i.e. at cg values equal to nrC , where n=2,..,8 and

rC is the radius of a carbon atom. (b) The octree querying times for

the depths L=2,3,..,8. The querying time for test case 1ADG(dimer)–

1ADG(dimer) at depth 2 is not shown here (to avoid graph scaling and

to improve graph readability). The time for this test case was 51.275

ms. 94

4.10 A haptics-assisted rigid-docking simulation between: (a) the drug molecule

sorafenib and the receptor protein B-raf ; (b) protein BPTI and the

receptor protein Trypsin; (c) protein EGF and the receptor protein

EGFr. The graph depicts the querying times attained, at 10ms inter-

vals, and the respective sets of interatomic interactions accounted for

by the approach during the simulation. 100

xix

5.1 An abstraction of the main structural/functional components of a mod-

ern NVIDIA GPU (adapted from van Oosten [vO11]). The diagram

shows the Scalar Processors (SP) stacked within a Streaming Multipro-

cessor (SM), and interfacing with the various levels of GPU memory.

CPU-GPU communication can achieved only through slow, on-board

memory. 106

5.2 A 2D depiction of a regular grid built on the CPU and transferred to

the GPU as a 1D array of cell records S and 1D array of atoms A. The

initial grid consisted of the cells Ca and Cb containing the atoms a,d,e,f

and k,m,b,h, respectively. Both cells are represented in the S array as

cell records CGPU
a and CGPU

b . Each cell record holds the total number

of atoms assigned to it (4 in both cases), and an index to the array of

atoms A pointing to the first atom assigned to this cell (indices 1 and

5 in this case). A similar 1D array is built for the octree as well. . . . 111

5.3 A visualization of the GPU-accelerated force calculation approach, il-

lustrating the main execution steps, and the processing unit (i.e. GPU

or CPU) that executes them. The method starts by deploying on

the GPU one work-item (red springs) for each receptor atom ai (12

receptor atoms in this case), and grouping these work-items in work-

groups (the 3 green boxes with 4 work-items each). Each work-item

executes the proximity querying/force calculation kernel (grey semi-

rectangular shape) in parallel, within its workgroup, and computes the

force contribution of ai to the total force (execution steps 1-3). The

first work-item in each workgroup accumulates these force contribu-

tions from all work-items in the group, and stores the result FW
i in a

global number-of-workgroups-long force array FW (execution step 4).

Array FW is transferred back to the CPU, where its entries are ac-

cumulated to produce the total interaction force FW
Tot (execution step

5). 114

xx

5.4 A conceptual 2D visualization of the proximity querying strategies.

(a) Querying the regular grid. The method uses the cut-off distance

dcutoff to form a bounding cube (red dashed square) centred on receptor

atom ai (similarly to the CPU-based grid querying). Using the cube’s

min/max coordinates, the query identifies all grid cells (green cells A, B

and C) intersecting the cube and produces a search range. The method

calculates an interatomic distance d between ai and each of the ligand

atoms contained within these cells (i.e. ligand atoms aL1 , aL2 , aL3 and

aL4), but computes the total force only for those atom pairs with d ≤
dcutoff (in this case pairs aia

L
1 , aia

L
2 , aia

L
4 , since atom aL3 is not within

the cut-off radius). (b) Querying the octree. The coordinates of the

receptor atom ai are tested against octant Oi. The method calculates

dTot (i.e. distance between the octant centre and ai) and subtracts it

from rL (i.e. radius of the octant’s bounding sphere) to obtain dNet

(i.e. net distance). If dNet ≤ dcutoff and Oi is not a leaf octant then

the method traverses the children of Oi in the same manner. When

Oi is a leaf octant (as in the case shown), the method calculates an

interatomic distance d between ai and each of the atoms indexed by

Oi (aL1 in this case), but again computes the force only for those atom

pairs with d ≤ dcutoff (i.e. pair aia
L
1). 116

5.5 The four molecules used in these benchmarking experiments, showing

their relative sizes. 1XI4 is the largest one with 184k atoms, and a

bounding box with largest axis of 747.22Å in z (see Table 5.1). 124

xxi

5.6 Benchmarking the two GPU-accelerated force calculation methods us-

ing the four artificial protein-protein docking cases 1ADG-1ADG (where

1ADG is the PDB code), 1AT1-1AT1, 2YEY-2YEY and 1XI4-1XI4.

Each test was repeated 10000 times, and all response times were calcu-

lated based on slightly more than 20K interacting atom pairs. (a) The

best force response times obtained using regular grids constructed with

cg values equal to nrC , where n=1,2,..7 and rC is the radius of a car-

bon atom. (b) The best force response times obtained using octrees at

depth levels 1-7. The force response times for test cases 2YEY-2YEY

and 1XI4-1XI4, at depths 1 and 1-2 respectively, are not shown here

(to improve graph readability). The times for these test cases were

14.92ms for 2YEY-2YEY, and 74.11 ms (level 1) and 12.96ms (level

2) for 1XI4-1XI4. (c) The percentage of those 10000 response times

found below 1ms, within 1-2ms(inclusive), within 2-4ms and above 4ms

(for each test case), obtained using the same regular grids as in (a).

(d) The percentage of those 10000 response times found below 1ms,

within 1-2ms(inclusive), within 2-4ms and above 4ms (for each test

case), obtained using the same octrees as in (b). 125

xxii

5.7 GPU-CPU force response comparisons between the two GPU-accelerated

force-calculation methods (i.e. regular grid/GPU-R and octree/GPU-

O) and the octree-based CPU-force-calculation described in Section

4.3.6. All three methods were tested on the four artificial protein-

protein docking cases 1ADG-1ADG (where 1ADG is the PDB code),

1AT1-1AT1, 2YEY-2YEY and 1XI4-1XI4. Each test was repeated

10000 times, and all response times involved slightly more than 20K

interacting atom pairs. (a) The best response times obtained by each

force calculation method for each docking case. (b) The best response-

time intervals (as percentages) for the 10000 iterations (i.e. <1ms, 1-

2ms, 2-4ms, >4ms) obtained by each force calculation method for each

docking case. The best response-times were calculated using GPU-

based grids of cell size cg = 5rc, GPU-based octrees of Level, L, given

by Equation 5.4.1 with co = 5rc and CPU-based octrees of Level, L=4. 131

5.8 A haptics-assisted rigid-docking simulation between: (a) the drug molecule

sorafenib and the receptor protein B-raf ; (b) protein BPTI and the

receptor protein Trypsin; (c) protein EGF and the receptor protein

EGFr ; (d) protein GroES and the receptor protein GroEL. The graphs

depict the force response times attained, at 10ms intervals, and the re-

spective sets of interatomic interactions accounted for by the grid-based

approach during the simulation. 135

5.9 A haptics-assisted rigid-docking simulation between: (a) the drug molecule

sorafenib and the receptor protein B-raf ; (b) protein GroES and the re-

ceptor protein GroEL. The graphs depict the force magnitudes (scaled

to nanoNewtons) attained at each haptic frame, and the respective sets

of interatomic interactions accounted for by the approach during the

simulation. 136

xxiii

5.10 Measuring the scalability of the grid-querying method on different

GPUs. The graph shows the averages of the 10000 response times

recorded per test case and different GPU architecture. The number

of interacting atom pairs returned were slightly more than 20K. All

regular grids were of cell size cg = 5rc. 140

6.1 Graphing the interaction forces obtained after scaling, during three

different rigid docking simulations of protein GroES and the receptor

protein GroEL. Each simulation lasted for approximately 10 seconds

and the force was scaled using the fixed, min-max range and variable

gain methods. (a) The min-max range was set equal 0-0.5 nanoNew-

tons in order to scale up (focus the study on) the long-range interac-

tions when the molecules are farther apart. (b) The min-max range

was set equal 1-6 nanoNewtons in order to scale down the magnitude

of the short-range, repulsive VDW interactions, and study structural

complementarity close to the docking site. (c) The min-max range was

set equal 0-10 nanoNewtons in order to smooth out the rapid force

fluctuations rendered on the haptic device during the simulation. . . . 147

xxiv

6.2 Applying the multipoint, force-based collision response method during

a docking simulation. The ligand in grey colour is centred at the HIP

position, and the ligand in purple colour (the actual ligand) shows the

position of the virtual cursor (see Section 3.6). The green arrow at the

bottom of each picture depicts the relative displacement of the HIP.

During collision the HIP can be displaced without constraints, unlike

the virtual cursor which must remain at its last valid (i.e. collision free)

position. Collision occurs when the interaction force is greater than

3nN. a) The ligand moves towards the negative x axis without causing

a collision. b,c) The molecules are in collision while the user keeps

pushing the HIP (grey molecule) down the negative x axis. d) The

user moves the HIP diagonally (along the negative x,y axes) while the

molecules are still in collision. e) Relative HIP movement towards the

positive x axis, results in a collision free movement for the virtual cursor

and so the purple ligand molecule moves in the positive x direction. f)

Again relative HIP movement towards the negative y axis, results in a

collision free movement for the virtual cursor and so the purple ligand

also moves in the same direction. 150

xxv

6.3 The Graphical User Interface of Haptimol RD. The Epidermal Growth

Factor (EGF) interacts with its receptor (EGFr), i.e. PDB code 1NQL.

The interaction energy (red line) and force (green line) are displayed

in real-time in the Energy/Force Graph Window. The dark and light

blue lines within the same window depict the user-defined max and min

limits of the force scaling range, respectively. The user can adjust this

range during the simulation in real-time, and as such affect the profile

of the forces rendered on the haptic device. In this case, the force

is repulsive as visualized by the green force arrow. Using the residue

selection/colouring control (the scrollable area above the Energy/Force

Graph Window) the active sites of EGFr and EGF are coloured in

green and yellow, respectively. The user utilizes this information in

order to focus the haptic simulation in this region only, and thus reduce

the search space of docking conformations substantially. 153

Chapter 1

Introduction

“Molecular biology is mankind’s attempt to figure out how God

engineered His greatest invention-life. As with all great inven-

tions, details are top secret; however, even top secrets may be-

come known. I find it a great privilege to live in a time where

God allows us to gain some insight into His construction plans,

only a short step away from giving us the power to control life

processes genetically. I hope it will be to the benefit of mankind,

and not to its destruction.”[Neu97]

Intermolecular complex formation is a fact of life underlying many biological pro-

cesses. Molecules bind with other molecules to form complex structures that control

various regulatory and metabolic processes of the living cell. Proteins, the building

blocks of life, are often the main participants in such intermolecular interactions, with

drug molecules sometimes being their counterparts.

Proteins align and change their tertiary (3D) shape in a way that facilitates their

binding with other biomolecules and chemical entities such as proteins, nucleic acids,

lipids, sugars, nucleotides, ions, and water [AJL+08]. Through these bindings, pro-

teins become involved in and regulate composite biological processes, such as cellular

1

2

signalling (signal transduction), gene regulation, metabolic control, and immunity

[PSVV07]. In signal transduction for example, proteins located on the cell surface

(called Cell-Surface Receptors) interact with signalling molecules, and convert ex-

tracellular signals into intracellular ones [AJL+08]. Failure of these processes might

lead to serious diseases, such as cancer, Alzheimers, Huntingtons, or cystic fibrosis

[And03, ADPH11]. Comprehensive and accurate understanding of the underlying

mechanisms will enable us to enhance or inhibit such protein activities, and regulate

(as needed) their respective processes.

The therapeutic effects and pharmacological properties of drugs are dictated by

the bindings formed between the drug agents and the target molecules [KSL05]. Drugs

are small molecules that bind on large biomolecules, such as proteins, and can stim-

ulate, act upon, or inhibit the activity of these biomolecules. Given these target

molecules, the ex-ante identification of effective drug agents will speed-up the drug-

discovery process. New methods and techniques that are capable of matching new

drug candidates quickly, accurately, and cost-effectively with given target molecules

are always in demand from pharmaceutical companies. Traditional laboratory-based

techniques are too costly and time-consuming, and are incapable of keeping up with

the current, ever-increasing demand for new drugs (e.g. to treat HIV or cancer).

We need tools and methods capable of modelling and replicating accurately the

mechanics of intermolecular bindings. Such capabilities will help us to understand

the processes of life and enable us to design and produce synthetic proteins and

therapeutic drugs that could cure serious diseases and improve our quality of life.

For the past 40 years, scientists have been studying intermolecular bindings. They

have relied on experimental (in vitro) work and computational methods (in silico) to

study, model, and replicate them. Advances in biology, biochemistry, biophysics, and

3

bioinformatics have laid the necessary foundations to support these efforts.

Experimental techniques such as X-Ray Crystallography (XRC) and Nuclear Mag-

netic Resonance spectroscopy (NMR) have enabled scientists to determine the struc-

ture of biomolecules at atomic level, store these structures in databases (e.g. Protein

Data Bank (PDB) [BWF+00]), and make them available to the community for further

study and research. Molecular visualization algorithms (see Lee and Richard [LR71],

Connolly [Con83b, Con83a], and Smith and Gund [SG78]) have described the ren-

dering of these structures in 3D space, and computer-graphics software/hardware

have made such rendering possible on computer screen. Molecular physics mod-

els have given measurable and close approximations of the force fields and energy

potentials present in intermolecular interactions. Computer processing power has

facilitated the development of advanced, computationally intensive, algorithms that

attempt to address/solve the substantial combinatorial complexities of these inter-

actions [Rit08, YAR11]. Finally, advances in 3D-computer-graphics (both in algo-

rithms and hardware) and human-computer-interface tools (e.g. mouse/haptic de-

vices) have allowed the scientists to scale-up these interactions from atomic-level to

human-level, and acquire the ability to sense and manipulate them at interactive rates

[DR09, OY90].

Despite all these developments in the field however, scientist are far from solving

this problem, and numerous research groups still researching it very actively. The

main reason for this is that the process is by nature extremely complex to model

computationally, and becomes even more complex as the interacting molecules become

larger. Existing methods and tools fail in many cases to simulate the binding process

accurately and often produce incorrect results. It is therefore imperative that we

continue our search for methods and tools that will help us overcome these issues,

4

and allow us as such to unravel and conquer the mysteries of molecular binding.

1.1 Motivations and Research Objectives

Molecular docking systems comprise the computational tools that enable scientists

to explore and study the process of intermolecular complex formation. The ultimate

goal of docking is to fit two molecules together in a viable configuration based on

their topographic and physiochemical properties. This involves the exploration of

enormous amounts of potential binding conformations prior to selecting the correct

one. Interactive docking systems address these issues by allowing human perception,

intuition, and knowledge to assist in the binding process. They achieve this through

the use of interactive molecular visualization systems and haptic force feedback de-

vices. Interactive molecular visualization systems enable the user to view and explore

the molecular structures, and identify and select potential binding sites and confor-

mations. Haptic force feedback devices, on the other hand, allow the user to interact

with the molecules, feel the interaction forces with the sense of touch, and navigate

and orient the molecules during a docking simulation. Together, they offer an immer-

sive virtual learning environment for the study of the docking process, and a test bed

for exploring new ideas and hypotheses pertinent to intermolecular binding [far14].

The field of haptics-assisted docking has been researched actively for the last forty

years, and numerous interactive docking approaches have been produced as a result.

However, the adoption rate of this technology by the community has been thus far

slow. One of the reasons is intrinsic to haptics and relates to the calculation, and

haptic-rendering of the interaction forces. A fundamental part in a haptics-assisted

docking application is the calculation of the interaction forces in a continuous, smooth

and stable fashion. Haptic technology imposes very demanding refresh rates on the

5

application due to the sensitivity of the human haptic sense. Existing applications

address this strict time constraint by employing various model approximations (e.g.

treat both molecules as rigid structures) and computational-cost-cutting techniques

(e.g. precomputed force grids) to accelerate force computations on modern computing

hardware. However, none of these approaches was able to facilitate the interactive

docking of large molecules (comprising several thousands atoms each), which limits

their scope and usefulness for the molecular docking community. Other reasons relate

to the fact that only a few of the existing applications are freely available to the

community, since the majority of these applications are either proprietary/unreleased,

and/or utilize expensive/proprietary haptic devices.

The main objective of the work presented in this thesis is to develop algorithms

and techniques (for CPU (Central Processing Unit) and GPU (Graphics Processing

Unit)) that can facilitate the interactive, haptics-assisted, rigid-docking of very large

molecules (i.e. comprising of hundreds of thousands atoms each). The motivation

is the development of a freeware that is easy to use, runs on relatively inexpensive

consumer level hardware (i.e. does not require specialized/proprietary hardware),

and accommodates the docking of such large structures. The goal is to provide a tool

that will enable the community to study the docking interactions of large proteins,

and not only of proteins/drugs. Here, both molecules are treated as rigid structures

(a common model simplification used in the field) in order to reduce the complexity

of the problem. However, we know that during docking the molecules, in many cases,

are flexible, and deform their structures. As such, a secondary objective is to design

the aforementioned algorithms/methods in a way that will, in principle, be able to

accommodate the docking of flexible structures, with the hope that this will steer the

research effort towards this direction, i.e. flexible docking.

6

1.2 Contributions

The main contributions to the field include the following three novel pieces of work.

The first one is a real-time force calculation approach, that can compute (on the

CPU) the interaction forces, at haptic refresh rates, for molecules comprising up to

seven thousand atoms each [IHL14]. The approach addresses efficiently and success-

fully all issues related to existing CPU-based force calculation methods, and can be

applied equally to large protein-protein, and protein-drug docking problems. The

second piece of work extends the CPU-based approach to the GPU [IHL15]. The

GPU-based method utilizes the many-core processing capabilities of modern GPUs

in order to accelerate force computations. The method improves substantially upon

the CPU-based approach, and as such can accommodate the haptics-assisted docking

of very large molecules, i.e. comprising hundreds of thousands of atoms each. The

final piece of work involves the development of a freeware that can be used for the

interactive docking of large proteins. The application implements both force calcula-

tion approaches, and it can thus accommodate the docking of large molecules either

on the CPU or the GPU. Given the size of the molecules supported by the applica-

tion, several issues related to haptic stability and force rendering had to be addressed

anew. The results of that work led to the following three additional contributions,

a) a force scaling method that allows the user to study/experience a specific range

of intermolecular forces during the simulation, b) a multipoint (distributed) collision

response technique capable of providing stable forces at molecular collision and of

prohibiting extensive atom overlapping, and c) a haptic navigation technique that

can facilitate docking simulations of large proteins.

7

1.3 Publications

The following peer-reviewed journal publications were resulted from the work dis-

cussed in Chapters 3, 4, 5 and 6:

1. Georgios Iakovou, Steven J Hayward, and Stephen D Laycock. Fd169: A real-

time proximity querying algorithm for haptic-based molecular docking. Faraday

Discussions, 2014.

2. Georgios Iakovou, Steven Hayward, and Stephen D Laycock. Adaptive GPU-

accelerated force calculation for interactive rigid molecular docking using hap-

tics. Journal of Molecular Graphics and Modelling, 61:1-12, 2015.

3. Georgios Iakovou, Stephen Laycock and Steven Hayward. Determination of

locked interfaces in biomolecular complexes using Haptimol RD. Biophysics and

Physicobiology, 2016.

1.4 Thesis Outline

Chapter 2 starts by defining the problem of molecular docking and its mechanics.

It then outlines the functional characteristics of the two main categories of docking

applications (i.e. automated and interactive), and moves on to focus on interactive

haptics-assisted docking. After describing the main issues related to haptics-assisted

docking, the chapter concludes by reviewing the advancements made in the field.

Chapter 3 describes the development of a haptics-assisted docking application

called Haptimol RD. The chapter discusses the design and development of the ap-

plication’s molecular visualization and haptic navigation routines, and identifies the

force field and molecular-structure-defining format supported by Haptimol RD. A

8

novel method for the haptic navigation of large data sets is also proposed here.

Chapter 4 discuses novel methods and implementation details for the real-time

computation, on the CPU, of the electrostatic and VDW force contributions in molec-

ular docking. The performance of these methods was tested using molecules of dif-

ferent size, and the chapter reports these results.

Chapter 5 presents a scalable, GPU-parallelizable version of the force calculation

approach discussed in Chapter 4. The chapter provides a quick overview of the GPU

computing environment, and details the implementation of this real-time GPU-based

force calculation approach. Performance results pertinent to this approach are also

provided here.

Chapter 6 describes the issues of force scaling and stability, and proposes novel

force scaling and multi-point collision response methods that address these issues. An

implementation overview for Haptimol RD is also given here.

Chapter 7 outlines the main conclusions drawn by this thesis, and states several

ideas for future research in the field.

Chapter 2

Molecular docking and Haptics

2.1 Molecular Docking

Molecular docking refers to the computational methods devised and employed by

researchers and field practitioners in order to simulate (as accurately as possible) the

natural process of intermolecular complex formation. In its general form the problem

can be stated as:

Given two molecules and their tertiary structures employ computa-

tional methods and computer power to search and find the appropriate

structural conformations, orientations and alignments (in 3D space)

that will enable the binding of these molecules into a larger more com-

plex one.

In simpler terms, molecular docking tries to fit two molecules together based on

their topographic and physiochemical properties. One of these molecules is called the

receptor and the other one is called the ligand (see Figure 2.1).

The receptor is usually a large biomolecule (e.g. a protein), whereas the ligand

is a smaller molecule (a molecule that consists of a couple of tens of atoms, e.g. a

9

10

drug molecule), but it can equally be another large biomolecule such as protein, nu-

cleic acid, lipid or nucleotide. During docking, the receptor and the ligand molecules

transform (i.e. translate, rotate, and deform) their tertiary structure, and acquire

conformations that favour binding. In these conformations, both molecules exhibit

strong geometric and chemical complementarity and the free energy (read Section

2.1.1) of the system is at its global minimum. The fast, accurate, and in silico emu-

lation/prediction of this process is the ultimate goal of molecular docking [MEL+08].

Ligand

Receptor

Interacting

Forces

New Complex

� Search for docking

poses

� Evaluate results

� Fit Ligand to

Receptor

Computational

Method

Figure 2.1: The process of molecular docking. The ligand and receptor molecules
bind together into a larger molecular complex. At the docking site the two structures
are complementary to each other.

Many research groups have been studying this problem, producing a plethora

of docking algorithms and software applications ([MEL+08] provides an extensive

11

list). In the majority of these studies, the receptor is a protein and the ligand is

either another protein or a small chemical substance. Researchers usually term these

two subcases of the docking problem as protein-protein docking [EKK04, SS02] and

protein-ligand docking [BK03, YAR11] respectively. Lastly, there are few studies

addressing the problem of protein-DNA docking (i.e. ligand is a nucleic acid) as well

[KAR+94, SGJ98].

Protein-protein docking methods are used mainly for modelling protein-complex

formations. Their task is the prediction of the tertiary structure of the new pro-

tein complex given the two constituent proteins [Rit08]. Many research fields (e.g.

structural/molecular biology, proteomics) have been using them to gain structural

information about proteins. The field of computational proteomics [MR01], for ex-

ample, employs such methods to generate and analyse protein structures at large

scales. Such knowledge enables scientists to predict the chemical and biological prop-

erties [Neu97] of the given protein-complex, and define the complex’s functionality

and behaviour. Experimental techniques such as XRC, and NMR are capable of pro-

viding such structural information, but are costly, time-consuming and not universally

applicable. Namely, there are known cases of protein-complexes that are short-lived

and cannot be studied by such techniques [EKK04]. In those cases, protein-protein

docking methods represent the only alternative. According to some authors, accu-

rate prediction of protein structure will eventually revolutionize human medicine in

understanding, diagnosing, preventing and treating human diseases [MR01].

Protein-ligand docking methods are often used for modelling drug behaviour. The

therapeutic action and side effects of a pharmaceutical agent depend closely on where

and how the agent binds to a given receptor. The pharmaceutical industry has been

using extensively such docking methods for computer-aided drug design (CADD) and

12

virtual screening (VS) [AT01, BH05, KDFB04, VEM09]. In CADD, drug engineers

design and test the binding propensity of synthetic drug molecules against specific

target receptors. In VS, specialized algorithms traverse large libraries of compounds

in search of candidate drug substances that bind to given target molecules (i.e. reduce

the search space). Although the resulting candidates will eventually be subjected to

experimental testing, it is extremely beneficial for the industry to identify the right

candidates at the early stages of the drug design process (commonly referred to as lead

generation) without the need to resort to costly and time-consuming experimental

techniques such as synthesis, co-crystallisation and assay. Thus, docking methods

enable the pharmaceutical companies to expedite and optimize the drug discovery

process in a quick, efficient, cost-effective, affordable and guided manner.

Overall, molecular-docking is a problem that has been researched extensively by

the scientific community and active research in the field spans across various disci-

plines such as molecular biology, molecular physics, structural biology, biochemistry,

bioinformatics, computer graphics/simulation, medicinal chemistry and pharmacol-

ogy [AGO08, MR01, Rit08].

2.1.1 Docking Mechanics

During docking, the ligand attaches itself on the binding/active site of the receptor.

This is a region in the receptor’s tertiary structure that favours binding with other

molecules, and it could differ from one ligand to another. At the active site, the

two molecules exhibit optimal structural and chemical complementarity. In order

to achieve that, both perform a series of rotations, transformations, and (in many

cases) deformations on their conformation (a process referred to as pose selection

[ADPH11]). There are three prevailing theories/models that underpin the structural

13

behaviour of the two molecules during pose selection. These theories/models are the

following [CPN10] (see Figure 2.2):

Figure 2.2: The binding kinetics of the receptor (green or blue) and the ligand (brown)
molecules, under the three structural behaviour theories (note: in this example only
the receptor can deform structurally). a) Under rigid-body the receptor does not
deform and the docking fit is not the best possible; b) Under selected fit the receptor
deforms its structure in the second step (before the binding occurs), and assumes the
most favourable (for the ligand) docking conformation. The docking fit is perfect;
c) Under induced fit the receptor deforms its structure in the third step (while the
binding occurs), in order to maximize the fit between the two surfaces. Again, the
docking fit is perfect (adapted from Weikl and von Deuster [WvD09])

• Rigid-body (lock-key fit) suggests that the ligand (key) binds to the receptor

(lock) like a key fits to its lock. It models receptor and ligand molecules as rigid

bodies.

• Conformational Selection (selected fit) postulates that out of a given set of

receptor conformations the ligand selects the most favourable one, and shifts

the receptor toward this conformation, prior to binding. It usually models the

ligand as a rigid-body and the receptor as a deformable one.

• Induced fit (hand-in-glove fit) suggests that the receptor and the ligand molecules

14

deform their tertiary structure during binding to obtain the best docking fit (like

a hand fits in a glove). Both molecules are modelled as fully flexible.

The first model allows the two molecules to have only translational and rota-

tional degrees of freedom (DOF) during pose selection. The other two augment the

translational and rotational DOF with internal DOF, to account for ligand and/or

receptor flexibility. In the first case, molecular docking becomes a problem of 6DOF,

whereas in the latter two, a problem of thousands of DOF [TPJK01]. Although most

of the studies have utilized the rigid body model (due to its simplicity), it is widely

recognized that the other two simulate the pose selection process more accurately.

The structural behaviour of the two molecules is a crucial aspect of the docking

process, since it underlies the strength of the binding forces, and the type of inter-

actions involved. Under any model, the strength of the binding is controlled by a

group of non-covalent (non-bonded) interactions formed between the two molecules

such as steric, electrostatic (i.e. Coulomb forces), hydrogen bonds, Van der Waals

(VDW) and hydrophobic ones [MWS96]. The characteristics of these interactions are

outlined as follows:

• Steric interaction describes the space-filling effect present when two comple-

mentary shapes attach to one another. Shape complementarity of some degree

is a necessary condition for this type of interaction.

• Electrostatic interaction explains the force developed between electronegative

and electropositive charged atoms. It is an attractive force when the two atoms

are oppositely charged and a repulsive force when both atoms have the same

charge.

15

• Hydrogen bond defines the electromagnetic attractive force between an elec-

tropositive hydrogen atom partially shared by other electronegative atoms such

as oxygen, nitrogen, or fluorine. It is a special form of polar interaction in

which an electropositive hydrogen atom is partially attached to two electroneg-

ative atoms. Researchers usually model such bonds as electrostatic interactions,

but unlike the electrostatic ones, these bonds are highly directional.

• Van der Waals interaction explains the short-range repulsion and long-range

attraction forces present in oppositely polarized flickering dipoles. Namely, the

electron cloud fluctuations of nonpolar atoms produce flickering dipoles, which

induce momentarily oppositely polarized flickering dipoles in the nearby atoms,

and thus generate an attractive force. When these atoms come in close proximity

their clouds repel themselves in order to prevent electron overlaps, according to

the Pauli Exclusion Principle.

• Hydrophobic interaction is present in aqueous solutions when nonpolar molecules

push away the surrounding water molecules, and thus drive their nonpolar sur-

faces in close proximity. The hydrophobic forces are important for the proper

folding of protein molecules.

Individually, these non-bonded interactions are quite weak, but when grouped to-

gether they can produce an attractive force between the two molecules that is strong

enough to keep them attached into a stable complex.

When molecular flexibility is taken into account, bonded interactions also con-

tribute to the bindings total energy potential and force field. When molecules deform

their tertiary structure to accommodate binding, they eventually change the position

of their bonded atoms, which leads to bond stretching, bending, and twisting [Sub06].

16

Molecular dynamics (MD) refer to these bonded-interactions as bond stretching, bond

angle, and torsion angle potentials, respectively [OY90].

The summation of the bonded and non-bonded force potentials characterizes the

binding affinity of the intermolecular interaction; whereas, the summation of the

respective energy potentials and entropy contribution constitutes the system’s free

energy. A docking process is successful when the free energy of the molecular ensemble

reaches the global minimum and the binding affinity is high.

2.1.2 Outlining Docking Approaches

The development of a docking solution is an interesting yet difficult endeavour. It

necessitates the discovery and utilization of efficient methods and strategies, capable

of exploring enormous amounts of potential binding conformations prior to selecting

the correct (experimentally verifiable) docking ensemble.

In general, a successful docking solution consists of the following two comple-

mentary, functional components: a search algorithm and a scoring method. The

main objective of a search algorithm is to explore the receptor/ligand conformational

space, and evaluate potential binding poses for chemical and structural complemen-

tarity. Likewise, the main objective of a scoring method is to evaluate the binding

poses (identified during searching), and select those poses that replicate closely the

ones determined experimentally. The success of the docking solution (i.e. how closely

the binding pose resembles the native one) depends closely on the searching efficiency

and scoring accuracy of these components.

The searching of the conformational space is, in its own right, a difficult problem

to tackle. Even in its simplest form (i.e. inflexible molecules), the number of pos-

sible docking conformations is vast, which renders an exhaustive search intractably

17

difficult to perform, and this number grows exponentially when molecular flexibility

is taken into account. Searching algorithms can be grouped into the following two

broad categories: automated and interactive. Automated algorithms utilize sophis-

ticated, pose selection/matching methods and rely only on computer power to carry

them through. Conversely, interactive algorithms require human intervention, and

their performance depends closely on the underlying human intuition, knowledge and

expertise. Given the searching algorithm employed, docking solutions could also be

referred to as automated/algorithmic, or interactive.

The algorithmic approaches to docking employ a range of efficient searching al-

gorithms (e.g simulated annealing, geometric hashing, Monte Carlo (MC)) to sample

the conformational space, and then use energy-based scoring methods to rank these

samples and select those that produce the best fit [MEL+08]. Earlier docking solu-

tions depended mainly on searching algorithms that performed geometry matching,

(e.g. geometric hashing, shape descriptors, fast Fourier transformations (FFT)), and

accounted only for shape complementarity [LR96, SKB92]. These algorithms treated

both molecules as rigid bodies (rigid-body docking), and evaluated steric or hydrogen

bond interactions for pose scoring [KBO+82, MWS96]. As the computers evolved and

became more powerful, researchers developed and proposed equally advanced and so-

phisticated searching algorithms to address ligand flexibility (flexible-ligand docking).

These algorithms depended either on stochastic methods (e.g. MC, genetic algorithms

(GA), simulated annealing), or on incremental construction methods to sample the

pose space for chemical complementarily, and evaluated both bonded and non-bonded

interactions for pose scoring [Rit08, WCM97, YAR11]. Recent algorithms addressed

receptor flexibility (flexible receptor-ligand docking) in a similar manner, by employ-

ing methods such as MD simulation, MC, or conformer libraries [BK03]. Despite the

18

significant progress achieved in algorithmic docking, it still remains significantly chal-

lenging to handle molecular flexibility, and replicate accurately the respective docking

process. Automated docking solutions, in general, predict the correct pose only about

70% of the time [LSP06].

The interactive approaches, on the other hand, address the same issues as the

algorithmic ones, but unlike them, they depend on rational human thought and hu-

man intuition to execute the pose sampling process, rather than raw computational

power. Early, advances in molecular visualization and 3D computer graphics paved

the way for such interactive approaches. Molecular visualization applications such

as RasMol [SMW95], Chimera [PGH+04], Protein Explorer [Mar02], PyMol [Del02],

VMD [HDS96] and MidasPlus [FHJL88] enabled scientists to view the tertiary struc-

ture of molecules in various styles [Con83b, Con83a, LR71, SG78], identify (visually)

possible binding sites and docking conformations, and run molecular-dynamics sim-

ulations in real-time. Similar advances in computer-interface devices (e.g. mouse,

haptics) enabled the scientists to interact with the virtual world, and facilitated the

multimodal exploration of the docking process.

Interactive docking, and specifically haptics-assisted docking, is the focus of this

dissertation. As such, the next section provides an analytic view of the issues, ren-

dering models, and applications pertaining to haptics-assisted docking.

2.2 Haptics-assisted Docking

The automated/algorithmic approaches to molecular docking represent the majority

of the applications and studies available in the field. Despite, however, their pop-

ularity in the research community, there are many unresolved issues. For instance,

automated docking methods employ computational intensive searching, posing, and

19

scoring algorithms that are time consuming (solutions to docking problems can take

several hours) [OY90, SDINW05] and do not always predict the correct docking con-

formations [DMR07a, LSP06, SS02]. The effect of the solvent on the intermolecular

interactions and protein flexibility are other issues not addressed/modelled properly

in these methods [CWL12]. Finally, the automated docking methods deprive their

solution sets of another important factor, human knowledge and intuition.

Haptic Device Interactive Docking Simulation

Figure 2.3: A schematic representation of haptics-assisted docking. The user con-
trols the ligand with the haptic device, senses the interaction forces, and uses this
visuohaptic information in order to identify and guide the ligand to the docking pose.

Haptic devices and interactive molecular visualization systems transfer the com-

plexity of the molecular binding process from computers to humans. Haptics-assisted

docking systems simulate the docking process in a 3D virtual environment, where

20

the user can interact with the molecules, and perform a knowledge-guided search

and selection of the final docking ensemble (Figure 2.3). In the late 80s, Ouh-Young

[OY90] demonstrated that this knowledge-guided docking approach produces faster

and more accurate docking results than an automated approach. Since then, sev-

eral haptics-assisted docking systems have been proposed and developed [BSA01,

DMR07a, DR09, NMT02, STW09]. It is expected that haptic devices are here to

stay, and future advancements in the field will facilitate new exciting, intellectual,

and commercial explorations.

The next four sections provide an overview of haptic technology and how it is ap-

plied to molecular docking problems (Section 2.2.1), describe the energy and force cal-

culation models utilized by haptics-assisted docking solutions (Section 2.2.2), present

ways to render these forces haptically (Section 2.2.3), and reviews the advances in the

field (Section 2.2.4). The discussion in these sections focuses on CPU-based interac-

tive docking, since it comprises the majority of the existing haptics-assisted docking

systems.

2.2.1 Overview

The term haptics comes from the Greek word “Haptesthai” which means “to touch”.

Haptic technology enables the user to interact with a virtual environment through

the sense of touch [BS02]. Tactile (e.g., object texture) and kinesthetic (e.g., force

sensation) information from the virtual world are transmitted back to the user via

the device, allowing one to feel the physical properties of virtual objects. A typical

haptic device can render either translational forces along the three axes x,y, and z

(3DOF device), or translational and rotational (torque) forces along the same axes

(6DOF device). Haptics have many applications in industry and research, especially

21

in areas such as medicine (e.g. surgical simulation, rehabilitation of patients with

neurological disorders), entertainment (3D painting, morphing and sculpting), me-

chanical design (path planning and assembly sequencing), and scientific visualization

(geophysical data analysis, molecular manipulation) [BS02, BJ08, JBT04, MPT05,

OL05b, SCB04].

In molecular docking, the haptic, force-feedback technology is coupled with 3D-

visualization systems to help molecular scientists achieve better and faster docking

results. In such systems, the tertiary structures of ligand and receptor molecules

comprise the virtual world, and the haptic device interacts with this world through

a virtual control point called the Haptic Interface Point (HIP). The user utilizes the

visual cues and their structural and biochemical expertise to identify potential active

sites and select conformations that appear complementary, both geometrically and

chemically. With the ligand often attached on the HIP, one can use the device to

move and rotate the ligand around the receptor and assume various binding poses.

At the same time, one can measure the respective total energy potential, feel the

repulsive or attractive forces of the underlying interactions, and cognitively select the

docking pose and site that produces the best fit. This visuohaptic representation of

the molecular world (from atomic to world scale) enables the user to feel the intensities

of the interaction forces and gain a better awareness of the intermolecular binding

process.

2.2.2 Calculation Models of Intermolecular Interactions

Molecular mechanics dictate that the total energy and force of the binding depend

on the bonded and non-bonded interactions (see Section 2.1.1) developed between

22

the two molecules. When the molecules are treated as rigid, the non-bonded inter-

actions are the only ones required, but when molecules are considered to be flexible

bonded interactions (i.e. the stretching, bending and twisting of covalent bonds)

must be included either explicitly or implicitly. However, the modelling/simulation

of bonded interactions is a very computationally demanding task, and thus most

haptics-assisted docking solutions neither model bonded interactions, nor account for

molecular flexibility (i.e. treat molecules as rigid bodies). Typically, they model only

the VDW interactions [BSA01, HS10, LYL06b], or both the VDW and the electro-

static (Coulombic) interactions [FNM+09, LL04, OY90, SB06, WMJ07].

VDW interactions are often approximated by the Lennard-Jones 6-12 (LJ), energy

potential function. This function computes the energy potential between two atoms

i and j as,

EV DW
ij =

Aij
r12ij
− Bij

r6ij
(2.2.1)

where Aij and Bij are constants that depend on the type of interacting atoms, and

rij is the distance between these atoms (measured from their centre). In Equation

2.2.1, the first term defines the repulsive part of the force, whereas the second term

defines the attractive part - the dispersion force. Aij and Bij can also be written

as Aij = 4εσ12 and Bij = 4εσ6 respecively, where ε is the potential well depth (i.e.

the minimum of potential energy), and σ is the distance at which the inter-atomic

potential is zero (see Figure 2.5).

The respective force function is derived from the distance-based differential (gra-

dient) of the LJ potential, as,

~F V DW
ij = −∇EV DW

ij ⇒

~F V DW
ij =

[
12
Aij
r13ij
− 6

Bij

r7ij

]
~̂rij

(2.2.2)

23

where Aij, Bij, and rij have the same meaning as in Equation 2.2.1, and ~̂rij is the

unit vector in the direction from atom i to j.

The electrostatic interactions are calculated using Coulomb’s law. Given two

atoms i and j, the electrostatic energy potential between the two is

EES
ij =

qiqj
4πεε0rij

(2.2.3)

where qi and qj are the atomic charges of the two atoms, ε0 is the permittivity of

free space, ε is the relative permittivity dependent on the dielectric properties of the

solvent, and rij is the distance between these atoms. Analogous to the derivation of

the LJ force function, the electrostatic force equation is given by

~FES
ij = −∇EES

ij ⇒

~FES
ij =

qiqj
4πεε0r2ij

~̂rij
(2.2.4)

where qi, qj, ε0, ε, and rij have the same meaning as in Equation 2.2.3, and ~̂rij is

again the unit vector in the direction from atom i to j.

The values of parameters Aij, Bij, qi, and qj in Equations 2.2.1, 2.2.2, 2.2.3, and

2.2.4 vary according to the actual empirical force-field model utilized for the respec-

tive calculations. There are various force-field models, such as GROMOS [SEC+11],

AMBER [WKC+84], CHARMM [BBO+83], MM3 [LA91], MM4 [ACL96], MMFF94

[HN96], and OPLS-aa [DFTRJ97, JMTR96, RJ99]. These models derived their un-

derlying values based on experimental observations, and their values differ because

they were designed to accommodate different types of molecular structures (e.g. AM-

BER for proteins and DNA, CHARMM for small molecules and macromolecules,

etc). In addition to molecular docking, these models are also used extensively in

molecular-dynamics (MD) simulations.

24

The majority of haptics-assisted solutions use these equations to compute the total

energy potential and force of the binding, and then render this force on the haptic

device. Depending on the type of the non-bonded interactions modelled (VDW only,

or VDW and electrostatics), the total energy/force of the docking simulation can by

derived either by Equations 2.2.5 and 2.2.6 (for VDW only), or Equations 2.2.7 and

2.2.8 (for VDW and electrostatics).

EV DW
Tot =

N∑
i

M∑
j

(
Aij
r12ij
− Bij

r6ij

)
(2.2.5)

~F V DW
Tot =

N∑
i

M∑
j

([
12
Aij
r13ij
− 6

Bij

r7ij

]
~̂rij

)
(2.2.6)

EV DW+ES
Tot =

N∑
i

M∑
j

(
Aij
r12ij
− Bij

r6ij
+

qiqj
4πεε0rij

)
(2.2.7)

~F V DW+ES
Tot =

N∑
i

M∑
j

([
12
Aij
r13ij
− 6

Bij

r7ij
+

qiqj
4πεε0r2ij

]
~̂rij

)
(2.2.8)

Equations 2.2.5 and 2.2.6 comprise an extremely simplified model of the binding

interactions (they model shape complementarity only). They contain fewer operands

than Equations 2.2.7 and 2.2.8, which makes them faster to compute, but they do not

account for the electrostatic interactions, which are responsible for attracting/steering

the ligand to nearby binding sites (see Nagata et. al. [NMT02]). Equations 2.2.7 and

2.2.8 take into account electrostatic interactions, but with an extra computational

cost.

Both of these equation pairs, however, fail to model the hydrophobic factors of

the non-bonded interactions. Though these factors are important to the stability

and strength of the binding, there have been no significant works that model them.

Moreover, studies such as [OY90], and [SB06] suggest that, when addressing rigid-

body docking problems, Equations 2.2.7 and 2.2.8 provide a good approximation of

25

the total energy and force involved. This dissertation utilizes Equations 2.2.7 and

2.2.8 for the same reasons.

Finally, there are some isolated studies that model rigid-docking interactions as

follows:

• electrostatic only (Nagata et. al. [NMT02])

• as a force transfer function adapted from the field of volume rendering haptics

(Maciejewski et. al. [MCET05])

• as the gradient of a cross-correlation function adapted from the field of signal

processing (Birmanns and Wriggers [BW03])

The lack of additional studies on these modelling approaches suggests that they have

not gained the same acceptance as the approaches using Equations 2.2.5 and 2.2.6, or

2.2.7 and 2.2.8. In addition to rigid-docking models, a couple of studies tried to model

molecular flexibility and to account for both bonded and non-bonded interactions

(Daunay et. al. [DMR07a] and Zonta et. al. [ZGAB09]). However, these approaches

were either unable to attain the necessary haptic refresh rates (see Section 2.2.3), or

limited their scope to very small ligands.

Developing correct models of the intermolecular interactions is crucial to our un-

derstanding of the binding mechanics. Science and experimental techniques have

produced good models that account for both bonded and non-bonded terms of these

interactions. Haptics-assisted docking solutions however, address mostly rigid-body

problems, and thus tend to model only the non-bonded interactions. Although rigid-

body docking is a popular problem within the community, mainly because of its

computational simplicity, it does not reflect accurately the process of intermolecu-

lar complex formation. As computers and computational methods evolve, it seems

26

logical that flexible docking problems will attract more attention. When that hap-

pens, tertiary-structure deformations and bonded-interaction calculations/renderings

should become integral parts of any haptics-assisted docking solution.

2.2.3 Haptically Rendering Intermolecular Interaction Forces

The main goal of a haptics-assisted docking solution is to allow human perception,

intuition, and knowledge to assist and accelerate the docking process. To achieve

this, any solution must model sufficiently the total energy potential and force of the

binding conformations, and render them visuohaptically at interactive rates. The

users perception of the intermolecular interactions depends closely on the quality and

frame rate of these renderings, and any inadequacy on this part will become detectable

by the user, and invalidate the usefulness of the docking solution.

Modern haptic technology, allows the user to sense in real time the intermolecular

interactions of docking (feedback cues for the total energy potential must be given

visually). For a perceptually accurate haptic exploration and manipulation of the

docking process, the force-feedback cues have to be updated at a rate of 1 kHz;

There are reports suggesting that this requirement can be relaxed down to 500Hz

[MFC+14, DDKA06, OL05a], but even then, it remains a challenging constraint to

satisfy, since it requires the calculation of the intermolecular interactions within 2ms

(milliseconds). When this rate is not met device vibrations and force discontinuities

(sensing force gaps) can occur limiting practical use. This requirement can affect not

only the size of a docking simulation (i.e. size of interacting molecules), but also the

type of interactions (i.e. bonded, non-bonded) modelled in it [WMJ07].

In the case of rigid-body docking, where the docking application models only the

VDW and electrostatic interactions (see Equation pair 2.2.7 and 2.2.8), the real-time

27

calculation of the total energy and force is considered infeasible for large molecular

structures [WMJ07]. Based on their formulation, both equations demand a great

number of pairwise, interatomic calculations between the two molecules. Hence, their

time complexity is O(NM) (where N and M are the number of receptor and ligand

atoms respectively), which scales linearly with the size of the ligand. As such, when

the receptor and the ligand are large molecules, both equations become prohibitively

expensive to compute, and thus inappropriate for haptically-driven docking applica-

tions [Biv10, SB06].

An initial solution to these real-time-related, computational issues was given by

Pattabiraman in 1985 [PLFL85]. Pattabiraman developed a 3D-grid-based approach

that pre-computes and stores the total energy potential at predefined 3D-grid cells.

His method divides the entire space into equally sized grid cells (see Figure 2.4),

and treats the receptors tertiary structure as fixed within that space. Moreover, it

assumes that each cell is occupied by a one-atom ligand; based on that assumption,

it computes (off-line), and stores (in each cell) the energy potential of the respective

receptor/one-atom interactions. During a simulation and as the ligand moves within

that grid, the method uses the values stored in this grid to compute the total energy

at interactive rates. Specifically, the approach maps all ligand atoms to the closest

grid cells, and then adds up the stored energy values, along with the non-bonded

parameters of the respective ligand atoms, to produce the total energy at a precision

relative to the size of the grid cells. With this approach, Pattabiraman reduced

the computation complexity from O(NM) to O(M). Although, there is a memory

cost involved in storing the grid data, that cost is outweighed by the underlying

performance improvement.

Ouh-Young [OY90], who pioneered the field of haptics-assisted docking, adopted

28

Figure 2.4: Energy/force grid surrounding the receptor molecule 1ADG
{Oxidoreductase (Nad(A)-Choh(D))}

Pattabiramans method and used it, not only for energy but for force calculations as

well. In addition to the energy-potential grid, Ouh-Young constructed (in a similar

way) a force grid of the interatomic forces present at each grid cell. These force

quantities were stored in the grid as discrete vectors. To compute the total interaction

force, he had to perform a tri-linear interpolation on the appropriate force vectors,

and a vector addition on those interpolation results. The total force vector was

then haptically displayed back to the user. With these interpolations Ouh-Young

smoothed the force bumps rendered on the device (attributed to the discrete forces

stored in the grid cells), and improved the overall force feedback sensation of the

docking simulation. A similar approach was also taken by Bayazit et. al. [BSA01] in

order to compute the VDW interaction in their receptor-ligand docking system called

29

OBPRM.

Although fast, both grid methods provide a coarse approximation of the respec-

tive energy and force quantities, mainly because of the assumptions made while pre-

computing the VDW grid. Namely, during the offline grid calculation phase the

ligand atoms were treated as if they were “ghost” atoms that did not affect the value

of parameters Aij and Bij in the Lennard-Jones 6-12 formula (see Section 2.2.2).

Therefore, all pre-computed quantities stored in the grid cells, accounted for the

VDW interactions between the receptor atoms and a “ghost” atom, rather than be-

tween the receptor atoms and the actual ligand ones. Lee and Lyons [LL04] studied

this problem and proposed improvements to the pre-computed, force grid method.

They suggested the use of separate force grids for each component of the non-bonded

interactions (i.e. VDW and electrostatic). Moreover, instead of computing the VDW

interaction between receptor atoms and a “ghost” atom, they pre-computed the VDW

interactions between receptor atoms and all the different atom types comprising the

actual ligand. For example, if the ligand was a water molecule they would have

pre-computed the following three force grids:

1. a 3D grid storing force vectors pertinent to the electrostatic interactions between

receptor and ligand.

2. a 3D grid storing a set of the following two force vectors,

(a) a force vector pertinent to the VDW interactions between receptor atoms

and a hydrogen atom.

(b) a force vector pertinent to the VDW interactions between receptor atoms

and an oxygen atom.

30

This approach allowed them to not only compute the VDW interactions correctly,

but to treat in real-time, and handle independently (e.g. scale, turn on and off), the

energy potentials and forces attributed to the VDW and electrostatic interactions.

The cost of these improvements was acceptable and required more memory space (for

storing the pre-computed grid-values), and more memory lookups (for performing the

actual energy/force calculations). This approach has been adopted by the majority

of the solutions related to haptics-assisted docking [Biv10, HS10, LYL05, MCET05,

SWS+03, STW09, SB06], since it provides a fast, and flexible way to compute and hap-

tically render the underlying docking interactions. In general however, pre-computed

force grids, suffer from the following main issues: a) they have high memory require-

ments, b) they induce rough force transitions at cell boundaries [WMJ07], c) they are

impractical for large protein-protein docking problems[RAM+12], and d) they cannot

accommodate (by design) receptor flexibility since the grids must be computed at

haptic refresh rates after each structural deformation.

Calculating the interaction forces at haptically-acceptable frame rates is a nec-

essary condition for any haptics-assisted docking system, but it is not the only one.

The second important condition is the continuous and detectable representation of

the scales and intensities of these forces [Biv10]. In his thesis, Bivall asserted that

a user should be able to sense the weak (attractive and repulsive), and very strong,

forces of intermolecular interactions in a clear, smooth, and distinguishable way. Al-

though it is fairly straightforward to simulate and render electrostatic forces on a

haptic device, it is not easy for the VDW forces (modelled with the Lennard-Jones

formula) because they are very sensitive to distance changes and can change rapidly

in magnitude and direction between successive haptic cycles. As depicted in Figure

2.5, the Lennard-Jones potential is zero when the interatomic distance rij is σ, and

31

𝐴 = 𝜋𝑟2

LJ
 P

o
te

n
ti

al
 E

n
e

rg
y

Interatomic Distance

σ

εσ
𝟔
𝟐

E i
j

rij

(a)

LJ
 F

o
rc

e

Interatomic Distance

σ
𝟔
𝟐

F ij
rij

Fij = Repulsive Fij = Attractive

(b)

Figure 2.5: Juxtaposing the Lennard-Jones energy and force graphs. a) Depiction of
a Lennard-Jones energy graph where σ (red line) is the distance at which the inter-
atomic potential is zero, σ 6

√
2 is the distance at which the energy is minimized, and ε

is the potential well depth at σ 6
√

2. b) Depiction of the respective Lennard-Jones force
graph where σ 6

√
2 is the distance at which the force becomes zero. The interaction

force becomes highly repulsive when rij is less than σ 6
√

2, and attractive when it is
greater than σ 6

√
2.

32

at its minimum when the distance is σ 6
√

2. Moreover, the VDW force is strongly

repulsive when the two molecules are in close proximity, and attractive when they

are far apart. Similarly to the energy potential, the repulsive part of the force is

attributed to the 1
r13ij

term of Equation 2.2.2 (see Section 2.2.2), and dominates the

attractive force when the distance is less than σ 6
√

2. The attractive part of the force

is attributed to the 1
r7ij

term, and dominates the repulsive force when the interatomic

distance is greater than σ 6
√

2. Overall, the force is attractive when the molecules are

far apart, it becomes less attractive as the two molecules approach each other, it be-

comes equal to zero at distance σ 6
√

2, and it becomes strongly repulsive for distances

less than σ 6
√

2. The sudden change in force direction and magnitude at distance σ 6
√

2

can cause force rendering instabilities/artefacts, especially when the repulsive force

reaches extremely high levels (when the electron clouds overlap). The literature de-

scribes the latter case as the “hard-surface problem”, which current haptic technology

is incapable of dealing with effectively (i.e. rendering such forces).

Ouh-Young [OY90] addressed this problem, and in his solution, GROPE III, he

developed a bump checker that provided visual cues (flashing vectors) when two atoms

started bumping to each other. His solution did not produce a smooth transition from

low intensity attractive forces to highly intensive repulsive forces on the haptic device.

It simply augmented the force feedback sensation with visual cues that simulated this

transition in the user’s mind.

Bayazit et. al. [BSA01] took a simpler approach and reduced any force greater

than 1N (the devices limit at that time) down to 1N before rendering it on the

haptic device. Their solution addressed the issue of device-rendering stability, but

did not enable the user to distinguish the repulsive-force increments when the two

atoms collide/overlap, or account for smooth force transitions. Like Bayazit et. al,

33

Wollacott and Merz Jr. [WMJ07] introduced a repulsive-force cut-off value in their

haptic rendering loop, but unlike Bayazit et. al, they scaled down all other force

values according to this cut-off. Their approach gave them a wider range of repulsive

forces to render, but did not help them to address sufficiently the problem of smooth

force transitions.

Lee and Lyons [LL04] tried initially to scale down all interaction forces (without

cut-offs) in order to be able to haptically-render the repulsive-force increments ob-

served during interatomic penetration. They discovered that the magnitude of the

forces, prior to the penetration, were too small to be detectable by the user. For

this reason, they implemented a virtual wall analogy of haptic-force rendering (using

a god object). Their solution permitted the rendering of the VDW forces until the

interatomic distance becomes less than the sum of the atoms’ VDW radii. In that

case, their method treated the two atoms as being in contact, and added a spring-

based force vector to the total force (equal to depth of penetration multiplied by a

spring constant) if the atoms continued to penetrate further into each other. Lee and

Lyons’ approach provided an effective way to deal with the “hard-surface problem”,

while allowing the user to become aware of these interatomic penetrations and their

underlying force variations. Subasi and Basdogan [SB06] adapted this method in

their docking solution as well.

Similarly to Lee and Lyons, Lai-Yuen and Lee [LYL05] proposed a virtual wall

approach where the interatomic collision forces were pre-computed and stored in a

3D grid, instead of being calculated on the fly. Their approach traded memory space

for faster force computation, and force feedback rendering results. Lastly, Hou and

Sourina utilized a linear smoothing method to soften the rapid force transitions.

Their method was based on the smoothing function proposed by Gregory et. al.

34

[GME+00] for virtual-proxy-based 6DOF haptic rendering (the virtual proxy is a

similar approach to the god object approach of virtual wall simulation).

In closing, the force-feedback rendering capability of the intermolecular interac-

tions is a central aspect of any haptics-assisted docking application. It is important

for the human perception of haptic stimuli that these forces are rendered at a rate of

500Hz (or even faster). Such fast rendering rates necessitate equally fast energy/force

computational methods, and the grid-based approaches address this requirement ef-

ficiently. Nonetheless, as seen earlier, these approaches can induce rough force tran-

sitions at cell boundaries [WMJ07] (if these effects are not reduced appropriately),

since VDW forces are exponential in nature, and tri-linear interpolations do not per-

form well on convex functions. Moreover, they cannot be applied to flexible docking

problems (modelling receptor deformations), because of the time-consuming, offline

calculations required to construct the grids. Lastly, none of the existing approaches

can accommodate force calculations for large molecules. Ongoing research in the field

is expected to generate faster and more flexible methods to compute intermolecular

interaction forces. It is also expected to involve the discovery of force-rendering meth-

ods that can adapt efficiently to the limitations of current haptic technology, while

maintaining a smooth, continuous, and distinguishable force feedback display. These

premises form the main motivation of this thesis.

2.2.4 Docking Applications with Haptics

The potential benefits of integrating haptic technology in molecular docking solu-

tions have been under investigation since the late 60s [BJOYBJK90]. Nonetheless,

the progress made in this field has been slow. The main reasons for that were the lack

of product commercialization (early haptic technology was proprietary), and the lack

35

of the necessary computing power, for many decades, which rendered the use of haptic

technology in docking solutions either prohibitively expensive and/or computationally

infeasible. The emergence of powerful desktop computers, affordable haptic devices

and open-source rendering APIs (Application Programming Interface), at the begin-

ning of the 21st century, alleviated these obstacles, and enabled molecular-docking

researchers to incorporate haptic technologies in their studies. Though the number

of related studies still remains small, it is anticipated that this number will increase

as haptic technology becomes easier and cheaper to use and integrate.

The first attempts in the field were made by Frederick Brooks’ team at the Univer-

sity of North Carolina. Brooks and his team, stimulated by the “Ultimate Display”

vision of Ivan Sutherland [Sut65], initiated in 1967 a research project called GROPE,

which lasted twenty three years. The project aimed to develop a haptic display sys-

tem for 6DOF force-rendering of protein-protein interactions [BJOYBJK90]. Project

GROPE involved three stages of development (GROPE I, GROPE II, and GROPE

III), and started with a simple 2DOF system (force feedback only on x, and y axis),

progressed to a 3DOF system and concluded with a 6DOF system, respectively. The

last stage of the development was undertaken by Ming Ouh-Young [OY90], as part of

his PhD thesis. Ouh-Young developed a 6DOF, haptics-assisted docking system called

GROPE III (see Figure 2.6). His system utilized a modified Argonne E-3 Remote Ma-

nipulator (ARM) for ligand movement and force feedback display. It enabled the user

to move/rotate the ligand around the receptor, and sense the interaction forces and

torques on the ARM device. The 1DOF-twisting of ligand-specific, rotatable bonds

was also facilitated by the device, but did not induce any force feedback. Force and

energy calculations were accelerated based on a pre-computed 3D grid, and torques

were derived from the force vectors using a Jacobian matrix. His system suffered

36

from some problems (e.g. feedback rendering was around 60 frames per second, fric-

tion problems on the device induced noise on the force renderings) due to the lack of

advanced computational and haptic technology. Nonetheless, it allowed Ouh-Young

to prove his assertion, that haptic technology augmented by human experience and

intuition can accelerate the docking process in an accurate and reliable manner.

Figure 2.6: The GROPE-III docking system with the Argonne E-3 manipulator
[BJOYBJK90]

Taking a different approach from Ouh-Young, Bayazit et al. [BSA01] integrated

haptic technology into their motion planning method called obstacle-based, prob-

abilistic roadmap (OBPRM). OBPRM is an automated method that samples the

molecular-conformations space for possible docking sites and binding conformations,

37

connects these findings into a roadmap, and then calculates the final docking path

based on this roadmap. Like all probabilistic roadmap methods however, their so-

lution suffers from a known problem, commonly referred to as narrow passage (it

could not sample ligand conformations in narrow C-space regions). Bayazit et al.

addressed this problem by coupling OBPRM with haptic technology. In their so-

lution, the haptic device allowed the user to sample the conformations space, sense

3DOF, interaction forces, identify sites with low energy potentials, and connect these

findings into a roadmap. This roadmap was then given as an input to the road plan-

ner that calculated the final docking path. Energy and force calculations modelled

only VDW interactions, and accelerated with the use of a 3D grid. Ligand flexibility

was partially addressed by allowing the planner to fine-tune the chosen ligand con-

formations (modelled as an articulated body) using energy minimization techniques

(approximate gradient descent). The authors observed that this haptically-driven

user intervention helped the planner to obtain better docking results.

Nagata et. al. [NMT02] designed a 3DOF, docking system for computer-aided

drug design. They attempted to compute and render all non-bonded interactions

(VDW, electrostatic, and hydrogen bonds) on the haptic device (in real time), with-

out utilizing pre-computed grids. They discovered that they could not achieve these

goals, since they lacked the necessary computational power. Nonetheless, they built a

limited system that modelled the electrostatic interactions, between a single-charged,

globular probe (as the ligand), and twenty, receptor atoms only. They concluded

that a brute-force approach cannot compute the respective binding interactions at

haptically-acceptable interactive rates without being given additional computer power

(about 100-fold). Unlike Nagata et. al., Lee and Lyons [LL04] proposed a 3DOF,

haptics-assisted, docking approach that improved the accuracy of grid-based, force/energy

38

calculations, and smoothed the haptic rendering of the Lennard-Jones force field.

Their solution pre-computed and utilized multiple 3D-grids for all energy/force cal-

culations, and treated the “hard-surface”, force-rendering instabilities (induced by

the Lennard-Jones field) using a spring-like model. Their approach produced notable

results, and has been applied to many other studies hence after [WMJ07, SB08].

Birmanns and Wriggers [BW03] augmented algorithmic docking with haptics, and

developed a 6DOF, rigid-body docking application for biomolecular assembly. They

integrated haptic technology into their SenSitus engine (a molecular-fitting and visu-

alization engine), in order to assist the engine (through human intervention) to find

the optimum docking pose. Unlike grid-based approaches, their solution utilized a

standard cross-correlation function for modelling the energy, force, and torque quan-

tities. Vector quantization techniques computed these quantities in real time, and

provided stable haptic rendering rates. Users, who tested this system, reported that

the fitting process was found to be surprisingly challenging even with the visuohap-

tic feedback. The authors attributed these difficulties to the known limitations of

the cross-correlation function. Subsequent studies addressed partially these issues, as

well as, the issues of molecular flexibility (by utilizing Topology-Representing neural

Networks-TRNs [WCAK+04]), and balancing visual and haptic rendering-rate dispar-

ities (by utilizing adaptive, visuohaptic rendering, and dynamic, mesh-simplification

techniques [BBZW04]).

Lai-Yuen and Lee studied the problem of flexible-ligand docking, and implemented

their methods into a haptics-assisted, docking system for computer-aided molecular

design and assembly [LYL06a]. Their system utilized a proprietary (lab-built) haptic

device capable of 6DOF HIP movement, and 5DOF force-rendering. The user could

use the device to navigate the ligand around the receptors tertiary structure and

39

sense the interaction forces. Torque-rendering was available, but only when the lig-

and collided with the receptor. The system accounted for the VDW interactions only,

and it employed 3D-grids to accelerate the energy and force computations. Torques

were computed as a function of force vectors acting on a pivot point (referred to as

the ligands “center of weight”), and the “hard-surface” problem was addressed us-

ing a spring-like model. Molecular flexibility was taken partially into account, since

they modelled the ligand molecule as an articulated body with torsional freedom.

Unlike the previous approaches, ligand deformations did induce force and torque

feedbacks. In addition to the haptic-related features, their solution incorporated an

automated binding-pose search engine, called Nano-scale Docking and Assembly Sim-

ulator (NanoDAS). NanoDAS enabled the user to generate automatically a docking

path, and then haptically explore it with the device. Given a user-specified, ini-

tial location for the ligand, NanoDAS utilized real-time, pose-search [LYL06b] and

energy-minimization methods [LYL05], in order to generate and return to the user a

feasible docking path.

Similarly to Lai-Yuen and Lee, Wollacott and Merz Jr. [WMJ07] developed a

rigid-body, docking application for rational drug design. Their Haptic Application

for Molecular Structure and Energy Refinement (HAMStER), provided 3DOF, force-

rendering capabilities, and was designed to serve as a general purpose tool in drug

discovery. HAMStER enabled the user to explore the receptor with the ligand, and

receive, at the same time, visuohaptic stimuli. It utilized two different 3D-grids

for energy/force calculations (one for VDW and one for electrostatic). The “hard-

surface” problem was addressed similarly to Lee and Lyons [LL04], with the only

difference that the total force rendered on the haptic device was the sum of the spring

force and the interaction force (and not only the spring force). Wollacott and Merz Jr.

40

implemented this technique in order to achieve force continuity during hard-surface

interactions. To achieve haptic stability, the application capped all forces greater

than 1.5N down to 1.5N, and then scalled the smaller ones accordingly. In order

to achieve interactive, frame rates, HAMStER incorporated several, computational-

cost-cutting procedures such as, pre-computing the grid only around the active site

(using hydrogen and generic heavy atoms as ligand atoms), treating large receptor

molecules as graphic-objects and not as haptic-objects, and allowing only up to 50

haptic-objects rendered in a scene. Wollacott and Merz Jr. characterized as “haptic-

objects” (in a virtual scene) only those objects capable of inducing force-feedback

cues.

Figure 2.7: The 6DOF, flexible docking system by Daunay and Regnier [DR09] with
the Virtuose haptic device

Subasi and Basdogan [SB06, SB08, Sub06], took a slightly different approach and

proposed a hybrid system, that combined haptic technology with an off-line MD-

simulation engine. It is common for MD simulators to stall in a problematic state

41

known as trapping (the simulator is trapped in local, minimum-energy conformations

instead of the global ones). Subasi and Basdogan suggested that user intervention

could assist MD simulators to overcome such states. In their solution, they allowed the

user, via the haptic device, to locate the binding site on the receptor, and to roughly

align the ligand within that site. Given that rough alignment, the MD engine could

then execute optimum rigid transformations on the ligand, and determine the ligands

final pose inside the binding site. To achieve this fine-tuning, the engine had to

minimize the total distance error between the current, and the simulated coordinates

of the ligand atoms. Energy and force feedback cues were computed based on the

3D-grid method, proposed by Lee and Lyons [LL04]. The “hard-surface” problem was

addressed in a similar way, as well. Subasi and Basdogan also proposed a method for

haptics-assisted exploration of large molecular structures, rendered in high resolution.

Their method was called Active Haptic Workspace (AHW), and enabled the user to

explore the molecular surface in small fragments at high resolution. Experimental

results showed that, their system helped non-specialist users to successfully identify

the binding site, and roughly pose the ligand inside it.

Within project CoRSAIRe, Ferey et. al. [FNM+09] designed and implemented

a multisensory virtual reality system for rigid-body, protein-protein docking. Their

system combined multimodal (3D mouse, haptic device) interactive technology with

the screening power of an automated docking approach. With their system, the user

performed the docking process in three stages, two of which required human inter-

vention. The first stage enabled the user (via a multimodal feedback environment)

to reduce the pose sampling space using pattern matching skills and protein-protein

docking expertise. The second stage allowed the refinement and screening of the

42

conformations selected in the first stage, by an automated docking procedure. Fi-

nally, the third stage facilitated the multimodal exploration of the results produced

in the second stage. Their system was capable of rendering 3DOF, force feedback

cues, and supported two different force calculation modes. The first one calculated

the forces using the standard VDW and electrostatic models (i.e. Lennard-Jones

and Coulobic), whereas the second one derived them from the depth-value generated

when two molecules collide (using a spring-like approach). Unlike other approaches,

their system did not account for all interatomic VDW interactions, but only for those

involving the surface atoms. To provide to the user an immersive docking experience,

Ferey et. al. augmented the visual and force feedback cues with auditory stimuli

(e.g. the system used the French word “complementaire” with varying pitch to sonify

surface complementarity), as well.

Daunay and Regnier studied the problem of molecular flexibility during docking.

Their initial attempts [DMR07a] produced a docking system with 6DOF, force/torque-

rendering capabilities but did not account for molecular flexibility. Further improve-

ments to that solution led to a 6DOF, force/torque-rendering docking system in which,

both ligand and receptor molecules were considered flexible (see Figure 2.7) [DR09].

Their system modelled both bonded and non-bonded interactions, and utilized a

simulation engine for the respective energy computations. An energy minimization

process (developed by the authors [DMR07b]) assisted the engine to achieve a better

docking fit, and induced receptor and ligand structural deformations. The forces and

torques, rendered on the haptic device, were not calculated; they were converted from

the total energy potential by a novel force-field reconstruction method proposed by

the authors [DMR07b]. The system could not support haptic refresh rates, since its

energy minimization and force calculation techniques (used by the simulator) were

43

computationally intensive and time consuming, and could not provide force/torques

updates at 500Hz. To address these issues, the authors utilized wave theory and

modelled the transmissions (i.e. ligand movement, force/torque feedback) between

the haptic device and the simulator accordingly [DAMR07]. Wave theory states that,

if all components of the transmission system (i.e. simulator and haptic device) are

passive in the wave domain, and the time delays are constant then, these transmis-

sions will be stable and robust whatever the delays were. Daunay and Regnier ex-

ploited this property, developed the appropriate wave transformations, and managed

to bridge the rate disparities between haptic rendering and simulation (greater then

400Hz per response) and provide a smooth and continuous force feedback sensation

to the user. They were the first ones to build a system for flexible, receptor-ligand

docking.

Figure 2.8: The HMolDock system with a 6DOF PHANToM haptic device [HS11]

44

Figure 2.9: An HMolDock screenshot with the force and torque vectors visualized
[HS11]

Similarly to Daunay and Regnier, Hue and Sourina [HS11, HS10] proposed and

implemented a 6DOF, haptics-assisted, docking system tailored for research in helix-

helix docking (see Figure 2.8). Their system, named HMolDock (Haptic-based Molec-

ular Docking), utilized a 6DOF haptic device, and enabled the user to sense the in-

teraction forces/torques while docking Transmembrane a-helices. Earlier versions of

HMolDock incorporated the works of Sourina et. al. [STW09], and Hue and Sourina

[SH10]. Like its predecessors, the 6DOF version of HMolDock modelled only the VW

interactions, did not employ 3D grids to accelerate the energy/force calculations, and

treated the molecules as rigid-bodies. Unlike its predecessors however, it provided

a 6DOF, haptic rendering environment (instead of a 3DOF one), and addressed the

“hard-surface” problem using the virtual proxy method proposed by Gregory et. al.

[GME+00] (instead of neglecting the problem). Moreover, it augmented the haptic

45

sensations with visual cues reflecting the direction and magnitude of the force/torque

vectors (see Figure 2.9), and allowed the HIP to be repositioned dynamically at any

location on the ligand’s surface. The authors asserted that the repositioning of the

HIP helped the users to attain a better understanding of the intermolecular interac-

tions.

Zonta et. al.[ZGAB09] implemented the first affordable, freeware docking applica-

tion called ZODIAC. Their system addressed ligand flexibility but used a third-party

library to accelerate force computations; namely, the OpenBabel library. ZODIAC

integrated OpenBabel, and utilized the library for force calculations and for molec-

ular modelling/rendering. Zonta et. al. did not address the “hard-surface” problem

directly. They used instead the VDW repulsive forces (i.e. relied on their steepness)

as a means to emulate rigid body clashes. Their system was able to model ligand

flexibility at haptic refresh rates, but only for very small ligands (i.e. comprising 16

atoms).

Other studies pertinent to molecular docking with haptics included the works of

Krenek, [Kre01], Sankaranarayanan et. al. [SWS+03], Sauer et. al. [SHO04], and

Bivall et. al [PCT+07, BAT11]. These studies investigated primarily the importance

of haptic technology in e-learning and education (e.g. teaching structural biology

to users/students). Krenek identified the functional characteristics of a successful,

haptics-assisted, docking application, and explored how these characteristics assist

a user/student during docking. Sankaranarayanan et. al. developed a multi-modal

system with haptic rendering capabilities, and evaluated its usefulness in teaching

molecular biology to high school students. Sauer et. al. developed a system that

enabled students to haptically sense atomic interactions (atomic bonds) and investi-

gated the benefits of such a system in teaching molecular assembly courses. Bivall

46

et. al implemented a 3DOF, haptics-assisted docking system and studied whether or

not haptic technology could help inexperienced students understand the concept of

protein-ligand docking, and identify the correct docking conformations. These stud-

ies provided valuable feedback pertaining to why and how haptic technology could

support their education.

Lastly, some authors utilized haptic devices to interact with molecules during

molecular dynamics simulations and sense the respective forces [FDGB08, SGS01],

explore interactively (with a water-probe) the solvent accessible surface (ISAS) of

a receptor and sense the receptor’s hard surface [SHL09], deform an elastic network

model of a biomolecule by applying forces to individual atoms [SLH11], or visualize in

a web browser the potential energy surfaces and wave-packet dynamics of molecular

systems, and render the underlying forces back to the user [DJMH05]. Although

these studies did not address the problem of molecular docking directly, they did

propose interactive methods that could be adapted “as is” by haptics-assisted docking

solutions.

47

Table 2.1: A comparison of existing haptics-assisted docking systems. *(VDW=van der Waals, ES=Electrostatic)

Published
Works

Description # of Atoms
(Rec./Lig.)

Force
Model∗

Calculation
Method

Compute
Unit

Flexibility Haptic
H/W

Haptic
Feedback

Haptic
Frame
Rates (Hz)

Software
Avail-
ability

Brooks et.al.
[OY90]

An interactive receptor-ligand
docking system

600/60 VDW+ ES Pre-comp.
Grids

CPU Ligand Proprietary 6DOF 60 Proprietary

Bayazit et.al.
[BSA01]

A hybrid system, that uses haptic
feedback to guide an obstacle-
based probabilistic roadmap
motion planning algorithm for
receptor-ligand docking

2500/20 VDW Pre-comp.
Grids

CPU Ligand Phantom 3DOF 1000 Proprietary

Nagata et.al.
[NMT02]

An interactive receptor-ligand
docking system

20/20 ES Brute Force CPU Rigid Phantom 3DOF 1000 Proprietary

Lee and Lyons
[LL04]

An interactive system for study-
ing receptor-ligand docking inter-
actions

532/30 VDW+ ES Pre-comp.
Grids

CPU Rigid Phantom 3DOF 1000 Proprietary

Birmanns
and Wriggers
[BW03]

A system for interactive fit-
ting atomic structures into low-
resolution EM density maps and
biomolecular assembly

5000/1 A fitting
cross-
correlation
function

Vector Quan-
tization

CPU Rigid Phantom 6DOF 1000 Proprietary

Lai-Yuen and
Lee [LYL06b]

An interactive receptor-ligand
docking system for computer-
aided molecular design

2430/16 VDW Pre-comp.
Grids

CPU Ligand Proprietary 5DOF 1000 Proprietary

Wollacott and
Merz [WMJ07]

An interactive receptor-ligand
docking system for rational drug
design

18/1 VDW+ ES Pre-comp.
Grids

CPU Rigid Phantom 3DOF 1000 Proprietary

Subasi and Bas-
dogan [SB08]

An interactive receptor-ligand
docking system

3400/24 VDW+ ES Pre-comp.
Grids

CPU Rigid N/A 3DOF 1000 Proprietary

Ferey et.al.
[FNM+09]

A hybrid, multisensory system,
for protein-protein docking. Hap-
tic feedback combined with auto-
mated docking

N/A VDW+ ES Pre-comp.
Grids

CPU Rigid Virtuose 3DOF 1000 Proprietary

Daunay and
Regnier [DR09]

A hybrid system, for protein-
ligand docking. Haptic feedback
combined with automated docking

N/A Bonded+
Non-
bonded

MOE S/W
Package

CPU Receptor
+ Ligand

Virtuose 6DOF N/A Proprietary

Hou and Sourina
[HS11]

An interactive helix-helix docking
system

266/154 VDW Brute force CPU Rigid Phantom 6DOF 1000 Proprietary

Zonta et.al.
[ZGAB09]

An interactive protein-drug dock-
ing system

5537/16 VDW OpenBabel
Lib.

CPU Ligand Novint 3DOF 1000 Free

Anthopoulos
et.al. [APGB14]

An interactive system for drug de-
sign

30000/60 Bonded+
Non-
bonded

Cut-off based
grid-cell
traversals

GPU Receptor
+ Ligand

Phantom 6DOF 33 Proprietary

Iakovou et.al.
[IHL15]

An interactive system for the
study of large protein-protein
and protein-ligand docking inter-
actions

200000/200000 VDW+ ES Cut-off based
proximity
querying

GPU Rigid Phantom 3DOF 1000 Free

48

Despite all this research effort however (see Table 2.1), these haptics-assisted dock-

ing systems suffer from issues related to pre-computed grids [OY90, BSA01, LL04,

Biv10, LYL06b, MCET05, SWS+03, SB08, WMJ07] (see section 2.2.3), utilize propri-

etary hardware [LYL06b], or even fail to address the 2ms time constraint effectively

[DR09, ZGAB09]. Moreover, none of these systems can accommodate the study of

large protein-protein docking, which limits further the scope and usefulness of such

applications for the molecular docking community. The fact that only very few of

these systems are freely available to the community [ZGAB09] is another reason why

the adoption rate of this technology has been slow.

2.3 Conclusions

The molecular docking field can benefit by the use of haptic technology. There are

good indications that haptics-assisted, docking solutions can improve the docking

results produced by their algorithmic counterparts. However, haptics-assisted docking

neither received substantial attention from the research community, nor has it been

exploited commercially. Existing interactive docking systems do not model sufficiently

the binding interactions, and thus are often considered to be unfit for commercial

use. Moreover, they cannot manage docking problems (rigid or flexible) of large

biomolecules, and they have thus been limited to a) rigid protein-ligand docking

problems of molecules comprising a couple of thousand of atoms each, and b) rigid

receptor-flexible ligand docking problems of very small ligand molecules. Proprietary

haptic devices and rendering software raise additional barriers, and constrain further

the commercial applicability of their docking solutions. The next chapters discuss the

design and implementation of a haptics-assisted docking application that attempts to

address many of these issues.

Chapter 3

Building a haptics-assisted docking
application

3.1 Introduction

Molecular visualization, haptic navigation, force calculation and rendering are the

core functional blocks of any autonomous haptics-assisted docking system. 3D molec-

ular visualization enables the user to depict on screen chemical and spatial information

about the structures, and visually identify potential binding sites or docking confor-

mations, during the simulation. Haptic navigation on the other hand defines how the

user interacts with the virtual world. It sets the dimensions of the virtual workspace,

and dictates the rules governing this interaction, i.e. user movement and accessibility

within the workspace. Finally, the haptic rendering of the interaction forces allows

the user to sense the repulsive or attractive forces acting between the two molecules at

various potential docking poses, and use this input in order to score these poses (e.g.

score for chemical complementarity) and select the most probable one. Consequently,

an equally important aspect of the system is the force field used for modelling these

interaction forces. A haptics-assisted docking system has to address all of the above

49

50

aspects, since failure to do so can hinder drastically the effectiveness of the given ap-

plication, e.g. inability to view and access parts of the molecular structure, improper

modelling of the interaction forces etc.

This chapter describes the design and implementation of the first two building

blocks (i.e. visualization and navigation) within Haptimol RD (Figure 3.1), part of

which is a novel haptic navigation technique suitable for the haptic exploration of

large virtual environments. The chapter also states the force field and the file format

used for modelling (calculating) the interaction forces, and for describing the 3D

structure of the molecules, respectively. The discussion in this chapter begins with

an outline of the potential uses of Haptimol RD.

3.2 Potential Application of Haptimol RD

Haptimol RD is a software application, developed from scratch for the purpose of this

research, capable for the haptics-assisted rigid docking of very large biomolecules. It

is a part of the Haptimol suite which, in addition to Haptimol RD, features the fol-

lowing two applications: a) Haptimol ISAS [SHL09] and b) Haptimol ENM [SLH11].

The former application allows the user to interact with the solvent accessible surface

of biomolecules, whereas the latter one allows the user to deform biomolecules by ap-

plying forces to atoms in an elastic network model. Unlike Haptimol ISAS and Hap-

timol ENM, Haptimol RD facilitates the study of protein-protein and protein-small

molecule interactions, enabling the user to understand biomolecular interactions at

a fundamental level. As such its applicability can be wide-ranging and far-reaching

within all areas of biomolecular research.

In that regard, Haptimol RD can be used in structure-based computer-aided drug

design. Even though the system cannot screen a large number of compounds for

51

Figure 3.1: Conducting an interactive rigid docking simulation with proteins GroEL
(larger molecule) and GroES (smaller molecule), Haptimol RD, and the 3DOF Geo-
magic Touch haptic device. Both molecules are defined in the PDB file with accesion
code 1GRU where they are in a bound conformation. The user controls GroES and
feels the interaction forces using the haptic device.

52

a particular target (as automated methods do in virtual screening), it can be used

subsequent to automated methods when a small number of lead compounds have

been identified. Namely, the user can utilize the software to visualize these lead

compounds in their docking conformations, feel the underlying interaction forces and

improve upon or reject these conformations based on user knowledge, experience and

expertise.

In academic context, Haptimol RD can be used as a highly engaging and in-

formative tool for teaching students about the nature of molecular interactions and

biomolecular function. Experience with existing biomolecular haptics software [SWS+03,

SHO04, SB08, BAT11] has demonstrated that interactive docking systems are excel-

lent tools for helping students understand the process of molecular binding.

Haptimol RD can also be used by researchers, both in academic and industrial

contexts, in order to investigate protein function at a molecular level. Biologists

and biochemists are often interested in particular protein-protein interactions as they

underpin biological processes. In such cases, Haptimol RD provides an interactive

environment with which expert users can test new ideas and hypotheses. As stated

in [far14], automated methods are very poor at teaching us about the process of

docking itself, e.g. whether electrostatic steering is involved in the binding process.

Haptimol RD has already proven that can be very useful in this respect [ILH16].

Lastly, biotechnology is another area of application for Haptimol RD. For example,

enzymes are used in the production of paper, in the food and drinks industry, as

detergents, in textile production and in the production of biofuels. In the case of

the latter, an enzyme can be used to catalyse the conversion of plant cellulose to

glucose. Molecular-level understanding of the mechanism of this enzyme could lead

to genetically engineered enzymes with improved efficiency. Haptimol RD can be the

53

test-bed for such investigations.

3.3 Atomic coordinates

The atomic coordinates describe the 3D structure of the molecule, and facilitate

molecular visualization. X-Ray Crystallography and NMR spectroscopy are the two

most common techniques used for obtaining these coordinates. The former identi-

fies atom positioning by measuring the diffraction patterns of an X-ray beam sent

through a molecule in crystalized form; whereas the latter obtains detailed informa-

tion about the structure, by exploiting the phenomenon of nuclear magnetic resonance

and its effects on the intramolecular magnetic field surrounding each atom. Upon cre-

ation, the atomic coordinates along with additional information about the structure

(such as atom names, residue names, primary and secondary units, chain IDs, au-

thor/experiment details etc) are saved within simple text files, and stored in large

databases for further study and research.

One such database is the Protein Data Bank (PDB) founded in 1971. PDB acts

as an open-access worldwide archive of structural information pertaining to biological

molecules [BWF+00]. It also defines a data format (with the .pdb extension) used

for storing atomic coordinates and other molecular information. Although coordinate

information can be found in various file formats (the Jmol Wiki [Jmo] provides an

extensive list of them), pdb is perhaps the one format most widely used. Haptimol RD

utilizes this format in order to obtain atom-based force parameters from the pdb2gmx

tool of Gromacs [vdSLHtGdt13], and to visualize the molecular structures. The next

two sections describe how this is done.

54

3.4 Force field

As for most haptics-assisted, interactive docking approaches, Haptimol RD models

only the vdW and electrostatics interactions. The vdW interactions are modelled

by the Lennard-Jones potential and the electrostatic interactions by Coulomb’s law

using Equation 2.2.8. The torques acting on those molecules due to the VDW and

electrostatic interactions are not modelled, as most low-cost haptic devices are unable

to render them. A graphical depiction of the torques might be one way to address

this issue but it is not examined in this thesis. To obtain values for the parameters

Aij, Bij, qi and qj in Equation 2.2.8 the Gromos54a7[SEC+11] force field is used,

as specified and implemented in Gromacs version 4.6.2 [vdSLHtGdt13]. Specifically,

Gromos54a7 provides values for the Lennard-Jones parameters Ai, Bi and Aj, Bj,

and the Coulombic parameters qi and qj of atoms i and j, respectively. Using these

Lennard-Jones values and the formulas Aij =
√
Ai × Aj and Bij =

√
Bi ×Bj, the

terms Aij and Bij are finally computed. Moreover, the Coulomb constant 1
4πε0

is

set equal to 138.935485 kJ mol−1 nm e−2, and the ε is set equal to 1.0, assuming

interactions take place in vacuo. The total force is measured in kJ mol−1 nm−1. The

actual command used for obtaining these values is the following,

pdb2gmx -f xxxx.pdb -o gmx˙xxxx.pdb -p gmx˙xxxx.top -ff gromos54a7 -ignh -water none -merge all

where xxx is the molecules pdb code. pdb2gmx is a Gromacs tool, that processes a pdb

file, adds the necessary hydrogens in the molecular structure, and returns the actual

Gromos54a7 force field topology file (*.top) containing the nonbonded parameters

(information about this tool can be found in Gromacs manual [vdSLHtGdt13].) It

should be noted that Gromos54a7 models implicitly the hydrogen-bond interactions,

i.e. it accounts for those interactions within the values of its electrostatic terms.

55

(a) (b)

(c) (d)

Figure 3.2: The protein Crambin (PDB code: 1CRN) visualized using the: (a) space-
filling, (b) backbone, (c) ball ans stick, and (d) surface models. All models were vi-
sualized using the JSmol viewer provided by the PDB website (http://www.rcsb.org).

3.5 Visualizing molecular structure

The field of molecular graphics provides several approaches for visualizing molecular

structure, each one of which renders and describes different chemospatial characteris-

tics of the structure (Chimeras online user guide [chi] provides a list). In interactive

haptics-assisted molecular docking however, the models most commonly used are the

space-filling [LL04, LYL06a, WMJ07, STW09], backbone [ZGAB09], ball and stick

[FDGB08], and surface models [FNM+09], or in some cases a combination of them

[BJOYBJK90, DMR07a, SB08]. The space-filling method models the molecules as

clusters of spheres of radius equal to the atoms van der Waals radii [Bon64] (Figure

3.2a); whereas, the backbone method renders the structural skeleton of the molecule,

i.e. Cα atoms connected with rods (Figure 3.2b). Likewise, the ball and stick method

56

models atoms and atom bonds using coloured spheres, and cylindrical sticks, respec-

tively (Figure 3.2c); whereas the surface method provides a volumetric representation

of the molecule, and renders the structure as a continuous 3D mesh (Figure 3.2d).

Haptimol RD implements the first two models (i.e. space-filling, backbone), and al-

lows the user to choose between them at runtime (Figure 3.3c,d) via menu or button

commands.

As any real-time graphics system, the rendering performance (i.e. graphics frame

rates attained) of Haptimol RD is affected by the size of the geometry visualized.

Namely, the larger and more complex the molecules are the slower the graphics refresh

rates become. For this reason, three different rendering approaches were examined

during the implementation of the space-filling and backbone models (Figure 3.3). The

goal of that investigation was to identify an approach that would enable the appli-

cation to render the largest molecules possible, at refresh rates greater than or equal

to 30Hz. The first approach utilizes the OpenGL API (Application Programmable

Interface) and its primitives (i.e. spheres, cylinders) in order to render atoms and

rods (Figure 3.3a,b). This approach, although trivial to implement, performed worst

than the other two, since it necessitated the transfer of the entire geometry (i.e. slow

memory operations) from CPU to GPU, as well as the rendering of a large number of

triangles (i.e. 272 per sphere), at each frame. To reduce this geometry-transferring

overhead, the second approach utilizes the Vertex Array Object (VAO) and Vertex

Buffer Object (VBO) features of OpenGL, and describes directly on the GPU the

geometry of a single atom and rod. Atom/rod population is then achieved by invok-

ing repeatedly these predefined objects, and using the OpenGL Shading Language

(GLSL) for colouring and transforming the underlying geometry on the GPU (Figure

3.3c,d). This method produced better visual results than the initial approach, and

57

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: The protein Epidermal Growth Factor (PDB code: 1NQL) displayed in
space-fill (a,c,e) and backbone (b,d,f) modes using the three rendering approaches
examined in this thesis. (a)(b) The molecule is rendered using standard OpenGL
commands and primitives. (c)(d) VAO and VBO objects describe the structure of
a single atom and rod on the GPU, and the molecule is rendered by populating
and adjusting the size and positioning of these structures using OpenGL and GLSL.
Haptimol RD visualizes molecular structure using this approach. (e)(f) Molecular
structure is described as quads and ray traced on the GPU using the impostor-based
method proposed by Easdon [Eas13].

58

achieved performance improvements by a factor of more than 2.5 times. However,

it could not accommodate structures comprising more than forty thousands atoms

each, due again to the performance penalties incurred by the large amount of triangles

(the same as before) rendered by the graphics card and resident CPU-GPU memory

transfers, i.e. transferring atom coordinates, radius and colour. The last approach

addresses both of these issues (i.e. number of triangles and CPU-GPU memory trans-

fers) by employing the quad, impostor-based ray tracing method proposed by Easdon

[Eas13] (Figure 3.3e,f). Using VAOs and VBOs, this method describes all atoms/rods

on the GPU as quads (i.e. impostors), and then uses the GLSL to ray trace (ren-

der) the actual spheres/cylinders on these quads directly on the GPU. This method

achieved the best results both visually (i.e. anti-aliased smooth spheres) and perfor-

mance wise out of all, and was able to attain the targeted refresh rates for molecules

comprising almost two hundred thousand atoms each. Unlike the other rendering

approaches the performance of this method is affected by how the molecules are po-

sitioned along the z axis. A zoomed in view of the molecules increases the number of

screen pixels to be ray traced, which penalizes the method’s rendering performance,

and vice versa. For molecules up to 190k atoms however, the impostor approach was

able to attain refresh rates higher than 30Hz, indifferent of the zooming levels applied.

Figure 3.4 displays the performance measurements recorded during the testing of

the three rendering approaches with molecules of various sizes. All tests were con-

ducted on a 8GB, 64bit Windows 7 PC with a 2.93GHz Intel Core i7 CPU and an

NVIDIA GTX580 GPU. The values reported (per method and test case) are the av-

erages of the frames per-second recorded at each second, within one minute of display

time, rounded to the first significant digit. Evidently the impostor-based ray-tracing

approach outperforms consistently the other two rendering methods in all test cases.

59

0

10

20

30

40

50

60

70

80

90

100

110

120

21318 42000 94966 161952 189932 284898

R
e

n
d

e
ri

n
g

 R
e

fr
e

sh
 R

a
te

s
(H

z)

Size of Receptor/Ligand Molecule Rendered

OpenGL

Single VAO/VBO

Ray Traced

Figure 3.4: Performance measurements, in frames per seconds, for the three rendering
techniques discussed in this chapter, as executed on a 2.93GHz Intel Core i7 CPU
and an NVIDIA GTX580 GPU. The rendering involved receptor/ligand molecules of
sizes ranging from 20 up to 285 thousand atoms each. OpenGL refers to the first
method, Single VAO/VBO refers to the second method, and Ray Traced refers to the
third method, as they are described in Section 3.5 respectively.

60

However, this approach has a negative impact on the performance of the GPU-based

force calculation method discussed in Chapter 5 (i.e. performance penalties range

from 0.4ms up to 3ms), since both methods compete for the same GPU resources. A

system with a dual GPU configuration can address this issue by assigning one GPU

to the graphics rendering and the other to the force calculation routines. However,

a typical desktop/laptop configuration comes with only one GPU. In order to ac-

commodate the widest user base possible, Haptimol RD renders molecular structure

using the second approach and not the third one.

3.6 Haptic Navigation

The haptic navigation of very large and geometrically complex structures is not a

trivial task. The workspace dimensions of a standard 3DOF haptic device (e.g. 3DOF

Geomagic Touch) is limited, which often leads to size mismatches between the haptic

and the virtual world workspaces. A straightforward solution to this is to scale

up/down the virtual workspace and map it to the haptic workspace. However, this

solution is suitable only for virtual objects with smooth and continuous surfaces (i.e.

without small bumps, grooves or cavities), since otherwise the resultant scaling could

lead to substantial surface-detail distortions. For instance, a large virtual object with

surface bumps or grooves, after being scaled down, might have these surface details

compressed to a point that they become almost continuous and thus unrenderable to

the haptic device. In the case of haptics-based molecular docking, this could easily

mean that the pockets and grooves on the protein surface might become undetectable

to the user, hindering drastically the haptic exploration of the potential binding sites,

as well as the effectiveness of the respective docking simulation.

61

Ligand

Outer Box

Inner Box

HIP

Actual Haptic Workspace Virtual Haptic Workspace

Virtual Cursor

Outer Box

Inner Box

Receptor

t1

t0

t1

t2 t3
t2

(a) (b) (c)

(d) (e) (f)

t3

t4
t5 t4

t5 t6

K

E

Y

Figure 3.5: A 2D conceptual illustration of the Virtual Haptic Workspace (VHW)
implemented in Haptimol RD. The HIP moves within the actual haptic workspace.
This movement influences virtual cursor movement within the VHW, which in turn
induces ligand, and/or VHW movement. The black and red arrows give the direction
of the HIP and cursor displacements, respectively. Likewise, the black and red unfilled
circles, the light blue structure, and the grey box display the last positions of the HIP,
cursor, ligand and VHW, respectively. All displacements are sampled at consecutive
haptic frames. (a) The HIP moves within its inner box, causing an equivalent position
control displacement of the cursor and ligand within the VHW and virtual world
respectively. (b) The HIP moves and intersects the borders of its inner box. This
is translated to position and rate displacements, and the result is applied to the
cursor/ligand. (c)(d)(e) The HIP moves within its outer box. The resultant rate
control displacement causes the cursor to intersect/overrun the borders of the VHW
inner box. As a result, the VHW is translated towards the same direction (see the
displacements of the red and grey boxes) and brings the cursor back within the inner
box. (f) Again the HIP moves within its outer box, and the resultant rate control
displacement causes the cursor to overrun the borders of the VHW inner box. In this
case however the ligand collides with the receptor at multiple points, and as such
no VHW position updating takes place. From this point on, HIP displacement will
result in cursor/VHW displacement only if the given ligand displacement produces
collision free results.

62

Haptimol RD addresses this issue by implementing the concept of a Virtual Hap-

tic Workspace (VHW). The VHW is a movable virtual workspace of the same size as

the device workspace. Movement within the VHW is controlled by a virtual haptic

cursor attached to the ligand’s centre of mass. The VHW boundaries are updated

(when necessary) in real-time as the haptic interface pointer (HIP) moves within the

actual device workspace and updates the cursor’s position within the VHW; as such

the VHW is not constrained to the 3D coordinate space of the device (Figure 3.5).

This movable haptic workspace allows the ligand to explore/interact with receptors of

arbitrary size (while keeping the receptor fixed in space), and enables the method dis-

cussed in Chapter 6 to resolve efficiently intermolecular collisions at multiple points.

Real-time rotation (using the Arc ball method described by Stocks [Sto10]) of the

receptor, ligand, or both (i.e. global rotation of the scene) is provided to ensure that

all parts of the receptor/ligand structures are viewable and accessible to the user.

The method allows for position and rate control displacements. To decide whether

to apply a position or rate control displacement, the method uses the idea of a nav-

igation cube [SHL09]. The navigation cube is defined by two concentric boxes, an

outer and an inner. The boundaries of the outer box match in size the boundaries of

the actual haptic workspace, with the inner box being a scaled down version (approx.

80% of the dimensions) of the outer box. A similar navigation cube is applied to

the actual haptic workspace as well. Within the virtual workspace, position control

displacements are induced when the position of the virtual haptic cursor does not

exceed the inner box boundaries, and rate control displacements are induced when it

does. During rate control, the displacement vector updates the coordinates of both

the virtual object (ligand) attached to the cursor and of the virtual workspace(i.e.

inner and outer box), whereas during position control, only the coordinates of the

63

virtual object are updated (Figure 3.6). The virtual workspace coordinates are also

updated when the user applies a global rotation to the scene. Similar to the VHW,

position control displacements, in device workspace, are prompted when the HIP

moves within the respective inner box boundaries, and rate control displacements are

prompted when it does not. As stated earlier, the virtual cursor moves according to

the displacement of the HIP. When the HIP induces a position control displacement,

the resultant displacement vector is applied to the virtual cursor without any modifi-

cation. Under rate control however, the displacement vector r applied to the virtual

cursor is given by Equation 3.6.1,

r =<
(HIPx − IBx)

IBx

,
(HIPy − IBy)

IBy

,
(HIPz − IBz)

IBz

> (3.6.1)

where HIPi are the HIP coordinates in x, y, and z, and IBi is either the minimum

or maximum coordinates of the inner box in x,y,z depending on the location of the

HIP, i.e. i=x,y,z. If HIPi is less than or equal to the minimum i coordinate of the

inner box IBmin
i then IBi equals IBmin

i , and when it is greater than or equal to the

maximum i coordinate of the inner box IBmax
i then IBi equals IBmax

i . The actual

displacement applied to the virtual object is given by the product of r with the scalar

sv, which scales device/VHW units into virtual world units and depends on the size of

the molecules simulated, i.e. the larger the molecule the larger the sv value becomes.

It is possible for the HIP to move without updating the position of the cursor. This

occurs when the molecules collide with each other (Figure 3.5f). Under molecular

collision, the HIP will update the cursor ONLY if the given displacement moves the

cursor/object to a valid (i.e. collision free) position (see Section 6.3). As such the

method decouples virtual object movement from HIP movement completely, unlike

the virtual coupling approach which connects (constrains) the HIP and virtual object

with a spring [BJ08]. This decoupling is the main advantage of this method since

64

it allows unconstrained object/VHW movement(i.e. unconstrained by the spatial

resolution of the actual haptic workspace) within the visual world, and enables the

efficient handling of intermolecular collisions during a docking simulation. By keeping

the receptor fixed in space and moving only the ligand, the method differentiates

itself (in addition to the VHW) from those of Subaci and Basdogan [SB08], and

Stocks et.al [SHL09], both of which apply rate and position control displacements

to the receptor and ligand molecules respectively. Since it feels natural to place

a key into a steady lock rather than a movable one, the author finds this type of

haptic navigation to be more intuitive than the previous ones for molecular docking.

Nonetheless, Haptimol RD has also implemented the other mode of receptor/ligand

movement, for the user accustomed to that type of navigation.

3.7 Conclusion

This chapter describes the initial stages of development of an interactive haptics-

assisted docking application called Haptimol RD, including references to the force

field and molecular-structure-defining format used. The focus during this stage was

given on designing and developing the application’s molecular visualization and haptic

navigation routines. Emphasis was also given on the size of molecules supported, since

the docking of very large biomolecules was one of the design goals for Haptimol RD.

For that purpose, three molecular rendering techniques were examined with increasing

levels of design and implementation complexity. The first technique rendered struc-

tures using OpenGL, the second one using OpenGL and GLSL (OpenGL/GLSL),

and the third one using GLSL. Based on performance measurements, the GLSL ap-

proach outperformed the other two significantly, achieving real-time frame rates for

65

Figure 3.6: Haptic navigation of the ligand (molecule in purple) around the receptor
using Haptimol RD. The green arrows indicate that the ligand (and the VHW) moves
along the negative x, y and positive z axes under rate control displacements. The
arrows are not displayed when the ligand moves under position control displacements.

66

molecules comprising up to 190k atoms each, with the OpenGL approach perform-

ing the worst. Nonetheless, execution conflicts (discovered later during this thesis)

between the GLSL method and the force calculation method discussed in Chapter

5 prohibited us from applying this rendering technique in Haptimol RD. For this

reason, Haptimol RD implements the OpenGL/GLSL method which can render in

real-time molecules comprising up to 40k atoms each.

In addition to the molecular rendering techniques, a novel haptic navigation

method is also presented here. The method utilizes two haptic workspaces (i.e. de-

vice and virtual) in order to decouple HIP movement from virtual object movement.

This decoupling enables the unconstrained haptic navigation of large virtual envi-

ronments, and facilitates the execution of the multipoint collision response method

discussed in Chapter 6. With the molecular visualization and haptic navigation rou-

tines implemented, the development effort can now be steered towards the design and

implementation of Haptimol RD’s force calculation routine. The next two chapters

discuss the work done towards this direction, and describe novel methods for comput-

ing the interaction forces on the CPU and GPU. The discussion begins, in the next

chapter, with the description of an efficient CPU-based force calculation approach.

Chapter 4

Real time calculation of the
docking forces on the CPU

4.1 Introduction

A fundamental part of haptics-assisted interactive docking is the calculation of the

interaction forces, at haptic refresh rates. As mentioned in Section 2.2.3, most of

the existing interactive CPU-based docking applications utilize pre-computed force

grids in order to satisfy this requirement. Such grids, however, have high memory

requirements, induce rough force transitions at cell boundaries [WMJ07], and, by

design, cannot accommodate receptor flexibility since the grids must be computed

at haptic refresh rates after each structural deformation. Furthermore, none of the

existing CPU-based force calculation approaches can attain force updates within 2ms

for large molecules (comprising several thousands of atoms each). Hence, a real-

time force calculation approach that can address these issues effectively still remains

elusive.

This chapter describes the steps taken towards the design and development of a

force calculation approach capable of computing (on the CPU) in real time, and at

haptic refresh rates the intermolecular forces of docking. The final result is a novel

67

68

approach that addresses efficiently and successfully all issues discussed earlier and can

facilitate the haptics-assisted docking of large molecular structures. The discussion

starts with a brief description of the brute force approach in the next section.

4.2 CPU-based Brute Force approach

An intuitive method to compute the total interaction force is the brute force approach.

Using Equation 2.2.8, this approach accounts for all interatomic interactions (in real-

time) between the receptor and the ligand. The method does not require any pre-

computations (e.g. precomputed force-grids), but has a time complexity of O(NM),

where N and M are the number of atoms in the receptor and ligand respectively.

Although it can, in principle, facilitate molecular flexibility (since it has no pre-

computation requirements), it is computationally very demanding especially when

applied to large structures. This approach has been implemented by Nagata et. al.

[NMT02] and Sourina et. al. [STW09], but their docking simulations were constrained

to molecule sizes no larger than a couple of hundred of atoms each. The main reason

for this was the lack of the necessary CPU processing power capable of supporting

brute force calculations for larger structures.

The brute force approach is revisited in this thesis in order to examine whether

or not current CPU architectures command the necessary processing power. The

following two subsections describe our implementation and results respectively.

4.2.1 Computing the force

Algorithm 1 outlines the brute force approach used in this study. The approach

traverses sequentially, in the first loop, each receptor atom aR, and accumulates in

the total force variable fTot the pairwise interaction forces between aR and each ligand

69

atom aL traversed in the second loop. To compute the force the method updates the

position of each ligand atom, calculates its pairwise atom distance with aR, and then

applies Equation 2.2.8 (i.e. computeForce) for each (aR, aL) pair. Position updates of

the ligand atoms were done using the combined viewing transformation matrix TNew

discussed in Section 4.3.4.

Algorithm 1 Brute Force

Require: Receptor, array of atom structures
Require: Ligand, array of atom structures
Require: TNew, combined viewing transformation matrix
Ensure: fTot, total interaction force

1: for all atoms aR in Receptor do
2: for all atoms aL in Ligand do
3: // adjust atom coordinate
4: aL.centrexyz ← aL.centrexyz ∗ TNew
5: d ← distance(aR, aL)
6: fTot ← fTot + computeForce(aR, aL, d)
7: end for
8: end for
9: end

4.2.2 Performance

Performance testing for the brute force method was trivial. Each experiment utilized

two artificial, one-dimensional arrays of atoms (one for the receptor the other for the

ligand) of the same size. During each experiment, the method was executed ten times

(to average possible scheduling delays caused by background processes) using the same

data sets, and the response time of each trial was recorded. If the response times, on

average, were faster than the 2ms threshold then the size of both arrays was increased

by ten atoms, and the experiment was repeated. The testing was concluded when

the method could not satisfy the less than 2ms condition. For these tests, the trials

started with an array size of two hundred atoms per molecule, and were concluded

70

when the arrays reached two hundred and sixty atoms each. Therefore, the method

was able to achieve force updates, at haptic refresh rates, for molecules up to two

hundred and fifty (250) atoms each (i.e. the array size in the last valid set of trials).

This result reaffirms that the brute force approach although intuitive and easy to

implement, is impractical on modern CPUs even for small molecules (i.e. molecules

comprising of several hundred of atoms each) due to the lack of processing power. All

of the experiments were conducted on a 2.93GHz Intel Core i7 PC, running a 64bit

version of Windows with 8GB RAM. The use of artificial atoms (i.e. atom arrays) is

justified by the fact that the method’s performance depends only on the size of the

interacting molecules, and not on the atom values used in Equation 2.2.8.

4.3 Using a cut-off distance

As seen earlier (see Sections 2.2.3 and 4.2), it is infeasible to compute in real time

the total interaction force for large molecules, based on all interatomic interactions

due to the O(NM) complexity of Equation 2.2.8. Researchers have studied this is-

sue and proposed a set-reduction technique that can accelerate significantly all force

computations, while providing an acceptable approximation of the total interaction

force. The technique reduces the number of interatomic interactions accounted for

in Equation 2.2.8 using a cut-off distance as an interaction threshold (Figure 4.1).

Specifically, the technique identifies the set of receptor/ligand atom pairs within a

given cut-off, and then applies Equation 2.2.8 only on this set (all remaining atom

pairs are discarded from the calculation). The main idea behind this method is that

as the interatomic distance passes a certain limit (cut-off) the denominators of the

VDW and electrostatic interactions in Equation 2.2.8 become very large forcing their

terms to converge to zero. As such, all interatomic interactions beyond a certain

71

cu
t-
o
ff

Figure 4.1: Representing visually the concept of a cut-off distance. As the receptor
and ligand (in purple) molecules come in close proximity, the pairwise interatomic
distance in some of their atoms becomes less than or equal to the cut-off (atoms
coloured in green). Force calculation will be based only on this set of atom pairs.

distance contribute to the total force infinitesimally (close to zero), and therefore

can be discarded. Cut-off distances have been used extensively in MD [SPF+07] and

automated docking simulations [MHL+09] in order to accelerate force calculations,

with distances between 8-12Å [SPF+07, AGB13] being the most common ones used.

The work described in thesis examines whether or not this concept can help a

haptics-docking application achieve real-time force updates, at haptic refresh rates,

for large molecules. The following subsections and Chapter 5 describe the work done

towards this direction.

72

4.3.1 Force calculations on the CPU using proximity query-
ing

Because of the cut-off distance, the calculation of the total interaction force can be

viewed alternatively as a proximity querying problem, rather than a simple accumu-

lation problem. As such, the force calculation problem can be stated anew as,

Given a receptor and a ligand molecule with N and M atoms respec-

tively and a cut-off distance, identify the subset of K and L atoms

(where K⊆N and L⊆M) with pairwise interatomic distances less than

or equal to the cut-off distance. Compute the total force using the sets

K and L.

A crucial aspect, therefore, in a cut-off-based force calculation approach is to

identify the set of the interacting atoms. If this identification can be done at haptic

refresh rates (and for large molecules) then a real-time force calculation approach can

be possible. The research presented in this thesis investigated this problem and ad-

dressed it using proximity querying techniques on two spatial subdivision structures;

namely, regular grids and octrees [IHL14]. Regular grids/octrees are spatial partition-

ing structures that divide the geometry of an object into smaller subunits. Regular

grids subdivide uniformly the geometry’s tightest bounding volume into grid cells

(uniform subunits), whereas octrees divide recursively the object’s geometry into oc-

tants (non-uniform subunits) until they reach a certain subdivision depth. Although

trivial to construct, regular grids are memory inefficient, since they cannot discard

grid cells empty of geometry. On the other hand, octrees do discard empty octants

(very memory efficient) but there are more elaborate to construct. Specifically, octree

73

construction starts by subdividing the object’s bounding volume into eight child oc-

tants of the same size, and by continuing this subdivision recursively L times, where

L is the subdivision depth, for all child octants still containing parts of the geometry.

This recursive subdivision results in a tree structure of maximum degree 8 and depth

L that represents the object’s geometry, and in which each leaf octant contains part

of that geometry (Figure 4.3). Both spatial partitioning structures simplify the im-

plementation, and accelerate the execution of costly operations[CH88] such as object

intersection discovery, neighbour finding, proximity querying etc. With regular grids,

these operations are often implemented as searches over a range of cells, whereas with

octrees they are often implemented as simple, recursive tree traversals of the underly-

ing structures. Accessing a grid cell is a constant time operation, whereas, accessing

a leaf octant is a logarithmic operation on the height of the octree. Nonetheless, the

use of regular grids is often avoided in large scale problems due to their inefficient

memory requirements.

This thesis, however, examines both structures, and constructs two real-time force

calculation methods using regular grids and octrees. Both methods use their respec-

tive partitioning structures in order to identify quickly the set of interatomic inter-

actions within a given cut-off distance dcutoff . The grid-based method identifies this

set, by decomposing the tertiary (3D) structure of the largest molecule (usually the

receptor) within a grid, and having each atom aj from the second molecule (i.e. the

ligand) query that grid. During grid querying, each aj creates a search range of cells

based on dcutoff , and checks whether or not the atoms ai stored within these cells are

within dcutoff (Figure 4.6a). On the contrary, the octree-based method constructs,

stores and decomposes within different octrees the 3D structure for both receptor

and ligand molecules, and then uses these tree structures to efficiently query the 3D

74

(a) (b)

Figure 4.2: The molecule Trypsin subdivided with the same level of detail by a
regular grid and an octree. (a) The constructed octree structure with all of its octants
displayed. (b) The constructed regular grid structure with all of its cells displayed.
The total number of octants is far less than the total number of cells, resulting in a
smaller memory footprint for the octree.

75

space and identify all atom pairs ai and aj whose rij distance is within dcutoff (Figure

4.6b). Regular grid traversals (during construction and querying) are implemented

as a nested loop, whereas the respective octree traversals are performed recursively

in a depth-first order starting from the root. Both approaches calculate rij based on

the center coordinates of atoms ai and aj. Lastly, both approaches calculate the total

interaction force, in real time based on the resultant set. The next four subsections

describe the CPU-based regular grid/octree construction and querying techniques

examined in this thesis.

a

d

b

c

e

a e b e c e d e

L=0

(j, a) (j, e) (j, b) (j, e)
(j, c) (j, e) (j, d) (j, e)

(a) (b)

L=1

a

d

b

c

e e

ee

Common Construction

a e b c d

Thesis Construction

a

d

b

c

e

(j, a) (j, e) (j, b) (j, c) (j, d)

a

d

b

c

e

j

Figure 4.3: Top row: A conceptual 2D visualization of a molecule R comprising of
atoms a, b, c, d, e, and the respective regular grid and octree (of depth 1) structures
constructed. Atom e intersects all of the cells/octants in both structures. Bottom
row: R is intersected by a molecule L comprising of atom j. Atom j is within cut-off
distance from (interacts with) atoms a, b, c, d, and e, forming the respective sets of
interacting atom pairs. (a) A typical construction method assigns e to all cells/leaf
octants, i.e. all e coloured in blue. As a result, the set of interacting atom pairs
produced contains duplicates of (j,e). (b) The construction method described here
assigns e to the first cell/leaf octant traversed, i.e. e coloured in red. Under this
construction method the set contains only one instance of (j,e).

76

4.3.2 Regular grid Construction

The regular grid is constructed similarly to the approach taken by Fang and Piegl

[FP93]. The method subdivides uniformly the geometry’s tightest bounding box (and

the geometry) into grid cells of size equal to a target size cg. The result is a 1D array

of grid cells each one of which contains either a list of atom pointers or an empty list

of atoms (Figure 4.2a). Algorithm 2, CPUConstructRegularGrid, outlines these

construction steps,

Algorithm 2 CPUConstructRegularGrid

Require: xyzmin, the object’s minimum bounding box coordinates
Require: xyzmax, the object’s maximum bounding box coordinates
Require: atomList, array of atom structures
Require: cg, the desired size of a grid cell side
Ensure: G, the regular grid as a 1D array of grid cells

1: `xyz ← xyzmax − xyzmin
2: nx ← floor(`x/cg)
3: ny ← floor(`y/cg)
4: nz ← floor(`z/cg)
5: // calculate the actual grid cell size in x,y,z
6: cactxyz ← `xyz/nxyz
7: for all atoms ai in atomList do
8: // calculate the 3D grid cell indices for atom ai
9: xyzGi ← floor((ai.centrexyz − xyzmin)/cactxyz)

10: // compute the 1D grid cell index for the 3D indices
11: cxyzi ← zGi nxny + yGi nx + xGi
12: G[cxyzi] ← pointer(ai)
13: end for
14: end

According to Algorithm 2, the method starts by obtaining the number of grid cells

in x,y,z, using Equation 4.3.1

nx =

⌊
`x
cg

⌋
, ny =

⌊
`y
cg

⌋
, nz =

⌊
`z
cg

⌋
(4.3.1)

where nx, ny and nz are the number of cells in x,y and z directions, and `x, `y, and

77

`z are the side-lengths of the molecule’s tightest rectangular bounding box in the

x, y and z axes, respectively. It then adjusts the cell size per each dimension (i.e.

cactx , cacty , cactz) by dividing the bounding box’s dimensions with the resultant number

of grid cells (i.e. nx, ny, nz). To assign atoms into grid cells, the method transforms

initially the centre coordinates of each atom into a 3D index using Equation 4.3.2,

xGi =

⌊
xai − xmin

cactx

⌋
, yGi =

⌊
yai − ymin

cacty

⌋
, zGi =

⌊
zai − zmin
cactz

⌋
(4.3.2)

where xGi , yGi and zGi form the 3D cell index for atom i, xai , y
a
i and zai are the atom’s

coordinates, and xmin, ymin and zmin are the minimum coordinates of the bounding

volume. It then maps the 3D index into an 1D index, and assigns the atom to the

cell located at this index position, within the regular grid (i.e. an 1D array of cells).

For the 3D to 1D cell index mapping, the method uses Equation 4.3.3,

cxyzi = zGi nxny + yGi nx + xGi (4.3.3)

where cxyzi is the 1D mapping of the 3D cell index [xGi ,yGi ,zGi] for atom i. This

construction method avoids the insertion of an atom into multiple cells (Figure 4.3).

This is the case when the atom’s center intersects multiple cells (e.g. lies on cell

borders). In such cases it is customary to insert the given atom to all intersected cells

in order to ensure its proper traversal during cell querying (especially during collision

detection queries). The construction described here does not favour multiple atom

insertions, and relies on the query algorithm (see Section 4.3.5) for ensuring that all

such atoms will be considered for the final query set, irrespective of which cells they

were assigned to. This one-to-one relationship between atoms and cells accelerates

the performance of the query algorithm because each interatomic pair is considered

only once, and thus the cost of handling duplicate pairs is avoided (Figure 4.3).

78

4.3.3 Octree Construction

The octree-based method constructs the tree structure (as a linked-list of linked-

lists of octants), and populates it with atoms simultaneously. It requires as input

a target subdivision level L, and the dimensions of the geometry’s bounding box.

Initially, the method turns the bounding box into a bounding cube (with sides of

size equal to max(`x, `y, `z)), and sets this cube as the tree’s root octant. It then

utilizes Algorithm 3, ConstructOctantLevel, to subdivide the tree into equally-

sized child/leaf octants, and to populate them with atoms (Figure 4.2b).

Given an atom, Algorithm 3 traverses the octree, and assigns the atom to the leaf

octant that either intersects or contains its centre. If the path to this leaf octant (or

the leaf itself) does not exist, the method creates the required octants (forming this

path) dynamically, and subdivides the tree structure accordingly. This subdivision

terminates when the target level L is reached, the respective leaf octant is created,

and the atom is assigned successfully to it. Since an octant is created only when an

atom intersects it, the resultant octree contains no empty octants (octants with no

atoms), and thus the structure is compact and memory efficient, and helps the query

algorithm avoid unnecessary octant traversals. Similar to the grid method, when the

atom is intersected by more than one octant the construction algorithm assigns the

atom to the first leaf octant traversed, and not to all of them (Figure 4.3). Again, the

query algorithm (see Section 4.3.6) ensures that the given atom will be considered for

the final query set, and thus avoids the cost of handling duplicate pairs (Figure 4.3).

The octants have to be of uniform size in order to facilitate the proper execution of the

querying algorithm, and minimize the number of false positives traversed. All octrees

constructed in this chapter are of depth equal to four, because of the performance

balances attained between octree construction and querying times (see Section 4.4.1).

79

Algorithm 3 ConstructOctantLevel

Require: L, the octree’s targeted level
Require: Lcurr, the octant’s current level in the octree
Require: xyzboxmin, the octant’s minimum box coordinate
Require: xyzboxmax, the octant’s maximum box coordinate
Require: ai, the atom object to add
Ensure: octantsChildrenList, a linked-lists of octants

1: if isOctantNew = true then
2: oct.xyzboxmin ← xyzboxmin
3: oct.xyzboxmax ← xyzboxmax
4: oct.xyzcentre ← (xyzboxmin + xyzboxmax)*0.5
5: oct.radius← distance(xyzboxmax − xyzboxmin)*0.5
6: isOctantNew ← false
7: end if
8: Lchild ← Lcurr+1
9: // reached a tree leaf node, thus assign to this octant the given atom

10: if Lchild > L then
11: octantsAtomList.AddEnd(pointer(ai))
12: isOctantNew ← true
13: else
14: for all 8 child octants octChi in oct do
15: // compute and assign the cube coordinates for each child octant
16: octChi .xyzboxmin ← min cube coordinates for octChi
17: octChi .xyzboxmax ← max cube coordinates for octChi
18: if ai.centrexyz within [octChi .xyzboxmin, octChi .xyzboxmax] then
19: if octChi not created then
20: octChi ← new Octant Node
21: isOctantALeaf ← false
22: // add this child at the end of the octant’s children list
23: octantsChildrenList.AddEnd(octChi)
24: end if
25: // forward/add the atom to octChi octants recursively
26: octChi .ConstructOctantLevel(L, Lchild, oct

Ch
i .xyzboxmin, octChi .xyzboxmax, ai)

27: end if
28: end for
29: end if
30: end

80

4.3.4 Updating atom coordinates during querying

As the two molecules move in space, their geometry changes position and orientation.

These changes are stored in the two viewing transformation matrices TR and TL,

for the receptor and ligand molecules respectively. In order to function correctly, the

querying algorithm must apply these matrices to all structures involved, i.e. partition-

ing structures and atom coordinates. To save a substantial amount of matrix-vector

multiplications, both querying methods combine TR and TL into one matrix using the

relation TNew = T−1
R TL, and then apply TNew only to the ligand-related structures

(they use TNew = T−1
L TR and apply TNew to the receptor-related structures if the

ligand is larger than the receptor). This optimization technique maintains the rela-

tive orientation of both molecules intact, and instead of transforming both molecules

(and their partitioning structure(s)) in space, it keeps the receptor geometry fixed

and transforms only the ligand geometry with respect to it (or vice versa).

81

aj

dcutoff

Search range

(a)

al

dTot

d

dNet

rR

ar

rL

(b)

Figure 4.4: A 2D visualization of Algorithm 4 and Equation 4.3.4. (a) During regular
grid querying each atom aj creates a search region, mapped to grid cells, based on
dcutoff (red dotted box). This region, is always larger than the one required (blue
dotted circle), since the latter is always inscribed in the former. (b) Two leaf octants
that belong to different octrees and contain atoms ar and al, respectively. These
atoms are within the cut-off distance and thus interact. In cases like this, dNet will
always be less than or equal to the cut-off, since it defines the closest distance between
the two spheres (of radii rR and rL) bounding these atoms. In this example dTot is
larger than dcutoff .

82

4.3.5 Regular grid Querying on the CPU

Algorithm 4 GetSearchRange

Require: RGInfo, regular grid query info structure
Require: centrexyz, atom coordinates
Require: dcutoff , the cut-off distance
Ensure: xG yG zG, returned min-max range structures for x,y,z

1: // get the min-max coordinates of the cube
2: // centred within dcutoff from atom a
3: xCmin ← centrex-dcutoff
4: yCmin ← centrey-dcutoff
5: zCmin ← centrez-dcutoff
6: xCmax ← centrex+dcutoff
7: yCmax ← centrey+dcutoff
8: zCmax ← centrez+dcutoff
9: // get the search range in x,y,z coordinates

10: xG.min ← (xCmin-RGInfo.xmin)/RGInfo.`x
11: yG.min ← (yCmin-RGInfo.ymin)/RGInfo.`y
12: zG.min ← (zCmin-RGInfo.zmin)/RGInfo.`z
13: xG.max ← (xCmax-RGInfo.xmin)/RGInfo.`x
14: yG.max ← (yCmax-RGInfo.ymin)/RGInfo.`y
15: zG.max ← (zCmax-RGInfo.zmin)/RGInfo.`z
16: end

Regular grid querying is implemented as a series of nested loops. The first loop

accesses sequentially the atoms aj of the smallest molecule. For each aj visited,

the method updates the atom’s coordinates with TNew, and then uses Algorithm 4,

GetSearchRange, to identify a search region of grid cells (Figure 4.4a). Algorithm

4 computes the tightest bounding cube of a sphere with centre equal to the updated

coordinates of atom aj, and radius equal to dcutoff . It then uses the cube’s minimum

and maximum coordinates to derive a minimum/maximum search range for the grid

along the three dimensions x, y, and z. The inner loops traverse these x,y,z ranges,

and each x,y,z loop step is mapped into an 1D index using Equation 4.3.3 (where

the xGi , yGi , and zGi terms take the respective x,y,z loop-step values). Using this 1D

83

index (if valid), the method accesses the respective cell and checks whether or not the

cell contains atoms ai that lie within dcutoff distance from atom aj. All atom pairs

(ai, aj) found within the dcutoff are stored inside set SPairs. The total force is then

calculated based on this set SPairs (Section 4.3.7).

Algorithm 5 CPUQueryRegularGrid

Require: atomList, array of atom structures
Require: G, the regular grid as a 1D array of grid cells
Require: TNew, combined viewing transformation matrix
Require: RGInfo, regular grid query info structure
Require: dcutoff , the cut-off distance
Ensure: SPairs, set of interacting atom pairs

1: for all atoms ai in atomList do
2: // adjust atom coordinate
3: ai.centrexyz ← ai.centrexyz ∗ TNew
4: // execute Algorithm 1
5: GetSearchRange(RGInfo, ai.centrexyz, dcutoff , xG, yG, zG)
6: for l=xG.min to l≤ xG.max with l++ loop do
7: for k=yG.min to k≤ yG.max with k++ loop do
8: for j=zG.min to j≤ zG.max with j++ loop do
9: indx ← l*RGInfo.nx*RGInfo.ny+k*RGInfo.nx+j

10: gridCell ← G[indx]
11: if gridCell not empty then
12: for all atoms aGi in gridCell do
13: d ← distance(ai, a

G
i)

14: if d ≤ dcutoff then
15: SPairs.add(ai, a

G
i)

16: end if
17: end for
18: end if
19: end for
20: end for
21: end for
22: end for
23: end

Algorithm 4 allows each ligand atom to concentrate its search to a small section

of the regular grid structure. Because of it, the underlying rejection/acceptance

84

tests are computationally inexpensive since they use a constant time operation in

order to traverse the candidate cells. Additional computational-cost savings result

from the fact that the method does not have to handle duplicate atom pairs. As

stated in Section 4.3.2, the grid-construction method does not allow insertions of the

same atom to different cells. Therefore receptor atoms intersecting multiple cells are

inserted in only one of these cells. To ensure the proper handling of such special

cases, the querying method must be cell indifferent, meaning that it should query the

atoms regardless of which cells they were placed in. The method described here can

accommodate such special cases because the search area defined for each ligand atom

is larger than the one required, i.e. a sphere inscribed in a cube. Specifically, given a

ligand atom al and a receptor atom ar, al must query ar only if the distance from their

centres is within dcutoff . But if it is within dcutoff , that means that ar lies either on,

or is inside in the search area defined by the bounding cube. Since the bounding cube

and atom ar share the same coordinates, Algorithm 4 will incorporate the respective

cell into the range of cells returned back to the querying algorithm (Figure 4.5a). As

such, ar will be queried as expected, regardless of its placement within the regular

grid during construction. Hence, the query method will function correctly under all

construction cases, special or trivial. Apparently, the larger search area means that

a ligand atom might have to perform more distance-based inclusion/exclusion tests

with receptor atoms than necessary. This is a common issue in grid-based querying

(popular approaches such as [SPF+07] have it), and is usually addressed by making

the size of the cells smaller, i.e. increased grid subdivision. Namely, regular grids

with a finer partition granularity will reduce this cost (less receptor atoms to test per

cell), and those with a coarser partition granularity will increase it. This logic has

been tested in this thesis during benchmarking (see Section 4.4.1).

85

al

B

a

D

r

A

C

P

dcutoff

(a)

al

B

a

C D

O

r

ArB

rO

rC

rD
dNet

(b)

Figure 4.5: A diagram-based proof that both querying algorithms will handle the
atom pair (ar, al) correctly, irrespective of the cell/leaf octant (A, B, C or D) atom ar
was initially assigned to during construction. a) Atom al maps its search range (red
dotted cube) on the regular grid. Even though al is not within dcutoff from ar, the
query will examine ar (indifferent of cell placement) since the range and ar share the
same coordinates at position P (in this case the search range encloses all four cells).
When the atoms are within dcutoff , al’s range will always enclose/overlap with ar and
therefore such a P will always exist. b) Octant O queries octants A, B, C, and D to
identify whether or not ar and al are within dcutoff . Even in the worst case scenario
(ar was assigned to C), the dNet of octants C and O will be equal to dcutoff (blue line),
whereas in the other three cases it will be less than dcutoff . In this example octant A
is the best insertion case for ar since it is in zero dNet distance from octant O.

4.3.6 Octree Querying on the CPU

Octree querying is implemented as a series of tree traversals. Given TNew and the

two octree structures the method applies Algorithm 6, CPUQueryOctant, to query

pairwise and recursively the underlying octants, identify all interacting atom pairs

within the cut-off distance, and return the set, SPairs, of these pairs. Using the atoms

stored in SPairs (and their non-bonded parameters), the force calculation procedure

computes then the total force (Section 4.3.7). The query algorithm starts from both

86

octree roots and performs a pairwise traversal of their respective child octants. For

each non-leaf octant pair examined, it updates the necessary octant coordinates using

TNew, and then computes the net distance dNet between the octant centres using:

dNet = dTot − (rR + rL) (4.3.4)

where dTot is the total distance between the octant centres, and rR and rL are the

radii of their bounding spheres (Figure 4.4b). If dNet is less than or equal to the

cut-off distance, the algorithm continues and examines recursively the children of this

octant pair, and stops when it reaches the relevant leaf octants. At the leaf level,

the algorithm computes all pairwise inter-atomic distances between the centres of the

atoms stored in the respective leaf-octants, and saves in SPairs those atom pairs with

a distance less than or equal to the cut-off.

By utilizing Equation 4.3.4, the cut-off distance, and the octree hierarchy, the

query strategy performs quick rejection tests on the underlying molecular geometry,

and converges rapidly to those leaf-octants containing the interacting atom pairs.

The octant rejection test (i.e. dNet > dcutoff) is a simple numerical test with no

substantial computational cost. Moreover, it is invariant to octant orientation in

space, since dNet is computed based on octant bounding sphere radii and not on

octant box dimensions (i.e. bounding cube dimensions). Since atoms are bounded by

octant boxes and octant boxes are bounded by octant bounding spheres, two atoms

will interact, if and only if the dNet distance of their bounding octants is less or equal

to the cut-off, regardless of octant orientation. Hence, if the dNet distance between

two octants is not within the cut-off it is safe to discard that part of molecular

geometry from the solution set, and query it no further. The same reasoning applies

to the special tree construction cases stated in Section 4.3.3 (i.e. when atoms are

intersected by more than one octant). As previously mentioned, the construction

87

Algorithm 6 CPUQueryOctant

Require: TNew, combined viewing transformation matrix
Require: octFirst, an octant from the first octree structure
Require: octSecnd, an octant from the second octree structure
Require: dcutoff , the cut-off distance
Ensure: SPairs, set of interacting atom pairs

1: if both octFirst AND octSecnd are leaf-octants then
2: for all atoms ar in octFirst AND all atoms al in octSecnd do
3: d ← distance(ar, al)
4: if d ≤ dcutoff then
5: SPairs.add(ar, al)
6: end if
7: end for
8: else
9: if octFirst OR octSecnd is a leaf-octant then

10: // set non-leaf octant to tmpNLOctant and leaf octant to tmpOctant
11: if octFirst is a leaf-octant then
12: tmpNLOctant ← octSecnd

13: tmpOctant ← octFirst

14: else
15: tmpNLOctant ← octFirst

16: tmpOctant ← octSecnd

17: end if
18: for all child octants octc in tmpNLOctant do
19: dNet ← net-distance(octc, tmpOctant)
20: if dNet ≤ dcutoff then
21: CPUQueryOctant(TNew, octc, tmpOctant, dcutoff)
22: end if
23: end for
24: else
25: for all child octants octr in octFirst AND all child octants octl in octSecnd

do
26: octsmall ← min(octr, octl) in size
27: octsmall.centrexyz ← octsmall.centrexyz ∗ TNew
28: dNet ← net-distance (octr, octl)
29: if dNet ≤ dcutoff then
30: CPUQueryOctant(TNew, octr, octl, dcutoff)
31: end if
32: end for
33: end if
34: end if
35: end

88

algorithm assigns such atoms to the first leaf octant traversed. Let ar be one such

atom. If ar is intersected by multiple octants, then its centre must lie on a common

point shared by the bounding boxes/spheres of these octants. Let, now, al be an atom

interacting with ar. Clearly the dNet distance between the octants containing al and

ar must be less than or equal to the cut-off. But since ar lies on a shared point then

the dNet distance between the octant containing al and the remaining octants must

also be less than or equal to the cut-off (Figure 4.5b). As such, ar will be queried and

inserted in SPairs as expected, regardless of its placement within the octree during

construction (similarly to grid-based querying). Again, the rejection test will prune

correctly the octrees (and their underlying geometry), under all construction cases,

special or trivial.

4.3.7 Calculating the Force

Upon the completion of the respective proximity querying method, the force calcula-

tion procedure traverses sequentially the SPairs set, and for each atom pair found in

SPairs, it computes the VDW and electrostatic force contributions and adds them to

the total force. Since all force calculations are performed in real time, both methods

can facilitate independent handling of the electrostatic and VDW forces in a manner

similar to the one reported in Lee and Lyons[LL04]. Namely, it enables the user to

scale and switch on/off dynamically the electrostatic and VDW forces, as well as, the

repulsive and attractive parts of the VDW force. Such force calculation flexibility

allows the user to experiment with different types of interactions easily.

89

(a) (b)

Figure 4.6: Two proteins interact during a docking simulation. Green colours denote
the atoms with a pairwise interatomic distance less than or equal to a given cut-off,
as identified by the two proximity querying methods. (a) The regular grid-based
method, in which all ligand atoms query the regular grid (applied only on the recep-
tor) to identify the interacting atom pairs. (b) The octree-based method, in which
the interacting atom pairs are identified by querying both receptor/ligand octrees
recursively and pairwise.

90

4.4 Performance Testing of the CPU-based meth-

ods

A series of docking simulations were conducted in order to evaluate whether or not the

two real-time force calculation approaches could satisfy the requirements set earlier.

As such, both approaches had to be implemented and integrated into Haptimol RD.

Using Haptimol RD the following set of experiments were conducted:

1. benchmarking construction and querying performances

2. measuring querying performance during real-time rigid-docking simulations

Similarly to brute force testing (Section 4.2.2), each benchmarking experiment was

executed ten times, and the values reported was the average of those results. Again,

all of the tests were conducted on a 2.93GHz Intel Core i7 PC, running a 64bit version

of Windows with 8GB RAM. The haptic device utilized in these simulations was the

Geomagic Touch (formerly known as SensAble Technologies Phantom Omni). For the

purpose of benchmarking arbitrary force parameters were used, since the timing of

the respective force-computations does not depend on the values of these parameters.

For the haptics-assisted rigid-docking simulations, however, the force parameters were

obtained using the process described in Section 3.4.

4.4.1 Benchmarking Performance on the CPU

Benchmarking experiments were conducted in order to measure the scalability of

these proximity querying methods, and identify their limitations. To achieve that,

both approaches were subjected to various artificial docking simulations of demanding

computational workloads and different molecular complexities. At this stage emphasis

was given in finding those molecules that can stress test the two proximity querying

91

Figure 4.7: The four molecules used for benchmarking the two CPU-based force
calculation approaches, while showing their relative sizes. The largest molecule is
1ADGD with 7k atoms (see Table 4.1).

92

algorithms effectively. Since proximity queries are sensitive to the atom granularity

of the underlying cells/octants, the molecules were selected with different sizes and

shapes (e.g. compact, extended). Although unrealistic, the molecules were also al-

lowed to overlap in order to increase the number of interacting atom pairs, and attain

sufficient, upper-bound, performance indicators. In these simulations both molecules

were modelled as rigid structures.

In addition to querying times, the experiments accounted for grid/octree construc-

tion times. Construction times are important when receptor flexibility is modelled,

given that the respective structures would have to be constructed repeatedly and in

real time as the molecule deforms. For rigid-body docking, the querying times are the

only values of practical importance, since the trees need only be calculated once prior

to the interactive session. Both construction methods were benchmarked using the

proteins Crambin (PDB code: 1CRN), Lysozyme (3HTB), Alcohol Dehydrogenase

[containing only one of the two subunits, 1ADG1S], and Alcohol Dehydrogenase [con-

taining both subunits (dimer), 1ADGD] (Figure 4.7), as defined in the PDB database

[BWF+00]. Seven regular grids and octrees of different granularities were constructed

for each test. Specifically, the regular grids were constructed using targeted cell sizes

cg equal to nrC , where n=2,3,..8 and rC is the radius of a carbon atom, i.e. 1.7Å .

Likewise the octrees were constructed using subdivision levels L=2,3,..8. Table 4.1

lists these results.

As expected, the grid construction method outperformed the octree construction

method, achieving millisecond/sub-millisecond grid-construction times in almost all

test cases and subdivision sizes (due to its execution simplicity). The grid construc-

tion method was unable to build the grid structure within 1ms only when n was set

93

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5 6 7 8

C
o

n
st

ru
ct

io
n

 T
im

e
 (

m
s)

n

1CRN

3HTB

1ADG

1ADG

1S

D

(a)

0

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8

C
o

n
st

ru
ct

io
n

 T
im

e
 (

m
s)

Octree Depth

1CRN

3HTB

1ADG

1ADG

1S

D

(b)

Figure 4.8: Regular grid and octree construction times per molecule in milliseconds.
(a) The regular grids were constructed with cg values equal to nrC , where n=2,..,8
and rC is the radius of a carbon atom. (b) Similarly the octrees were constructed at
depth levels L=2,3,..,8.

equal to 2 and 3 for the molecule 1ADGD. Unlike grid construction, the octree con-

struction method achieved 1ms responses, in all test cases, only for depths lower than

four. At depth four the method supported millisecond/sub-millisecond construction

times for molecules containing up to 3500 atoms. For depths larger than four, sub-

millisecond construction times were attained only for small proteins (comprised of

several hundreds of atoms). Figure 4.8 depicts these construction times per protein,

for all seven different n/L values. Construction times for grids and octrees with finer

partition granularity (i.e. regular grids with n set equal to 1 and octrees with L set

greater than or equal to 9) are not reported here, since none of them achieved better

performance results during querying.

To benchmark the querying methods ten test cases were devised using the same

four proteins, as shown in Figure 4.9. Each test case consisted of two proteins (out

of this set), the larger of which was assigned as the receptor. Based on their centres,

the proteins were placed at the origin of the Cartesian space, and the ligand molecule

94

0

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8

Q
u

e
ry

in
g

 T
im

e
 (

m
s)

n

1CRN -- 1CRN

3HTB -- 1CRN

3HTB -- 3HTB

1ADG -- 1CRN

1ADG -- 3HTB

1ADG -- 1ADG

1ADG -- 1CRN

1ADG -- 3HTB

1ADG -- 1ADG

1ADG -- 1ADG

1S

D

1S

1S

D

D

D

D

1S

1S

(a)

0

2

4

6

8

10

12

14

16

18

20

22

24

2 3 4 5 6 7 8

Q
u

e
ry

in
g

 T
im

e
 (

m
s)

Octree Depth

1CRN -- 1CRN

3HTB -- 1CRN

3HTB -- 3HTB

1ADG -- 1CRN

1ADG -- 3HTB

1ADG -- 1ADG

1ADG -- 1CRN

1ADG -- 3HTB

1ADG -- 1ADG

1ADG -- 1ADG

1S

D

1S

1S

D

D

D

D

1S

1S

(b)

Figure 4.9: Regular grid and octree querying times of the ten interacting molecular
pairs tested, in milliseconds. (a) The grid querying times at the same different cell
sizes, i.e. at cg values equal to nrC , where n=2,..,8 and rC is the radius of a carbon
atom. (b) The octree querying times for the depths L=2,3,..,8. The querying time for
test case 1ADG(dimer)–1ADG(dimer) at depth 2 is not shown here (to avoid graph
scaling and to improve graph readability). The time for this test case was 51.275 ms.

was then translated along the positive x -axis by a displacement distance δT . The δT

distance varied per test case, and was chosen empirically. Namely it was the distance

that generated a substantial amount of interacting atom pairs (as the ligand moved

over/intersected the receptor) to test adequately the performance of both querying

methods in relation to different n/L values (i.e. n,L=2,3..8) and protein sizes. Since

such extensive atom overlapping would never occur during an actual docking simula-

tion (because of the VDW repulsive forces), the querying response times recorded can

also act as sufficient, upper-bound, performance indicators for both querying meth-

ods. In all cases the cut-off distance was 8Å . Moreover, for each test case the values

recorded were the δT distance used, the querying response time, the cardinality of

the SPairs set, the total number of cells or child and leaf octants traversed and the

total number of inter-atomic distance calculations (Tables 4.2 and 4.3). The query-

ing response time is the time to determine the set, SPairs, the time to perform the

95

Table 4.1: Regular grid and octree construction times per molecule in milliseconds,
for cell sizes cg equal to nrC (where n=3,..5 and rC is the radius of a carbon atom) and
octree depth levels 3, 4, and 5, respectively. Common to both construction methods,
the table lists the name of and number of atoms comprising each molecule. It then
groups under grid construction the value of n used, the total number of cells created,
and the grid-construction times obtained, and under octree construction the tree level
L, the total number of child/leaf octants created, and the octree-construction times
obtained. D stands for Dimer and 1S for one subunit.

REGULAR GRIDS OCTREES
of Tot. # Constr. Tot. # Tot. # of Constr.

Molecule heavy atoms n of cells time (ms) L of octants leaf octants time (ms)

1CRN 327
5 27 0.0542 3 132 97 0.1023
4 64 0.0719 4 372 240 0.1837
3 216 0.0698 5 699 327 0.2837

3HTB 1388
5 216 0.1698 3 165 124 0.2617
4 343 0.1827 4 683 518 0.4879
3 1000 0.2519 5 1810 1127 0.8329

1ADG1S 3445
5 343 0.3511 3 190 143 0.539
4 729 0.4002 4 888 698 1.0025
3 1728 0.5468 5 3122 2234 1.8006

1ADGD 7046
5 1331 0.8101 3 137 108 1.0035
4 2744 1.0072 4 644 507 1.6403
3 6859 1.4815 5 3135 2491 2.6987

force calculation being negligible in comparison. Figure 4.9 depicts these querying

times per test case, for all seven different n/L values. According to these results,

the grid-based method achieved sub-millisecond querying responses only in the first

five cases and only when n≥3, whereas the octree method achieved sub-millisecond

responses for all test cases when the respective octree depths were set to four. Faster

response times were attained for larger cell sizes and smaller octree depths in several

cases, however, the measurements indicated that at n/L values equal to four both

querying approaches maintained a performance balance between their construction

and querying times. Evidently, the grid/octree construction and querying costs are

96

geometry and cell-size/tree-depth dependent, and impose a trade-off between con-

struction speed and querying performance. This relationship is depicted in Tables

4.1, 4.2, and 4.3 which list the construction and querying measurements pertinent to

each method and test case, for n/L values ranging between 3 and 5 inclusive. Mea-

surements for n/L values equal to 2, 6, 7 and 8 were not included for table clarity.

Overall, octree-based querying performed better than grid-based querying, and for

this reason is the default querying method used in all CPU-based force calculations.

4.4.2 Haptics-assisted Interactive Rigid-Docking Simulations
on the CPU

In addition to benchmarking, several proximity querying performance tests were con-

ducted based on rigid-docking simulations of known compounds, using the octree-

based proximity querying method. Although receptor flexibility was not modelled in

these simulations, the respective octree-construction times are reported for the reader

who wants to take into account these construction overheads (necessary if molecular

flexibility is addressed). The tests were based on three well known complexes, related

to protein-protein and protein-drug docking. Namely, they utilized the complexes

of Epidermal Growth Factor (EGF) with EGF receptor (EGFr), Bovine Pancreatic

Trypsin Inhibitor (BPTI) with Trypsin, and anticancer drug BAY43-9006 (sorafenib,

Nexavar) with cancer target B-raf as defined in the 1NQL, 3OTJ, and 1UWH PDB

files respectively. Each one of these files contains the structures of the receptor and

the ligand in their bound conformation. Out of these files, the 3D geometry of the re-

ceptor and ligand molecules was extracted and saved into a separate PDB file, i.e. two

new PDB files were created from the original PDB file, one for the receptor and one for

97

Table 4.2: Regular grid querying times for ten interacting molecular pairs in mil-
liseconds, for cell sizes cg equal to nrC , where n=3,..5 and rC is the radius of a
carbon atom. The table lists the displacement distance used in these experiments,
the number of interacting atom pairs (SPairs) returned, the total number of grid cells
traversed, and the total number of atom pairs examined in order to generate the set
SPairs. D stands for Dimer and 1S for one subunit.

Tot. #
Tot. # of atom

Interacting δT of cells pairs Querying
Molecules (nm) SPairs L traversed exam. time (ms)

1CRN–1CRN 1.55 4146
5 1840 39685 0.7674
4 5751 27918 0.6702
3 24903 20305 0.6058

3HTB–1CRN 2 4040
5 18250 50126 0.9324
4 30369 38699 0.8002
3 100073 28284 0.7528

3HTB–3HTB 2.9 3224
5 73428 55808 1.2364
4 125096 41393 0.9916
3 412640 27535 0.9696

1ADG1S–1CRN 2.8 4792
5 27790 64290 1.1200
4 64183 44595 0.8256
3 165102 35720 0.8045

1ADG1S–3HTB 3.88 4338
5 114234 68268 1.2520
4 267998 48215 1.1753
3 688456 35376 0.9649

1ADG1S–1ADG1S 4.29 3168
5 289674 80875 1.7106
4 677707 51464 1.2149
3 1738281 33526 1.0733

1ADGD–1CRN 3.27 8853
5 98626 74067 1.7400
4 215020 57827 1.4842
3 560324 44108 1.2838

1ADGD–3HTB 4.2 2952
5 441178 65854 1.3403
4 958867 46459 1.0973
3 2516965 31440 1.0811

1ADGD–1ADG1S 5.21 2569
5 1135553 66859 1.5174
4 2468593 49741 1.2731
3 6520432 25650 1.1471

1ADGD–1ADGD 5.58 2452
5 2336673 60754 2.1461
4 5094195 42432 1.9123
3 13425727 23565 2.2802

98

Table 4.3: Octree querying times for ten interacting molecular pairs in milliseconds,
for depth levels 3, 4, and 5. The table lists the displacement distance used in these
experiments, the number of interacting atom pairs (SPairs) returned, the total number
of child/leaf octants traversed, and the total number of atom pairs examined in order
to generate the set SPairs. D stands for Dimer and 1S for one subunit.

Tot. # Tot. # Tot. #
of of leaf of atom

Interacting δT octants octants pairs Querying
Molecules (nm) SPairs L traversed traversed exam. time (ms)

1CRN–1CRN 1.55 4146
3 2841 2450 30427 0.5666
4 10405 7564 13792 0.9428
5 18542 8137 8137 1.5023

3HTB–1CRN 2 4040
3 2076 1729 70700 0.6236
4 8117 6041 22046 0.9337
5 16690 8573 10234 1.4212

3HTB–3HTB 2.9 3224
3 1514 1114 123272 0.8613
4 6707 5193 34134 0.9497
5 14623 7916 11761 1.6833

1ADG1S–1CRN 2.8 4792
3 1474 1183 109636 0.8126
4 6885 5411 33116 0.9073
5 16536 9651 14524 1.3562

1ADG1S–3HTB 3.88 4338
3 1140 848 211686 1.1711
4 5128 3988 48060 0.9148
5 14077 8949 16695 1.587

1ADG1S–1ADG1S 4.29 3168
3 1008 670 315964 1.6513
4 4254 3246 62847 1.0028
5 11787 7533 17576 1.5472

1ADGD–1CRN 3.27 8853
3 1040 838 218443 1.1536
4 4824 3784 72293 0.9758
5 16112 11288 31079 1.6743

1ADGD–3HTB 4.2 2952
3 918 686 437063 2.096
4 3670 2752 83642 0.8688
5 10375 6705 22332 1.3097

1ADGD–1ADG1S 5.21 2569
3 787 562 715797 2.902
4 2642 1855 99087 0.837
5 8108 5466 23060 1.0944

1ADGD–1ADGD 5.58 2452
3 730 565 1719242 7.1563
4 1830 1100 122310 0.9926
5 5703 3873 25108 1.0454

99

the ligand. As stated earlier, the pdb2gmx tool was used in order to obtain the Gro-

mos54a7 non-bonded force parameters from each PDB file, except the file containing

the drug sorafenib. For sorafenib these parameters were obtained through PRO-

DRG server (http://davapc1.bioch.dundee.ac.uk/programs/prodrg/)[SVA04]. Using

Haptimol RD, and the respective geometry and force parameter files, three docking

simulations were conducted. During the simulations, the user performed a haptic

exploration of the receptor with the ligand, guided the ligand to its docking position

and orientation (as defined in the original PDB file), and sensed the underlying in-

termolecular interactions on the haptic device. The simulation lasted slightly more

than a minute, and Haptimol RD recorded at 10 millisecond intervals the querying

response times, and the number of atom pairs generated. Figures 4.10a, 4.10b, and

4.10c depict these docking simulation results, whereas Table 4.4 lists the correspond-

ing construction results. These simulations utilized octrees of depth 4, and a cut-off

distance of 8Å.

Table 4.4: Octree construction times for the six molecules used in the real-time
docking simulations.

of Tot. # Tot. # of Construction
Molecule heavy atoms of octants leaf octants time (ms)

sorafenib 48 100 45 0.0384
EGF 483 391 268 0.1929
BPTI 604 399 285 0.237

TRYPSIN 2094 843 656 0.6758
B-raf 5376 1012 795 1.3382
EGFr 5836 615 468 1.2572

The results show that the method attained sub-millisecond response times for

the majority of the simulation period. The querying times exceeded slightly the

1ms barrier only when BPTI assumed its final docking position. At that position the

method performed a significant number of octant comparisons, induced by substantial

100

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0
.0

1
2

.6
9

5
.3

7
8

.0
5

1
0

.7
3

1
3

.4
1

1
6

.0
9

1
8

.7
7

2
1

.4
5

2
4

.1
3

2
6

.8
1

2
9

.4
9

3
2

.1
7

3
4

.8
5

3
7

.5
3

4
0

.2
1

4
2

.8
9

4
5

.5
7

4
8

.2
5

5
0

.9
3

5
3

.6
1

5
6

.2
9

5
8

.9
7

Q
u

e
ry

in
g

Ti
m

e
 (

in
 m

s)

Simulation Time (in secs)

of Atom Pairs

Querying time

N
u

m
b

e
r

o
f

A
to

m
 P

ai
rs

 (
in

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0
.0

1
2

.6
9

5
.3

7
8

.0
5

1
0.

73
1

3.
41

1
6.

09
1

8.
77

2
1.

45
2

4.
13

2
6.

81
2

9.
49

3
2.

17
3

4.
85

3
7.

53
4

0.
21

4
2.

89
4

5.
57

4
8.

25
5

0.
93

5
3.

61
5

6.
29

5
8.

97

Q
u

e
ry

in
g

Ti
m

e
 (

in
 m

s)
Simulation Time (in secs)

of Atom Pairs

Querying time

N
u

m
b

e
r

o
f

A
to

m
 P

ai
rs

 (
in

(b)

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

1.2

0
.0

1
2

.6
9

5
.3

7
8

.0
5

1
0.

73
1

3.
41

1
6.

09
1

8.
77

2
1.

45
2

4.
13

2
6.

81
2

9.
49

3
2.

17
3

4.
85

3
7.

53
4

0.
21

4
2.

89
4

5.
57

4
8.

25
5

0.
93

5
3.

61
5

6.
29

5
8.

97

Q
u

e
ry

in
g

Ti
m

e
(i

n
 m

s)

Simulation Time (in secs)

of Atom Pairs

Querying time

N
u

m
b

e
r

o
f

A
to

m
 P

ai
rs

 (
in

(c)

Figure 4.10: A haptics-assisted rigid-docking simulation between: (a) the drug
molecule sorafenib and the receptor protein B-raf ; (b) protein BPTI and the re-
ceptor protein Trypsin; (c) protein EGF and the receptor protein EGFr. The graph
depicts the querying times attained, at 10ms intervals, and the respective sets of
interatomic interactions accounted for by the approach during the simulation.

101

octree overlapping, because BPTI was docked deep into Trypsin’s binding pocket. The

response times in that case fluctuated between 1.015 and 1.092 ms.

4.5 Conclusion

The main focus in this chapter is the design and development of a real-time, CPU-

based force calculation approach that can accommodate the haptics-assisted dock-

ing of large molecules, and overcome the computational limitations of pre-computed

force grids. As demonstrated, current CPU technology cannot facilitate real-time

force calculations for such large structures, when all interatomic interactions between

the receptor and ligand molecules (i.e. brute force) are accounted for. This moti-

vated the application of a cut-off-based, set-reduction technique in order to reduce

the number of interatomic interactions considered during a force calculation. Two

different proximity querying methods were examined in order to identify at haptic

refresh rates this reduced set of interacting atom pairs. The first method relied on

a regular grid, whereas the second one relied on octrees as the means to accelerate

distance queries in the 3D space. Both methods were implemented and tested using

different molecular structures. Even though grid construction was significantly faster

than octree construction, the octree-based querying method performed consistently

better than the grid-based method in most of the test cases, and as such, it is set as

the default CPU-based force calculation method in Haptimol RD.

Using the octree-based method Haptimol RD can compute in real-time (and at

haptic refresh rates) the electrostatic and VDW force contributions for interacting

molecules comprising up to 7k atoms each. As such it can facilitate the haptics-

assisted rigid docking of large protein-protein and protein-drug complexes. This offers

102

more than a threefold improvement on the size of the molecules existing docking sys-

tems can accommodate, and it addresses effectively all issues related to pre-computed

force grids. However, it falls short when the docking case involves very large molecules.

Therefore, there is a need to push that size limit further, i.e. to molecules comprising

tens or even hundreds of thousands atoms each. High-end GPUs might have the

answer to this question, offering an alternative execution platform for both querying

approaches. Given that both querying methods exhibit high levels of execution par-

allelism during grid/octree traversals, it becomes apparent that they can benefit from

the many-core processing capabilities of modern GPU’s. The next chapter describes

the adaptation of both real-time force calculation methods on the GPU.

Chapter 5

Accelerating interaction force
calculations on GPU

5.1 Introduction

Chapter 4 explained how the concepts of a cut-off distance and spatial decomposition

can assist haptics-assisted docking to attain real-time force updates (within 2ms) for

large molecules on the CPU. Although modern CPU processing power limits this

method to molecules no larger than 7k atoms each, the emergence of general pur-

pose programmable GPU architectures might offer the additional computing power

needed in order to increase this size substantially, i.e. to very large molecules. Over

the years, several approaches tried to harness the many-core processing capabilities of

GPUs in order to accelerate force computations in molecular interactions. Recently

Anthopoulos et. al. [AGB13] reported a GPU-accelerated cut-off-based force calcu-

lation approach applicable to interactive docking. Anthopoulos et. al. applied the

approach to their haptics-assisted molecular modelling simulator [APGB14] in order

to evaluate the induced fit effect during protein-drug docking. Their approach ad-

dresses flexibility to some degree, but not at haptic refresh rates since it updates the

forces at 33 Hz (30 ms response time). Furthermore, by design, the method cannot

103

104

be applied to the docking of large molecules. Other GPU-accelerated force calcu-

lation approaches have been proposed and applied in systems pertinent to MD and

automated docking (Stone et. al. [SHUS10] provides a review of the different work

conducted in this area). These methods often employ grid-based proximity querying

algorithms [SPF+07, AGB13] or very efficient 2D energy/force matrices [HKR12] to

minimize the overall computational cost and accelerate the pose scoring functionality

of automated rigid-docking systems [SH09]. They compute inter and/or intra molec-

ular interactions based on a cut-off distance or using Fast Fourier Transformations,

and in some cases model molecular flexibility to some degree. However, these methods

cannot be applied to haptics-assisted docking (even for large molecules) since they

necessitate execution times substantially larger than 2ms [SPF+07, SH09, HKR12],

and/or have costly constructions/update requirements for the underlying regular grid

structures [AGB13, SH09]. As it stands, existing GPU-accelerated force calculation

approaches fail to address successfully many of the issues (e.g. size of molecules, force

refresh rates) related to interactive, haptics-assisted molecular docking.

This chapter discusses the design and implementation of two novel GPU-accelerated

force calculation approaches applicable to haptics-assisted docking [IHL15]. Both

methods are a GPU-based adaptation of the respective CPU-based methods dis-

cussed in Chapter 4. A GPU-accelerated version of the brute force approach is also

described here and used as a performance baseline. The next section provides a quick

overview of the GPU computing environment and outlines the main design principles

involved.

105

5.2 GPU Computing

All methods discussed in this chapter have been implemented using the Open Com-

puting Language [OM12] (OpenCL) parallel programming framework and executed

on an NVIDIA GPU [NVI]. OpenCL provides a C-like programming environment

that facilitates the programmability of GPUs, and makes it easy for the developer

to harness the computational power of many-core processors. OpenCL was used in

order to maximize the portability of Haptimol RD to different GPU architectures.

The following paragraphs outline the nomenclature of NVIDIA GPUs, relate it to

the choices made during method design, and map it to the OpenCL programming

paradigm.

GPUs are high-performance, streaming processors that favour data-parallel exe-

cution and coherent memory access patterns. A modern GPU provides hundreds of

computing cores that can support high rates of parallel execution (Figure 5.1). A

typical GPU consists of several streaming multiprocessors (SM), each one of which

contains multiple computing cores (a.k.a. Scalar Processors). The cores are responsi-

ble for the execution of a program or kernel. The basic computation unit is a thread.

Each thread executes an instance of the kernel. Threads are grouped together to

form thread blocks, and each block is assigned to a specific SM. A SM processes

the block threads in sets of 32, called a warp, and executes them in parallel on its

cores in a Single Instruction Multiple Data (SIMD) fashion. The number of resident

threads against the theoretical number of threads supported by the GPU is described

as occupancy. In general, high occupancy indicates better execution performance.

Thread control/access can be attained programmatically via a global/block-specific

106

CPU

GPU Grid

Shared Memory

SM

SP

SP

SP

SP

SP

SP

Global Memory

Constant Memory

Texture Memory

SP

SP

SP

Lo
cal M

e
m

o
ry &

 R
e

giste
rs

Figure 5.1: An abstraction of the main structural/functional components of a modern
NVIDIA GPU (adapted from van Oosten [vO11]). The diagram shows the Scalar
Processors (SP) stacked within a Streaming Multiprocessor (SM), and interfacing
with the various levels of GPU memory. CPU-GPU communication can achieved
only through slow, on-board memory.

107

ID assigned sequentially to each thread upon creation. Maximum execution paral-

lelism is achieved when all threads within a warp execute the same kernel instruc-

tion (execution convergence). Execution divergence occurs when threads within a

warp execute different kernel instructions (e.g. due to conditional statements), which

forces the SM to serialize the execution of these threads, and can penalize substan-

tially kernel performance. Thread management (e.g. creation, switching etc) is done

completely in hardware with almost zero overhead. Thread communication and syn-

chronization is possible at block level via a small (32-48KB), high-speed, on-chip (i.e.

SM) memory, also referred to as shared memory. In addition to shared memory,

threads have global gather/scatter, read/write access to a large (0.8-4GB), slow, on-

board memory, and private access to a set of registers (very fast private memory).

Global memory accesses are costly operations in terms of latency. A SM can hide

memory latency by executing a large number of warps (high occupancy) and switch

among them when one or more of its warps wait on a memory transaction. Another

way to reduce latency cost is memory-access coalescing. When the threads in a warp

access consecutive global memory locations then the hardware can combine (coalesce)

these requests into a single request, and hence reduce the total number of memory

transfers.

Consequently, to achieve scalability and execution efficiency a GPU-based algo-

rithm should be very conscious of its thread utilization, instruction execution and

memory access patterns [NVI10]. Namely, the algorithm should maintain a high num-

ber of occupancy at all times to maximize execution performance and hide latency,

(b) attain fine-grained data parallelism to minimize execution divergence, (c) utilize

shared memory whenever possible to reduce global memory accesses and (d) avoid

scattered global memory reads and writes (i.e. uncoalesced memory accesses). Both

108

cut-off-based approaches described here takes into account all of the aforementioned

design principles in order to attain optimized performance.

In closing, OpenCL abstracts the different characteristics of rival GPU architec-

tures and unifies them under a singular programming paradigm. In OpenCL termi-

nology the GPU is referred to as a device, the SMs as compute units and the cores as

processing elements. Moreover, threads are defined as work-items, thread-blocks as

workgroups, and shared memory as local memory. In the following sections OpenCL

and GPU terminology will be used interchangeably in order to describe the specifics

of the force calculation approaches.

5.3 GPU-based Brute Force approach

Similarly to the CPU-based brute force approach (see Section 4.2), the GPU-accelerated

approach accounts for all interatomic interactions between the receptor and the ligand

molecules, using Algorithm 7. Algorithm 7 achieves that, by computing in parallel

the pairwise interaction force between each receptor atom ai and all ligand atoms aLj .

Upon execution, the kernel spawns one work-item for each receptor atom, arranged

in workgroups of 256 items each. Position updates are applied on the receptor atoms

using the combined matrix TNew (see Section 4.3.4).

Algorithm 7 was implemented and then tested using the same testing methodology

described in Section 4.2. Again the goal here was to discover how many atom pairs

could be computed with Algorithm 7 within 2ms. The testing started with an array

size of two hundred and fifty atoms per molecule (the CPU limit), and were concluded

when the arrays reached one thousand four hundred and thirty atoms each. Initially

the array increments were one hundred atoms long and were gradually reduced to

ten atoms as the tests proceeded. The performance times measured included kernel

109

Algorithm 7 GPU-accelerated Brute Force

Require: Receptor, array of atom structures
Require: Ligand, array of atom structures
Require: TNew, combined viewing transformation matrix
Ensure: fi, receptor atom force subtotal

1: for all atoms ai in Receptor do in parallel
2: ltID ← GetLocalThreadID(); grID ← GetGroupID()
3: fi ← 0
4: // adjust receptor atom coordinate
5: ai.coord ← ai.coord ∗ TNew
6: for all atom structures aLj in Ligand do
7: d ← distance(ai, a

L
j)

8: fi ← fi + computeForce(ai, a
L
j , d)

9: end for
10: end for
11: end

queuing and submitting times but not the time taken for uploading the 1D arrays of

atoms on the GPU (since this information will never change). All of the experiments

were executed on an NVIDIA GTX580 GPU with 1.5GB RAM.

According to these results, the GPU version of the brute force approach can

accommodate real-time force calculations for molecules comprising up to 1.5k atoms

each. This is an almost sixfold improvement over the CPU-based brute force method,

and a good indication that analogous performance gains might be attainable for the

cut-off-based force calculation approaches as well. The next section discusses the

adaptation of the two CPU-based proximity querying methods, discussed in Chapter

4, on the GPU.

110

5.4 Force calculations using GPU-accelerated prox-

imity querying

The GPU-based force calculation methods described in this section identify the set

of interacting atom pairs within a cut-off distance using the same space partition

structures (i.e. regular grids and octrees) and querying logic as their CPU analogues.

Both GPU-based approaches employ a parallelized version of their respective querying

algorithm, designed to exploit the execution parallelism of modern GPUs. Given

that there are different GPU architectures and that memory transfers from CPU

to GPU (and vice versa) are costly operations, extra design considerations (other

than the ones outlined in Section 5.2) were made in order to address that. Namely,

both methods should: a) be capable of supporting GPUs of different memory sizes

and computing capabilities, and b) necessitate minimal precomputation/construction

requirements on the underlying molecules. Existing GPU-based proximity querying

algorithms such as the one described in Lauterbach et. al. [LMM10] cannot be applied

here, because they perform distance queries only on geometry located on the surface

of an object and not within the inner part of the object as required in our case,

i.e. identifying those atoms within a cut-off distance residing inside the molecular

surface. The following subsections describe the respective grid/octree construction

and querying algorithms.

5.4.1 Constructing Spatial Partitioning Structures

To minimize construction overhead, the methods construct the regular grid and octree

structures only for the molecule with the least number of atoms, thus leaving the

larger molecule (often the receptor) free of any spatial partitioning constraints. Both

partitioning structures are built on the CPU, and then transferred to the GPU as

111

d e fa

Regular Grid

k m b h

Ca

Cb

CPU GPU

S

1D Array of Cells

Ca
GPU Cb

GPU

1D Array of Atoms

A a d e f k m b h

(1, 4) (5, 4)

1 2 3 4 5 6 7 8

Figure 5.2: A 2D depiction of a regular grid built on the CPU and transferred to
the GPU as a 1D array of cell records S and 1D array of atoms A. The initial grid
consisted of the cells Ca and Cb containing the atoms a,d,e,f and k,m,b,h, respectively.
Both cells are represented in the S array as cell records CGPU

a and CGPU
b . Each cell

record holds the total number of atoms assigned to it (4 in both cases), and an index
to the array of atoms A pointing to the first atom assigned to this cell (indices 1 and
5 in this case). A similar 1D array is built for the octree as well.

a 1D array of cells or octants S. Each cell or octant defines a record which holds,

among other entries, the total number of atoms assigned to it, and an index to a

1D array of atoms A. A is constructed concurrently with S and contains the ligand

atoms in a sequential order that maps the order the cells/octants are indexed within

S. For example, if the initial grid consists of the two cells Ca and Cb, each of which

contains atoms a,d,e,f and k,m,b,h respectively, and these cells are transferred to

S as CGPU
a and CGPU

b (i.e. S={CGPU
a , CGPU

b }), then the array of atoms is formed

as A={a,d,e,f,k,m,b,h}, and the cell records as CGPU
a =(1, 4) and CGPU

b =(5, 4) (see

Figure 5.2).

The regular grid is constructed on the CPU using the approach taken in Section

4.3.2. The 1D cell array S for the GPU, is then obtained by a) looping through the

grid in an x first, y second, z last order, b) mapping the 3D grid cell index into a 1D

index, and c) using this index to assign the cell in the 1D array. A cell is 16 bytes

112

and contains an index in A referencing the first atom in the set of atoms assigned

to the cell (4-byte integer), the cardinality of this set (4-byte integer), a flag stating

whether the cell is empty or not (1 byte), and memory-alignment padding (3 bytes) to

facilitate memory-access coalescing on the GPU. During construction the cell size cg

is set based on the formula cg = nrC (rC is 1.7Å, the radius of a carbon atom), where

n is determined empirically (see Section 5.5). The actual cell size used might change

slightly in order to divide the bounding box into an integer number of subdivisions.

Likewise, the pruned octree is constructed on the CPU using the method described

in Section 4.3.3. The 1D octant array S is then obtained by executing a breadth-

first traversal of the tree and assigning the respective octants in the array in that

order. An octant is a 32-byte structure, and contains an index to A referencing the

first atom in the set of atoms assigned to the octant (4-byte integer), the cardinality

of this set (4-byte integer), a flag stating whether the octant is a leaf or not (1

byte), the octant’s homogeneous centre coordinates (4×4-byte floats), the length of

the octant’s bounding-sphere radius (4-byte float), and memory-alignment padding

(3 bytes). Unlike the octrees constructed for the CPU-based querying method, the

number of octree levels, L, constructed here depends on the size of the molecule, and

is decided dynamically using Equation 5.4.1,

L = min

(⌊
log2

(
max(`x, `y, `z)

co

)⌋
, Lmax

)
(5.4.1)

where L is the octree subdivision target, co is the targeted side-length of a leaf oc-

tant (i.e. the length of one of the bounding cube sides), and Lmax is the maximum

subdivision level the GPU-based query algorithm can support, i.e. 7 due to memory

constraints. The equation has as numerator the maximum side of the bounding box

because the query requires the subdivision to be uniform along all three dimensions,

i.e. the octant bounding volume is a cube. L is set equal to Lmax only when the

113

derived level is greater than Lmax. The side-length of the leaf-octant co is given by

co = nrC , where n is determined empirically (see Section 5.5). The values of the

targeted leaf-octant side-lengths co and the actual leaf-octant side-lengths obtained

after construction would differ when the value max(`x, `y, `z)/co is not a power of 2.

Overall, this construction strategy allows both force calculation approaches to a)

construct the grid/octree structure at the appropriate subdivision level adaptively at

run time, b) reduce the memory footprint of both structures, and c) attain coalesced

memory accesses during querying (since ligand atoms within the cell/octant are listed

sequentially). It also helps the query kernel achieve optimum execution convergence,

since nearby receptor atoms are more likely to query the same cells/octants in 3D

space, access the same ligand atoms, and have their threads execute the respective ker-

nel instructions synchronously. Given that there are no pre-processing requirements

(i.e. construction of a space partitioning structure) for the receptor, the approach

can facilitate, in principle, docking problems that model receptor flexibility.

5.4.2 Querying Partitioning Structures and Calculating Forces
on the GPU

To compute the total interaction force, the method queries the grid/octree (built for

the ligand) in parallel for each receptor atom ai individually. Each query identifies

all ligand atoms within dcutoff from ai, and computes in real time the contribution of

ai to the total interaction force. The method derives the total force by accumulating

these partial contributions (Figure 5.3). Again, atom position updating is done using

the combined viewing transformation matrix TNew, with the only difference that the

formula used here is TNew = T−1
L TR, since TNew is applied to the smallest molecule

(ligand) and not to the larger one (receptor) as before (see Section 4.3.4).

114

T

I

M

E

C
P
U

G
P
U

2) transform coordinates

of a
i

3) query ligand grid

or octree and get

total force for a
i

Receptor Atoms

a
1
a
2

a
3
a
4

a
5
a
6

a
7
a
8

a
9
a
10

a
11
a
12 1) spawn a work-item

for each ai

4) sum all forces in

a workgroup and

store the result in FW

1 2 3

Per Workgroup Force Array FW

F1
W

5) sum all F
i
W forces in FW

to obtain the total

interaction force FW
Tot

Total Interaction Force FW
Tot

F2
W F3

W

F1
W F2

W F3
W

Figure 5.3: A visualization of the GPU-accelerated force calculation approach, il-
lustrating the main execution steps, and the processing unit (i.e. GPU or CPU)
that executes them. The method starts by deploying on the GPU one work-item (red
springs) for each receptor atom ai (12 receptor atoms in this case), and grouping these
work-items in workgroups (the 3 green boxes with 4 work-items each). Each work-
item executes the proximity querying/force calculation kernel (grey semi-rectangular
shape) in parallel, within its workgroup, and computes the force contribution of ai
to the total force (execution steps 1-3). The first work-item in each workgroup ac-
cumulates these force contributions from all work-items in the group, and stores the
result FW

i in a global number-of-workgroups-long force array FW (execution step
4). Array FW is transferred back to the CPU, where its entries are accumulated to
produce the total interaction force FW

Tot (execution step 5).

115

The following list outlines the key execution steps of both approaches.

1. Spawn a work-item for every atom ai within the largest molecule and group

them into workgroups.

2. Transform the coordinates of ai into the local coordinates of the ligand using

TNew.

3. Execute the partitioning-structure-specific querying algorithm.

(a) Find the set of ligand atoms within the cut-off distance to ai.

(b) Compute the force for all pairs in the set.

4. For all work-items in a workgroup sum their contributions to the total force

FW
i , and store the result in an array FW of length equal to the number of

workgroups.

5. Sum the partial forces in FW to obtain the total force FW
Tot.

Steps 1), 2), 4) and 5) are steps common to both partitioning structures. The execu-

tion flow differs in Step 3) because each method queries its respective structure (i.e.

regular grid and the octree) differently. To query the grid the method obtains first a

search range and then indexes the cells within this range; whereas, to query the octree

it performs a combination of depth-first and breadth first traversals on the octants

starting from the root (Figure 5.4). Like their CPU-based counterparts, both meth-

ods can facilitate the independent/dynamic handling of the electrostatic and VDW

forces (i.e. scale/switch on-off electrostatics, vdW repulsive and/or vdW attractive

parts), and thus enable the user experiment with different types of interactions easily.

The next two paragraphs describe the GPU-accelerated, regular grid and octree-

based force calculation algorithms.

116

B

C

A D

F

H

G

I

ai
dcutoff

E

a1
L

a2
L a3

L

a4
L

a5
L

Ligand

(a)

ai

dTot

Oi

dcutoff

d

dNet

rL

Ligand

a1
L

(b)

Figure 5.4: A conceptual 2D visualization of the proximity querying strategies. (a)
Querying the regular grid. The method uses the cut-off distance dcutoff to form a
bounding cube (red dashed square) centred on receptor atom ai (similarly to the CPU-
based grid querying). Using the cube’s min/max coordinates, the query identifies all
grid cells (green cells A, B and C) intersecting the cube and produces a search range.
The method calculates an interatomic distance d between ai and each of the ligand
atoms contained within these cells (i.e. ligand atoms aL1 , aL2 , aL3 and aL4), but computes
the total force only for those atom pairs with d ≤ dcutoff (in this case pairs aia

L
1 ,

aia
L
2 , aia

L
4 , since atom aL3 is not within the cut-off radius). (b) Querying the octree.

The coordinates of the receptor atom ai are tested against octant Oi. The method
calculates dTot (i.e. distance between the octant centre and ai) and subtracts it from
rL (i.e. radius of the octant’s bounding sphere) to obtain dNet (i.e. net distance). If
dNet ≤ dcutoff and Oi is not a leaf octant then the method traverses the children of
Oi in the same manner. When Oi is a leaf octant (as in the case shown), the method
calculates an interatomic distance d between ai and each of the atoms indexed by Oi

(aL1 in this case), but again computes the force only for those atom pairs with d ≤
dcutoff (i.e. pair aia

L
1).

117

Querying and Calculating Forces Using a Regular Grid

The method utilizes the random access property of regular grids to determine in

parallel the subset of grid cells containing those ligand atoms within the cut-off, and

then computes the total force on this set. It begins by executing one work-item

for each receptor atom, arranged in workgroups of 256 items each. Using its global

ID, each work-item accesses the underlying receptor atom and updates the atom’s

coordinates with TNew. Based on the new atom coordinates, a search region of grid

cells is identified using Algorithm 4, GetSearchRange (see Section 4.3.5).

Like in CPU-based grid querying, Algorithm 4 computes the tightest bounding

cube of a sphere with centre equal to the coordinates of receptor atom ai, and radius

equal to dcutoff . It then uses the cube’s minimum and maximum coordinates to

derive a minimum/maximum search range for the grid along the three dimensions x,

y, and z (Figure 5.4a). Using this range, it loops through the grid cells and for all

ligand atoms aLi within each cell it checks whether or not the interatomic distance

between the receptor and ligand atoms is within the cut-off. It then computes the

forces, for all atom pairs that pass this test, and accumulates these forces in force

vector fi. As such, vector fi holds (upon loop termination) the force contribution

of the given receptor atom ai to the total force. Each work-item saves fi within a

local array of force values, and waits on a group-synchronization primitive. When

all group work-items are synchronized, the first work-item in the workgroup sums up

the values within the local array, and stores the result FW
i in a group-specific global

array of force values FW . The total force is computed by accumulating the entries

in FW . In almost all practical cases the size of this array is very small (e.g. even

for one million atoms the size is 1000000/256=3907). As such this accumulation is

done on the CPU since the CPU can perform this summation faster than the 0.2ms

118

Algorithm 8 GPUQueryRegularGrid

Require: Receptor, array of atom structures
Require: A, regular grid query info structure
Require: S, regular grid query info structure
Require: RGInfo, regular grid query info structure
Require: FCInfo, general force calculation info structure
Require: dcutoff , the cut-off distance
Ensure: FW , array of work-group-force subtotals FW

i

1: for all atoms ai in Receptor do in parallel
2: ltID ← GetLocalThreadID(); grID ← GetGroupID()
3: fi ← 0
4: // adjust receptor atom coordinate
5: ai.coord ← ai.coord*FCInfo.TNew
6: // execute Algorithm 4
7: GetSearchRange(RGInfo, ai.coord, dcutoff , xG, yG, zG)
8: for l=xG.min to l≤ xG.max with l++ loop do
9: for k=yG.min to k≤ yG.max with k++ loop do

10: for j=zG.min to j≤ zG.max with j++ loop do
11: indx ← l*RGInfo.nx*RGInfo.ny+k*RGInfo.nx+j
12: gridCell ← S [indx]
13: if gridCell not empty then
14: for all atom indices sIN in gridCell do
15: aLi ← A[sIN]
16: d ← distance(ai, a

L
i)

17: if d ≤ dcutoff then
18: fi ← fi + computeForce(ai, a

L
i , d)

19: end if
20: end for
21: end if
22: end for
23: end for
24: end for
25: lclForce[ltID] ← fi
26: synchronize threads
27: if ltID is first thread in workgroup then
28: FW [grID] ← sum(lclForce)
29: end if
30: end for

119

overhead (time from submission to start) required by NVIDIA’s OpenCL drivers to

deploy a kernel on the GPU. The size of the local array equals the workgroup size

(i.e. 256), whereas the size of the global array equals the number of workgroups,

i.e.
⌈
receptoratoms

256

⌉
. A work-item indexes these local and global arrays using its local

(block-specific) and workgroup IDs, respectively. Overall, the use of the local and

global arrays allows the method to perform the majority of force calculations on the

GPU in a memory-coalesced fashion, and hence optimize the performance of this

method. Algorithm 8, GPUQueryRegularGrid, outlines the aforementioned key

execution steps.

Querying and Calculating Forces Using an Octree

Similar to the grid-based algorithm, the octree querying algorithm begins by executing

a work-item per receptor atom, in workgroup sizes of 256, and updates the coordinates

of the receptor atoms with TNew. It then begins the tree traversal loop by assigning

the root as the current octant, and looping through all of its children. Normally,

octree traversal is done recursively starting from the root octant, but OpenCL does

not support recursive control flow. Even if it did support recursion [NVI], such a

query would be prone to high execution divergence (with substantial performance

penalties) since the recursive branching to the child octants would need to be made

independently by each work-item. To address this a stack-based, octree querying

method was developed that emulates programmatically recursive behaviour, while

minimizing execution divergence. The method traverses the tree iteratively utilizing

a stack to mimic recursive calls. The stack is defined as an array of octant indices, and

is allocated in private memory by each work-item (since OpenCL does not support

dynamic memory allocation). The size of the stack is set equal to fifty six four-byte

120

integers (7 octree levels and 8 octants for each level), which can accommodate octree

traversals of height seven (which is the maximum subdivision level supported and a

good balance point between subdivision and total stack memory requirements). Using

this stack, the tree traversal loop begins by checking (in a breadth-first manner)

whether the net distance dNet between the receptor atom and the child octants is

within cut-off or not. dNet is computed using Equation 5.4.2,

dNet = dTot − rL (5.4.2)

where dTot is the total distance between the octant centre and the atom, and rL is

the radius of the octant’s bounding sphere. If dNet ≤ dcutoff and the child octants are

leafs, it loops through all atoms indexed by these octants, calculates their interatomic

distance d with the receptor atom, and accumulates the force (in a similar way to

the regular grid method) only for those receptor/ligand atom pairs with d ≤ dcutoff

(Figure 5.4b). Otherwise it sets the first one of these octants (in a depth-first manner)

as current, and pushes the remaining ones onto the stack in reverse order. When the

downward tree traversal comes to an end (i.e. the index of the current octant is -1), the

algorithm pops an octant off the stack and repeats the loop. When the stack becomes

empty the traversal loop terminates, and the algorithm calculates the total force on

the CPU the same way as described in the grid-based force calculation method. Each

work-item, regardless of its traversal path, executes the same loop repetitively until

it has no more octants to traverse. Hence, for a number of iterations the work-items

(especially those indexing receptor atoms nearby in 3D space) will be executing the

same kernel instructions, which allows our algorithm to achieve substantial execution

convergence during octree traversals. Algorithm 9, GPUQueryOctree, describes

the main steps of this octree-based force calculation approach.

121

Algorithm 9 GPUQueryOctree

Require: Receptor, array of atom structures
Require: A, regular grid query info structure
Require: S, regular grid query info structure
Require: FCInfo, general force calculation info structure
Require: dcutoff , the cut-off distance
Ensure: FW , array of work-group-force subtotals FW

i

1: for all atoms ai in Receptor do in parallel
2: ltID ← GetLocalThreadID(); grID ← GetGroupID()
3: stack[56] ← -1; next ← 0 (i.e. index of root octant); fi ← 0
4: // adjust receptor atom coordinate
5: ai.coord ← ai.coord*FCInfo.TNew
6: do
7: octant ← S [next]; next ← -1; count ← 0
8: // breadth-first traversal to identify level overlaps
9: for all child octant indices oIN in octant do

10: dTot ← distance(ai, S [oIN])
11: dNet ← dTot-rL
12: if dNet ≤ dcutoff and S [oIN].isLeaf then
13: for all atom indices sIN in leaf S [oIN] do
14: aLi ← A[sIN]
15: d ← distance(ai, a

L
i)

16: if d ≤ dcutoff then
17: fi ← fi + computeForce(ai, a

L
i , d)

18: end if
19: end for
20: else
21: // depth-first traversal to move down the tree per level
22: if next == -1 then
23: next ← oIN
24: else
25: stack.push(oIN) in reverse
26: end if
27: end if
28: end for
29: // use the stack if level traversing is completed
30: if next == -1 then
31: next ← stack.pop()
32: end if
33: while (next ≥ 0)
34: lclForce[ltID] ← fi
35: synchronize threads
36: if ltID is first thread in workgroup then
37: FW [grID] ← sum(lclForce)
38: end if
39: end for

122

5.5 Performance Testing of the GPU-based meth-

ods

Both methods were implemented using Visual C++ and OpenCL 1.1, and integrated

within Haptimol RD. Similarly to the CPU-based methods, a series of experiments

were conducted in order to benchmark the performance of these methods (against

demanding simulation loads), compare them to the CPU-based implementation, and

measure their efficiency during interactive rigid-docking simulations on known com-

plexes. Again, all tests were executed on a 2.93GHz Intel Core i7 PC running under

a 64bit version of Windows 7 with an NVIDIA GTX580 GPU, and a 3DOF Geo-

magic Touch haptic device. The PC was equipped with 8GB RAM, and the GPU

with 1.5GB RAM. Likewise, arbitrary force parameters were used in benchmarking

and GPU-CPU performance comparison tests, whereas actual force parameters (see

Section 3.4) were used during the interactive rigid-docking simulations. The emphasis

here is on measuring the performance of the two proximity querying methods exe-

cuted on the GPU, and therefore the construction of the partitioning structures are

not reported as they are pre-computed on the CPU.

5.5.1 Benchmarking Experiments on the GPU

The benchmarking experiments conducted here, follow the same logic as the one de-

scribed in the previous chapter, e.g. use artificial docking simulations, allow atom

overlap, model molecules as rigid structures. The experiments utilized the molecules

Alcohol Dehydrogenase dimer (1ADG), Aspartate Carbamoyltransferase, (1AT1), GroEL-

E434K Mutant (2YEY) and Clathrin (1XI4), as defined in their respective PDB files

(Figure 5.5). Using these proteins the following four artificial protein-protein dock-

ing test cases were generated: 1ADG-1ADG (i.e. 1ADG with 1ADG), 1AT1-1AT1,

123

Table 5.1: Molecule specific information used for the construction of both partitioning
structures. The table lists the molecule’s PDB code, the number of atoms comprising
each molecule, and the molecule’s largest bounding box dimension.

of Bounding Box
Molecule heavy atoms Largest Side (Å)

1ADG 7046 112.10
1AT1 21318 150.51
2YEY 53984 184.50
1XI4 183600 747.22

2YEY-2YEY and 1XI4-1XI4. For each test case seven rigid docking simulations were

conducted using regular grids of different cell sizes (cg values equal to nrC were used,

where n=1,2,..7), and another seven simulations using octrees of subdivision levels L,

where L=1,2,..7. For each of these test cases a 4×4 matrix specified the position and

orientation of the ligand in respect to the receptor. Each matrix ensured that the

ligand would overlap with the receptor, and generate a substantial set of interatomic

interactions to benchmark sufficiently the respective force calculation method. Un-

like CPU-related benchmarking (were only 10 repetitions sufficed), each simulation

recorded 10000 different response times (i.e. a simulation time of about 10ms) in

order to even out the effect of spurious performance spikes (explained below). The

percentage of those responses found below 1ms, within 1-2ms(inclusive), within 2-4ms

and above 4ms (Figures 5.6c and 5.6d) was also computed, since there are reports

suggesting that acceptable haptic refresh rates in some cases can go as low as 250-

300Hz[MFC+14, DDKA06]. Table 5.1 reports test-case/construction specific data,

whereas Figures 5.6a-5.6d and Tables 5.2 and 5.3 report simulation specific data. In

all experiments, dcutoff was set equal to 8Å.

The results show that the interaction forces were updated within the 2ms time

constraint consistently, in the majority of the simulations, regardless of the querying

124

Figure 5.5: The four molecules used in these benchmarking experiments, showing
their relative sizes. 1XI4 is the largest one with 184k atoms, and a bounding box
with largest axis of 747.22Å in z (see Table 5.1).

125

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6 7

F
o

rc
e

 R
e

sp
o

n
se

 (
m

s)

n

1ADG-1ADG

1AT1-1AT1

2YEY-2YEY

1XI4-1XI4

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6 7

F
o

rc
e

 R
e

sp
o

n
se

 (
m

s)

Octree Depth, L

1ADG-1ADG
1AT1-1AT1
2YEY-2YEY
1XI4-1XI4

(b)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1ADG-1ADG 1AT1-1AT1 2YEY-2YEY 1XI4-1XI4

Fo
rc

e
 R

e
sp

o
n

se
 P

e
rc

e
n

ta
ge

s

n per Docking Case

>4ms

2-4ms

1-2ms

<1ms

(c)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1ADG-1ADG 1AT1-1AT1 2YEY-2YEY 1XI4-1XI4

Fo
rc

e
 R

e
sp

o
n

se
 P

e
rc

e
n

ta
ge

s

OctreeDepth per Docking Case

>4ms

2-4ms

1-2ms

<1ms

(d)

Figure 5.6: Benchmarking the two GPU-accelerated force calculation methods using
the four artificial protein-protein docking cases 1ADG-1ADG (where 1ADG is the
PDB code), 1AT1-1AT1, 2YEY-2YEY and 1XI4-1XI4. Each test was repeated 10000
times, and all response times were calculated based on slightly more than 20K in-
teracting atom pairs. (a) The best force response times obtained using regular grids
constructed with cg values equal to nrC , where n=1,2,..7 and rC is the radius of a
carbon atom. (b) The best force response times obtained using octrees at depth
levels 1-7. The force response times for test cases 2YEY-2YEY and 1XI4-1XI4, at
depths 1 and 1-2 respectively, are not shown here (to improve graph readability). The
times for these test cases were 14.92ms for 2YEY-2YEY, and 74.11 ms (level 1) and
12.96ms (level 2) for 1XI4-1XI4. (c) The percentage of those 10000 response times
found below 1ms, within 1-2ms(inclusive), within 2-4ms and above 4ms (for each test
case), obtained using the same regular grids as in (a). (d) The percentage of those
10000 response times found below 1ms, within 1-2ms(inclusive), within 2-4ms and
above 4ms (for each test case), obtained using the same octrees as in (b).

126

Table 5.2: Benchmarking the regular-grid-based method. The grids are constructed
with cell sizes cg equal to nrC , where n=1,2,..7 and rC is the radius of a carbon atom.
The table lists the total number of interacting atom pairs (SPairs), the GPU memory
allocated for the grid, the actual size of the cell in Å, the value of n used, the best
response time attained, and the percentages (rounded to the nearest integer) of those
10000 response times found below 1ms, within 1-2ms(inclusive), within 2-4ms and
above 4ms.

Memory Cell Size Best
Complex SPairs (bytes) (Å) n (ms) <1ms 1-2ms 2-4ms >4ms

1ADG-1ADG 20024 6144 12.5 7 1.2 0% 99% 1% 0%
8748 11.2 6 0.84 52% 48% 0% 0%

15972 8.6 5 0.67 98% 2% 0% 0%
32928 7.0 4 0.66 98% 2% 0% 0%
82308 5.3 3 0.78 94% 6% 0% 0%

292668 3.5 2 0.80 58% 41% 1% 0%
2464548 1.7 1 2.77 0% 0% 82% 18%

1AT1-1AT1 20042 15972 12.5 7 0.81 34% 66% 0% 0%
26364 10.8 6 0.78 50% 50% 0% 0%
49152 8.9 5 0.69 96% 4% 0% 0%
96000 6.8 4 0.63 98% 2% 0% 0%

236196 5.2 3 0.78 65% 35% 0% 0%
827052 3.4 2 0.86 41% 50% 9% 0%

6861444 1.7 1 2.56 0% 0% 88% 12%
2YEY-2YEY 20032 32928 12.3 7 0.93 11% 88% 1% 0%

58956 10.3 6 0.76 51% 49% 0% 0%
96000 8.8 5 0.71 92% 8% 0% 0%

187500 6.8 4 0.73 89% 11% 0% 0%
471648 5.1 3 0.78 53% 47% 0% 0%

1591812 3.4 2 1.01 0% 92% 8% 0%
12734496 1.7 1 5.73 0% 0% 0% 100%

1XI4-1XI4 20034 2859936 12.1 7 0.62 93% 7% 0% 0%
4668204 10.2 6 0.61 94% 6% 0% 0%
7902036 8.6 5 0.58 95% 5% 0% 0%

15540348 6.9 4 1.10 0% 100% 0% 0%
37345632 5.1 3 1.20 0% 99% 1% 0%

126041508 3.4 2 3.47 0% 0% 29% 71%
1015254228 1.7 1 N/A N/A N/A N/A N/A

127

method used. Moreover, there was at least one simulation in each test case, un-

der which the grid-based method delivered sub-millisecond force response times more

than 90% of the time (e.g. at 5rC). Similarly, at octree levels 3, 4, 4 and 6 under test

cases 1ADG-1ADG, 1AT1-1AT1, 2YEY-2YEY and 1XI4-1XI4 respectively, almost

90% of the force responses were computed by the octree-based method in less than

2ms. In all four cases, the grid-based method attained force responses in the range of

0.58-0.71ms, whereas the octree-based method attained force responses in the range

of 1.22-1.44ms. In theory, the approach could maintain such force updates throughout

a simulation, if given exclusive use of the CPU/GPU resources. In practice however,

fluctuations between the best and worst response times (in all simulations) were ob-

served, reaching in some instances a difference of up to 1.5ms. These performance

fluctuations are attributed to intervening CPU/GPU workloads (e.g. background

processes, display rendering). The dimensions of the grid-cell/leaf-octant also influ-

enced the performance of the querying method. In the case of grid-based querying,

a cell size cg=5rC appears to construct those grids that can facilitate efficient query

responses (Figure 5.6a). Slightly better responses were attained in 1ADG-1ADG and

1AT1-1AT1 at cg=4rC , however, these performance differences are insignificant. As

such, a cg=5rC could be used in the grid-based approach as a universal subdivision

criterion for regular grids. In the case of octree-based querying, the first step was to

identify the subdivision levels L with the fastest response times (Figure 5.6b). Given

this information, the formula max(`x, `y, `z)/2L was then used in order to obtain

the actual side-length of the leaf octants, and relate this length to rC , i.e. found

those multiples of rC that would cause the method to construct a tree of level L.

Using Equation 5.4.1 L was determined for each value of n by setting co equal to nrC .

Though in many cases this relation was not one-to-one (e.g. in 1ADG-1ADG n=5,6,

128

or 7 all resulted in L=3), it did identify the correct subdivision level (bold entries

in Table 5.3) when co=5rC . In all cases, the octrees occupied less memory, at the

respective leaf/cell sizes than the regular grids (Tables 5.2 and 5.3), and their byte

difference increased proportionally to the simulation workload (e.g. more than a six

fold difference in 1XI4-1XI4). In almost all simulations, with an exception of 1XI4-

1XI4 at cell size equal to 1.7Å, both approaches were able to construct their respective

partitioning structures on the GPU. It became impossible (for the GPU used) to find

a PDB file that would force Haptimol RD to construct an octree instead of a regular

grid. To overcome this, a test molecule was created out of four 1XI4 molecules. The

molecules were aligned along the main diagonal of the new bounding box so as to

maximise its volume (referred to as 4 1XI4). This artificial structure comprised ap-

proximately 735K atoms, and was bounded by a cube with side length of 2873.69Å.

Using 4 1XI4, the docking case 4 1XI4-4 1XI4 was generated and benchmarked, at a

targeted octant size co=5rC . For this test case, Haptimol RD utilized an octree (of

1.4MB), since the GPU could not allocate the 463.5MB of continuous memory needed

for storing the regular grid. Again, both molecules were allowed to overlap along their

longest surface, and as such generated a set SPairs of 27151 interacting atom pairs. In

this case, the octree-based method averaged force response times at 4.6ms, indicating

that simulation cases of such size pose an upper limit to this method. More memory

on the graphics card would have allowed, of course, Haptimol RD to attain relatively

faster response times for the same docking case (i.e. 4 1XI4-4 1XI4) by letting it uti-

lize the grid-based method instead of the octree-based method, but such tests could

not be performed here due to the memory limitations of the NVIDIA GTX580 GPU.

Finally, the results also show that both querying methods scale very well to the

size of the interacting molecules. In all four test cases, both methods obtained similar

129

Table 5.3: Benchmarking the octree-based method at subdivision levels 1-7. The table
lists per subdivision level the total number of interacting atom pairs (SPairs), the GPU
memory allocated for the octree, the actual leaf octant’s size in Å, the subdivision
level, the best response time attained, and the percentages (rounded to the nearest
integer) of those 10000 response times found below 1ms, within 1-2ms(inclusive),
within 2-4ms and above 4ms.

Memory Leaf Size Best
Complex SPairs (bytes) (Å) Level (ms) <1ms 1-2ms 2-4ms >4ms

1ADG-1ADG 20024 288 56.1 1 1.71 0% 74% 26% 0%
928 28.0 2 1.87 0% 68% 32% 0%

4384 14.0 3 1.27 0% 100% 0% 0%
20608 7.0 4 1.40 0% 99% 1% 0%

100320 3.5 5 1.75 0% 52% 48% 0%
282272 1.8 6 1.92 0% 1% 99% 0%
507072 0.9 7 2.11 0% 0% 100% 0%

1AT1-1AT1 20042 288 75.3 1 4.51 0% 0% 0% 100%
1568 37.6 2 2.52 0% 0% 100% 0%
7744 18.8 3 1.39 0% 96% 4% 0%

36864 9.4 4 1.22 0% 99% 1% 0%
183904 4.7 5 1.29 0% 98% 2% 0%
643840 2.4 6 1.72 0% 49% 51% 0%

1318400 1.2 7 2.02 0% 0% 100% 0%
2YEY-2YEY 20032 288 92.3 1 14.92 0% 0% 0% 100%

20820 46.1 2 4.20 0% 0% 0% 100%
10784 23.1 3 2.45 0% 0% 100% 0%
56352 11.5 4 1.44 0% 100% 0% 0%

299232 5.8 5 1.52 0% 99% 1% 0%
1251008 2.9 6 1.61 0% 73% 27% 0%
2864576 1.4 7 1.97 0% 0% 99% 1%

1XI4-1XI4 20034 288 373.6 1 74.11 0% 0% 0% 100%
2208 186.8 2 12.96 0% 0% 0% 100%

12448 93.4 3 3.65 0% 0% 42% 58%
65440 46.7 4 2.06 0% 0% 100% 0%

313760 23.4 5 1.40 0% 98% 2% 0%
1351584 11.7 6 1.33 0% 99% 1% 0%
5003808 5.8 7 1.46 0% 96% 4% 0%

130

response times regardless of the underlying molecule sizes. The one-to-one work-item-

per-atom strategy adapts very well to the Single Instruction Multiple Data execution

model of the GPU, and thus utilizes efficiently the GPU’s computational resources.

5.5.2 GPU-CPU Comparisons

Both GPU-accelerated methods were compared to the CPU-based method using oc-

trees. The purpose of these tests was to identify/measure the performance gains at-

tained by the GPU methods over the CPU method. The methods were not compared

to other current CPU-based approaches (e.g. brute force, pre-computed force-grid

based etc.) since reportedly they cannot manage molecular systems of more than a

couple of thousand of atoms each [RAM+12].

To obtain comparable results, the CPU-based method was tested using the same

four benchmarking test cases (1ADG-1ADG, 1AT1-1AT1, 2YEY-2YEY and 1XI4-

1XI4), cut-off distance and number of iterations (i.e. 10000). In these tests, the

subdivision levels of all octrees were set equal to 4, as stated in the Section 4.3.3.

Comparison results, per test case and querying method (CPU, GPU-Regular grid,

and GPU-Octree), were then reported as follows: a) best response times obtained

(Figure 5.7a), and b) best response-time intervals for these 10000 iterations (i.e.

<1ms, 1-2ms, 2-4ms, >4ms) as percentages (Figure 5.7b).

The results show that there were significant performance gains when utilizing

the GPU-based methods over the CPU-based method, especially as the sizes of the

molecules increased, due to the high levels of GPU occupancy/parallelism attained.

Specifically, for the 1ADG-1ADG case (comprising 7K atoms each) both GPU meth-

ods outperformed the CPU method by 5×, and by 90× for the very large test case

1XI4-1XI4 (180k of atoms each). In all cases and for more than 90% of the trials, the

131

0

10

20

30

40

50

60

70

80

90

100

1ADG-1ADG 1AT1-1AT1 2YEY-2YEY 1XI4-1XI4

Fo
rc

e
 R

e
sp

o
n

se
 (

m
s)

Docking Cases

CPU

GPU_R

GPU_O

(a)

0

10

20

30

40

50

60

70

80

90

100

C
P

U

G
P

U
_
R

G
P

U
_
O

C
P

U

G
P

U
_
R

G
P

U
_
O

C
P

U

G
P

U
_
R

G
P

U
_
O

C
P

U

G
P

U
_
R

G
P

U
_
O

1ADG-1ADG 1AT1-1AT1 2YEY-2YEY 1XI4-1XI4

Fo
rc

e
 R

e
sp

o
n

se
 P

e
rc

e
n

ta
ge

s

Docking Cases

>4ms

2-4ms

1-2ms

<1ms

(b)

Figure 5.7: GPU-CPU force response comparisons between the two GPU-accelerated
force-calculation methods (i.e. regular grid/GPU-R and octree/GPU-O) and the
octree-based CPU-force-calculation described in Section 4.3.6. All three methods were
tested on the four artificial protein-protein docking cases 1ADG-1ADG (where 1ADG
is the PDB code), 1AT1-1AT1, 2YEY-2YEY and 1XI4-1XI4. Each test was repeated
10000 times, and all response times involved slightly more than 20K interacting atom
pairs. (a) The best response times obtained by each force calculation method for
each docking case. (b) The best response-time intervals (as percentages) for the
10000 iterations (i.e. <1ms, 1-2ms, 2-4ms, >4ms) obtained by each force calculation
method for each docking case. The best response-times were calculated using GPU-
based grids of cell size cg = 5rc, GPU-based octrees of Level, L, given by Equation
5.4.1 with co = 5rc and CPU-based octrees of Level, L=4.

132

regular-grid based method (GPU-R) was able to provide force updates in less than

1ms. The octree-based method (GPU-O) although slower still updated consistently

the forces in less than 2ms. On the other hand, the CPU-based method failed to

satisfy the 2ms time constraint in every case. Overall, both GPU-based methods

improve substiantially upon the CPU-based method and, as such, can be applied to

haptics-assisted, interactive docking simulations of very large systems, which would

have been impossible otherwise.

5.5.3 Haptics-assisted Interactive Rigid-Docking Simulations
on the GPU

In addition to the above, performance tests for the grid-based method (the best per-

forming GPU-based method of the two) were also conducted using rigid-docking sim-

ulations of know compounds. Similar tests were conducted in the previous chapter for

the octree-based approach (Section 4.4.2). Like the CPU tests, the purpose of these

simulations was: a) to measure force-response times under real docking examples dur-

ing which atom-overlapping cannot occur, and b) to sense the rendering quality (e.g.

stability, smoothness) of the resulting interactions on the haptic device. To obtain

comparable results, these simulations utilized the three complexes (i.e. EGF with

EGF receptor, BPTI with Trypsin, anticancer drug BAY43-9006 with B-raf) used in

the CPU tests with the addition of the GroES -GroEL complex as defined in 1GRU

PDB file. Using these complexes six rigid-docking simulations were conducted re-

lated to protein-protein and protein-drug docking. The first four (one simulation per

complex) captured the relation between force response times and number of interact-

ing atom pairs using the methodology described in Section 4.4.2, i.e. the ligand was

moved around and steered to its binding conformation. Again, each simulation ran

133

Table 5.4: Structural information for the eight molecules used in the real-time docking
simulations. The table lists the molecule’s PDB code, the number of atoms comprising
each molecule, and the molecule’s largest bounding box dimension.

of Bounding Box
Molecule heavy atoms Largest Side (Å)

sorafenib 48 17.20
EGF 483 41.50
BPTI 604 45.60

TRYPSIN 2094 58.70
B-raf 5376 83.10
EGFr 5836 113.09
GroES 6321 102.70
GroEL 66451 374.17

for approximately one minute, and the values recorded (at 10 millisecond intervals)

were the force response times and the number of interacting atom pairs. Unlike the

first four simulations, the last two were conducted in order to identify how the number

of interacting atom pairs affects the rendering stability of the force (especially when

the molecules become very large). The complexes B-raf-sorafenib and GroEL-GroES

(the smallest and largest case) were used in these simulations each of which lasted

for approximately 6ms, i.e. just moving the ligand around the receptor. During these

tests the values recorded at each haptic frame were the total force, and the number

of interacting atom pairs. Table 5.4 gives structural information on the molecules

used. All force queries were executed using a regular grid with cg=5rC (8.5Å), and

a value of 8Å as the cut-off distance. Figures 5.8 and 5.9 illustrate graphically the

results obtained from these simulations. The force parameters and the PDB files

(containing the interacting molecules) used in these simulations were obtained with

the same technique described in Section 4.4.2.

The results show that all interaction forces were calculated in less than one mil-

lisecond throughout the simulation period and for varying numbers of atom pairs.

134

In general, the interaction forces displayed and felt on the haptic device were fairly

smooth, without any device-induced instabilities and vibrations. When the simula-

tion involved very large structures however (GroEL-GroES), rapid force fluctuations

in magnitude and direction (especially when the molecules were in contact) induced

device jittering which could be perceived by the user as unstable force rendering.

Force scaling/smoothing methods such as the ones described in Chapter 6 were im-

plemented in order to address this. Response times did not drop below 0.2ms, even

when there were no interactions, because NVIDIA’s OpenCL drivers induce a 0.2ms

kernel deployment overhead. Furthermore, in many instances the response times

for the same set of atom pairs were found to fluctuate by up to 0.45ms. Like the

benchmarking experiments, these fluctuations reflect delays introduced by interfering

system processes.

5.6 Implementing a hybrid approach

Even though the grid-based method outperformed the octree-based method consis-

tently in all test cases, both methods were able to attain force responses at haptic

refresh rates. Moreover, in all cases the octrees had a smaller memory footprint than

the grids, which poses them as a useful alternative when GPU memory is a scarce

commodity. With that in mind, Haptimol RD implements/utilizes both force calcu-

lation methods interchangeably and unites them under one hybrid approach. This

hybrid approach constructs a grid if the underlying memory requirement, given by

mG, does not exceed the available GPU memory, or an octree otherwise. To compute

mG Haptimol RD uses the Equation 5.6.1,

mG =

⌊
`x
cg

⌋⌊
`y
cg

⌋⌊
`z
cg

⌋
cb (5.6.1)

135

0

1

2

3

4

5

6

7

8

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0
.0

1
2

.4
7

4
.9

3
7

.3
9

9
.8

5
1

2
.3

1
1

4
.7

7
1

7
.2

3
1

9
.6

9
2

2
.1

5
2

4
.6

1
2

7
.0

7
2

9
.5

3
3

1
.9

9
3

4
.4

5
3

6
.9

1
3

9
.3

7
4

1
.8

3
4

4
.2

9
4

6
.7

5
4

9
.2

1
5

1
.6

7
5

4
.1

3
5

6
.5

9
5

9
.0

5
6

1
.5

1

N
u

m
b

e
r

o
f

A
to

m
 P

ai
rs

 (
Th

o
u

sa
n

d
s)

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Simulation Time (secs)

of Atom Pairs Response Time

(a)

0

1

2

3

4

5

6

7

8

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0
.0

1
2

.3
8

4
.7

5
7

.1
2

9
.4

9
1

1
.8

6
1

4
.2

3
1

6
.6

1
8
.9

7
2

1
.3

4
2

3
.7

1
2

6
.0

8
2

8
.4

5
3

0
.8

2
3

3
.1

9
3

5
.5

6
3

7
.9

3
4

0
.3

4
2
.6

7
4

5
.0

4
4

7
.4

1
4

9
.7

8
5

2
.1

5
5

4
.5

2
5

6
.8

9
5

9
.2

6

N
u

m
b

e
r

o
f

A
to

m
 P

ai
rs

 (
Th

o
u

sa
n

d
s)

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Simulation Time (secs)

of Atom Pairs Response Time

(b)

0

1

2

3

4

5

6

7

8

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0
.0

1
2

.4
2

4
.8

3
7

.2
4

9
.6

5
1

2
.0

6
1

4
.4

7
1

6
.8

8
1

9
.2

9
2

1
.7

2
4
.1

1
2

6
.5

2
2

8
.9

3
3

1
.3

4
3

3
.7

5
3

6
.1

6
3

8
.5

7
4

0
.9

8
4

3
.3

9
4

5
.8

4
8
.2

1
5

0
.6

2
5

3
.0

3
5

5
.4

4
5

7
.8

5
6

0
.2

6

N
u

m
b

e
r

o
f

A
to

m
 P

ai
rs

 (
Th

o
u

sa
n

d
s)

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Simulation Time (secs)

of Atom Pairs Response Time

(c)

0

1

2

3

4

5

6

7

8

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0
.0

1
2

.4
1

4
.8

1
7

.2
1

9
.6

1
1

2
.0

1
1

4
.4

1
1

6
.8

1
1

9
.2

1
2

1
.6

1
2

4
.0

1
2

6
.4

1
2

8
.8

1
3

1
.2

1
3

3
.6

1
3

6
.0

1
3

8
.4

1
4

0
.8

1
4

3
.2

1
4

5
.6

1
4

8
.0

1
5

0
.4

1
5

2
.8

1
5

5
.2

1
5

7
.6

1
6

0
.0

1

N
u

m
b

e
r

o
f

A
to

m
 P

ai
rs

 (
Th

o
u

sa
n

d
s)

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Simulation Time (secs)

of Atom Pairs Response Time

(d)

Figure 5.8: A haptics-assisted rigid-docking simulation between: (a) the drug
molecule sorafenib and the receptor protein B-raf ; (b) protein BPTI and the receptor
protein Trypsin; (c) protein EGF and the receptor protein EGFr ; (d) protein GroES
and the receptor protein GroEL. The graphs depict the force response times attained,
at 10ms intervals, and the respective sets of interatomic interactions accounted for by
the grid-based approach during the simulation.

136

0

1

2

3

4

5

6

7

8

9

0

0.5

1

1.5

2

2.5

3

3.5

1
2

5
1

5
0
1

7
5
1

1
0
0

1
1

2
5

1
1

5
0

1
1

7
5

1
2

0
0

1
2

2
5

1
2

5
0

1
2

7
5

1
3

0
0

1
3

2
5

1
3

5
0

1
3

7
5

1
4

0
0

1
4

2
5

1
4

5
0

1
4

7
5

1
5

0
0

1
5

2
5

1
5

5
0

1
5

7
5

1
6

0
0

1

N
u

m
b

e
r

o
f

A
to

m
 P

ai
rs

 (
Th

o
u

sa
n

d
s)

Fo
rc

e
 M

ag
n

it
u

d
e

 (
n

an
o

N
e

w
to

n
s)

Simulation Time (msecs)

of Atom Pairs Force Magnitude

(a)

0

1

2

3

4

5

6

7

8

9

0

0.5

1

1.5

2

2.5

3

3.5

1
2

5
1

5
0
1

7
5
1

1
0
0

1
1

2
5

1
1

5
0

1
1

7
5

1
2

0
0

1
2

2
5

1
2

5
0

1
2

7
5

1
3

0
0

1
3

2
5

1
3

5
0

1
3

7
5

1
4

0
0

1
4

2
5

1
4

5
0

1
4

7
5

1
5

0
0

1
5

2
5

1
5

5
0

1
5

7
5

1
6

0
0

1

N
u

m
b

e
r

o
f

A
to

m
 P

ai
rs

 (
Th

o
u

sa
n

d
s)

Fo
rc

e
 M

ag
n

it
u

d
e

 (
n

an
o

N
e

w
to

n
s)

Simulation Time (msecs)

of Atom Pairs Force Magnitude

(b)

Figure 5.9: A haptics-assisted rigid-docking simulation between: (a) the drug
molecule sorafenib and the receptor protein B-raf ; (b) protein GroES and the recep-
tor protein GroEL. The graphs depict the force magnitudes (scaled to nanoNewtons)
attained at each haptic frame, and the respective sets of interatomic interactions
accounted for by the approach during the simulation.

where mG is the total memory required for the regular grid, `x, `y, and `z are the

side-lengths of the molecule’s tightest rectangular bounding box in the x, y and z

axes respectively, cg is the desired size of a grid cell side (i.e. each cell is bounded

by a cube), and cb the memory requirement in bytes of each cell (see Section 5.4.1).

When mG is less than or equal to the GPU’s available memory, Haptimol RD utilizes

the grid-based method; otherwise it utilizes the octree-based method. All sizes in

Equation 5.6.1 are measured in Ångstrom, cb is 16 bytes and cg = 8.5Å since it is the

recommended cell size for optimal grid-querying performance (see Section 5.5.1). The

actual cell size used, however, might change slightly in order to divide the bound-

ing box into an integer number of subdivisions. Because of this hybrid approach,

Haptimol RD can support adaptively a wide range of GPUs.

137

5.7 Balancing occupancy and execution convergence

on the GPU

Both force calculation methods discussed here employ one work-item per each re-

ceptor atom in order to attain maximum GPU occupancy. As seen however, these

methods are not immune to execution divergence, since their atom-based localized

search contains conditional statements that can alter the execution flow of the re-

spective thread within its warp. To address this, and to check whether or not there

is a better strategy, two additional strategies were implemented and tested, both of

which were designed to achieve optimum execution convergence while maintaining

similar/reasonable levels of occupancy. The first strategy uses one work-item per

each receptor atom, but in this case the receptor atom performs the distance test to

all cells/leaf octants indiscriminately, i.e. fewer conditions to manage but more ligand

atoms to check per thread. For the second strategy, two space partition structures

had to be built: one for the ligand the other for the receptor. Each receptor-related

cell/leaf octant was then assigned to a different work-item and performed the same

distance checks to all ligand-related cells/leaf octants, as the first strategy did. Both

strategies were tested with the 2YEY-2YEY and 1XI4-1XI4 complexes (see Section

5.5.1) at various cell/octree subdivision sizes/levels and on the same computing plat-

form used for performance testing. None of the strategies however managed to achieve

force responses within 2ms. Moreover, both strategies suffered a 1.3-5.2 ms execution

overhead (depending on the strategy, querying method, molecular size and grid/octree

structure used) right from the beginning, since their atom-cell/octant or cell/octant-

cell/octant distance checks were performed at all times, irrespectively of where the

molecules were in space, i.e. within cut-off or not. As such, these strategies were not

examined any further.

138

Although this work does not reflect an exhaustive search of all possible GPU-based

querying strategies, it does indicate that modern GPUs favour occupancy more than

they favour execution convergence. The recent work of Kaluschke et. al [KZD+14],

provides additional support to this argument, and justifies the use of a strategy that

opts for maximum GPU occupancy rather than minimum execution divergence.

5.8 Testing different GPUs

All experiments thus far tested how querying scales with molecular size on the same

GPU, with the question how it scales with different faster GPU architectures still

remaining unanswered. Moreover, the relation between the number of processing

cores/clock speeds, querying response times, and molecular sizes is unclear, and as

such poses an equally interesting question. In an attempt to answer them, additional

tests were conducted using the grid-based querying method, two different GPUs, and

six different molecules of various sizes. The two GPUs used were the GTX 580,

and GTX 980 architectures from NVIDIA. Likewise, the molecules tested were the

1AT1, 2YEY, and 1XI4 proteins (used in benchmarking), the Myosin II (1MVW)

and Glutamine Synthetase (1HTQ) proteins, and an artificial structure named 3 1XI4

which was created out of three 1XI4 molecules in a similar way to the 4 1XI4 molecule.

The GPUs varied in the number of computing cores, memory sizes and clock speeds,

whereas the molecules varied in the number of atoms (ranged from 20 thousands

up to 1 million atoms), and bounding box sizes. Tables 5.5 and 5.6 list technical

and structural information for the GPUs and the molecules respectively. Out of

these proteins the following six test cases were generated: 1AT1-1AT1, 2YEY-2YEY,

1MVW-1MVW, 1XI4-1XI4, 3 1XI4-3 1XI4, and 1HTQ-1HTQ. Each case was tested

on these GPUs using a similar testing procedure (and computing environment) to

139

Table 5.5: The two GPU architectures used for testing the scalability of the grid-
querying method on different GPUs. The table lists per architecture, the number
of processing cores offered, the processing clock speed, the global memory size, the
memory clock speed, and the memory bandwidth.

GTX 580 GTX 980

Cores 512 2048
GPU Clock (MHz) 772 1126
Memory (GB) 1.5 4
Mem. Clock (GB/sec) 2.004 7.0
Mem. Bandwidth (GB/sec) 192.4 224

Table 5.6: Structural information for the six molecules used for testing the scalability
of the grid-querying method on different GPUs. The table lists the molecule’s PDB
code, the number of atoms comprising each molecule, and the molecule’s largest
bounding box dimension.

of Bounding Box
Molecule heavy atoms Largest Side (Å)

1AT1 21318 150.51
2YEY 53613 184.50
1MVW 94966 462.23
1XI4 183600 747.22

3 1XI4 550800 2113.67
1HTQ 978720 225.71

the one described in benchmarking; namely each test utilized a common 4×4 ligand

repositioning matrix and arbitrary force parameters, allowed molecular overlapping,

and recorded 10000 different response times. Again, the times account for all costs

before, during and after kernel execution (i.e. prepare kernel on the CPU, submit and

queue kernel for execution, execute kernel, transfer results to the CPU and compute

the total force), and not only the cost to execute the kernel. In all cases the regular

grids were constructed with cg=5rC (8.5Å), the cut-off distance applied was 8Å, and

the number of interacting atom pairs returned from querying was slightly more than 20

thousands. The results reported per test case and GPU architecture are the averages

of those 10000 responses. Figure 5.10 illustrates graphically these averages.

140

0

1

2

3

4

5

6

7

8

21318 53984 94966 183600 550800 978720

1AT1 2YEY 1MVW 1XI4 3_1XI4 1HTQ

Q
u

e
ry

in
g

 T
im

e
 (

m
s)

Molecule Names & Size

GTX 580

GTX 980

Figure 5.10: Measuring the scalability of the grid-querying method on different GPUs.
The graph shows the averages of the 10000 response times recorded per test case and
different GPU architecture. The number of interacting atom pairs returned were
slightly more than 20K. All regular grids were of cell size cg = 5rc.

Despite its superior processing power the GTX 980 recorded similar query re-

sponses as the GTX 580, for molecular sizes up to 183.6K atoms. A close examination

of these findings revealed that although the kernel execution times obtained by the

GTX 980 was about 2 times faster than those of GTX 580, the overall response times

of the GTX 980 were not significantly better than those of GTX 580, due to the fol-

lowing fixed costs: a) time to prepare the kernel for execution on the CPU, b)time to

submit and queue kernel execution on the GPU, c) transfer force subtotals from the

CPU to GPU, and d) compute the total force on the CPU. For smaller molecules these

costs attributed to around 50% of the total querying cost, and as such averaged out

the kernel-execution speed improvements obtained by the GTX 980. Another reason

that might have affected negatively the GTX 980’s performance, during the docking

of molecules up to 183.6K atoms each, is the size of the workgroups used. Namely,

141

the number of workgroups sent for execution in those cases was less than or equal to

718 (i.e. ceiling(183600/256)), meaning that the GTX 980 architecture was under-

utilized, i.e. not enough work to utilize all of its processing cores. That might also

explain the significant performance improvements (up to 30%) recorded on this GPU

for molecules larger than 500K atoms. In those cases the assigned workload was large

enough (i.e. ≥2149 workgroups) to benefit from the extra processing cores offered by

the GTX 980, and at the same time overwhelm the processing capabilities of the GTX

580. This hypothesis was tested by conducting an additional docking simulation on

the GTX 980, using the molecule 1XI4 (test case 1XI4-1XI4) and workgroups of size

128. In that case, the average querying times attained by the GTX 980 were about

22% better than the ones reported initially, i.e. they dropped from 0.75ms to 0.61ms.

This indicates that the method would perform better if its kernel execution is fine-

tuned based on the specifications (and hardware design) of each GPU. However, such

fine-tuning defeats the purpose of using OpenCL in order to maximize the portability

of Haptimol RD to different GPU architectures, and as such it was not investigated

any further and left outside the scope of this thesis. Overall, the results show that

the proposed method would scale adequately with different/more powerful GPUs, as

long as, the workload produced utilizes properly the additional processing power.

5.9 Conclusion

This chapter describes implementation details for two real-time, GPU-accelerated

force calculation methods pertinent to interactive haptics-assisted docking. Both

methods utilize effectively the many-core processing capabilities of modern GPUs, the

space partitioning properties of regular grids and octrees, and two efficient proximity

querying algorithms (based on these partitioning structures) in order to compute

142

the interaction forces in real time. The methods adapt the CPU-based methods

discussed in Chapter 4 on the GPU, and as such compute the forces only for those

interacting atom pairs found within a cut-off distance. To minimize pre-computation

requirements and achieve high levels of GPU occupancy, the methods construct the

respective partitioning structures on the ligand only, and then query this structure for

all receptor atoms in parallel. Since there are no spatial constraints on the receptor

atoms (i.e. free to move during conformational changes), both approaches can support

in principle receptor flexibility (provided conformational change can be computed

sufficiently fast), which means that they can compute these forces at haptic refresh

rates during receptor deformation.

These methods have been implemented and tested with docking simulations of

different molecular shapes and sizes. In all test cases, the grid-based method per-

formed consistently faster than the octree-based method. However, both of them

achieved force updates in less than 2ms, which ranged from standard protein-drug

to very large protein-protein interaction problems, i.e. with molecules consisting of

hundreds of thousands of atoms each. For this reason the grid-based method is set as

the default force calculation method in Haptimol RD (when in GPU mode), and it

is switched over automatically to the octree-based method when the available GPU

memory cannot accommodate the construction of a regular grid. This forms a scal-

able, hybrid approach that can support (and adapt its execution to) different GPU

architectures and facilitate the haptics-assisted study of very large protein-protein

interactions (as proved with additional testing), while improving substantially upon

its CPU-based counterpart. As shown however, force stability issues arise when the

interacting molecules are very large and in close proximity, due to an erratic force

143

profile both in magnitude and direction. The latter is attributed to the eventual en-

largement of the set of atom pairs considered during force calculations. Force scaling

and collision response techniques might be able to address this issue sufficiently. The

following chapter describes such techniques and closes with a brief description of the

software implementation.

Chapter 6

Force Scaling, Stability and
Haptimol RD

6.1 Introduction

The methods described in the previous two chapters compute the interaction forces

in kJ mol−1 nm−1 (see Section 3.4). It is therefore necessary that these forces are

converted to Newtons (i.e. device units), and scaled appropriately prior to rendering

them on the haptic device. This scaling is necessary in order to ensure that a good

range of forces can be felt by the user through the device. If not done appropriately,

the scaling can affect drastically the profile of the forces rendered (i.e. render only

the weak, long-range attractive/repulsive interactions and not the strong, short-range

repulsive ones, and vice versa), and as such decrease the effectiveness of the simulation.

However, force scaling by itself, although crucial, does not ensure the haptic stability

of the forces rendered. As seen in Section 5.5.3, the rigid docking of large biomolecules

can introduce to the simulation forces that are erratic (fluctuate rapidly) both in

magnitude and direction, causing device jittering (especially when the molecules are

in contact). The stability of the haptic force feedback therefore is another factor

that can affect negatively the user’s experience during a docking simulation, if not

144

145

addressed properly.

This chapter discusses novel intuitive methods that address sufficiently the force

scaling and haptic stability issues pertinent to the interactive docking of large rigid

biomolecules. An implementation overview of Haptimol RD is also given here, outlin-

ing the application’s main functionality. The discussion starts in the following section

with the force scaling methods implemented in Haptimol RD.

6.2 Force scaling

A haptic device has a finite force-rendering range (0-3.3 Newtons for the Geomagic

Touch), whereas the intermolecular forces f can take a very large range of values.

As such the mapping between the forces acting at the molecular level and the forces

rendered to the user at the physical level must take into account these range differ-

ences. Failure to do so could hinder drastically the user’s perception of the interaction

forces, e.g. render perceivably repulsive VDW forces at close range but failing to ren-

der perceivably weaker electrostatic forces at longer ranges. To address this issue

Haptimol RD allows the user to select in real time amongst three different scaling

methods, each of which is capable of altering the magnitude of the interaction force

felt by the user during the simulation. The first method is a fixed scaling method,

similar to the one proposed by Wollacott and Merz [WMJ07]. When applied, the user

senses on the haptic device strong force magnitudes (approx. 3N) when the molecules

are in collision, and weaker forces as the ligand moves away from the receptor. The

second method is a new intuitive method introduced in this thesis, which scales the

total interaction force by mapping it linearly to a user defined min/max range of force

magnitudes. The min-max method enables the user to focus on a specific range of

intermolecular forces during the simulation. As such, it can help the user perceive

146

certain force ranges on the haptic device (e.g. weak long range attractive VDW or

electrostatics), which would have been otherwise undetectable. When applied, all

interaction forces greater than max are mapped to a haptic force of 3N and all forces

less than min are capped to a haptic force of 0N. Unlike fixed scaling, the intensity

of the interaction forces felt on the haptic device depends only on the range, and

not on the relative position of the two molecules, e.g. if in collision, or a distance

apart. The third method is the variable gain scaling method proposed by Bolop-

ion et.al [BCRR11]. Their method amplifies small amplitude forces using a series of

arctangent functions.

For the first two methods, Haptimol RD converts f from kJ mol−1 nm−1 to

nanoNewtons (nN). Specifically, f is converted initially from kJ mol−1 nm−1 to New-

tons, via a division by 6.02329 × 1011 (since 1N is equivalent to 6.02329 × 1011 kJ

mol−1 nm−1), and the result is then scaled by 109. In fixed scaling mode, Hapti-

mol RD renders the result on the haptic device only if the resultant interaction force

is less than or equal to 3nN (i.e. 1nN maps to a 1N haptic force). Otherwise it caps

f at 3nN and renders the result. In min-max scaling mode, f is mapped to a user-

defined scaling range using Equation 6.2.1, and the result is rendered on the haptic

device. Equation 6.2.1 returns the force rendered on the device fh which is given by,

fh =

0, if f ≤ fmin

(fmaxh) f̂ , if f ≥ fmax(
(f−fmin)fmax

h

fmax−fmin

)
f̂ , if fmin ≤ f ≤ fmax

(6.2.1)

where f̂ is the unit vector in the direction of f , fmax and fmin are the upper and lower

limits of the user defined range of interaction force magnitudes in nanoNewtons, f is

the magnitude of f , and fmaxh is the magnitude of the maximum force exerted by the

haptic device (3N in this case). The variable gain method does not require f to be

147

0

0.5

1

1.5

2

2.5

3

3.5

4

1

4
1

2

8
2

3
1

2
3

4

1
6

4
5

2
0

5
6

2
4

6
7

2
8

7
8

3
2

8
9

3
7

0
0

4
1

1
1

4
5

2
2

4
9

3
3

5
3

4
4

5
7

5
5

6
1

6
6

6
5

7
7

6
9

8
8

7
3

9
9

7
8

1
0

8
2

2
1

8
6

3
2

9
0

4
3

9
4

5
4

9
8

6
5

1
0

2
7

6

Fo
rc

e
 (

n
an

o
N

e
w

to
n

s)

Time (msec)

Fixed
Min-Max Range
Variable

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

1
3

9
0

7
7

9
1

1
68

1
5

57
1

9
46

2
3

35
2

7
24

3
1

1
3

3
5

0
2

3
8

91
4

2
80

4
6

69
5

0
58

5
4

47
5

8
36

6
2

25
6

6
1

4

7
0

0
3

7
3

92
7

7
81

8
1

70
8

5
59

8
9

48
9

3
37

9
7

26

Fo
rc

e
 (

n
an

o
N

ew
to

n
s)

Time (msec)

Fixed
Min-Max Range
Variable

(b)

0

0.5

1

1.5

2

2.5

3

3.5

4

1

4
4

9

8
9

7

1
3

4
5

1
7

9
3

2
2

4
1

2
6

8
9

3
1

37

3
5

8
5

4
0

33

4
4

8
1

4
9

29

5
3

7
7

5
8

25

6
2

7
3

6
7

21

7
1

6
9

7
6

1
7

8
0

6
5

8
5

1
3

8
9

61

9
4

0
9

9
8

57

1
0

3
0

5

1
0

7
5

3

1
1

2
0

1

Fo
rc

e
 (

n
an

o
N

e
w

to
n

s)

Time (msec)

Fixed
Min-Max Range
Variable

(c)

Figure 6.1: Graphing the interaction forces obtained after scaling, during three dif-
ferent rigid docking simulations of protein GroES and the receptor protein GroEL.
Each simulation lasted for approximately 10 seconds and the force was scaled using
the fixed, min-max range and variable gain methods. (a) The min-max range was
set equal 0-0.5 nanoNewtons in order to scale up (focus the study on) the long-range
interactions when the molecules are farther apart. (b) The min-max range was set
equal 1-6 nanoNewtons in order to scale down the magnitude of the short-range, re-
pulsive VDW interactions, and study structural complementarity close to the docking
site. (c) The min-max range was set equal 0-10 nanoNewtons in order to smooth out
the rapid force fluctuations rendered on the haptic device during the simulation.

148

converted from kJ mol−1 nm−1 to Newtons.

In all scaling methods, the maximum force rendered on the haptic device is limited

to 3N, i.e. fh ≤3N. Moreover, the user cannot perceive haptic forces less than or equal

to 0.26N because they are masked by the back-drive friction of the haptic device.

6.3 Haptic Stability and Multi-point Collision Re-

sponse

In an interactive haptics-assisted docking application, attaining haptic-refresh rates

and an appropriate scaling factor is crucial but does not guarantee force stability. Es-

pecially for those applications that model the VDW interaction forces using LJ force

instabilities arise when the two molecules are in very close proximity with each other.

When this occurs, device vibrations and jittering prohibit the user from perceiving the

actual interaction forces. Atomic interpenetration exacerbates this issue substantially

by making the interaction forces extremely erratic in both magnitude and direction,

and causing the haptic stylus to move uncontrollably. The main reason for this in-

stability is the rapid change in magnitude and force direction (e.g. from attractive to

repulsive) of the VDW interactions. Haptimol RD addresses atomic interpenetration

by implementing an intuitive force-based multi-point collision response method which

prevents extreme receptor/ligand atom overlapping. The method allows the applica-

tion to update the interaction force and the ligand position only if the computed force

satisfies certain criteria. Otherwise, the application keeps the ligand at its last valid

position, and renders on the haptic device the last valid force (Figure 6.2). Unlike

other approaches [LL04, BJ08], the method does not rely on penetration depths and

uniform grids/distance maps in order to resolve ligand movement during collision,

and as such it is free of any spatial constraints. Instead, ligand movement is resolved

149

using the concept of relative movement as discussed in Section 3.6. Algorithm 10

outlines this method.

Algorithm 10 Force-based Collision Response

Require: pcurr, current HIP position
Require: plast, last HIP position
Ensure: fcurr, the force rendered on the haptic device

1: mCursor
tmp ← GetTmpRelativeCursorMovement(pcurr, plast)

2: Ttmp ← GetTmpTransformationMatrix(mCursor
tmp)

3: pLtmp ← UpdateTmpLigandPosition(Ttmp)
4: ftmp ← ComputeTmpForce(pLtmp)
5: // check/set the force/position updating flags
6: if flast > 3nN then
7: flagf ← true
8: else
9: flagf ← false

10: end if
11: if ftmp ≤ 3nN OR (flagf is true AND ftmp ≤ flast) then
12: update ← true
13: else
14: update ← false
15: end if
16: if update is false then
17: set all positions back to their last valid values
18: fcurr ← flast
19: else
20: // set all temporary positions as current
21: plast ← pcurr
22: mCursor

curr ← mCursor
tmp

23: Tcurr ← Ttmp
24: pLcurr ← pLtmp
25: fcurr ← ftmp)
26: end if

The main idea of Algorithm 10 is that ligand-position updates should occur only

if the resultant forces are valid (≤3nN), or converge to 3nN when invalid. Since

the VDW repulsive interactions dwarf all other interactions when the atoms overlap

(especially when multiple atoms are overlapping), the method guarantees that atom

150

(a) (b) (c)

(d) (e) (f)

Figure 6.2: Applying the multipoint, force-based collision response method during
a docking simulation. The ligand in grey colour is centred at the HIP position,
and the ligand in purple colour (the actual ligand) shows the position of the virtual
cursor (see Section 3.6). The green arrow at the bottom of each picture depicts the
relative displacement of the HIP. During collision the HIP can be displaced without
constraints, unlike the virtual cursor which must remain at its last valid (i.e. collision
free) position. Collision occurs when the interaction force is greater than 3nN. a)
The ligand moves towards the negative x axis without causing a collision. b,c) The
molecules are in collision while the user keeps pushing the HIP (grey molecule) down
the negative x axis. d) The user moves the HIP diagonally (along the negative x,y
axes) while the molecules are still in collision. e) Relative HIP movement towards
the positive x axis, results in a collision free movement for the virtual cursor and so
the purple ligand molecule moves in the positive x direction. f) Again relative HIP
movement towards the negative y axis, results in a collision free movement for the
virtual cursor and so the purple ligand also moves in the same direction.

151

interpenetration is kept at acceptable levels. In addition, the method enables the user

to experience the sliding of the ligand over the receptor, as the former moves over

the latter during a multipoint collision event. In that case the user will sense the

interaction force whilst being able to slide the ligand over the surface of the receptor.

This sliding effect is important in haptics-assisted docking because it enables the

user to explore structural complementarity between the molecules, like a 3D jigsaw

puzzle. The force applied for collision response purposes is the same as the fixed-

scaling force, with both VDW and electrostatic interactions accounted for. The 3nN

was derived empirically and is the threshold that allowed Haptimol RD to constrain,

in all test cases, atom penetration at depths no deeper than 0.6A. A linear smoothing

function [HS11] is also applied as a means to further reduce device jittering during

penetration (necessary when the docking involves large proteins). Unlike the most

popular approach in the field (proposed by Lee and Lyons [LL04] and improved by

Wallcot and Merz [WMJ07]), this method does not have to alter the force profile

of the docking simulation (i.e. add spring-based forces) in order to achieve haptic

stability. Moreover it can attain a sliding effect for interacting molecules of very large

sizes (colliding potentially at multiple/distributed points), without constraining the

ligand to a probe sphere or to a drug-like molecule.

6.4 Implementation

Haptimol RD (Figure 6.3) is developed using the Visual C++ programming lan-

guage, the Windows Standard Development Kit (win SDK), and the OpenGL and

OpenCL libraries. The win SDK and the OpenGL library were used for developing the

Graphical User Interface, and for rendering/visualizing the 3D molecular structures

respectively. The OpenCL library was used for programming the GPU to compute

152

the interaction forces and it was chosen in order to maximize the portability of Hap-

timol RD to different GPU architectures. Finally, the interface with the Geomagic

Touch haptic device was implemented using the Open Haptics toolkit from Geomagic.

Haptimol RD provides two modes of molecular visualization, as seen in Chapter 3.

The first mode renders the molecule using a space-filling model, whereas the second

uses a Cα backbone model. The user is allowed to select the two modes interchange-

ably at runtime. Haptic rendering of the interaction force is provided in either mode,

with the force being computed, however, based on all interatomic interactions within

the cut-off distance (regardless of the mode). A 3D force arrow, when enabled, allows

the user to identify the direction and magnitude of the interaction force (green=weak,

red=strong) at any point and time during the simulation. In addition to the visuo-

haptic feedback, the application offers additional visual cues that can provide further

assistance to the user during the docking simulation. These cues include a real-time

graph of the interaction energy/force values and a residue colouring feature. The

graph window provides a visual representation of the interaction energy/forces as

the simulation progresses. This information can be used qualitatively by the user

to identify potential local energy minima/barriers, and score/evaluate the respective

conformations. With the residue colouring feature the user can colour-code different

parts of the molecule (e.g. potential active sites), and use these codes to identify these

parts readily during the docking simulation (reducing thus the search space). Residue

selection and colouring is implemented in a manner similar to PyMol [Del02], and can

be applied to both receptor and ligand molecules (Figure 6.3). A file-save feature al-

lows the user to store the coordinates of potential docking conformations in different

PDB files. Using this feature the user can export various docking poses, throughout

the simulation, which can then import in other applications for further processing.

153

Figure 6.3: The Graphical User Interface of Haptimol RD. The Epidermal Growth
Factor (EGF) interacts with its receptor (EGFr), i.e. PDB code 1NQL. The in-
teraction energy (red line) and force (green line) are displayed in real-time in the
Energy/Force Graph Window. The dark and light blue lines within the same window
depict the user-defined max and min limits of the force scaling range, respectively.
The user can adjust this range during the simulation in real-time, and as such affect
the profile of the forces rendered on the haptic device. In this case, the force is re-
pulsive as visualized by the green force arrow. Using the residue selection/colouring
control (the scrollable area above the Energy/Force Graph Window) the active sites
of EGFr and EGF are coloured in green and yellow, respectively. The user utilizes
this information in order to focus the haptic simulation in this region only, and thus
reduce the search space of docking conformations substantially.

154

In addition to a haptics-assisted navigation, Haptimol RD allows the user to conduct

the docking simulation using a keyboard and a mouse. This mode offers the same

level of control over the simulation as the haptics mode (including visual cues) except

force feedback. This allows users who do not have access to a haptic device to still

utilize the application in their studies. The lack of force feedback however, would

have a negative impact on the usefulness of the application.

6.5 Conclusion

As stated in Chapter 2, computing the force at haptic refresh rates is a necessary

condition but not the only one in haptics assisted docking. The other equally impor-

tant condition is the stability of the forces rendered on the haptic device, especially

when the two molecules interact at close proximity. Force scaling and collision re-

sponse methods can help a haptic-based application attain stable force rendering

by constraining the range of forces felt on the device, and by prohibiting atom in-

terpenetration (and the display of the erratic forces obtained therein), respectively.

The design and implementation of such methods is the main focus of this chapter.

Three force scaling methods are examined. All methods scale the interaction force to

nanoNewtons, using either a fixed scaler, a min-max range of force magnitudes, or

a combination of arctangent functions. The resultant force in nanoNewtons is then

mapped to a range of 0-3N of haptic force and rendered on the device. An intu-

itive, force-based collision response method is also described here capable of handling

molecular collision at multiple contact points, and stabilizing the forces rendered on

the haptic device when such collisions occur. These methods in combination with the

3D molecular visualization, haptic navigation and force calculation methods discussed

earlier form Haptimol RD, the first interactive haptics-assisted docking application

155

that can accommodate the rigid docking of very large biomolecules, and the study of

the underlying binding interactions.

Chapter 7

Conclusions

7.1 Discussion and Conclusions

Haptics can benefit the field of molecular docking by enabling the user intervene with

the binding process using one’s experience, knowledge and intuition. Nonetheless,

this technology has not been adopted notably by the docking community, despite a

forty-year research effort, due mainly to the strict force-update rate requirements of

the device (i.e. within 1000Hz, but it can be relaxed down to 500Hz as noted in

Otaduy and Lin [OL05a]), limitations on computing power, hardware costs, the lack

of freely available haptics-assisted docking software, and constraints on the size of

the molecules supported, e.g. small proteins and drugs. This thesis addressed these

issues in an attempt to lift these barriers, and promote the use of haptics within the

community. The result is a low-cost, free-to-download, user-friendly, interactive ap-

plication called Haptimol RD, that can facilitate the haptics-assisted, rigid docking

of very large biomolecules, e.g. large proteins. Table 2.1 shows how Haptimol RD sits

in comparison to the state of the art in haptics-assisted docking. The thesis discusses

the design and implementation of Haptimol RD, and proposes novel methods per-

tinent to haptic navigation, force calculation, force scaling, and multipoint collision

156

157

response. It also introduces future research directions and extensions to this work.

The discussion begins in Chapter 2 with a review on molecular docking, and on

the advancements made in the field of haptics-assisted docking. It then continues

in Chapter 3 with the design and development of Haptimol RD’s molecular visual-

ization and haptic navigation routines. These are core functions of any interactive

haptics-assisted docking system (and the first ones implemented in Haptimol RD),

since they enable the user to search for, identify and score visually the geometric

complementarity between molecules, and cruise haptically the virtual world. Three

graphics rendering techniques were examined here for molecular visualization. The

method producing the best results both visually and performance-wise utilized an

impostor-based ray tracing technique. The method preloaded and ray traced molecu-

lar structure directly on the GPU using GLSL, and achieved real-time rendering rates

for molecules comprising close to two hundred thousand atoms each. The method

however, by design, was prone to execution conflicts with other methods utilizing the

same GPU unit. This became evident when the GPU-based force calculation method

discussed in Chapter 5 was implemented in and tested on a single GPU configuration.

The performance penalties inflicted on the force calculation method due to these con-

flicts were substantial, reaching up to 3ms. A dual GPU configuration would address

this issue effectively, but it would have increased the overall cost of a standard lap-

top/desktop system. To keep this cost as low as possible it was decided to implement

the second-best performing rendering technique, in Haptimol RD, as the default one

and leave the ray-tracing method for future use when a dual GPU configuration be-

comes commonplace. This technique renders the molecular structures using OpenGL

and GLSL commands; namely, it describes a single atomic structure on the GPU,

and then uses OpenGL and GLSL to populate, transform and render this structure

158

into a molecule. The method achieves real-time rendering rates for molecules com-

prising up to forty thousand atoms each. Moreover it can accommodate molecular

deformation easily since the atomic coordinates are fed to the graphics card at every

rendering frame (and can be modified as such), unlike the ray tracing approach which

uploads these coordinates on the GPU at startup. To navigate efficiently these large

structures within their virtual environment, a fully decoupled version of the naviga-

tion cube concept proposed by Stocks et. al. [SHL09] was developed. The proposed

navigation method introduces the concepts of a VHW (Virtual Haptic Workspace)

and virtual cursor, and, unlike the original approach, utilizes two navigation cubes

(i.e. one for the device workspace the second for the VHW) instead of one. The first

navigation cube (mapped to the device workspace) translates HIP displacement into a

position/rate control movement [SB08] for the virtual cursor, whereas the second cube

(mapped to the VHW) translates virtual cursor displacement into a position/rate con-

trol movement for the virtual object (i.e. ligand) and VHW. Using this double layer

of movement management, the method decouples HIP and virtual cursor movement,

and attains unconstrained object/VHW movement within the virtual world (unlike

the virtual coupling approach [BJ08] which constrains HIP and cursor movement us-

ing a spring). The multipoint collision response method described in Chapter 6 relies

on this decoupling in order to handle molecular collision during a docking simulation.

The molecular visualization and haptic navigation routines formed the basis for

the next two main pieces of work, relating to the calculation of the interaction forces.

As seen in Chapter 2, a major issue in haptics-assisted docking is the 1-2ms force-

update constraint, required for smooth and stable force-feedback. Current interactive

approaches achieve such refresh rates by utilizing precomputed force grids and linear

interpolation to accelerate the respective computations. However, these methods are

159

limited to the docking of molecules comprising up to a couple of thousand of atoms

each. Moreover as noted before, precomputed-grids are memory hungry, induce rough

force transitions at cell boundaries, and by design cannot model molecular flexibility.

To address these issues two ways for calculating the force were explored. The first

approach computed the force by accounting for all interatomic interactions between

the receptor and ligand molecules (i.e. the Brute Force approach), whereas the sec-

ond approach utilized a set-reduction technique to reduce the number of interatomic

interactions accounted for in Equation 2.2.8 and accelerate significantly the respective

force computations. Performance tests on the Brute Force approach (on CPU and

GPU) however, indicated that this approach is unsuitable for the interactive docking

of large molecules due to its high execution complexity (see Sections 4.2 and Sections

5.3); leaving thus the set-reduction technique as the only alternative. Using a cut-

off distance, the set-reduction technique relies on spatial partitioning structures (i.e.

regular grids and octrees) and proximity querying algorithms (on those structures) in

order to identify, at haptic refresh rates, the set of interacting atom-pairs within the

cut-off. Force calculations are then executed using this set. Based on this concept,

two novel force calculation approaches (the first optimized for the CPU the second

for the GPU) were developed that can facilitate the haptics-assisted docking of large

biomolecules.

The CPU-based force calculation approach described in Chapter 4 was the first

approach investigated and implemented in Haptimol RD. Two proximity querying al-

gorithms were examined during this investigation, the first one utilized regular grids,

the second octrees. Performance measurements taken on both querying methods

showed that the octree-based algorithm outperformed the grid-based algorithm con-

sistently. Using octree-based querying, a force calculation method was developed that

160

overcomes the computational limitations of previous CPU-based approaches (i.e. uti-

lizing pre-computed force grids), and can be applied to the haptic-assisted docking

of rigid and flexible structures (providing conformational change can be computed

sufficiently fast). When applied to rigid docking, the approach can facilitate larger

molecular structures than the ones reported in previous studies (i.e. more than a

threefold increase), and it is therefore not constrained to small proteins. Since tree

construction times are irrelevant in rigid docking, the approach can maintain hap-

tic force refresh rates on the CPU for molecular pairs comprising 7K atoms each.

In flexible docking, however, the method would have to construct the trees at each

haptic frame, and as such, haptic refresh rates could be achieved only for molec-

ular pairs of up to one 1.7k each. Preliminary work on the GPU indicated that

high-end GPU technology could benefit this approach substantially, both in the size

of molecules supported and the force response times attained. This belief stemmed

from the observation that the GPU-based implementation of the brute force approach

outperformed the CPU-based implementation by almost sixfold.

To investigate this systematically, the grid-based and octree-based proximity query-

ing methods were transferred and tested on the GPU. Chapter 5 details this work,

and presents a hybrid GPU-accelerated force calculation approach that can facili-

tate effectively the interactive haptics-assisted study of very large biomolecules, i.e.

the docking of molecules comprising hundreds of thousands of atoms each. The ap-

proach utilizes effectively the many-core processing capabilities of modern GPUs, the

space partitioning properties of regular grids and octrees, and two efficient proximity

querying algorithms based on these partitioning structures. The selection of the space

partitioning structure used (i.e. a regular grid or an octree) is made at runtime, based

on the available GPU memory. However, GPU memory does not seem to be an issue

161

for the grid-based method, since it appears that modern GPUs can accommodate the

memory requirements of the grids used in almost all practical, haptics-assisted dock-

ing cases. However, for cases where (a) the GPU has limited memory specifications

(e.g. less than 512MB memory), or (b) the GPU performs at the same time other

memory hungry tasks (e.g. ray tracing, texture mapping), the octree-based method

would represent an effective alternative. When compared to the CPU-based force cal-

culation method, the GPU-based approach was up to 90 times faster. Moreover, the

method pre-computes a space partitioning structure for the smaller molecule (ligand)

only, meaning there would be no additional overhead in the force calculation when re-

ceptor atoms move due to conformational change. Again, providing the new positions

of the receptor atoms are calculated sufficiently quickly, receptor flexibility could be

modelled. For ligand flexibility however, the approach would have to construct the

respective partitioning structure on the CPU and then transfer it on the GPU, at

sub-millisecond times, as the ligand deforms. Because of this, sub-millisecond grid

and octree construction times can be achieved by this approach for ligand molecules

comprising up to 3.5k and 1.7k atoms respectively.

Given the size of molecules supported by Haptimol RD, several issues arose related

to force scaling and stability. Chapter 6 describes the methods developed during this

thesis in order to address these issues, outlines the implementation of Haptimol RD,

and discusses the limitations of this docking application using real docking examples.

Three force scaling techniques were examined and implemented within Haptimol RD.

The first scales the interactive force using a fixed scaling factor, the second using a

user defined min/max range of force magnitudes, and the third using a series of

arctangent functions. To address force stability (especially at close proximity), atom

interpenetration was addressed by implementing an intuitive force-based multi-point

162

collision response method which disallows extreme receptor/ligand atom overlapping.

The method allows the application to update the interaction force and the ligand

position only if the computed force satisfies certain criteria. With the force scaling

and multipoint collision response methods implemented, Haptimol RD can attain

sufficient force stability during docking simulations of large molecules.

In conclusion, this thesis describes the implementation of an interactive haptics-

assisted docking system, capable of docking very large rigid biomolecules. The sys-

tem computes in real-time the electrostatic and VDW forces in docking, using cut-

off-based proximity querying algorithms optimized for CPU/GPU-based execution.

These methods overcome the issues of pre-computed force grids (section 2.2.3 dis-

cusses these issues), and allow the system to achieve force updates, at haptic refresh

rates, for examples of interest in protein-protein and protein-drug docking. In its

current implementation Haptimol RD can facilitate the docking of molecules com-

prising up to forty thousand atoms each (even though it attains haptic force updates

for molecules comprising up to 200k atoms each), due to constraints imposed by the

application’s molecular visualization routine (when run on one GPU) and the cost

of acquiring a second GPU unit. Within a system with a dual GPU configuration

however, Haptimol RD can easily increase these sizes by fivefold. Because of the

cut-off distance, it is expected that any inaccuracy in the force outcome will arise

from the longer range electrostatic interactions rather than from the VDW. To test

this, a docking experiment was conducted with BPTI on the receptor trypsin, and

all atom pairs accounted for during the force calculation (brute force). However, no

perceptible difference could be found on the forces rendered on the haptic device,

even though in MD simulations variation of the cut-off distance can have significant

effects on the outcome. Currently only forces are perceived through the haptic device

163

but torques obviously play a crucial role in the docking process. Torque will rotate

a ligand relative to the receptor helping to orient it correctly for docking. Affordable

haptic devices do not allow the user to feel torques although they allow the user to

rotate objects. A partial solution is to give a graphical depiction of the torque. Even

though the focus was on rigid docking, the methods discussed here can be applied

without any modification to docking problems that model molecular flexibility. This

was one of the design choices made during this thesis, with the size of molecules

supported being the second one.

Haptics-assisted docking enables intuitive and interactive exploration of binding

poses which may give an advantage over automated approaches. As this work has

demonstrated, the inherent execution parallelism of GPUs can benefit haptics-assisted

docking systems by allowing them to accommodate larger structures than before,

and as such improve the applicability and usefulness of such systems. It is expected

that future research will attempt to improve the docking accuracy of such systems

by incorporating more realistic force calculations (e.g. that model solvent effects

implicitly), and addressing receptor-ligand flexibility.

7.2 Future Work

The results presented in this thesis suggest interesting research directions to the field,

including several extensions to this work. These are discussed in the following five

paragraphs.

7.2.1 Molecular Flexibility

The GPU-based force calculation approach discussed here does not impose any pre-

computational requirements (i.e. a spatial partitioning structure) on the receptor,

164

and as such can facilitate force calculations for deformable receptors without any ad-

ditional modifications. One approach already taken in haptics for modelling protein

flexibility is to use an elastic network model [SLH11]. Using this model and the GPU-

based force method, receptor flexibility can be achieved as follows: a) identify the set

of interacting atom pairs, b) use the network model to deform the receptor based on

this set of interatomic interactions, and c) compute the total interaction force after

the receptor deformation. Modelling of both ligand and receptor flexibility can also

be done on the GPU using MD simulation, given that the spatial decomposition of

the ligand is performed within micro seconds (see next paragraph). Using the MD

trajectories, the method of linear response [IUSK05] can be applied to calculate con-

formational change, on both receptor and ligand, due to interaction forces at a cut-off

distance. A feature of protein dynamics (i.e. atom motions occur in a very reduced

dimensional space) can also be used to reduce the number of calculations within the

linear response method with minimal and quantifiable sacrifice in accuracy.

7.2.2 Grid/Octree Construction on the GPU

Existing octree [Kar12] and regular grid [GPBG11] subdivision methods suggest that

sub-millisecond construction times can be achieved for very large molecules, if the con-

struction occurs directly on the GPU. Investigating this possibility is the next logical

step, since it will lift the size constraints currently imposed on the ligand (because

of the CPU-based construction), and thus enable Haptimol RD to support ligand

flexibility for molecules comprising more than 3.5K atoms. The construction of the

spatial partitioning structures on the GPU might also allow the exploration of real-

time ray tracing techniques capable of enhancing the 3D perception of the molecules

through shadows and illumination. Given that the molecules will not change shape

165

significantly between haptic frames the possibility of exploiting coherence during de-

formation and proximity querying is another interesting question that necessitates

further investigation.

7.2.3 Torques

During a docking simulation, torques affect ligand rotation around its center of mass

and ideally they should be accounted for. The force calculation methods discussed

here could be modified to compute the torques, with negligible computational over-

hand. 6DoF rendering techniques [Tri04, BJ08] could then be investigated in order

to render these results on a 6DoF haptic device, and 6-DoF multipoint collision re-

sponse methods could be developed in order to account for torques during molecular

collision. Lower cost and more commonly used 3DOF haptic devices do not render

torques and therefore ways to depict them graphically could also be explored.

7.2.4 Real time rendering of the Surface model

The graphical representation in Haptimol RD shows either the VDW surface or the

backbone of the molecule. However, none of these depictions is ideal for showing

clearly cavities and depressions which are often associated with binding sites. These

features are shown by the solvent excluded surface (SES), which is a surface traced

by a water molecule, i.e. the surface model. Real-time rendering of the SESs of

the flexible molecules may show the appearance of complementary binding features

providing a strong visual cue of a possible binding pose. Although the molecular

surface is drawn in molecular graphics software such as Pymol, it is slow and the

challenge is to develop methods for rendering the SES within 30 ms for large de-

formable biomolecules. One direction worth investigating, is the rendering of the

166

SES only for areas near to the viewer or in close proximity to the other molecule,

instead of for the entire structure. A parallel implementation of the occlusion-culling

technique proposed by Hao et. al. [HVS04] could be a step towards that direction,

enabling the real-time rendering of the SES for large structures. This might also allow

Haptimol RD to visualize on a single GPU larger molecules than the ones currently

supported, due to the relatively small number of triangles rendered.

Bibliography

[ACL96] Norman L Allinger, Kuohsiang Chen, and Jenn-Huei Lii. An im-

proved force field (mm4) for saturated hydrocarbons. Journal of

Computational Chemistry, 17(5-6):642–668, 1996.

[ADPH11] Apostolos Axenopoulos, Petros Daras, Georgios Papadopoulos, and

Elias Houstis. A shape descriptor for fast complementarity matching

in molecular docking. IEEE/ACM Transactions on Computational

Biology and Bioinformatics (TCBB), 8(6):1441–1457, 2011.

[AGB13] Athanasios Anthopoulos, Ian Grimstead, and Andrea Brancale. Gpu-

accelerated molecular mechanics computations. J. Comput. Chem.,

34(26):2249–2260, 2013.

[AGO08] Adriano D Andricopulo, Rafael VC Guido, and Glaucius Oliva. Vir-

tual screening and its integration with modern drug design technolo-

gies. Current medicinal chemistry, 15(1):37–46, 2008.

[AJL+08] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith

Roberts, and Peter Walter. Molecular biology of the cell. New York:

Garland Science, 1, 2008.

[And03] Amy C Anderson. The process of structure-based drug design. Chem-

istry & biology, 10(9):787–797, 2003.

[APGB14] Athanasios Anthopoulos, Gaia Pasqualetto, Ian Grimstead, and An-

drea Brancale. Haptic-driven, interactive drug design: implementing

167

168

a gpu-based approach to evaluate the induced fit effect. Faraday

Discuss., 169:323–342, 2014.

[AT01] Ruben Abagyan and Maxim Totrov. High-throughput docking for

lead generation. Current Opinion in Chemical Biology, 5(4):375–382,

2001.

[BAT11] Petter Bivall, Shaaron Ainsworth, and Lena AE Tibell. Do haptic

representations help complex molecular learning? Science Education,

95(4):700–719, 2011.

[BBO+83] Bernard R Brooks, Robert E Bruccoleri, Barry D Olafson, S Swami-

nathan, Martin Karplus, et al. Charmm: A program for macromolec-

ular energy, minimization, and dynamics calculations. J. Comput.

Chem., 4(2):187–217, 1983.

[BBZW04] Stefan Birmanns, Maik Boltes, Hwrwig Zilken, and Willy Wriggers.

Adaptive visuo-haptic rendering for hybrid modeling of macromolec-

ular assemblies. In Proceedings Mechatronics and Robotics, volume 4,

pages 1351–1356, 2004.

[BCRR11] Aude Bolopion, Barthelemy Cagneau, Stephane Redon, and

Stéphane Régnier. Variable gain haptic coupling for molecular sim-

ulation. In World Haptics Conference (WHC), 2011 IEEE, pages

469–474. IEEE, 2011.

[BH05] Jerome Baudry and Paul J Hergenrother. Structure-based design

and in silico virtual screening of combinatorial libraries. a com-

bined chemical-computational project. Journal of chemical educa-

tion, 82(6):890, 2005.

169

[Biv10] Petter Bivall. Touching the Essence of Life: Haptic Virtual Proteins

for Learning. PhD thesis, Linköping University, Linköping, Sweden,

2010.

[BJ08] Jernej Barbic and Doug L James. Six-dof haptic rendering of contact

between geometrically complex reduced deformable models. Haptics,

IEEE Transactions on, 1(1):39–52, 2008.

[BJOYBJK90] Frederick P Brooks Jr, Ming Ouh-Young, James J Batter, and

P Jerome Kilpatrick. Project grope - haptic displays for scientific vi-

sualization. In ACM SIGGraph computer graphics, volume 24, pages

177–185. ACM, 1990.

[BK03] Natasja Brooijmans and Irwin D Kuntz. Molecular recognition and

docking algorithms. Annual review of biophysics and biomolecular

structure, 32(1):335–373, 2003.

[Bon64] A Bondi. van der waals volumes and radii. The Journal of physical

chemistry, 68(3):441–451, 1964.

[BS02] Cagatay Basdogan and Mandayam A Srinivasan. Haptic rendering

in virtual environments. Handbook of virtual environments, pages

117–134, 2002.

[BSA01] O Burchan Bayazit, Guang Song, and Nancy M Amato. Ligand

binding with obprm and user input. In Robotics and Automation,

2001. Proceedings 2001 ICRA. IEEE International Conference on,

volume 1, pages 954–959. IEEE, 2001.

[BW03] Stefan Birmanns and Willy Wriggers. Interactive fitting augmented

by force-feedback and virtual reality. Journal of structural biology,

144(1):123–131, 2003.

170

[BWF+00] Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland,

TN Bhat, Helge Weissig, Ilya N Shindyalov, and Philip E Bourne.

The protein data bank. Nucleic Acids Res., 28(1):235–242, 2000.

[CH88] Homer H Chen and Thomas S Huang. A survey of construction and

manipulation of octrees. Computer Vision, Graphics, and Image

Processing, 43(3):409–431, 1988.

[chi] chimera. chimera: User’s guide.

[Con83a] Michael L Connolly. Analytical molecular surface calculation. Jour-

nal of Applied Crystallography, 16(5):548–558, 1983.

[Con83b] Michael L Connolly. Solvent-accessible surfaces of proteins and nu-

cleic acids. Science, 221(4612):709–713, 1983.

[CPN10] Peter Csermely, Robin Palotai, and Ruth Nussinov. Induced fit,

conformational selection and independent dynamic segments: an

extended view of binding events. Trends in biochemical sciences,

35(10):539–546, 2010.

[CWL12] Christopher R Corbeil, Christopher I Williams, and Paul Labute.

Variability in docking success rates due to dataset preparation. Jour-

nal of computer-aided molecular design, 26(6):775–786, 2012.

[DAMR07] B Daunay, A Abbaci, A Micaelli, and S Regnier. The wave variables,

a solution for stable haptic feedback in molecular docking simula-

tions. In Innovative Algorithms and Techniques in Automation, In-

dustrial Electronics and Telecommunications, pages 67–73. Springer,

2007.

[DDKA06] Christian Duriez, Frederic Dubois, Abderrahmane Kheddar, and

Claude Andriot. Realistic haptic rendering of interacting deformable

171

objects in virtual environments. Visualization and Computer Graph-

ics, IEEE Transactions on, 12(1):36–47, 2006.

[Del02] W. L. Delano. The PyMOL Molecular Graphics System, 2002.

[DFTRJ97] Wolfgang Damm, Antonio Frontera, Julian Tirado-Rives, and

William L Jorgensen. Opls all-atom force field for carbohydrates.

Journal of Computational Chemistry, 18(16):1955–1970, 1997.

[DJMH05] R Andrew Davies, Nigel W John, John N MacDonald, and Keith H

Hughes. Visualization of molecular quantum dynamics: a molecular

visualization tool with integrated web3d and haptics. In Proceedings

of the tenth international conference on 3D Web technology, pages

143–150. ACM, 2005.

[DMR07a] B. Daunay, A. Micaelli, and S. Régnier. 6 dof haptic feedback for

molecular docking using wave variables. In Actes de ICRA’07 IEEE

International Conference on Robotics and Automation, pages 840–

845, Rome, Italie, April 2007.

[DMR07b] Bruno Daunay, Alain Micaelli, and Stéphane Régnier. Energy-

field reconstruction for haptic-based molecular docking using energy

minimization processes. In Intelligent Robots and Systems, 2007.

IROS 2007. IEEE/RSJ International Conference on, pages 2704–

2709. IEEE, 2007.

[DR09] Bruno Daunay and Stephane Régnier. Stable six degrees of freedom

haptic feedback for flexible ligand–protein docking. Computer-Aided

Design, 41(12):886–895, 2009.

[Eas13] Robert Easdon. Ambient occlusion and shadows for molecular graph-

ics. Master’s thesis, University of East Anglia, Norwich, UK, 11 2013.

172

[EKK04] Miriam Eisenstein and Ephraim Katchalski-Katzir. On proteins,

grids, correlations, and docking. C. R. Biol., 327(5):409–420, May

2004.

[far14] Computing power revolution and new algorithms: Gp-gpus, clouds

and more: general discussion. Faraday Discuss., 169:379–401, 2014.

[FDGB08] Nicolas Férey, Olivier Delalande, Gilles Grasseau, and Marc Baaden.

A vr framework for interacting with molecular simulations. In Pro-

ceedings of the 2008 ACM symposium on Virtual reality software and

technology, pages 91–94. ACM, 2008.

[FHJL88] Thomas E Ferrin, Conrad C Huang, Laurie E Jarvis, and Robert

Langridge. The midas display system. Journal of Molecular Graphics,

6(1):13–27, 1988.

[FNM+09] Nicolas Férey, Julien Nelson, Christine Martin, Lorenzo Picinali,

Guillaume Bouyer, A Tek, Patrick Bourdot, Jean-Marie Burkhardt,

Brian FG Katz, Mehdi Ammi, et al. Multisensory vr interaction for

protein-docking in the corsaire project. Virtual Reality, 13(4):273–

293, 2009.

[FP93] T-P Fang and Les A Piegl. Delaunay triangulation using a uniform

grid. Computer Graphics and Applications, IEEE, 13(3):36–47, 1993.

[GME+00] Arthur Gregory, Ajith Mascarenhas, Stephen Ehmann, Ming Lin,

and Dinesh Manocha. Six degree-of-freedom haptic display of polyg-

onal models. In Proceedings of the conference on Visualization’00,

pages 139–146. IEEE Computer Society Press, 2000.

[GPBG11] Kirill Garanzha, Simon Premože, Alexander Bely, and Vladimir

Galaktionov. Grid-based sah bvh construction on a gpu. The Vi-

sual Computer, 27(6-8):697–706, 2011.

173

[HDS96] William Humphrey, Andrew Dalke, and Klaus Schulten. Vmd: visual

molecular dynamics. Journal of Molecular Graphics, 14(1):33–38,

1996.

[HKR12] Lennart Heinzerling, Robert Klein, and Matthias Rarey. Fast force

field-based optimization of protein–ligand complexes with graphics

processor. J. Comput. Chem., 33(32):2554–2565, 2012.

[HN96] Thomas A Halgren and Robert B Nachbar. Merck molecular force

field. iv. conformational energies and geometries for mmff94. Journal

of Computational Chemistry, 17(5-6):587–615, 1996.

[HS10] Xiyuan Hou and Olga Sourina. Haptic rendering algorithm for

biomolecular docking with torque force. In Cyberworlds (CW), 2010

International Conference on, pages 25–31. IEEE, 2010.

[HS11] Xiyuan Hou and Olga Sourina. Six degree-of-freedom haptic ren-

dering for biomolecular docking. In Transactions on computational

science XII, pages 98–117. Springer, 2011.

[HVS04] Xuejun Hao, Amitabh Varshney, and Sergei Sukharev. Real-time

visualization of large time-varying molecules. In Proceedings of the

High-Performance Computing Symposium, volume 4. Citeseer, 2004.

[IHL14] Georgios Iakovou, Steven J Hayward, and Stephen D Laycock.

Fd169: A real-time proximity querying algorithm for haptic-based

molecular docking. Faraday Discussions, 2014.

[IHL15] Georgios Iakovou, Steven Hayward, and Stephen D Laycock. Adap-

tive gpu-accelerated force calculation for interactive rigid molecular

docking using haptics. Journal of Molecular Graphics and Modelling,

61:1–12, 2015.

174

[ILH16] Georgios Iakovou, Stephen Laycock, and Steven Hayward. Determi-

nation of locked interfaces in biomolecular complexes using Hapti-

mol RD. Biophysics and Physicobiology, 2016.

[IUSK05] Mitsunori Ikeguchi, Jiro Ueno, Miwa Sato, and Akinori Kidera. Pro-

tein structural change upon ligand binding: linear response theory.

Physical review letters, 94(7):078102, 2005.

[JBT04] Doug L James, Jernej Barbič, and Christopher D Twigg. Squashing

cubes: Automating deformable model construction for graphics. In

ACM SIGGRAPH 2004 Sketches, page 38. ACM, 2004.

[Jmo] Jmol. Jmol: File formats/coordinates.

[JMTR96] William L Jorgensen, David S Maxwell, and Julian Tirado-Rives.

Development and testing of the opls all-atom force field on confor-

mational energetics and properties of organic liquids. Journal of the

American Chemical Society, 118(45):11225–11236, 1996.

[KAR+94] Ronald Knegtel, J Antoon, C Rullmann, Rolf Boelens, and Robert

Kaptein. Monty: a monte carlo approach to protein-dna recognition.

Journal of molecular biology, 235(1):318–324, 1994.

[Kar12] Tero Karras. Maximizing parallelism in the construction of bvhs,

octrees, and k-d trees. In Proceedings of the Fourth ACM SIG-

GRAPH/Eurographics conference on High-Performance Graphics,

pages 33–37. Eurographics Association, 2012.

[KBO+82] Irwin D Kuntz, Jeffrey M Blaney, Stuart J Oatley, Robert Langridge,

and Thomas E Ferrin. A geometric approach to macromolecule-

ligand interactions. Journal of molecular biology, 161(2):269–288,

1982.

175

[KDFB04] Douglas B Kitchen, Hélène Decornez, John R Furr, and Jürgen Ba-

jorath. Docking and scoring in virtual screening for drug discovery:

methods and applications. Nature reviews Drug discovery, 3(11):935–

949, 2004.

[Kre01] Aleš Krenek. Haptic rendering of molecular conformations. In Pro-

ceedings of Eurohaptics, pages 142–145, 2001.

[KSL05] EM Krovat, T Steindl, and T Langer. Recent advances in dock-

ing and scoring. Current Computer-Aided Drug Design, 1(1):93–102,

2005.

[KZD+14] Max Kaluschke, Uwe Zimmermann, Marinus Danzer, Gabriel Zach-

mann, and Rene Weller. Massively-parallel proximity queries for

point clouds. In Workshop on Virtual Reality Interaction and Phys-

ical Simulation, pages 19–28. The Eurographics Association, 2014.

[LA91] Jenn-Huei Lii and Norman L Allinger. The mm3 force field for

amides, polypeptides and proteins. Journal of computational chem-

istry, 12(2):186–199, 1991.

[LL04] Yong-Gu Lee and Kevin W Lyons. Smoothing haptic interaction us-

ing molecular force calculations. Computer-Aided Design, 36(1):75–

90, 2004.

[LMM10] Christian Lauterbach, Qi Mo, and Dinesh Manocha. gproximity: Hi-

erarchical gpu-based operations for collision and distance queries. In

Computer Graphics Forum, volume 29, pages 419–428. Wiley Online

Library, 2010.

[LR71] Byungkook Lee and Frederic M Richards. The interpretation of pro-

tein structures: estimation of static accessibility. Journal of molecu-

lar biology, 55(3):379–IN4, 1971.

176

[LR96] Thomas Lengauer and Matthias Rarey. Computational methods

for biomolecular docking. Current opinion in structural biology,

6(3):402–406, 1996.

[LSP06] Andrew R Leach, Brian K Shoichet, and Catherine E Peishoff. Pre-

diction of protein-ligand interactions. docking and scoring: successes

and gaps. J. Med. Chem., 49(20):5851–5855, 2006.

[LYL05] Susana K Lai-Yuen and Yuan-Shin Lee. Computer-aided molecular

design (camd) with force-torque feedback. In Computer Aided Design

and Computer Graphics, 2005. Ninth International Conference on,

pages 199–204. IEEE, 2005.

[LYL06a] Susana K Lai-Yuen and Yuan-Shin Lee. Energy-field optimization

and haptic-based molecular docking and assembly search system for

computer-aided molecular design (camd). In Haptic Interfaces for

Virtual Environment and Teleoperator Systems, 2006 14th Sympo-

sium on, pages 233–240. IEEE, 2006.

[LYL06b] Susana K Lai-Yuen and Yuan-Shin Lee. Interactive computer-aided

design for molecular docking and assembly. Computer-Aided Design

and Applications, 3(6):701–709, 2006.

[Mar02] Eric Martz. Protein explorer: easy yet powerful macromolecular

visualization. Trends in Biochemical Sciences, 27(2):107–109, 2002.

[MCET05] Ross Maciejewski, Seungmoon Choi, David S Ebert, and Hong Z

Tan. Multi-modal perceptualization of volumetric data and its ap-

plication to molecular docking. In Eurohaptics Conference, 2005

and Symposium on Haptic Interfaces for Virtual Environment and

Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages

511–514. IEEE, 2005.

177

[MEL+08] N Moitessier, P Englebienne, D Lee, J Lawandi, Corbeil, and CR.

Towards the development of universal, fast and highly accurate

docking/scoring methods: a long way to go. Br. J. Pharmacol.,

153(S1):S7–S26, 2008.

[MFC+14] Anne-Elisabeth Molza, Nicolas Férey, Mirjam Czjzek, Elisabeth

Le Rumeur, Jean-François Hubert, Alex Tek, Benoist Laurent,

Marc Baaden, and Olivier Delalande. Innovative interactive flexible

docking method for multi-scale reconstruction elucidates dystrophin

molecular assembly. Faraday Discuss., 169:45–62, 2014.

[MHL+09] Garrett M Morris, Ruth Huey, William Lindstrom, Michel F Sanner,

Richard K Belew, David S Goodsell, and Arthur J Olson. Autodock4

and autodocktools4: Automated docking with selective receptor flex-

ibility. Journal of computational chemistry, 30(16):2785–2791, 2009.

[MPT05] William A McNeely, Kevin D Puterbaugh, and James J Troy. Six

degree-of-freedom haptic rendering using voxel sampling. In ACM

SIGGRAPH 2005 Courses, page 42. ACM, 2005.

[MR01] Edward T Maggio and Kal Ramnarayan. Recent developments in

computational proteomics. Drug discovery today, 6(19):996–1004,

2001.

[MWS96] Michael Meyer, Peter Wilson, and Dietmar Schomburg. Hydrogen

bonding and molecular surface shape complementarity as a basis for

protein docking. Journal of molecular biology, 264(1):199–210, 1996.

[Neu97] Arnold Neumaier. Molecular modeling of proteins and mathematical

prediction of protein structure. SIAM review, 39(3):407–460, 1997.

178

[NMT02] Hiroshi Nagata, Hiroshi Mizushima, and Hiroshi Tanaka. Concept

and prototype of protein–ligand docking simulator with force feed-

back technology. Bioinformatics, 18(1):140–146, 2002.

[NVI] NVIDIA. Cuda toolkit 3.1.

[NVI10] NVIDIA. NVIDIA OpenCL Best Practices Guide. NVIDIA,

https://developer.nvidia.com/cuda-toolkit-32-downloads, 2010.

[OL05a] Miguel A Otaduy and Ming C Lin. Introduction to haptic rendering.

In ACM SIGGRAPH 2005 Courses, page 3. ACM, 2005.

[OL05b] Miguel A Otaduy and Ming C Lin. Sensation preserving simpli-

fication for haptic rendering. In ACM SIGGRAPH 2005 Courses,

page 72. ACM, 2005.

[OM12] Khronos Opencl and Aaftab Munshi. The opencl specification ver-

sion: 1.2 document revision: 19, 2012.

[OY90] Ming Ouh-Young. Force Display in Molecular Docking. PhD thesis,

University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,

2 1990. TR90-004.

[PCT+07] Petter Bivall Persson, Matthew D Cooper, Lena AE Tibell, Shaaron

Ainsworth, Anders Ynnerman, and B-H Jonsson. Designing and

evaluating a haptic system for biomolecular education. In Virtual

Reality Conference, 2007. VR’07. IEEE, pages 171–178. IEEE, 2007.

[PGH+04] Eric F. Pettersen, Thomas D. Goddard, Conrad C. Huang, Gre-

gory S. Couch, Daniel M. Greenblatt, Elaine C. Meng, and

Thomas E. Ferrin. Ucsf chimera - a visualization system for ex-

ploratory research and analysis. J. Comput. Chem., 25(13):1605–

1612, 2004.

179

[PLFL85] N Pattabiraman, M Levitt, TE Ferrin, and R Langridge. Computer

graphics in real-time docking with energy calculation and minimiza-

tion. J. Comput. Chem., 6(5):432–436, 1985.

[PSVV07] Ioannis Ch Paschalidis, Yang Shen, Pirooz Vakili, and Sandor Vajda.

Sdu: A semidefinite programming-based underestimation method for

stochastic global optimization in protein docking. Automatic Control,

IEEE Transactions on, 52(4):664–676, 2007.

[RAM+12] Antonio Ricci, Athanasios Anthopoulos, Alberto Massarotti, Ian

Grimstead, and Andrea Brancale. Haptic-driven applications to

molecular modeling: state-of-the-art and perspectives. Future Medic-

inal Chemistry, 4(10):1219–1228, 2012.

[Rit08] David W Ritchie. Recent progress and future directions in protein-

protein docking. Current protein & peptide science, 9(1):1, 2008.

[RJ99] Robert C Rizzo and William L Jorgensen. Opls all-atom model for

amines: resolution of the amine hydration problem. J. Am. Chem.

Soc, 121(20):4827–4836, 1999.

[SB06] Erk Subasi and Cagatay Basdogan. A new approach to molecular

docking in virtual environments with haptic feedback. In Proceedings

of EuroHaptics Conference, pages 141–145, 2006.

[SB08] Erk Subasi and Cagatay Basdogan. A new haptic interaction and

visualization approach for rigid molecular docking in virtual environ-

ments. Presence: Teleoperators and Virtual Environments, 17(1):73–

90, 2008.

[SCB04] Kenneth Salisbury, Francois Conti, and Federico Barbagli. Haptic

rendering: Introductory concepts. IEEE Computer Graphics and

Applications, 24(2):24–32, 2004.

180

[SDINW05] Dina Schneidman-Duhovny, Yuval Inbar, Ruth Nussinov, and

Haim J. Wolfson. PatchDock and SymmDock: servers for rigid and

symmetric docking. Nucleic Acids Res., 33(Web Server issue):W363–

W367, July 2005.

[SEC+11] Nathan Schmid, Andreas P Eichenberger, Alexandra Choutko, Sere-

ina Riniker, Moritz Winger, Alan E Mark, and Wilfred F van Gun-

steren. Definition and testing of the gromos force-field versions 54a7

and 54b7. Eur. Biophys. J., 40(7):843–856, 2011.

[SG78] Graham M Smith and Peter Gund. Computer-generated space-filling

molecular models. Journal of Chemical Information and Computer

Sciences, 18(4):207–210, 1978.

[SGJ98] Michael JE Sternberg, Henry A Gabb, and Richard M Jackson. Pre-

dictive docking of proteinprotein and proteindna complexes. Current

opinion in structural biology, 8(2):250–256, 1998.

[SGS01] John E Stone, Justin Gullingsrud, and Klaus Schulten. A system

for interactive molecular dynamics simulation. In Proceedings of the

2001 symposium on Interactive 3D graphics, pages 191–194. ACM,

2001.

[SH09] Bharat Sukhwani and Martin C Herbordt. Gpu acceleration of a

production molecular docking code. In Proceedings of 2nd Workshop

on General Purpose Processing on Graphics Processing Units, pages

19–27. ACM, 2009.

[SH10] Olga Sourina and Xiyuan Hou. Visual haptic-enabled biomolecular

docking system design. Scientific Visualization, 2(1):49–58, 2010.

181

[SHL09] Matthew Stocks, Steven Hayward, and Stephen Laycock. Interacting

with the biomolecular solvent accessible surface via a haptic feedback

device. BMC Struct. Biol., 9(1):69–75, 2009.

[SHO04] Christian M Sauer, Whitney A Hastings, and Allison M Okamura.

Virtual environment for exploring atomic bonding. In Proceedings of

Eurohaptics, pages 5–7. Citeseer, 2004.

[SHUS10] John E Stone, David J Hardy, Ivan S Ufimtsev, and Klaus Schul-

ten. Gpu-accelerated molecular modeling coming of age. Journal of

Molecular Graphics and Modelling, 29(2):116–125, 2010.

[SKB92] Brian K Shoichet, Irwin D Kuntz, and Dale L Bodian. Molecular

docking using shape descriptors. Journal of Computational Chem-

istry, 13(3):380–397, 1992.

[SLH11] Matthew B Stocks, Stephen D Laycock, and S Hayward. Applying

forces to elastic network models of large biomolecules using a haptic

feedback device. J. Comput.-Aided Mol. Des., 25(3):203–211, 2011.

[SMW95] R. Sayle and J. Milner-White. RasMol: Biomolecular graphics for

all. Trends Biochem. Sci., 20:374–376, 1995.

[SPF+07] John E Stone, James C Phillips, Peter L Freddolino, David J Hardy,

Leonardo G Trabuco, and Klaus Schulten. Accelerating molecular

modeling applications with graphics processors. J. Comput. Chem.,

28(16):2618–2640, 2007.

[SS02] Graham R Smith and Michael JE Sternberg. Prediction of protein–

protein interactions by docking methods. Current opinion in struc-

tural biology, 12(1):28–35, 2002.

182

[Sto10] Matthew Benedict Stocks. Interacting with biomolecules using haptic

feedback. PhD thesis, University of East Anglia, Norwich, Norfolk,

UK, 2010.

[STW09] Olga Sourina, Jaume Torres, and Jing Wang. Visual haptic-based

biomolecular docking and its applications in e-learning. In Transac-

tions on Edutainment II, pages 105–118. Springer, 2009.

[Sub06] Erk Subasi. Rigidmolecular docking in virtual environments with

haptic feedback. Master’s thesis, Koc University, Istanbul, Turkey, 6

2006.

[Sut65] Ivan E Sutherland. The ultimate display. Multimedia: From Wagner

to virtual reality, 1965.

[SVA04] Alexander W Schuttelkopf and Daan MF Van Aalten. Prodrg: a

tool for high-throughput crystallography of protein-ligand complexes.

Acta Crystallogr., Sect. D: Biol. Crystallogr., 60(8):1355–1363, 2004.

[SWS+03] Ganesh Sankaranarayanan, Suzanne Weghorst, Michel Sanner,

Alexandre Gillet, and Arthur Olson. Role of haptics in teaching

structural molecular biology. In Haptic Interfaces for Virtual Envi-

ronment and Teleoperator Systems, 2003. HAPTICS 2003. Proceed-

ings. 11th Symposium on, pages 363–366. IEEE, 2003.

[TPJK01] Miguel L Teodoro, George N Phillips Jr, and Lydia E Kavraki. Molec-

ular docking: A problem with thousands of degrees of freedom. In

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE In-

ternational Conference on, volume 1, pages 960–965. IEEE, 2001.

[Tri04] Miguel Angel Otaduy Tristán. 6-dof haptic rendering using contact

levels of detail and haptic textures. PhD thesis, University of North

Carolina at Chapel Hill, 2004.

183

[vdSLHtGdt13] D van der Spoel, E Lindahl, B Hess, and the GROMACS develop-

ment team. GROMACS User Manual Version 4.6.2. University of

Groningen, Royal Institute of Technology and Uppsala University,

www.gromacs.org, 2013.

[VEM09] Bruno O Villoutreix, Richard Eudes, and Maria A Miteva. Structure-

based virtual ligand screening: recent success stories. Combinatorial

chemistry & high throughput screening, 12(10):1000–1016, 2009.

[vO11] Jeremiah van Oosten. Cuda memory model, 2011.

[WCAK+04] Willy Wriggers, Pablo Chacón, Julio A Kovacs, Florence Tama,

and Stefan Birmanns. Topology representing neural networks recon-

cile biomolecular shape, structure, and dynamics. Neurocomputing,

56:365–379, 2004.

[WCM97] David R Westhead, David E Clark, and Christopher W Murray.

A comparison of heuristic search algorithms for molecular docking.

Journal of Computer-Aided Molecular Design, 11(3):209–228, 1997.

[WKC+84] Scott J Weiner, Peter A Kollman, David A Case, U Chandra

Singh, Caterina Ghio, Guliano Alagona, Salvatore Profeta, and Paul

Weiner. A new force field for molecular mechanical simulation of

nucleic acids and proteins. J. Am. Chem. Soc, 106(3):765–784, 1984.

[WMJ07] Andrew M Wollacott and Kenneth M Merz Jr. Haptic applications

for molecular structure manipulation. J. Mol. Graphics Modell.,

25(6):801–805, 2007.

[WvD09] Thomas R Weikl and Carola von Deuster. Selected-fit versus induced-

fit protein binding: Kinetic differences and mutational analysis. Pro-

teins: Structure, Function, and Bioinformatics, 75(1):104–110, 2009.

184

[YAR11] Elizabeth Yuriev, Mark Agostino, and Paul A. Ramsland. Challenges

and advances in computational docking: 2009 in review. J. Mol.

Recognit., 24(2):149–164, March 2011.

[ZGAB09] Nicola Zonta, Ian J Grimstead, Nick J Avis, and Andrea Brancale.

Accessible haptic technology for drug design applications. J. Mol.

Model., 15(2):193–196, 2009.

